
Exploring Fault-tolerance and Reliability in a
Peer-to-peer Cycle-sharing Infrastructure

João Paulino ?, Paulo Ferreira, and Lúıs Veiga
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Abstract. The partitioning of a long running task into smaller tasks
that are executed separately in several machines can speed up the exe-
cution of a computationally expensive task. This has been explored in
Clusters, in Grids and lately in Peer-to-peer systems. However, transpos-
ing these ideas from controlled environments (e.g., Clusters and Grids)
to public environments (e.g., Peer-to-peer) raises some reliability chal-
lenges: will a peer ever return the result of the task that was submitted
to it or will it crash? and even if a result is returned, will it be the ac-
curate result of the task or just some random bytes? These challenges
demand the introduction of result verification and checkpoint/restart
mechanisms to improve the reliability of high performance computing
systems in public environments. In this paper we propose and analyse a
twofold approach: i) two checkpoint/restart mechanisms to mitigate the
volatile nature of the participants; and ii) various flavours of replication
schemes for reliable result verification.
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1 Introduction

The execution of long running applications has always been a challenge. Even
with the latest developments of faster hardware, the execution of these is still
infeasible by common computers, for it would take months or even years. Even
though super-computers could speed up these executions to days or weeks, al-
most no one can afford them. The idea of executing these in several common
machines parallely was firstly explored in controlled environments [19, 3, 9, 4] and
was later transposed to public environments [2, 12]. Although they are based on
the same principles, new challenges arise from the characteristics of public envi-
ronments.

Clusters [19, 3] and Grids [9, 4, 13] have been very successful in accelerat-
ing computationally intensive tasks. The major difference between these is that
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while clusters use dedicated machines in a local network, grids consider the op-
portunistic use of workstations owned by institutions around the Globe. Both
systems are composed by well managed hardware, trusted software and a near
24 hour per day uptime. Public computing [2, 12, 1, 5, 10, 15] stems from the fact
that the World’s computing power and disk space is no longer exclusively owned
by institutions. Instead, it is distributed in the hundreds of millions of personal
computers and game consoles belonging to the general public. These systems face
new challenges inherent to their characteristics: less reliable hardware, untrusted
software and unpredictable uptime.

One of the several public computing projects is GINGER (Grid Infrastruc-
ture for Non Grid EnviRonments), in the context of which the work of this paper
has been developed. GINGER [20] proposes an approach based on a network of
favours where every peer is able to submit his work-units to be executed on other
peers and execute work-units submitted by other peers as well. A specific goal of
GINGER is that in order to be able to run an interesting variety of applications
without modifying them, GINGER proposes the concept of Gridlet, a semantics-
aware unit of workload division and computation off-load (basically the data, an
estimate of the cost, and the code or a reference to it). Therefore, GINGER is
expected to run applications such as audio and video compression, signal pro-
cessing related to multimedia content (e.g., photo, video and audio enhancement,
motion tracking), content adaptation (e.g., transcoding), and intensive calculus
for content generation (e.g., ray-tracing, fractal generation).

The highly transient nature of the participants in the system may origin a
constant loss of already performed work when a peer fails/leaves or even the
never ending of a task, if no peer is ever enough time available to accomplish
it. To mitigate this, checkpointing/restart mechanisms shall be able to save the
state of a running application to safe storage during the execution. Allowing it
to be resumed in another peer from the point when it was saved if necessary.

The participants of the system are not trusted, so are the results they return.
Results may be invalid (e.g., either corrupted data or format non-compliance), or
otherwise valid but in disagreement with input data (e.g., repeated results from
previous executions with different input, especially one computationally lighter).
Therefore, result verification mechanisms shall be able to check the correctness
of the results.

In the next Section, we address the relevant related work to ours. In Section
3, we propose result verification techniques and checkpoint/restart mechanisms.
In Section 4 we provide a description of our implementation. In Section 5, we
evaluate the proposed techniques. Section 6 concludes.

2 Related Work

In Section 2.1 we review the main approaches to provide an application with
checkpoint/restart capabilities; in Section 2.2 we analyse the techniques that
are mainly used to verify the correctness of the results.
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2.1 Checkpoint/Restart

Checkpoint/restart is a primordial fault-tolerance technique. Long running ap-
plications usually implement checkpoint/restart mechanisms to minimize the
loss of already performed work when a fault occurs [16, 8]. Checkpoint consists
in saving a program’s state to stable storage during fault-free execution. Restart
is the ability to resume a program that was previously checkpointed. To provide
an application with these capabilities, various approaches have been proposed:
Application-level [2, 12] , Library-level [18, 14] and System-level [21].

Application-level Checkpoint/Restart Systems. These systems do not use
any operating system support. These are usually more efficient and produce
smaller checkpoints. They also have the advantage of being portable1. These
checkpointing mechanisms are implemented within the application code, requir-
ing a big programming effort. Checkpointing support built in the application is
the most efficient, because the programmer knows exactly what must be saved
to enable the application to restart. Though, this approach has some drawbacks:
it requires major modifications to application’s source code (its implementation
is not transparent 2 to the application); the application will take checkpoints by
itself and there is no way to order the application to checkpoint if needed; it
may be hard, if not impossible, to restart an application that was not initially
designed to support checkpointing; and it is a very exhaustive task to the pro-
grammer. This programming effort can be minimized using pre-processors that
add checkpointing code to the application’s code, though they usually require the
programmer to state what needs to be saved (e.g., through flagged/annotated
code). Public computing systems like Seti@home [2] and Folding@home [12] use
this checkpointing solution.

Library-level Checkpoint/Restart Systems. This approach consists in link-
ing a library with the application, that creates a layer between the application
and the operating system. This layer has no semantic knowledge of the applica-
tion and cannot access kernel’s data structures (e.g., file descriptors), so this layer
has to emulate operating system calls. The major advantage is that a portable
generic checkpointing mechanism could be created, though it is very hard to
implement a generic model to checkpoint any application. This checkpointing
method requires none or very few modifications to the application’s code. This
approach has been explored by libckpt [18] and Condor [14].

System-level Checkpoint/Restart Systems. These systems are built as an
extension of the operating system’s kernel [21], therefore they can access kernel’s
data structures. Checkpointing can consist in flushing all the process’s data and
control structures to stable storage. Since these mechanisms are external to the
application they do not require specific knowledge of it, and they require none

1 Portability is the ability of moving the checkpoint system from one platform to
another.

2 Transparency is the ability of checkpointing an application without modifying it.
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or minimal changes to the application. They have the obvious disadvantage of
not being portable and usually more inefficient than application-level.

2.2 Result Verification

The results returned by the participants may be wrong due either to failures or
malicious behaviour. Failures occasionally produce erroneous results that must
be identified. Malicious participants create bad results that are intentionally
harder to detect. Their motivation is to discredit the system, or to grow a rep-
utation for work they have not executed (i.e., to cheat the public computing
system and exploit other participants’ resources).

Replication. One of the most effective methods to identify bad results is through
redundant execution. In these schemes the same job is performed by N different
participants (N being the replication factor). The results are compared using
voting quorums, and if there is a majority the corresponding result is accepted.
Since, it is virtually impossible for a fault or independent byzantine behaviour
to produce the same bad result more than once, this technique easily identifies
and discards the bad ones. However, if a group of participants colludes it may
be hard to detect a bad result [17, 6]. Another disadvantage is the massive over-
head it generates. Most of the public computing projects [2, 12] use replication
to verify their results, it is a high price they are willing to pay to ensure their
results are reliable. However, when there is no collusion, it is virtually capable
of identifying all the bad results with 100% certainty.

Hash-trees. Cheating participants can be defeated if they are forced to cal-
culate a binary hash-tree from their results, and return it with them [7]. The
submitting peer only has to execute a small portion of a job and calculate its
hash. Then, when receiving results, the submitting peer compares the hashes
and verifies the integrity of the hash-tree. This dissuades cheating participants
because finding the correct hash-tree requires more computation than actually
performing the required computation and producing the correct results. The
leafs of the hash tree are the results we want to check. The hash is calculated us-
ing two consecutive parts of the result concatenated, starting by the leafs. Once
the tree is complete, the submitting peer executes a random sample of the whole
work that corresponds to a leaf. Then this result is compared to the returned
result and the hashes of the whole tree are checked. Hash-trees make cheating
not worthwhile. They have a relative low overhead: a small portion of the work
has to be executed locally and the hash tree must be checked.

Quizzes. Quizzes are jobs whose result is known by the submitter a priori.
Therefore, they can test the honesty of a participant. Cluster Computing On
the Fly [15] proposed two types of quizzes: stand-alone and embedded quizzes.

Stand-alone quizzes are quizzes disguised as normal jobs. They can test if the
executing peer executed the job. These quizzes are only useful when associated
with a reputation mechanism that manages the trust levels of the executing peers

246 INForum 2010 João Paulino, Paulo Ferreira,Lúıs Veiga



[11]. Though, the use of the same quiz more than once can enable malicious peers
to identify the quizzes and to fool the reputation mechanisms. The generation
of infinite quizzes with known results incurs considerable overhead.

Embedded quizzes are smaller quizzes that are placed hidden into a job, the
job result is accepted if the results of the embedded-quizzes match the previ-
ously known ones. These can be used without a reputation system. Though, the
implementation tends to be complex in most cases. Developing a generic quiz
embedder is a software engineering problem that has not been solved so far.

3 Architecture

In section 3.1 we propose two checkpointing mechanisms that enable GINGER
to checkpoint and restart any application; in section 3.2 we discuss result verifi-
cation techniques that we implemented in GINGER, we consider various flavours
of replication and a straightforward sampling technique.

3.1 Checkpoint/Restart Mechanisms

In GINGER we want to provide a wide range of applications with checkpoint/restart
capabilities, while keeping them portable to be executed on cycle-sharing par-
ticipant nodes, and without having to modify them. Library-level is the only ap-
proach in the related work that would fit. However, an approach simply stating
these goals is still far from being able to checkpoint any application. Therefore,
we propose two mechanisms that will enable us to checkpoint any application.

Generic Checkpoint/Restart. An application can be checkpointed if we run
it on top of virtual machine with checkpoint/restart capabilities (e.g., qemu),
being the application state saved within the virtual machine state. This also pro-
vides some extra security to the clients, since they can be executing untrusted
code. The major drawback of this approach is the size of the checkpoint data,
incurring considerable transmission overhead. To attenuate this: 1) we assume
that one base-generic running checkpoint image is accessible to all the peers;
2) the applications start their execution on top of this image once it is locally
resumed; and 3) at checkpoint time we only transmit the differences between
the current image and the base-image. The checkpoint data size can be further
reduced using various techniques: optimized operating systems (e.g., just enough
operating system or JeOS); differencing not only the disk but also the volatile
state; and applying compression to the data. This approach does not have se-
mantic knowledge of the applications, it cannot preview results. However we
may be able to show some statistical data related to the execution and highlight
where changes have occurred.

Result Checkpoint/Restart. This technique will only be fit for some appli-
cations and demands the implementation of specific enabling mechanisms for
each application. The idea behind this technique is that the applications pro-
duce final results incrementally during their execution. Therefore, if we are able
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to capture the partial results during execution and resume execution from them
later, such result files can actually serve as checkpoint data. This creates a very
efficient checkpointing mechanism. This technique can be implemented using
two different approaches: by monitoring the result file that is being produced by
the application; or by dividing the gridlet work into subtasks in the executing
peer. Since this approach has semantic knowledge of the application result it can
checkpoint whenever it is more convenient (e.g., every 10 lines in an image writ-
ten by a ray-tracer); rather than on a predefined time interval. This awareness
of the semantics of the application also enables the monitoring of the execution
and the previewing of the results in the submitter.

3.2 Result Verification Mechanisms

In order to accept the results returned by the participants we propose replication
with some extra considerations and a complementary sampling technique.

Incremental Replication. The insight of assigning the work iteratively ac-
cording to some rules, instead of putting the whole job to execution at once can
provide some benefits with only minor drawbacks.

The major benefit stems from the fact that lots of redundant execution is
not even taken into consideration when the correct result is being chosen by the
voting quorums. For example, for replication factor 5, if 3 out of the 5 results are
equal the system will not even mind looking at the other 2 results. Then, those
could and should have never been executed. And if so, the overall execution
power of the system would have been optimized by avoiding useless repeated
work. This replication scheme has additional benefits in colluding scenarios. In
these, the same bad result is only returned once the colluders have been able
to identify that they have the same job to execute. If a task is never being
redundantly executed at the same time, colluders can only be successful if they
submit a bad result and wait for the replica of that task to be assigned to one
of them, enabling them to return the same bad result. If that does not happen,
the bad result submitted by them will be detected and they might be punished
by an associated reputation mechanism (e.g., blacklisted).

This technique can have a negative impact in terms of time to complete the
whole work: in one hand, the incremental assignment and wait for the retrieval
of results will lower the performance when the system is not overloaded; on the
other hand, if the number of available participants is low it can actually perform
faster than putting the whole work to execution at once. Therefore, the correct
definition of an overloaded environment having into consideration various fac-
tors (e.g., the number of available participants, the maximum number of gridlets,
etc.) makes possible for the system to decide whether to use this technique or
not, enabling it to take the best advantage of the present resources.

Replication with Overlapped Partitioning. Using overlapped partitioning
the tasks are never exactly equal, even though each individual piece of data is still
replicated with the predetermined factor. Therefore, it becomes more complex for
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the colluders to identify the common part of the task, plus they have to execute
part of the task. Figure 1 depicts the same work divided in in two different
overlapped partitionings. Overlapped partitioning could be implemented in a

Fig. 1. The same work divided differently creating an overlapped partitioning.

relaxed flavour, where only some parts of the job are executed redundantly. This
lowers the overhead, but also lowers the reliability of the results. However, it can
be useful if the system has low computational power available. Figure 2 depicts
a relaxed overlapped partitioning.

Fig. 2. Overlapped tasks for relaxed replication.

Replication with Meshed Partitioning. Some applications can have their
work divided in more than one dimension. Figure 3 depicts the partitioning of
the work for a ray-tracer. Like the overlapped partitioning it influences the way
colluders are able to introduce bad results: more points where they can collude,
with a smaller size too. This partitioning provides lots of points of comparison.
This information might feed an algorithm that is able to choose correct results
according to the reputation of a result, instead of using voting quorums.

Fig. 3. Meshed partitioning using replication factor 2.

Sampling. Replication bases all its result verification decisions in results/info
provided by third parties, i.e., the participant workers. In an unreliable environ-
ment this may not be enough. Therefore, local sampling can have an important
place in the verification of results. Sampling considers the local execution of a
fragment, as small as possible, of each task to be compared with the returned
result. In essence, sampling points act as hidden embedded quizzes. This sample
is the only trusted result, so even if a result that was accepted by the voting
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quorums does not match the local sample it is discarded. Figure 4 depicts the
sampling of an image where a sample is a pixel. We have proposed two check-

Fig. 4. Sampling for an image.

point/restart enabling techniques. Our generic checkpointing technique enables
us to checkpoint any application and resume it later, the overhead it incurs de-
rives from the size of the checkpoint data. Nevertheless, for some applications
our result oriented technique will enable the system to checkpoint and resume an
application with no noticeable overhead, the results are transmitted incremen-
tally, rather than at the end of the execution. For a reliable result verification we
have proposed various flavours of replication that make colluding increasingly
more difficult to achieve and easier to detect. Replication is combined with a
sampling technique that tests the received untrusted results against one result
sample that is known to be correct.

4 Implementation

Our implementation is developed in two different deployments: i) a simulation
environment, that enables us to test result verification approaches with large
populations; and ii) a real environment, that proves that our result verification
and the checkpointing approaches are feasible.

4.1 Simulation Environment

The simulator is a Java application that simulates a scenario where an n-dimensional
job is broken into work-units that are randomly assigned. Among the participants
there is a group of colluders that attempt to return the same bad result (based
on complete or imperfect knowledge, depending on the partition overlapping),
in order to fool the replication based verification mechanisms. The simulator
receives several parameters: number of participants; number of colluders; work-
size as an array of integers (n-dimensional representation), the size as defined in
terms of atoms of execution (i.e., an indivisible portion of execution); number of
gridlets; replication factor; and partitioning mode (standard or overlapped). The
simulator returns several results, being the most important one the percentage
of bad results that were accepted by the system.

4.2 Real Environment
For being able to support a new application, semantic knowledge of it is manda-
tory. Therefore, 3 classes must be programmed: an application manager, a gridlet
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and a result. The Application Manager is responsible for translating a command
that invokes an application into several executable gridlets and reunite their
partial results once it has verified their correctness. For some applications it also
enable the user to preview the results (e.g., an image being incrementally pro-
duced by a ray tracer). It must extend the abstract class ApplicationManager
and implement a constructor and two methods. The following is an excerpt of
the Pov Ray’s application manager class.

class PovRayManager extends ApplicationManager {

PovRayManager(String command) throws ApplicationManagerException { ... }

ArrayList<Gridlet> createGridlets(int nGridlets) { ... }

void submitResult(Result result) { ... }
}

The Gridlet class must implement the Serializable and Runnable interfaces, this
enables transportation by the Java RMI and allows it to perform a threaded
execution in its destination. The following is an excerpt of the Pov Ray’s gridlet
class.

class PovRayGridlet extends Gridlet implements Serializable, Runnable {

void run() { ... }
}

The Result class is just a container of the result data of a gridlet, it must be
defined for each application and implement the Serializable interface, for the
Java RMI mechanisms being able to transmit it.

5 Evaluation

At this stage of our work, we only have few performance measures of the tech-
niques we have described. We present what we have been able to measure so far
in this section.

5.1 Checkpoint/Restart Mechanisms

The major issue of the generic checkpoint/restart technique is transmitting the
state of a virtual machine. We are mitigating this by transmitting only the
differences between the current image and the base-image. The table in Figure
5 depicts the size of the checkpoint data to be transmitted.

Fig. 5. Checkpoint data size using VirtualBox and Ubuntu Desktop 9.10
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5.2 Result Verification Mechanisms

Replication can be fooled if a group of colluders determines they are executing
redundant work and agree to return the same bad result, forcing the system to
accept it. The graphic in Figure 6 depicts that when the percentage of colluders
is under 50%, the greater the replication factor the lower the percentage of bad
results accepted; when the percentage of colluders is above 50%, albeit a less
probable scenario, replication actually works against us. Groups of colluders are
usually expected to be minorities. However we must take into account that if
they are able to influence the scheduler by announcing themselves as attractive
executers the percentage of bad results could even be above what this graphic
shows, for the scheduler it uses is random. Overlapped partitioning influences the

Fig. 6. Correlation between the percentage of bad results accepted and the percentage
of colluders in the system for various replication factors.

way that the colluders introduce their bad results: it produces more points where
collusion may happen and also may be detected; the size of each bad result is
smaller, though. This happens because one task is replicated into more tasks than
using standard partitioning; therefore there is a higher probability of redundant
work being assigned to colluders; however they can only collude part of the task
instead of the whole task as using standard partitioning. The graphic in Figure
7 depicts that overlapped partitioning is as good as standard partitioning, in
a scenario where the colluders are fully able to identify the common part (in
theory possible, but in practice harder to achieve as this may require global
knowledge and impose heavier coordination and matching of information among
the colluders) and collude it, while executing the non common part. This is the
worst case scenario, therefore overlapped partitionings can improve the reliability
of the results depending on how smart the colluders are.
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Fig. 7. Replication w/ Standard Partitioning Vs. Replication w/ Overlapped Parti-
tioning, using replication factor 3.

6 Conclusions

In this paper, we proposed and analysed a number of checkpoint/restart mecha-
nisms and replication schemes to improve fault-tolerance and reliability in cycle-
sharing infrastructures such as those in Peer-to-peer networks.

Our generic checkpoint/restart mechanism based in virtual machine images
that is able to checkpoint any application. It is yet at an early stage of devel-
opment, we see no obstacles to it other than the checkpoint data size, therefore
we are focused in reducing it. Our result oriented approach is only fit for some
applications. We have successfully enabled POV-Ray to checkpoint and resume
execution from its results automatically.

Our result verification schemes are very promising, we are trying to figure
out how can we adapt them to the variable conditions of the system in order to
produce a good compromise between performance and reliability.
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