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Introduction

We describe the GC algorithms characterizing them according to the following 
three aspects: 

type of Algorithm, Functioning Mode and System Requirements 

Type of Algorithm 
reference counting, 
tracing

Functioning Mode 
characterizes a GC algorithm in terms of the memory on which the collector works 
on each run 
e.g. a subset of all the memory and the moments in which the collection takes place 
with respect to applications

System Requirements 
a GC algorithm needs in terms of knowledge of references location, and 
the possibility of moving reachable objects to different addresses in order to 
compact memory
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Motivation

It is widely recognized that manual memory management (explicit allocation and freeing of memory by 
the programmer) is extremely error-prone leading to:

memory leaks, and 
dangling references

Memory leaks consist on data that is unreachable to applications but still occupies memory, because 
its memory was not properly released:

memory leaks in servers and desktop computers are known to cause serious performance degradation
in addition, memory exhaustion arises if applications run for a reasonable amount of time
note that in distributed systems, memory leaks in one computer may occur due to object references present in 
other computers
furthermore, cyclic garbage complicates memory management even more, specially in distributed and/or 
persistent systems 

Dangling references are references to data whose memory has already been (erroneously) freed:
later, if an application tries to access such data, following the reference to it, it fails (i.e. referential integrity is not 
ensured)
such failure occurs because the data no longer exists or, even worse, the application accesses other data (that 
has replaced the one erroneously deleted) without knowing

Dangling references are well known to occur in centralized applications when manual memory 
management is used:

such errors are even more common in a distributed environment
such errors harder to detect in distributed systems supporting replicated and/or persistent objects possibly with 
transactional semantics

In conclusion:
manual memory management leads not only to applications performance degradation and fatal                      
errors but also to reduced programmer productivity
thus, garbage collection, both centralized and distributed, is vital for programming productivity                          
and systems reliability 
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Terminology (1)

An object is a contiguous set of bytes

A reference identifies an object 
in its simplest form it is a pointer 
we will use equivalently the term reference and pointer 

The heap designates a portion of virtual memory possibly covering the whole memory 
where objects are allocated 

hereafter we will use the terms heap and memory equivalently

We follow the standard vocabulary of the GC literature:
the GC-root is the set of references that forms the starting point for the GC graph tracing 
the mutator is the application program that dynamically modifies the pointer graph (it creates 
objects dereferences pointers and assigns pointers) 
the collector is the system component that identifies and reclaims unreachable objects 

In a distributed system:
a collector is composed of a number of threads executing in different processes we still call each 
one a collector
the mutator is actually composed of multiple independent threads running in different processes; 
by extension we call each of these threads a mutator
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Terminology (2)

A pointer assignment can result in:
1. creation of a new reference to an object just created 
2. duplication of an already existing reference
3. discarding a reference to an object 

Note that cases 2 and 3 may happen as the result of a single assignment operation 
As a side effect of pointer assignment some reachable objects become unreachable 
Unreachable objects (said to be garbage) are not needed and can be reclaimed

A GC algorithm:
is safe when it does not reclaim reachable objects
is live if it eventually reclaims some garbage 
is complete if it eventually reclaims all garbage 

Obviously every GC algorithm aims at being safe and complete 
However as will become clear this goal is not easy to achieve as scalability is at odds 
with completeness
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Basic Uniprocessor GC Algorithms (BUGCA)

There are two fundamental uniprocessor GC algorithms 
(also known as local garbage collection – LGC – algorithms):

reference counting
tracing

We present:
their most relevant advantages and disadvantages which are 
related to completeness, performance and memory fragmentation 
several variants of the two fundamental algorithms which are based 
on the functioning modes and system requirements



5

Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa

Basic Uniprocessor GC Algorithms 
(BUGCA)

Reference Counting
reference counting
deferred reference counting
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BUGCA - Reference Counting (1)

Therefore, reference counting preserves the following invariant:
the value of an object’s counter is always equal to the number of references to it

1

2

GC-root

memory

1

1
1

1
1

1

1

1

The basic idea of the reference 
counting algorithm is the following 
[Christopher84,Cohen81]:

a counter is associated to each 
object denoting the number of 
references to it 
when an object is created, a single 
reference points to it and its counter 
is initially one 
each time a reference is duplicated 
the object’s counter is incremented 
each time a reference to an object 
is discarded its counter is 
decremented 
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BUGCA - Reference Counting (2)

When a counter drops to zero:
the corresponding object is no longer reachable
thus, it can be safely reclaimed 

Garbage objects are therefore reclaimed immediately after becoming 
unreachable 
However the converse is not true i.e.:

an object may be unreachable but its counter is greater than zero 
this happens when an object is part of a cycle of unreachable objects

When an object is reclaimed (its counter has become zero) its pointers 
are discarded:

thus, reclaiming one object may lead to the transitive decrementing of 
reference counts and reclaiming many other objects
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BUGCA - Reference Counting (3)

This algorithm is simple to implement, however it has three main
problems:

it is inefficient as its cost is proportional to the amount of work done by the 
mutator because counters must be updated whenever references are
assigned

this problem is addressed by variants of this algorithm such as deferred 
reference counting [Deutsch76]

the free space recovered from reclaimed objects is interspersed with 
reachable objects thus reducing locality of reference 

as new objects are allocated in the free space recovered from reclaimed objects 
unrelated objects are interleaved in memory
this may lead to a situation in which the working set of an application is 
scattered across many virtual memory pages so that those pages are frequently 
swapped in and out of main memory

cycles are not reclaimed thus this algorithm is not complete 
this may lead to memory exhaustion



7

13

Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa
July-2005

BUGCA - Deferred Reference Counting (1)

For some objects reference-count operations are a wasteful effort 
[Deutsch76] 

large number in a short period of time with zero or small net result 
frequent end result is the same as if they had never been performed

delaying these operations would greatly  improve performance
it may also make them un-necessary to perform

examples include reference count increments for objects passed as 
function parameters and later decrements when the function returns.

experiments show that it eliminates 90% of reference count 
increment/decrement operations [Baden83].

Reference counts may become temporarily inaccurate
references from local variables are not included in this book-keeping most 
of the time

references from stack are not being monitored by reference counting
thus, objects with zero reference count may be not all garbage

objects with zero count are maintained in a zero count table (ZCT) to prevent             
premature collection
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BUGCA - Deferred Reference Counting (2)

Garbage collection
GC may only be performed when references from stack are also accounted for

this stabilization is performed less frequently than reference-count operations
before collection, roots are traced and every element in the ZCT reachable form 
them is removed from the ZCT

the remaining objects in ZCT may be reclaimed
these objects are unreachable from other heap objects, from stack and from roots, therefore 
garbage

Can be regarded as subtle hybrid algorithm
reference count among heap objects
tracing from roots

Improves GC performance
greatly reduces reference counting overhead

avoids performing reference-count updates for most short-lived pointer variables from the 
stack

additional optimization performs reference count all increments before any 
decrements, thus avoiding the need to maintain a ZCT [Bacon01]
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Tracing
mark and sweep
copy
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BUGCA – Tracing

There are two algorithms of the tracing type:
mark and sweep 
copy 

Tracing algorithms traverse the pointer graph from the GC-
root:

to determine which objects are reachable 
unreachable objects are reclaimed

The main advantage of tracing algorithms is their ability to 
reclaim cycles of unreachable objects
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BUGCA – Tracing – Mark and Sweep (1)

A mark and sweep collector  has two phases [McCarthy60]:
1. trace the pointer graph starting from the GC-root marking every object found
2. sweep i.e. examine all the heap reclaiming unmarked objects 

During the mark phase:
every reachable object is marked (setting a bit in the objects header for example) and scanned 
for pointers 
this phase ends when there are no more reachable objects to mark

During the sweep phase:
the collector detects which objects are not marked and inserts their memory space in the free-
list 
when the collector finds a marked object it un-marks it in order to make it ready for the next 
collection 
this phase ends when there is no more memory to be swept

This algorithm has two main problems:
fragmentation – just as with reference counting, free space recovered from reclaimed objects is 
interspersed with reachable objects 
cost of the sweep phase – it is proportional to the size of the heap
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BUGCA – Tracing – Mark and Sweep (2)

free-list free-list free-list

memory

GC-root GC-root GC-root

m

m

m

(b) after the mark phase (c) after the sweep phase(a) before GC

memory memory



10

19

Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa
July-2005

BUGCA – Tracing – Copy (1)

The collector traces the pointer graph from the GC-root and moves each object 
reached to another location [Fenichel69,Minsky63]:

memory is compacted therefore eliminating fragmentation, and 
allocation of objects is done linearly 

The collector works as follows:
divides the heap in two disjoint semi-spaces called from-space and to-space 
during normal mutator execution objects are allocated linearly in from-space 
once the collection starts the collector moves reachable objects to to-space 
unreachable objects are left in from-space 
when every reachable object has been moved the roles of the semi-spaces is 
exchanged (the to-space becomes the from-space and vice-versa)

this transition is called flipping 
flipping is atomic w.r.t. the mutator

An inconvenient of the copy algorithm is that only half of the memory space 
available is used at any point in time:

the to-space is a wasted resource between collections
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BUGCA – Tracing – Copy (2)
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BUGCA – Tracing – Copy (3)

The Cheney algorithm  [Cheney70] is a well known technique to move 
reachable objects from from-space to to-space:

objects immediately accessible from the gc-root (x and y in the next slide) are the 
first to be moved to to-space
these objects form the initial set for a breadth first traversal that is implemented with 
the help of two pointers: 

free - which points to the first free address in to-space 
scan - which points to the first object in to-space not yet scanned 

then, the object pointed by the scan pointer (x in this case) is scanned for pointers 
into from-space 
each object reached (t and z) is moved to to-space and the free pointer updated 
in addition, the pointers in the scanned object are patched according to the new 
locations of the moved objects and a forwarding pointer pointing to to-space is left in 
their old location 
when y is scanned, z will be reached and given the forwarding pointer there left z is 
not moved again (the pointer in y is simply patched) 
this algorithm ends when every object in to-space has been scanned 
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BUGCA – Tracing – Copy (4)

Cheney algorithm:

x y

z

t u
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x y t z

x y t z

x y t z v

ux y t z v

ux y(vi) t z v
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partitioned tracing
hybrid collectors
generational collectors
train algorithm
ulterior reference counting

system requirements
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BUGCA - Functioning Modes (1)

Various functioning modes can be applied to the fundamental 
algorithms previously described
The functioning modes are essentially orthogonal to these algorithms
These modes characterize a GC algorithm in terms of:

the memory on which the collector works on each run (e.g. a subset of the 
all memory), and 
the moments in which the collection takes place w.r.t. mutators

The following modes are considered next:
incremental
partitioned
gc-only
concurrent
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BUGCA - Functioning Modes (2)

Incremental:
small units of gc are interleaved with small units of mutator execution 
each gc pause time is smaller than in the GC-only mode

Partitioned :
only a subset of the whole memory (called a partition) is garbage collected independently from the rest of the 
memory
the existence of multiple partitions is useful in systems where, for example, it is necessary to have a garbage 
collected heap coexisting with a manually managed heap [Cardelli89, Ellis93]
partitioned gc is also useful in large persistent and or distributed systems because different partitions may be 
collected in parallel and independently from each other

GC-only:
the mutator is halted while the collector runs 
the time interval during which a mutator is halted due to GC is called GC pause time
this time may be unacceptable in some cases (for example, in interactive applications where the user would be 
annoyed by such pauses)

Concurrent:
the mutator and the collector run concurrently 
the usefulness of this mode is that collection adds no pauses on top of time-slicing
in the rest of these slides when the difference is not relevant we will use the term incremental to designate both 
incremental and concurrent functioning modes

Note that reference counting algorithms are inherently incremental because the collector and mutator 
execution is interleaved
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BUGCA - Functioning Modes - Incremental Tracing

The main issue of incremental tracing is:
how to ensure the correct execution of the collector when it 
competes with the mutator for the same data 

Concerning this issue there is no significant difference 
between mark and sweep and copy algorithms

Before going into more details concerning this fundamental 
aspect it is useful to see:

how both mark and sweep and copy incremental collectors can be 
described as variants of an abstract tricolor marking algorithm
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BUGCA - Functioning Modes - Incremental Tracing -
Tricolor Marking Algorithm (1)

The tricolor marking algorithm works as follows [Dijsktra78]:
objects subjected to collection are colored white and when the collection is 
finished reachable objects must be colored black 
a collection is finished when there are no more reachable objects to 
blacken 

in a mark and sweep collector this coloring can be implemented by setting mark 
bits objects whose bit is set are black 
in a copy collector the coloring is the process of moving reachable objects from 
from-space to to-space

objects in the from-space are white
objects in the to-space are black

The main difficulty with incremental tracing GC is that:
while the collector is tracing the pointer graph, as a result of mutator 
activity, the graph may change while the collector  isn’t looking ! 
if this happens the collector may not find some reachable objects 
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BUGCA - Functioning Modes - Incremental Tracing -
Tricolor Marking Algorithm (2)

The mutator cannot be allowed to change the pointers graph  behind the 
collectors back in such a way that the collector fails to find all reachable objects
Thus, there is a third color gray: 

a gray object is one that has been reached by the collector tracing but its 
descendents may not have been

Once a gray object has been scanned it becomes black and its descendents 
are colored gray: 

in a copy collector the gray objects are those that have already been moved to to-
space but have not yet been scanned

Black objects may not point to white objects:
this invariant allows the collector to assume that it is “finished with” black objects and 
can continue to traverse gray objects 
if the mutator creates a pointer from a black object to a white one it must somehow 
notify the collector that its assumption has been violated
therefore the collector must be capable of keeping track of graph changes resulting 
from mutator activity and retrace parts of the graph adequately
this ensures that the collector is aware of every change concerning the pointers 
graph
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BUGCA - Functioning Modes - Incremental Tracing -
Tricolor Marking Algorithm (3)

Suppose that object x has been 
completely scanned and therefore 
blackened its descendents:

y and z have been reached and grayed 

Now suppose that the mutator swaps 
the pointer from x to z with the pointer 
from y to u:

the only pointer to u is now in object x 
which has already been scanned by the 
collector 
this violates the invariant black object x 
pointing to white object u 
if the tracing continues without any 
coordination:

y will be blackened
z will be reached again from y, and 
u will never be reached at all, and hence 
will be unsafely considered garbage

This problem is solved by coordinating 
the mutator with the collector:

this can be done with the following two 
techniques 

read barrier
write barrier

(a) initial graph (b) graph modified concurrently 
by the mutator
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BUGCA - Functioning Modes - Incremental Tracing –
Read Barrier

A read barrier is used to detect when the mutator attempts to read a pointer to a white 
object 
Immediately the collector scans the object and colors it gray 

since the mutator cannot read pointers to white objects it cannot write them into black objects
There are many incremental collectors using a read barrier [Appel88,Baker78,Brooks84, 
Huelsbergen93, Queinnec89, Zorn89]
We describe here a representative example using a copy algorithm
The best known incremental copy collector is Bakers [Baker78]

a collection starts with a flip that conceptually invalidates for mutator accesses all objects in from-
space and moves to to-space all objects directly reachable from the gc-root
then the mutator is allowed to resume 
any object in from-space that is accessed by the mutator must first be moved to to-space 

this is enforced by the read barrier 
thus the mutator is never allowed to see pointers into from-space; if so, the referent is 
immediately moved to to-space
in terms of the tricolor marking algorithm:

objects in to-space that were already scanned are black objects 
objects in to-space but not yet scanned are gray
objects still in from-space are white 
new objects created by the mutator while the collection is taking place are allocated in the to-space and are 
colored black
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BUGCA - Functioning Modes - Incremental Tracing –
Write Barrier

A write barrier detects when the mutator tries to write a pointer into a black object 
when that happens the write is trapped or recorded [Appel88, Bohem91, Demers90, Dijsktra78, 
Steele75, Yuasa90]

We describe an interesting copy collector using a write barrier; it is called replication-
based GC and works as follows [Nettles92, O'Toole93]:

while the collector moves objects to to-space the mutator continues to access the from-space 
versions of objects rather than the  replicas in to-space 
when every reachable object has been moved to to-space a flip is performed and the mutator 
then starts seeing the to-space replicas
this technique eliminates the need for a read barrier because all the reachable objects are 
conceptually moved to to-space at once when the flip occurs
however it is necessary to have a write barrier because the mutator sees the old version of 
objects in from-space 
if an object has already been moved to to-space and then the mutator writes into it, the replica in 
to-space is now out of date w.r.t. the version seen by the mutator 
thus the write barrier catches all mutator writes and stores them in a log in order to allow the 
collector to propagate those modifications to the to-space replicas when the flip takes place
in other words, all the modifications to objects in from-space must be applied to the 
corresponding replicas in to-space so that the mutator sees the correct values after the flip
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BUGCA - Functioning Modes - Partitioned Tracing

The application of the partitioned mode to the basic GC 
algorithms reference counting and tracing results in the 
following two variants:

hybrid collectors
each partition is traced independently from the others and cross-
partition references are handled with a reference counting algorithm 
[Bishop77,Moss89,Mahe97a]
this variant is very interesting for large distributed and for persistent 
systems

generational collectors
aims at reducing the GC pause time by decreasing the amount of 
memory that has to be collected
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BUGCA - Functioning Modes - Partitioned Tracing -
Generational Collectors

It takes advantage of the following empirical observation:
in many applications most objects are reachable for a very short
length of time only a small portion remains reachable much longer 
[Hayes91,Lieberman83,Moon84,Ungar87]    

Thus the idea is to separate the objects in at least two 
groups and collect the first group more often:

those objects that are reachable only for a short length of time
belong to the first group 
the others belong to the second group

Both mark and sweep and copy algorithms can be made 
generational:

we focus on the copy algorithm
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BUGCA - Functioning Modes - Partitioned Tracing -
Generational Copy Collector

Objects are segregated into multiple partitions by age 
each partition is called a generation 
younger generations are collected more often than older generations 
the age of an object is approximated by the number of collections it has survived

To avoid the cost of successive scans and moves from from-space to to-space of those 
objects that remain reachable for a long time:

partitions containing older objects are collected less often than the younger ones 
thus, once objects have survived a certain number of collections they are moved to a less 
frequently collected partition instead of to-space

To allow young generations to be collected without having to collect the older ones the 
collector must be capable of finding pointers into the young generations 

this requires either the use of a write barrier similar to the one we found in the incremental 
functioning to keep track of such cross-partition pointers [Appel89a,Diwan92, Moon84, 
Ungar88,Wilson92],  or 
indirect pointers from older to younger generations [Lieberman83]

The set of references pointing from older to younger generations is usually called 
remembered-set

when a younger generation is collected the pointers in the corresponding remembered-set are 
part of the GC-root
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BUGCA - Functioning Modes - Partitioned Tracing -
Incremental Generational Collector (Train Algorithm) (1)

Aims at reducing maximum GC pause times [Hudson92] 
Applies to older generation (mature objects that survived collection in the younger 
generation - nursery)
Mature object space is divided in cars of fixed memory size

in Persistent MOS [Moss96], cars are pages of the database.
GC collects at most one car each time it runs

GC is incremental
imposes bounds on maximum pause time

with a high degree of confidence
» car size is determined by expected/desired pause time

absolute assurance imposes penalties on mutators

Main idea:  move objects closer and closer to the cars and trains they are referenced 
from

cluster related  objects (referenced and referring) in the same car or, at least, in the same train
when there are no more inter-car or inter-train references, the whole car or train can be collected
can be regarded as a variation of object migration to minimize inter-car references (and garbage)
intra-car garbage (cyclic or acyclic) is collected by tracing

Cars are grouped in trains with variable number of cars
cars are totally ordered

trains are ordered and cars are ordered (within a train)
objects surviving nursery collection are inserted in cars

in any train that is not being collected 
generally the first train in the last car
second train if the first is already being collected
new train if train size limit is reached
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BUGCA - Functioning Modes - Partitioned Tracing -
Incremental Generational Collector (Train Algorithm) (2)

Train collection
always performed on the first train
pointers to the first train are examined

sources include roots or objects in other trains
if there are none, the whole train is garbage and is reclaimed
otherwise, first car of first train is examined

trains record references from objects in higher trains
train remembered-set

Car collection
pointers to the first car are examined

cars record references from objects in higher cars (including higher trains)
car remembered-set

if there are none, the whole car is garbage and is reclaimed
otherwise, move objects to the highest car they are referenced from

inter-car object movement
if not enough space in car, move to higher car or create new one if none available

car ordering forces object to be moved to the higher train it is referenced from
if there are pointers from objects in the nursery, the object is moved to a later train

when there are no more pointers to first car
the whole car is garbage and may be reclaimed

when there are no more pointers to any of the cars in the train
the whole train  is garbage and all its cars may be reclaimed
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BUGCA - Functioning Modes - Partitioned Tracing -
Ulterior Reference Counting (1)

Addresses Tracing vs. Reference Counting trade-off [Blackburn03]
tracing algorithms 

high throughput
generational approach increases performance

higher maximum pause times due to full-heap collections
complete w.r.t. cycles

reference counting
lower throughput

costly pointer operations hurt mutator performance
partially addressed with Deferred Reference Counting [Deutsch76]

higher responsiveness
no pauses due to full heap collections

unable to detect cycles without additional detection mechanism
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BUGCA - Functioning Modes - Partitioned Tracing -
Ulterior Reference Counting (2)

Combine both approaches where they suit best (Generational-RC 
hybrid)

generational tracing for newly allocated objects (nursery)
pointer mutations are ignored
objects surviving one collection are copied to mature space

reference-counting of survivors is piggy-backed on the tracing and copying 
reference counting for mature objects (mature space)

deferred reference counting
Generalized to heap objects (adding to registers and stack variables)

variant of trial deletion to detect cycles in the mature space
ensures completeness

integration of two spaces and two algorithms
nursery objects referenced by mature objects

targeted via remembered set included in tracing roots
mature objects references by nursery objects

possible high number of mutations 
» consequent reference-count increments/decrements) are avoided                  by 

deferred reference counting
» further, it avoids reference-count increments/decrements                     

“discarding” mutations performed on short-lived objects
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BUGCA - System Requirements (1)

Tracing garbage collectors traverse the pointer graph 
for this purpose the collector must be capable of finding the pointers inside the GC-
root and inside each reachable object

In programming languages providing runtime type information it is possible to 
differentiate pointers from raw data with certainty:

this is the case of lisp and smalltalk where there is enough type information that can 
be used to determine object layouts including the locations of embedded pointers  
[Appel89,Goldberg89,Steenkiste87]

However there are cases in which such runtime type information is not 
available:

as is the case with the programming languages C and C++
in such environments a possible solution consists of:

either a preprocessor  [Edelson92], or 
the compiler [Bohem91a, Ferreira91, Samples92] to statically generate type information for 
each data type

another alternative is to take advantage of some specific language features:
e.g. smartpointers in C++ [Detlefs92,Edelson92a] to generate the pointers locations
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BUGCA - System Requirements (2)

Another solution, when runtime type information is not available, is called 
conservative GC [Bartlet88, Bohem93]:

it relies on a conservative pointer finding approach i.e. the collector treats anything 
that might be a pointer as a pointer 
thus, any properly aligned bit pattern that could be the address of an object is 
actually considered to be a pointer to that object

There are a few problems concerning this approach:
first, the conservative interpretation of ambiguous data

e.g. considering an integer as a pointer may lead to consider garbage objects as being 
reachable 
this waste of memory can be a serious problem for memory intensive applications 
[Russo91, Wentworth90]   

second, given that the collector does not differentiate raw data from pointers it has 
to scan all the data inside reachable objects 

this extra cost of scanning increases the GC pause time 
finally, a copy collector cannot move reachable objects and patch the corresponding 
pointers because a non-pointer might be considered to be a pointer and would be 
mistakenly patched 

However, in spite of these problems:
there are cases for which a conservative approach is adequate, and 
sometimes the only that is feasible [Weiser89]
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Distributed GC Algorithms (DGCA)

In this section we present the most interesting GC algorithms found in 
the literature for RPC based distributed systems (i.e. with no support 
for persistence, distributed shared memory, transactions, etc.) 
These algorithms are extensions of the basic reference counting and 
tracing:

reference counting algorithms
more scalable
mostly incomplete, i.e., unable to detect and reclaim distributed cycles of 
garbage (unless special techniques are used)

tracing algorithms
inherently complete, i.e., able to detect and reclaim distributed cycles of 
garbage
non-scalable

require extra synchronization among processes
may need distributed consensus

hybrid approaches (proposed initially by [Dickman91,Juul92]
combine aspects from both families trying to achieve best of both worlds, i.e., 
completeness and scalability
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DGCA- Data Structures

There are certain data structures common to many DGCAs:
GC-stubs and GC-scions

A stub describes an outgoing inter-process reference:
from a source process to a target process (e.g. from object X in P1 to object Y in P2).

A scion describes an incoming inter-process reference:
from a source process to a target process (e.g. to object Y in P2 from object X in P1).

Stubs and scions may not impose any indirection on the native reference mechanism
thus, in such systems, they do not interfere either with the structure of references or the invocation 
mechanism. 
they are simply GC specific auxiliary data structures. 
thus, stubs and scions should not be confused with (virtual machine) native stubs and scions (or 
skeletons) used for remote method invocations

X Y

scionstub

process P1 process P2
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Distributed GC Algorithms (DGCA)

Distributed Reference Counting
races
weighted reference counting   
indirect reference counting 
reference listing
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DGCA - Reference Counting

Each process in the system holds one partition that is collected
independently from the rest of the memory with a tracing algorithm 

cross-partition references are managed with a reference counting algorithm
The extension of the uniprocessor reference counting algorithm to 
handle cross partition references poses some problems:

these problems generally called race conditions arise because objects 
counters have to be incremented and decremented through messages
exchanged between processes
such messages must be delivered reliably and in causal order [Birman91, 
Lamport78] to ensure safety and liveness:

increment and decrement messages are not idempotent and must not be 
duplicated or lost

There are two types of race conditions both possibly leading to the 
unsafe reclamation of a reachable object:

decrement/increment
increment/decrement
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DGCA - Reference Counting – decrement/increment race

Suppose that process i holds a 
reference to object z in process k 
and sends a message to process j 
containing @z (a reference to z) 

Process j receives this message and 
sends an increment message to k 
concerning object z 

Concurrently, process i deletes its 
reference to z and sends the 
corresponding decrement message 
to k 

If the decrement message arrives 
first at k, then z is considered to be 
unreachable and is unsafely 
reclaimed

At first glance it seems that this race 
problem could be solved by simply 
making the sender (process i) 
conservatively emit the increment 
message before sending @z to j 

However this does not solve the 
problem and leads us to the 
scenario for the second race 
problem
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DGCA - Reference Counting – increment/decrement race

The sender process issues the increment 
message (not the receiver as in the previous 
case) 

Suppose that process i holds a reference to 
object z in process k and sends a message 
to process j containing @z 

Now, j receives this message and 
immediately discards it 

Therefore, it sends a decrement message to 
k concerning z 

Concurrently, process i sends the 
corresponding increment message to k 

Once again if the decrement message 
arrives first at k, z is unsafely reclaimed
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DGCA - Reference Counting – solving the race problem

An obvious solution for these two race problems is to:
acknowledge the increment message before sending a decrement or a 
reference to a remote process respectively 
however this introduces communication overhead and the GC algorithm is 
still not resilient to failures 

For these reasons there are many variants of the reference counting 
algorithm that can be grouped in the following main categories:

weighted reference counting [Bevan87,Watson87]
indirect reference counting [Goldberg89,Piquer91]
reference listing  [Birrell93,Mahe94,Shapiro91,Shapiro92]

Each one of these variants avoids the transmission of increment 
messages therefore solving the two race problems previously 
described
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DGCA - Reference Counting - Weighted Reference 
Counting (1)

Each cross-partition reference 
has two associated weights:

a weight at the source process 
(outgoing weight)
a weight at the target process 
(incoming weight) 

For any object z:
the incoming weight must be 
equal to the sum of the outgoing 
weights associated to the cross-
partition references pointing to z 
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DGCA - Reference Counting - Weighted Reference 
Counting (2)

When a cross-partition reference is first created: 
both incoming and outgoing weights are equal (a even positive 
value usually a power of two)

When the holder of a reference passes it through a 
message to another process: 

it divides the current outgoing weight in two parts (normally equal) 
retains one and sends the other along with the message 
when the receiver process receives the message it associates to 
the new outgoing cross-partition reference the weight just received 
if a cross-partition reference to the same object already exists, it 
simply adds the received weight to the current one 

Thus, the sum of outgoing weights is always kept equal to 
the incoming weight at the target process
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DGCA - Reference Counting - Weighted Reference 
Counting (3)

When a process deletes an outgoing cross-partition reference: 
it sends a decrement message with the associated weight to the target process 
the target process receives that message and subtracts the received weight from its 
incoming weight corresponding to the cross-partition reference 
when the incoming weight becomes zero then the corresponding object may be 
reclaimed

Note that this algorithm solves the two race problems previously described but 
still needs reliable communication no loss or duplication for ensuring safety 
and liveness 

In addition, this algorithm has the following problem:
the limit imposed on the number of times a reference may be sent to another 
process is limited by the initial associated weight 
this problem is solved by the use of an extra indirection
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DGCA - Reference Counting - Weighted Reference 
Counting (4)

Suppose that:
process i holds an outgoing 
cross-partition reference 
pointing to z in process k, and 
that the associated weight has 
dropped to  1 (i.e. no more 
division of the weight is allowed) 

Now, if process i needs to send 
@z to process j:

the collector creates a new 
incoming cross-partition 
reference coming from j that 
refers indirectly to z through the 
original outgoing cross-partition 
reference that points to k
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DGCA - Reference Counting - Indirect Reference 
Counting (1)

Weighted reference counting suffers from the reference weight underflow 
problem

a unitary weight cannot be further divided
an indirection element is created and inserted in the references

indirection element has full reference weight and therefore, allows further weight division 
and reference duplication 

indirection element is permanent and prevents objects from later being reclaimed
when this happens to a large number of dependent objects (chains of references) it’s called 
domino problem 

Solution: each reference holds a pointer to the node where it was copied from 
[Rudalics90,Piquer91]

each reference holds counter of times the reference was copied to other nodes
when a reference is duplicated, the counter is incremented

the new reference points to the existing one and holds its own duplication counter  
sequence of duplications of the same reference through a series of nodes creates 
an inverted tree of indirections

root is the node where the reference was initially created
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DGCA - Reference Counting - Indirect Reference 
Counting (2)

Solves underflow problem 
every reference has an indirection element, however it is not 
permanent
it also avoids distributed races among messages regarding 
reference creation and deletion present in reference counting

Allows deletion only of the  references placed at leaves of 
the inverted tree of reference indirection

preserves a lot of garbage indirections in intermediary nodes 
references are no longer being used but are kept until all the duplicated 
references in child nodes have been deleted.

the structures preserving garbage reference indirections have an
important memory overhead
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DGCA - Reference Counting - Reference Listing

For remote references, a reference counter is replaced by a list of referring 
nodes (reference-list) [Piquer91]

used only for inter-node references
local (intra-node) references may be managed via reference counting or tracing

reference-list is duplicate-free
multiple references from the same node share the same element in the list

reference duplication triggers insertion message
referring node is inserted in the reference list

reference deletion triggers removal message
referring node is deleted from the reference list

Creation of inter-node references
Creation of scions and message to create stub counterpart

Destruction of inter-node references
No specific messages to delete stubs or scions 
Reference listing messages are idempotent 

reference-list messages carry all live stubs w.r.t. destination process
stubs in message are matched with counterpart scions in process; scions without stub are 
deleted
resilient to message loss and duplication
distributed races are avoided

Reference-lists occupies more storage than reference-counters

Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa

Distributed GC Algorithms (DGCA)

Tracing
concurrent distributed tracing
mark-and-sweep with timestamps
logically centralized tracing
group tracing
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DGCA - Tracing

Sequential distributed tracing [Ali84]
Mutator must be stopped at every node

Stop-the-world approach
Any node may decide to begin a collection

Coordinator is decided statically or dynamically
Dynamic selection needs distributed consensus

Instructs mutators to stop
Marking phase

Marks are propagated along local and inter-process references via marking 
messages
Global Marking phase termination

Marking phase terminated at every node
No more marking messages in transit

Sweeping phase
Executed concurrently by all nodes
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DGCA – Concurrent Distributed Tracing

First presented by [Hudak82]
adaptation to distributed environments of the algorithm found in [Dijsktra78]

Functional languages (single root for all distributed graph)
Each recursive marking step becomes an autonomous task executed concurrently
Each nodes maintains two lists of active tasks

mutator tasks
GC marking tasks

Task termination
each task terminates after terminations of all the tasks spawned from it

Tri-color marking adapted to distributed scenario
white – objects unmarked yet 

initially all objects are marked white
white objects constitute garbage at the end of marking

gray 
marked objects but whose spawned tasks have not finished yet

black
newly created objects
marked objects whose spawned tasks have already finished

Mark phase termination implies 
distributed consensus
sweep phase starts only after termination of marking phase in all processes

High number of marking tasks spawned
demanding w.r.t. network traffic and processing power
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DGCA - Tracing - Mark-and-Sweep with Timestamps (1)

Mark-bits are replaced with time-stamps [Hughes85]
Local GC propagates time-stamps from scions to stubs

local roots are marked with current time
local roots and scions are traced in decreasing order

this guarantees that stubs are marked with maximum time-stamp of the scions 
and/or local roots that lead to them
marks associated with live objects are increased
marks associated with garbage objects remain constant

DGC propagates marks from stubs to corresponding scions in other
processes

upon reception, scion time-stamp is updated if the value received is greater 
than its current time-stamp

this is not always the case, e.g., if used, while it is not propagated locally, this is 
recorded as a REDO

each node keeps the maximum value received in messages and already 
propagated locally
when the receiver acknowledges reception of all messages, the sender can 
update its REDO value

60

Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa
July-2005

DGCA - Tracing - Mark-and-Sweep with Timestamps (2)

A global minimum of all REDO values is calculated
every object with time-stamp below MinREDO is garbage and is 
reclaimed

Minimum calculation depends on global termination 
algorithm [Rana83]
Process clocks should be synchronized and message 
latency bounded
Allows concurrent marking of all processes

synchronization needed only to decide new minimum value.
Needs all processes to make progress

if one process does not cooperate, global minimum will freeze
no new garbage can be detected from that moment
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DGCA - Tracing - Logically Centralized Tracing (1)

Goal: obtain information about global reachability of each object from a 
high-available logically centralized service[Liskov86]

high availability needs replication
replicas exchange information via “gossip” messages [Fisher82]

Each process performs asynchronous local garbage collection (LGC) 
and computes accessibility information scions (inlists) and stubs 
(encoded in locally known paths).

central service collects accessibility information from each node
central service maintains view of the global graph and when requested, 
informs a node of the scions it should delete since there are no longer any 
stubs pointing to it.

view is inconsistent but safe with conservative approach  
to ensure safety, all messages must be time-stamped
process clocks must be loosely synchronized
messages should have bounded latency

does not need global synchronization of nodes
does not need all processes to participate continuously
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DGCA - Tracing - Logically Centralized Tracing (2)

High communication overhead from all nodes to the central 
service

congestion
the service performs all DGC tasks and not only those related to cycle 
detection

global collection delay
garbage  collection of cycles may need several iterations

added communication and processing load

Problems found in [Rudalics90] later addressed in 
[Ladin92]
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DGCA - Tracing - Group Tracing

Distributed cycle detection within groups of processes [Lang92]
does not require every process to participate
initiated only when LGC cannot reclaim enough memory

groups are created dynamically
groups may have any number of nodes
groups may share nodes

distributed tracing within group
references from processes outside the group are conservatively considered as 
GC-roots

node failure is handled by group creation dynamism
a new group is formed with the surviving processes
allows detection to continue

not scalable to whole system
scalable to large numbers of small groups
“final” group to collect remaining cycles implies tracing the whole system.

doubts about safety w.r.t. concurrency with the mutator raised in [Mahe97]
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Distributed GC Algorithms (DGCA)
Distributed Garbage Collection Algorithms of 
Cycles of Garbage (DGCACY)

object  migration
trial deletion
distributed back-tracing
monitoring mutator events
distributed train
group merging
mark propagation with optimstic back-tracing
DGC-consistent-cuts
algebra-based detection
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DGCACY - Types of Detectors of Garbage Cycles

There are two types of DGCA for distributed cycles
all-at-once detectors

detect all existing cycles simultaneously
impose additional work globally to the system

even when and where there are no cycles
continuous extra-cost (time/space/messages) leads to wasted work

suspect-based detectors (or per-cycle detectors)
detect one cyclic graph of garbage each time
need one candidate object to initiate

suspect of belonging to a distributed garbage
heuristic is needed to select a candidate
algorithm confirms if it actually belongs to a cycle

several cyclic graph detections may run concurrently
impose specific work for each cycle detection

restricted to processes related with cycle being detected
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DGCACY - Reference Counting – Object Migration (1)

Proposes use of object migration to co-locate all objects belonging to a cycle 
[Bishop77] and reclaim them with a tracing collector
Cycle consolidation

initiated with a suspected object
chosen based on a heuristic

locally unreachable
long time without remote invocations
increase in reference deletion messages received by the node, since the object was created or last 
invoked

move/migrate all objects belonging to a distributed cycle to a single process
every suspected object is migrated to one of its client nodes
client nodes must be explicitly known

this imposes de use of indirect reference counting or reference listing algorithm
distributed reference counting or weighted reference counting cannot be used

transform distributed cycle of garbage into a local one confined to one process
then, any local tracing algorithm may be used to reclaim the cycle

Reference counting extended with cycle consolidation provide completeness
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DGCACY - Reference Counting - Object Migration (2)

Limitations:
may need a large number of iterations to consolidate even simple cycles
migration requires extensive system homogeneity among nodes
consolidation of large cycles may cause memory and bandwidth overload 
heuristics are not optimal

live objects may be migrated along with garbage ones
very difficult to select the best process to receive the entire cycle

Restrict direction of object migration to a total order among nodes to ensure all 
objects in a cycle converge to the same node [Shapiro90]

virtual object migration
objects are not physically transferred, just marked as belonging to a different logical space
tracing of logical spaces may trigger additional inter-process messages  

Using a fixed dump node to retain all objects in cycle [Gupta93]
usable with all variations of reference counting

no need to know client nodes explicitly, since objects are always migrated to the same 
node, the dump.

unscalable, single-point of failure
some live objects are still migrated to the dump
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DGCACY - Reference Counting - Object Migration (3)

Controlled Migration [Mahe95]
distance heuristic to identify likely garbage

distance: minimum number of inter-node references from a local root to objects
local roots have distance 0
new scions have initial distance set to 1

DGC messages propagate distances from stubs to corresponding scions
LGC propagates increased (unitary increments) distances from scions to stubs
minimum distances are always propagated

scions are traced by increasing distance order
» each object needs to be traced only once

distance over threshold T indicates object is likely garbage
T may be a small multiple of the expected maximum distance

» T too small may cause extra-migrations of live objects 
» T too large delays cycle detection

object batching for migration
determines all the objects that should be migrated along with the suspected
combines distance heuristic and ordered scion tracing

objects referenced by, and with distance equal or larger, to other objects being migrated are very 
likely to be also garbage
other objects, also referenced by suspected objects, but with lower distance, should not be migrated



35

69

Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa
July-2005

DGCACY - Reference Counting - Object Migration (4)

node selection: select what is the best node where to migrate the entire 
cycle

node selection is heuristic
node hints are propagated along with distances above T
propagate maximum of

» node that the stub refers to
» destination hint of the scion that leads to the stub or local node ID if 

hint is absent
distance  threshold T2 > T + Exp. Max. Cycle Size + Exp. Max. Rounds for 
hints to reach all nodes

» triggers object migration
node ordering ensures node selection convergence

» migration is allowed only in the direction of increasing node IDs
comparison to other migration techniques

avoids single-point of failure of the fixed-node approach
minimizes migration to different sites
transfers groups of objects in batch in a single message
additional complexity with two tracing mechanisms

object distances and node ID hints
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DGCACY - Reference Counting - Trial Deletion

Proposes trial deletion of objects to detect cyclic garbage [Vestal87]
Separate set of reference-count fields for each object

used to propagate the effects of (trial) simulated deletions
reference-counts decrements

starts with an object suspected of belonging to a distributed garbage cycle
Simulates the recursive deletion of the object and all its referents

if the reference-counts of all the objects drop to zero, a cycle has been 
found

this ensures that there are no other references from objects outside the cycle  
being tentatively deleted 

Recursive freeing is an unbound process 
size of cycle is not anticipated
poor candidate selection (e.g., a live object) will lead to trial deletion of a large 
number of objects in many processes

Problems detecting mutually referencing distributed cycles
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DGCACY – DGC with Distributed Back-tracing (1)

Back-traces references from objects in order to find global roots referencing 
them [Mahe97]
Initiated on a candidate-object 

a suspect of belonging to a distributed cycle of garbage
Stops when:

finds local roots 
and aborts detection, or

all objects leading to the suspect have been back-traced
a cycle has been detected correctly

Based on two mutually recursive procedures
one that performs local back-tracing 

every object holding out-going references holds leader field referring objects with incoming 
references targeting it

another that performs remote back-tracing 
iorefs (representing remote refs) must be marked with trace-id’s that visited it
ensures termination
allows multiple overlapping detections
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DGCACY - DGC with Distributed Back-tracing (2)

Detections result in direct acyclic chaining of recursive 
remote procedure calls
Copies of references (local and remote) are subject to 
transfer-barrier 

updates iorefs (referring to both stubs and scions collectively)
ensures safety
distributed transfer barrier (for remote references)  may need to 
send extra messages to processes

these messages must be guarded against delayed delivery

Applied in the context of DGC in CORBA [Rivera97] 
addressing detailed implementation issues
real environments/real systems
uses commercial-of-the-shelf (COTS) software
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DGCACY - DGC by Monitoring Mutator Events (1)

Performs DGC by storing and monitoring relevant mutator 
events[Louboutin97]
Introduces alternative to tracing and lazy approach to DGC 

lazy vs. eager log-keeping other algorithms use
does not need immediate exchange of control messages

representing inter-process references
may be postponed until they become necessary

Analyses mutator computation instead of object graph
only global roots are considered

contain every object that is (or has been) target of remote references
edge-creation events (reference creation and duplication)
edge-destruction events (reference deletion and modification)
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DGCACY - DGC by Monitoring Mutator Events (2)

Global roots conceptually exchange log-keeping control messages
each global root appears/behaves as a process conceptually exchanging log-
keeping messages  
messages regarding only edge-creation and edge-destruction events

Direct Dependency Vectors – DDV (time-stamps)
vector clock with one entry per each global root
each entry is a monotonically increasing counter 

Reflect causality of mutator events 
value zero denotes no message has been received from corresponding global-root           
value _N_ denotes that last message received from corresponding global-root was 
an edge-destruction message
DDV for a specific events is derived combining DDV of local predecessor event and 
DDV of direct remote predecessor.
event Vector time diff event DDV

it represents all events causally preceding it
dynamically calculated from increasingly accurate versions of DDV
complete transitive closure corresponds to full vector-time  
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DGCACY - DGC by Monitoring Mutator Events (3)

Processes maintain and propagate causality information
each vertex (scion) maintains a two-dimensional log of DVV messages

creation/destruction of incoming edge to the vertex
vector DVi[i] is updated with latest event of source vertex (stub)

lazy delivery of DVV messages
multiple edge-creation and one edge-destruction can be bundled in one delivery

vertex objects are clustered in processes
entity that actually sends and receives messages
nevertheless, different objects use different event indexes

complete causal-cut including edge-creation and destruction identifies garbage
Pros

resilient to message duplication and loss
lazy approach avoids synchronization bottleneck and races 

Cons
unbounded detection latency

w.r.t. all garbage and not just cyclic garbage
space overhead for storing message logs

76

Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa
July-2005

DGCACY: Train Algorithm for Distributed Systems (1)

Adaptation of Train algorithm (DMOS) to distributed scenario [Hudson97]
objects reside in cars of fixed size
each car resides on a single node
trains comprise several cars

possibly spanning several nodes
allows detection of  inter-process cyclic garbage
each train has a fixed master node responsible for the train

there must be always two trains in each node
cars and trains are ordered as in the centralized train algorithm

nodes are also ordered , thus node:train is a completely ordered set
may be used with or without object migration

Pointer Tracking (events monitoring creation, deletion and transfer of pointers)
s:  inform  object ‘s (o) home node (H) that a pointer to o has been sent from A to B
r:  inform  H that a pointer to o sent from A has been received at  B
d:  inform H that a pointer to o sent from A and received at  B has been deleted from B’s 
message buffers
*:  inform H that a new pointer to o has created at A
-:  inform H  that a  pointer to o has deleted at A
copy pointer to o(H) from A to B generates s event at A, and causally, events r, +, d at B
events are optimized 

avoiding sending redundant + and – messages from A,B to H
send only those that may change object from unreachable to reachable (and vice-versa) in node

events piggy-backed on other messages, event compression in messages,        
and event combination on nodes
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DGCACY: Train Algorithm for Distributed Systems  (2)

Car and Train Management
nodes (e.g., H) know which cars have pointers to its objects (e.g. O(H))

table indicates cars (C) that have pointers to o(H)
+ and – events update table entry for pointers to o(H) in each car
this table acts as a remembered-set 

a Sticky-remembered-set is needed for completeness
accumulates every car that was ever known by node H
current remembered-set is always a subset of the sticky-remembered-set

each train has a master node
node where train was created
master node creates, manages and cleans up the train

Nodes holding cars of a train are linked
logical token passing ring, each node knows its successor.

Joining: New nodes (e.g. X) are always inserted after master node
Successor(A, n:A) Successor(Successor(X, n:A))

Leaving: nodes which all cars belonging to train  have been reclaimed
node sends leave message (indicating its sucessor)
message is propagated around the ring until it reaches X’s predecessor

» predecessor node cuts X out of ring, 
» links to its successor and acknowledges X
» X must continue to forward messages until notified

multiple nodes trying to leave simultaneously
» adjacent nodes leaving at the same time update successor field in message
» safe because messages circulating the ring are never over-taken
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DGCACY: Train Algorithm for Distributed Systems  (3)

Basic Garbage Collection
finding out that there are no pointers into a train from objects in cars outside the train

each node holds a change-bit regarding changes in sticky-remembered-set of each train
Changed-bit is set to true initially at master node 
Changed-bit at a node is set to true when a the node joins the train

relaying “no-refs” token around the logical ring with associated value
token starts at master node (e.g., A) with value {A}, other nodes may re-start token
token is always held by one of the nodes in the ring
node (e.g., Y) receiving the token either holds or relays it 

Rule 1: if Y has external pointers in train sticky-remembered-set, it must hold the token until it has 
none. Then it must re-start token with value {Y}
Rule 2: if Y has no external pointers in train sticky-remembered-set but changed-bit is true, it re-
starts token with value {Y} and changes changed-bit to false.
Rule 3: if Y has no external pointers in train sticky-remembered-set and changed-bit is false, it 
relays the token unchanged.

token will make, unchanged, at most two rounds of the ring
first one to set changed-bit to false at every node 
second one to accomplish garbage detection
in Rule 3, it token value is  {Y} already, the whole train is found to be garbage and can be 
reclaimed

The token took a complete circle of the ring, with empty sticky-remembered-sets and all changed-
bits set to false

this acts like a distributed termination algorithm
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DGCACY: Train Algorithm for Distributed Systems  (4)

Mutator concurrency (Train Epochs)
this previous mechanism assumes trains are closed, 

no new objects may be created in the train
hard to guarantee due to unwanted-relatives

objects in older trains, referenced from the current train, are moved to current train
this may create external pointers form newer trains that also reference the older train.

each car in train is associated with either old or new epoch
existing cars when node joins train ring belong to the old epoch
new cars created in the ring belong to

old epoch if changed-bit was true
new epoch if changed-bit was false

when changed-bit switches from false to true
all cars become member of old epoch

token-ring performs detection restricted to the old epoch
when old epoch is reclaimed

new epoch flips and becomes the old epoch
new epoch is emptied
accomplished by relaying special end-of-epoch message
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DGCACY: Train Algorithm for Distributed Systems  (5)

Advantages
promises to be incremental, asynchronous, mostly concurrent with mutator (only 
pointer-tracking needs to synchronize with mutator) and complete

Disadvantages
adaptation to distributed scenario introduces high complexity

pointer tracking, object substitution
high message complexity

train management requires that nodes maintain state about garbage detection in course
additional complexity to account for cars joining/leaving the train while detection algorithm is running

moving objects/cars between trains causes inter-processing messaging 
the same car, until being reclaimed, may be moved among several trains
though, messages are always piggy-backed on regular communication
thus, increased GC messaging  causes delay in all distributed garbage detection

cyclic garbage may delay prompt detection of acyclic garbage in the same train
uses the same algorithm for acyclic and cyclic DGC
trains may become very large

not very important in centralized scenario
important in large scale distributed scenario with long chains/rings of processes managing trains

one train may contain distributed garbage cycles and many other acyclic garbage elements
detection of any may imply/depend on detection of all others 

eventual co-location of all cyclic garbage is guaranteed eventually 
however this may take several moves/rounds between trains
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DGCACY - DGC with Group  Merger (1)

Detects cycles exclusively comprised within groups of processes 
[Rodrigues98]

improves on DGC in groups [Lang92]
multiple groups can merged and synchronized

concurrent detections can be re-used and combined
fewer synchronization requirements

does not try to trace all objects, just those belonging to cycle
Candidate selection initiates group creation
Two strictly-ordered distributed phases trace objects

mark-red phase
marks distributed transitive closure of suspect objects
termination of this phase creates a group of processes

scan-phase
performed independently at each process
ensures un-reachability of suspected objects
detects objects reachable form other clients outside the group

these are marked green, i.e., not garbage
green marks must be propagated to other processes

» alternate local and remote steps
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DGCACY - DGC with Group  Merger (2)

Cycle detector must inspect objects individually
strong integration/dependency with execution environment and local GC

Mutator requests on objects involved in a group detection during mark-
green in scan phase can raise race conditions similar to tri-color local 
tracing

to ensure safety, all objects descendents must be atomically marked green
mutator is blocked in these situations, when it is actually modifying the 
objects

Processes need to store information about group detections in-course 
comprising them
When two group detections «meet» they can:

merge
overlap
retreat 

if one collection in mark-red phase meets a collection already                            
in scan-phase (mark-green)
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DGCACY - Mark Propagation with Optimistic 
Back-tracing (1)

Processes propagate marks associated with stubs and scions 
[LeFessant01] 
Marks are complex w.r.t. simple timestamps as in [Hughes85]

distance
range
Generator (scion or local root originating the mark)
additional color field

Local roots and scions are sorted twice according to these marks
first, in decreasing order
then, in increasing order

Stubs receive two marks
min-max marking, propagates maximum and minimum values found during 
tracing
mark propagation from scions to stubs
marks propagate from stub to corresponding scions by messages
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DGCACY - Mark Propagation with Optimistic 
Back-tracing (2)

Cycle detection is initiated by generators (scions and local roots)
generator records are propagated (with fields)

creation time
range
locator of the mark generator
color 

white – pure marks (one generator only)
gray – mixing of marks from different generators
black – solves optimistic back-tracing errors

A cycle is detected when:
a generator receives back its own mark
the mark is white, i.e. un-mixed with marks from other generators

if mark is gray, other paths lead to the scion, sub-generations must be initiated
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DGCACY - Mark Propagation with Optimistic 
Back-tracing (3)

Sub-generations
created in the back-trace of the generator that receives gray mark
lazy, sequential sub-generations can be very slow
optimistic-back-tracing starts back-traces in several processes

uses knowledge about sub-generators
back-traces are performed in parallel
more efficient, yet, unsafe without further cautions

special black color in marks advises of generators with revised status
ensures safety

Global approach
detects “all” cycles simultaneously

avoids need to initiate one detection each specific cycle candidate
mark propagation is a global task, continuously performed, with permanent cost 
should be deferred in tine or executed less frequently

imposes specific, heavier LGC
must collaborate with the cycles detector

tight connection between LGC, acyclic and cyclic DGC
inflexibility since prevents different optimizations for each one 
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DGCACY - DGC-Consistent Cuts in Rotor (1)

Extends notion of GC-consistent cuts to DGC [Veiga03]
developed in the context of Rotor SSCLI [Rotor] (.Net open source version)
previous approach found in [Skubi97] addresses centralized systems

Centralized approach to cycle detection.
centralized detection of distributed cycles of garbage spanning process groups
eliminates limitations found in [Liskov86]

does not require global clock synchronization.
does not impose bounded message latency

Combines snapshots of memory graphs from processes.
snapshots can be taken at uncoordinated times.
conservative approach ensures safety.

graph summarization
determines graph border.
“inner objects” are discarded.

Several detectors can be combined hierarchically.
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DGCACY - DGC-Consistent Cuts in Rotor (2)

Distributed GC-Consistent Cut
inconsistent cut of a distributed system.

combination of several uncoordinated snapshots.
useless for common purposes

still useful for distributed garbage cycle detection
conservative approach ensures safety

processes keep list of “youngest” scions created in other processes
allows restoration of causality

scions are always older than corresponding stubs
“younger” scions without stub counterpart become GC-roots
references from “unknown” processes become GC-roots

only detects cycles fully enclosed in a GC-cut
liveness depends on receiving snapshots from processes
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DGCACY - DGC-Consistent Cuts in Rotor (3)

Graph Summarization (Graph Description Reduction)
regards object graphs as opaque spaces.

only remote references are considered.
incoming – scions.
outgoing – stubs.
also accounts for local reachability of stubs

determines associations among scions and stubs
for each scion, computes a set of stubs reachable from it.

optimized so that each object is not analyzed several times.
related to the technique used in [Mahe97]

performed off-line.
infrequent, incremental, uncoordinated, no disruption to applications.

complete for DGC use, provides great reduction in size
minimizes detector complexity and demands w.r.t.:

CPU load
bandwidth usage
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DGCACY - DGC-Consistent Cuts in Rotor (4)

Cycle Detection Process (CDP)
logically centralizes cycle detection
receives the summarized graph snapshots from participating processes
restores causality among scions and corresponding stubs

if necessary, some scions are promoted to CDP roots
performs Mark-Sweep on summarized  graphs stating from CDP root-set that 
includes:

stubs reachable-locally in their processes
scions promoted to CDP roots

identifies scions, with their corresponding stub also present in the snapshots, that 
were not marked

these scions are live for the acyclic DGC
yet, they are not reachable from the CDP roots
thus, they belong to distributed cyclic garbage

instruct processes to delete scions holding the cyclic garbage
special delete.scion message
breaks cyclic garbage into acyclic garbage. 
no intrusion with mutator, since these objects are already unreachable to it

acyclic DGC will then reclaim remaining garbage stubs and scions
local GC will actual reclaim objects after
results can be sent to upper-level CDP
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DGCACY - DGC-Consistent Cuts in Rotor (5)

Summary
notion of CG-Consistent Cut extended to DGC.
comprehensive solution to DGC.

reference-listing DGC running on Rotor [Rotor].
centralized cycles detector.

no global synchronization.
scalable.
makes progress without requiring participation of all processes.
does not interfere with local collectors

» does not require re-tracing of objects belonging to cycle being detected
» does not need sequential distributed phases

processes need not store state about detections in course
» fault-tolerance

shares drawbacks with other centralized approaches
CDP availability and performance may become bottleneck

even though several CDP may exist for intersecting sets of processes
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DGCACY - Algebra-based Distributed Cycle Detection (1)

De-centralized version of DGC-Consistent-Cuts [Veiga05]
avoids need of dedicated processes/nodes to detect cycles 
graph summarization information is bi-directional

ScionsToStubs – set of stubs reachable from a scion
StubsToScions – set of scions that lead to a stub

this is directly obtained as the previous is being calculated
Processes forward cycle detection messages (CDM)

piggy-backed on acyclic DGC messages
conceptually targeting an object belonging to the cycle being detected
carry algebraic representation of cycle candidate graph being detected

algebra comprises two sets
Source-set 
Target-set

Upon CDM reception processes:
apply matching predicate to CDM algebra and either

forward updated version of CDM
terminate detection

92

Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa
July-2005

DGCACY - Algebra-based Distributed Cycle Detection (2)

Algebraic reduction of CDM  (Cycle-Found?)
matches elements of source and target-sets.
elements present in both sets are cleared.
if source-set becomes empty Cycle Found.

instruct scion deletion (triggers reclamation of the rest of the cycle).
remaining elements in source-set are unresolved dependencies.

CDM to be forwarded
stubs reachable from scion receiving message.

inserted in target-set.
additional scions targeting stubs in target-set.

inserted in source-set as extra-dependencies to be resolved.
new CDMs lazily sent to processes holding targeted objects.  

piggybacked on DGC messages or queued/sent in batch.
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DGCACY - Algebra-based Distributed Cycle Detection (3)

Cycle Detection Algebra
representation of in-course cycle detection 

carried in Cycle Detection Messages
detection state in CDM, not stored in participating processes
initiated on a cycle candidate (heuristically determined)
lazily forwarded among processes comprising path being tested

{ Source-set } { Target-set }
Source-set

accounts for dependencies, i.e., scions converging to the path being detected and still not 
found to belong to garbage

Target-set
accounts for target objects, stubs, the CDM has been forwarded to

CDM reception at a process triggers CDM Matching
may detect cycle, forward updated CDM, or abandon detection
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DGCACY - Algebra-based Distributed Cycle Detection (4)

Incremental DGC Consistent-cut (CDM Graphs)
inconsistent cut of a distributed system

combination of several uncoordinated snapshots
useless for common purposes

conservative approach ensures safety w.r.t. cycle detection
pair-wise combination of processes through snapshots and CDMessages
stub without matching scion not current enough, ignore CDM
scion without matching stub CDM is never sent
only detects cycles fully enclosed in a CDM-Graph
liveness depends on snapshots update from processes

cycles always get older, eventual detection

concurrency with mutator
scions and matching stubs piggyback counters on remote invocations

different values denounce mutator activity on the CDM-Graph after                                                     
one of the snapshots was taken



48

95

Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa
July-2005

DGCACY - Algebra-based Distributed Cycle Detection (5)

Summary
properties inherited from dgc-consistent cuts

no global synchronization required
scalable
makes progress without requiring participation of all processes

allows different optimization techniques for
LGC
DGC
Distributed cycle detection

improves on previous work
Cycle Detection Algebra
incremental construction of  DCG-Consistent Cuts for cycle detection (CDM Graphs) 
processes need not store state about cycle detections in course

safety preserved if cycle detections are
» stopped, delayed, repeated, 

several detections may be safely performed simultaneously
» over the same processes or even for the same cycle

Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa

Garbage Collection in Transactional 
Systems (GCTS)

transactional reference listing
transactional mark and sweep
atomic copy
replicated copy
GC-cuts
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GC in Transactional Systems (GCTS)

These algorithms are extensions of the reference counting 
and tracing algorithms presented in the previous sections

such extensions are needed to deal with the specific safety 
problems posed by transactional systems

We describe the following:
transactional reference listing
transactional mark and sweep
atomic copy
replicated copy
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GCTS - Transactional Reference Listing (1)

We assume an object-oriented client 
server database with multiple storage 
servers Thor [Liskov92]:

clients cache in main memory objects 
that are being accessed

When a server recovers from a failure:
it must retrieve all the scions pointing to 
objects allocated in the server partitions 
scions whose stubs are held by other 
servers are easily recovered because 
such scions are kept in stable storage 
scions whose stubs are held by clients 
are not kept in stable storage because 
that would be too expensive 

instead, a server keeps in stable storage a 
list of its clients.

thus when a server recovers:
it knows who its clients are and sends 
them query messages asking for their 
stubs.
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GCTS - Transactional Reference Listing (2)

If a client process has not communicated with a server for a long time and does not 
respond to repeated query messages:

the server assumes it has failed
However the client may just be unable to communicate with that server because of 
network problems 

it might happen that the client communicates with other servers
imagine that a server S1 assumes that a client has failed while a second server S2 does not 
(figure  in previous slide)
then, the first server discards the scions whose stubs were held by the client 
this may cause the second server to unsafely reclaim an object y that is still reachable from the 
client 
this erroneous behavior is due to the inconsistent views the servers have about the client

To solve this problem:
it is necessary that all servers get a consistent view of a client status 
for this purpose there is an atomic shutdown protocol 
once this protocol is executed no server will honor requests from the client that has been 
shutdown 
thus, in the previous example S1 and S2 would agree that the client has crashed and y would be 
safely reclaimed because the client would not be allowed to follow the pointer from x to y

A problem with this solution is that the shutdown protocol is not easily scalable
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GCTS - Transactional Mark-and-Sweep (1)

This algorithm is a variant of the basic uniprocessor mark-and-sweep:
with the partitioned and incremental functioning modes extended in order 
to cope with transactions in a client-server database 
the collector runs on the server 
it was implemented in the EXODUS database [Carey86]

When a reference to some object is discarded inside a transaction:
the pointed object is eligible for collection only after the commit of that 
transaction 

This rule prevents: 
the unsafe reclamation of an object that becomes unreachable during a 
transaction that will later abort 
in fact, the abort of the transaction will make that object reachable again 
thus, any object that might become unreachable during a transaction will 
only be reclaimed if it remains unreachable after the commit of the 
transaction
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GCTS - Transactional Mark-and-Sweep (2)

An object created during a transaction is 
eligible for reclamation only:

after the commit of the transaction that 
created it 
this rule prevents

the unsafe reclamation of reachable 
objects due to the flush of pages from the 
client to the server in an order that is not 
controlled by the collector 

E.g.:
x is reachable from the GC-root 
the application creates object z and 
makes it reachable from x 
then, the page containing objects y and z 
is flushed to the server 
when the collector runs in the server only 
the page containing objects y and z has 
been flushed 
thus, z is unsafely reclaimed because it is 
not reachable from x
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GCTS - Transactional Mark-and-Sweep (3)

The memory space reclaimed by the sweeping phase can be reused for 
allocating new objects:

only when the freeing of that space is reflected in stable storage
This ensures that:

during a recovery after a failure there will always be enough space for allocating 
objects 

This is illustrated by the following example:
suppose that a client creates objects x, y and z in a page that had previously been 
garbage collected at the server
however that page has not been written to stable storage yet

on disk it still contains a garbage object t (not yet swept)
now the client commits the transaction 

as a result the page and the associated log are sent to the server 
the log is written to stable storage and the system crashes before the updated page 
reaches the disk 

then recovery starts
the problem is that objects x, y and z must be created (according to the log), but
there is not enough space as the page that is used for the recovery (the one on disk) still 
contains the garbage object t (not yet swept)
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GCTS - Atomic Copy (1)

This algorithm [Detlefs91,Kolodner93]  is based on Bakers 
copy GC:

it works on a single partition 
both functioning modes GC-only and incremental can be found in 
the literature

Reachable objects are moved from from-space to to-space 
and patched accordingly 

this may interfere with the stability of the store as explained now
Imagine there is a failure while the collector is running 

then, during the failure recovery
the GC algorithm must find which objects have already been moved, 
and which objects have already been patched 
otherwise the pointer graph will be corrupted
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GCTS - Atomic Copy (2)

Suppose there is a failure after object x 
has been moved to to-space:

a forwarding pointer was left in from-
space, and 
only the from-space has been written to 
disk 

Thus, after the failure the disk will not 
contain a valid version of x:

the version in from-space has been 
overwritten by the forwarding pointer, and 
the version in to-space is not available on 
disk

If the collector were to be restarted after 
the failure:

x would never be moved again to to-
space, and 
the pointer graph would be corrupted



53

105

Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa
July-2005

GCTS - Atomic Copy (3)

The solution to this problem consists of:
making the copy algorithm atomic

This requires that the recovery of a failure puts from-space 
and to-space in a state from which the collection can 
continue 

this is done by applying the write ahead log protocol [Bernstein87] 
to the disk contents 
for this purpose both the move and patch of each reachable object 
must be logged 
this solution even after being optimized remains costly 
in the next slide we describe the un-optimized version (incremental 
GC) 
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GCTS - Atomic Copy (4)

The move of a reachable object proceeds as follows:
pin the from-space object that will be overwritten by the forwarding
pointer
move the object to to-space and insert the forwarding pointer in its from-
space version
create a log entry with the from-space and the to-space addresses of the 
object

create another log entry with the to-space address of the object and its contents
now the move of the object is completed
after both log entries are written to disk unpin the from-space object

The scan and patch of a to-space object proceeds as follows:
pin the object to be scanned
scan the object and patch its from-space pointers to to-space pointers 
moving the pointed objects as needed
create a log entry with the object contents
unpin the object after the log entry is written to disk
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GCTS - Atomic Copy (5)

Concerning correctness:
the GC algorithm must not consider to be unreachable an object x that 
became so due to a transaction that is still running 

If the mentioned transaction aborts:
object x is now reachable again as it was before the transaction has started 

Thus:
the collector has to consider as part of the GC-root the log of running 
transactions

Note that the collector could run as a single long user level transaction 
or a series of short transactions:

however in the first case this would lead to a long GC pause time which is 
highly disruptive 
in the second case it could easily lead to deadlock or to a situation in which 
a long user transaction could prevent the collector from making progress 
for these reasons the collector runs at a level below the transactions 
support
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GCTS - Replicated Copy

The replication based copy collector [O'Toole93]  is 
particularly well suited to single-site transactional systems:

this is due to the fact that while the collector moves objects to to-
space the mutator continues to access their from-space replicas 
rather than the replicas in to-space 

When every reachable object has been moved to to-space:
a flip is performed, and 
the mutator then starts accessing the to-space replicas 

If a process fails while the collector is running before the 
flip:

the collector simply restarts with the recovered from-space 
all GC operations already done are lost



55

109

Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa
July-2005

GCTS – GC-Cuts In Object-Oriented Databases (1)

GC developed for the  O2 Object-Oriented Database System [Skubi97] 
Based on the premise that only reference «overwriting» can create 
garbage

detects these operations with resort to transactional synchronization 
mechanisms

read/share and write/exclusive locks on pages
Garbage collector constructs GC-cuts

a set with at least one copy of every page in the database
may hold several copies of the same page if necessary

copies of pages are created at different instants 
this may avoid mutator disruption

copies of pages may be inconsistent
they may hold different content valid during different transactions

combination with knowledge from locks ensures consistency
if a page in the cut contains references to objects in another page, the latter 
must also be included in the cut 
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GCTS – GC-Cuts In Object-Oriented Databases (2)

CG-cuts are constructed incrementally in parallel with the 
mutator
When CG-cut is complete, garbage can be identified and 
reclaimed

mark and sweep phase are sequential but concurrent with mutator

An object is considered garbage if and only if it is garbage 
in every page in the CG-cut where it occurs
Applied exclusively in the context of centralized object 
databases

potential size of complete cut makes it inadequate to distributed 
environments
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Distributed Garbage Collection in Replicated 
Memory Systems (DGCARM)

GC and DSM consistency
DGC on replicated memory
DGC for wide area replicated memory
Complete and scalable DGC 
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DGCARM – Garbage Collection and DSM Consistency in 
the BMX System (1)

The BMX system [Ferreira94] is a software platform providing:
persistent weakly consistent shared distributed virtual memory, and 
copying garbage collection

The main goal of the design of the BMX DGCA is:
to minimize the communication overhead due to collection between nodes of the system, and 
to avoid any interference with the DSM memory consistency protocol

The BMX DGCA design is based on the fundamental observation that: 
in a weakly consistent DSM system the memory consistency requirements of the garbage 
collector are less strict than those of the applications

Thus, the garbage collector reclaims objects independently of other replicas of the same 
objects without interfering with the DSM consistency protocol:

this is a relevant issue as the interference between the garbage collector and the consistency 
protocol could potentially nullify the advantages of using a weakly consistent DSM system

E.g. when updating a reference inside an object to reflect the new location of a live 
descendent that has already been copied:

the garbage collector should not require exclusive write-access to modify the object 
if exclusive write-access was needed, read-access to all other replicas of the object would have 
to be invalidate, therefore nullifying the advantage of using weak consistent DSM

Furthermore: 
the collector does not require reliable communication support and is capable of reclaiming 
distributed cycles of dead objects (as long as they are all cached in the same node)
the collector does not interfere with applications' consistency needs and requires very little 
synchronization/communication
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DGCARM – Garbage Collection and DSM Consistency in 
the BMX System (2)

In the BMX system:
objects are allocated in bunches (set of non-overlapping segments) in a 
single 64-bit address space spanning the whole network, including 
secondary storage
objects are kept weakly consistent by the entry consistency protocol

The DGCA has the main characteristics:
a cached copy of a bunch can be collected independently of any other 
copy of that same bunch on other nodes
only locally-owned live objects are copied by a bunch garbage collector; 
not owned live objects are simply scanned, and
references to copied objects are lazily updated, either by taking advantage 
of messages sent on behalf of the consistency protocol (piggy-backing), or 
in the background
in any circumstance, the garbage collector acquires neither a read nor a 
write token
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DGCARM – Garbage Collection and DSM Consistency in 
the BMX System (3)

Each bunch of objects is garbage collected independently of any other bunch:
thus, each cached copy of a bunch holds a stub table and a scion table containing information 
about outgoing and incoming references, respectively
the bunch garbage collector (BGC) executes the collection on a local replica of a bunch 
independently from the collection of any other bunch and other replicas of the same bunch

The BGC is based on the algorithm by O’Toole [O'Toole93] for three main reasons 
(however, any other algorithm could be used):

the flip time is very small and therefore not disruptive to applications
portability (no virtual memory manipulations), and 
objects are non-destructively copied (suitable for recovery purposes)

The BGC does not interfere with applications' consistency needs, neither when a live 
object is copied from from-space to to-space, nor when updating references to the 
object's new location:

a live object is copied to to-space only at its owner node and its new address is written in the 
object's header (forwarding pointer mechanism)
this modification is strictly local to the owner node, therefore it does not imply acquiring the 
corresponding DSM write token
otherwise (object not locally owned), the object is simply scanned; the scanning does not have to 
be done in a consistent replica of the object
it is not necessary to acquire the corresponding DSM read token
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DGCARM – Garbage Collection and DSM Consistency in 
the BMX System (4)

After being moved to to-space, all the references pointing to the object 
that has just moved must be updated:

these references may be spread across many bunches
however, this does not interfere with the consistency protocol (no need to 
acquire the write token of the objects containing such references)

The fundamental point that allows the mentioned updating (on the
source objects) to be done without interfering with the consistency 
protocol is twofold:

for objects with cached replicas on the owner node (where the target object 
has been copied), such an update can be made without acquiring the write 
token, and
for objects replicated on other nodes, the update can be made by piggy-
backing the new location of the moved object on inter-node DSM 
acquire/release messages sent on behalf of applications
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DGCARM – Distributed Garbage Collection on Replicated 
Memory – Larchant (1)

Larchant [Ferreira96] is a cached distributed shared store:
based on the model of a DSM with persistence by reachability
data is replicated in multiple sites for performance and availability
reachability is assessed by tracing the pointer graph by means of a hybrid DGC 
algorithm

The DGC in Larchant is a hybrid or partitioned algorithm as it combines tracing 
within a partition with reference counting across partition boundaries:

each process may trace its own replicas independently of one another and of other 
replicas
counting at some process is asynchronous to other processes and asynchronous to 
the local mutator 
in addition, counting is deferred and batched

Both the tracing and the distributed counting garbage collector run 
independently of coherence:

garbage collection does not need coherent data
never causes coherence messages nor input/output
it does not compete with applications locks or working sets
coherence messages must at times be scanned before sending
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DGCARM – Distributed Garbage Collection on Replicated 
Memory – Larchant (2)

The DGC in Larchant works according to five safety rules:
they  guarantee the DGC correctness [Ferreira98]

These safety rules are minimal and generally applicable given the asynchrony 
to applications and the minimum assumptions made concerning coherence:

Union, Increment before Decrement, Comprehensive Tracing, Clean Propagation, 
Causal Delivery 

Union Rule: 
an object may be reclaimed only if it is unreachable from the union of all replicas (of 
the pointing objects)

Increment before Decrement Rule: 
when an object is scanned, the corresponding “increment” messages (reference-
counting) must be sent immediately (i.e.,  put them in the sending queue)

Comprehensive Tracing Rule: 
when a “union” or a  “decrement” message (reference-counting) is sent, all replicas 
(on the sending site) must be GC-clean

Clean Propagation Rule: 
an object must be scanned before being replicated

Causal Delivery Rule: 
DGC messages must be delivered in causal  order
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DGCARM – DGC on Wide Area Replicated Memory (1)

Acyclic, scalable DGC for wide area replicated memory systems 
(WARM) [Sánchez01]
Safe w.r.t. handling replicated data correctly

processes only manipulate replicated objects locally
no remote invocations

multiple replicas place at different processes may be edited simultaneously
each process manages InProp and OutProp Lists 

InProp entries indicate the process from which each object has been replicated 
OutProp entries indicate processes to which each object has been replicated
account for incoming and outgoing object replicas
when replica is no longer reachable locally

Unreachable message is sent to originating process and USent bit set in InProp
URcvd bit  of sender process is set in corresponding OutProp 

when all replicas are unreachable, master replica instructs deletion
when all URcvd bit are set, a delete message is sent lazily to every process
upon arrival of delete message, InProp is deleted
replicated object is then at mercy of the Local GC
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DGCARM – DGC on Wide Area Replicated Memory (2)

Improvement over Larchant
different implementation of the union rule
avoids need for causal message delivery

Scalable to large-scale distributed systems and orthogonal to 
coherence mechanisms

non-intrusive with coherence engine
needs only be advised of replica propagation operations
is safe regardless of coherence mechanisms used

Unable to detect distributed cycles comprising replicas
cycles in WARM are potentially more frequent than without replication

only a single replica of an object needs to be involved in distributed cycle to 
prevent reclamation of every other replica

cycles in WARM waste more storage as replication factor grows
algorithm completeness being addressed in current work [Veiga05a]
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DGCARM - Comprehensive Approach for 
Memory Management of Replicated Objects

Addressing DGC completeness on replicated objects 
[Veiga05a]: 

detects distributed garbage cycles comprising replicated objects
spanning several processes 
extension to DGC-WARM [Sánchez01] with DGC-Consistent-Cuts 
[Veiga03] made replication-aware 

first algorithm for replicated objects that is complete
safety w.r.t. replicated objects from DGC-WARM
other properties shared with DGC-Consistemt-Cuts

enforces union rule in dgc-consistent-cuts
detects distributed cycles comprised within groups of processes
several DCDP cooperate (hierchically, or otherwise)

no negotiation/synchronization needed among pariticipating processes 
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Concluding Remarks

performance issues
tracing and reference-counting unification
final remarks
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Performance Issues in Uniprocessor Garbage Collection 
Algorithms

Myths and realities [Blackburn04] 
GC is  better than no-GC

GC offers programming soundness
performance benefits over Manual Memory Management

GC contiguous allocation out-performs free-list allocation
» architectural trends accentuate this advantage in the future

out-performs No-MM at all
locality benefits. 

» GC maintains live objects close to each in other in memory 
» manual MM and No-MM degrade object locality 

prevents memory exhaustion
generational collectors perform widely better

reduced collection time (opposed to whole-heap GC)
mark-and-sweep degrades with large-heaps

further improved locality
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Tracing & Reference Counting Unification(1)

Tracing and Reference-counting are duals [Bacon04]
tracing operates on live objects (matter)

transversal starts with mutator roots and detects all live objects
tracing can be regarded as a one-bit “sticky” reference count

initializes objects reference-count (RC) to zero and increments them when they are referenced from live objects
extra sweep phase to collect dead objects

may be optimized with semi-space copying collectors (time-space trade-off)

reference-counting operates on dead objects (anti-matter)
transversal starts with anti-roots (objects whose reference-count has been decremented) and detects 
further downstream objects whose RC will reach zero 

this is the graph complement of live objects except cycles
in each iteration, RC of objects are >= to the real value. therefore, GC decrements them when they are referenced 
from garbage objects

extra-phase to detect cycles (trial deletion using RC)

High performance GC algorithms are all hybrids of some kind
even when it this hybridization is not trivial
deferred reference counting

Zero Count Tables are tracing elements
generational GC

Remembered Sets are RC elements 
set-representation of non-zero reference-counts
complementary to a ZCT
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Tracing & Reference Counting Unification (2)

Trial deletionSweep phaseExtra Phase

SubtractionAdditionRefCount Convergence

HighLow (0)Initial RefCount

DeadLiveTransversed Objects

ForwardForwardTransversal

Anti-Roots 
zero-RC objects

Mutator RootsStarting Point

Reference CountingTracing
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Final Remarks (1)

The issue of garbage collection (GC) is a challenging topic
GC is both a mature and dynamic research area

early works date around 40 years ago
nonetheless, still a field of active and relevant research nowadays

GC is not only research
industry adoption has been steadily increasing

LGC in most script languages
DGC in Java and .Net Remoting

GC is a cross-cutting issue in systems and research
LGC deals with programming correctness and system performance
DGC research motivates and exercises key aspects of distributed algorithm design

safety
completeness
liveness
asynchrony
scalability
termination

3-tiered approach to GC (local, acyclic and cyclic DGC) further leverages the 
previous aspects

Thus, GC is interesting in a theoretical as well as practical perspective
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Final Remarks (2)

Many problems have been solved along the years but some still 
remain, e.g.:

the completeness of distributed garbage collection algorithms is still a 
research issue
the issues of performance of garbage collectors and their adaptation to 
resource-constrained environments also deserves an important research 
effort

Garbage collection (GC) automatically ensures referential integrity 
therefore:

improving program reliability, and 
programming productivity 
in addition, it may compact memory thus reducing fragmentation and 
improving locality

Both in centralized and in distributed systems, the nightmare of manual 
memory management increases as the number of objects, references, 
nodes and users scales up:

then, GC becomes indispensable !!!
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