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Abstract—The last few years have witnessed huge growth in
computer technology and available resources throughout the
Internet. These resources can be used to run CPU-intensive
applications requiring long periods of processing time.

Grid systems allow us to take advantage of available resources
lying over a network. However, these systems impose several diffi-
culties to their usage (e.g. heavy authentication and configuration
management); in order to overcome them, Peer-to-Peer systems
provide open access making the Grid available to any user.

Our solution consists of a platform for distributed cycle sharing
which attempts to combine Grid and Peer-to-Peer models. A
major goal is to allow any ordinary user to use remote idle
cycles in order to speedup commodity applications. On the other
hand, users can also provide spare cycles of their machines when
they are not using them.

Our solution encompasses the following functionalities: ap-
plication management, job creation and scheduling, resource
discovery, security policies, and overlay network management.
The simple and modular organization of this system allows that
components can be changed at minimum cost. In addition, the
use of history-based policies provides powerful usage semantics
concerning the resource management.

I. INTRODUCTION

Over the last decade, computer capabilities have been
increasing in terms of computational power, memory, and
persistent storage space. We have also witnessed a widespread
increase in Internet access by people all over the world.
Therefore, it becomes advantageous to use computational
models that can exploit the utilization of shared resources,
such as CPU and bandwidth, for applications which demand
great computational power. One of those models, achieving
great success in the scientific community, is the Grid.

A Grid system is an infrastructure for distributed computing
and data management, comprising a cluster of networked,
loosely-coupled computers with focus on large-scale resource
sharing, innovative applications, and high-performance orien-
tation [20]. Grid computing can be distinguished from typical
cluster computing systems in a way that grids tend to be less
coupled, heterogeneous, and geographically dispersed.

Moreover, a Grid system has the purpose to serve a commu-
nity of individuals and/or institutions by providing resources
that have a set of rules, well defined and highly controlled,
over the sharing. This commonly-referred virtual organization,
comprises a set of clusters where each is potentially under dif-
ferent administrative control, and access to computers between
different clusters must be negotiated in advance. A user outside
the organization has to overcome several barriers before it can
deploy its own application on the Grid. That is why the arising
of Grid systems has failed to reach the common Internet user.

At the same time, a model known as Peer-to-Peer has been
gaining a huge success across the Internet.1 Such architectures
are designed for the direct sharing of computer resources (CPU
cycles, storage, content) rather than requiring the intermedia-
tion of a centralized server or authority [3].

Peer-to-Peer systems are characterized by their ability to
function, scale, and self-organize in the presence of highly
transient population of failure-prone nodes. The great advan-
tage of this approach over other models is the no dependence
on centralized servers, which suffer from problems such as
bottlenecks, single points of failure, among other.

More recently, it has been witnessed a convergence between
Grid and Peer-to-Peer as both approaches share several goals,
such as the sharing of resources among multiple machines. The
model of trust and security underlying grids has been leveraged
together with peer-to-peer, thus leading to public-resource
computing infrastructures with very transient populations. For
instance, any ordinary user would have the same power to
easily provide and consume resources across the Internet.
Nonetheless, machine resources still need to be controlled
on peer-to-peer grid infrastructures. For example, computer
owners may need to decide when their resources are available
to others, how much resource consumption is allowed, who
can/cannot access their machines, and so forth. There are many
usage semantics that can be applied on these environments.

Currently, not only scientists, but also typical non-expert
computer users are willing to perform intensive tasks on their
computers. However, these tasks could be quite different, like:
compressing a movie file, generating a complex image from
a specification, compacting large files, among other. More
precisely, these tasks consume a relatively large amount of
time and memory, delaying other processes that are running
at the same time. Along the way, one becomes bored and
impatient. From another point of view, there are many Internet-
connected computers around the world whose resources are
not fully utilized. Most of the time, non-expert users have just
some low CPU-intensive processes running on their machines,
therefore giving a sense of waste.

Given the current context, we intend to deploy a platform
where any ordinary user may consume and provide resources,
namely idle CPU cycles, over a dynamic network that could be
local or wide (e.g. Internet), in order to speed up common, and
widely used, applications which are CPU-intensive. There are
two fundamental requirements: i ) while we intend to exploit

1Workshop on technical and legal aspects of peer-to-peer television,
Amsterdam, Netherlands, March 2006. Trends and Statistics in
Peer-to-peer: http://www.gsd.inesc-id.pt/∼sesteves/p2p/CacheLogic
AmsterdamWorkshop Presentation v1.0.ppt accessed on October 2008



parallel execution in desktop applications, the system must
ensure a fine-grained control over the shared resources, and
ii) applications (e.g. POV-ray)2 should be kept unmodified in
order to take advantage of all the software already existing.

Moreover, there are several issues that need to be addressed.
The platform: (i) needs do be scalable; (ii) needs to be
portable, handling the heterogeneity of machines; (iii) needs
to have a modular organization, each component should be
independent from each other; (iv) needs to provide security
mechanisms over computer resources, for the purpose of
keeping the primacy of every user machine; (v) needs to be
efficient; (vi) needs to adapt to environmental changes, like
resource availability; and (vii) needs to be user-friendly. The
greatest challenge is to achieve a speedup from applications
closest to optimal.

The proposed solution is named GridP2P. It integrates and
adapts solutions for: overlay network management, resource
discovery, job creation and scheduling, and resource manage-
ment. The solutions that are discussed in the next sections
were implemented in a simulator, though they may need to
be adapted to real environments. Also, the interoperability
between the components of the system is taken into account.

Furthermore, it is expected at evaluation stage that the run-
ning time of the applications substantially decrease while the
number of available nodes in the overlay increase. However,
one has to take into account the overhead underlying each
component of the system, therefore considering if a certain job
is worth its computational parallelization. Also, it is expected
an efficient use of the available resources.

This paper is organized as follows. In the next section we
present the architecture of the GridP2P, describing each of its
components. Following, implementation details take place in
Section III. Next, in Section IV, we describe the evaluation
of our middleware. We then discuss current solutions related
to the GridP2P, in Section V. Finally, Section VI presents our
conclusions.

II. ARCHITECTURE

In this paper we propose a middleware platform, combining
Grid and Peer-to-Peer models, that seeks to exploit parallel
execution of commonly used applications. Any user is then
able to act as a resource consumer, using idle CPU cycles from
other machines, or as a resource provider, granting access to
his own idle cycles, or as both. Above all, we want to enable
the Grid in large scale where any ordinary user may access
without much burden. In addition, we rely on security policies
to control the utilization of shared resources among different
users.

Figure 1 shows a use case where a machine, acting as a re-
source consumer, distributes tasks among available machines,
resource providers, in order to perform a CPU-intensive job
demanded by a user. Resource providers receive the tasks,
compute them, and send the results back to the consumer node
(the job holder).

2A ray-tracing implementation: http://www.povray.org accessed on October
2008

Fig. 1. Usage Model

In this particular work, all jobs are comprised of inde-
pendent, non-communicating tasks, commonly referred to as
Bags-of-Tasks or embarrassingly parallel tasks.

All machines are connected through an overlay network,
which is built on top of another network (i.e. Internet) and
provides services of routing and lookup.

Fig. 2. System Architecture

The proposed architecture relies on a vertical layer
approach, depicted in Figure 2. We describe the function of
each layer next.

Unmodified Applications. This level represents the
applications that run on top of our middleware. The
application parallelism is exploited at the data-level, and thus
applications do not need to be modified.
Application Adaptation Layer. The Application Adaptation
Layer consists in a customization over a generic Job Manager.
This layer defines which applications are supported by the
local machine. Therefore, specific mechanisms for handling
each of these applications are provided. For example,
launching applications with the correct parameters and input
files. Moreover, these mechanisms are built on loading time
and are based on formal application descriptions.
Job Manager. This component is responsible for creating
and scheduling tasks in accordance with available resources
at the moment. The tasks, as divisions of input files (to feed
an application) are distributed among available machines.



After the computation of the tasks is completed, this module
collects the (partial) results and builds the final output of the
respective application. In the inverse flow, the Job Manager
is also responsible for receiving and computing tasks from
remote machines in accordance to the Application Adaptation
Layer.
Policy Engine. The Policy Engine component is responsible
for enforcing local policies that can recall on the history of
past events. Some of these policies may be defined, by the
main GUI, in a way that is understandable for any ordinary
user (e.g. a user can only use 10 hours of my CPU time
during the current month). Nonetheless, for more specific
actions, policies need to be defined in XML files whose
structure relies upon the xSPL language [5], thus requiring
more expertise. Furthermore, the policy engine acts as a
filter between the Overlay Manager and Job Manager layers,
deciding which messages may pass.
Overlay Manager. This layer comprises four components. It
is responsible for the operations of routing and addressing on
the overlay network. In addition, mechanisms of management
and discovery of resources are included. Also, local resource
utilization is monitored by this component. Any changes in
resource availability are announced to the neighbor nodes.
Furthermore, this component contemplates a distributed
storage system used as a cache for storing computed tasks.
Communication Service. The Overlay Manager uses this
layer to send messages to the overlay network. Also,
whenever a message coming from the network is received,
the Communication Service analyses the message in the first
instance, and then delivers it to the adequate handler routine
in the Overlay Manager.
Operating System/Virtual Machine. The whole platform is
intended to work directly upon Operating System or Virtual
Machine. For improved security a Virtual Machine may be
used as a sandbox mechanism. This way, we can guarantee
controlled access to machine resources, as well as prevent
some malicious code from damage one’s computer, in case
input files consist of scripts, programming code, and so forth.

Briefly, the procedure for accessing resources works as fol-
lows. First, a user specifies the application, parameters and
input files through a GUI. The GUI contacts the Job Manager
(JM) in order to create and distribute tasks to available
machines. In effect, the JM first contacts the Overlay Manager
(OM) to look for available resources. The tasks are then
created according to the information retrieved from the OM.
Next, the JM contacts again the OM to distribute the tasks
among available machines. By turn, these available nodes
check if the received tasks (or requests) may access their local
resources, according to the security policies, to perform part
of the job. When the computation related to each task is done,
the results are sent back to the machine that holds the job. The
OM receives the data and send it up to the Policy Engine (PE)
where data will be evaluated. If no policies can be applied (i.e.
no action to take), the PE lets the data pass to the JM. The
JM gathers results and, when all tasks are completed, it builds

the final output and notifies the user through the GUI.

A. Supported Applications

Currently, the kind of applications allowed by our system
must either be parameterized through the command line or
receive a script or configuration files as input (i.e. parameter
sweep or batch file processing). This allows the creation of
independent tasks from those applications, i.e., tasks that do
not require communication between them during execution
time.

Our platform has specific mechanisms for handling each
type of application. Such application-dependent mechanisms
are built, at boot time, by the Application Adaptation Layer,
and they are driven by XML format descriptions. Therefore,
when users register a new application, they have to provide an
XML file containing the application identifier, the application
call with the correct parameters, and the rules on how to
combine task results and on how to scatter input files into
pieces to create tasks.

B. Overlay Network Management

The management of the underlying network is done through
the Pastry overlay [14]. On top of it, our platform provides a
mechanism for locating resources based on the Informed Walk
(Section V-A). Nodes advertise themselves by sending update
messages to their neighbors across the Pastry overlay. These
messages contain the sender node related information, such
as its identifier, supported application identifiers, and resource
availability levels (in terms of CPU, bandwidth, and primary
and secondary memory). Upon receiving this information, a
neighbor node calculates, with its own judgment, the global
rating of the announcer node. This judgment consists of
associating weights with the measured availability of every
single resource. Soon after, the whole information concerning
the announcer node is stored in memory for further recall.
Moreover, update messages are sent every time changes in
resource availability are perceived by the resource manager.
Additionally, these messages are also sent periodically within
a specified time frame. This time frame should be long enough
to not cause much network traffic. The former approach is
more efficient, however, the latter cannot be discarded, since
either resource availability may change due to external process
activity, or message delivery may fail.

Whenever a node wants to perform a job, it looks on its
neighborhood cache for the best available nodes according to
their global rating. If the set of assembled nodes is not suffi-
ciently attractive, the node may pick the neighbors with best
reputation for finding more available nodes. The reputation of
a node is based on previous requests that it has successfully
forwarded to other nodes with availability.

C. Distributed Storage of Task Results

In order to reduce resource utilization, mainly bandwidth
and CPU, our system contemplates a cache for storing com-
puted tasks. This cache is a distributed networked storage
system which is maintained by the overlay nodes. As machines



may fail, there is a replication factor, k, allowing equal data
to reside in k different nodes.

Whenever a job is submitted and the number of tasks to be
created is assessed, we lookup in the cache if there is any task
already computed. The lookup key is obtained by computing
the digest of the task input data. Hence, the cache maps task
input data digests into task output data (i.e. results). If the task
result is cached, it is then retrieved by the Overlay Manager
and sent to the Job Manager to be stored. The Job Manager
may store that task result either in memory or in persistent
storage space (building the partial or final output). Otherwise,
if the task result is not cached, the task is then sent to an
available node (which also could be its creator node) to be
computed.

This storage system reveals itself more useful in small
communities (or overlays) where users have quite the same
applications installed and work in projects with similar data
(e.g. an animation studio or a community of hobbyists working
on a same project). For this reason, this storage component
may be deactivated, reducing so the overall system overhead.

D. Task Creation

Once a job is submitted, our platform estimates the number
of available nodes so that the resource utilization within the
overlay would be maximized. This process is completely
transparent to the user.

Through its neighborhood cache, a node assembles a set
with the best available neighbor nodes (i.e. whose rate is
highest). During this assembling process, nodes are questioned
about their absolute availability, i.e., some security policies
may not allow nodes to perform tasks as they could be busy
with other tasks, or they could be out of their working time,
and so forth. Hence, the absolute availability tells us if a node
is available or not for processing tasks, disregarding the load
of resource utilization.

Concerning the distribution process, tasks are sent one by
one to the best nodes that are suitable for performing those
given tasks. Nodes that have been marked before as non
available are disregarded in this process. Besides that, a node
is suitable if its resource availability levels are equal or greater
than the cost of the task.

The cost of a task defines the minimum requirements that
a machine has to comply with to compute that task. Tasks
can have different kinds of complexity, depending on the size
and type of the data to be computed. So, it may be more
appropriate to send computational heavy tasks only to the more
powerful and available machines. Furthermore, the task cost is
used both to determine the suitability of a node for computing
that task, and to update the resource availability levels when
a task is about to be computed.

Furthermore, this cost is estimated by executing locally
a number of its parts randomly selected, and averaging the
measured cost (CPU, memory, input and output size for
bandwidth); then applying that estimate to all comprising parts
proportionally to their input/output size.

E. Resource Usage Control

Across the overlay network, resources are shared among
different users. Thus, there must be some rules for controlling
the resource utilization, which led us to the security policies.
These policies must support complex usage scenarios, and
therefore they need to be specified in a sufficient expressive
language. In a distributed cycle sharing platform as ours, it
is useful for policies to consider events that have occurred
in the past. For instance, we may have a policy for limiting
the resource consumption, which needs to know the resource
utilization history.

In order to make policies operational, our platform provides
an engine which evaluates and enforce policies against gener-
ated security events. Additionally, new policies may be defined
and introduced at runtime.

W.r.t. evaluation time, policies are evaluated when
messages come both in and out of GridP2P. More precisely,
this auditing process is done when messages pass from the
Overlay Manager to the Job Manager and vice versa. At
those moments, security events are generated containing
information about the sending or received message. Soon
after, the engine evaluates these events along with the policies
and decides which action to take.

Working Time Policy. In general, machines lying over
a GridP2P overlay network are not dedicated servers; instead,
they are common machines, owned by non-expert computer
users, whose resources may not be always available for
performing outside jobs. Hence, we provide a security
policy allowing nodes to only perform others’ work during a
specified period of time. This way, users may specify a time
range for when they expect their machines will not be in use
(e.g. from 10:00 PM to 2:00 AM). In addition, users may
also specify an idle time required for nodes to start accepting
and performing tasks. This could be also used for processing
work when a user’s screensaver shows up.
Consumption Policy. A task taking too long to be computed
(i.e. beyond a defined threshold) can be interrupted. Also, if a
task consumed much more resources than the ones specified
by its cost, the consuming node may be marked into a black
list. If a node is marked more than n times, then its access to
the same provider node should be denied for a certain period
of time, that could be one or several weeks, depending on
user configurations. After that period of time is over, the
offender node is cleared from the black list, and it may access
again to that node.
Ratio Policy. Within an overlay, there could be nodes
contributing more to the community, by providing more spare
CPU cycles of their machines; or contributing less by not
being connected much time to the overlay or by denying
access to their resources. Our system incorporates the concept
of resource usage fairness in which a node may specify a
minimum ratio required for accepting remote tasks. This way,
each node has a ratio which is simply the quotient of the
performed work in it and the performed work in other nodes.
This ratio is sent along with requesting messages whenever



one needs to perform work on outside nodes. Moreover, the
performed work corresponds to the sum of the CPU cost of
every processed task.

With this mechanism, a node only has to compare the ratio
sent within a request with its minimum ratio required. The
minimum ratio required may not be higher than one, i.e., a
node performing work as much or more than what it asks to
perform remotely cannot be rejected.

Furthermore, each node’s minimum ratio reference may be
adjusted by the needs of the node. For example, if a node
needs to improve its ratio it may decrease its minimum ratio
reference in order to potentially perform more remote tasks.
Analogously, a node may also increase its minimum ratio
reference if it does not need to execute jobs in the relatively
short-term.

III. IMPLEMENTATION

A. Used Technology and Integration

In order to make our platform portable, we used the Java
programming language. This way, we may run the GridP2P
upon a Java Virtual Machine, which is available for the most
common operating systems and computer architectures.

The integration of PAST (Section III-B), Informed Walk
(Sect. V-A) and Heimdhall (Sect. III-C) within the platform
was made in an easily and seamlessly way. This happened
due to the fact that each of the integrated components was
also developed in Java.

For the network management, the Overlay Manager and
Communication Service layers use the FreePastry tool3 which
is a Java implementation of the Pastry overlay.

B. Main Data Structures

• Node Rate: This structure is also known as the neigh-
borhood cache. It stores all the neighbor nodes and their
characteristics, namely, their resource availability levels.

• Node Reputation: The reputation of each neighbor node
is stored in this data structure.

• Resource Manifest: This structure contains a node’s re-
source description in terms of available CPU, bandwidth,
and primary and secondary memory.

• Policy Repository: Maintains all the loaded policy objects
with their specifications.

• Event History: For history-based policies, their triggered
past events are stored here.

• Job Holder: Every created job object is kept in this
structure during its lifetime. These job objects contain
information related to the job, such as the job identifier,
the number of completed tasks, and the output data of
each computed task.

• Application Repository: Contains all the supported ap-
plications: their identifiers, their calling command with
the correct parameters, rules on how to reassemble task
results and split data input into tasks, among other.

3http://freepastry.rice.edu accessed on October 2008

C. Distributed Storage of Task Results
The implementation of our distributed cache, for storing

computed tasks, relies on the PAST [15]. The integration of
PAST with our platform is easily done, since PAST is meant
to work upon FreePastry.

PAST provides two operations, insert and lookup. The insert
requires, as parameters, the output of a computed task (e.g.
an image of rendered chunks in POVray) and a key, for
identifying that computed task. To locate a computed task
through the lookup operation, only the key is needed. This
key is the generated SHA-1 hash from the task description,
which includes the input and configuration data.

D. Security Policies
Our Policy Engine Layer uses the Heimdall [9]. This layer

may work with multiple engines in simultaneous. In that case,
for an operation be authorized, all engines must authorize,
otherwise, the operation is denied. The integration of engines,
with our security layer, can be done through webservices or
through included libraries in our source code, as in the case
of the Heimdall. This way, we use the Heimdall interfaces in
order to load policies, evaluate operation events, and enforce
actions in accordance to the policy evaluation.

The policies must be defined in XML files whose structure
is based on the xSPL language. This high level language is
sufficiently expressive to support a myriad of usage scenarios.
Therefore, it allows the definition of several types of variables,
logical conditions, and logical and arithmetic operations. Ad-
ditionally, policies may be loaded at runtime, so that system
execution does not have to be interrupted each time a new
policy is added.

Operations like sending or receiving a message generate
security events in the GridP2P. These event information have
to be converted into the xSPL syntax event and then sent to
the Heimdall for evaluation.

Upon security event, the evaluation of policies usually will
only tell us if an operation was authorized or not. Although,
functions may be associated with policies, so that when a
policy fails on evaluation, it may trigger some action to happen
(i.e. by calling a function).

With Heimdall we expand our range of possibilities to
control the resource usage, instead of being bound to a
small defined set of security mechanisms, like we see in
many other peer-to-peer resource sharing systems. Hence, we
may support a myriad of use cases, within a dynamic and
complex environment, without needing to change any platform
implementation.

E. API
We provide an Application Programming Interface (API),

regarding each system component, so that implementations
can be changed without compromising the interaction between
components. Plus, the implementation details of every com-
ponent are abstracted by our API, facilitating the programmer
tasks.

Despite our API being language-dependent, components
still may be built in different technologies (or programming



languages) and not being bound to a given process or system.
In this case, the inter-component communication would be
done through remote procedure calls (RPC) where additional
code is required to translate API calls into RPC and vice versa.

IV. EVALUATION

In this section we present the evaluation of the GridP2P
platform regarding its performance and viability when facing
a real environment. Due to their importance among our goals,
we test the performance of the system in terms of application
speedup, distributed cache, and security policies.

In order to perform all the tests we rely on 3 different jobs,
listed as follows.

• The first one, job1, is a POVray image to be rendered.
Each task computes a certain number of line chunks with
different complexity. Due to that complexity, some tasks
can be computed faster than others.

• The second one, job2, is also a POVray image to be
rendered. However, the computational cost of each task
is the same (i.e. tasks would be completed at the same
time). Additionally, this job is less computationally heavy
than the previous one, i.e., the highest number of nodes
that worth the parallelization is lower.

• The third one, job3, consists of a Monte Carlo simulation
for a sum of several given uniform variables.4 An image
containing a linear chart is the outcome. Each task
generates a lot of random numbers and group them into
classes. Then, the classes are summed between tasks,
and a Monte Carlo curve is drawn. Additionally, all the
tasks take the same time to be computed.

For all of the tests we used machines with an Intel Core 2 Quad
CPU Q6600 at 2.40 GHz with 7825MB of RAM memory. The
used operating system was the GNU/Linux Ubuntu with the
kernel 2.6.28-14-generic. For the Java Runtime Environment
and FreePastry we used the 1.6.0 14 and 2.1 versions respec-
tively.

To assess application speedup we executed the three jobs
listed above: job1, job2 and job3. For each of these jobs we
made 8 trials. In the first trial we used 1 node; in the second,
2 nodes; and so on, until we have 8 nodes in total. All the
nodes were within the same LAN network and the bandwidth
available was about 100 Mbps. For each trial we obtained
the execution time of the job, and therefore we also got the
speedup.5

From Figure 3 we may conclude that the best jobs to
parallelize are the ones whose tasks have the same complexity,
as the work is better distributed among available nodes. With
job3, we almost obtained a linear speedup.6 Nevertheless, it is
important to see that, in job1, the gains were acceptable, and
most part of the nodes become free to perform other tasks
a while before the job was entirely completed. Besides that,

4Additional info: http://web.ist.utl.pt/∼mcasquilho/compute/qc/
Fx-sum-unifs.php accessed on July 2009

5Sp = T1/Tp, where Sp is the speedup with p nodes, T1 is the execution
time with 1 node, and Tp the execution time with p nodes.

6Linear speedup or ideal speedup is obtained when Sp = p

Fig. 3. Jobs’ Speedup

the job3 output was very small sized in comparison with the
job1 output, i.e., we also found out that the network overhead
has a significant impact on the overall system performance.
So, to obtain best speedups when the data size is bigger, the
task complexity should be high enough to compensate that
overhead.

Regarding the second stage, a cache is important to avoid
doing duplicated work (i.e. optimizing resource usage), and
thus increases application performance.

The gains were higher for tasks whose complexity differs,
in this case, job1 - Figure 4. It seems that the heaviest tasks in
job1 were not cached until the number of cached tasks reached
5. Therefore, the most gain we may have, for this type of jobs,
is when heaviest tasks are cached first. W.r.t. job3, it showed
that caching tasks with the same complexity does not decrease
the execution time, except if all tasks are cached (obviously).
However, in any case, n machines will remain free if n tasks
are present in cache, and that is the essential point.

Fig. 4. Improvement time when the cache is used. Reference is when no
tasks are cached.

Finally, the policy engine overhead turned out to be min-
imal. It is directly proportional to the number of deployed
policies and roughly equal for any job. For our deployed
policies (Section III-C), the engine took approximately 0,042
seconds to evaluate all of them against the generated security



events. In job1, for instance, that corresponds to an increase
of execution time from 0,0189% to 0.0613% for 2 to 8 nodes.

V. RELATED WORK

In this section we review a representative selection of rele-
vant solutions regarding the fundamental premises to achieve
our goals.

A. Security

Deeds [7] is a history-based access control system whose
policies must be written in Java. The security events and
enforcement mechanisms (handlers) must be individually im-
plemented for every resource to be protected. This ad-hoc
manner of managing policies becomes hard and impractical,
especially in dynamic and complex environments.

Heimdall is a history-enabled policy engine targeted to Grid
environments. This system allows the definition, auditing, and
enforcement of history-based policies. Through a language
with a high level of abstraction and expressiveness, several
usage semantics and security patterns may be applied within
a complex environment. With this manner of defining policies,
the specification and implementation of security mechanisms
are separated, and thus leveraging the policy administrative
tasks. By doing so, Heimdall constitutes then a solution that
fits in the needs of the GridP2P.

B. Resource Discovery

Iamnitchi et al [10] have compared different searching
methods. It turned out that a learning-based strategy achieves
more performance. Such strategy consists of forwarding a
request to the node that answered similar requests previously
(i.e. using a possibly large cache). Moreover, results have
shown that searching mechanisms which keep a history of
past events are more efficient than the ones that do not store
any information about other nodes, such as the random walk.

CCOF [17] has tried several approaches, and the one
obtaining best global performance was based on a partially
centralized peer-to-peer overlay. Within the best search ap-
proach, some nodes may acquire a special role in the network
and provide a service of lookup for nodes nearby. This way,
nodes advertise their profiles and address requests to those
supernodes. Whenever a request is made, supernodes attempt
to match the query with cached profiles and return a set of
candidate nodes. Nevertheless, the dynamic placement of these
supernodes is still an open problem.

Paredes [13] presents a solution (previously designated as
Informed Walk) through which queries are forwarded to the
neighbor nodes with best availability and reputation. The best
availability concerns the idleness level of a node in terms of
its resources, and the reputation consists in the capability of a
node to forward a query to other nodes with availability (i.e.
this reputation is based on previous requests). Results have
shown that this approach is efficient and scalable, and thus
matching the GridP2P requirements.

Cheema et al [4] proposed a solution for exploiting the
single keyword DHT lookup for CPU cycle sharing systems.
This solution consists in encoding resource identifiers based on

static and dynamic resource descriptions. The static ones could
be, for instance, the OS configuration, RAM, or CPU speed.
While the dynamic descriptions are related to the availability
levels of resources, such as the percentage of idle CPU. With
this encoding mechanism, it is possible to create a mapping
between resource and node identifiers in structured peer-to-
peer networks, like the Pastry, and take advantage of the
efficient routing of queries.

C. Cycle Sharing Systems

1) Institutional Grids: Globus [8] is an enabling technology
for grid deployment. It provides mechanisms for commu-
nication, authentication, network information, data access,
amongst other. The authentication and authorization models
are directed to institutions, making difficult for ordinary users
to deploy applications on top of the Grid. In contrast, the
GridP2P envisions for an open access environment whereby
the complexity of getting credentials to use the Grid is reduced.

Condor [11] allows the integration and use of remote
workstations. It maximizes the utilization of workstations and
expands the resources available to users, by functioning well
in an environment of distributed ownership. Condor’s jobs
rely on executable binary code in which compatible machines
are needed in order to run them. Contrastingly, machine
heterogeneity is not a problem in GridP2P, since jobs consist of
data files that can be easily read by any computer (i.e. the kind
of architecture and operating system are not relevant). Plus,
many Condor features require some degree of expertise (i.e.
advanced configurations are needed), whereas our platform
keeps the vision of simplicity and tries to do all the necessary
work with almost no interference from users.

2) Master-Slave Model: BOINC [1] is a platform for volun-
teer distributed cycle sharing based on the client-server model.
It relies on an asymmetric relationship where users, acting
as clients, may donate their idle CPU cycles to a server, but
can not use spare cycles, from other clients, for themselves.
Besides that, setting up the required infrastructure, developing
applications, and gathering enough cycles could be difficult for
an ordinary user. On one hand, users need to have the required
skills to create BOINC projects, and on the other hand projects
should have a high profile to attract users to participate in. In
comparison, GridP2P is more flexible as users have the same
power to both provide and consume idle cycles to and from
other machines. Moreover, it is possible to use common and
widely used applications with our system.

nuBOINC [6] is a project that attempts to overcome the
drawbacks presented by BOINC. It allows one to use idle
cycles from other users, through servers, and making use of
commodity applications. However, GridP2P relies on a more
scalable model that does not require the intermediation of
servers. Also, when work units are being distributed, our plat-
form takes into account the idleness levels of user machines,
which is disregarded by the nuBOINC.

3) Peer-to-Peer: CCOF [12] is an open peer-to-peer system
seeking to harvest idle CPU cycles from its connected users. It
shares our goals of reaching the average user by not requiring
any kind of membership or negotiations in any organization



(i.e. in contrast with institutional grids). The access of joining
nodes to the CCOF is only based on trust and reputation
systems. Despite that model being a good solution for global
control, CCOF disregards security policies which allow a more
fine-grained control over local resources.

OurGrid [2] is a peer-to-peer network of sites which tries to
facilitate the inter-domain access to resources in a equitably
manner. Each of these sites comprises grid clusters possibly
belonging to different domains. The sharing of resources is
made in a way that makes those who contribute more to get
more when they need. Nonetheless, applications need to be
modified in order to run on top of this platform, and the data-
based parallelism, envisioned by the GridP2P, is not exploited.
Besides that, machines are not distinguished by their idleness
levels, whereas our platform always attempts to select the best
available nodes for a job.

Ginger [16] is a project focused on enhancing desktop ap-
plications to run faster, by conveying the Grid and Peer-to-Peer
models into a generic cycle-sharing platform. It introduces
the Gridlet concept: a semantics-aware work unit containing a
chunk of data and the operations to be performed on that data.
Home users exchange gridlets across the peer-to-peer overlay
in order to compute chunks of data. Ginger shares our goals of
deploying a scalable peer-to-peer grid infrastructure. Although,
it is not clear how Gridlet operations, consisting of application
binaries, would run on remote machines. For instance, popular
desktop applications often need to be installed (i.e. root access
and user presence are needed); and their binaries are dependent
from machine architectures/operating systems. Additionally,
the control over resource usage is not taken into account,
unlike the GridP2P.

VI. CONCLUSIONS

This paper presents the GridP2P platform, a solution aiming
at a current reality, characterized by computers’ hardware
evolution, resource scarce utilization, and user’s computational
needs. With this platform, we apply the Grid concept into
large-scale networks, namely the Internet, where a myriad of
powerful machines may be lying idle for long periods of time.
Moreover, we take advantage of this reality in order to exploit
the parallel execution of widely used applications. We improve
application performance in a transparent manner, i.e., without
modifying applications. Also, the virtual organization concept,
emphasized by the Grid, is thoroughly vanished by the Peer-
to-Peer model, introduced in our platform. By doing so, highly
computing power becomes available for any user. Additionally,
and in a resource sharing environment, it is essential to
maintain a fine-grained control over shared resources, which
is granted by the GridP2P through the security policies.

A representative selection of relevant solutions are reviewed
and it is concluded that none of them entirely cover the
objectives of this project. In particular, regarding the dis-
tributed cycle sharing systems, they fail to reach the common
user due to institutional barriers, they are not portable, they
require modifications in applications, they lack on security,
among other reasons. Therefore, the GridP2P reveals itself as
a compelling platform within the current state of the art.

With respect to the evaluation, results have shown that the
GridP2P may increase the performance of applications, while
maintaining a rigorous control over used resources. Hence, all
of our objectives were achieved.

By introducing inexpensive computing power in the hands
of any ordinary user, we believe this platform will start reach-
ing communities of Internet users across the world. We also
hope this work may contribute to the study and deployment
of novel peer-to-peer grid infrastructures.
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