
Loosely-Coupled, Mobile Replication of Objects with Transactions∗

Luı́s Veiga, Nuno Santos, Ricardo Lebre, Paulo Ferreira
{lveiga,nsantos,riclebre,pjpf}@gsd.inesc-id.pt

INESC-ID / IST, Rua Alves Redol, 9, 1000-029 Lisboa, Portugal

Abstract

Advances in wireless technology and affordable info-
appliances are making mobile computing a reality. How-
ever, programmers do have a real hard task while devel-
oping mobile distributed applications in which sharing is
needed. Such difficulty arises, mainly because programmers
are forced to deal with system level issues such as consis-
tency, durability, availability, etc.

We designed, implemented and evaluated an object-
based platform called M-OBIWAN that releases the pro-
grammer from the above mentioned system-level issues. It
supports mobile transactions and replication in an inte-
grated way.

In contrast with other approaches, M-OBIWAN pro-
vides an automatic replication mechanism allowing the cre-
ation of dynamic clusters of objects which are accessed
within transactions. In addition, the transactional model
is adapted to mobile environments. A prototype implemen-
tation has been developed. Its performance has been mea-
sured with PDAs and desktop machines, linked via Blue-
tooth.

Key-words: Replication, Mobility, Transactions, Dy-
namic clustering, Middleware, Loosely-coupled systems .

1 Introduction

We witness presently, and for some time now, to a vast
dissemination of portable devices (e.g. laptops, tablet PC’s,
PDAs, etc.) made available by various manufacturers. This
makes mobile computing a reality. However, programmers
do have a real hard task while developing mobile distributed
applications in which sharing is needed. Such difficulty
arises mainly because programmers are forced to deal with
system level issues such as consistency, durability, avail-
ability, etc.

As a matter of fact, mobile networks are characterized
by the mobility and/or disconnection of one or more hosts.
This raises the issues of availability and consistency among

∗This work has been partially funded by FEDER.

others. When left to the programmer, such system level is-
sues are the cause of errors, low productivity and useless
applications. M-OBIWAN1 releases the programmer from
the above mentioned system-level issues. It supports mobile
transactions and replication in an integrated and transparent
way.

Traditional distributed applications are client-server
based. These can either be strongly connected, i.e. need
a permanent connected channel or be connection-less. A
strongly connected approach is not an adequate solution
for economic and technical reasons. Economically, users
may not wish to be online all the time due to commu-
nication costs. Technically, signal power may be insuffi-
cient, in some areas, to maintain constant connectivity and a
strongly-coupled approach limits flexibility and scalability.
In addition, with such a solution, availability is strictly de-
pendent on connectivity, i.e., connection breakdown forces
applications to stop.

On the other hand, in most cases, mobile devices are
still regarded as small color-screen, sound-enabled clients
mainly used for interface purposes. This is the case with
common mobile database-oriented applications where data
queries are performed, ultimately, on the servers. Clients
running on devices simply ask for user input and present
query results in a more or less structured and visually ap-
pealing manner. This increases load on the servers and de-
pendency on connectivity.

The automatic replication mechanism allows the creation
of dynamic clusters of objects which are accessed within
transactions. Replication contributes not only to increased
availability but also to performance. Objects are replicated
into mobile devices so that even while disconnected, the
user can still perform useful work. In addition, accessing
local instead of remote data is much faster.

Some systems try to leverage devices computing-power
by pre-executing queries locally on replicated data[15] with
some guarantees about update-query results. This approach
makes better use of device capabilities and reduces depen-
dency on connectivity. However, the same workload is
performed twice, since actions are replayed again at the

1Mobile Object Broker Infra-structure for Wide Area Networks.

1

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04)
1521-9097/04 $ 20.00 IEEE

servers. Thus, it does not reduce server load. Furthermore,
this type of approach reduces the kind of applications sup-
ported just to those based on the traditional query-result-
update model provided.

M-OBIWAN follows a loosely connected client-server
approach in which objects are automatically replicated into
mobile devices. The underlying requirements for this option
are the following:

1) To leverage mobile devices computing-power, and its
resources in general. As a matter of fact, recent evolution
in mobile devices power and resources makes them viable
platforms to perform a large number of tasks;

2) To minimize and/or prevent dependency on continu-
ous connection to servers. Applications should be able to
perform useful work even when disconnected from the net-
work;

3) To allow efficient, productive and broad-based appli-
cation development for these environments. In other words,
to avoid the obligation to use a strict query-based kind of ap-
plication. Instead, a rich object-orientation approach should
be adopted.

In this paper, we focus specifically on its support for
transparent, yet adaptive, incremental replication of object
graphs and its integration with the optimistic transactional
support.

The rest of this paper is organized as follows. The next
subsection describes the rational of the M-OBIWAN design.
The most important data structures and their functionality
are describe in Section 2. Section 3 addresses the object
replication in grater detail. In Section 4, we present the most
relevant implementation aspects. Section 5 shows some per-
formance results. Then, Sections 6 and 7 relates our work
with others and draws some conclusions, respectively.

Design Rationale We consider a scenario in which mo-
bile nodes connect to the fixed network, through base sta-
tions. Thus, mobile nodes may connect both to other mobile
nodes and to fixed nodes, typically for limited amounts of
time, and their connections may fail due to its inherent mo-
bility. In addition, due to its size, such mobile devices are
resource-constrained (memory, processing, power, etc.).

While working as a server, a node provides information
in the form of objects. Objects contain references to other
objects building graphs of objects. A node where an object
was created is called the object’s home node.

Nodes access objects, provided by others, by replicating
them locally; we call this operation, object fetching. Such
access is done within a transaction. Any object, which is
part of a graph of objects, may be given a human readable
name. Such objects can be seen as roots of a (sub)graph.
Obviously, an object graph may contain several named ob-
jects, i.e. roots. Applications obtain references to such ob-
jects, from a name service, given their name.

Mobile
Client

Server A Server B

Server EServer DServer C

Web
Bridge 2

Web
Bridge 1

Web
Bridge 3

Mobile
Client

Mobile
Client

fixed network

fixed network

wireless link

fetch

fetch

update

operations
performed

operations
performed

Figure 1. Typical example of mobile computation in M-
OBIWAN.

Object graphs are replicated transparently and incremen-
tally, i.e., from a remote node into a local one, within trans-
actions. This means that application code needs not repli-
cate objects explicitly. When they are accessed or invoked
for the first time in a node, they are replicated. These repli-
cated graphs cannot be serialized into mobile-devices ”as
they are” for two main reasons: i) the potential size of
the replicated graph may result in memory and bandwidth
flooding, and ii) increased application latency. Therefore,
replication code builds object replicas with proxies stand-
ing in place of referenced objects.

Figure 1 portrays a typical example of a mobile computa-
tion with M-OBIWAN. In the example, there are five servers
and three web-bridges located somewhere, over the fixed
network. A mobile-client can only fetch objects from the
servers, through a web-bridge, via wireless link. Initially,
the mobile-client connected to Web-Bridge-1 and fetched
a number of objects from one server. Following this, the
client has moved, re-connected through Web-Bridge-2, and
fetched some other objects from a different server. During
this two periods, the client has moved once again and per-
formed operations on the replicated objects. Finally, once
re-connected through Web-Bridge-3, the client can update
replicated objects back on the servers.

2 Architecture

OBIWAN[8, 20] is a middleware platform that provides
support for the development and execution of applications.
M-OBIWAN is an evolution of OBIWAN. The middleware
has been extended in order to improve its performance on
resource-constrained devices (e.g. PDAs). More impor-
tant, in M-OBIWAN, object replication is integrated with
optimistic transactional support. Applications are able to
access objects according to a distributed transactional se-
mantics. M-OBIWAN allows disconnected clients to pro-
ceed computation with already replicated objects. They can
reconnect, later, to a different bridge, and further replicate
objects or send updates to corresponding servers (e.g. when
committing a transaction).

This extension poses different challenges because, in
technological terms, there are several limitations in the im-

2

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04)
1521-9097/04 $ 20.00 IEEE

JVM or CLR

M-OBIWAN Runtime

Operating System

M-OBIWAN
 Proxies

M-OBIWAN
Bridge

Application Objects (replicated)

class extension code

generated by obicomp compiler

Transactional Support

Object Replication Event Handling

Figure 2. M-OBIWAN architecture.

plementations of virtual machines for compact devices (e.g.
.Net Compact Framework and Java 2 Micro Edition). These
are due, mainly, to the reduced capabilities of the devices
and to minimize memory footprint of the virtual machines
themselves. For example, .Net CF does not provide remote
method invocation on objects nor general-purpose serializa-
tion. These are severe limitations that omit some of the
mechanisms that today’s distributed computing is based on.

M-OBIWAN supports the incremental replication of
large object graphs into mobile nodes. Additionally, it al-
lows the creation of dynamic clusters of data, while provid-
ing hooks (through events) for the application programmer,
to implement a set of application specific properties. An ex-
ample usage of such hooks is the transactional support. It
is built upon the basic infra-structure and provides relaxed
transactional semantics and updates dissemination.

M-OBIWAN is structured as a set of runtime libraries on
top of either the JVM[1] or the CLR[14]. It is comprised,
mainly, of five parts (see Figure 2):

1) Base runtime services. These include, mainly, object
replication and event-handling;

2) A mobile-device bridge, for communication abstrac-
tion and flexibility among nodes;

3) Outward/inward proxy pairs[18]. An outward proxy
stands in for an object that is not yet locally replicated. An
inward proxy mediates and controls remote accesses to a
local object;

4) Transactional support for optimistic concurrency con-
trol of replicas;

5) An open-compiler that analyzes classes and automat-
ically generates code for proxies and classes source-code
extension.

Base Runtime Services Base run-time services include
object replication, registration and name service, object
repository discovery and connection, and custom event-
handling.

Object replication is managed through tables of entries.
Each entry stores object information, namely, replication

state (replicated in, out, or proxy-ed) and a weak-reference
pointing to the object. This prevents that, in the same
context, more than one replica of the same object co-
exist. When a proxy is accessed, replication tables are first
checked for an already replicated copy of the object and if
so, a reference to it may be returned.

To simplify design, increase modularity and allow differ-
ent, more sophisticated replication techniques, every step of
object replication (into a mobile node) and update (back to
server nodes) is performed by handling specially defined
events (e.g., before-replica, after-replica, before-update,
etc.) triggered by M-OBIWAN. This way, proxy and class-
extension code do not include communication related code.
This increases flexibility during object replication and up-
dating.

Default handlers for these events are implemented in
the base runtime services, performing the basic replica-
tions semantics described later (see Section 3). Nonethe-
less, the application, either explicitly, or in its declar-
ative setup/configuration, may define different handlers
with added versatility, flexibility, different QoS and fault-
tolerance. This can be applied either during object repli-
cation or when performing their update. These primitives
are the basis upon which, transactional concurrency control,
and transactional policy mechanisms are built.

Communication Bridge Communication between out-
ward and inward proxies in M-OBIWAN is performed, in-
directly, with resort to two different transports. Between the
communication bridge and inward proxies, remoting ser-
vices are used. Since these are lacking in compact devices,
web-service support is used instead, between outward prox-
ies and the communication bridge. Therefore, communica-
tion among nodes is performed using a bridge based on a set
of web-services. These web-services simply relay requests
on to other nodes.

In each node, specific end-points (client and/or server)
modules are set-up to encapsulate all communication.
These end-points invoke, and are invoked by, the web-
services. Client end-points are invoked by outward prox-
ies and runtime services. Mediated through the web-bridge,
servers deal with mobile-devices just like with any other
(desktop) machine.

The communication bridge is instrumental to mobility. It
enables client and server to communicate without the need
of a direct connection between them. Since it is stateless,
it may mediate access to any server, from any client. This
way, it is possible for a client to fetch objects using one
bridge, at a certain location, and later, update them back in
the server, through a different bridge, in a different location.

Proxies Proxies stand-in as, and mediate remote access
to objects. Outward proxies behave as local stand-ins,

3

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04)
1521-9097/04 $ 20.00 IEEE

in lieu of actual objects not yet replicated, until they are
accessed/invoked. Proxies automatically implement the
same functional interfaces present in application code, us-
ing polymorphism.

When a not yet locally replicated object is invoked for
the first time, the corresponding outward proxy interacts
with its counterpart inward proxy (residing at the remote
node) to perform the replication of the corresponding ob-
ject. This enables the incremental replication of object
graphs. Once objects are locally replicated, invocations are
direct, i.e., with no indirection at all. Proxies also mediate
object updating, i.e., when local replicas are sent back to re-
mote nodes. This happens when, for example, a transaction
commits.

Transactional Support The transactional support pro-
vides a reliable form of accessing objects, ensuring that data
is consistently manipulated even during node disconnec-
tions. It adopts a distributed optimistic concurrency control
for ensuring serializable histories and uses a two phase com-
mit protocol that guarantee atomicity of transactions. In ad-
dition, since the mobile environment is highly dynamic and
the transaction semantics is highly dependent on the appli-
cation requirements, each transaction is configurable. This
means that the application developer not only implements
the transaction code, but he is able to specify a transaction
policy. By means of a transaction policy, the developer de-
fines a set of rules and attributes which will determine how
the transaction should behave. For example, it is able to
specify if objects should be pre-fetched before executing
the transaction or if objects should be fetched on demand;
to specify relaxed consistency and atomicity requirements;
to drop unnecessary updates if it is not possible to commit
the transaction on all the participants; etc. These aspects are
out of the scope of this paper and are detailed in[17].

Transactional support actually runs on top of M-
OBIWAN. It makes extensive use of the hooks M-OBIWAN
provides. It does so by implementing the event-handlers
related to object replication (i.e., fetching of objects be-
ing accessed within transactions) and to object update back
into the remote nodes (i.e., when the transaction commits).
These event-handlers allow specific transaction mecha-
nisms to intercept objects manipulated by M-OBIWAN and
to manage them according to the transaction policy speci-
fied by the transaction developer.

Obicomp An open-compiler, called obicomp, is used to
automatically generate code for proxy classes and augment
application classes. This augmentation process does not
interfere with application-logic methods. It simply imple-
ments, automatically, special-purpose code so that classes
are able to create replicas of their instance objects.

IB
IProvider

IDemander

A'

A

B

C

AproxyIn

BproxyIn
BproxyOut

IDemandee
IB

IA
IProvider

IDemander

IA
IProvider

IDemander

X
Process P1 Process P2

IC
IProvider

IDemander

IProviderRemote
IA

IProviderRemote
IB

local root (stack or static variables)

OBIRep
A P2 REPLICATED_IN

B P2 PROXYED_IN

OBIEventHandlers

Transaction Info

READ_SET WRITE_SET Client end-point

OBIRep
A P1 REPLICATED_OUT

B P1 PROXYED_OUT

Server end-pointM-OBIWAN
WebService

 Bridge Name Service

Process P3

local root (stack or static variables)

1
2

3 4 5 6 7 8

9 10

11

12
13

14

1516

1718

19

Figure 3. Example of incremental replication: Phase One.

3 Incremental Replication

To address the incremental replication mechanism in de-
tail, a prototypical example is provided in Figure 3. There
are three processes involved. Process P1 runs the client ap-
plication, P2 the server application, and P3 hosts a specific
web-service performing the bridge function. P1 could be
running on a mobile device (e.g. PDA), P2 on a desktop
machine or a server, and P3 either on the same machine as
P2 or on a different one.

In process P2, there are three objects: A, B and C.
Each object reveals the interfaces it implements. Interfaces
IProvider, IDemander and IDemandee, are automatically
implemented. Their implementation performs transparent
object replication and object-fault handling. This detailed
aspect is out of the scope of this paper. It is thoroughly
described in [8].

Preceding the situation portrayed in the figure, the ap-
plication executing on process P1 has connected to server
at P2, and initiated a transaction. Object X is local to P1.
Object A’ is a local replica of object A in P2. A’ references
an outward proxy (BProxyOut) that stands in as a replica
(not yet created) of object B. Since BProxyOut implements
the same functional interface as B itself, A’ can invoke any
method or access any property of BProxyOut as if it was
indeed B. Nevertheless, when that happens, the actual con-
tent of B must be replicated to P1 for execution to proceed.
We now address, in detail, the necessary phases and steps to
replicate B into P1.

1. P1 is executing a method -we will name it mA()-
of replica A’. When mA() executes some method
or accesses some property on BProxyOut, that
method/property has a dummy implementation that
simply triggers the replication mechanism.

2. Therefore, BProxyOut invokes BProxyOut.demande()
(interface IDemandee).

3. BProxyOut triggers an event OBI.Get.Begin that en-
rolls BProxyOut/B’, initially, in the current transaction
read-set . Once objects are modified, they are also en-
rolled in the transaction write-set.

4

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04)
1521-9097/04 $ 20.00 IEEE

4. BProxyOut tests if already exists a replica (created
through a different proxy) of object B in P1. This in-
formation is stored in structure OBIRep, that manages
object replication.

5. In this situation, B is registered only as being proxy-
ed in and this status is returned to BProxyOut. Thus,
object B must be actually replicated.

6. BProxyOut initiates the creation process of B’ into P1.
It invokes method GetObject on the client end-point,
the runtime sole communication gateway.

7. The client end-point forwards the call to the web-
bridge. It invokes an homonymous web-service
method of the bridge.

8. The web-bridge, in its turn, serves only as a an inter-
mediary between clients and servers. Thus, clients and
servers never need to be directly connected. It invokes
GetObject on the corresponding server end-point.

9. The server end-point consults the OBIRep to find the
entry corresponding to BProxyIn. This entry has been
previously inserted when object A was replicated to
P1.

10. A reference to BProxyIn is returned to the server end-
point.

11. Server end-point invokes BProxyIn.get() -a method of
interface IProviderRemote- to obtain a replica of the
proxy-ed object.

12. BProxyIn forwards the call to B.get(). Object B,
through automatically generated code, creates a replica
of itself. Outward and inward proxies are created for
every object referenced by B (in this case, object C).

13. The just-created replica B’ (not shown) and CProxy-
Out, are returned to BProxyIn.

14. BProxyIn returns, both B’ and CProxyOut, to the
server end-point.

15. Replica B’ and CProxyOut are binary-serialized, re-
turned to the web-service bridge.

16. The web-bridge exits execution of method GetObject,
invoked in step 7, returning, this time via XML serial-
ization, B’ and CProxyOut to the client end-point.

17. Client end-point returns a reference pointing to replica
B’, to BProxyOut.

18. BProxyOut triggers an event updating transaction info
and updates replication state associated with B (from
proxy-ed in to replicated in). Transaction info and
replication state now refer to the actual replica, di-
rectly.

19. BProxyOut updates reference, to itself in A’, so that it
points directly to B’. Then, it invokes the correspond-
ing method (initiated in step 1) in B’ and returns exe-
cution to A.mA().

From this moment on, further invocations of B’ will
be performed without any indirection. This is important
to preserve application performance. Subsequent invoca-
tions amortize the cost of object replication as they are per-
formed at ”full-speed”. Incremental replication overhead
is minimal, since it is dominated by the actual object net-
work transfer (a phase that cannot be avoided). Thus, its
increased flexibility comes at a reduced marginal cost.

IB
IProvider

IDemander

A'

B

C

BproxyIn

IA
IProvider

IDemander

from X

Process P1 Process P2

IC
IProvider

IDemander

IProviderRemote
IB

OBIRep
A P2 REPLICATED_IN

B P2 REPLICATED_IN

OBIEventHandlers

Transaction Info

READ_SET WRITE_SET Client end-point

OBIRep
A P1 REPLICATED_OUT

B P1 REPLICATED_OUT

Server end-pointM-OBIWAN
WebService

 Bridge Name Service

Process P3

C P2 PROXYED_IN C P1 PROXYED_OUT

CproxyIn
IProviderRemote

ICCproxyOut
IDemandee

IC

IB
IProvider

IDemander B'

from A

to AproxyIn

Figure 4. Incremental replication: Phase Two.
The situation resulting from creating replica B’ can be

seen in Figure 4. BProxyOut no longer exists and has been
replaced by replica B’. In fact, for a certain period of time
BProxyOut will still exist, i.e., until it is garbage collected
by the underlying (Java or .Net) virtual machine. B’ refer-
ences CProxyOut that stands in as object C, until the first-
time it is accessed/invoked (in the same manner as BProx-
yOut previously). Updated OBIRep structures, both at the
client and server, reflect the successful replication of B and
the creation of proxies to C.

Dynamic Clustering The replication mechanism just de-
scribed is very flexible. It allows each object to be individ-
ually replicated. This way, only the objects that are actu-
ally needed by the application are replicated. However, in
mobile environments, this approach still has its drawbacks.
As far as availability is concerned, the application is still
somewhat dependent on frequent connectivity. Each time
an object not yet replicated is needed, the application needs
to connect to the network to download it. With regard to
performance, by replicating one object at a time, the appli-
cation incurs in high latency costs and the available band-
width, already low, is further wasted.

To mitigate the costs associated with these issues, M-
OBIWAN allows an application to replicate a variable
sub/graph of objects as a whole, i.e. a cluster. A cluster,
in this context, is a set of objects that are part of a reacha-
bility graph, i.e., transitively referenced by the object being
replicated. This way, a whole cluster can be replicated in
a single step instead of replicating a single object individu-
ally. This is an intermediate solution between: i) having the
possibility of incrementally replicate each object, and ii) the
unfeasible alternative of replicating the whole graph, given
the limited memory available in mobile devices.

With clustering, the dependency on connectivity can be
avoided, or at least temporarily tolerated, if a cluster can
be replicated in advance, i.e., pre-fetched instead of down-
loaded on-demand. More so, clustering minimizes latency
costs, since each latency penalty is amortized by all the ob-
jects being replicated in the cluster. The depth of this pre-
fetching can be changed in run-time: i) programmatically

5

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04)
1521-9097/04 $ 20.00 IEEE

by the application, specifying the depth of the partial reach-
ability graph that it wants to replicate as a whole; ii) de-
fined by simple policy-files, on a per-user, per-application,
and/or per-type basis, or iii) by the run-time itself when cer-
tain conditions are detected, e.g., shortage of memory or the
imminence of disconnection. So, these clusters are highly
dynamic.

4 Implementation

To demonstrate and evaluate its functionality, we have
developed a prototype implementation of M-OBIWAN. It
was developed for the .Net and .Net Compact frameworks.
The primary programming language used is C#.

M-OBIWAN base runtime, i.e., object replication and
event handling resorts only to packages available in both
frameworks. Server end-points were developed using Re-
moting services, .Net remote method invocation mecha-
nism. The Web-Bridge was developed as a web-service,
and runs on top of Internet Information Server. The client
end-point runs on .Net CF as a web-service client.

The obicomp compiler is coded in C#. It makes use of
reflection to analyze classes, and automatically generates
proxies in C#. Proxy code invokes solely event-triggers and
object replication services. It does not handle communica-
tion explicitly. This feature is key for proxy portability so
that they can be used in the two frameworks, .Net and .Net
CF.

Parsing of applications code currently only accepts C#
source code and extends classes with replication-specific
code. Due to this, application code must still be devel-
oped in C#. This is not a major drawback. M-OBIWAN
runtime services and generated proxy code need not be
changed, since .Net CLR executes byte-codes, regardless
of the source code language used.

Regarding application code, programmers needs only to
insert instructions to discover repositories; initiating and
committing transactions. From that on, the programmer
only needs to develop so-called application-logic. No ex-
plicit communication code, i.e., RMI, web-services, etc., is
required. Replication is transparently handled by proxies.
Once objects are replicated, their local proxies are replaced
and discarded by the local garbage collector. Thus, the pro-
grammer never needs to invoke object replication explicitly.

5 Experimental Results

The prototype qualitative evaluation was done testing ap-
plications correct functionality in the presence of mobility,
replication and optimistic transactional support.

Besides this, we analyzed prototype performance with
a micro-benchmark: series of iterations were executed on
a list of hypothetical appointments with 300 elements with

64-byte objects

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

invocations

ti
m

e
(m

s)

5

10

25

50

75

98

1024-byte objects

0

20000

40000

60000

80000

100000

120000

140000

160000

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

invocation

ti
m

e
(m

s)

5

10

25

50

75

98

Figure 5. Performance results of incremental replication of ob-
jects with 64-byte and 1024-byte payload.

different payloads: 64 and 1024 bytes each. Therefore, as
the list of appointments is iterated, in each element object,
an empty method is invoked. When the object is not yet
replicated, the replication mechanism takes over and repli-
cates the object where the fault occurred. Additionally, a
configurable number of other objects is also pre-fetched. In
the end of each test, 300 objects have been replicated.

This performance tests were executed with the follow-
ing infrastructure: a Pentium 4, 2.8 Ghz, 512 MB PC, an
IPAQ 3360 Pocket PC connected through a USB Bluetooth
adapter at 700Kbps. The replication mechanism was con-
figured, by means of different policies, to replicate objects,
on-demand, with a depth of 5, 10, 25, 50, 75 and 98 objects
each time. This way, every time a proxy is replaced and the
corresponding object is replicated, a number of others, ref-
erenced by it, are also pre-fetched. The limit depth, 98, is
imposed by stack restriction on .Net CF. The graphs in Fig-
ure 5 show that replication performance is mostly latency-
bound. It is more efficient when several (more than 25) ob-
jects are replicated each time. Additionally, when object
payload is raised from 64 to 1024 bytes (a sixteenfold in-
crease), performance drops only 60%.

These are rather encouraging results for various reasons.
Naturally, on-demand object replication of objects masks
communication latency and minimizes memory usage by
applications. The number of objects pre-fetched for near
optimal results needs not be too large (25 or 50). Best
results are achieved with higher replication depths (75 or

6

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04)
1521-9097/04 $ 20.00 IEEE

98) but these could waste more memory if only a few of
the objects pre-fetched are actually accessed. Once more,
XML-base serialization, imposed by .Net CF current limi-
tations, is responsible for some wasted bandwidth and in-
creased processing-time due to parsing.

6 Related Work

Our work is related with others in several fields. These
include mobile computing, replication, caching and reflec-
tive middleware. Initial work done regarding object-fault
handling can be found in [9]. However, most of it has been
centered on persistent programming languages or related to
adding transparent, orthogonal persistence to existing pro-
gramming languages. Nevertheless, it introduces widely
accepted designations for relevant existing techniques, e.g.
swizzling. Our object-fault handling is done without modi-
fying the underlying virtual machine. This makes our solu-
tion rather portable.

Pro-Active[2] is a Java library for distributed program-
ming with mobility in mind. It is originally based on a
programming-model described in [3]. Some of its goals are
common to ours: to facilitate programmer’s lives in deal-
ing with distribution issues. Neither M-OBIWAN nor Pro-
Active impose any changes on the underlying virtual ma-
chines. However there are several differences: Pro-Active
emphasis is on process synchronization, group communi-
cation and the absence of specific compilers/source code
extenders. M-OBIWAN provides relaxed synchronization
through optimistic transactions and uses an open compiler.

Javanaise [4] is a platform that aims at providing support
for cooperative distributed applications on the Internet. In
this system the application programmer develops his appli-
cation as if it were for a centralized environment, i.e. with
no concern about distribution. Then, the programmer con-
figures the application to a distributed setting; this may im-
ply minor source code modifications. A proxy generator
is then used to generate indirection objects and a few sys-
tem classes supporting a consistency protocol. Javanaise
does not provide support for incremental replication; clus-
ters are defined by the programmer, less dynamic than in
M-OBIWAN. Cluster frontiers, in M-OBIWAN, can be de-
fined in run-time by the application in order to improve its
performance and to allow disconnected work.

Some effort has been done in the context of CORBA to
provide support for replicated objects [7] as well as in the
context of the World-Wide-Web [4]. Nonetheless, most of
this only addresses specific issues such as group communi-
cation, replication for fault-tolerance, protocols evolution,
etc. Class introspection and open-compilers, used in the ini-
tial OBIWAN approach and extended in M-OBIWAN, have
since also been used to portably serialize CORBA objects
among different platforms[11].

Rover[10] allows both mobile-transparent and mobile-
aware applications. It introduces the notions of relocatable
data objects(RDO), comprising of data and code. These
are the main components to define in mobile applications.
RDOs communicate among each other by means of queue-
ing RPC. This allows applications to proceed, making non-
blocking remote invocations, even with disconnected hosts.

Bayou [19] presents an architecture based on mobile-
aware databases, used for data-sharing among mobile
users. Two basic operations are provided: Read(query) and
Write(update). Clients need only to be able to access one
server. Replica consistency is enforced by performing Write
operations in the same, well-define order at all servers. This
achieves eventual consistency among servers. Application-
specific conflict resolution is performed by special types of
methods: dependency checks and merge procedures.

Mobisnap[15] is a database middleware system designed
to transparently support applications running on mobile en-
vironments. It allows different clients concurrently updat-
ing the database by usage of mobile transactions and reser-
vations, though modification of persistent data is only done
at the central server. Mobile transactions are expressed in
unmodified PL/SQL. It allows caching of relational data in
the clients and semantically infers from client transactions,
the necessary constraints (reservations) that, with confi-
dence, prevent conflicts and allow transaction complete-
ness, independently, when they are replayed at the server.

A considerable effort has also been done in developing
transaction systems suitable for mobile networks. Most
of these solutions, such as Kangaroo[6], Moflex[12] and
Toggle[5], provide handover protocols, allowing the execu-
tion of transactions while the mobile hosts move across the
wireless cells. These systems, however, assume a different
physical infrastructure than M-OBIWAN does.

Clustering[13]and Pro-Motion[16] are two mobile trans-
action systems that have common goals with M-OBIWAN.
In both systems, data is locally fetched and replicated from
its home nodes, the transaction is locally executed and later,
during commit, updates are written back to its home nodes.
In Clustering, objects, when fetched, can present some in-
consistencies, whose degree can be directly specified by the
developers. In Pro-Motion, developers have more freedom
for specifying the way objects should be locally manipu-
lated by defining compacts. However, it is not possible to
dynamically and incrementally fetch graphs of objects ac-
cording to the needs of applications and the contingencies
of the environment.

M-OBIWAN shares some design-goals and/or practices
with each of the former systems. It aims at mobility sup-
port through transparent, yet flexible replication of objects,
optionally within optimistic transactions. However, in com-
parison with object-replication systems, it provides greater
flexibility for mobile environments.

7

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04)
1521-9097/04 $ 20.00 IEEE

Regarding most mobile database-oriented systems, M-
OBIWAN also allows optimistic transactional manipula-
tion of data repositories. Moreover, it allows so, without
changes to the VM and making use of a richer, object-
oriented programming-model (instead of the query-update
model), with no limitations concerning how data is struc-
tured or the operations that may be performed on them.

7 Conclusions

We designed and implemented M-OBIWAN, an object-
based platform. It provides an automatic replication mech-
anism allowing the creation of dynamic clusters of objects.
These clusters are accessed within transactions. The trans-
actional model used is adapted to mobile environments.

Developers of applications for mobile devices are able to
use a broad-based, productive programming-model, already
familiar on centralized and classic distributed systems. Yet,
they are also able to profit from the advantages inherent
to mobility, and be released from error-prone, system-level
issues such as consistency. The evaluation of our proto-
type has provided encouraging results. As presented, dy-
namic clustering of objects, using incremental replication,
is able to mask communication-latency significantly. The
presented architecture and implementation do not require
any change to the underlying VM.

In future work, we intend to address the following issues:
1) To enhance M-OBIWAN performance on compact de-

vices, we intend to use binary-serialization in the commu-
nication between compact devices and bridges;

2) To extend the M-OBIWAN bridge to run on mobile
devices. This will allow devices to host object servers to
other devices when there is no need, or no possibility, of
connection to fixed network;

3) To extend obicomp compiler to parse VB.Net code.
This will allow adaptation of a larger number of applica-
tions. We also intend to extend class byte-codes;

4) To harvest, in runtime, user and application behavior
parameters to automatically determine, on user and applica-
tion basis, efficient object replication strategies.

References

[1] K. Arnold and J. Gosling. The Java Programming Language.
Addison-Wesley, 1996.

[2] L. Baduel, F. Baude, and D. Caromel. Efficient, flexible, and
type group communication in java. In Proc. of ACM Joint
ACM Java Grande - ISCOPE 2002 Conference (JGI’02),
2002.

[3] D. Caromel. Towards a method of object-oriented concurrent
programming. Comm. of the ACM, 36-99:90–102, 1993.

[4] S. J. Caughey, D. Hagimont, and D. B. Ingham. Deploying
distributed objects on the internet. Recent Advances in Dist.
Systems, Springer Verlag LNCS, Eds. S. Krakowiak and S.K.
Shrivastava, 1752, Feb. 2000.

[5] R. A. Dirckze and L. Gruenwald. A toggle transaction man-
agement technique for mobile multidatabases. In Proceed-
ings of the CIKM 98, pages 371–377, Bethesda, MD, USA,
1998.

[6] M. H. Dunham, A. Helal, and S. Balakrishnan. A mobile
transaction model that captures both the data and movement
behavior. Mobile Networks and Applications, 2(2):149–162,
1997.

[7] P. Felber, R. Guerraoui, and A. Schiper. Replication of corba
objects. Recent Advances in Dist. Systems, Springer Verlag
LNCS, Eds. S. Krakowiak and S.K. Shrivastava, 1752, Feb.
2000.

[8] P. Ferreira, L. Veiga, and C. Ribeiro. Obiwan - design
and implementation of a middleware platform. IEEE Trans-
actions on Parallel and Distributed Systems, 14(11):1086–
1099, November 2003.

[9] A. L. Hosking and J. E. B. Moss. object fault handling for
persistent programming languages: a performance evalua-
tion. In ACM Conf. on Object-Oriented PRogramming Sys-
tems, Languages and Applications, 288-303, Sept. 1993.

[10] A. D. Joseph, J. A. Tauber, and M. F. Kaashoek. Mobile com-
puting with the rover toolkit. IEEE Transactions on Comput-
ers, 46(3):337–352, 1997.

[11] M.-O. Killijian, J.-C. Ruiz, and J.-C. Fabre. Portable seri-
alization of corba objects: a reflective approach. In Pro-
ceedings of the 17th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applica-
tions, pages 68–82. ACM Press, 2002.

[12] K.-I. Ku and Y.-S. Kim. Moflex transaction model for mo-
bile heterogeneous multidatabase systems. In Proceedings of
the 10th International Workshop on Research Issues in Data
Engineering, San Diego, California, 2000.

[13] E. Pitoura and B. Bhargava. Maintaining consistency of data
in mobile distributed environments. In Proceedings of 15th
International Conference on Distributed Computing Systems,
Vancouver, Canada, 1995.

[14] D. S. Platt. Introducing the Microsoft.NET Platform. Mi-
crosoft Press, 2001.

[15] N. Preguiça, J. L. Martins, M. Cunha, and H. Domingos.
Reservations for conflict avoidance in a mobile database sys-
tem. In Proc. of the 1st Usenix Int’l Conference on Mobile
Systems, Applications and Services (Mobisys 2003), 2003.

[16] K. Ramamritham and P. K. Chrysanthis. A taxonomy of cor-
rectness criterion in database applications. Journal of Very
Large Databases, 4(1), 1996.

[17] N. Santos, L. Veiga, and P. Ferreira. Transaction policies
for mobile networks. In 5th IEEE International Workshop on
Policies for Dist. Systems and Networks(Policy 2004), 2004.

[18] M. Shapiro. Structure and encapsulation in distributed sys-
tems: the proxy principle. In Proc. of the 6th Intl. Conf.
on Dist. Computing Systems, pages 198–204, Boston, May
1986.

[19] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing update conflicts in
bayou, a weakly connected replicated storage system. In Pro-
ceedings of the fifteenth ACM symposium on Operating sys-
tems principles, pages 172–182. ACM Press, 1995.

[20] L. Veiga and P. Ferreira. Incremental replication for mo-
bility support in OBIWAN. In The 22nd International Con-
ference on Distributed Computing Systems, pages 249–256,
Viena (Austria), July 2002.

8

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04)
1521-9097/04 $ 20.00 IEEE

