
WORLD WIDE NEWS GATHERING AUTOMATIC MANAGEMENT

Luís Veiga and Paulo Ferreira
{luis.veiga, paulo.ferreira } @ inesc.pt

INESC, Rua Alves Redol, 9 - Lisboa -1000 Lisboa - Portugal

Abstract
The world-wide-web does not support referential integrity, i.e. dangling references do exist. This can
be very annoying; in particular, if a user pays for some service in the form of web pages, he requires

such pages to be reachable all the time. Currently, ensuring such referential integrity is the
responsibility of webmasters: while a page is referenced the corresponding file never gets deleted.

However, it is well know that this manual memory management is extremely error-prone leading to
dangling references and storage leaks. We propose a solution for this problem based on the use of a

garbage collection algorithm applied to the web. Thus, the referential integrity is ensured at the
system level. We developed an application of web news in which a dangling reference never occurs.

Keywords: World Wide Web, Referential Integrity, Replication, Garbage Collection.

1. Introduction

Today, many international news agencies (e.g.
Reuters, France Press, etc.) have electronic
news sites implemented and integrated with the
World Wide Web. These sites contain
electronic on-line data in the form of text,
photographs, audio and video clips.
Most newspapers’ reporters use such sites as
their source of information. As international
news is concerned, most are simply replicated,
bought to and retrieved from such international
news agencies (INA). As examples of news
which would be locally or nationally gathered
and divulged, practically unchanged, to just
every other nation in the globe, we can state
these: natural catastrophic events, big plane
crashes, train accidents, major international
sport competitions events, internationally
acclaimed prizes ceremonies, etc.
Numerous examples of these situations can also
be found at regional newspapers (RN) where
almost every single news presented, apart from
the really local ones, are simply transcribed

from, inspired in or duplicated (as you may
wish to consider it) from one or various larger,
nation-wide newspaper (NN).
These hypermedia objects are transferred from
the INAs to others WebNews publishers (NNs
and RNs) by a common communication way (e-
mail mainly or ftp for large packets of
information) in a totally manual or very lighted
automated fashion. Thus, the employees of
INAs, NNs and RNs do the management of
these objects manually.
This manual management is clearly inefficient
and error-prone. For example, some files may
be erroneously deleted from the web server of
an INA when there are still URLs pointing to it
from NNs or RNs. This may occur because the
disk space in the INA´s web server has been
exhausted and some files must be deleted. Thus,
this leads to the most annoying situation of
dangling references.
In addition, it may happen that files no longer
referenced from any other site are never
deleted. This obviously leads to storage being
wasted.
These situations also affect single users as
explained now. Currently, most users keep in
their bookmarks URLs for those web pages

with news that interest them most. These pages
are provided either by INAs, NNs, or RNs.
It is most annoying that, some time after being
book-marked, such URLs no longer point to a
valid page because the corresponding file has
been deleted. As already mentioned, this results
from erroneous manual memory management
performed by webmasters.
In conclusion, the lack of referential integrity of
the web, i.e. not ensuring that a URL always
point to a valid document, leads to dangling
references and storage leaks.
The contribution of this work is the design and
implementation of a system that ensures
referential integrity at the system level. We use
this functionality to provide a service of
WebNews where dangling references and
storage leaks never occur. In addition,
webmasters are released from the complex task
of memory management. The system uses a
distributed garbage collection algorithm to
maintain the referential integrity [ferreira98].
The paper is organised as follows. In the next
section we present the model in which our
approach is based. Then we describe the system
architecture. The fourth section presents the
most important implementation aspects. Section
five presents our conclusions and some future
work.

2. Model

This section presents the worldwide News
model. This model describes the structure of
personal, regional, national and international
World Wide Web publications and its
interconnections.

2.1 Memory Organisation

This model consists, generically, in a WARM
(Wide Area Replicated Memory). This model
assumes data shipping as the only means to
access data. This data, once obtained through
replication, is accessed only locally and,
expectably, maintained in a cache for future
use.

The WARM Runtime System supports the
replication of data and the communication
among web sites. Basically, it implements a
wide-area distributed memory system
[perdis00].
In this model, the lifetime of data is determined
by its accessibility. In other words, while a
datum is reachable it must persist; otherwise,
the storage it occupies can be freed.
 In this model data exists in two forms:

• HTML documents containing URLs
to other documents making an
accessibility graph.

• Non-HTML data objects consisting
mainly of files of different types
integrated or embedded in the
documents referred earlier. These
objects are, with the exception of text
embedded in HTML documents, the
true bearers of information in its most
diversified forms. Their lifetime is
determined by the existence of links to
them in some reachable HTML
documents as they are, essentially, leaf
nodes in the accessibility graph.

• Replicas of the two types of objects
just described (modified or not). These
replicas may exist in any personal,
regional, national or international web
news site.

For simplicity, these different types of data will
be referred to as simply objects whenever no
distinction between them should be necessary.
These objects and the references among them
form a complex graph. The roots of this graph
are the URLs stored in any bookmark of the
sites belonging to the worldwide News system.
The reachability of an object graph is defined as
follows: an object is said to be reachable if it is
accessible, directly or indirectly, from a root by
following references.
Only the objects enfolded in this accessibility
graph are considered as reachable. Others are
excludable, as they waste storage space. The
reclamation of unreachable objects is done
automatically with a garbage collection
algorithm that also ensures the referential
integrity.

2.2 Process Model

It is important for the widespread of the model
that no constraints or restrictions are posed on
the publication form. Thus, the processes
involved are basically, web browsers and web
servers.
There are two main functions that processes
may perform: importing and publishing news.
The importing of information is done using an
enhanced web browser able to fulfil a protocol
that maintains object references consistent, i.e.
preserving the correctness of the objects'
reachability graph.
With this web browser a user (working in a NN,
in a RN, or any other person) can import into its
computer a file corresponding to some specific
news. This results in the creation of a new
replica of that file.
News objects are published (i.e., made
accessible to everyone) by putting the
corresponding file in a web server).
Both the web browser and the web server being
used are enhanced with garbage collection (GC)
code that ensures the referential integrity of the
system (this is explained with more detail
afterwards).

2.3 Coherence Model

The coherence engine is the entity of the
WARM that is responsible for ensuring and
maintaining system-wide coherence of replicas.
In this model, coherence among different
replicas may not always be maintained due to
operations that modify objects content. These
consist, essentially, in operations like
translation of text and sound content. These are
either mixed with or replace the original
content. Note that, as previously mentioned,
every time an import action is performed, a new
replica of the object is created.

3. Architecture

In this section, we describe the architecture of
the system.

3.1 Application Overview

This system is based on client-server
architecture. The client side of the application
comprises of a regular Web browsing tool.
News gathering consists in Web browsing
sessions interleaved with the creation of remote
references to various news objects on any
number of sites, i.e. news importing.
As far as the server side is concerned, the
application is, once again, a common Web
server. Server tasks include, mainly, receiving
reference creation messages from clients and,
based on them, manage persistence related
features and deleting unreachable data.
The user (gathering news) browses the web and
whenever he desires to use some news object,
he has to trigger an import operation (see
figure 1). An import message is sent to the web
server at the originating site, consisting only of
the object's URL. The server replies back with
the objects content.
There, at the server, a GC service updates GC
specific data structures related to the objects
being imported and, in response, sends a set of
pre-processed data to maintain reachability and
WARM coherence.

Figure 1: Messages exchanged during an import
operation

3.2 News Composing

Once information objects are imported, they
can be manipulated in any fashion by any tool
(see figure 2). For example, a journalist can use
any editing or composing software tool to
modify his object replica, adding to the
flexibility and ease of deployment of the model.
Such a modification results in the deletion
and/or creation of references to other objects.
From the point if view of the graphs
reachability, the only relevant operation is the
assignment of references; this results either in
the creation of new references or in the deletion
of already existing ones.

Figure 2: Example of new content creation based on

imported content

3.3 Garbage Collection

Referential integrity is enforced through a
distributed garbage collection algorithm
[ferreira98]. We do not describe the algorithm
in detail since it is out of the scope of this
paper. Instead, we only present its main ideas.
As mentioned in the previous section, in the
worldwide news gathering model, assignments
are the operations that create references to
information objects.
An important aspect for the efficiency, and
indeed the very effectiveness of this model, is
the preservation of referential integrity and the
reclamation of storage allocated to objects that
are no longer reachable. This model feature is
based in two components, one local and one
distributed.
The local component of the garbage collector is
in charge of collecting the objects cached
locally at each process. The distributed
component is the one responsible for

maintaining the inter-process links between
different objects, preventing remotely reachable
objects from being incorrectly reclaimed and its
storage space reclaimed

4. Implementation

The system is implemented in the Java
language mainly, for its intrinsic web-
orientation and portability of code. In each site,
a series of processes/servlets are running
performing various application tasks (see figure
3).

Server

Server Server

DGC App

LGC App

Persistent
State and

Data

Client

Browser
Component

Servles
LGC

Servlets
DGC.

DGC App

LGC App

Persistent
State and

Data

Servlets
LGC

Servlets
DGC.

DGC App

LGC App

Persistent
State and

Data

Client

Browser
Component

Figure 3: Configuration of the system: client-only,

server only, and client-server in one site

4.1 Client

The client for this system makes use of a
browsing component described later. It is
capable of conducting regular web browsing
sessions interleaved with news import
operations. These operations are implemented
by exchanging messages with the server
through the use of a URL connection and
saving reply data from the server.

4.1.1 Browsing Component

To speed up developing time for the system
prototype, we used a browsing software
component1 (Microsoft's Internet Explorer
[explorer]). Others like HotJava Web Browser

1 Since it is not in the work goals to develop our own
browsing tool from scratch.

component [hotjava] could have been used.
Basically, it is used just for presentation
purposes. Every information important to the
system is included in the messages exchanged.

4.2 Garbage Collector

There is one local component of the GC
algorithm in each process. It runs as a separate
process in the system and can be continuously
active, or run periodically (due to free space
requirements) or by user demand. This
component is responsible for effectively
deleting objects when they are no longer
reachable.
A distributed GC component runs on each
process. These components communicate with
each other in order to perform the GC specific
distributed operations according to the
algorithm [ferreira98].

4.3 Concurrency and Causality Issues

Application and GC specific data at a site is
manipulated by the browser, and by the local
and distributed component of the garbage
collector2. To ensure data integrity, access to
these structures must be synchronised. This is
achieved by means of file locking.
In addition, to ensure algorithm correctness and
to avoid race conditions, GC specific data
structures must be accessed atomically, i.e. they
cannot be modified in a record-by-record basis
by different processes. Therefore, a generation
mechanism must be used allowing different
parts of the GC mechanism to manipulate
different versions of this data. Due to the nature
of the algorithm, this does not alter algorithm
correctness nor it alters its liveliness. Storage
reclaiming may, in spite, be delayed. This
mechanism is based in vector clocks between
sites with present and past3 communication.

4.4 Persistency Issues

2 Both the application itself and the Web Servlets
which receive distributed collector messages
3 Old, outdated data will be removed in background

Every piece of algorithm information is
maintained in persistent storage. Due to the
concurrent nature of the browsing process, the
local collector and the distribute collector, care
must be taken in synchronising access to
persistent data. Application state data is
synchronised as any other data in the system.

5. Conclusions

We believe that for some web applications it is
important to ensure referential integrity at the
system level. The reason is that it is not
acceptable to find dangling references and to
have storage leaks. These situations result from
the error-prone memory management done by
webmasters.
We presented and implemented a web news
service in which referential integrity is ensured
at the system level. This is achieved by using a
distributed garbage collection algorithm.
So far, our experiments show an overall
performance penalty, due to the cost of
maintaining referential integrity, less than 10%.
We expect to improve this given that it is our
first prototype. We also plan to investigate the
issue of fault-tolerance, i.e. how the referential
integrity can be maintained in spite of
communication and site failures.

6. References

 [explorer] Reusing IExplorer Technology
http://msdn.microsoft.com/workshop/

 [Ferreira98] Ferreira, Paulo and Shapiro, Marc,
,1998. Modelling a Distributed Cached Store
for Garbage Collection: the algorithm and its
correctness proof, ECOOP'98, Brussels,
Belgium, July 1998

[hotjava] HotJava Web Browser Component
http://java.sun.com/products/hotjava/

[Perdis00] PerDiS: design, implementation, and
use of a PERsistent DIstributed Store
Paulo Ferreira, Marc Shapiro, et al., 2000.
Book chapter in Recent Advances in
Distributed Systems, eds. S. Krakowiak and
S.K. Shrivastava, Springer Verlag LNCS
vol. 1752, Feb. 2000

http://msdn.microsoft.com/workshop/
http://java.sun.com/products/hotjava/

