
TURNING THE WEB INTO AN EFFECTIVE KNOWLEDGE
REPOSITORY

Luı́s Veiga
INESC-ID / IST

Rua Alves Redol, 9, 1000 Lisboa, Portugal
Email: luis.veiga@inesc-id.pt

Paulo Ferreira
INESC-ID / IST

Rua Alves Redol, 9, 1000 Lisboa, Portugal
Email: paulo.ferreira@inesc-id.pt

Keywords: world wide web, dynamic content management, web proxy, distributed cycles, distributed garbage collection.

Abstract: The weight of dynamically generated content versus static content has progressed enormously. Preserving ac-
cessibility to this type of content raises new issues. However, there are no large-scale mechanisms to enforce
referential integrity in the WWW. We propose a system, comprised of a distributed web-proxy and cache ar-
chitecture, to access and automatically manage web content, static and dynamically generated. It is combined
with an implementation of a cyclic distributed garbage collection algorithm. It is scalable, correctly handles
dynamic content, enforces referential integrity on the web, and is complete with regard to minimizing storage
waste.

1 INTRODUCTION

To fulfill Vannevar Bush’s Memex (Bush, 1945) and
Ted Nelson’s Hyper-Text (Nelson, 1972) vision of a
world-size interconnected store of knowledge, there
are still quite a few rough-edges to solve. These
must be addressed before the world wide web can
be regarded as an effective and reliable world wide
knowledge repository. This includes safely preserv-
ing static and dynamic content as well as perform-
ing storage management in a complete manner. An
effective world wide knowledge repository, whatever
its implementation, should enforce some fundamental
properties: i) allow timely access to content, ii) pre-
serve all referenced content, regardless of how it was
created, and iii) completely and efficiently discard ev-
erything else.

There are no large-scale mechanisms to enforce
referential integrity in the WWW; broken links prove
this. For some years now, this has been considered a
serious problem of the web (Lawrence et al., 2001).
This applies to several types and subjects of content,
e.g., i) if a user pays for or subscribes some service
in the form of web pages, he expects such pages to
be reachable all the time, ii) archived web resources,
either scientific, legal or historic, that are still refer-
enced, need to be preserved and remain available, and
iii) dynamically generated content should also be ac-

*This work was partially funded by FCT/FEDER.

counted and it should be possible to preserve different
execution results with time information.

Broken links, i.e., the lack of referential integrity
of the web, is a dangling-reference problem. With re-
gard to the web this has several implications: annoy-
ance, breach of service, loss of reputation and, most
importantly, effective loss of knowledge. When a user
is browsing some set of web pages, he requires such
pages to be reachable all the time. He/she will be an-
noyed every time he tries to access a resource pointed
to from some page, just to find out that it has simply
disappeared.

As serious as this last problem, there is another one
related to the effective loss of knowledge. As men-
tioned in earlier works, broken links on the web can
lead to the loss of scientific knowledge (Lawrence
et al., 2001). We dare to say that, in the time to come,
this problem can affect legal and historical knowl-
edge, as these areas become more represented on the
web.

It is known that every single document in these
fields is stored in some printed or even digital form
in some library. But, if this knowledge is not easily
accessible, throughout the web, and its content pre-
served while it is still referenced (and it will be), it
can be considered as effectively lost because it will
not be read by most people who are not able, or will-
ing, to search for printed copies.

This is not, as yet, a serious situation but, as web

154



content gets older, it will become an important issue.
Nevertheless, solutions that try to preserve every and
anything can lead to massive storage waste. There-
fore unreachable web content, i.e. garbage, should be
reclaimed and its storage space re-used.

The weight of dynamically generated content ver-
sus static content has progressed enormously. From
a few statically disposed web pages, the WWW has
become a living thing with millions of dynamically
generated pages, resorting to user context, customiza-
tion, user class differentiation. Today, the vast ma-
jority of web content is dynamically generated, shap-
ing the so-called deep-web, and this has been increas-
ing for quite some time now (O’Neill et al., 2003;
Bergman, 2001). This content is frequently perceived
by users as more up to date and accurate, therefore
having more quality. Since this content is generated
on-the-fly, it is potentially different every time the
page is accessed.

It is clear that this type of content cannot be pre-
served by simply preserving the scripting files that
generate it. This is specially relevant with content
changing over time. It is produced by scripting
pages that, although invoked with the same parame-
ters (identical URL), produce different output, at ev-
ery invocation, or periodically. Examples of these in-
clude stock tickers, citation rankings, ratings of every
kind, stocks inventories, so called last-minute news,
etc. So, changes in produced output, or in the un-
derlying database(s), should not prevent users from
preserving content of interest to them, and keep easy
access to it.

In fact, data is only lost when actual data sources
(e.g. database records) are deleted. Nevertheless, it
could become otherwise unavailable causing effective
loss of information, because the data would still reside
somewhere but inaccessible, since the exact queries
to extract it would not be known. Thus, dynamic con-
tent, in itself, must also be preserved while it is still
referenced and not just the script/pages that generate
it. Furthermore, other pages pointed by URLs in-
cluded in every reply of these dynamic pages must be
preserved, i.e., content dynamically referenced must
be also preserved while it is reachable.

1.1 Shortcomings of Current
Solutions

Current approaches to the broken-link problem on the
world wide web are not able to i) preserve referen-
tial integrity supporting dynamically generated con-
tent and, ii) minimize storage waste due to memory
leaks in a complete manner. Therefore, the web is not
effectively a knowledge repository. Useful content,
dynamic and/or static, can be prematurely deleted
while useless, unreachable content wastes systems re-

sources throughout the web.
Nowadays, content in the WWW is more intercon-

nected than ever. What initially was comprised of a
set of almost completely separated sites with few links
among them has become a through highly connected
web of affiliated sites, portals, ranging from entertain-
ment to public services. It is not uncommon to notice
web sites that besides their in-house generated con-
tent, link, many times as part of a subscribed service
(payed or not), to content produced and maintained
in different sites. These referring sites should have
some kind of guarantee, in terms of maintenance, that
this referred content will still be available as long as
there are subscribers interested in it, i.e., some kind of
referential integrity should be enforced.

Current solutions to the problem of referential in-
tegrity (Kappe, 1995; Ingham et al., 1996; Moreau
and Gray, 1998) do not deal safely with dynamic con-
tent and are not complete, since they are not able to
collect distributed cycles of unreachable web data.

Some previous work (Creech, 1996; Kappe, 1995),
while enforcing referential integrity to the web, im-
pose custom-made (or customized) authoring, visu-
alization or administration schemes. However, for
transparency reasons and ease of deployment, it is
preferable to have a system that enforces referential
integrity on the web, to content providers and sub-
scribers, in a mostly transparent manner, i.e., based
solely on proxying with minor server and/or client ex-
tensions.

Previous approaches (Reich and Rosenthal, 2001)
to the broken-link problem, replicate web resources
in order to preserve them, in an almost indiscriminate
fashion, wasting storage space and preserving content
no longer referenced. This stems from the goal that
included to provide high availability of web content
but not to manage storage space efficiently. Thus, they
are not complete with regard to storage waste, i.e.,
they do not reclaim useless data.

Thus, only some of the existing solutions attempt
to enforce referential integrity on the web and also re-
claim content which is no longer referenced from any
root-set (these root-sets may include bookmarks, sub-
scription lists, etc). These solutions (Ingham et al.,
1996; Moreau and Gray, 1998), however, are either
unsafe in the presence of dynamically generated con-
tent, or they are not complete.

1.2 Proposed Solution

The purpose of this work is to develop a system that:

• enforces referential integrity on the web. It pre-
serves, in a flexible way, dynamic web content as
seen by users; and preserves resources pointed by
references included in preserved dynamic content.

• performs complete wasted storage reclamation, i.e.,

TURNING THE WEB INTO AN EFFECTIVE KNOWLEDGE REPOSITORY

155



it is able to reclaim distributed cycles of useless
web content.

• integrates well with the web architecture, i.e., it is
based on web-proxies and web-caching.

These properties must be correctly and efficiently
combined. We propose a solution, based on extending
web-proxies, web-server reverse proxies, and a dis-
tributed cyclic, i.e. complete, garbage collection algo-
rithm, that satisfies all these requirements. It enforces
referential integrity on the web and minimizes stor-
age waste. Furthermore, this solution scales well in a
wide area memory system as is the case of the web,
since it uses an hierarchical approach to distributed
cycle detection.

For ease of deployment, this solution requires no
changes in browsers or servers core application code.
It just needs deployment of extended web-proxies that
intercept server-generated content, provide it to other
proxies or to web servers, and fulfill the distributed
garbage collection algorithm. Users are still able to
access any other files available on the web.

Thus, our approach makes use of a cyclic dis-
tributed garbage collector, combined with web-
proxies in order to be easily integrated in the web
infrastructure. It intercepts dynamically generated
content in order to safely preserve every docu-
ment/resource referenced by it.

We do not address the issue of fault-tolerance, i.e.
it is out of the scope of the paper how the algorithm
used behaves in the presence of communication fail-
ures and processes crashes. Nevertheless, the algo-
rithm is safe in case of message loss and duplication.

Therefore, the contribution of this paper is a sys-
tem architecture, integrated with web-proxy facilities,
that ensures referential integrity, including dynamic
content, on the web. It minimizes storage waste in a
complete manner, and scales to wide area networks.

The remaining of this paper is organized as follows.
In Section 2 we present the proposed architecture.
The distributed garbage collection (DGC) algorithm
used is briefly described in Section 3. Section 4 high-
lights some of the most important implementation as-
pects. Section 5 presents some performance results.
The paper ends with some related work and conclu-
sions in Sections 6 and 7, respectively.

2 ARCHITECTURE

In order not to impose the use of a new, specific,
hyper-media system, the architecture proposed is
based on regular components used in the WWW or
widely accepted extensions to them. The system is
designed using a client-server architecture, illustrated
in Figure 1, includes:

SRP

Browser

BrowserBrowser

BrowserBrowser

BrowserBrowser

BrowserBrowser

EWP

BrowserBrowser
BrowserBrowser

BrowserBrowser

Server

ServerServer

EWP

EWP

SRP

SRP

EWP

Browser
S1

rest of the
WWW

EWP
Server

S2 S3

Figure 1: General architecture of system deployment. Ob-
viously, any number of sites is supported: servers, proxies
and browsers.

• web servers provide static and dynamic content.

• clients - web browsing applications.

• extended web-proxies (EWPs) - these manage
clients requests and mediate access to other prox-
ies.

• server reverse-proxies (SRPs) - intercept server
generated content and manage files.

The entities manipulated by the system are web re-
sources in general. These come in two flavors: i) html
documents that can hold text and references to other
web resources, and ii) all other content types (images,
sound, video, etc.). Resources of both types can be
accessed and are preserved while they are still reach-
able. Html documents can be either static or dynami-
cally generated/updated. Other web resources, though
possibly dynamic as well, are not considered for ref-
erences to other resources and are viewed, by the sys-
tem, as leaf-nodes in a web resources graph. Thus,
memory is organized as a distributed graph of web
resources connected by references (in the case of the
web, these are URL links).

We considered, mainly, as cases of web usage:

• web browsing without content preservation, i.e.,
standard web usage.

• web browsing with book-marking desired explic-
itly by the user, either in a page-per-page basis or
transitively.

From the user point of view, the client side of the
system is a normal web browser with an extra toolbar.
This toolbar enables book-marking the current page
or a URL included in a page as a root page and in-
form the proxy of such. Nothing prevents running the
extended web-proxy in the same machine as the web
browser though it would be obviously more efficient
to install a proxy hierarchy.

A typical user in S1 browses the web, accesses
and bookmarks some of the pages from, for exam-
ple, web-server at site S2 (see Figure 1). Once book-
marked, these pages may hold references to other (not
book-marked) web resources in site S2. Thus, it is

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

156



A.html

B.html

X.php?a=37

WebServer

C.html

E.html

X.php?a=197

D.html

G.html

F.html

Server Reverse Proxy
(SRP)

codeX.php?a=37

X.php?a=197

Figure 2: Example web graph with several versions of previously dynamically generated content.

desirable that such resources in site S2 remain avail-
able as long as there are references pointing to them.
Web resources in other servers (e.g. site S3), targeted
by URLs found in content from site S2 are also pre-
served, while they are still referenced.

The system ensures that web resources in sites re-
main accessible, as long as they are pointed (either
directly or indirectly) from a root-set (see Section 3).
In addition, web resources, which are no longer refer-
enced from the root-set, are automatically deleted by
the garbage collector. This means that neither broken
links nor memory leaks (storage waste) can occur.

Figure 2 presents an example web graph, with dy-
namically generated web content (the two dynamic
URLs) preserved several times, represented like pages
over pages. These preserved dynamic pages hold
references to different html files, depending on the
time (and session information) when they were book-
marked. Preserved dynamic content is always stored
at the SRP to maintain transparency with regard to the
server.

3 STORAGE MANAGEMENT

To enforce referential integrity and reclaim wasted
storage we made use of a cyclic distributed garbage
collector for wide area memory (Veiga and Ferreira,
2003) and tailored it to the web.

Briefly, the DGC algorithm is an hybrid of tracing
(local collector), reference-listing (distributed collec-
tor) and tracing of reduced graphs (cycle detection).
Thus, it is able to collect distributed cycles of garbage.
Tracing algorithms transverse memory graphs from a
root-set of objects and follow, transitively, every refer-
ence contained in them, to other objects. Reference-

listing algorithm register, for every object, what ob-
jects in other sites, are referencing it.

In each proxy there are two GC components: a lo-
cal tracing collector and a distributed collector. Each
site performs its local tracing independently from
any other sites. The local tracing can be done by
any mark-and-sweep based collector, e.g., a crawl-
ing mechanism. The distributed collectors, based on
reference-listing, work together by exchanging asyn-
chronous messages. The cycle detectors receive re-
duced, optimized graph descriptions from a set of
other sites and safely detect distributed cycles com-
prised within them.

The garbage collector components manipulate the
following structures to represent references contained
in web pages:

• A stub describes an outgoing inter-site reference,
from a document in the site to another resource in
a target site.

• A scion describes an incoming inter-site reference,
from a document in a remote source site to a local
resource in the site.

It is important to note that stubs and scions do not
impose any indirection on the access to web pages.
They are simply DGC specific auxiliary data struc-
tures.

The root-set of documents for both the local and
distributed garbage collectors in each site is com-
prised of local roots and remote roots: i) local roots
are web documents, located in the site and referenced
from a special html file managed by the system; ii)
remote roots are all local web documents that are re-
motely referenced, i.e., protected by scions. These
web resources must be preserved even if no longer lo-
cally reachable, i.e., reachable from the local root-set.

TURNING THE WEB INTO AN EFFECTIVE KNOWLEDGE REPOSITORY

157



The root-set of the whole system corresponds to the
union of the root-sets in all sites. This way, reachabil-
ity is defined as the transitive closure of all web docu-
ments referenced, either directly or indirectly, from a
web document belonging to the root-set just defined.
Every other document is considered unreachable and
should be reclaimed.

3.1 Local Collector

The local garbage collector (LGC) is responsible
for eventually deleting or archiving unreachable web
content. It must be able to crawl the server contents.
The roots of this crawling process are defined at each
site. They include scion information provided by the
distributed collector (see Section 3.2). Crawling is
performed only within the site and lazily, in order to
minimize disruption to the web server. The crawler
maintains a list of pages to visit. These pages are
parsed and references, found within them, to pages
in the same server, are added to this list. References
found are saved in auxiliary files. These can be re-
used later by the crawler, when it re-visits the same
page, in another crawl, if the page was not modified.

Once created in some site, web resources must be-
come reachable in order to be accessible for brows-
ing. This can be done in two ways: i) add a reference
to the new resource in the local root-set, or ii) add
a reference to the new resource in some existing and
reachable document.

If it is necessary to update a page content (static
page change or programmatic page update), the page
will then be locked and the crawler must wait and will
need, for safety reasons, to re-analyze it. This is per-
formed following the links included in both versions
(the previous and the new one). Then, after the whole
local graph has been analyzed, the new DGC struc-
tures replace (flip) the previous ones. Unreachable
web pages can then be archived or deleted.

To prevent race conditions with the LGC, newly
created resources are never collected if they are more
recent than the last collection, i.e., new files always
survive at least one collection before they can be
reclaimed. Possible floating-garbage in consecutive
collections, is minimum, since creation of web re-
sources is a task performed not that intensively.

Explicit deletion of web resources is extremely
error-prone and, therefore, it should not be done. Web
resources should only be deleted as a result of be-
ing reclaimed by the garbage collector. This happens
when they are no longer reachable both locally and
remotely.

3.2 Distributed Collector

The distributed garbage collector is based on
reference-listing (Shapiro et al., 1992) and is respon-

sible for managing inter-site references, i.e., refer-
ences between local pages to pages placed at other
sites (both incoming and out-going). This informa-
tion is stored in lists of scions and stubs organized,
for efficiency reason, by referring/referred site.

The algorithm obeys to the following safety rules:
• Clean Before Send: When a SRP replies to a

HTTP request for a page whose content should be
preserved, every URL enclosed in it, must be inter-
cepted, i.e., parsed. A corresponding scion to each
URL enclosed must be created, if it does not exist.

• Clean Before Send: When a EWP receives a re-
sponse to a HTTP request for a page whose con-
tent should be preserved, every URL enclosed in it,
must also be intercepted. A corresponding stub to
each URL enclosed must be created, if it does not
exist.
From time to time, the distributed collector running

on a site sends, to every site it knows about, the list of
stubs corresponding to the pages, in the destination
site, still referenced from local pages. These lists are
sent lazily.

Conversely, the distributed collector receives stubs
lists from other sites referencing its pages. Then, it
matches stub lists received with corresponding scion
lists it holds. Scions without stub counterpart indi-
cate incoming inter-site references that no longer ex-
ist. Therefore, the corresponding scion is deleted in-
dicating the page is no longer referenced remotely.

Once a page becomes unreachable both from the
site local root and from any other site, it can be deleted
by the local collector.

The distributed collector co-operates with the local
garbage collector in two ways: i) it provides the LGC
a set of pages (target of inter-site references) that must
be included in the LGC root-set, and ii) every time
the LGC completes crawling the site, it updates DGC
structures regarding out-going references (stub lists).
This update information will be sent later, by the local
collector, to the corresponding sites.

3.3 Distributed Cycles

Based on work described in (Richer and Shapiro,
2000), we can estimate the importance of cycles in the
web. This research about the memory behavior of the
web, revealed that a large proportion of objects are
involved in cycles but they amount to a limited, yet
not negligible, fraction of storage occupied. We be-
lieve that, as the degree of inter-connectivity (its true
richness) of the web increases, as well as due to more
dynamic content, the number, length, and storage oc-
cupied by cycles is also expected to rise.

Cycle detection processes (CDPs), receive infor-
mation from participating sites (running EWPs and/or
SRPs) and detect cycles fully comprised within them.

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

158



Several CDPs can be combined into groups. These
groups can also be combined into more complex hi-
erarchies. This way, detection of cycles spanning a
small number of sites, does not overload higher-level
CDPs dealing with larger distributed cycles.

To minimize bandwidth usage and complexity,
CDP works on a reduced view of the distributed
graphs that is consistent for its purposes. This view
may not correspond to a consistent cut, as defined
by (Lamport, 1978), but still allows to safely detect
distributed cycles of garbage. These distributed GC-
consistent-cuts can be obtained without requiring any
distributed synchronization among the sites involved
(Veiga and Ferreira, 2003).

They are built by carefully joining reduced versions
of graphs created in each site. These reduced graphs
simply register associations among stubs and scions,
i.e., they regard each site as a small set of entry (scion)
and exit (stub) objects. This is enough to ensure safety
and completeness. Graph reduction is performed, in-
crementally, in each site.

Once a cycle is detected, the cycle detector in-
structs the distributed collector to delete one of its en-
tries (a scion) so that the cycle is eliminated. Then,
the distributed collector is capable of reclaiming the
remaining garbage objects.

3.4 Integration with the web

The WWW owes a significant part of its success until
now, to the fact that it allows clients and servers to be
loosely coupled and different web sites to be admin-
istrated autonomously. Following this rationale, our
system does not impose total world-wide acceptance
in order to function. Integration with the web can be
seen from two perspectives, client and server.

Regular web clients can freely interact with server
reverse-proxies, possibly mediated by regular prox-
ies, to retrieve web content. However, they cannot
preserve web resources or interfere with the DGC
in anyway. Thus, browsing and referencing content
will not prevent it from being eventually reclaimed,
since these references can be regarded only as weak-
references. References contained in indexers are a
particular case of these weak-references.

Regular web applications in servers do need not
be modified to make use of referential-integrity and
DGC services. However, once a file is identified as
garbage, the proxy must have some interface with the
server machine to actually delete or archive the ob-
ject. If proxy and server reside on the same machine,
this interface can be the actual file system.

Distributed caching is widely used on the web to-
day. It is a cost-effective way to allow more simulta-
neous accesses to the same web content and preserve
content availability in spite of network and server fail-
ures. Caching is performed, mainly, at four levels: i)

web servers, e.g. dynamically generated and periodi-
cally updated content, ii) proxies of large internet ser-
vice providers, iii) proxies of organizations and local
area networks (several of these can be chained), and
iv) the very machine running the browser. Due to this
structure, the web relies on caching mechanisms that
have an inherent hierarchical nature. This can be ex-
ploited to improve performance (Chiang et al., 1999).

Hosts performing levels II and III caching are trans-
parent, as far as the system is concerned. They can be
implemented in various ways provided they fulfill the
HTTP protocol. To perform level I, we propose a so-
lution based on analysis of dynamic content. Server
replies are intercepted by the SRPs and URLs con-
tained in them are parsed, before the content is served
to requesting clients and proxies. This is intrusive nei-
ther for applications nor for users. Similar techniques
have already been applied, as part of marketing-
oriented mechanisms (e.g. bloofusion.com). These
convert dynamic URLs in static ones, to improve site
ratings in indexers like google.com. They also allow
web crawlers to index various results from different
executions of the same dynamic page.

4 IMPLEMENTATION

The prototype implementation was developed in Java,
mainly for ease of use when compared with C or
C++. It simply deploys a stand-in proxy that inter-
prets HTTP-like custom requests to perform DGC
operations and relies on a ”real”, off-the-shelf web-
proxy, running on the same machine, to perform ev-
erything else.

Preserving dynamically generated content raises a
semantic issue about browser, proxy and server be-
havior. When a dynamic URL, previously preserved,
is accessed, two situations can occur, depending on
session information shared with the proxy: i) the con-
tent is retrieved as a fresh execution , or ii) the user is
allowed to decide, from previously accessed and pre-
served content, which one he wants to browse.

Dynamic content selection is implemented allow-
ing two configurable default behaviors: i) when a
dynamic URL is requested, the browser receives an
automatically generated HTML reply, with a list of
previously preserved content, provided with date and
time information, and ii) the very HTML code, imple-
menting the link to the dynamic URL, is replaced with
code that implements a selection box, offering the
same alternatives as the first option. The first behav-
ior is less computationally demanding on the proxies
but the second one is more versatile, in terms of user
experience.

Server-side proxies perform URL translations to
access corresponding ”invisible” files that hold the ac-

TURNING THE WEB INTO AN EFFECTIVE KNOWLEDGE REPOSITORY

159



0

25

50

75

100

125

150

175

200

225

250

30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

number of links

n
u

m
b

e
r 

o
f 

fi
le

s Reuters

BBC

Figure 3: Distribution of links per file for two web sites.

tual preserved content. We are currently modifying a
widely used open-source web proxy in order to facil-
itate deployment in several networks.

5 PERFORMANCE

Global performance, as perceived by users, is just
marginally affected. In the case of URL-replacing
mechanisms mentioned before, they are already in
practice in several web sites, and users do not perceive
any apparent performance degradation. Our system
makes use of similar techniques to parse URLs in-
cluded in dynamic web content. We should stress that,
in terms of performance, this is a much lighter opera-
tion that URL-replacing.

To assess increased latency in web-servers replies,
due to processing in the SRPs, we performed several
tests with two widely accessed sets of files, parsing
the URLs included in them. These sets were obtained
by crawling two international news sites: bbc.co.uk
and www.reuters.com with a depth of four. These sets
of files include both static and dynamically generated
content. A Pentium 4 2.8 GHz with 512MB was used.

The distribution of files, from both sites, according
to the number of URLs enclosed, is shown in Figure 3.
The www.reuters.com test-set comprised 313 files, in-
cluding 57856 URLs. On average, each file included
184 URLs, with a minimum of 49 and a maximum of
637. It took, on average, 12.7 milliseconds more to
serve HTTP requests due to parsing. The bbc.co.uk
test-set comprised 439 files, including 70401 URLs.
On average, each file included 160 URLs with a min-
imum of 114 and a maximum of 440. On average, it
took 11.8 milliseconds to parse each file.

Figure 4 shows, for each web-site, the distribu-
tion of time spent in parsing versus the number of
URLs found in each file. Linear regression allows dis-
card of outstanding results. Differences in tendency
lines reflect mainly different density of URLs in files.
Broadly, files from site bbc.co.uk have higher density
of URLs. In this site, a larger fraction of file content
represents URLs, since the average cost of parsing the
whole file, amortized for every URL, is smaller.

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

0 100 200 300 400 500 600 700
number of links

pa
rs

in
g 

tim
e 

(m
s)

Reuters
BBC

Linear (BBC)
Linear (Reuters)

Figure 4: File scattering based on links and parsing time.

6 RELATED WORK

The task of finding broken links can be an auto-
mated using several applications (HostPulse, 2002;
LinkAlarm, 1998; XenuLink, 1997). However, these
applications do not enforce referential integrity be-
cause they cannot prevent them from occurring nor
reclaim wasted storage. Furthermore, they are not
able to handle dynamically generated content in a safe
manner. Enforcing referential integrity on the web
has been a subject of active study for several years
now (Lawrence et al., 2001). There are a few systems
that try to correct the broken-link problem and, thus,
enforce referential integrity, preserving web content
availability.

In (Swaminathan and Raghavan, 2000), dynamic
web content is pre-fetched, i.e., cached in advance,
based on user behavior identified and predicted using
genetic algorithms. Results show that pre-fetching
is effective mainly for files smaller than 5000 bytes.
Such techniques could be combined with our system
in order to handle dynamic content more efficiently
while enforcing referential integrity.

LOCKSS (Reich and Rosenthal, 2001) is a open-
software based system that makes use of replication,
namely spreading, in order to preserve web content. It
has been tested in a large environment and it stresses
three important requirements: i) future availability
of information, ii) quick and easy access to informa-
tion and iii) reservation of access only to subscribers.
There are some fundamental differences w.r.t. our
work: much work has been devoted in LOCKSS
to ensure replica consistency, namely using hashing
for each document. Storage reclamation is not ad-
dressed in LOCKSS since all documents in the sys-
tem are considered important enough to be preserved
forever. Dynamic content is also not addressed. In
LOCKSS, the system tries to preserve everything con-
sistent. Ours tries to prevent memory leaks while
preserving referential integrity although allowing dis-
crepancy among cached copies of dynamic content.

Author-Oriented Link Management (Creech, 1996)
is a system that tries to determine which pages point
to a certain one. It describes an informal algebra
for representing changes applied to pages, like migra-

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

160



tion, renaming, deletion, etc. It relies on the usage
of custom-made, or customized authoring tools, i.e.,
referential integrity is not transparently provided to
the user or developer. It allows little parallelism and
admits manual re-conciliation of data. So, it is more
addressed at helping web developers than to preserve
referential integrity on a wide scale basis. It does not
try to reclaim storage space occupied by useless, i.e.,
unreachable documents.

Hyper-G (Kappe, 1995) is a ”second-generation”
hyper-media system that aims to correct web defi-
ciencies and provide a rich set of new services and
features. With regard to referential integrity, it is en-
forced using of a propagation algorithm that is de-
scribed as scalable. Hyper-G is proposed as an alter-
native to the WWW. Our system is integrated within
and mostly transparent to the current WWW architec-
ture.

The W3Objects (Ingham et al., 1996) approach is
also based on the application of a distributed garbage
collector to the world wide web. It also imposes a new
model extending the WWW based on objects. There-
fore it also lacks transparency. It is not complete, i.e.,
it is not able to reclaim distributed cycles of garbage.

In (Moreau and Gray, 1998) a community of agents
is used to maintain link integrity on the web. As
in our work, they do not attempt to replace the web
but extend it with new behavior. Agents cooperate to
provide versioning of documents and maintain links
according to a distributed garbage collector. Each
site manages tables documenting import and export
of documents. It does not address the semantic issues
raised when preserving dynamic content.

Thus, existing solutions to referential integrity ei-
ther do not aim at recycling unreachable documents
or are not correct concerning dynamic content or are
not integrated with the standard web.

7 CONCLUSIONS AND FUTURE
WORK

In this paper we presented a new way of enforcing ref-
erential integrity in the WWW, including dynamically
generated web content. The fundamental aspects of
the system are the following: i) it prevents storage
waste and memory leaks, deleting any resources no
longer reachable, namely, addressing the collection
of distributed cycles of unreachable web content; ii)
it is safe concerning dynamically generated web con-
tent; iii) it does not require the use of any specific
authoring tools; iv) it integrates with the hierarchical
structure of today’s web-proxies and caching; v) it is
mostly transparent to user browsers and web servers.

Concerning future research directions, we intend
to address further the fault-tolerance of our system,
i.e., which design decisions must be taken so that it

can remain safe, live and complete in spite of process
crashes and permanent communication failures.

REFERENCES

Bergman, M. K. (2001). The deep web: Surfacing hidden
value. The Journal of Electronic Publishing, 7(1).

Bush, V. (1945). As we may think. The Atlantic Monthly,
(July).

Chiang, C.-Y., Liu, M. T., and Muller, M. E. (1999).
Caching neighborhood protocol: a foundation for
building dynamic web caching hierarchies with proxy
servers. In International Conference on Parallel Pro-
cessing.

Creech, M. L. (1996). Author-oriented link management.
In Fifth International WWW Conference, France.

HostPulse (2002). Broken-link checker,
www.hostpulse.com.

Ingham, D., Caughey, S., and Little, M. (1996). Fix-
ing the “Broken-Link’’ problem: the W3Objects ap-
proach. Computer Networks and ISDN Systems, 28(7–
11):1255–1268.

Kappe, F. (1995). A Scalable Architecture for Maintaining
Referential Integrity in Distributed Information Sys-
tems. Journal of Universal Computer Science, 1(2).

Lamport, L. (1978). Time, clocks, and the ordering of
events in a distributed system. Communications of the
ACM, 21(7):558–565.

Lawrence, S., Pennock, D. M., Flake, G. W., Krovetz, R.,
Coetzee, F. M., Glover, E., Nielsen, F. A., Kruger, A.,
and Giles, C. L. (2001). Persistence of web references
in scientific research. IEEE Computer, vol 34(2).

LinkAlarm (1998). Linkalarm, http://www.linkalarm.com/.
Moreau, L. and Gray, N. (1998). A community of agents

maintaining link integrity in the world wide web. In
Proceedings of the 3rd International Conference on
the Practical Applications of Agents and Multi-Agent
Systems (PAAM-98), London, UK.

Nelson, T. H. (1972). As we will think. In On-line 72 Con-
ference.

O’Neill, E. T., Lavoie, B. F., and Bennett, R. (2003). Trends
in the evolution of the public web 1998 - 2002. D-Lib
Magazine, 9(4).

Reich, V. and Rosenthal, D. (2001). Lockss: A permanent
web publishing and access system. D-Lib M’zine, 7.

Richer, N. and Shapiro, M. (2000). The memory behavior
of the WWW, or the WWW considered as a persistent
store. In POS 2000, pages 161–176.

Shapiro, M., Dickman, P., and Plainfossé, D. (1992). Ro-
bust, dist. references and acyclic garbage collection.
In Symp. on Principles of Dist. Computing, pages
135–146, Vancouver (Canada). ACM.

Swaminathan, N. and Raghavan, S. (2000). Intelligent
prefetch in www using client behavior characteriza-
tion. In 8th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecom-
munication Systems, pages 13–19.

Veiga, L. and Ferreira, P. (2003). Complete distributed
garbage collection, an experience with rotor. In IEE
Research Journals - Software, number 150(5).

XenuLink (1997). Linksleuth http://home.snafu.de/tilman/.

TURNING THE WEB INTO AN EFFECTIVE KNOWLEDGE REPOSITORY

161


