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Abstract: Support for distributed co-operative work implies object sharing. The memory
management of these distributed (and possibly persistent) objects is a very difficult task. When done
manually, it leads to memory leaks (useless objects that were not deleted) and dangling references
(references to objects erroneously deleted), causing applications to fail. These errors have a strong
negative impact on a programmer’s productivity and program robustness. The authors address this
problem by developing a complete distributed garbage collection algorithm. This solution is based
on: (i) a reference-listing algorithm; and (ii) a centralised algorithm that complements the previous
one by detecting distributed cycles of garbage. The detection and reclamation of distributed
garbage cycles does not need any kind of global synchronisation. To achieve this goal they
introduce the notion of a GC-consistent cut for distributed systems. They have implemented their
algorithms in Rotor. Such an extension of the Rotor capabilities (which already includes a local
garbage collector and use of leases for distributed garbage collection) is very important for
supporting co-operative work among different users. The performance results obtained are very
encouraging.

1 Introduction

Support for distributed co-operative work implies object
sharing. The memory management of these distributed
(and possibly persistent) objects is a very difficult task.
When performed manually, it leads to memory leaks
(useless objects that were not deleted) and dangling
references (references to objects erroneously deleted),
causing applications to fail. These errors have a strong
negative impact on a programmer’s productivity and
program robustness.

However, .Net does not support distributed garbage
collection (DGC). The current approach to DGC in .Net is
very simple. Leases are associated with remote objects;
when an object X is not remotely invoked for a certain
amount of time (bigger than its lease) the reference pointing
to X is ignored for reachability considerations; therefore,
X may be collected even if there is still a remote reference
pointing to it. This means that safety is not ensured.
To address this problem we have developed a distributed
garbage collector and implemented it in Rotor (shared
source version of .Net). Such an extension of the Rotor
capabilities is very important for supporting co-operative
work among different users.

Our solution is based on: (i) a reference-listing algorithm
[1] that replaces the leasing mechanism, and (ii) a
centralised algorithm that complements the previous one
by detecting distributed cycles of garbage. The reference-
listing algorithm is safe and live. However, it is not
complete as it does not reclaim distributed cycles of

garbage. We solved this limitation by developing another
algorithm, called cycles detector, capable of detecting such
cycles asynchronously. Once a cycle is detected, the cycle
detector instructs the reference-listing algorithm to delete
one of its entries so that the cycle is eliminated. Then, the
reference-listing is capable of reclaiming the remaining
garbage objects.

The detection of distributed cycles of garbage works on a
view of the global distributed graph that is consistent for its
purposes. As explained later, this view may not correspond
to a consistent cut (as defined by Lamport [2]) but it still
allows us to safely detect distributed cycles of garbage.
This view results from a cut that we call a GC-consistent
cut. GC-consistent cuts can be obtained without requiring
any distributed synchronisation among the processes
involved.

Thus, our contributions are the following: (i) a complete
distributed garbage collection algorithm, (ii) the notion of
GC-consistent-cuts and (iii) an implementation within Rotor.

2 Distributed garbage collection

The only objects effectively available to an application are
those that are reachable (either directly or indirectly by
transversing one or more references, i.e. in one or more hops)
from some considered root-set and, therefore, subject to
being read or modified by the application; these objects are
called live objects. All remaining objects are garbage and are
only wasting memory and should be automatically discarded.

Garbage collectors can be broadly categorised into three
main families: tracing collectors, reference counting (with
several variations) and hybrids of these two previous
families [3]. Tracing collectors are the only ones able to
reclaim cyclic garbage, i.e. they are complete. Therefore,
most local garbage collectors are of this kind.

However, tracing algorithms do not scale well to
distributed systems as they traditionally impose inconve-
nient disruption (synchronisation and pause times) to
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applications in order to perform correctly. Therefore, most
solutions rely on reference-counting algorithms for DGC
due to scalability and performance reasons. However,
reference counting algorithms are not able to identify and
reclaim cyclic garbage, either local or distributed.

This raises the issue of completeness, i.e. how to identify
and reclaim distributed cycles of garbage. We address this
issue with a combined, hybrid approach, comprising an
acyclic reference-listing distributed garbage collector and a
centralised, deferred, tracing-based, detector of distributed
garbage cycles.

This cycles detector (see Fig. 1) receives from each
application process a file describing its enclosed object
graph. Note that, with this information, the cycle detector
does not perform a full garbage collection (as in Liskov’s
proposal [4]). As described later, the main task of the cycle
detector is to detect distributed cycles of garbage, thus
complementing the reference-listing algorithm.

The cycle detector and the reference-listing algorithm
mentioned above are both part of the comprehensive
approach we followed to extend Rotor with DGC capabili-
ties. Figure 2 provides a general view of our environment:

. application monitoring: implements the reference-listing
algorithm and generates the description of the enclosed
object graph (1)
. an object graph visualisation interactive tool that:

– displays the object graph based on an object graph
description (2a), and
– allows the user to draw an object graph and generate its
corresponding description (2b)

. a distributed garbage cycles detector that, based on object
graph descriptions (3a), detects distributed cycles of

garbage, and generates the resulting object graphs (3b),
and instructs applications to delete any scions found to
belong to a distributed cycle of garbage (3c).

In the following Section we present the reference-listing
algorithm that collects distributed acyclic garbage. Then, we
describe the distributed cycle detector algorithm.

2.1 Acyclic collector

The algorithm for acyclic DGC is based on reference-listing
[1]. This algorithm keeps track of inter-process references
by means of data structures called stubs and scions. Thus,
while remote references in Rotor are represented by proxies
for invocation purposes, scions and stubs (both created and
managed by the new code we wrote), are fundamental for
GC purposes.

2.1.1 Data structures: A scion represents an
incoming reference, i.e. a reference pointing to an object in
the scion’s process. A scion points to the target object and
includes a unique time-stamp, i.e. a numeric value provided
by a monotonic counter global to the enclosing process.
The usefulness of time-stamps [5, 6] is explained afterwards.

A stub represents an outgoing remote reference, i.e. a
reference pointing to an object in another process. A stub
points to the remote object and includes the time-stamp of
its correspondent scion.

In each process, stubs and scions are grouped in sets,
for performance reasons. All stubs in a set have their
corresponding scions in the same remote process.
Conversely, all scions in a set have their corresponding
stubs in the same remote process. There is only one
stub-scion pair for each remote object and for each pair of
processes. This also holds when there are remote references
from various objects in one process to a single object in
another process.

Scions and stubs are created according to the creation of
inter-process references. These can be exported to a remote
process or imported into a process (see Fig. 3). Reference
export includes: (i) passing a reference to a local object as an
argument of a remote method in a different process; or
(ii) returning a reference to a local object as a method result
to a different process. Reference import includes:
(i) receiving a reference to a remote object as an argument
of a method made available by the process, invoked by
different processes, or (ii) receiving a reference to a remote
object as a result of a remote method invocation in another
process. Every time a reference to a local object in a process
is exported, the corresponding scion must be created. Every
time a reference to a remote object is imported, the
corresponding stub must be created.

2.1.2 Messages: Messages exchanged by processes
w.r.t. the DGC algorithm are of two kinds: implicit and
explicit. Implicit messages are those bearing object
references and must be intercepted, in remoting services
code, in order to create the corresponding scions and stubs.
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For safety reasons, scions are always created before the
corresponding stubs. Thus, scions are created when
references are exported and the corresponding stubs are
created only when the messages bearing those references
arrive at the referring process.

After a local garbage collection (LGC) is complete, a new
set of stubs can be generated (not necessarily every time)
accounting for every remote object referenced from the
local process. This new set of stubs is then sent to remote
processes; these processes, based on the set of stubs
received, may conclude which scions are no longer reach-
able so that they can be safely deleted. Objects that are only
reachable through these, just deleted, scions are garbage and
can be reclaimed by the next LGC. Thus, the only explicit
message exchanged among participating processes is
NewSetStubs. In particular, there is no use of a special
message for scion deletion except to break a distributed
cycle of garbage.

To minimise applications’ disruption, determination of
each new set of stubs and actual sending of the correspond-
ing NewSetStubs messages are both fulfilled lazily; thus,
these operations do not increase the amount of time an
application is stopped due to the LGC.

Attached to each NewSetStubs message there is always
the highest scion time-stamp the sending process knows of.
This ensures that the receiving process will not prematurely
eliminate scions, recently created, whose corresponding
stubs are not yet included in NewSetStubs message just
received. Such a situation may occur as follows (see Fig. 4):
(i) an invocation takes place from process P1 to process P2;
(ii) the message is scanned in P1 for references being
exported; (iii) the corresponding scions are created in P1
(e.g. assume that scion SC1 is created); (iv) the invocation
message is sent; (v) before the invocation message reaches
P2, P2 sends a NewSetStubs message to P1; (vi) the
message NewSetStubs received by P1 does not contain

the stub corresponding to scion SC1; however, this scion is
clearly reachable, and thus should not be deleted.

A set of stubs represents a view of outgoing remote-
references in the enclosing process. To be consistent for GC
purposes, this view must be associated with the time it was
taken so that scions can be safely deleted. This is achieved
in the following manner at the process receiving a
NewSetStubs message:

. only those scions corresponding to inter-process
references originating in the process that sent the
NewSetStubs have to be considered
. for each one of these scions - only those with a time-stamp
not greater than the time-stamp received in the NewSetStubs
message - the existence of the corresponding stub is tested
. if there is a corresponding stub, the scion is preserved
(as it is still being referenced); if there is no such stub, the
scion is deleted (as it can be safely assumed that the stub no
longer exists and, therefore, there are no longer any
references to that scion).

Thus, scions can be regarded as assuming one of three
states: (i) unreachable scions are those that can be safely
removed because they are found to have no corresponding
stub and there is no chance of that stub being ‘in-transit’;
(ii) reachable scions are those with corresponding stubs
effectively detected; and (iii) uncertain scions are those that,
as far as the referred process is concerned, have no
corresponding stubs, but it cannot be safely assumed that
they are unreachable; invocation messages leading to the
creation of stubs could still be in transit and the algorithm,
conservatively, considers these scions as reachable.

In summary, since there are not any competing, i.e.
conflicting, types of messages (e.g. create/delete stubs/
scions), there are no distributed races during creation
and elimination of remote references. It is required that
processes maintain a record of the highest scion time-stamp
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received from every other process, constituting, in fact, a
vector-clock [2]. As explained in Section 2.2, these vector
clocks (one at each application process) also allow establish-
ing cuts of the distributed graph, which are consistent from
the point of view of the distributed cycles detector.

2.1.3 Properties: The algorithm described is safe
since objects still referenced (locally or remotely) are never
reclaimed. Obviously, objects just locally referenced are
never wrongly reclaimed as we assume the correctness of
the LGC in Rotor.

Objects referenced just by remote references can fall in
one of three cases, according to scions pointing to them:
reachable, unreachable and uncertain objects. As explained
earlier, safety is ensured in all three cases. The algorithm is
resilient to lost, duplicate and un-ordered NewSetStubs
messages because each set of stubs is matched with the
corresponding scions, in a consistent manner, due to
time-stamps.

Liveness is, naturally, dependent on processes sending
NewSetStubs messages frequently enough. Unreachable
scions can only be detected after a NewSetStubs message is
received.

Note that the algorithm can be divided into several steps
that can be performed lazily:

. after an LGC, determine the set of reachable stubs to
include in a new NewSetStubs message with the proper
time-stamp; this can be performed lazily and incrementally
. send NewSetStubs message(s) can be done at any time
. matching stubs and scions can be performed lazily and
incrementally (see Section 3).

In summary, the distributed algorithm works lazily and with
loose synchronisation requirements. This not only increases
its scalability but also reduces applications’ disruptiveness
to a minimum.

The algorithm is not complete w.r.t. distributed cycles of
garbage. This issue is addressed by a specific cycles detector
that is described in the following Section.

2.2 Distributed garbage cycle detection and
reclamation

A distributed cycle of garbage is a partition of the object
graph spanning various processes that is completely
detached from the set of live objects. However, the
reference-listing algorithm is not able to reclaim it due to
circular references.

To achieve completeness in DGC it is necessary to detect
and delete distributed cycles of garbage. This is a difficult
problem that has been addressed in many ways: global
tracing, back-tracing, detection within groups, with
centralised or distributed approaches; we present the work
most relevant to ours in Section 5. Our algorithm makes use
of a centralised approach. Such an approach was first
introduced in [4]. However, our work has several differ-
ences that will become clear afterwards.

2.2.1 Overview: The process of performing the
detection of the distributed cycles of garbage (called CDP
for cycles detector process) works on a view of the global
distributed graph that is consistent for its purposes.
As explained in this Section, this view may not correspond
to a consistent cut (as defined by Lamport [2]) but it still
allows us to safely detect distributed cycles of garbage. We
call such a cut, a GC-consistent cut.

GC-consistent cuts can be obtained without requiring a
distributed consensus [7] among the applications processes

that send their graph descriptions to the CDP. This means
that the CDP still performs useful work, i.e. it is capable of
detecting cycles, even if its global view of the graph is made
of local graph descriptions (sent by the applications
processes) at different and unco-ordinated moments.

The CDP is also capable of performing its task without
requiring every existing process to send its graph descrip-
tion. The only consequence is that cycles comprising objects
in such processes are not detected. However, all other cycles
are detected and reclaimed.

2.2.2 Algorithm: The CDP runs the cycles detector
algorithm to discover which stubs and scions are part of
distributed cycles of garbage. Then, it instructs certain
applications processes to delete one or more of their scions.
The explicit deletion of such scions is safe because garbage is
stable, i.e. once an object is garbage, it stays so. It transforms
a distributed cycle of garbage into a set of acyclic garbage
objects; then, such objects can be reclaimed by the reference
listing algorithm described in the preceding Section.

To perform the cycle detector algorithm, the CDP receives
a description of the object graph of applications processes
[Note 1]. Note that such object graphs are strictly local to
each application process. In addition, as will be made clear
later, the CDP does not require the object graph of every
existing application process to perform useful work.

The object graphs description received by the CDP can be
seen as snapshots of each application process. However,
note that our algorithm does not require these snapshots to
be taken synchronously by every application involved.
In other words, there is no need for a distributed consensus
[7], which would clearly be a bad solution for performance
and scalability reasons. Thus, as explained now, the CDP
analyses the object graphs with special care for consistency
and causality from a DGC point of view.

The CDP performs a global mark-and-sweep (GMS) on
the graphs description received. This GMS is done in such a
way that inter-process references are followed only if the
corresponding stub-scion pair exists in the graphs descrip-
tion. Otherwise, the marking on that reference stops.

The roots of the GMS are the following (see Fig. 5):

. Those objects that, in each application process, are
directly reachable from the local roots (stack, etc.), must be
obviously considered roots of the GMS (in Fig. 5c such
objects are shaded).
. Scions whose corresponding stubs are included in
processes whose graph description is not being considered
by the CDP in the GMS are also members of the GMS root
(in Fig. 5b such a scion is the one in P3 whose corresponding
stub is in P4). These scions are members of the GMS root for
safety reasons. As a matter of fact, such scions may not have
a corresponding stub (so they could be simply discarded) but
the CDP cannot say that for sure. Thus, it uses a
conservative approach.
. Those scions whose associated time-stamp has a value
greater than the value known in the process holding the
corresponding stub, are also members of the GMS root.
As for the previous item, this is also a conservative
approach. These scions are those whose corresponding
stubs have not been created yet when their enclosing
application process has created its graph description (then
sent to the CDP).

Note 1: A description of an object graph is obtained using a library that,
through serialisation, writes a file describing the objects, stubs and scions of
the process. This description is subject to a reduction process.
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Note that this may occur because the graph descriptions
received by the CDP are snapshots taken at different
moments at different processes with no co-ordination at all.
Such a situation is illustrated in Fig. 6.

At moment ta the graphs are in fact those as illustrated in
Fig. 5a. However, the view CDP has, based on graph
descriptions received so far, is different because the
graph descriptions obtained from P2 is older than P3 and
the graph description of P1 is even older than P2’s. The
shaded scions and stubs reflect such differences.

The result from the GMS is a set of garbage stubs and
scions. However, not all of these scions belong to distributed
cycles of garbage. Some of these scions (those that are not
members of distributed cycles of garbage) are reclaimed by
the reference-listing algorithm.

The CDP determines which of such scions actually belong
to cycles. This is done as follows: only scions that are
simultaneously garbage and, still, referenced by stubs, can
belong to a distributed cycle of garbage. Then, one, any, or
all of them, can be selected for deletion and the message(s)
sent to the corresponding process(es). The number of
messages sent only influences the bandwidth used and the
speed of cycle reclamation. Those distributed garbage cycles
that already existed when the oldest graph description (being
processed by the CDP) was created, and are totally included

in the graph descriptions available at the CDP, are effectively
detected and reclaimed. Thus, considering Fig. 6a, all cycles
that existed before tb, that are totally enclosed in processes
P1, P2 and P3, are detected by the CDP.

In Fig. 6a we show, in bold, a cut that is not causally
consistent for typical GC purposes; it results from the unco-
ordinated creation and sending of object graphs from each
application process to the CDP. However, based on such
graphs, the CDP builds a GC-consistent cut that allows it to
detect distributed cycles of garbage. This cut is consistent
w.r.t. the finding of such cycles. Thus, a GC-consistent cut is
a group of scions and stubs that provide a safe view of the
distributed object graph. This group of stubs and scions
provides a safe view of the distributed graph as long as the
rules to define the root-set of the GMS (performed by the
CDP) are respected. In particular, these rules specify which
scions are members of the root-set of the GMS.

2.2.3 Graph reduction: Objects graphs in appli-
cation processes may be very large. Consequently, the size
of their descriptions may contribute to increasing the load
on the network and occupies a large amount of disk space.
In addition, such a large amount of data makes the GMS
performed by the CDP a CPU-consuming operation as it
requires accessing a large amount of data.
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This problem is solved by reducing the objects graph of
each application process in such a way that, from the point
of view of the cycle detector algorithm, there is no loss of
relevant information. This reduction transforms an object
graph of an application process into a set of scions and stubs.
As a matter of fact, references strictly internal to a process
are not relevant for the cycle detector algorithm.

The reduced graph contains: (i) the set of stubs of the
process with information, for each stub, about its reach-
ability from the local root; and (ii) the set of scions of the
process with a list, for each scion, of the stubs reachable
from that scion. This reduction (illustrated in Fig. 7) is
performed at each application process; then the reduced
object graph is sent to the CDP. The reduced graph has
obvious advantages both in terms of network and disk
usage. In addition, this task can be performed lazily, with
low priority, with minimal impact on application
performance.

We can estimate the importance of cycles based on work
done by Richer[8]. In this work, research about the memory
behaviour of the World Wide Web, regarded as a persistent
store, revealed that a large proportion of objects are
involved in distributed cycles; still, most individual cycles
are small both in number of objects and in space occupied.

To remain safe, the CDP can only detect distributed
cycles of garbage that are fully enclosed in the graph
descriptions it holds. This may suit most distributed cycles,
that are small, but clearly limits the maximum size of the
detectable cycles. However, this limitation can be easily
solved because it is possible (and desirable, for scalability
and availability purposes) to have several CDPs. These
CDPs can be organised hierarchically (or in any other way)
so that a CDP at a higher level has a larger view of the global
distributed object graph. Such a larger view is obtained as
follows. Each CDP applies a graph reduction on the set of
graphs it holds and then sends the reduced graph to its parent
CDP. With this scheme, it is possible to detect (and reclaim)
any distributed cycle of garbage independently of its size.

3 Implementation

The algorithms (reference-listing and cycle detector) were
implemented combining different programming languages:
C++, C# and Lisp. These languages were chosen to favour
integration, simplicity and efficiency. The implementation
includes virtual machine modification (for LGC and DGC
integration), remoting code instrumentation (to detect
export and import of references), distributed cycle detection
and graph generation and visualisation.

Virtual machine modifications were implemented in C++,
the language Rotor core is implemented in. Remoting
instrumentation code was developed in C#, since high-level
code of the remoting services is already written in this

language. The graph generation, reduction and visualisation
tool was also developed in C# but other .Net languages
could have been used. The cycle detector was written in
Lisp, mainly, for simplicity of writing code for graph
manipulation.

3.1 Virtual machine monitoring and
modification

The reference-listing algorithm must co-operate with the
LGC, essentially in two ways:

. the LGC must provide, in some way, the reference-listing
algorithm with information about every remote object
referenced by local objects; this is necessary to ensure that
all stubs (representing outgoing remote references) are
correctly created/preserved
. the reference-listing algorithm must prevent the LGC
from reclaiming objects that are no longer locally reachable
but are targets of incoming remote references; this ensures
that scions actually prevent objects from being reclaimed.

To fulfil these requirements, we had to choose between two
main options: (i) to extend Rotor’s LGC, modifying its
implementation, in order to make it able to create/preserve
stubs for every outgoing remote reference or, at least, feed
this information to the DGC component that would create
them; or (ii) attempt to indirectly detect which outgoing
remote references disappeared and eliminate the associated
stubs.

Both approaches need instrumentation of Rotor’s remot-
ing services. The first approach consists in modifying the
code of Rotor’s LGC so that every field (possibly containing
a reference) in every live object is examined. If this
reference happens to point to an object that is a transparent
proxy, it is an outgoing remote reference and the
corresponding stub must be re-created.

The second approach consists simply of a running thread
that monitors existing stubs verifying that they are still
valid, i.e. the transparent proxies associated with them still
exist. This is achieved using weak references.

Both approaches have their advantages and drawbacks.
The first option would determine stub deletion more quickly
but it could impose larger pause-time on applications since
all stubs would be re-created each time over. This would be
implemented with low-level programming, i.e. C/C++
language so that penalty could be minimised. However,
the advantage of determining stub deletion more quickly is
mitigated by the fact that DGC processing is essentially
bound to the exchange of messages, and these are sent in a
lazy manner, in order not to disrupt running applications.

Moreover, the second approach is more advantageous for
additional reasons: (i) it does not impose relevant modifi-
cations on the CLR implementation; (ii) it can be
implemented using a high-level language such as C#; (iii)
modifications are mainly restricted to the remoting package;
and (iv) it does not interfere with the LGC used.

3.2 Remoting code instrumentation

Remoting services code instrumentation intercepts mess-
ages sent and received by processes in the context of remote
invocation so that scions and stubs are created accordingly
[Note 2].

local-root

original graph reduced graph

local-root

Fig. 7 Reduction of an object graph

Note 2: In Rotor, messages exchanged by these services are created,
intercepted, coded and decoded in several stages, called sinks. A group of
different sinks that sequentially process a message constitutes a sink chain.

IEE Proc.-Softw., Vol. 150, No. 5, October 2003288



In our current implementation we only intercept remote
invocations in which MarshallByRef references are expor-
ted/imported. Thus, every time a reference to an object
extending MarshallByRef is exported/imported it must be
accounted for DGC purposes. Additionally, the reference-
listing algorithm demands scions to be time-stamped when
they are created and that the same time-stamp is applied to
its counterpart stubs. This implies that scion time-stamps
must be included in remote invocation messages bearing
remote references.

To accomplish this, three new custom headers were
appended to messages: scionIndex, machineId, processId to
uniquely identify scions and stubs associated with remote
references included in messages. These values must be
propagated throughout the entire sink chain. Therefore,
adaptations were made on base files as basetransporthea-
ders.cs, corechannel.cs, message.cs, dispatchchannel-
sink.cs, binaryformattersink.cs. Higher level files such as
remotingservices.cs, tcpsocketmanager.cs, binaryformat-
ter.cs and activator.cs were also modified mainly to invoke,
when remote references were detected, specialised methods
included in the previous files. One specialised file,
gcdata.cs, implements a new class, GCManager, containing
all the utility methods and GC state used in all other files.

3.3 Scions and stubs

Stubs and scions are maintained in hash tables within each
application process. These are implemented as specific
classes, maintained as structured containers with the
appropriate selectors, modifiers and with synchronised
access.

Code implementing DGC explicit messages is grouped in
a specific class DGCManager; this code runs as a low
priority thread in each application process, and is respon-
sible for managing stubs, and composing and sending
NewSetStubs messages lazily. NewSetStubs messages from
other processes are delivered when a well known remote
method made available by DGCManager is invoked by
another process.

3.4 Distributed cycles detection

The distributed cycles detector is implemented in C# and
Lisp. The choice of the implementation language of the
cycles detector had no constraints, provided that inter-
operability could be fulfilled between the cycles detector
and the graph serialisation/reduction component in each
process.

To be consistent, object graph serialisation must be
performed while the application code is not running. This
occurs, for example, during an LGC. If done immediately
after the LGC and before allowing the application to
proceed, the extra time taken to create the object graph may
cause longer and disruptive application pause times, which
is clearly undesirable. However, this object graph is needed
only for cycles detection. Thus, a new graph does not have
to be created each time an LGC occurs. Furthermore, it only
needs to be done occasionally. This allows the creation of
the object graph in other more convenient situations, such as
when the application stops waiting for input, or is idle.

Graph reduction is performed incrementally, in each
process, after a new object graph has been serialised, by a
separate thread (which is almost always blocked) or by
another offline process. Once reduced, the graph can be sent,
lazily, to the CDP.

4 Performance

The most relevant performance results of our implemen-
tation are those related to phases critical to applications
performance: stub/scion creation and object graph serial-
isation [Note 3].

We measured the creation of stubs and scions when
remote references are exported/imported in remote invoca-
tions; these operations are always performed and cannot be
fulfilled lazily. We tested worst case scenarios that discard
potentially long network communications times, that could
mask stub and scion creation overhead. Table 1 shows
results for different series of remote invocations of a remote
method, with 10 arguments (10 different references being
exported/imported), where client and server processes
execute in the same machine. This forces the DGC to create
10 scions and stubs each time the remote method is invoked.
The overhead associated with the creation of DGC stubs and
scions, in this worst case scenario, is within 7%-20%, which
is acceptable for the functionality provided.

The results regarding graph serialisation, which does not
have to be performed frequently, were also encouraging. On
average, for graphs with 10000 dummy objects ( just
references), Rotor serialisation takes 25730 ms [Note 4].
To serialise the same graph, with every object containing an
additional remote reference (additional 10000 proxies),
takes 34489 ms (34% slower). Thus, serialising remote
references is three times faster than serialising an additional
object. This result should also be regarded as upper bound
values, since, in normal circumstances, application graphs
have much higher density of local than of remote references.

5 Related work

Because of space restrictions, and given that the most
interesting contribution of this work is the cycles detector
algorithm, we focus this section on other proposals for
collecting distributed garbage of cycles. Distributed garbage
collection has been a field of active study for many years
and recently, as well [9–13]. In Fessant [10], time-stamps of
stubs and scions are propagated until a global minimum can
be computed. (Propagation of time-stamps was first
proposed in Hughes [5].) Cycles are detected with the
help of optimistic backtracking.

Distributed garbage collection based in cycle detection
within groups of processes was first introduced in Lang et al.
[14]. In Rodrigues and Jones [12] groups of processes are
created, with less synchronisation requirements to detect
cycles exclusively comprised within them. Groups of

Table 1: Remote invocation in original Rotor and DGC-
extended Rotor (times in ms)

Number of

invocations Rotor

Rotor with

DGC

10 1933 2072

100 12417 14731

500 58754 70931

1000 118890 140191

Note 3: Results obtained using a Pentium 4 Mobile 1600 MHz with 512 Mb
RAM.

Note 4: Note that, in .Net, serialisation is roughly 100 times faster.
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processes can also be merged and ongoing detections can be
re-used.

In Liskov [4], distributed garbage collection is performed
by a logically centralised server that receives graph
information from every process. Requirements on clock
synchronisation and message latency are strict. The
centralised server performs complete distributed garbage
collection and informs processes of objects deletion.

Our algorithm combines properties found in previous
work. However, since it uses a combined approach using a
DGC algorithm and a specialised cycle detector, it has no
need for some potentially costly operations such as
mark-propagation, backtracking or distributed consensus.
A safe and efficient DGC algorithm based on reference-
listing is paired with a cycle detector that detects cycle
lazily, in the background, combining local graphs, with very
low consistency requirements.

Another important aspect of our solution is the use of a
description of distributed graphs that is less restrictive than
Lamport’s consistent causal cuts (called GC-consistent
cuts). Nevertheless, a GC-consistent cut is safe; its and
complete as long as the graph description received from
each process is eventually updated.

Our notion of GC-consistent cut can be related to GC-
consistent cuts in databases as proposed by Skubiszewski
and Valduriez [15]. In his work a GC-consistent cut has one
or more copies of every page in the database. These copies,
possibly inconsistent from a transactional point of view, can
be created at different instants. However, all these pages,
when combined with knowledge from database locks, may
be consistently and safely used for LGC purposes. This
work can be applied only to a centralised database system, it
is not distributed, and is strongly dependent on the specific
information provided by the database synchronisation
mechanisms.

Our GC-consistent cuts apply to distributed systems and
do not require any kind of synchronisation information
about participating applications. Obtaining and managing
such synchronisation information, in distributed systems,
would be clearly undesirable for scalability and perform-
ance reasons.

6 Conclusions

We have presented a comprehensive solution for the
problem of distributed garbage collection. The main results
of our work are the following: (i) a reference-listing DGC
algorithm running on Rotor; (ii) a centralised cycles
detector algorithm that requires no global synchronisation,
is scalable and makes progress without requiring all
processes to participate; (iii) an implementation on Rotor
with minimum impact on the source code of the Common
Language Runtime; (iv) the notion of a GC-consistent cut in

DGC; and (v) a set of tools to monitor Rotor applications
and to visualise the object graphs, along with an editor that
can be used to specify such graphs.

Finally, although we have implemented the DGC
algorithms in Rotor, our solutions are rather general. It is
possible to apply the same ideas and, in particular the notion
of a GC-consistent cut and the cycle detector algorithm, to
other similar platforms. In the future we plan to address the
formal correctness proof of the cycle detection algorithm,
develop a distributed version of the algorithm and minimise
the complexity of the reducing process.
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