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Abstract: The memory management of distributed objects, when done manually, is an error-prone
task. It leads to memory leaks and dangling references, causing applications to fail. Avoiding such
errors requires automatic memory management, called distributed garbage collection (DGC).
Current DGC solutions are either not safe, not complete or not portable to widely used platforms
such as .NET. As a matter of fact, most solutions either run on specialised environments or require
modifications of the underlying virtual machine (e.g. rotor, common language runtime (CLR)), hin-
dering its immediate and widespread utilisation. This study describes the design, architecture,
implementation and performance measurements of a DGC algorithm for .NET that: (i) is complete,
that is, capable of reclaiming both acyclic and cyclic garbage, while (ii) being portable in the sense
that it neither requires the underlying virtual machine to be modified, nor source or byte-code modi-
fication. The distributed garbage collector was implemented on top of two implementations of the
common language infrastructure (.NET virtual machine specification): CLR and shared source
CLI, commonly known as Rotor. The implementation requires no modification of the environment,
it makes use of the provided aspect-oriented functionalities, and the performance results are
encouraging.
1 Introduction

There are several arguments that justify the existence of a
system-provided memory-recycling service called garbage
collector (GC). These arguments, extensively presented in
the context of local garbage collection [1], range from the
description of the consequences of errors that result from
manual management, namely unreclaimed memory
(memory leaks) and premature reclamation (dangling refer-
ences), to, according to Wilson [2], the classification of the
existence of such a service as a fundamental requirement for
accomplishing program modularity. Besides programming
soundness, GC offers performance benefits since it
improves object locality [3]. The strength of the previous
arguments has been acknowledged with the inclusion of
GC services in platforms with wide industrial usage, such
as .NET and Java.
In distributed object systems, the same arguments apply,

simply because these systems result from the extension of
the programming model offered in non-distributed ones.
Considering that a local garbage collector exists, a natural
extension would be to provide automatic reclamation of dis-
tributed objects. The CLI (Common Language
Infrastructure, .NET virtual machine specification [4])
includes a distributed object system, which does not
support automatic recycling of distributed memory.
Alternatively, it offers a configurable object lifetime man-
agement service, based on renewable leases. This approach
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has the main drawback of being unsafe, that is, it may
wrongly reclaim objects still referenced by some process.
Furthermore, it places the problem of distributed memory
recycling at the application programming level, leading to
the previously mentioned errors.
Applications deployed on these scenarios are frequently

developed around the abstraction of a single system image
with a global object space (or distributed heap [5–9]),
built by aggregating memory from each participating
process on top of a distributed object system, fully transpar-
ent to the programmer. Examples of applications in these
scenarios that need to perform navigation and manipulation
of complex hierarchies of elements, comprising large dis-
tributed object graphs, include ray-tracing [8] and rendering
utilities, virtual environment simulation, CAD/CAM
project development tools (e.g. cooperative engineering,
architecture, urban planning and circuit design), as well as
web and social network analysis, and scientific computing
(e.g. molecule geometry modelling and computational
simulation of proteins). Note that these applications are
different from service-oriented distributed applications
(e.g. using XML, SOAP), where loose-coupling and intero-
perability among heterogenous systems are the main issues.
Other recent examples of DGC relevancy and usage

include distributed virtual machines [10, 9], parallel com-
puting [11], cluster computing [12, 13 and 5] (also integrat-
ing grid infrastructures [14]) and distributed shared memory
[15]. It is specially important w.r.t. long-running appli-
cations (possibly including object persistence) where
garbage accumulates and hinders performance.
This document describes an extension of .NET Remoting

with a safe, complete, scalable and portable distributed
garbage collection service. .Net Remoting, as the basis of
application interoperability within the .Net Framework, is
being maintained in Windows Communication Foundation
[16] that also includes support for service-orientation. The
contribution comprises the design of a distributed garbage
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collection algorithm, and its implementation and evaluation
in the context of an unmodified widely deployed virtual
machine.
The proposed solution resorts to techniques based on the

existing built-in aspect-oriented programming (AOP)
support, allowing immediate adoption, while minimising
the imposed application pause times because of DGC oper-
ation. It operates correctly in the presence of temporary fail-
ures (node or network). Permanent failures are considered
to be dealt with by machine administrators.
Previous approaches to DGC completeness are not porta-

ble in the sense that they require modifications in the under-
lying virtual machines, or are specifically implemented in
the context of custom systems, namely research prototypes.
Moreover, the authors are not aware of any previous
approach resorting to AOP-support for DGC purposes.
The decision of employing an AOP-based approach to

DGC is motivated by its soundness, portability and effi-
ciency. Memory management is a cross-cutting concern,
which should not be entangled with application logic.
Therefore manual memory management was abandoned in
favour of garbage collection integrated in the virtual
machine. It is therefore natural to consider distributed
memory management (i.e. DGC), an aspect in distributed
object systems such as .Net Remoting, and employ existing
AOP-support. The portability stems from the fact that the
solution presented does not require modification of the
underlying virtual machine, and is valid in both implemen-
tations of the CLI available from Microsoft (CLR, commer-
cially used CLI realisation, and Rotor, shared source CLI
implementation), as well as in open-source efforts, such as
Mono, which include AOP-support. Although Remoting
services (i.e. application domains, proxies and
MarshalByRef base class) are considered in the actual
CLI specification, AOP-support is not and therefore for-
mally not mandatory in every CLI implementation,
despite being supported by Microsoft. Finally, in compari-
son with other portable approaches, such as fully extending
remoting by inserting new types of client and server-side
sinks in charge of monitoring every message exchanged
or, at a lower-level, by extending application source-code
or byte-codes to monitor reference-passing, it minimises
message processing overhead, redundant programming
effort and intrusion w.r.t. application development.
Additionally, AOP has been successfully employed in dis-
tributed scenarios using .Net [7, 17] with built-in
AOP-support, and Java [9] with load-time aspect-weaving.
The rest of the paper is organised as follows. The next

section is dedicated to related work, evaluating relevant
DGC algorithms found in the literature using a novel
approach, w.r.t. their portability (i.e. level of runtime intru-
sion and coupling between GC components), which is a
main goal of our work. Section 3 describes the underlying
system model to this work. Section 4 is dedicated to the
algorithms used for distributed garbage collection. We
present a hybrid DGC algorithm that is safe (reclaims
only garbage objects), live (it always makes progress), com-
plete (it eventually detects all garbage objects) and scalable
(able to deal with large number of objects and processes).
The algorithm is further described using a detailed prototy-
pical example, and its properties are analysed. In Section 5,
we describe the features of the .NET runtime; this work is
based on (i) remote method invocation (.NET Remoting)
and (ii) built-in AOP-support available in the .NET platform
(Context architecture). Section 6 presents the most
important details of our implementation. It is portable, in
the sense that it does not require any modifications neither
to the .NET runtime, nor to existing libraries, nor to
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application source or byte-code. The section ends with per-
formance results measuring the critical aspects to algorithm
performance and scalability. The paper ends with some
conclusions.

2 Related work

Distributed garbage collection has been extensively
described in the literature [1, 18–21], and algorithms have
been compared based on parameters such as asynchrony,
message traffic, space and time overhead.
In these systems, distributed garbage, including distribu-

ted cycles, is frequent and has been characterised in [22,
23]. We use the term GC-solution to designate the set of
components and algorithms involved in performing
garbage collection, both local and distributed, and their
actual implementation. Incomplete solutions are typically
based on distributed reference-counting and reference-
listing [24, 25]. Detection of distributed cycles has been
addressed using (i) object migration, explicit [26] and via
indirection [27] (train algorithm), (ii) trial deletion [28],
(iii) propagation of marks or time-stamps, global [29–31],
within groups [32, 33], (iv) distributed back-tracing [31,
34 and 35], (v) centralised detection, loosely-synchronised
[36], and asynchronous [37], and (vi) cycle detection
algebra [38].
Nonetheless, most of the solutions found in the literature

are developed towards very specific systems, namely
research prototypes, where it is assumed that the DGC
developer has complete control over the runtime. When
applied to a widely deployed runtime (as Java and .NET),
these solutions, although some could be adapted, frequently
require significant modifications to the underlying virtual
machine.
Thus, we evaluate existing work on a different perspec-

tive, with portability in mind instead. We present a qualitat-
ive overview of two main issues that may hinder the
adoption of a complete GC-solution to any widely
adopted runtime: (i) runtime intrusion, and (ii) coupling
between components of the GC-solution. Each of these
aspects is decomposed in subaspects and, for each of
them, we introduce a scale of approaches with increasing
degrees of portability and/or flexibility. Some solutions
may be mentioned at different degrees because of the differ-
ent techniques they employ.

2.1 Runtime intrusion

Runtime intrusion is defined as the need to deviate from an
existing runtime, to provide it with a specific garbage col-
lection solution. These deviations may be caused by differ-
ent GC components, and have different degrees. Naturally,
the optimum degree is not requiring any intrusion at all, and
this is the case when a specific solution is not explicitly
mentioned.

Local GC: The most inflexible technique, with respect to
LGC, when adopting a GC-solution is to impose an hetero-
dox LGC [27, 30], substantially different from those typi-
cally included in the runtime. A GC-solution may require
the extension of reachability encoding of an existing
LGC. This is the case in solutions that require the LGC to
incorporate in object headers, more colour-bits [32, 33] or
additional marks, such as time-stamps [29–31] or
reachability-maps [34, 36].
An existing LGC may also be subject to extension of

operation that is less intrusive than the previous technique,
either prepending or appending operations to the ones
IET Softw., Vol. 1, No. 6, December 2007



already performed by the existing LGC, such as generating
stub sets [24, 25], or calculating backward references [35].
A solution may impose direct instrumentation, in that the

existing LGC must be suspended [33, 34] or triggered at
specific moments (e.g. when coordinating with other GC
components), possibly for a partial collection over a fraction
of the object graph [33].
Indirect instrumentation consists of using indirect mech-

anisms to detect when a local garbage collection has taken
place (e.g. using finalizer methods on a dummy object).
This technique is portable and is used in our solution.

Acyclic DGC: The most inflexible technique to implement a
distributed garbage collector is to modify the communi-
cation protocol, or impose the use of a specific one provided
by a non-standard system [25–33] (e.g. Thor [34, 36]).
Alternatively, intrusion may be confined to modifying
remoting mechanisms and its code [31, 37 and 38]. If it is
possible and allowed, DGC may be implemented resorting
to interception of library loading performed by the
dynamic linker, either by extending or overriding the func-
tionality of components regarding communication and
remote method invocation, without modifying code [35].
Portable techniques include extended communication
mechanism, resorting to extensions allowed by the
runtime, such as custom sockets.
Finally, even non-intrusive extensions may be indepen-

dent of the communication protocol and restricted to
extended remoting mechanisms, such as sink chain exten-
sions (as our solution provides).

Cycles detection: Some solutions, depending on the adopted
algorithm(s) may require additional direct intrusion in
the runtime, for the purpose of cycles detection, without
possibility of delaying the disruptive operations. Examples
include suspending the mutator (application) while per-
forming bit-colour propagation [33], and applying barriers
to interprocess invocations when back-tracing information
is being calculated [34].
In general, most solutions also require information of the

local root set of each process to differentiate objects tar-
geted by local references or just by interprocess references.
This may be achieved by modifying the LGC or indirectly
via hints provided by the programmer. This is required
because existing runtimes neither inform about different
levels of reachability, nor provide reflection services with
information about stack variables.

2.2 Coupling of GC components

Coupling is defined as the degree of interdependency among
different GC components (namely, LGC, acyclic DGC and
cycle detection), in the sense that the adoption of one
approach for one component will mandate the adoption of
the same or related approach to one, or both the others. In
essence, this assesses how monolithic a GC approach is,
or how it may be flexibly combined with others. This will
determine the difficulty of deploying the solution when
modifications to the runtime (namely its LGC) are not an
option. Furthermore, this may hinder application perform-
ance and/or delay garbage reclamation since garbage of
the three kinds (i.e. local, distributed acyclic and distributed
cyclic) is not created at similar rates, and thus should be
addressed with specialised approaches.

One-size-fits-all: The most inflexible solutions are those that
mandate the use of the same algorithm, a specific one for all
three GC components [27, 29–31], that is, the use of a
acyclic DGC algorithm, or cycle detector, effectively
IET Softw., Vol. 1, No. 6, December 2007
mandates the use of the same algorithm for LGC purposes.
Naturally, this seriously undermines the adoption of these
algorithms to an existing runtime, if one of the components
cannot be modified or extended.

LGC and Acyclic DGC: Some solutions demand strong
integration of the components that perform LGC and
acyclic DGC. They may require the LGC to propagate
information, through the object graph, received by the
acyclic DGC component, namely marks [32] and time-
stamps [29–31], or otherwise provide interprocess reach-
ability information of objects to the DGC [36].

Acyclic DGC and cycle detection: There are solutions
that, while avoiding intrusive modifications to the LGC of
an existing runtime, use the same algorithm for acyclic
and cyclic DGC [27, 29–31, 36]. This is not as prejudicial
as with the case of LGC, but it may prevent the use of a
cycle detector if it imposes changes to an existing acyclic
DGC algorithm (e.g. reference-listing) integrated in the
runtime. Furthermore, using the same algorithm may
delay the identification of acyclic garbage that should be
performed more frequently (e.g. [27, 29, 30]). At an inter-
mediate level, the DGC must be able to cooperate with
the cycle detector for example, performing simulated del-
etions [28].
Other solutions use specialised cycle detectors that do not

interfere with normal, more frequent, acyclic DGC oper-
ation, namely [26, 32–35, 37, 38].

LGC and specialised cycle detection: The coupling
between LGC and cycle detection in the context of solutions
that use the same algorithm for acyclic and cyclic DGC was
already addressed. With respect to solutions with special-
ised cycle detectors, those based on migration techniques
must be able to detach objects from the local graph and
create the appropriate interprocess references to preserve
their reachability [26, 27]. Trial deletion for cycle detection
requires the LGC to provide tentative reachability infor-
mation about the outcome of simulated deletions [28].
Cycle detection with group-merger [33] requires the LGC
to propagate information throughout the object graph in a
process, namely reachability bits (colours, red and green)
of ongoing cycle detections. Cycle detectors that need to
be informed about local root-sets do not necessarily pre-
clude the use of the runtime built-in LGC [32–35, 37, 38].
In this section, we have analysed the virtues and short-

comings of the most relevant GC-solutions found in the lit-
erature, bearing portability in mind, that is, w.r.t. runtime
intrusion and coupling among their components. The
GC-solution described in this paper offers an increased
degree of portability (because of the absence of runtime
intrusion and full component decoupling) and can therefore
be realistically deployed. Similar concerns (portability) can
be found in the implementation (despite some runtime intru-
sion) of distributed back-tracing cycle detector for CORBA
objects [35].

3 System model

We consider systems that offer a distributed memory model
based on the work done for the Orca language [39] and
further refined for the Modula-3 [24] and Java [40]
languages. These systems are commonly known as distrib-
uted object systems.
In the considered distributed memory model, the global

address space (global space) is partitioned into processes
with disjoint address spaces. Each individual process is
composed of objects and those that are globally accessible
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are named remote objects. For an object to be globally
accessible it must have a global identifier, usually con-
structed using both the hosting process identifier and the
object local identifier.
Communication between processes is modelled as remote

object method calls, or simply remote calls. In each remote
call two processes are involved, the caller and called object
hosting processes. The former is named client process and
the latter server process. These roles are established in a
per remote method call basis (i.e. a given process can act
both as client and server). For a remote call to be made,
the client process must hold a reference to the remote
object. This reference contains the remote object global
identifier and is named remote reference or interprocess
reference.
Furthermore, remote objects are passive (they do not

have an internal thread of execution), not persistent (their
identity does not survive termination of hosting process)
and not mobile (they remain in the same hosting process
for all their lifetime). Applications are comprised of
threads that invoke both local and remote objects.
For memory-recycling purposes, objects are considered

live if they are reachable (through graph traversal) from
the running program root set. Otherwise, they are garbage
(also called dead). A garbage collector function is to
reclaim memory associated with garbage objects while pre-
serving live ones. The root set is composed of all global
variables and the local variables (residing at the activation
stack and registers) of all existing threads of execution.
Once an object is marked as garbage, it will always stay
that way, meaning, unreachable objects cannot become
reachable.
Finally, garbage collection algorithms are classified as

safe if all live objects are preserved and complete if all
garbage objects are recycled.

4 Distributed garbage collection

Fig. 1 presents an overview of distributed cycle detection in
an example situation, which comprises four processes
running a distributed application. We assume there is a pre-
existing acyclic DGC algorithm deployed (e.g. reference-
listing as the one described later in Section 4.1.3) and,
thus, each process already has an acyclic DGC component
running.
Each process stores its DGC structures and, periodically,

sends information about them to other processes (e.g.
NewSetStubs messages). Using these messages, pro-
cesses cooperate, by pairwise interaction, to detect acyclic
distributed garbage. This pairwise interaction need not be

Fig. 1 Integration of the distributed garbage cycles detector with
the reference-listing algorithm
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two-sided, that is, a process P1 that sends DGC messages
to another process P2, may or may not receive DGC mess-
ages from it.
Since this mechanism based on reference-listing is not

complete, there is a distributed cycles detector (DCD), for
cyclic DGC. Each process occasionally sends to the DCD
a conceptual representation of its enclosed object graph.
This takes the shape of a compressed snapshot of the
process. A snapshot is a memory-efficient representation
of the object graph of a given process (more details in
Section 6.3.3). This snapshot also includes information
about DGC structures, extended in a way described in the
next section.
With this information, the DCD performs the construc-

tion of a DGC-consistent cut, upon which it executes a con-
servative mark-and-sweep (CMS). After the CMS, the DCD
is able to identify DGC structures (i.e. scions) keeping
cyclic garbage from being collected and to instruct their
deletion.
After the DCD receives a compressed snapshot from a

process yet unknown to it (thus widening the scope of detec-
tion), or an updated version of a compressed snapshot it
already holds, it can construct a new DGC-consistent cut
and perform CMS on it. The DCD discards older versions
of compressed snapshots from each process, no longer in
use, when it receives a more recent one. If it receives a
message carrying a snapshot from a process that is older
than what it already holds, it simply ignores it. Thus, incor-
porating either newer, or not yet known snapshots, always
improves the recency and scope of the DGC-consistent
cut, therefore allowing the algorithm to progress, and poss-
ibly detecting more distributed cycles.
Individual processes are assumed to have a local garbage

collector (LGC) that is responsible for reclaiming dead
objects. Each process also contains a DGC component
that collaborates with the LGC to prevent reclamation of
objects that are only reachable from remote processes
(through interprocess references). In practice, this collabor-
ation takes place through local root set extension, meaning,
the DGC simply prevents reclamation of an object by refer-
encing it explicitly, leaving the existing LGC unmodified.
With this approach, the DGC component function is to
detect distributed garbage and update the root set extension
accordingly.
The presented DGC algorithm is classified as hybrid,

since it combines a reference-listing [24, 41] algorithm for
acyclic distributed garbage detection and, to ensure comple-
teness, an extended innovative design and portable
implementation of a specialised detector of distributed
garbage cycles [37].

4.1 Algorithm for acyclic DGC

In the remainder of this section we present the data struc-
tures maintained by the algorithm and the main conceptual
aspects of its operation, regarding acyclic distributed
garbage detection.

4.1.1 Inter-process reference representation: For
distributed garbage detection purposes, interprocess refer-
ences are represented as stub-scion pairs. The scion
resides at the server process and represents an incoming
interprocess reference. Each scion points to its correspond-
ing locally hosted remote object. The stub resides at the
client process and represents an outgoing interprocess
reference. Each stub is associated with exactly one scion.
A stub–scion pair represents all interprocess references
IET Softw., Vol. 1, No. 6, December 2007



that exist between a given client process and a particular
referred remote object.
Stubs and scions are grouped in sets. All stubs in a set

have their corresponding scions in the same server
process. Conversely, all scions in a set have their corre-
sponding stubs in the same referring process. Each
process contains a table of stub sets and a table of scion
sets. For simplicity, in the remainder of this document,
the former will be called stub table and the latter scion
table. The number of sets in each table is determined by
the number of referred and referencing processes,
respectively.

4.1.2 Local root set extension: To prevent locally
hosted remote objects from being reclaimed by the LGC
when exclusively reachable through interprocess references,
the considered local root set must be extended. This is the
purpose of the scion table.
The stub table is a conservative estimate of all remote

references held by its enclosing process (outgoing interpro-
cess references). The scion table is a conservative estimate
of all existing incoming interprocess references and expli-
citly references locally hosted remote objects, as long as
they are reachable from other processes. Conservative
estimations are used to ensure safety, that is, an object is
considered live until found otherwise.
The main function of both components (acyclic and

cyclic) of the DGC algorithm is to update the previously
described data structures, leaving actual object reclamation
to the existing LGCs.

4.1.3 Acyclic collector: The creation of scions and stubs
is performed incrementally, according to interprocess refer-
ence creation. This occurs whenever an application message
bearing a remote object reference is exchanged between
processes. In this case, the sender process is said to export
the reference, and the receiver is said to import it.
Whenever a reference to a remote object located in a

given process is exported, the corresponding scion must
be created. Every time a reference to a remote object is
imported into another process, the corresponding stub
must be created. To accomplish this, all application mess-
ages must be scanned in search of remote references. This
operation is critical since it introduces an additional over-
head to reference export and import. If performed care-
lessly, it would impose application delay (more details on
how this issue is addressed are presented in Section 6.3).
Besides the creation of remote references, another poten-

tial result of application execution is that of remote objects
becoming unreachable. As a consequence, stub and scion
tables must be updated to allow the reclamation of such
objects.

DGC Protocol:When a LGC execution cycle ends, the stub
table is updated according to the outgoing remote references
that were dropped. The resulting table contains the stubs
corresponding to the remote references that are still reach-
able from the local root set. The details of how these
tasks are performed (i.e. detecting the termination of each
LGC execution and determining which stubs should main-
tained or removed) are explained in Section 6.
Changes in the stub table trigger the creation of

NewSetStubs messages. The number of such messages
is determined by the number of stub sets that were modified
(stubs removed) as a result of the LGC cycle execution.
Each message contains information related to the surviving
stubs on that set. Once created, these messages are sent to
IET Softw., Vol. 1, No. 6, December 2007
the server processes from which the corresponding refer-
ences have been previously imported.
Upon reception of a NewSetStubs message, the DGC

component at the process matches the carried information
against the corresponding scion set. Scions for which a cor-
responding stub is not included in the message are removed
from the set. Remote objects are recycled when all its scions
are removed from the scion table. Naturally, objects are
only recycled if they are also unreachable from the non-
extended local root set.
If the execution of the previously described tasks implied

application suspension, the application performance penal-
ties would be prohibitive. For this reason, the algorithm
was designed to enable deferred execution of the tasks
related to the DGC protocol, while maintaining its safety.
To eliminate race conditions resulting from protocol tasks
(e.g. NewSetStubs messages in transit) and application
work being done concurrently, upon creation, scions are
time-stamped using a per-process monotonic global
counter, as described in [29, 42]. Additionally, each
process maintains a time-stamp vector, or vector clock
[43], containing one entry for each referred process. Each
entry has the highest known scion time-stamp value for
the corresponding process. When a NewSetStubs
message is sent to a given process, its corresponding entry
in the vector clock is also sent.
Algorithm safety is maintained by associating the view of

outgoing interprocess references with the time it was taken,
ensuring its consistency. This prevents the receiving process
from incorrectly eliminating scions whose corresponding
stubs were not yet created when the NewSetStubs
message was generated (e.g. a NewSetStubs message is
generated when the reply of an ongoing remote method
call has not yet been received).
The previously described protocol does not require global

synchronisation. This is a consequence of scion tables being
updated incrementally, according to the reception of
NewSetStubs messages. It is also fault tolerant, since
message loss only leads to delays in garbage detection,
not compromising the algorithm properties (safety and
completeness).

4.2 Algorithm for cyclic DGC

In this section, we describe the algorithm responsible for
creating and processing DGC-consistent cuts to detect dis-
tributed cycles of garbage.

4.2.1 Data structures: The DCD uses data structures
already present in the acyclic DGC algorithm and defines
new ones that are exclusive to cycle detection. The data
structures managed by the algorithm are the following
(scions and stubs are mentioned for completeness):

† Scion: represents an incoming interprocess reference. It
includes a time-stamp. This is a numeric value provided
by a monotonic counter global to the enclosing process,
when the scion is created.
† Stub: represents an out-going interprocess reference. It
also includes a time-stamp field that is equal to the time-
stamp of its corresponding scion.
† Vector-clock: each process maintains a record of the
highest time-stamp associated to scions from other pro-
cesses it knows of, including itself, thus constituting a
vector-clock [43].
† Snapshot: representation of the object graph of a process,
including its stubs, scions and the vector-clock maintained
by the process.
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† DGC-Consistent cut: a conservative juxtaposition of
snapshots taken at uncoordinated times, comprised of, at
most, one snapshot concerning each process.

Scions, stubs, vector-clocks and snapshots are created
and maintained at application processes. DGC-consistent
cuts exist exclusively in the context of the DCD.
The extension of stubs and scions just described is

necessary for the purpose of DGC-consistent cut creation.
Nevertheless, it is also present in previous approaches to
reference-listing [44, 45], in NewSetStubs messages, to
avoid race conditions, and can thus be leveraged.
NewSetStubs messages are time-stamped, with the
highest scion time-stamp that the sender process was
aware of, when the set of stubs was generated (recall
Section 4.1).

4.2.2 Messages: The algorithm defines two types of
messages: one that is informative and another one that is
operative:

† NewSnapshot: message sent from the cyclic DGC
component of an application process, to the DCD, carrying
a snapshot. Actually, there may be more than one DCD
process running. This and other optimisations are described
afterwards. It can be sent lazily after a new, updated snap-
shot becomes available in the process.
† DeleteScion: message sent from a DCD to the cyclic
DGC component of a process, instructing it to delete a
specific scion that is found to belong to cyclic garbage.

Upon receiving a NewSnapshot message from a
process, the DCD is able to infer, from the sender identifier
and the enclosed vector clock, whether there was a snapshot
from that process previously available. If not, it determines
if the one received is indeed more recent than the previous
one. This verification ensures correct handling of possible
message reordering.
Upon receiving a DeleteScion message, a process

removes the scion indicated. Once a distributed cycle of
garbage is broken this way, the process may still receive
NewSetStubs messages from the process where the cor-
responding stub resides, still containing such stub. This is
because it may take several iterations of acyclic DGC to
reclaim the rest of the broken cycle. Nonetheless, this
does not hinder correctness. Since the scion no longer
exists, it will not be recreated (as no more references to
that object will be created because it is garbage), and the
stub enclosed in the message is simply ignored (as it is
would normally be by the reference-listing DGC com-
ponent, because it has no corresponding scion to maintain).
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4.2.3 Cyclic collector: Cycle detection is performed by
the DCD. It is divided in four distinct phases: (i) snapshot
reception, (ii) DGC-consistent cut creation, (iii) conserva-
tive mark-and-sweep (CMS) and (iv) sending of
DeleteScion messages.

Snapshot reception: The DCD is always ready to receive
snapshots from processes. When a snapshot is received, it
is stored as a new version concerning the sender process.
Therefore the DCD may perform snapshot reception con-
currently with another phase.
Thus, reception of a newer snapshot from a process never

causes any of the other phases to stop, if they are already in
progress. Naturally, when the DCD is otherwise idle, the
reception of a new snapshot may trigger phase (ii). When
a snapshot from a process is no longer involved in phases
(ii) nor in (iii), it can be deleted by the DCD if there is a
newer version available.

DGC-consistent cut creation: This is the crucial and most
novel aspect of the algorithm. A DGC-consistent cut is
created by the DCD by assembling a set of snapshots
received from application processes. Note that a
DGC-consistent cut need not contain a snapshot from all
processes. This may affect the scope of detection but not
its correctness. Cycles comprising objects in such missing
processes are not represented entirely.
The difficulty in creating DGC-consistent cuts stems from

the two following facts: (i) snapshots from some processes
may not be available and (ii) snapshots available have been
created at uncoordinated times.
A DGC-consistent cut is created without requiring a dis-

tributed consensus [46] among the application processes
that send their graph descriptions to the DCD. It can be
used for cycle detection, even if its global view of the dis-
tributed object graph is made of local graph descriptions
(sent by the application processes) gathered at different
and uncoordinated moments. A DGC-consistent cut,
although not required to be causally consistent, is still con-
sistent for GC purposes.
In Fig. 2, on the left-hand side, we show in bold a cut that

is not consistent for typical DGC purposes; it results from
the uncoordinated creation and sending of snapshots from
each application process to the DCD. It is clear that this
cut is such that the creation of stubs and scions is not con-
sistent for DGC purposes; in addition, this cut does not cor-
respond to a Lamport’s consistent cut. Object graphs
received by the DCD provide a view of the global graph
that does not correspond to a real one; the differences are
because of the shaded stubs and scions. LGCs are not rep-
resented as they can occur at any time.
However, based on such graphs, the DCD builds a

DGC-consistent cut that allows it to detect distributed
Fig. 2 DGC-consistent cut and process snapshots as seen by the DCD
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cycles of garbage safely. This cut is consistent w.r.t. the
finding of such cycles. The line in bold represents the
DGC-consistent cut. The right-hand side of Fig. 2 shows
the global graph as perceived by the DCD, based on the
graph descriptions received thus far; shaded stubs and
scions do not exist in the cut.
Thus, a DGC-consistent cut is a group of scions and stubs

that provide a safe view of the distributed object graph. This
group of stubs and scions provide a safe view of the distrib-
uted graph as long as the rules to define the root-set of the
CMS (performed by the DCD) are respected. In particular,
these rules specify which scions are members of the
root-set of the CMS, as explained next when CMS is
described in detail.
Smaller cuts comprising groups of processes that update

their snapshots more often may be created to increase detec-
tion promptness. Larger cuts spanning all processes that
send snapshots to the DCD will ensure completeness, but
need not be created frequently.
When a snapshot is included in a new DGC-consistent

cut, it is not copied but just referenced, since the DCD
never modifies them. It can thus be shared by several
cuts. Once a snapshot is included, newer versions of the
snapshot will not be considered by ongoing creations.
This ensures liveness even in the improbable situation of
a continuous flow of snapshot reception from several
processes.
Once a DGC-consistent cut is created, it can be forwarded

to the next stage, that is, phase (iii), or stored to be later
combined with other DGC-consistent cuts (more details in
the remaining of this section when optimisations are
discussed).

Conservative Mark-and-Sweep: This phase is performed
after a new DGC-consistent cut has been created.
Conservative mark and sweep is performed exclusively
within the DCD, on the DGC-consistent cut. There is no
exchange of messages with other processes, during this
phase. The marking is performed on a separate bit-map
that includes one bit per entry in the DGC-consistent cut.
This way, snapshots are untouched and may be referenced
by multiple cuts.
To be safe, CMS must take into account possible, and

highly probable discrepancies, among the moments when
the snapshots of the different processes are taken and
included in the DGC-consistent cut. There is no coordi-
nation among them w.r.t. to this activity, as they take snap-
shots at independent times. Thus, the CMS uses an extended
set of global roots that, conservatively, includes:

1. Objects that, in each application process, are directly
reachable from the GC local roots (stack and so on) must
be obviously considered roots of the CMS.
2. Scions whose corresponding stubs are included in pro-
cesses whose snapshot is not included in the
DGC-consistent cut (it may even be unavailable in the
DCD). These scions are members of the CMS root for
safety reasons. As a matter of fact, such scions may no
longer have a corresponding stub, and be removed after
reception of subsequent NewSetStubs messages.
Nonetheless, the DCD cannot know that for sure, using
therefore a conservative approach.
3. Scions with time-stamp greater than the highest time-
stamp (regarding the process where the targeted object
resides) known by the process holding the corresponding
stub. This is also a conservative approach. These scions
are those whose corresponding stubs have not yet been
created when the referring process recorded its snapshot.
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These scions verify the following condition.

scion.timestamp . VCPstub
[Pscion]

where:
4. scion.timestamp is the time-stamp given to the scion
when it was created,
5. VCPstub

is the vector-clock maintained by the process
holding the corresponding stub, and
6. Pscion is the identifier of the process holding the scion.

Note that with the above-mentioned rules, the DCD is
able to leverage causality information included in process
snapshots to make the cut consistent w.r.t. DGC purposes,
even though it is not consistent following Lamport’s defi-
nition [47].
Thus, CMS is performed starting with the extended

root-set, and tracing inter- (from stubs to scions) and intra-
process (from scions to stubs) references. Intraprocess refer-
ences are expectably more frequent, thus they are subject to
an optimised representation (described later). Naturally,
tracing an interprocess reference across snapshots from
two processes can only be performed if the corresponding
stub–scion pair exists in both of them, in the
DGC-consistent cut. As the end result of the CMS, scions
and stubs belonging to garbage are not marked.
Next, the DCD determines if unmarked scions and stubs

belong to distributed cycles and, for each cycle detected,
one of the comprised scions is selected and marked for
explicit deletion. Only scions that are simultaneously
garbage and, still referenced by stubs, can belong to a dis-
tributed cycle of garbage. Then, one, any or all of them
can be selected for deletion.
Those distributed garbage cycles that already existed

when the earliest graph description (included in the
DGC-consistent cut being processed) was created, and are
totally included in the graph descriptions available at the
DCD, are effectively detected and reclaimed. Thus, consid-
ering Fig. 2, all cycles that existed before tb that are totally
enclosed in processes P1, P2, and P3 are detected by the
DCD.
Sending of DeleteScion messages: Once a scion has

been selected for explicit deletion, a DeleteScion
message will be sent to the enclosing process. This
message can be sent at any time, without any race condition,
because the scion regards a reference that can no longer be
transversed by the application, because garbage being a
stable property, that is, once garbage, an object can never
become live again. Only one message is needed to break
each cycle, as the acyclic collector will then be able to
reclaim all remaining objects belonging to the cycle.
Nonetheless, sending DeleteScion messages regarding
several scions comprised in the same distributed cycle,
will definitely accelerate reclamation of all the objects com-
prised in the cycle. Messages regarding the same process
may be queued and sent in batch.
During the reclamation of the remaining acyclic garbage,

after a scion has been deleted, it may happen that its corre-
sponding stub is still included in ulterior NewSetStubs
messages. According to reference-listing, this does not
cause the re-creation of the scion (as this can only happen
via exporting a reference). Thus, the stub is ignored and
will eventually disappear as the remaining acyclic garbage
is reclaimed.
W.r.t each distributed cycle found, the number of

DeleteScion messages sent only influences the band-
width used and the speed of cycle reclamation.
DeleteScion messages that were sent and
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acknowledged, are recorded, using a best-effort approach, to
prevent issuing multiple messages regarding the same scion.
This may happen when the same cycle is detected in more
than one DGC-consistent cut.

4.2.4 Optimisations: The algorithm presented thus far is
subject to three optimisations that are described in this
section: (i) snapshot compression, (ii) use of multiple
DCDs in parallel and (iii) hierarchical composition of
DCDs. These optimisations do not affect algorithm safety
and improve both its performance and scalability.

Snapshot Compression: Snapshots containing object graphs
of processes, along with DGC information, may be very
large, possibly amounting to tenths or hundreds of mega
bytes. Sending these snapshots to the DCD process would
consume network bandwidth heavily and crumble appli-
cation performance and communication with other appli-
cation processes. Furthermore, once received at the DCD
process, the cumulative size of all the snapshots would
occupy a large amount of memory and disk. Since the
DCD would perform the CMS over these large snapshots,
cycle detection would become a CPU-intensive operation,
slowing it down drastically.
These problems are solved by summarising the object

graph (a snapshot) of each application process, prior to
sending it to the DCD. This is done in such a way that,
from the point of view of the DCD, there is no loss of rel-
evant information. This summarisation compresses a snap-
shot of an application graph into a set of scions and stubs,
with their corresponding reachability associations. As a
matter of fact, neither references among objects that are
strictly internal to a process, nor object scalar contents,
are relevant for the DCD; thus, they are not explicitly rep-
resented in the compressed snapshot. In the context of a
compressed snapshot, a process may be regarded simply
as a set of scions, with each one, possibly referencing one
or more stubs. Additionally, each stub is marked if it is
reachable from the GC local roots. This is exemplified in
Fig. 3.
The previous paragraph contains a simplification that will

be used in the remaining of the chapter. For clarity, when
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we say stubs that are reachable from a scion, or from the
GC local-roots, we actually mean: stubs accounting for out-
going references enclosed in objects, that are reachable
from a specific object, targeted by an incoming remote
reference (this one, represented by a scion), or by a GC
local-root.
This summarisation is performed on every snapshot,

locally to the process that generated the snapshot. The com-
pressed snapshot is then ready to be sent to the DCD
process. Thus, although processes can take snapshots by
serialising local graphs, these uncompressed versions
never leave the process. The DCD only uses them in their
compressed form, that is, after graph summarisation.
Snapshot compression reduces bandwidth usage severely

as no actual object content is transferred. The cost of trans-
ferring a snapshot is then proportional to the number of
scions and stubs in a process, and independent of the
actual number and/or cumulative size of the objects
located in a process. Furthermore, it also minimises com-
plexity and memory usage at the DCD process. This
allows the DCD to detect distributed cycles faster, and
manage more snapshots, as opposed to what it would be
able to, without snapshot compression. This allows the
detection of larger distributed cycles, spanning larger
numbers of processes, and comprising larger numbers of
objects. Once compressed, a snapshot may be sent to
several DCDs.

Multiple DCDs: Distributed cycle detection, for the purpose
of cyclic garbage collection, is performed by the DCD, in a
centralised manner. Notwithstanding, nothing prevents
there being multiple DCD processes running at the same
time, on different machines. A DCD may also be co-located
in the same machine where other application processes are
running, though it runs within its exclusive address space. It
need not be a dedicated machine. These issues do not affect
the correctness of the solution described. They are only
relevant w.r.t performance and scalability.

Hierarchical DCDs: The DCD algorithm achieves com-
pleteness and scalability w.r.t. size of distributed cycles,
using an hierarchical approach. Without it, a single DCD
is clearly not able to manage snapshots from an unbounded
Fig. 3 Summarisation of an object graph for snapshot compression

Objects reachable from more than on scion (i.e. S, U, Y, Z ) are highlighted
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number of processes. This, at least at a theoretical level,
would limit DCD completeness, for example a distributed
cycle spanning all processes would not be detectable,
because the comprising snapshots would not fit in a single
DCD process for CMS.
To circumvent this limitation, every DCD process,

besides detecting distributed cycles, is also able to
produce a combined, higher-level snapshot (from a
DGC-consistent cut), conservatively compressing all snap-
shots into one that, for DGC purposes, represents all pro-
cesses as a single one. Every interprocess reference (stubs
and scions) involving processes whose snapshots are not
available to the DCD is maintained in the combined snap-
shot. However, interprocess references comprised in the
snapshots included in the DGC-consistent cut can be
regarded as internal references of the combined snapshot,
and can therefore be summarised, as if they belonged to a
single process. This is different from the group-based
approach described in [32] that requires a single top-level
group, containing all existing processes, and tracing all
reachable objects individually.
Hierarchical snapshots bound the growth of snapshot

size, at the cost of only being able to detect those higher-
level distributed cycles that span enclosed snapshots.
Thus, distributed cycles fully comprised within a combined
snapshot are not detectable at a higher-level DCD.
Nonetheless, they are detectable at the lower-level DCD,
where the combined snapshot was first created from an
existing DGC-consistent cut.

4.3 Prototypical example

In this section we further describe the algorithm operation
with respect to prototypical examples. This example por-
trays how the algorithm operates when information from
some process(es) is either absent or outdated, and finally
when this information is sufficiently recent to detect a dis-
tributed cycle of garbage.
Objects are represented by their name (a letter) and their

enclosing process (e.g. AP1). Data structures have the
process where they reside mentioned last (e.g.
Stub(FP2)P1, for the stub in P1).
Subgraphs of connected objects may be represented in

abbreviation (e.g. ffA, C, BgP1, fF, G, HgP2g), aggregated
by its/their enclosing process. References may be also
explicitly described when relevant (e.g. BP1 ! FP2).
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We now present an example in which the DCD has access
to partial or outdated information, about one of the pro-
cesses holding objects comprised in distributed cyclic
garbage. In the initial situation portrayed in Fig. 4, the
DCD has no information from P1 available. It constructs
a DGC-consistent cut with snapshots from processes
P2. . .P4. Thus, even though there are no GC local roots
in any of the processes (since the mutator in P3 has
removed the one referencing object LP3), during the CMS
phase, Scion(FP2)P2 and Scion(IP2)P2 are promoted to the
root-set of the DGC-consistent cut.
Scion promotion is performed according to the safety

rules presented earlier, because the scions are targeted by
stubs contained in P1, of which the DCD knows nothing
about. Thus, conservatively, it must consider those scions
as roots to ensure safety. This is represented by the
dashed grey arrows.
When the DCD performs CMS on the DGC-consistent

cut, all objects become marked since they all are reachable
from FP2 or IP2. Thus, no cyclic garbage is detected, and no
DeleteScion messages are issued.

Fig. 4 Initial situation: no snapshot has been received from
process P1
Fig. 5 Steps (ii) and (iii): the DCD receives increasingly updated information from process P1
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After a period of time, the DCD eventually receives a
snapshot from P1 (Fig. 5), with the following information:

† Scion(DP1)P1 ) fStubsFrom ; fFP2gg

† Scion(EP1 )P1 ) fStubsFrom ; fIP2gg
† Stub(FP2)P1 ) fLocal.Reach ; falseg, since object AP1

is no longer referenced from the GC local roots in P1 (the
reference has been deleted by the mutator before the snap-
shot was taken).
† Stub(IP2)P1 ) fLocal.Reach ; trueg, since the other
reference from the GC local roots in P1, targeting object
EP1, has been deleted by the mutator only after the snapshot
in P1 was taken, as it is indicated by the dashed cross.

The DCD is then able to create a new DGC-consistent cut
containing snapshots from processes P1. . .P4. Its root-set
includes only Stub(IP2)P1, marked reachable locally, in the
snapshot from P1.
After performing the CMS, all objects belonging to the

inner cycle fEP1, IP2, PP4, LP3g are marked, whereas those
belonging to the outer cycle are unmarked. This means
the DCD is already able to detect the outer cycle but
needs more up-to-date information from P1 (though it
does not know that explicitly) to detect the inner cycle
that is also garbage but not detectable yet.
W.r.t. the outer cycle, the DCD can issue

DeleteScion messages regarding scions identified as
garbage. As already mentioned, these messages may be
queued and sent in batch lazily. Therefore process P1
may take another snapshot after that, which still contains
the same scions that were identified as cyclic garbage.
Thus, when the DCD receives the new snapshot from P1,
it is able to identify both cycles, because of the following
difference in the snapshot from P1.
Stub(IP2)P1 ) fLocal.Reach ; falseg, since the previous

reference from the GC local roots in P1 no longer exists and
that fact has been registered in its snapshot.
If the DCD has recorded the DeleteScion messages

issued previously, it will send DeleteScion messages
only regarding the inner cycle. Once the DeleteScion
messages are received by the intended processes, and the
corresponding scions removed, the acyclic DGC (reference-
listing) will be able to reclaim the objects comprised in the
two cycles detected.

4.4 Analysis of algorithm properties

In this section, we address the relevant properties of com-
plete distributed garbage collection, discussing them
against the algorithm proposed: safety, liveness, complete-
ness, termination, and scalability.

Safety: The DCD does not reclaim objects that may still
be reachable to the mutator, because of the safety rules
enforced in the CMS. The DCD is resilient and conservative
w.r.t. loss and delay of NewSnapshot messages.
Replayed NewSnapshot messages cause no error as
they are idempotent. Nonetheless, for simplicity, they are
ignored. Messages sent earlier, and received out of order,
are discarded; if considered, they would temporarily
prevent algorithm progress as DGC-consistent cuts would
go back in time.
Concurrency between cycle detection and the mutator

must be analysed w.r.t. two aspects: local and distributed.
In local terms, snapshots are taken when the mutator is
idle, or created incrementally. Nonetheless, the DCD
manipulates snapshots assumed to be coherent w.r.t. each
process. Regarding distributed invocations that may swap
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references to objects among processes, there are no concur-
rency issues with the DCD; a DGC-consistent cut reveals
cyclic garbage that already existed when the enclosed
snapshots were created, while the mutator only manipulates
live objects, which will be correctly accounted for during
CMS.

Liveness: Liveness of the DCD naturally depends on pro-
cesses updating their snapshots, and the DCD executing
CMS on DGC-consistent cuts containing those snapshots
recently received. This is guaranteed since
DGC-consistent cuts are always created with the most
recent version available for each snapshot. Snapshot
updates need not be performed often but processes with
mutator activity must eventually update their snapshots.

Completeness: To achieve completeness, the DCD must
eventually encompass all processes, in the sense that all of
them must be included in DGC-consistent cuts. This is
achieved using an hierarchical approach, by construction of
higher-level DGC-consistent cuts. Thus, all processes are
eventually considered, at some level, by a DCD, though
not necessarily explicitly included in the snapshots sent to it.
Every snapshot received at each DCD is always included

in some DGC-consistent cut, at some level. The DCD
ensures that periodically, a top-level DGC-consistent cut
is created that directly or indirectly spans all the processes
that sent snapshots to the DCD. This higher-level cut may
be sent to other DCDs it knows about.
The algorithm does not impose any pattern of cooperation

among the participating processes, it is only required that all
processes are eventually accounted for, directly or
indirectly, in higher-level DGC-consistent cuts that may
be exchanged among DCDs. Every DCD can perform at
any level, simply by receiving DGC-consistent cuts from
other DCDs and creating higher-level cuts, possibly exchan-
ging them with other DCDs as well.
W.r.t. identification of garbage, even in the case where

DeleteScion messages have not been issued for all
scions identified as garbage in one DGC-consistent cut,
and individual disjoint cycles have not been specifically
identified, the algorithm still achieves completeness even-
tually. The remaining scions will either be removed by
the acyclic DGC (when they belong to the same cycle) or
will be explicitly instructed for deletion in ulterior
DGC-consistent cuts. This is so because the DCD
chooses, in first place, scions for which DeleteScion
messages have not been issued yet.

Termination: CMS performed on each DCD terminates
since it is performed resorting exclusively to information
available locally, and the termination of mark-and-sweep
algorithm is trivially sound because there is no concurrency
with the mutator in the context of the DCD.

Scalability: The discussion of algorithm scalability
derives from some of the arguments for completeness.
The algorithm can scale to large numbers of processes
because it imposes neither synchronisation requirements
nor communication among them. There may be multiple
DCDs running, possibly cooperating asynchronously in a
loose hierarchy. Compressed snapshots are smaller, use
limited bandwidth, are only sent occasionally and can be
subject to CMS even if stored on disk (as in [48]).
It’s worthy to note that with this information, the cycle

detector does not perform a full garbage collection (as in
Liskov’s proposal [36]). Moreover, multiple DCDs are
independent and not simply the replicas of a centralised
detector.
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The deferred nature of the DCD is exclusively used to
detect cyclic distributed garbage collection. Snapshot com-
pression and the possibility of multiple DCDs, in parallel as
well as in a loose hierarchy, contribute to algorithm
scalability.
The hierarchical approach does not require a strict top-

ology (e.g. tree) and any DCD process can perform at any
level of the hierarchy if it is contacted by others. There is
no single top-level root of the hierarchy.

5 .NET support

This section describes the features of the target system that
are fundamental to understand the proposed solution (for
more details consider [49]). The target system exposes the
distributed memory model described in Section 3. Using
.NET remoting terminology, types are categorised as
nonremotable or remotable. Only instances of types in the
last category are permitted to cross process boundaries.
In .NET terminology, a process may be regarded as an
application domain. Note that an object is said to cross
process boundaries each time it is included in the actual
parameters list, or return value, of a remote method call.
Remotable types are further refined into two subcate-

gories: marshal-by-value and marshal-by-reference. The
subcategory to which a given type belongs determines its
instance behaviour in process boundary crossings. As their
names suggest, marshal-by-value instances are passed by
value, that is a copy is used. On the other end,
marshal-by-reference instances are passed by reference,
meaning, the instance global identifier is used.
A type is categorised as marshal-by-reference, if it inher-

its (directly or indirectly) from System.Marshal
ByRefObject. Global identifiers are represented by
instances of System.Runtime.Remoting.ObjRef,
itself a marshal-by-value type.
For a type to be classified as marshal-by-value it must be

annotated with the attribute Serializable. This
requirement is justified by the mechanism used for copy cre-
ation. This mechanism, commonly known as serialisation,
produces a byte sequence containing the internal state of
all objects included in a given graph.

5.1 Communication infrastructure

Although communication is modelled as remote method
calls, it is ultimately achieved through message exchange
between client and server processes. When a method call
is made, a message composed of the parameters is sent
from the client process to the server process (these par-
ameters include object and method identifiers). The
method call result is obtained from the received return
message.
The previous observation forms the basis of the .NET

Remoting communication infrastructure architecture.
Communication is supported by a configurable chain of
message-processing nodes inspired in the name usually
used to refer to computer network participants, generally
called message sinks. The chain end-points, transparent
proxy and stack builder sink, are responsible for converting
between stack frames and messages. The remaining nodes
constitute the node set that supports the communication pro-
tocol. This node set is named channel.
The transparent proxy function is to represent the server

object at the client process. In other words, the client
object invokes methods on the transparent proxy which, in
turn, delegates to the associated real proxy the conversion
of these calls into messages forwarded to the next node in
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the chain. The method call result is produced based on the
received return message.
The stack builder sink represents the client object at the

server process. Received messages, passed along the node
chain, are converted to local calls on the server object.
The return value is converted to a message that is sent
back through the chain.
The chain is physically split across participating pro-

cesses. The half that resides at the server process is consti-
tuted upon remote object activation. The other half is
created at the client process upon reception of the corre-
sponding ObjRef instance. To enable client side chain cre-
ation, the received ObjRef, sent by the server process,
contains all the required information (e.g. location infor-
mation, remote object identifier).
The previously described architecture offers several

customisation opportunities, in particular, through the
definition of new channels and new real proxy types.

Lifetime Management: In .NET, remote objects are
reclaimed using a lease-based algorithm. The lease value
determines if the associated remote object is alive. In each
remote call for a given remote object, its lease is automati-
cally renewed. When an object is considered dead (if its
lease has expired) the corresponding memory is reclaimed.
The previously described approach is not safe since

remote objects may be, erroneously, considered dead. For
example, consider a client holding a remote reference and
not making use of it for a time interval greater than the
lease time. In this scenario, the client process will obtain
an error when it tries to use the remote reference (i.e. by
calling a method on the referred remote object).
To prevent such errors, the application has the opportu-

nity to register sponsors that will decide about lease
renewal. Each process contains a lease manager that
tracks leases that are associated with remote objects.
Periodically, the lease validity is checked and, if it has
expired, registered sponsors are queried about the lease
renewal. Although interesting, this solution only shifted
the problem of memory reclamation to the application pro-
grammer domain.

5.2 AOP support

Kiczales et al. [50] argue that object-oriented programming
(OOP) failed to deliver the promised clean problem
decomposition. In fact, applications tend to be polluted
with code snippets not directly related to the problem
domain, but instead, related to other concerns, such as
system level issues (e.g. security, transaction management,
concurrency control). Other non-system concerns include
business-related issues, GUI design, pattern integration
and so on. A similar observation, with respect to memory
management, led to the pro garbage collection argument
used by Wilson [2], in which the existence of such a
service was considered a fundamental requirement for
accomplishing program modularity.
In AOP, system properties are classified as components

or aspects. Components contain the implementation of
system properties directly related to the problem domain
resulting from its functional decomposition. Aspects are
the implementation of properties related to system level
concerns and are transversal to problem domains. The
overall system is the resulting combination. The process
of combining components and aspects is named aspect
weaving.
Although there are several approaches to aspect weaving,

usually performed via code instrumentation (e.g. source
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code instrumentation), only runtime aspect weaving will be
considered in the current document.
The target system in both considered implementations,

CLR and Rotor provides support for runtime aspect
weaving, performed through method call interception. The
provided method call interception infrastructure, described
in [51], is based in the .NET Remoting communication
infrastructure, described in Section 5.1, and is known as
context architecture.
Although this built-in AOP-support and its usage may be

regarded as rudimentary (as it only supports method call
interception), it is nonetheless useful to our purpose of port-
ability, that is, avoiding modifications to either the virtual
machine, application source or byte-code.

Context architecture: In this architecture, processes are
subdivided in contexts. A context is the runtime environ-
ment that results from the addition of a particular set of
aspects to the base system properties. This is performed
by extending the call chain, described in Section 5.1, with
additional message-processing nodes. These additional
nodes are the provided call interception opportunities
(also named join points in AOP terminology).
To selectively accomplish the afore-mentioned call chain

extension, marshal-by-ref types were further refined into
two subcategories: context-agile and context-bound types.
Only types in the latter category are considered in the
context architecture. A type is classified as context-bound
if it inherits (directly or indirectly) from System.
ContextBoundObject.
The association between component (context-bound type)

and aspects (sets of nodes in the call interception chain) is
performed by annotating the component with the
Context attribute. This type of custom attribute (.NET
support for metadata extension) is responsible for specifying
the required context for the annotated type instances by
contributing with the necessary message-processing nodes.
Fig. 6 depicts the chain general composition. It is parti-

tioned into four distinct regions, namely, envoy sinks,
client context sinks, server context sinks and object sinks.
To help understand the provided interception opportunities,
consider the existence of two contexts (client and server)
and the propagation in the chain of the message that corre-
sponds to a method call. The sequence of events for the
return message is reversed. For simplicity, we assume that
each context resides in a separate process.
While still in the client context, two sets of sinks partici-

pate in call interception: envoy sinks and client context
sinks. Although envoy sinks reside in the client context,
they were specified by the server and are
target-object-specific. They present an opportunity for

Fig. 6 .Net remoting context architecture
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collecting information regarding the client, for usage at
the server context.
The next sinks that are given the opportunity to intercept

the call are client context sinks. This set is specified by the
context from which the call is originating.
The remaining two sets of sinks will participate in call

interception upon arrival at the server context. Both sets
are specified by the server and their names, server context
sinks and object sinks, suggesting their purpose. The first
set is shared by all instances residing in the server
context. The second is specific to each instance. As an
example, consider the automatic renewal of a remote
object lease. In this case, the .NET remoting infrastructure
uses an object sink to renew the lease each time the
object receives a remote call.

6 Implementation and performance results

In this section we present the implementation details that
are fundamental to understand the proposed solution. The
implementation follows an architecture based on a clean
separation between relevant event detection, required infor-
mation gathering and the implementation specific to the
DGC service. It is composed of two layered modules: (i)
the lower module named instrumentation and (ii) the
upper module named DGC Service. This layered organis-
ation was adopted to simplify the usage of the DGC algor-
ithm in other implementations of the target distributed
object system; the only module that requires modification
(if any) is the one named instrumentation. The function of
the instrumentation module is to gather the required infor-
mation for the execution of the acyclic distributed garbage
detection.
The functionalities provided by the instrumentation

module are (i) detection of remote reference import, for
stub table update; (ii) detection of remote reference
export, for scion table update; (iii) detection of LGC cycle
termination and for stub table update, gathering of infor-
mation related to unreachable outgoing remote references;
(iv) local object graph snapshot creation, for cycles
detection.
The DGC service module includes the following

elements: (i) an extension of the local root set, to include
information about locally hosted objects that are remotely
reachable (scion table); (ii) a conservative estimative of
locally held remote references (stub table) used to update
remote scion tables; (iii) a well known communication end-
point for DGC protocol message exchange.
The previously enumerated functionalities are included in

all participating processes. Additionally, one of the partici-
pating processes (DCD) is responsible for performing the
detection of distributed cycles. This process includes: (i) a
well known communication endpoint that receives snap-
shots from participating processes and (ii) the component
responsible for DCD operation.
For the purpose of distributed garbage collection, marshal-

by-reference types are classified as dgc types or non-dgc
types. Only instances of dgc types are subject to DGC. This
classification provides a choice between using the proposed
.NET remoting extension, or the default lifetime manage-
ment service. A type is classified as dgc type if it inherits
(directly or indirectly) from RemoteObject (System.
Runtime.Remoting.DGC.RemoteObject).

6.1 DGC service module

Local root set extension is performed by using the default
lifetime management service, in particular, by registering
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a local sponsor. This sponsor is shared by all dgc type
instances hosted in the process. When queried about lease
renewals, the sponsor responds according to the instance
interprocess reachability status, maintained in the scion
table.
The conservative estimation of locally held remote refer-

ences (stub table) is updated upon LGC execution cycle ter-
mination. This event triggers the execution of a low-priority
background thread that discards stubs related to unreachable
outgoing remote references. This is done using weak refer-
ences, a system-provided mechanism for referencing
objects without preventing their reclamation. Each stub
holds weak references for all locally held transparent
proxies to its associated remote object. Note that, at the
client process, and for a given remote object, more than
one call chain may exist. The stub is discarded when all
its weak references are invalid, meaning, all referred trans-
parent proxies were collected.
The previously described techniques require additional

event detection, namely: (i) LGC execution cycle termination,
to trigger the low-priority background thread execution; (ii)
transparent proxy creation, to refer the created proxy from
the corresponding stub, using a weak reference.
The remaining elements in this module are the required

well known communication endpoints. They are
implemented as stateless remote objects that exist for the
entire lifetime process.

6.2 Instrumentation module

The presented solution does not require modifications to the
underlying virtual machine. Additionally, this module was
used without modifications in two implementations of the
CLI, CLR and Rotor.
To detect LGC cycle execution termination, an unreach-

able singleton instance of type System.Runtime.
Remoting.DGC.LocalGcDetector (a dummy
object) is used. This type redefines the Finalize
method to generate the event of LGC cycle execution ter-
mination. Since the singleton instance is never reachable
from the local root set, it is considered garbage. As a conse-
quence, it is eventually collected and its Finalize
method is called, generating the required event and creating
a new unreachable instance.
As described in Section 1, the .NET communication

infrastructure provides two extensibility points: channels
and real proxies. Although it would be possible to detect
remote reference import and export through the definition
of a custom channel that would perform the required
message scanning, this solution would force the usage (by
the application) of that particular communication channel.
Alternatively, the DGC service is considered an aspect,
and the provided context architecture is used. This approach
does not impose a specific communication channel.
The base type for dgc types, named RemoteObject, is

a ContextBoundObject derivate. It is annotated with a
context attribute that adds an envoy sink to the call intercep-
tion chain. Additionally, the context attribute performs
proxy creation detection, since it has the opportunity to
inject a custom real proxy in the interception call chain.
Although the envoy sink can be used to scan all messages

that traverse the call chain, this is not the proposed solution
because of the performance penalties that would result from
intensive message scanning. Based on the observation that
envoy sinks are part of the client side call chain, a con-
clusion can be drawn; envoy sinks must be an extension
of the ObjRef instances that represent the remote object.
By detecting serialisation and deserealisation of the inserted
IET Softw., Vol. 1, No. 6, December 2007
envoy sink, we can detect remote reference export and
import, respectively. Upon serialisation, the envoy sink
transports the DGC-required information (e.g. scion identi-
fier). With this solution, detection of remote reference
boundary crossings only imposes performance penalties
when application messages effectively contain remote refer-
ences. This is a fundamental characteristic of our implemen-
tation since it contributes decisively to the encouraging
performance results (see next section).
Finally, and for distributed garbage cycles detection,

snapshot creation is performed by specific application
request. For that purpose, the application programmer
must contribute by registering local application roots with
the DGCService (this is necessary because thread stacks
are not first-class objects in .NET).

6.3 Performance results

Because of the deferred nature of the implemented DGC
algorithm, the majority of the DGC-related tasks are exe-
cuted in a low-priority background thread to prevent pena-
lising application performance. Nevertheless, it is essential
that, eventually, these tasks are given the opportunity to be
executed. Failure to comply leads to undetected garbage
accumulation.
Note that undetected garbage accumulation is not actu-

ally a problem, since its growth (beyond configured
limits) can trigger a priority boost of the background
thread, forcing its detection and consequent reclamation.
Naturally, this has a negative impact (but necessary) on
application performance.
The DGC-related tasks that are performance critical are

those that impose application pause times (i.e. no
application-related work is being done, regardless of the
urgency). These pause times occur when DGC book-
keeping is performed in application enrolled threads (i.e.
synchronously). Our main performance implementation
requirement was the minimisation of these pause times,
imposed by the following tasks: (i) remote reference
usage, i.e. remote method calls made through the extended
call chain; (ii) remote reference import and export detec-
tion; iii) local snapshot creation, for cycles detection. For
the time being we have focused on measuring the perform-
ance penalties imposed by the first two since the latter can
be performed when the application is idle. This is a valid
approach since distributed garbage cycles are not frequent
and thus, the required local snapshot creation can be selec-
tively deferred to minimise application disruption.
In the next subsections, the presented times are the average

of 100 samples of the execution time of each sequence of
actions to evaluate. Efforts have been made to ensure that
no LGC and DGC collections occur while evaluating the
costs of each sequence of actions. Although these measure-
ments are presented as absolute times, their single purpose
is to underline the working temporal scale. Conclusions
were drawn only from the observed variations between
measured times with and without DGC-related operations.

6.3.1 Remote reference usage: The goal is to evaluate
time overhead imposed by the usage of the extended call
chain in remote invocations. Note that an additional node
exists in call chains associated with dgc-type instances.
Since this additional node is a pass-through, meaning, it
just forwards messages to the next node in the chain (it is
not actually scanning passing messages), the expected
additional cost is low.
In the following scenarios, two processes are used:

a client and a server process. The client performs a
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remote invocation on an object hosted at the server process.
The elapsed time is measured at the client, hence it includes
round-trip and remote method service times.

Scenario A: This is a worst case scenario. Both processes
are hosted in the same computer and the called method
does not perform useful work (i.e. empty method body).
Results: non-dgc type ¼ 260.3 ms; dgc type ¼ 310.4 ms;
D ¼ 19.25%
Scenario B: Both processes are hosted in the same computer
and the called method does perform some simulated work
(’1 ms long).
Results: non-dgc type ¼ 1021.4 ms; dgc type ¼ 1031.4 ms;
D ¼ 0.98%
Scenario C: Each process is hosted in a separate computer
and the called method does not perform useful work.
Results: non-dgc type ¼ 6618.8 ms; dgc type ¼ 6719.1 ms;
D ¼ 1.52%

With scenarios A and B we intend to show the effects of
the inclusion of reality factors (i.e. network latency or useful
work execution) in the relative cost associated with the
usage of the extended call chain. This cost is masked by
each factor introduced. From the previously stated we con-
clude that, as expected, in real-world applications there is no
significant penalty for using the proposed DGC solution.

6.3.2 Remote reference import and export
detection: Here, the goal is to measure time overhead
associated with the export and import of remote references
to a dgc-type instances, as opposed to remote reference
export and import to non-dgc-type instances. The measured
time includes client and server data structure update times
and remote reference propagation.
These performance results represent the cost associated

with scanning messages that contain remote references and,
as a consequence, updating DGC data structures. Again,
the elapsed time is measured at the client end, hence it
includes round-trip and remote method service times.

Scenario A: This is a worst case scenario. Both processes
are hosted in the same computer and the called method pro-
duces a remote reference without performing additional
useful work.
Results: non-dgc type ¼ 720.9 ms; dgc type ¼ 1091.5 ms;
D ¼ 51.4%
Scenario B: Again, a worst case scenario. Both processes
are hosted in the same computer and the called method pro-
duces ten remote references without performing additional
useful work.
Results: non-dgc type ¼ 5009.9 ms; dgc type ¼ 7013.9 ms;
D ¼ 40%
Scenario C: Both processes are hosted in the same computer
and the called method, besides producing the remote refer-
ence, also performs some simulates work (’1 ms long).
Results: non-dgc type ¼ 1161.6 ms; dgc type ¼ 1442 ms;
D ¼ 24.14%
Scenario D: Client and server processes are hosted in separ-
ate computers. The called method produces a remote refer-
ence, without performing useful work. No network payload
imposed by the application.
Results: non-dgc type ¼ 9009.2 ms; dgc type ¼ 11331.6 ms;
D ¼ 25.78%

Again, the inclusion of reality factors (i.e. network
latency, in scenario D, or useful work execution, in scenario
C) takes performance penalties to encouraging values, when
considering the benefits of the usage of the proposed
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solution. Note that the measured costs are relative to serial-
isation and deserialisation of the extended ObjRef (with
the envoy sink), not to DGC data structure updates. This
statement is supported by benchmarks that show costs of
data structure update below 100 ns.
Finally, the performance of the evaluated tasks does not

depend on the number of scions and stubs in the DGC
data structures, since only O(1) operations are used.

6.3.3 Snapshot compression: To evaluate the perform-
ance of snapshot compression, we used a synthetic bench-
mark based on data taken from previous work on memory
behaviour in the Java virtual machine. This choice is
because of the fact that there is more and earlier work, in
this subject, developed in the context of the JVM.
Naturally, similar results would apply to .NET, given the
similarities between the JVM and the .NET CLR w.r.t.
object representation (namely, class and monitor refer-
ences), and between the Java and C# languages. Thus,
memory behaviour of applications should be similar, w.r.t.
snapshot compression, in both environments.
The DGC-consistent cuts algorithm requires reachability

information among scions and stubs to be stored. The quan-
tities involved, and the calculations performed, to estimate
the size of a compressed snapshot, and consequent com-
pression ratio, are described next.

1. NObj: number of objects in memory.
2. NScions: number of scions (i.e. distinct incoming inter-
process references targeting objects in the process).
3. NStubs: number of stubs (i.e. distinct objects located in
other processes, targeted by interprocess references, con-
tained in objects of the process).
4. GraphSize ¼

P
i
NObj size(obji)

5. ScionSetSize ¼
PNScions size(scion)

6. StubSetSize ¼
P

NStubs size(stub)
7. size(ScionReach) ¼ size(scion)þ (NStubs)/8 (since 1
byte ¼ 8 bits)
8. size(StubReach) ¼ size(stub)þ 1 (conservative inclusion
of extra-bit for reachability from local-root)
9. ScionReachSetSize

¼
XNScions

[size(scion)þ d(NStubsþ 1)=8e]

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

10. StubReachSetSize ¼
XNStubs

[size(stub)þ 1]

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

11. SnapshotSize = GraphSize + ScionSetSize + StubSetSize

SnapshotSize ¼
XNObj

i

size(obji)

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{
þ

XNScions
size(scion)

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{

þ
XNStubs

size(stub)

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{

12. CompressedSize = ScionReachSetSize + StubReachSet
Size CompressedSize =

XNScions
[size(scion)þ d(NStubsþ 1)=8e]

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

þ
XNStubs

[size(stub)þ 1]

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

13. CompressionRatio ¼
SnapshotSize

CompressedSize
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The memory behaviour of Java programs has been
studied in the literature [52–55], using different (and
some times optimised) implementations of the Java virtual
machine. In these tests, the average size of the Java heap
is 150 MB. Average object size is small in Java (and expec-
tably in .NET as well) as the previous work demonstrates,
averaging 30 bytes or less.
However, previous work does not consider character,

byte and reference arrays, as private object data. They
only consider the cost of storing primitive data and refer-
ences to other objects. If these indirect costs are attributed
to object instances, then the average object size (for most
cases) will vary between 36 and 236 bytes [55]. Therefore
both 64 and 128 bytes are useful and practical estimations
for average object size, occupying respectively, 16 and 32
memory words, 32-bit wide.
As typical heaps in the study have 150 MB in size, this

would amount to almost 2.5 million objects of 64 bytes.
We assume that the number of objects referenced remotely,
in large heaps, will be in the order of thousands; we will
consider two boundary scenarios to the ratio between
local and remote objects: between 100/1 and 2000/1.
To the best of our knowledge, there are no available

measurements w.r.t. the actual density of remote references
in application graphs, that is, the fraction of objects
involved in remote references when compared with total
number of objects. The assumption employed is based on
other assumptions from several sources: (i) books on
Enterprise Java Beans [56], other discussion fora related
to EJB [57], RMI online documentation [58] and RMI
debug information available in [59]. All these sources
suggest that medium-sized servers contain thousands of
objects targeted remote references.
To estimate the size occupied by scions and stubs, con-

sider that a non-optimised representation of a stub or
scion, without reachability information, requires at most:

† two 32-bit words for object header (classID, lock,
hashCode and so on).
† one word for IP address.
† one word for object ID, within the process.
IET Softw., Vol. 1, No. 6, December 2007
† one word for invocation counter/time-stamp.

In the compressed snapshot, an additional reachability
bit-map is required, whose maximum size in words is
NStubs/32. Thus, the base size of scions and stubs is 20
bytes, with added reachability information that is dependent
on the number of stubs.
We now present the calculation for a synthetic test-case:

a 150 MB heap, with average object size of 64 bytes, and a
ratio of local to remote objects of 1000 to 1. We assume an
equal number of scions and stubs. The results are the
following:

1. NObj ¼ 2 457 600
2. NScions ¼ 2458
3. NStubs ¼ 2458
4. GraphSize ¼ 157 286 400 bytes
5. ScionSetSize ¼ 49 160 bytes, with scions and stubs
occupying 20 bytes each.
6. StubSetSize ¼ 49 160 bytes
7. size(ScionReach) ¼ 20þ d(2458þ 1)/8e ¼ 20þ 307 ¼
327 bytes
8. size(StubReach) ¼ 20þ 1 ¼ 21 bytes
9. ScionReachSetSize ¼ 803 766 ¼ 785 KB
10. StubReachSetSize ¼ 51 618 ¼ 50.4 KB
11. SnapshotSize ¼ 157 286 400þ 49 160þ 49 160 ¼
157,384,720 bytes ¼ 150.09 MB
12. CompressedSize ¼ 803 766þ 51 618 ¼ 855 384
bytes ¼ 0.8158 MB
13. CompressionRatio ¼

157 384 720

855 384
¼ 183:99 times

Following the previous example, Fig. 7 presents a study
of how the size of compressed snapshots varies with
changes in average object size, and the ratio of local
against remote objects. The graphs show the results con-
tained in the top table, using linear and logarithmic scales.
The graphs show that the size of compressed snapshots
decreases (and the compression ratio increases) geometri-
cally, with the ratio of local against remote objects.
Doubling this ratio produces compressed snapshots with a
Fig. 7 Results of snapshot compression for synthetic 150 MB heaps
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size four times smaller. Conversely, compression ratio
increases by a factor of four.
Break-even for 64-byte objects is reached with a ratio of

local against remote objects below 70. For 128-byte objects,
the break-even is reached with a ratio below 35. However,
note that the size of compressed snapshots also varies geo-
metrically with average object size. For a heap with the
same size, if the average object size doubles, there will be
half the objects. This results in, for the same ratio among
local and remote objects, a reduction of stubs and scions
to half. Since the size occupied for each scion grows linearly
with the number of stubs (while stubs maintain a constant
size), the size of the resulting compressed snapshot will
be dominated by scion size; thus roughly four times smaller.
When the number of stubs reachable from each scion is

5%, reachability bit-maps are replaced with a vector of
indexes. This results in an improvement of 21.25%, thus
with a compression factor of 223.10 (instead of 183.99) in
the previous example.

Discussion: In the context of actual application execution,
the adoption of the DGC solution presented reduces
memory usage in participating processes, with consequent
performance benefits by detecting and reclaiming distribu-
ted garbage. This is achieved while ensuring programming
soundness (safety) and preventing memory exhaustion in
long-running applications by detecting distributed cycles
of garbage (completeness). The performance impact
(w.r.t. total time overhead) imposed to distributed appli-
cations by the DGC solution proposed can be drawn from
the performance results described for managing remote
references and snapshot compression. Therefore assuming
a ratio of local to remote objects of 1000 to 1, and
uniform distribution of invocation of all distributed
objects, the overhead presented for remote reference
usage, import and export is further mitigated during actual
application execution. Moreover, this overhead can be
completely masked if distributed invocations exchange
larger-sized objects or more complex object graphs,
while improving on the built-in lease-based approach
that requires communication for periodic renewal of each
lease.

7 Conclusions

In this document we presented a solution for extending
.NET remoting with a DGC service. The DGC algorithm
is characterised as safe, complete (i.e. able to detect all
garbage objects including distributed cycles), and scalable
to large numbers of objects and processes.
The main contribution is a DGC algorithm design, archi-

tecture and implementation based on non-intrusive tech-
niques (i.e. runtime instrumentation), meaning, it does not
require modifications neither to the virtual machine, nor
to application source or byte-code. To accomplish it, the
existing built-in AOP-support in a commercially used
runtime (i.e. .NET) is leveraged, allowing immediate
adoption.
We find the performance results encouraging, consider-

ing the benefits associated with the usage of the resulting
programming model. They show the feasibility of the
approaches and techniques employed. We highlight (i) the
use of method call interception to monitor reference-passing
between processes with minimum overhead, as well as (ii)
savings in bandwidth and DCD complexity provided by
snapshot compression. The combination of these with the
possibility of using multiple parallel and hierarchical
DCD promotes algorithm scalability.
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In conclusion, this work provides an useful extension to a
significant runtime environment (.NET with Remoting) as
more and more applications are being developed targeting
distributed environments, such as clusters (also integrating
grid infrastructures), employing distributed virtual
machines.
In the future work, we intend to investigate the appli-

cation of the same techniques to other virtual machines,
for example, to provide Java RMI with a complete and por-
table DGC. We also want to extend our performance study
using standard benchmarks (e.g. OO7).
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