World Scientific

Vol. 23, No. 1 (2014) 1440002 (33 pages) orC SClene

© World Scientific Publishing Company
DOI: 10.1142/50218843014400024

International Journal of Cooperative Information Systems \\p

Interest Aware Consistency for Cooperative Editing
in Heterogeneous Environments

André Pessoa Negrao®, Jodo CostaT, Paulo Ferreira® and Lufs Veiga§

Distributed Systems Group, INESC-1D
Instituto Superior Técnico, Universidade de Lisboa
Rua Alves Redol 9, Lisboa, Portugal
*andre.pessoa@ist.utl. pt
Yoao.da.costa@ist.utl.pt
fpaulo.ferreira@inesc-id. pt
Sluis. veiga@inesc-id.pt

Received 15 January 2013
Accepted 28 March 2014
Published 5 May 2014

Cooperative editing applications enable geographically distributed users to concurrently
edit a shared document space over a computer network. These applications present sev-
eral technical challenges related to the scalability of the system and the promptness with
which relevant updates are disseminated to the concerned users. This paper presents
Cooperative Semantic Locality Awareness (CoopSLA), a consistency model for cooper-
ative editing applications that is scalable and efficient with regards to user needs. In
CoopSLA, updates to different parts of the document have different priorities, depend-
ing on the relative interest of the user in the region in which the update is performed;
updates that are considered relevant are sent to the user promptly, while less important
updates are postponed. As a result, the system makes a more intelligent usage of the
network resources, since (1) it saves bandwidth by merging postponed updates and (2)
it issues fewer accesses to the network resources as a result of both update merging and
message aggregation. We have implemented a collaborative version of the open source
Tex editor TexMaker using the CoopSLA approach. We present evaluation results that
support our claim that CoopSLA is very effective regarding network usage while fulfilling
user needs (e.g. ensuring that relevant updates are disseminated in time).

Keywords: Cooperative editing; optimistic replication; data consistency; interest man-
agement; divergence bounding.

1. Introduction

Cooperative editing applications enable geographically distributed users to concur-
rently edit a shared document space over a computer network.! Recently, these
applications experienced an increase in popularity as a result of the expansion of
the Internet and the rapid proliferation of mobile devices, such as smartphones,
PDAs and tablets.? These modern devices are now sophisticated enough to allow
their users to execute cooperative editing applications and participate in editing

1440002-1

http://dx.doi.org/10.1142/S0218843014400024

A. P. Negrao et al.

sessions alongside more powerful devices (such as desktops or laptops),® possibly
mediated by cloud infrastructures.*

A critical technique to support cooperative work in these new heterogeneous
environments — that mix resource constrained and powerful devices, interacting
over wired and wireless networks — is to replicate the application data at the users’
devices and resort to optimistic protocols to manage the consistency of the shared
state. Optimistic replication® has the potential benefit of improving performance,
availability and usability by allowing faster (local) access to the data. It also makes
an efficient use of the resources, since it does not require constant access to the
network for synchronization purposes. Optimistic mechanisms have been exten-
sively applied to cooperative editing, in particular the Operational Transformation
paradigm?%? and, more recently, Commutative Replicated Data Types.!10 14

While the state-of-the-art solutions provide a fair compromise between consis-
tency and performance, we identify two aspects that can be leveraged to improve
the performance and overall usability and experience of cooperative editing applica-
tions. First, we observe that the available solutions are oblivious to the variable and
highly dynamic characteristics of group work, in which different users are interested
(and work) on different parts of the document space: (i) a user is more interested in
the zone(s) of the document that he is editing (e.g. a section, a paragraph, etc) and
a few other observation points, rather than the whole document space equally; and
(ii) the user’s interest in the different parts of the document space varies over time.

15-18 are typically prone

Second, optimistic systems based on eventual consistency
to some level of uncertainty and disruption: while the system is ensured to converge
in the future, there is limited or no support to determine how up-to-date is the data
observed by the user, and to establish and enforce clear bounds or guarantees to
the consistency state of each user.

In this work we argue that it is possible to make a more efficient and scalable
usage of the network resources by taking the users’ interest into account. To address
this issue, we propose Cooperative Semantic Locality Awareness (CoopSLA), a
consistency model that unifies several well-known concepts of the distributed sys-
tems field: interest management,'® locality-awareness and divergence bounding.2?
In CoopSLA, updates are assigned a per-user priority level based on their seman-
tic distance to the user’s observation point(s) (interest management). Updates to
document regions closer to the observation points are considered more relevant
and, thus, are awarded higher priority; priority decreases as the distance to the
observation point increases (locality-awareness). In each priority level, updates are
managed according to a parameterizable, multidimensional consistency space that
determines under which conditions updates are allowed to be postponed and when
they must be propagated (bounded divergence).

With CoopSLA, we are able to make a more intelligent and semantically mean-
ingful usage of the network resources: by postponing updates with lower priority
(i.e. updates to less relevant data), the system is able to merge and aggregate
them, minimizing the number of accesses to the network and reducing bandwidth.

1440002-2

Interest Aware Consistency for Cooperative Editing

Such an efficient network usage is of particular importance when mobile devices
and wireless connections are in use. As a matter of fact, wireless networks provide
low bandwidth with high latency, which has a significant impact on performance
and interactivity.?! Furthermore, a high number of accesses to the network greatly
increases battery consumption.?? Thus, minimizing the number of accesses to the
network resources allows for improved performance and better device autonomy.

In addition, due to its divergence bounding approach to consistency mainte-
nance, CoopSLA establishes clear and explicit bounds on the amount of replica
deviation allowed. As such, it provides users with stronger guarantees regarding
the actual consistency state of the document space.

We implemented a middleware layer that enforces the CoopSLA model. Using
the CoopSLA middleware, we implemented a collaborative version of the popular
Tex editor TexMaker. We present experimental results that support our claim that
CoopSLA is able to reduce the overhead of replica synchronization while respecting
the consistency needs of users for each particular text excerpt (which can be a
chapter, a section, a paragraph, etc with no restriction).

The remainder of the paper is organized as follows. Section 2 introduces relevant
concepts and describes the main assumptions of our work. Section 3 describes the
CoopSLA consistency model in detail. Section 4 presents the main architectural
aspects of the CoopSLA middleware. Section 5 overviews the implementation of our
solution. Section 6 presents and discusses the experimental results. Related work is
presented in Sec. 7. Section 8 concludes the paper and, finally, the pseudocode of
the main algorithms is presented in Appendix A.

2. System Model

In a cooperative editing session, multiple geographically distributed users concur-
rently edit a shared document space. The document space can be, for example, a
Latex document, a wiki, an XML representing a Word document or a set of such
(master and input) files to be included in the final document rendering. Common
to these scenarios is a hierarchical structure of semantic regions, which are logical
sub-divisions of the document space (e.g. a file, a \section or a text paragraph of
a Latex document). Also, semantic regions may have logical references to other
regions (e.g. a Latex \ref or a link on a web page). When considering the interest
of a user, both the structure of the document space and the references between its
components must be taken into account.

We model the document space as a rooted directed graph G = (V, E). Each
vertex V' corresponds to a semantic region of the document space and there is an
edge (vi,v;) between vertices v; and v; if there is a relation between the two. We
consider two types of relations: a structural edge connects two vertices that have a
parent/child relation that is part of the hierarchical organization of the document
(in a Latex document, for example, a \ chapter has a structural relation with each
of its child \section); a semantic edge is a non-structural edge that connects two

1440002-3

A. P. Negrao et al.

vertices that have an application-specific reference between them (e.g. a \refin a
Latex document or a link in a web page). Structural edges define a subgraph S of
G corresponding to the tree structure of the document space.

We assume a metric d : V x V' — Ny over G that captures the semantic distance
between two vertices of the graph. The semantic distance indicates the degree of cor-
relation between two semantic regions of a document according to some application-
dependent and user-aware criteria. A lower value denotes high correlation, while a
higher value denotes low correlation.

Both the composition of the graph and the semantic distance metric are
application-dependent and, thus, are provided by the application designers (see
Sec. 5 for more information on the integration of the application and CoopSLA).
It is worth noting that, model-wise, the granularity of the semantic regions can be
arbitrary. The model simply assumes the existence of a semantic region graph with
a metric function, through which it can obtain the correlation between two elements
of the graph. Naturally, different granularities exhibit different properties and one
granularity may be better suited for one application than another. The granular-
ity used in our particular implementation (extension to TexMaker) is described in
Sec. 5.3; we analyze the impact of different granularities in the performance of the
system in Sec. 6.7.

We denote the participants of a cooperative editing session as a cooperation
group and the machine of each participant is termed node; when referring to the
application used by each user to participate in the cooperation group we use the
term client. The client at each node of the cooperation group has a local view con-
sisting of a full local replica of the shared application state. Each replica consists of
a representation of the document space graph G in which each vertex additionally
holds the contents of the corresponding semantic region. In the context of replica-
tion, we refer to a vertex of the graph as an object.

Each object has one primary/master replica that holds its most recent value.
Clients modify the state of an object by submitting updates to the master. From
the perspective of the CoopSLA model, an update corresponds to the addition or
removal of an individual character. In other words, this means that the CoopSLA
model detects and considers each individual character change. However, the model
does not impose any constraints on the timing at which each update is submitted to
the master. This decision is left to the designers of the cooperative editor running
on top of CoopSLA. For example, updates may be submitted as soon as they
are generated; or they can be locally aggregated (at the editing client machine)
and sent at predefined events, such as after the user presses “Enter” or saves the
document. We address this particular aspect regarding our collaborative TexzMaker
implementation in Sec. 5.3.

In addition to the primary replica, each object also has one or more secondary
replicas that may have a bounded staleness with relation to its latest state (i.e. its
state at the master). We say that an object is stale if it has not yet received all the
updates that have already been committed at the master. The CoopSLA model,

1440002-4

Interest Aware Consistency for Cooperative Editing

explained in the next section, defines and enforces, on a per-user basis, the bounds
to the staleness of each object.

3. Interest Aware Consistency Model

To capture the interest of a user in the different regions of a document, the CoopSLA
model incorporates the notion of a pivot. A pivot is a special object that corresponds
to a user’s observation point and according to which the consistency requirements of
the user’s view are managed. Broadly speaking, the pivot determines, on a per-user
basis, (i) when an update to an object is allowed to be postponed, and (ii) under
which conditions the previously postponed updates are required to be propagated,
and to which user(s).

Each user may have multiple pivots, each corresponding to a semantic region in
which he/she is interested. Our personal experience suggests that the most intuitive
approach for editing purposes is to make the pivot correspond to the semantic
region in which the cursor of the user lies. However, CoopSLA does not impose
any restrictions to the number and placement of pivots. It is up to the designers
of the application running on top of CoopSLA to define and manage the location
of pivots. For example, a programmer can define a master pivot corresponding to
each user’s editing position and allow the users to explicitly define additional pivots
through the application’s GUI.

In this section, we describe the pivot-based CoopSLA consistency model in
detail. For clarity, we first describe the main concepts of the CoopSLA model con-
sidering only one pivot (Secs. 3.1 and 3.2). Then, we briefly describe the general-
ization of the model for multiple pivots in Sec. 3.3.

3.1. Consistency field

Each user’s pivot p has a position in the application graph (p € V). The location
of the pivot can change throughout the execution of the application, mirroring the
dynamic interest of the user in the document space (e.g. it can be embodied in
cursor positions, current views/windows on the editor, marks left at the document,
etc). The pivot generates a discrete consistency-field composed of N consistency
zones z1,...,zn. Each zone z; has a radius r; that defines the distance between
z; and the pivot. Radii are monotonically increasing, i.e. given two zones z; and
z;—1 with radius r; and r;_1 (respectively), we have r;_; < r;. The programmer
of the application defines default values for both the number of consistency zones
and their respective radii; these values can be tuned by the user according to his
particular interest on the document being edited.

At any moment, each object of the graph is assigned to a consistency zone of each
pivot. The role of a consistency zone is to establish the consistency requirements of
the objects assigned to it. The strength of the consistency requirements is inversely
proportional to the radius of the zone: zones with smaller radius (hence, closer
to the pivot) are awarded stronger consistency requirements; as the radii of the

1440002-5

A. P. Negrao et al.

zones increase (along with the distance to the pivots), the consistency requirements
become weaker.

The distribution of objects across the consistency zones depends on two factors,
(1) the semantic distance between the object and the pivot and (2) the radii of the
consistency zones generated by the pivot. Zone z; is assigned the objects whose
semantic distance to the pivot is smaller than the 71, the radius of z1; to each zone
zi € {z2,...,2n—1} are assigned the objects with semantic distance between r;_;
and r;; the outer zone z, gets assigned every object whose semantic distance is
greater than r;. More formally, the consistency zone z, of object o at semantic dis-
tance d(p, o) from pivot p in the consistency-field is given by the following equation:

Z1 iff d(pv 0) S T1,
Zo=4 2,1l <i<n-—1 iff r,_1 <d(p,o0) <ry (1)
Zn iff r,,_1 < d(p,o0).

Figure 1 illustrates an intuitive example of a consistency field. In this exam-
ple, the user is editing Sec. C of a Latex document (left side of Fig. 1(a)); as a
result, the pivot (coinciding with the cursor) is placed in the corresponding C ver-
tex of the application graph (right side of Fig. 1(a)). The consistency field generated
(Fig. 1(b)) assigns the highest priority to updates to Sec. C, the current editing
section. Updates to Secs. A and G (respectively, the parent and child Sections of
C) have lower priority than C, but higher than Secs. B and D — the sections that
are two graph hops away from C. Updates to Secs. E and F have the lowest prior-
ity. Still regarding this example, Table 1 describes, in the user’s descending order
of interest, the relation between each zone and the sections in the document. For
example, zone z; corresponds to the section being edited, thus requiring a strong
consistent view; from the user’s point of view, other sections may have more relaxed
consistency (being the sections in z4 the least relevant).

\chapter{A} Z,
i.s.ection{B}
i.s.ubsection{E}

i.s.ubsection{F} e °

i.s.ection{C}

i.s.ubsection{G}
i.s.ection{D} e a

(a) (b)

Fig. 1. Example of consistency zones in a document structure. (a) Example document structure
and corresponding graph representation with consistency requirements and (b) corresponding
consistency zones.

1440002-6

Interest Aware Consistency for Cooperative Editing

Table 1. Example user interest.

Priority Description Zone
1 Current editing section Z1
2 Parent and child sections of current editing section 29
3 Close sections — sections two graph hops away. 23
4 Remaining sections 24

3.2. Consistency requirements

Each consistency zone z; has a corresponding consistency degree c¢; that specifies
the consistency requirements of the objects located within that zone. Consistency
degrees respect the property ¢; > ¢;11, meaning that consistency degree ¢; of con-
sistency zone z; enforces stronger consistency than degree ¢;11 of zone z;41. Consis-
tency degrees are described by three-dimensional consistency vectors (k) that limit
the maximum divergence between the local replica of an object and the latest state
of the object. Programmers, or even users in an enhanced tool, can define all or
any subset of the following metrics:

e Time (6): Specifies how long (in seconds) an object is allowed to remain without
being refreshed with its latest value.

e Sequence (o): Defines the maximum number of updates to an object that are
allowed to be postponed (missing or outstanding updates).

e Value (v): Specifies the maximum percentage divergence between the local
contents of a replica of an object and its primary replica. Value is an application-
dependent metric calculated by a special purpose function defined by the pro-
grammers of the application.

CoopSLA guarantees that fresh information about an object is sent to a client
whenever at least one of the previous criterion is about to be violated; we refer
to this event as object timeout. As long as these values are not reached, updates
regarding that object (which would, without using CoopSLA, be sent to the client
immediately) are retained, allowing for merging and compacting strategies to be
applied. Remember that consistency specifications are set on a per-user and per-
object basis; as a result, (i) the same object may be in different consistency zones
regarding two different clients and (ii) different objects within the same consistency
zone may be in different consistency states regarding a particular client.

Consider, for example, that user w4 is editing a Latex document. Further con-
sider that \section{B} of the document is located within consistency zone zp of user
u4, which has consistency requirements specified by consistency vector kg = [10,
6, 20]. CoopSLA provides the following guarantees to u4 regarding \section{B}: at
most 10s have passed since the latest updates to \section{B} were sent to u,4; at
most 6 updates to \section{B} have been retained at the server regarding w,; the
content of the local replica of \section{B} stored at u4’s machine differs, at most,
20% from the object’s latest value (for example, 20% more characters have been
written, or modified/delete, as a result of the updates).

1440002-7

A. P. Negrao et al.

3.3. Model generalization

As already mentioned in Sec. 2, CoopSLA allows the definition of multiple pivots for
each user. For example, a user may be editing Chapter 3 of a book, while also being
interested in the changes made to Chapter 7 (because such chapters are somehow
related). Another similar situation may occur when editing multiple files: each one
of a user’s editing points in the different files may correspond to a different pivot.
Furthermore, different pivots may have different consistency requirements, as it is
natural that the current editing point is more relevant to the user. In a multi-pivot
setup, an object’s consistency zone is assigned with relation to its closest pivot.

The model also allows the definition of multiple views per user, which allows
different sets of objects to be characterized with different consistency requirements
regarding the same pivot. Consider a pivot that corresponds to the paragraph cur-
rently being edited by the user. In this scenario, a user may be more interested in
sections he created than in sections created by other users, regardless of how close
they are to the user. With multiple views, user created objects may be assigned
more strict consistency requirements.

The model can also be generalized to encompass situations in which the docu-
ment being shared spans across several individual files (e.g. in a folder, in which
case all files are included during the rendering of the document). Typical examples
are approaches based on master and input files, such as one main latex document
that, when compiled, includes (via \ input commands) a number of other documents
that contain several chapters or sections each; another example is the use of master
and dependent documents in Word files. The model encompasses these extended
scenarios seamlessly as, regardless of the subdivision in individual files, the order by
which they are referenced in the main document allows linearizing all the content as
if, e.g. in a single latex file. To enforce this, implementations must track references,
i.e. occurrences of file names in latex files, in order to detect dependencies (due to
inclusion) on other files, and completely encompass the document space.

4. Architecture

CoopSLA is implemented by a middleware layer that aids programmers in
the implementation of cooperative editing applications employing the CoopSLA
approach. The middleware is responsible for managing the communication and
replication aspects of the application. This way, programmers are relieved from
most of the complexity of implementing a distributed application; instead, they are
only required to implement a few conversion routines.

The CoopSLA middleware follows a client-server architecture, in which clients
edit the shared document space and the server propagates updates to each client
according to its consistency specifications. Following the replication model described
in Sec. 2, the server holds a full replica of the shared application state (i.e. the appli-
cation graph G). The server stores the primary replica of every object in the sys-
tem and, thus, always has the most recent version of the objects. When the server

1440002-8

Interest Aware Consistency for Cooperative Editing

receives a client update it applies it to its primary replica immediately; in con-
trast, it postpones propagating the received updates to the clients, as long as their
consistency requirements are respected.

The main task of the server is to enforce the CoopSLA consistency model. This
requires it to continuously monitor client updates and collect information about
the current comnsistency state of each client. Periodically, and when updates are
received at the server, it executes a validation algorithm that uses the collected
data to verify if the consistency requirements of the clients are still met; if not, the
server propagates to those clients the postponed (and possibly merged) updates
needed to ensure that their consistency specifications are met.

A client consists of the editing application stacked on top of the middleware.
The editing application receives the input from the user and passes it to the client-
side middleware. The middleware on the client stores such input and applies it to
the local replica. These updates are submitted to the server according to default
configurations defined by the programmers of the application that can be tuned at
runtime by the clients; Sec. 5.2 provides more information about this aspect.

Clients do not communicate directly with each other; update propagation is
exclusively performed by the server. Each client holds a full replica of the data;
however, unlike the server, these are secondary and, as a result, may have stale
values that are managed according to each client’s consistency specification.

4.1. Software architecture

Figure 2 shows the high-level architecture of the CoopSLA middleware, as well as
its interactions with the application built on top of it and the system in which
it is executed. The two main components of the CoopSLA core are the Replica
Manager and the Document Manager. The Document Manager interfaces with the

Server-Side Client-Side

i Application

Editor

Application
Adaptation
Layer

Document Manager
Replica Manager

Application :
Adaptation f-------------- !
Layer) T

' CoopSLA

: Core Document Manager

Session Manager

Fig. 2. High-level architecture.

1440002-9

A. P. Negrao et al.

application (via the Application Adaptation Layer) to convert the updates from
its internal representation to the application’s representation and vice-versa. Addi-
tionally, the Document Manager provides several functions necessary to verify the
consistency state of the application (e.g. measuring/identifying the semantic dis-
tance between two semantic regions).

The Replica Manager (present only at the server) is responsible for storing the
pending updates and managing the consistency state of each client. It maintains all
the information necessary to enforce the consistency specifications of each client.
It is also in charge of merging, compacting and issuing the dissemination of the
postponed updates to the clients, according to their consistency specifications.

The Session Manager handles the communication part of the system. It estab-
lishes and maintains the connections between the nodes of the system and is the
component in charge of sending and receiving the data, as illustrated in Fig. 2.

The Application Adaptation Layer serves as the glue that connects the middle-
ware to the application. At the middleware side, it exports the API through which
applications interact with CoopSLA. At the client side, it provides the programmer
defined functions required by CoopSLA. We also assume and encourage program-
mers to encapsulate within this component all the modifications necessary for the
application to use CoopSLA.

4.2. Monzitoring client activity

To enforce the CoopSLA consistency model, the Replica Manager stores, for each
client ¢;, the client’s consistency specification (pivots, zones and degrees) and con-
sistency state table v.,. The latter stores, for each object 0;: (1) the time elapsed
since ¢; last received updates regarding o; (¢, [0,0:]); (2) the number of updates
to o; that have not yet been sent to ¢; (¢¢,[0,0;]) and (3) the value of o; the last
time updates to it were sent to ¢; (¢, [, 0;]). In addition, the server maintains a
dirty table that stores, for each object and each client, two bit flag: the modified
flag indicates if 0; has been updated since the last time it was refreshed at ¢;; the
dirty flag will be explained later in this section.

Enforcing each client’s consistency specifications requires the server to keep
track of the following critical events (addressed below): content updates, structure
updates and pivot movement.

4.2.1. Content updates

The algorithm for managing incoming updates at the server is presented in the
Appendix in Algorithm A.1. When the server receives a content update, the Replica
Manager first queries the Document Manager in order to identify the object o; to
which the update refers. Then, it marks the identified object as modified. Using the
information retrieved, it updates the sequence state (v, [o]) of every client regarding
0;. Then, for each client ¢;, the Replica Manager verifies if the new sequence state
has reached the limit defined in ¢;’s consistency specification. To do so, it asks the

1440002-10

Interest Aware Consistency for Cooperative Editing

Document Manager to identify the semantic distance between o; and ¢;’s pivot.
Based on this distance, the Replica Manager retrieves the object’s consistency zone
(and respective consistency vector), and compares it with the current sequence state
of o;. If the limits of any client ¢; have been reached, the Replica Manager marks
0; as dirty in ¢;’s dirty table. When executing the next iteration of the validation
algorithm, the Replication Manager verifies that o; is dirty regarding ¢; and, as a
result, propagates to ¢; the updates to o; that had been retained at the server.

4.2.2. Structure updates

Modifications to the structure of a document (e.g. adding or removing a section)
change the distances between its regions. As a result, the placement of the objects
within the consistency field of each client changes, and different consistency require-
ments have to be considered.

Structure updates are exchanged through special messages declaring the new
semantic region, its placement within the document space and the header text that
declares it (e.g. \subsubsection{ Structure updates.}). When the server receives a
structure update, the Document Manager updates its internal data structures to
accommodate the new semantic region (see Algorithm A.3 in the Appendix). This
includes adding a new node to the application graph and, possibly, moving text to
the newly created semantic region.

After the update is performed by the Document Manager, the Replication Man-
ager updates and re-evaluates the sequence state of each client for every object that
moved to a stronger consistency zone; in addition, it marks the object as mod-
ified. Objects that are assigned to a weaker consistency zone as a result of the
re-evaluation are not moved immediately. Instead, they are only moved after their
previously postponed updates are sent to the client as a result of the enforcement
of the consistency requirements specified by their current zone. Furthermore, it
temporarily moves the objects modified by the structure update (the new object,
its parent and its sibling regions) to the strongest consistency zone of every client,
regardless of their actual relative position to the client’s pivot. After these objects
are updated at the client, the Replication Manager moves them to the consistency
zones defined according to their distance to the client’s pivot.

4.2.3. Pivot movement

As with structure updates, when a pivot moves to a different semantic region, the
composition of its consistency zones changes. As a result, new consistency require-
ments have to be considered and the Replica Manager has to update its internal
data structures accordingly. In particular, it must re-evaluate, for every object that
moved to a different consistency zone, the sequence state of the client.

The process of updating the Replica Manager after a pivot movement is similar
to a structure update: the consistency zone of an object is not updated immediately,
unless it is stronger than its previous zone; otherwise, the object remains in the

1440002-11

A. P. Negrao et al.

same consistency zone until its previously postponed updates are sent to the client
as a result of an object timeout. The pseudocode of the algorithm is shown in the
Appendix in Algorithm A.2.

4.3. Consistency enforcement

In each periodically executed round of the consistency validation algorithm (see
Algorithm A.4 in the Appendix for more details), the Replication Manager verifies
if any update received since the last round resulted in a violation of any client’s
consistency specification. If so, the identified updates are propagated to the clients
concerned.

The validation algorithm verifies, for each client ¢; and each object o;, if the
object is within the limits imposed by the consistency zone defined by the client’s
pivot(s). Because ¢; may have multiple views and multiple pivots, the Replica-
tion Manager must first identify which pivot p; enforces the strongest consistency
requirements for o;. This is done by identifying, for each possible pivot, the consis-
tency zone of p; in which o; lies and retrieving the corresponding consistency vector
k;. The appropriate vector is chosen by pairwise comparing the vectors and their
respective metrics.

Next, each dimension of the identified x; is tested against the object’s current
consistency state. Verifying time (0) and sequence (o) is straightforward: for o,
the Replication Manager simply checks if the object has previously been marked
as dirty (Sec. 4.2.1); for 6, it tests if the time elapsed since the last time ¢; was
updated with the latest version of o; exceeds 6,,. The latter verification requires
the Replication Manager to store the last time each object was sent to a client.

To verify v, on the other hand, the server has to compare the current value of o;
with the client’s v, [v, 0;], which would require the Replication Manager to store, for
every client, a copy of every object. To avoid the memory overhead of this solution,
the Replication Manager asks the Document Manager to take a snapshot of an
object whenever updates regarding that object are propagated to a client. Before
taking a snapshot, however, it first verifies if a snapshot of the object already exists;
if it does, the server uses it, avoiding an unnecessary copy and saving memory.

4.4. Data representation and update propagation

The CoopSLA middleware represents the contents of each object of the graph as a
TreeDoc Commutative Replicated Data Type (CRDT).1? As a result, the updates
exchanged between CoopSLA nodes consist of requests to add or remove TreeDoc
identifiers. By using TreeDoc, we enable replicas to converge without the need for
complex conflict resolution protocols, which further enhances the relaxed synchro-
nization properties provided by CoopSLA.

It should be noted that while the middleware uses TreeDoc as a building
block, the CoopSLA model is completely independent of it. In fact, the model is
compatible with any other update representation approach, including Operational

1440002-12

Interest Aware Consistency for Cooperative Editing

Transformation and state-transfer.® As such, it is possible to modify the implemen-
tation of the middleware so that it uses a different update representation approach.
In addition, from an architectural point of view, CoopSLA is also independent of
TreeDoc; as explained in Sec. 5.1, TreeDoc can easily be replaced by using a different
Document Manager (Fig. 2).

Updates that have not yet been propagated to a client are stored at the Replica-
tion Manager in a per-client update queue. When adding a new update to a queue,
the server automatically merges add/remove operations that cancel each other.
In addition, when an object timeout occurs, the Replication Manager aggregates
the updates stored in the corresponding client’s queue into a single message. Even
with these simple mechanisms, the results (Sec. 6) proved to be very encouraging.
Additional (or complementary) forms of update merging and message compacting
solutions are out of the scope of this paper.

5. Implementation

We implemented a prototype of the CoopSLA middleware and modified the Linux
version of the Latex editor Texmaker® on top of it. In this section we describe
the main implementation details of the middleware (Sec. 5.1) and the extension to
TexMaker (Sec. 5.3). We also briefly explain how programmers interact with the
middleware and specify the CoopSLA consistency settings in Sec. 5.2.

5.1. M:ziddleware

The CoopSLA prototype is entirely implemented in C++ and comprises approxi-
mately 5000 lines of code. The current implementation targets Linux systems and
makes use of its system libraries. For portability, we wrote a System Abstraction
Layer that encapsulates the calls to the system libraries; as a result, to port the
middleware to a different architecture it is only necessary to re-implement this
library. The library provides threading and mutual exclusion support (currently
built on top of Unix pthreads), as well as functions for data serialization and net-
work communication.

The implementation follows the architecture shown in Fig. 2. The Document
Manager is implemented in a DocManagement module that contains the classes
that represent, parse and extract information from the document space. The doc-
ument space is represented as a tree of semantic regions. Each semantic region is
represented by a uniquely identified SRegion object. Each SRegion contains a list
of children subregions and a TreeDoc with the contents of the region it represents.
By having one TreeDoc per semantic region, the size of the TreeDoc identifiers
exchanged in each update message is smaller than if we simply had one TreeDoc
representing the whole document. As a result of this design choice, each update
message also carries the identifier of the SRegion to which the updates concern.

2http: //www.xmlmath.net/texmaker/.

1440002-13

A. P. Negrao et al.

To facilitate the modification of the update representation strategy, the
Document Manager is the only component that is aware of the specific strategy
in use (TreeDoc, in the current implementation). The remaining components of the
middleware are only aware of the existence of a semantic region graph and abstract
updates. Information that depends on the specific update representation is obtained
by consulting the Document Manager. The Document Manager provides, among
others, functions to apply updates to the local replica, obtain the semantic differ-
ence between two versions of the same object and calculate the semantic distance
between two objects. Examples of the interactions between the Document Man-
ager and the remaining components can be seen in the algorithms present in the
Appendix.

The Replication Manager and the Session Manager are implemented in a Client-
Management module. At the server, the Replication Manager stores the consistency
related data in tables and the pending updates in per-client queues. The most
important tables are the consistency state tables of each client. Each table holds
the current values of the consistency metrics of a client, which include a pointer
to an object snapshot (as described in Sec. 4.3). Implementing the object snapshot
approach requires rounds, snapshots and objects to be versioned. The round number
ry is an integer number that is incremented in every round. The version of a snapshot
correspond to the r, of the round in which the snapshot was taken; object versions
correspond to the 7, of the round in which the object was last updated. Similarly,
to save memory, the per-client queues do not store actual updates; instead, they
point to the updates stored in a global update queue that stores all the updates
that have not yet been sent to, at least, one client (or merged). Both snapshots and
updates are garbage collected by the middleware when no reference to them exists.

5.2. Application integration

In our current implementation, programmers describe the consistency requirements
using an XML file. When the client application (e.g. TexMaker) starts, it invokes
an API registration function with the path to the XML file as its argument. The
CoopSLA client then parses the file and sends a registration request to the server.

Programmers control the structure of the document by adding or removing
semantic regions using the API functions (addSRegion/removeSRegion) exported
by the Application Adaptation Layer. Both functions receive the parent of the new
region, the region type and, optionally, a set of semantic links to other regions. The
region type is an application-dependent data type used to aid in the identification
of the consistency zone of the object regarding a particular pivot.

The input received by the editing application is passed to the CoopSLA mid-
dleware (at the client) using function inputReceived. Programmers can configure
the timing with which the client-side of the middleware sends the updates to the
server through function setPropagation Timing. The middleware accepts three types
of propagation timings: immediate, in which updates are sent to the server when

1440002-14

Interest Aware Consistency for Cooperative Editing

function inputReceived is executed; periodic, in which updates are stored when
function inputReceived is called and sent later according to a periodicity defined
with function setPropagationTiming; or explicit, in which case updates are only
sent to the server after the application calls function propagateUpdates. Besides the
global timing levels, programmers can control the propagation timing of individual
updates through function inputReceived.

Programmers must provide two additional functions to be called by the middle-
ware when checking a client’s consistency: semanticDifference and getConsis-
tencyZone. The semanticDifference function is used to verify the value metric.
It returns the (application-specific) percentage difference between two versions of
an object. getConsistencyZone is a function that, given a pivot and a graph
object, returns the consistency zone of the object regarding the pivot. To aid in the
implementation of this function, our API provides functions that interact with the
Document Manager in order to extract information about the graph path between
two objects, such as the number of hops or the relative tree height separating them.

5.3. CoLaTex

To validate our system, we have extended the Tex editor Texmaker to support con-
current editing between distributed clients. The extensions were introduced using
TexMaker's add-ons feature without modifying the code of the application. Our
add-ons consist of simple functions that interact with the CoopSLA middleware
(through the Application Adaptation Layer) to perform the following actions: inter-
cept the user’s modifications to the local replica of the shared documents; insert
the updates received from the server into the Latex document; and keep track of
the editing position of the user (i.e. the cursor). We implemented an additional
add-on that generates the document space graph by parsing the Latex source files
and converts the updates from (and to) the TreeDoc representation used by the
Document Manager.

We chose the \subsection construct as the minimum object granularity of our
system. Our decision was based on our intuition that a subsection is (or should be)
a self-contained coherent element and, as such, modifications to any of its positions
are equally important. In addition, the performance results presented in Sec. 6.7
show that this granularity provides a good tradeoff between network savings, CPU
consumption and memory usage. Regarding update timing, in our implementation
of CoLatex, updates are sent to the server every second. This ensures a quasi-real-
time awareness over the work performed by other users;?® on the other hand, by
not sending each update immediately, we allow updates to be batched and sent in
a single message to the server.

We define one pivot for each open file, each corresponding to the semantic region
being edited by the user within that file. The add-ons we developed allow the user to
manually assign a region of the document to a consistency zone. Our semanticDif-
ference function returns the percentage difference in number of characters between

1440002-15

A. P. Negrao et al.

Table 2. Consistency zones.

Zone Time (#) Sequence (o) Value (v)

1 1 sec. 1 update 1%
2 10 sec. 15 updates 5%
3 40 sec. 100 updates 30%
4 2 min. 750 updates 60%
5 3,5 min. 1000 updates 90%

two versions of an object. Table 2 describes the consistency zones we defined; our
getConsistencyZone function returns the consistency zone of an object based on
the following considerations:

Consistency Zone 0 includes the region in which the pivot is placed and its direct

children, i.e. the ones that are one graph-hop below the pivot.

o Consistency Zone 1 contains the direct parent — the region one graph-hop above
the pivot — and indirect children — identified by traversing the graph downwards
from the pivot, excluding the direct children — of the pivot.

e Consistency Zone 2 comprises the regions that belong to the same \ chapter as
the pivot. If there is no explicit \chapter defined, we consider that the document
has one implicit chapter of which every section is a part of.

o Consistency Zone 3 includes the top-level sections of the remaining chapters
(\ chapter) of the document. If the document does not have chapters, zones two
and three are merged and zone four is awarded the consistency specifications
originally defined for zone three.

e (onsistency Zone 4 contains the regions that do not belong to any of the previous

zones.

As described in the next section, we used the CoLatex editor to evaluate our
solution.

6. Evaluation

In CoopSLA, we claim that it is possible to make an efficient use of the available net-
work resources by taking the individual locality of interest of each user into account.
To validate this assertion, we conducted a series of experiments to evaluate the net-
work performance of the system; in particular, we quantify the savings obtained by
CoopSLA (when compared to a solution without the CoopSLA model) regarding
the two following aspects: (1) the bandwidth required to propagate the modifica-
tions performed to the shared document space by different users (Sec. 6.2) and (2)
the number of messages sent (i.e. the stress imposed on the network resources) as
a result of that propagation (Sec. 6.3).

We also analyze the flexibility of the model (Sec. 6.4); thus, we studied the
impact of different consistency specifications in the network savings previously men-
tioned. In addition, we analyzed the performance of CoopSLA in terms of CPU

1440002-16

Interest Aware Consistency for Cooperative Editing

and memory requirements at the server to illustrate the tradeoff from network
gains (Sec. 6.5). We also briefly analyze how different editing patterns influence the
performance of CoopSLA, regarding network, CPU and memory usage (Sec. 6.6).
Finally, in Sec. 6.7, we describe the study and results regarding the impact of the
granularity of the semantic regions in the performance of CoopSLA.

In the following sections we detail the experiments conducted. We first describe
the simulation environment and the parameters considered during the evaluation
process. Next, we present and analyze the results obtained regarding the metrics
described above.

6.1. Stmulation environment

Clients are simulated by running a predetermined number of parametrized editing
bots. Bots perform text insertions (write or paste), deletions (erase or cut) and
browse through the document space. Table 3 shows the probability distribution
that models the behavior of the bots used in our experiments.

Each simulation consisted in a series of 10-min runs during which bots executed
for 7 min according to their decision tree, sending the corresponding updates to the
server, as well as receiving and applying to their Document Manager the updates
propagated by the server. The remaining 3 min were necessary to ensure that every
update received by the server was either merged and discarded or sent to every user
as a result of object timeouts.

To analyze the scalability of the system, we varied the number of bots partici-
pating in each simulation cycle. During each individual run, the server monitored
inbound and outbound traffic, storing per-client and overall statistics regarding the
amount of data transferred and the number of messages exchanged. At the end
of each simulation cycle we computed the average values for each of the results
obtained.

We compared CoopSLA with a baseline TreeDoc implementation that propa-
gates updates to every user as soon as they arrive at the server; in the figures,
and throughout this section, we refer to this version of the system as BL (short
for Baseline). We also varied the type of document space edited; we considered
three types of documents that differ mainly in size and structural complexity: a
Small document with ten to fifteen semantic regions, each with a few text para-
graphs (representative of a research article); a Medium size document with forty
to sixty semantic regions (modeled after a short book or a company report); and
a Large document space comprising over eighty semantic regions with large text

Table 3. Bot decision tree.

Add Remove Move

Read Write Paste Erase Cut Tosides Up/down
60% 15% 3% 8% 3% 8% 3%

1440002-17

A. P. Negrao et al.

chunks each (representative of a scientific book). Unless told otherwise, the results
presented were obtained using the consistency requirements described in Table 2.

The tests were conducted on Intel Core 2 Quad machines with 8GB RAM run-
ning Ubuntu Linux. The server was executed on a dedicated machine, clients were
deployed on up to three machines. The computers were connected through a Gigabit
Ethernet LAN.

6.2. Transferred data

Figure 3 presents the average amount of data received by each client (Fig. 3(a)) and
sent by the server (Fig. 3(b) per-simulation. We plotted the results of both CoopSLA
and BL for an increasing number of users and the three types of documents we
consider. The figures show that CoopSLA is able to effectively reduce the amount
of data transferred over the network (when compared to BL) and, consequently,
the bandwidth necessary to do so, both at the clients and the server. Moreover, we
can see that, as the size of the documents increases, CoopSLA is increasingly more
efficient in obtaining bandwidth savings. This behavior shows the scalability of the
system, and is especially relevant considering that as an editing project grows in
size, it is more likely that more users will cooperatively access it.

The main reason for these results is that in larger documents the average dis-
tance between the editing regions of each user is higher; as a result, the probability
of postponing and, possibly, merging updates also increases. This fact is particu-
larly evident if we individually compare CoopSLA with BL for each type of doc-
ument space considered. With the simpler document space (CoopSLA_Small and
BL_Small), the bandwidth savings obtained by CoopSLA are minimal, because the
probability that an update occurs in a client’s pivot region (and, consequently, is
propagated immediately) is high. If the document grows in size and complexity, the
savings obtained by CoopSLA increase greatly to approximately 50% at the end of
the simulation.

& CoopSLA_Small -¥- CoopSLA_Medium - CoopSLA_Large & CoopSLA_Small -¥- CoopSLA_Medium #-CoopSLA_Large
--BL_Small -4 BL_Medium -4 BL_Large --BL_Small -4 BL_Medium -4 BL_Large
16000 320000
o 14000 o 280000
X X
~ 12000 ~ 240000
ss b
g 10000 g 200000
g 8000 ‘g 160000
= =
‘g 6000 % 120000
§ 4000 E 80000
= 2000 = 40000
0 0
3 5 8 10 15 20
clients # clients
() (b)

Fig. 3. Data transferred over the network. (a) Average per-client inbound traffic and (b) total
server outbound traffic.

1440002-18

Interest Aware Consistency for Cooperative Editing

Another important conclusion that can be inferred from Fig. 3 is that CoopSLA
is able to efficiently minimize one of the main drawbacks of the TreeDoc approach,
i.e. the size overhead of path identifiers. When a document is represented as a
TreeDoc, the size of the path identifiers increases as the document grows. Because
update messages exchange path identifiers, when a document grows in size, the
update messages follow the same pattern. Without CoopSLA, the larger the doc-
ument is, the larger update messages are; as a result, the bandwidth required to
propagate and receive updates increases. With CoopSLA, on the other hand, we
take advantage of the accumulation of postponed updates at the server to merge
and aggregate them before propagating them to the clients, which allows us to
maintain bandwidth requirements under more acceptable levels.

The results presented so far denote the savings obtained at the end of the simu-
lations. Figure 4 adds to this analysis by showing the evolution of savings obtained
during the execution of the simulation. The figure shows the percentage of traffic
saved when using CoopSLA over BL, i.e. how much less traffic was exchanged dur-
ing the simulation using CoopSLA as compared to BL. The results show that, most
of the time, the savings obtained by CoopSLA are higher than the final savings. In
particular, during the first minutes of the simulations, CoopSLA is able to achieve
over 80% savings. Around 3.5min into the simulation, savings experience a sud-
den decrease as a result of the timeout of the weakest consistency zone (z5). This
decrease is exacerbated by the fact that every bot is launched at the same time
and, thus, experience the timeout of their respective weakest consistency zone at
approximately the same time. After this initial period, the results follow a cyclic
pattern in which savings steadily increase for a few minutes, until the timeout of
zone zs occurs again.

6.3. Exchanged messages

While the overall traffic generated by the clients is influenced by the specific charac-
teristics of TreeDoc, the number of update messages issued by each client depends
only on the editing pattern of the users. By measuring the number of messages

5clients 10 clients 5clients 10 clients 5clients 10 clients
@ 15 clients — 20 clients @ 15 clients — 20 clients ¢ 15 clients — 20 clients

30
20
10

Savings over BL (%)
)

Savings over BL (%)
3

Savings over BL (%)
8
@)

0
012345678910 012345678910 012345678910
Time (min) Time (min) Time (min)

(a) (b) (c)

Fig. 4. Traffic savings over time. (a) Small, (b) medium and (c) large.

1440002-19

A. P. Negrao et al.

exchanged over the network, we are able to clearly isolate and analyze the individ-
ual contribution of CoopSLA. Furthermore, it provides a good indication of how
CoopSLA would work with different operation-transfer strategies, like OT or other
CRDT implementations. Figure 5 shows the results of these measurements for both
CoopSLA and BL.

The results further confirm the ones regarding bandwidth. As a matter of fact,
Fig. 5 shows that CoopSLA, when compared to BL, is able to reduce the number
of messages received by each client and such savings increase with the size and
complexity of the edited document. Again, these results are a direct consequence of
CoopSLA’s ability to leverage the accumulation of low-priority postponed messages
by merging those that cancel each other. As a result, CoopSLA discards unnecessary
messages that would, otherwise, be propagated immediately to each client. Further-
more, CoopSLA obtains additional savings by aggregating multiple updates into a
single message.

The advantages of the message savings obtained are manifold. First, it means
that mobile devices using CoopSLA make a more efficient and less demanding
usage of the network resources, which contributes to reducing battery consumption

- CoopSLA_Small -¥- CoopSLA_Medium #-CoopSLA_Large % CoopSLA_Small -¥- CoopSLA_Medium #-CoopSLA_Large
~-BL_Small -4 BL_Medium -4 BL_Large ~-BL_Small -4 BL_Medium -4 BL_Large
30000 600000
25000 500000
8 20000 8 400000
o o
@© @©
2 15000 2 300000
€ g
1 10000 4+ 200000
5000 100000
0 0
clients # clients
() (b)

Fig. 5. Messages exchanged. (a) Average # messages received per-client and (b) total number
of messages sent by the server.

5clients 10 clients 5clients 10 clients 5clients 10 clients
¢ 15 clients — 20 clients @ 15 clients — 20 clients @ 15 clients — 20 clients
100 100 100
9 | —~ 901\.E~~7 0 M\
X 80 =X 80 \ <80 .o
o 70 270 2 70 =
@ 60 v — 60*4%% @ 60 S
2 50 2 50 2 50
> > >
© 40 e\ © 0 © 40
. T 2
£ 2. 20604 .g 20 £ 20
& 10 & 10 & 10
O+rrrrrrrrrrrrrrr i O+r—rrrrrrrrT T O-+rrrrrrrrrrrrrrrre
012345678910 0123456738910 0123456782910
Time (min) Time (min) Time (min)
(a) (b) (c)

Fig. 6. Message savings over time. (a) Small, (b) medium and (c) large.

1440002-20

Interest Aware Consistency for Cooperative Editing

(a critical aspect in mobile devices). Second, because there is a lower number of
messages and less data to process at each client, the impact on the performance of
the device is less pronounced, leading to an overall higher responsiveness. Finally, it
has a direct influence on the savings obtained regarding bandwidth requirements: by
propagating the same amount of data using fewer messages, we minimize the overall
amount of overhead data (headers and meta-data) transferred. Naturally, because
such extra data comprises only a small percentage of the overall data present in the
message, the bandwidth savings obtained are not as high. Specifically, we observed
(in additional measurements not shown in the figures) that message aggregation
accounts for roughly 5% of the bandwidth savings obtained; in comparison, around
20% of message savings are a result of aggregation.

Figure 6 shows the average message savings (as a percentage of the number of
messages exchanged using BL) obtained by CoopSLA over the course of the simula-
tions. As expected, these results follow a similar pattern to the savings obtained with
the transferred data. However, CoopSLA is able to achieve around 10% higher sav-
ings in exchanged messages in comparison with exchanged traffic. This is a natural
result of the higher impact that message aggregation has on message minimization,
as explained in the previous paragraph.

6.4. CoopSLA flexibility

The results presented so far misleadingly indicate that when a document is small,
the advantage in using CoopSLA is minimal. However, CoopSLA allows application
programmers to specify consistency requirements arbitrarily, as they see fit for their
applications, and users to easily configure them. As long as possible, a programmer
should try to relax the consistency requirements, always ensuring the application
provides the required levels of interactivity. If necessary, however, the programmer
can define more demanding requirements.

To analyze the flexibility of CoopSLA, we measured the savings obtained with
three CoopSLA consistency specifications (described in Table 4) that differ in how
aggressively update propagation is issued. Figure 7 shows the results obtained;
Figure 7(a) shows message savings, while Fig. 7(b) shows traffic savings. In both
cases, the results are presented as a percentage of the values obtained with BL. The
measurements were conducted with the Small document space.

As expected, the figure shows that CoopSLA is more efficient when the consis-
tency requirements are more relaxed. These results are a consequence of the fact

Table 4. Consistency zones.

Zone Relaxed Regular Aggressive
1 {6=5,0=10,v=5} {6=2,0=5,v=5} {#=1,0=1, v=1}
2 {6=20,0=30,v=10} {6=10,0=10,v=5} {0=5,0=5,v=5}
3 {6=40,0=100,v=50} {6=40,0=100,r=30} {#=15,0=15,r=20}
4 {60=120,0=750,v=60} {6=90,0=300,r=60} {6=30,0=50 v=50}
5 {6=300,0=1500,,=90} {#=180,0=750,b=80} {6=60,0=150,0=50}

1440002-21

A. P. Negrao et al.

& Relaxed '¢'Regular ¥ Aggressive % Relaxed '*'Regular ¥ Aggressive
100 100

Savings over BL (%)
Savings over BL (%)

clients # clients
(a) (b)

Fig. 7. Savings over BL with different consistency specifications. (a) Traffic savings and (b) mes-
sage savings.

that relaxed consistency requirements allow for a larger volume of updates to be
retained at the server for longer periods of time; as a result, the probability that
two updates can be merged increases. Conversely, when the aggressiveness of the
requirements increases, a lower volume of updates is retained at the server, which
results in a lower merge efficiency. However, the results show that even with a fairly
strict set of requirements, CoopSLA is able to obtain more than 20% bandwidth
savings over BL.

6.5. Resource usage

In addition to the network metrics presented so far, we analyzed the performance
of CoopSLA in terms of CPU and memory requirements at the server. The data
was gathered using the top tool available in Linux, by polling its output every
second during the execution of the simulations. For clarity, we plotted only the
data obtained with 10 and 20 clients and the Medium document space. The results
are presented in Fig. 8.

The results show the tradeoff in CoopSLA between server load (CPU and mem-
ory) and network usage. More specifically, as expected, CoopSLA presents a com-
putational overhead, in comparison with BL, that is due to the fact that CoopSLA
must maintain and continuously process the data structures necessary to enforce
each client’s consistency requirements. BL, on the hand, does not store any addi-
tional information and simply propagates the updates as soon as received.

Figure 8(a), in particular the line regarding 20 bots, shows that the CPU usage of
CoopSLA increases slightly for the first few minutes of the simulation and stabilizes
shortly after it reaches a load spike at around 210s. The initial increase is a natural
consequence of the gradual accumulation of updates: as the number of postponed
updates increases, the merging process becomes gradually heavier. This overhead
reaches its peak at 210s, which is when the timeout of the weakest consistency zones
occurs. At this point, the number of postponed updates is at its highest, which
requires more processing time to merge every update. This load peak, however,

1440002-22

Interest Aware Consistency for Cooperative Editing

BL_10bots — BL_20bots --- CoopSLA_10bots —CoopSLA_20bots Baseline M CoopSLA

20 200
18 180
16 160
14 o
2 1 g 140
@ 3 120
g E
g 3 100
o =}
2 6 5 e
4 = 60
2 2 40
o e 20
0O 50 100 150 200 250 300 350 400 450 500 550
N 10 20
Time (s) #clients
(a) (b)

Fig. 8. Resource usage at the server. (a) CPU usage and (b) memory usage.

does not compromise the performance of the system, since it does not even reach
20% CPU usage.

After this first load peak occurs, the number of updates retained at the server
decreases, resulting in the corresponding reduction in server load. From that
moment on, the average CPU load remains stable, because the average number
of updates retained at the server, at any moment, also stabilizes. The slight devi-
ations observed are a result of the periodic timeouts of the different consistency
zones.

Regarding memory usage, the extra memory required by CoopSLA corresponds
mostly to the updates retained at the server and the data structures maintained by
the server to manage the consistency state of each client. In any case, the overhead
introduced by CoopSLA is under an acceptable threshold. This overhead denotes
the tradeoff between memory, a highly available resource (for instance, personal
computers today are typically equipped at least with 4GB of RAM, and even tablets
and smart phones have 1GB or more), and the network resources, which are more
scarce and unreliable.

6.6. Varying editing patterns

In the experiments presented so far, every client has the same editing pattern.
In a real environment, however, different users have different roles and different
skills, which results in different editing patterns. To analyze the influence of this
aspect on the performance of CoopSLA, we designed a test case in which bots with
different editing patterns are launched in the same simulation. We considered two
representative patterns, a writer and a reviewer. The writer follows the same pattern
as the bots used in the previous experiences. The reviewer, on the other hand,
traverses the document space, changing frequently between semantic regions. It
also performs content modifications, but at a much lower rate than the writer bots.

Having these two patterns defined, we varied the ratio between writers and
reviewers in a set of 20 client bots. We chose three configurations: a build setup with

1440002-23

A. P. Negrao et al.

15 writers and 5 reviewer that tries to mimic the initial stages of the collaborative
writing process; a stable configuration with 50% writers and 50% reviewers; and,
finally, a review scenario in which 15 bots are reviewers and 5 are writers. For each
scenario we measured the network savings obtained over BL, as well as CPU and
memory usage. The results are shown in Figs. 9 and 10.

Figure 9 shows that network savings increase with the number of writers. This
is due to the fact that writers edit more steadily and in more localized regions of
the document space (in comparison with reviewers), which increases the probability
that two updates cancel each other. In any case, the differences between the results
obtained in the different scenarios are small. Furthermore, even in the scenario
dominated by reviewers, CoopSLA is able to achieve at least 20% savings over BL.

Regarding resource usage, the build scenario is the one that achieves lower perfor-
mance, as shown in Fig. 10. Ironically, the reason for this comparative performance
loss is the same reason that makes the build configuration obtain better network
results: because writer bots edit in a more intensive way, they generate a higher

Build --eeeeeeeeeees Stable ——sk—— Review

100 100
90 920
80 80
70 70
60 60
50 50
40 40
30 30

Build ---e-eeeeeeeees Stable ———— Review

Savings over BL (%)
Savings over BL (%)

20 20
10 10
0 T T T T T T T T T T 0 T T T T T T T T T T
0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300 350 400 450 500 550
Time (s) Time (s)
() (b)

Fig. 9. Evolution of network savings with different editing patterns. (a) Data transferred and
(b) exchanged messages.

== Review —Build --- Stable
Review W Stable ™ Build

CPU usage (%)

Memory used (MB)

T T T T T T T T T T
50 100 150 200 250 300 350 400 450 500 550

Time (s)

(a) (b)

Fig. 10. Resource usage with different editing patterns. (a) CPU usage and (b) memory usage.

1440002-24

Interest Aware Consistency for Cooperative Editing

number of updates. As a result, the server ends up having to retain a larger amount
of updates. In the same way, as we have already seen in the previous section, the
larger number of updates retained at the server results in an increase in CPU usage,
mainly due to update merging.

6.7. Semantic region granularity

We conducted a series of additional experiences to analyze the impact of the gran-
ularity of the semantic regions in the performance of the system. We considered
three different approaches with decreasing levels of minimum granularity: \ section,
\subsection and paragraphs (actual text paragraphs, not Latex \paragraph). For
each granularity level, we measured network, CPU and memory usage, with 10 and
20 clients and considering the Medium document space. The results are shown in
Figs. 11, 12 and 13.

-————4——\section -1 | e \subsection ——a&—— paragraph - \section------I L \subsection ——&—— paragraph

Savings over Baseline (%)

Savings over Baseline (%)

10 10
0 0
10 40 70 100 130 160 190 220 250 280 310 340 370 400 430 460 490 520 10 40 70 100 130 160 190 220 250 280 310 340 370 400 430 460 490 520
Time (s) Time (s)
(a) (b)

Fig. 11. Network savings with different granularities. (a) 10 clients and (b) 20 clients.

~--\section ----\subsection —\paragraph Baseline

ction *** - - Baseline

20 20
18 18
16 16
14 14
g g 12
f & 10
b E]
> 8
a2 2 o f
o c 6
4
2]
0 i,
0 50 100 150 200 250 300 350 400 450 500 550
Time (s) Time (s)
(a) (b)

Fig. 12. CPU usage with different granularities. (a) 10 clients and (b) 20 clients.

1440002-25

A. P. Negrao et al.

Baseline ™ \section M \subsection M paragraph
Baseline ™ \section M\subsection M paragraph

200 200
180 180
160 160

140
120
100

80

Total memory used (MB)

Total memory used (MB)
2
o

Granularity Granularity
() (b)

Fig. 13. Memory usage with different granularities. (a) 10 clients and (b) 20 clients.

The results obtained confirm, once more, the expected behavior of the system: as
the granularity level decreases, network savings increase and, consequently, resource
usage increases accordingly. The increase in network savings occurs because with
smaller granularities the number of semantic regions increases. As a result the
distance between the pivots of each user also increases and, consequently, so does
the average semantic distances between the pivots and the semantic regions updated
during each session. This fact increases the percentage of updates assigned to weaker
consistency zones, which means that a higher number of updates are retained at the
server, and for longer intervals. Hence, the probability of having canceling updates
at the server is higher, and merging occurs more frequently.

As shown in Fig. 13, decreasing the granularity of the semantic regions has
the opposing effect of increasing memory usage. This occurs because CoopSLA’s
data structures (the object graph and the consistency related tables) become larger
and populated with more objects. Despite this fact, CPU usage is not subject to
significant differences when granularity changes. The reason is that the more time
consuming operations of the server are related with update processing (e.g. update
merging) and the number of updates does not change with granularity. The size of
the data structures does not have a significant effect on CPU usage, because the
operations over these data structures are mostly localized (e.g. direct lookups of
primitive types on the consistency table or traversing short distances within the
object graph).

Our conclusion is that while smaller granularities consume more memory, the
values observed are not sufficient to cause a visible performance degradation at
the server. Hence, the choice of granularity is ultimately a decision that depends
on the goal of the application and the expectations of the users. For example, a
smaller granularity may be chosen if users do not want to be disturbed by frequent
remote modifications. In any case, the strength of CoopSLA is that it is very flex-
ible, allowing any level of granularity, as well as highly customizable consistency
specifications.

1440002-26

Interest Aware Consistency for Cooperative Editing

7. Related Work

In this section we discuss prior work on the two topics that are more closely related
to our work: divergence bounding and consistency in cooperative editing.

7.1. Divergence bounding in optimistic replication

Designers of replicated systems typically choose between pessimistic and optimistic
consistency models.> In many cases, however, neither the performance overheads
imposed by strong consistency nor the lack of limits for inconsistency are accept-
able to applications. An interesting alternative called divergence bounding? allows
updates to be managed optimistically, but defines under which conditions replicas
are required to converge and how to enforce that convergence. One obvious approach
to divergence bounding is to force replicas to synchronize after a specified maximum
time has elapsed.?*2% Another simple, yet effective, solution is to limit the number
of updates that can be applied to a local replica without synchronization.?%:27
The TACT?® framework proposes a multi-dimensional approach to divergence
bounding that unifies in a single model three metrics: real-time guarantees, order
bounding and a novel metric called Numerical Error that bounds the total number
of updates, across all replicas, that can proceed before replicas are forced to syn-
chronize. Our work distinguishes from TACT by embodying the notion of locality-
awareness into the consistency model. This allows our system to implicitly assign
different priorities to different updates that may vary throughout execution.
Vector Field Consistency?30 (VFC) is a consistency model for mobile mul-
tiplayer games that enables replicas to define their consistency requirements in
a continuous consistency spectrum. The novelty of the VFC model is that it com-
bines multi-dimensional divergence bounding with locality-awareness to improve the
availability and user experience while effectively reducing bandwidth usage. Con-
sistency between replicas strengthens as the distance between objects decreases. To
define such mutable divergence bounds, around pivots there are several concentric
ring-shaped consistency zones with increasing distance (radius) and decreasing con-
sistency requirements (increasing divergence bounds). Then, in each zone, like in
TACT, programmers define a three-dimensional vector: time, sequence, value.
None of the previous approaches tackle the issues addressed by our work to the
same extent as CoopSLA. They either do not take locality in the data/object space
into account, with a one-size-fits-all approach across all the data or for each data
type (TACT), or they assume an orthonormal data space, typical in multiplayer
game scenarios (VFC), that is not able to handle effectively data organized in
graphs, hierarchies, or trees, such as documents in cooperative editing.
Regarding performance, TACT bandwidth savings are always lower bounds
for the bandwidth savings attained with CoopSLA, while obeying to the same

1440002-27

A. P. Negrao et al.

divergence bounds. By virtue of not considering locality awareness, TACT needs to
enforce the strictest possible bounds globally, while CoopSLA only needs to apply
them to the document section(s) where the pivot is, and more flexible bounds
elsewhere.

VFC is unable to deal efficiently with a non-orthonormal data/object space, such
as a graph or a document section hierarchy. Thus, while providing better savings
than TACT, it can only consider a linear notion of distance between the updated
data and the user pivots (e.g. distance in document file offsets). As a result, it will
use as sizes for inner consistency zones the maximum length of relevant regions in
the document (maximum number of characters of a paragraph, subsubsection, sub-
section, section), which will be an overestimate for every other region of the same
level in the document. Thus, to enforce a given vector of divergence bounds associ-
ated to a document-like structure, it needs to enforce more conservative divergence
bounds, which will result in more frequent update transfers, outside more relevant
regions.

7.2. Consistency in cooperative editing

The issue of maintaining replica consistency in cooperative applications has been
extensively studied in the last two decades. The most representative solutions fall
into the Operational Transformation (OT) category.?:67831:32 In OT, each locally
generated operation is associated with a timestamp and broadcast to the remain-
ing sites. Then, each remote update received is transformed (e.g. by adjusting its
insert/delete index) in order to commute with concurrent operations already applied
to the shared document. As a result, transformed operations can be executed with-
out re-ordering previously applied operations.

OT transforms updates in order to make them commute. A recently proposed
alternative is to make every operation automatically commutative by representing
the document as a Commutative Replicated Data Type (CRDT).1914 The CRDT
approach considers that a document is composed of a sequence of immutable and
uniquely identified elements that can be any non-editable component of a docu-
ment, like a character or a graphics file. Commutativity is achieved by designing
an identifier space that ensures that it is always possible to create a new identifier
between two existing ones.'°

The vast majority of existing work on cooperative editing (including OT and
CRDTSs) does not consider the dynamically changing interest of the users in the dif-
ferent semantic regions of a document; instead, they propagate every update with
the same static priority. A different approach is taken in the design of Docz2Go0.33
In this work, the authors acknowledge that users, especially those using resource-
constrained devices, are typically not equally interested in every part of a document.
They materialize this observation by allowing users to replicate only a subset of the
regions of the document at their devices. This way, Docz2Go is able to obtain both

1440002-28

Interest Aware Consistency for Cooperative Editing

network and storage savings. However, unlike CoopSLA, this approach considers
each of the locally replicated regions as equally important, not allowing different
requirements to be set for different regions. This all-or-nothing approach prevents
users from accompanying the evolution of the document. CoopSLA, on the other
hand, provides users with, at least, an overall view of the whole state of the docu-
ment; and it does so while still obtaining considerable savings regarding the usage
of the network resources.

Unlike CoopSLA, the systems described in the previous paragraphs follow an
eventual consistency approach to consistency maintenance. As a result, they cannot
provide clear guarantees about the consistency state of the data at any particular
moment. Most importantly, our consistency model is compatible with any of these
systems and can, thus, be used to improve their performance. In fact, as mentioned
in Sec. 4.4, CoopSLA uses the TreeDoc CRTD as a building block.

8. Conclusion

In this paper we presented a semantic and locality aware consistency model for
cooperative editing applications. Our model, named CoopSLA, explores the het-
erogeneous and dynamic interest of users in different regions of a document space
in order to minimize network communications between the participants of an edit-
ing session. CoopSLA assigns, on a per-user basis, different priorities to different
updates, based on the semantic distance between the place in the document in
which the update is performed and the places in which the user is more interested.
Updates with high priority are sent promptly to the user, while low priority updates
are postponed and, when possible, merged. In between high and low priority, our
system allows the definition of an arbitrary number priority levels. Each prior-
ity level is characterized by a multidimensional consistency degree that defines
how many and for how long updates to a particular object are allowed to be
postponed.

We implemented a middleware layer enforcing CoopSLA and extended the pop-
ular Tex editor TexMaker with cooperative features using it. We conducted a series
of tests to experimentally evaluate the performance of CoopSLA. The results pre-
sented in this paper support our claim that CoopSLA is very effective in reducing
the overhead of replica synchronization without constraining application models
and respecting users consistency needs.

Acknowledgments

This work was partially supported by national funds through FCT — Fundagao para
a Ciéncia e Tecnologia, under projects PEst-OE/EEI/LA0021/2013, PTDC/EIA-
EIA/113613/2009 and PTDC/EIA-EIA/113993/2009.

1440002-29

A. P. Negrao et al.

Appendix A

Algorithm Appendix A.1 Processing updates received

1: function UPDATERECEIVED(u, 0)

2 DOCUMENTMANAGER. APPLY UPDATE(u, 0)

3 for ce CLIENTS do

4: REPLICAMANAGER.MARKMODIFIED(0, ¢)
5: Yelo, 0] «— efo, 0] +1

6 z — ¢;[o]

7 if ¢.[o, 0] = z[o] then

8 REPLICAMANAGER.MARKDIRTY (0, ¢)
9 end if

10: end for

11: end function

Algorithm Appendix A.2 Processing pivot movement

1: function PIvVOTMOVEMENT(p,¢)

2 for o € OBJECTS do

3 Zold +— €z[0]

4 Znew < REPLICAMANAGER.CONSISTENCYZONE(0, p)
5: if Zpew < Zoiqg then

6 Cz,0 < Znew

7 if ¢.[o, 0] > z[o] then

8 REPLICAMANAGER.MARKDIRTY (0, ¢)

9: else
10: REPLICAMANAGER.MARKMODIFIED(0, ¢)
11: end if
12: else
13: REPLICAMANAGER. MARKOUTDATEDZONE(0, ¢)
14: end if
15: end for

16: end function

Algorithm Appendix A.3 Handling modifications to the graph

1: function STRUCTURECHANGED

2 foreach ¢c € CLIENTS do

3 foreach p € REPLICAMANAGER.P1vOTS(c) do
4: P1vOTMOVEMENT(p,c)

5 end foreach

6 end foreach

7: end function

1440002-30

Interest Aware Consistency for Cooperative Editing

Algorithm Appendix A.4 Consistency validation algorithm
function VALIDATIONLOOP
foreach c€ CLIENTS do
foreach o € ModifiedObjects(c) do
Oc —{}
if REPLICAMANAGER.ISDIRTY(0, ¢) then
2z« cz[0]
if 2[0] > t — 1c[6, o] then
vt < DOCUMENTMANAGER.SEMANTICDIFFERENCE(0, ¥¢[v, 0])
if v; > z[v] then
Oc +—O:Uo
REPLICAMANAGER.CLEARFLAGS(0, ¢)
¢z [o] < REPLICAMANAGER. CONSISTENCYZONE(o, ¢)
end if
end if
end if
end foreach
SESSIONMANAGER.PROPAGATE(O,)
end foreach
end function

Algorithm Appendix A.5 Retrieve consistency zone
function GETCONSISTENCYZONE(0, ¢)
Zc,o %)
for p € REPLICAMANAGER.P1vOTS(¢) do
$q < DOCUMENTMANAGER.SEMANTICDISTANCE(0, p)
z < REPLICAMANAGER.CONSISTENCYZONE(S4, D)
Ze,o <= STRONGEST(%¢,0, 2)
end foreach
return z.,
end function

References

1. C. A. Ellis, S. J. Gibbs and G. Rein, Groupware: Some issues and experiences,
Commun. ACM 34 (1991) 39-58.

2. B. Shao, D. Li and N. Gu, A fast operational transformation algorithm for mobile and
asynchronous collaboration, Parallel Distributed Syst., IEEE Trans. 21(12) (2010)
1707-1720.

3. K. Veeraraghavan, V. Ramasubramanian, T. L. Rodeheffer, D. B. Terry and T.
Wobber, Fidelity-aware replication for mobile devices, in Proc. 7th Int. Conf. Mobile
systems, Applications and Services, MobiSys 09 (ACM, New York, NY, USA, 2009),
pp. 83-94.

4. A. J. Feldman, W. P. Zeller, M. J. Freedman and E. W. Felten, Sporc: Group col-
laboration using untrusted cloud resources, in Proc. 9th USENIX Conf. Operating

1440002-31

A. P. Negrao et al.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

Systems Design and Implementation, OSDI’10 (USENIX Association, Berkeley, CA,
USA, 2010), p. 1.

Y. Saito and M. Shapiro, Optimistic replication, ACM Comput. Surv. 37(1) (2005)
42-81.

C. A. Ellis and S. J. Gibbs, Concurrency control in groupware systems, in SIGMOD
’89: Proc. 1989 ACM SIGMOD Int. Conf. Management of Data (ACM, New York,
NY, USA, 1989), pp. 399-407.

C. Sun and C. Ellis, Operational transformation in real-time group editors: Issues,
algorithms and achievements, in CSCW ’98: Proc. 1998 ACM Conf. Computer Sup-
ported Cooperative Work (ACM, New York, NY, USA, 1998), pp. 59-68.

R. Li and D. Li, A new operational transformation framework for real-time group
editors, Parallel Distributed Syst. IEEE Trans. 18(3) (2007) 307-319.

D. Sun, S. Xia, C. Sun and D. Chen, Operational transformation for collaborative word
processing, in CSCW ’04: Proc. 2004 ACM Conf. Computer Supported Cooperative
Work (ACM, New York, NY, USA, 2004), pp. 437-446.

N. Preguica, J. Manuel Marques, M. Shapiro and M. Letia, A commutative replicated
data type for cooperative editing, in ICDCS ’09: Proc. 2009 29th IEEE Int. Conf.
Distributed Computing Systems (IEEE Computer Society, Washington, DC, USA,
2009), pp. 395-403.

G. Oster, P. Urso, P. Molli and A. Imine, Data consistency for p2p collaborative edit-
ing, in CSCW ’06: Proc. 2006 20th Anniversary Conf. Computer Supported Cooper-
ative Work (ACM, New York, NY, USA, 2006), pp. 259-268.

S. Weiss, P. Urso and P. Molli, Logoot: A scalable optimistic replication algorithm
for collaborative editing on p2p networks, in ICDCS ’09: Proc. 2009 29th IEEE Int.
Conf. Distributed Computing Systems (IEEE Computer Society, Washington, DC,
USA, 2009), pp. 404-412.

H.-G. Roh, M. Jeon, J.-S. Kim and J. Lee, Replicated abstract data types: Building
blocks for collaborative applications, J. Parallel Distrib. Comput. 71 (3) (2011) 354—
368.

Q. Wu, C. Pu and J. E. Ferreira, A partial persistent data structure to support con-
sistency in real-time collaborative editing, in Data Engineering (ICDE), 2010 IEEE
26th Int. Conf. (2010), pp. 1707-1720.

W. Vogels, Eventually consistent, Commun. ACM 52(1) (2009) 40—44.

D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer and C. H.
Hauser, Managing update conflicts in bayou, a weakly connected replicated storage
system, in Proc. fifteenth ACM Symp. Operating Systems Principles, SOSP 95 (ACM,
New York, NY, USA, 1995), pp. 172-182.

M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel and D. C.
Steere, Coda: A highly available file system for a distributed workstation environment,
IEEE Trans. Comput. 39(4) (1990) 447-459.

R. Ladin, B. Liskov, L. Shrira and S. Ghemawat, Providing high availability using
lazy replication, ACM Trans. Comput. Syst. 10(4) (1992) 360-391.

H. Abrams, K. Watsen and M. Zyda, Three-tiered interest management for large-scale
virtual environments, in Proc. ACM Symp. Virtual Reality Software and Technology,
VRST 98 (ACM, New York, NY, USA, 1998), pp. 125-129.

C. Pu and A. Leff, Replica control in distributed systems: As asynchronous approach,
in Proc. 1991 ACM SIGMOD Int. Conf Management of Data, SIGMOD ’91 (ACM,
New York, NY, USA, 1991), pp. 377-386.

D. Li and M. Anand, Majab: Improving resource management for web-based appli-
cations on mobile devices, in Proc. 7th Int. Conf. Mobile Systems, Applications and
Services, MobiSys 09 (ACM, New York, NY, USA, 2009), pp. 95-108.

1440002-32

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Interest Aware Consistency for Cooperative Editing

T. Imielinski and B. R. Badrinath, Mobile wireless computing: Challenges in data
management, Commun. ACM 37(10) (1994) 18-28.

P. Dourish and V. Bellotti, Awareness and coordination in shared workspaces, in
Proc. 1992 ACM Conf. Computer-Supported Cooperative Work, CSCW 92 (ACM,
New York, NY, USA, 1992), pp. 107-114.

R. Alonso, D. Barbara and H. Garcia-Molina, Data caching issues in an information
retrieval system, ACM Trans. Database Syst. 15(3) (1990) 359-384.

F. J. Torres-Rojas, M. Ahamad and M. Raynal, Timed consistency for shared dis-
tributed objects, in Proc. Eighteenth Annual ACM Symp. Principles of Distributed
Computing, PODC ’99 (ACM, New York, NY, USA, 1999), pp. 163-172.

C. Zhang and Z. Zhang, Trading replication consistency for performance and availabil-
ity: An adaptive approach, in Proc. 28rd Int. Conf. Distributed Computing Systems,
ICDCS 08 (IEEE Computer Society Washington, DC, USA, 2003), pp. 687.

N. Krishnakumar and A. J. Bernstein, Bounded ignorance: A technique for increasing
concurrency in a replicated system, ACM Trans. Database Syst. 19(4) (1994) 586—625.
H. Yu and A. Vahdat, Design and evaluation of a conit-based continuous consistency
model for replicated services, ACM, Trans. Comput. Syst. 20(3) (2002) 239-282.

N. Santos, L. Veiga and P. Ferreira, Vector-field consistency for ad-hoc gaming, in
Middleware ’07: Proc. ACM/IFIP/USENIX 2007 Int. Conf. Middleware (Springer-
Verlag, New York, NY, USA, 2007), pp. 80-100.

L. Veiga, A. Negrao, N. Santos and P. Ferreira, Unifying divergence bounding and
locality awareness in replicated systems with vector-field consistency, J. Internet Serv.
Appl. 1(2) (2010) 95-115.

D. Sun and C. Sun, Context-based operational transformation in distributed collabo-
rative editing systems, IEEE Trans. Parallel Distrib. Syst. 20(10) (2009) 1454-1470.
S. Xia, D. Sun, C. Sun, D. Chen and H. Shen, Leveraging single-user applications
for multi-user collaboration: The coword approach, in CSCW ’04: Proc. 2004 ACM
Conf. Computer Supported Cooperative Work (ACM, New York, NY, USA, 2004),
pp. 162-171.

K. P. N. Puttaswamy, C. C. Marshall, V. Ramasubramanian, P. Stuedi, D. B. Terry
and T. Wobber, Docx2go: Collaborative editing of fidelity reduced documents on
mobile devices, in Proc. 8th Int. Conf. Mobile Systems, Applications and Services,
MobiSys ’10 (ACM, New York, NY, USA, 2010), pp. 345-356.

1440002-33

