
Asynchronous Complete Distributed Garbage Collection

Luı́s Veiga Paulo Ferreira

INESC-ID/IST
Rua Alves Redol No 9, 1000-029 Lisboa, Portugal

{luis.veiga, paulo.ferreira}@inesc-id.pt

Abstract

Most Distributed Garbage Collection (DGC) algorithms
are not complete as they fail to reclaim distributed cycles of
garbage.

Those that achieve such a level of completeness are
very costly as they require either some kind of synchro-
nization or consensus between processes. Others use mech-
anisms such as backtracking, global counters, a central
server, distributed tracing phases, and/or impose additional
load and restrictions on local garbage collection. All these
approaches hinder scalability and/or performance signifi-
cantly.

We propose a solution to this problem, i.e., we describe
a DGC algorithm capable of reclaiming distributed cycles
of garbage asynchronously and efficiently. Our algorithm
does not require any particular coordination between pro-
cesses and it tolerates message loss.

We have implemented the algorithm both on Rotor (a free
source version of Microsoft .Net) and on OBIWAN (a plat-
form supporting mobile agents, object replication and re-
mote invocation); we observed that applications are not dis-
rupted.

1. Introduction

Distributed garbage collection is a requirement for dis-
tributed object systems. In these systems, cycles are fre-
quent [14]. In addition, when considering persistence, dis-
tributed garbage simply accumulates over time degrading
performance. This is not simply an issue of disk space.
Other aspects like storage management, object loading on
primary memory, object marshalling, etc. suffer perfor-
mance degradations with the extra load imposed by the in-
crease of garbage.

Thus, the design of complete distributed garbage col-
lection (DGC) algorithms is a problem that has been ad-
dressed many times before. However, the solutions so far
proposed suffer from serious drawbacks, i.e., they require
either some kind of synchronization[15] or consensus[7, 8]
among processes, or use some other mechanism such as
distributed backtracking[6, 11, 16] (possibly optimistic[4]),
global counter tresholds[7], a central server processing[9],
object migration[2, 10], or impose additional load on the lo-
cal or acyclic distributed garbage collection[4]. All these
approaches hinder scalability and/or performance signifi-
cantly (more detail in Section 5).

We propose a solution that, as others before, follows a
hybrid approach: an acyclic distributed collector based on
reference-listing and a cycle detector that complements the
first thus providing a complete solution for the problem of
DGC.

The algorithm for acyclic DGC is based on reference-
listing [17]. This algorithm keeps track of inter-processes
references by means of data structures called stubs and
scions. A scion represents an incoming reference, i.e., a ref-
erence pointing to an object in the scion’s process. A stub
represents an outgoing remote reference, i.e., a reference
pointing to an object in another process.

Each process has a local garbage collector (LGC). Root
objects include global variables and threads stack. Starting
from local roots and scions, the LGC generates a new set of
stubs each time it runs. This new set of stubs is then sent
to remote processes (this message is called NewSetStubs);
these processes, based on the set of stubs received, may con-
clude which scions are no longer reachable so that they can
be safely deleted. Objects that are only reachable through
these, just deleted, scions are garbage and can be reclaimed
by the next LGC.

The distributed cycles detection algorithm (DCDA)
works on object graph snapshots taken by each process in-
dependently (i.e., with no synchronization required at all).
There is an instance of the DCDA for each one of such pro-
cesses. Thus, each snapshot is treated by the DCDA
independently; messages are then exchanged among DC-
DAs so that certain reference paths are followed in order to
find if they form a distributed cycle of garbage.

Thus, the main contribution of this work is a novel
DCDA which is well integrated with traditional acyclic dis-
tributed collectors. Our solution does not require global syn-
chronization and does not disrupt applications.

The rest of the paper is organized as follows. The next
section provides an intuitive description of the DCDA. Sec-
tion 3 describes the DCDA in detail using some prototypical
examples. Section 4 presents the implementation and per-
formance evaluation. In Sections 5 and 6 we describe rele-
vant related work and final conclusions.

2. Distributed Cycle Detection

Distributed garbage collection identifies live and dead
objects in distributed systems. To do so, it manages reacha-
bility information (local, remote and global) about objects.
An object is locally reachable when it is transitively reach-

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

P1 P2

P3

ROOT ROOT

x y

z

ROOT
P4

ROOT

w

Figure 1. Identifying dependencies in cycles.

able from a local root (e.g., global variables, threads stack)
of its enclosing process. An object is reachable remotely
when it is referenced by other object(s) in different pro-
cess(es). Globally reachable objects are all live objects, i.e.,
all the objects that can be manipulated by applications (in
GC terms, mutators). Clearly, all objects locally reachable
are also globally reachable. Objects solely reachable re-
motely may be either globally reachable or not. The pre-
vious are transitively reachable (through a chain of remote
references) from a local root of some other process. The
latter constitute distributed garbage. Our algorithm is com-
plete. It detects and reclaims cyclic, acyclic and hybrid dis-
tributed garbage through cooperation of the of acyclic col-
lector and the cyclic detector.

In this section, we describe the main idea of the DCDA.
We follow an intuitive description that does not consider
many subtle aspects; these are addressed in the next sec-
tions. However, it provides an easily understandable de-
scription of the main idea. For simplicity, we first assume
that all mutators are suspended; we call this, the stop-the-
world DCDA. Afterwards, we do relax this requirement:
concurrent DCDA.

2.1. Stop-the-World DCDA

Consider an object x in process X which is kept alive
solely because it is reachable from another process, i.e., it
is not locally reachable in process X (where x is allocated).
If this object is not invoked for a certain amount of time we
can make a guess that this object is, in fact, part of a dis-
tributed cycle of garbage. However, we are not sure about
that. In order to reach a safe conclusion about x’s state (live
or dead), we conceived an algorithm that, intuitively, works
as follows.

In process X , The DCDA determines which stubs (in pro-
cess X) are reachable from object x. Those stubs that are lo-
cally reachable (directly or indirectly from X’s root) are im-
mediately discarded from the point of view of the DCDA;
obviously, such stubs do not belong to a distributed cycle
of garbage. On the other hand, those stubs that are solely
reachable from object x, may be part of such a cycle.

Scions in process X that may also lead (directly or indi-
rectly) to the local graph where x is included, are accounted
for as extra dependencies. We define dependency, in cycle
detection terms, as a scion that leads to the path being traced
by the DCDA, i.e., an alternate converging distributed path.
Global reachability of the path being traced depends, also,
on the reachability of such a scion. Therefore, if there is
cyclic garbage, such a scion must also belong to it. This de-
pendency is accounted for, and must be eventually resolved

by the DCDA. While it is not, no cycle has been safely iden-
tified yet. An example is portrayed in Figure 1: the remote
reference from w in P4 → x in P1 is an extra dependency
of the cycle, i.e., it is preserving the distributed cycle reach-
able.

So, the cycles detector sends a probe message along at
least one of the above mentioned stubs. These probes (here-
after named as CDM, cycle detection messages) will reach
the corresponding scions in remote processes.

In each one of such processes, the DCDA performs as
previously described: determines which stubs (inside the
process) are reachable from the scion that received the
CDM. For clarity, but without loss of generality, assume
each process only receives one CDM. Once again, those
stubs that are locally reachable are not considered by the
cycles detector; thus, the CDM does not follow the cor-
responding outgoing path. For those stubs that are reach-
able from the scion that received the CDM, and are locally
unreachable, the CDM follows the corresponding outgoing
path to remote processes. Once again, all other scions that
may lead to any of the afore mentioned stubs, are included
as dependencies.

So, the CDM is i) either stopped because, in some pro-
cess, the DCDA discovers a stub that is locally reachable,
or ii) kept on going along the references path so that, even-
tually it will reach the starting process X . When such event
occurs, the CDM carries an algebra that describes the dis-
tributed graph that was traversed.

This algebra may indicate that there are dependencies to
be resolved, i.e., references pointing to the graph that was
traversed; in this case, it is not safe to conclude that we have
discovered a distributed cycle; obviously, it is necessary to
resolve such dependencies.

However, if the graph is, in fact, a distributed cycle of
garbage, then it has no such dependencies yet to be resolved
because all those alternate paths were fully and successfully
traced. Thus, the DCDA in process X , based on the algebra
before mentioned, can safely conclude that it has found a
distributed cycle of garbage. So, all it has to do, is to delete
the (local) scion from which the CDM has been originated.
Then, the distributed acyclic garbage collector will reclaim
the remaining objects.

2.2. Concurrent DCDA

Obviously, assuming that all mutators are suspended is
not reasonable. So, periodically, each process stores a snap-
shot of its internal object graph on disk. This snapshot is
performed by each process with no coordination w.r.t. other
processes; thus, each process is completely independent.

If we assume that a set of such snapshots, taken indepen-
dently by each process, provides a consistent view of the
global distributed object graph, the DCDA may proceed ex-
actly as described previously. However, for obvious reasons,
such an assumption is not correct; so, the DCDA has to en-
sure that the set of snapshots visited by CDMs is, in fact,
a consistent view for the purpose of finding distributed cy-
cles of garbage.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

P1 P2

P3

ROOT ROOT

x
y

z

P1

P2

P3

CDM CDM

CDM

delete
root -> x

invoke y

create
root -> y

S2

S1

S3

t

t

t

P1:snapshot S1

x
y

z

c) Graph perceived by the DCDA.

P2:snapshot S2

P3: snapshot S3

a) Initial situation

b) Timeline

ROOT ROOT

ROOT ROOT
P1:snapshot S1

x
y

z

d) Real Graph

P2:snapshot S2

P3: snapshot S3
ROOT

ROOT ROOT

Figure 2. DCDA of independent snapshots.

Therefore, it is only required that the sub-graph be-
ing independently traced, to determine if it is a distributed
garbage cycle, is observed consistently. This a weaker re-
quirement than that of a consistent-cut in a distributed sys-
tem due to: i) distributed cyclic garbage (as all garbage) is
stable, i.e., after it becomes garbage it will not be touched
again by the mutator, and ii) distributed cyclic garbage is al-
ways preserved by the acyclic DGC (that is why we need a
special detector), i.e., if the DCDA does nothing, it still is
safe.

Thus, we define CDM-Graph(x) as a consistent view re-
stricted to the distributed sub-graph, headed by object x, en-
closed in the correct combination of N process snapshots
with N-1 CDMs. Cycle detection proceeds as the CDM-
Graph is being constructed, i.e., with each CDM sent to a
process, combined with its snapshot and, after update, sent
to another process. Thus, a CDM carries a consistent view
of the fraction of the CDM-Graph already transversed by
it, i.e., the processes the CDM has been sent from. When a
CDM-Graph is safely and completely constructed, with all
dependencies resolved, a distributed garbage cycle has been
detected.

For DCDA purposes, a CDM-Graph must respect the fol-
lowing invariant:there can be no invocations along the dis-
tributed sub-path to be included in the CDM-Graph. If we
allow this to happen, it means that the mutator is modify-
ing the distributed graph in the back of the DCDA. Conse-
quently, the DCDA may erroneously conclude that it found
a garbage cycle. Fig. 2-a illustrates such a case. The ini-
tial situation is that of a cycle formed by objects x, y and z
in processes P1, P2 and P3, respectively. This cycle is not
garbage because x is referenced from the local root in P1.

Now consider the sequence of events depicted in the
timeline in Fig. 2-b (S1, S2 and S3 are the moments when
the corresponding processes make their snapshots). The
DCDA starts in P2 by sending a CDM to P3. Concurrently,
the mutator in P1, invokes y in P2 and deletes the reference
from the local root that points to x. As a result of this invoca-
tion, a new local reference is created in P2’s local root point-
ing to y. Once this invocation finishes, P1 makes a snapshot
of its graph (instant S1). Given that S2 and S3 were previ-
ously taken, the view of the distributed graph that is per-
ceived by the DCDA instances (i.e., the CDM-Graph) is,

in fact, the one represented in Fig. 2-c, instead of the cor-
rect one represented in Fig. 2-d. This would lead to the er-
roneous detection of a distributed cycle of garbage compris-
ing objects x, y and z. This erroneous conclusion would be
reached by the DCDA if the invariant mentioned before is
not respected. In this case, an invocation took place along
the reference path P1 → P2 that had been previously stored
in the snapshot and will be included in the CDM-Graph
when the CDM arrives to P1.

The invariant dictating the construction of a CDM-
Graph is implemented using the following conservative
safety rules (Situation → Action), when process snap-
shots are pairwise-combined through CDMs:

1. Stub without corresponding Scion (snapshot of the
process holding the scion is not current enough for the
CDM-Graph) → Ignore CDM.

2. Scion without corresponding Stub (reference creation
message in transit, acyclic garbage, or snapshot of the
process holding the stub not current enough) →The
CDM is never sent since there is no stub in CDM-
Graph.

3. Stub with matching Scion but there have been remote
invocations, and possibly reference copying, along the
CDM-Graph after one of the snapshots was taken; it is
not consistently accounted for in the snapshot and the
CDM)→Terminate CDM-Graph construction, i.e., ter-
minate detection avoiding mutator-DCDA race.

4. Stub with corresponding Scion and there were no invo-
cations after snapshot (safe to continue CDM-Graph
creation and detection)→Proceed CDM-Graph con-
struction, combine CDM with process snapshot and
continue detection.

There are two straightforward ways to uphold CDM-
Graph invariant w.r.t. the last two rules: i) pessimistic: to
freeze the mutator in, or deny it access to, the path already
transversed while detection is in course, or ii) optimistic:
to detect, at a later stage, that this invocation has indeed
occurred. The first option is clearly undesirable as it dis-
rupts applications with no justification (if the mutator wants
to access objects, they are clearly not garbage). The sec-
ond option allows the mutator to run at full-speed at the
expense of possibly wasting some detection work (an hy-
pothetical distributed cycle may be partially or completely
transversed by the detector, only to find out that meanwhile,
a distributed invocation on that cycle has taken place). The
algorithm needs only to ensure safety in these cases (and it
does) since they must be infrequent when efficient heuris-
tics are used to select cycle candidates. Thus, the solution
conceived consists on a barrier that detects invocations be-
ing performed in the back of the DCDA. In the next sections
we describe, in detail, the DCDA using some prototypical
examples and showing the algebra carried by CDMs.

3. Algorithm

For clarity, we use simplified language for certain ex-
pressions and aspects, when there is no danger of error.
In particular, objects are represented by their name (a let-

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

QP

R

S T

P4

A B

P1

C

D E

P2

F G

H

I J

L

O

M

K

N

P3

Figure 3. A simple distributed garbage cycle.

ter) and their enclosing process (e.g., AP1, see Fig.3). Sub-
graphs of connected objects may be represented in abbrevi-
ation (e.g., {{A, C, B}P1,{F, G, H}P2}), aggregated by
enclosing process. References may be also explicitly de-
scribed when relevant (e.g., BP1 → FP2).

For clarity, when we say stubs are reachable from a
scion, we actually mean: stubs accounting for out-going ref-
erences enclosed in objects that are reachable from a spe-
cific object, targeted by an incoming remote reference, this
one, represented by a scion.

Initially, every aspect of the algorithm is explained as-
suming that all processes are stopped, i.e., without mutator
activity. Issues regarding concurrency, safety, and scalabil-
ity are later addressed.

To describe the cycle detection algorithm, we make use
of a simple, yet, general example shown in Fig. 3. There
are four processes involved: P1 through P4. There is a dis-
tributed garbage cycle since object AP1 has ceased to be
reachable from the local root in P1. As there are no other
reachability roots, the whole cycle is garbage, yet unde-
tectable by acyclic DGC. The cycle can be represented by
the following chain of objects (starting and finishing in P2):

{{F,H,J}P2,{Q,R,S}P4,{O,M,K}P3,{D,C,B}P1}

In Fig. 3, remote references (e.g., BP1 → FP2) are repre-
sented with their associated stubs (e.g., at BP1) and scions
(e.g., at FP2).

Data Structures: The structures manipulated by the
DCDA are regular acyclic DGC structures, extended with
the following information (invocation counters are ad-
dressed in Section 3.2):

Scion:
• invocation counter (IC): counter for concurrency pur-

poses.
• StubsFrom: list of stubs, in the same process, transi-

tively reachable from the scion.
Stub:
• invocation counter (IC): counter for concurrency pur-

poses.
• ScionsTo : list of scions, in the same process, that tran-

sitively lead to the stub.
• Local.Reach : flag-bit accounting for local reachabil-

ity (i.e., from the local root of the enclosing process)
of the stub.

The StubsFrom and ScionsTo lists, held for each scion
and stub, establish reachability associations among scions
and stubs in each process. The StubsFrom list, for each
scion, allows the algorithm to determine, while detecting
a cycle, the next set of processes (targeted by out-going ref-
erences) that should be probed (i.e., sent the CDM) in order
to transverse the full cycle.

On the other hand, the ScionsTo list, in each stub, allows
the algorithm to determine extra dependencies that must be
also verified before the cycle is correctly identified.

Finally, the Local.Reach flag, in each stub, indicates the
local reachability of the stub, i.e., of at least, one of the ob-
jects with the corresponding out-going remote reference.
This ensures that cycles comprising objects reachable, lo-
cally in a process, are never wrongly identified as garbage.
When these are found, cycle detection along that path is ter-
minated, with a negative result w.r.t. cycle detection.

Graph Summarization: Object graphs in application pro-
cesses may be very large. Consequently, the size of the
corresponding snapshot may contribute to increase detec-
tor complexity and occupy a large amount of disk space. In
addition, such a large amount of data could turn cycle de-
tection into a CPU-consuming operation requiring access to
a large amount of data.

This problem is solved by summarizing the object graph
(a snapshot) of each application process in such a way
that, from the point of view of the DCDA, there is no loss
of relevant information. This summarization transforms a
snapshot of an application graph into a set of scions and
stubs, with their corresponding associations. As a matter
of fact, references strictly internal to a process are not rel-
evant for the DCDA. In Fig. 3, in process P2, references
{F → H, F → G, G → H, H → J}P2 fall into this cat-
egory. This summarization is performed on every snapshot;
then it is made available to the DCDA. Thus, while pro-
cesses can take snapshots by serializing local graphs, the
DCDA only uses them in their summarized form, i.e., af-
ter graph summarization. In the remainder of the document,
snapshot and summarized graph description are logically
equivalent, w.r.t. the DCDA.

In the example shown in Fig. 3, the summarized graph
information at process P2 would hold the following data
(symbol ⇒ means evaluates to or returns, ≡ relates a field
name and its value):

Scion(FP2)P2 ⇒{StubsFrom ≡ {QP4}}
Stub(QP4)P2 ⇒

{ScionsTo ≡ {FP2},Local.Reach ≡ f alse}

This means that, in P2: i) Stub(QP4) is reachable from
Scion(FP2), ii) Scion(FP2) leads to Stub(QP4), and iii)
Stub(QP4) is not reachable from the local root of P2.

Algebra: Cycle detections use an algebraic representation
encoded in the CDM. The CDM content is comprised of
two sets (separated by →): i) a source-set holding compiled
dependencies, and ii) a target-set holding target objects that
the message has been forwarded to. In the example of Fig. 3,
let us assume that a detection is initiated with object FP2 as
candidate (efficient selection of cycle candidates is an issue

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

out of the scope of this paper; heuristics found in the litera-
ture [10] may be used).

The steps performed and relevant state are the following:
1. P2 : Alg0 ⇒{{FP2}→{}}, (FP2 chosen as candidate for cy-

cle detection; it is the first dependency)
2. P2 : StubsFrom(FP2) ⇒{QP4}, (stubs reachable from FP2).
3. P2 : Alg1 ⇒{{FP2}→ {QP4}}, (result algebra after includ-

ing new found stub; scion already included).
4. P2 : Send Alg1 to P4, (send CDM to process P4).
5. P4 : Deliver Alg1
6. P4 : Algebra Matching f or Alg1
For each CDM delivered to a process, the DCDA per-

forms an algebraic matching, reducing the message (i.e.,
finding unresolved dependencies) and determining whether
a distributed garbage cycle was detected, as described now.

CDM Matching: In the previous example (at step #6),
matching of source ({FP2}) and target ({QP4}) sets in the
message would produce, as expected, the following result:

6. P4 : Matching(Alg1) ⇒{{FP2}→ {QP4}}
7. P4 : Cycle Found ⇒ f alse
This is due to the fact there are no intersecting elements

in the two sets, therefore, no matching could be performed.
Following the flow of CDM, consider now that similar

steps (1...4) were performed, this time, at P4. They would
render the following result:

8. P4 : Alg1 ⇒{{FP2}→ {QP4}}
9. P4 : StubsFrom(QP4) ⇒{OP3}

10. P4 : Alg2 ⇒{{FP2,QP4}→ {QP4,OP3}}
11. P4 : Send Alg2 to P3

And, once the CDM carrying Alg2 arrives at P3:
12. P3 : Deliver Alg2
13. P3 : Matching(Alg2) ⇒{{FP2}→ {OP3}}
14. P3 : Cycle Found ⇒ f alse

This result shows, after matching, the relevant informa-
tion for cycle detection. It illustrates that, until this point,
cycle detection relies on establishing a path that eliminates
dependency on FP2, and that the wave front of detection is
placed on OP3. This agrees with the intuitive result that,
starting in P2, no cycle can be safely detected in the path
P2 → P4 → P3. Continuing detection at P3:
15. P3 : StubsFrom(OP3) ⇒{DP1}
16. P3 : Alg3 ⇒

{{FP2,QP4,OP3}→ {QP4,OP3,DP1}}
17. P3 : Send Alg3 to P1

Upon CDM arrival at P1:
18. P1 : Deliver Alg3
19. P1 : Matching(Alg3) ⇒{{FP2}→ {DP1}}
20. P1 : Cycle Found ⇒ f alse

And, preparing CDM for forwarding:
21. P1 : StubsFrom(DP1) ⇒{FP2}
22. P1 : Alg4 ⇒

{{FP2,QP4,OP3,DP1}→ {QP4,OP3,DP1,FP2}}
23. P1 : Send Alg4 to P2

When the CDM arrives at process P2:
24. P2 : Deliver Alg4
25. P2 : Matching(Alg4) ⇒{ {}→ {} }
26. P2 : Cycle Found ⇒ true

At this moment, for the DCDA, it is safe to assume that
a cycle has been found and that object FP2 belongs to it.
Therefore, it is safe to instruct the acyclic DGC at P2 to
delete the scion accounting for the remote reference to FP2.

P6

ZA

ZD

ZC

ZE

ZB

P5

U V

W

X Y

QP

R

S T

P4

A B

P1

C

D E

P2

F G

H

I J

L

O

M

K

N

P3

Figure 4. Mutually-linked distributed cycles.

Later, when the LGC runs on process P2, the stub account-
ing for remote reference to QP4 will disappear. This will
in sequence, after LGCs in each process, reclaim the dis-
tributed cycle. Once again, in the previous steps, were any
of the objects reachable locally (in their processes), and that
fact would be reflected upon the reachability bit-flag in one
stub and terminate the cycle detection.

Multiple Dependencies: With the previous example we
have portrayed a situation where the fundamental depen-
dency (the one that holds after algebra matching) lies
solely on one object: FP2. This is demonstrated in pro-
cesses P4, P3, P1, after applying algebra matching, in steps
6, 13, 19. This is not the general case, since there can be
several dependencies to account, like in mutually-linked cy-
cles.

In the example in Fig. 3, if there was one other process
able to access the distributed cycle (e.g. P5), it could only
do so, by means of a remote-reference targeting one of the
comprised objects. Therefore, this remote reference would
be accounted as an extra dependency and would prevent, at
this stage, the erroneous detection of the cycle.

3.1. Mutually Referenced Cycles

An important prototypical example of complex cyclic
garbage is that of mutually-referenced cycles (see Fig. 4).
We describe how the DCDA detects such cycles. Obvious
steps, similar to those in the previous example, are omit-
ted for simplicity.

Let us assume that detection starts, once again, at object
FP2. Then we have:

1. P2 : StubsFrom(FP2) ⇒ {VP5, KP3}
2. P2 : Alg1a ⇒ {{FP2}→ {VP5}} and send to P5
3. P2 : Alg1b ⇒ {{FP2}→ {KP3}} and send to P3

Since StubsFrom(FP2) has more than one element, sev-
eral different CDM derivations are created with different
out-going paths (in this case: one regarding VP5 and other
to KP3).

Upon arrival of CDM carrying Alg1a at P5:
4. P5 : StubsFrom(VP5) ⇒ {TP4}
5. P5 : ScionsTo({TP4}) ⇒ {YP5}
6. P5 : Alg2a ⇒

{{FP2, VP5, YP5}→ {VP5, TP4}}, send P4

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Note that on step #5, an additional pass is performed. For
every stub reachable from the given scion, all other scions
that may lead to the same stub (in this case YP5 → TP4),
are also accounted for as dependencies to be resolved.
This information is readily available in the summarized
graph description in P5. Similar steps to step #5, in Sec-
tion 3, were omitted; they were redundant since there was an
one-to-one correspondence between stubs and scions (e.g.
ScionsTo(StubsFrom((FP4)P2) ⇒ {FP4}) and, therefore,
no extra dependencies were added.

Upon arrival at P4 and applying the algorithm, the out-
come includes the following results at each process:

7. P4 : Alg3a ⇒{{FP2, VP5, YP5, TP4}→
{VP5, TP4, DP1}}, send P1

8. P1 : Alg4a ⇒ {{FP2, VP5, YP5, TP4, DP1} →
{VP5, TP4, DP1, FP2}}, send P2

When the CDM arrives at P2, one of the cycles has been
transversed. Detection continuing at P2 performs the fol-
lowing steps:

9. P2 : Deliver Alg4a
10. P2 : Matching(Alg4a) ⇒{{YP5}→ {}}}
11. P2 : Cycle Found ⇒ f alse

Naturally, the algorithm is not able to infer that a cy-
cle has been found. Moreover, matching of Alg4a states that
there still is an unresolved dependency on YP5. This agrees
with Fig. 4 where the reference ZDP6 → YP5 represents a
branch of the rightmost cycle connecting with the leftmost
cycle. Cycle detection will proceed as presented next:
12. P2 : StubsFrom(FP2) ⇒ {KP3, VP5}
13. P2 : Alg5a,a ⇒ {{FP2, VP5, YP5, TP4, DP1} →

{VP5, TP4, DP1, FP2, KP3}}, send P3
14. P2 : Alg5a,b ⇒ {{FP2, VP5, YP5, TP4, DP1} →

{VP5, TP4, DP1, FP2}}, send P5
15. P2 : (Alg4a = Alg5a,b) ⇒ true,

stop CDM f orwarding f or Alg5a,a, terminate branch
In the previous steps, in process P2, two different deriva-

tions of Alg4a were created. The first one, Alg5a,a, created
due to stub (KP3)P2 should be forwarded to P3. Regarding
Alg5a,b, no forwarding should occur and this branch of de-
tection should be terminated. This stems from the fact this
CDM derivation holds information about a cycle, the left-
most, that has already been traced. Thus, no new informa-
tion was obtained and there is no point in continuing. If not,
it would loop forever with the same outcome, i.e., denounc-
ing a dependency of the leftmost cycle on YP5. This ensures
algorithm termination w.r.t cyclic garbage whose reacha-
bility is dependent of upstream acyclic garbage not yet re-
claimed by the acyclic DGC.

Upon arrival of Alg5a,a at P3 we have:
16. P3 : Deliver Alg5a,a
17. P3 : Matching(Alg5a,a) ⇒{{YP5}→ {KP3}}
18. P3 : Cycle Found ⇒ f alse

Preparing the next CDM to forward:
19. P3 : StubsFrom(KP3) ⇒{ZBP6}
20. P3 : Alg6a,a ⇒ {{FP2, VP5, YP5, TP4, DP1, KP3} →

{VP5, TP4, DP1, FP2, KP3, ZBP6}}, send P6
Upon arrival of Alg6a,a at P6 we have, this time abbrevi-

ated:
21. P6 : Matching(Alg6a,a) ⇒{{YP5}→ {ZBP6}}
22. P6 : Cycle Found ⇒ f alse
23. P6 : StubsFrom(ZBP6) ⇒{YP5}

24. P6 : Alg7a,a ⇒
{{FP2, VP5, YP5, TP4, DP1, KP3, ZBP6} →
{VP5, TP4, DP1, FP2, KP3, ZBP6, YP5}}, send P5

And, upon arrival of Alg7a,a at P5 we have, finally:
25. P5 : Matching(Alg7a,a) ⇒{{}→ {}}
26. P5 : Cycle Found ⇒ true

The distributed mutually referring cycles could have also
been detected if derivation Alg1b (see step 3) had been con-
tinued.

Several detections can be performed in parallel, at any
rate of progress, and comprising any number of processes,
without conflict. The previous example is a general one.
Other situations mixing acyclic garbage (either upstream or
downstream) with cyclic garbage are also solved with the
cooperation of the acyclic DGC (previous to cycle detec-
tion and after, respectively).

3.2. Dealing With Concurrency

Interaction between the mutator and the DCDA is very
limited. As described in Section 2, cycle detection is per-
formed resorting to off-line, summarized descriptions of the
memory graph in each process. Thus, there is no contention
between the mutator and the DCDA. Mutator actions are not
delayed due to synchronization with cycle detection activ-
ity.

As it was mentioned in Section 2.2, just combining inde-
pendently taken graph snapshots, at every process, does not
produce a consistent view of the distributed graph. How-
ever, these snapshots of different processes are pair-wise
combined (with arriving CDMs) just for the purpose of de-
tecting distributed cycles. Therefore, we do not require a
global consistent view (e.g., one that is produced by a causal
cut) of the distributed graph.

For each detection in course, we need to ensure that ev-
ery mutator event, performed on the CDM-Graph, is com-
pletely represented in the set of snapshots (one for every
process comprising the cycle). This stems from the funda-
mental property that: if there have been mutator events on
the CDM-Graph after creating snapshots on any of the pro-
cesses, it means that the cycle is not garbage, at least not yet
(as far as we can tell from the information provided in the
snapshots). If it is indeed a cycle, to be safe, we may need
to update the snapshots of one or more of the processes. In
summary, the CDM-Graph cannot be touched while detec-
tion is in course.

The word after, in the previous sentence, does not imply
any notion of global timing; just causality between each pair
of processes (determined by mutator events and restricted to
the CDM-Graph), solely for the purpose of each cycle de-
tection. A particular case of this situation happens when,
for instance, a CDM is delivered to a scion that is not yet
inscribed in the summarized graph (it was created after the
last graph summarization). In this case, these CDM are sim-
ply discarded and those detections terminated. In the fol-
lowing of this section, we present the techniques used to
ensure safety, when dealing with the mutator in the case of
distributed cycle detection.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

P6

ZA

ZD

ZC

ZE

ZB

P5

U V

W

X Y

QP

R

S T

P4

A B

P1

C

D E

P2

F G

H

I J

L

O

M

K

N

P3

1 2 4

5

7 9

8

6

311

ii

iiii

iv
10

Figure 5. A mutator-cycle detection race.

A cycle detection starts assuming that the objects traced
are, indeed, a cycle. If during the flow of a CDM across a se-
ries of processes, those objects are invoked/accessed, there
should be a way to revise this assumption in the event of this
new information. Thus, a distributed race between the mu-
tator and the DCDA may occur with the following sequence
of events:

1. There is a local root in one process Px holding the cy-
cle reachable (so no actual garbage cycle exists).

2. A detection is already in course and has not yet reached
process Px.

3. The mutator performs a remote invocation (possibly
chained through various processes) that switches the
root to one of the processes already visited by the de-
tection.

4. Snapshot information becomes available at Px now
stating that the object is no longer reachable locally.

5. The detection will be able to trace, lazily, the whole
cycle without finding any local root, thus, wrongly de-
tecting a non-existing garbage cycle.

Therefore, algorithm correctness in the presence of mu-
tator activity lies in the ability of determining (until the last
moment) if there has been mutator activity in the cycle it-
self. This is a natural reason to abort cycle detection. How-
ever, safety must be preserved without incurring the muta-
tor in significant delays. We present a prototypical exam-
ple of mutator-detector race and then, the solution to detect
those situations and abort detection.

3.2.1. Example of Mutator-DCDA Race In Fig. 5, there
are six processes (P1...P6). There are two independent
sequences of events: i) mutator-caused events (numbered
1...11), and ii) cycle detection events (numbered i...iv). Al-
gorithm safety consists in showing correct behavior in spite
of any interleave of the two sequences. We assume, for sim-
plicity, that there is updated graph summarized information,
in every process, and available before event 1 and event i.

If no more graph summarizations occur, present in-
formation is sufficient in order to handle the situation
safely: when CDM arrives at P1 (instant iii, regard-
less of mutator activity), cycle detector will be informed
that Local.Reach(BP2) ⇒ true and will abort detec-
tion.

However, if local graph summarized information at P1,
is updated after event 11 (root erasure) and before event

iii, with 11 ≺ iii, the combination of graph info at P1
and cycle information forwarded from P2...P5...P4 in iii
will produce an inconsistent view of the distributed graph.
Upon arrival of cycle message at P1, in this case, we have
Local.Reach(BP2) ⇒ f alse and, after algebra matching,
will forward the information to P2 where the cycle will,
eventually, be erroneously detected.

In order to prevent this inconsistent behavior, the DCDA
must be informed of mutator activity in any part of the path
it will trace. We explain, now, how this race condition is
avoided.

Recalling structures definition, there is an additional in-
vocation counter associated with every stub and scion. The
extra field IC, included in every stub and scion, is incre-
mented and piggy-backed, each time a remote invocation
(or reply) is performed through the remote reference.

In the previous example, let us assume that we have, be-
fore events 1 and i as DGC info:

Stub(FP2)P1 ⇒{IC ≡ x}
Scion(FP2)P2 ⇒{IC ≡ x}
And, off-line, graph summarized information for cycle

detection:
Stub(FP2)P1 ⇒

{ScionsTo ≡ {DP1},Local.Reach ≡ true, IC ≡ x}
Scion(FP2)P2 ⇒{StubsFrom ≡ {QP4}, IC ≡ x}

Consider, again, the sequence of events presented where
race conditions can occur. CDM holds invocation counters,
only when they are relevant to this race condition, others are
omitted:

1. t = i@P2 : Alg1a ⇒
{{{FP2,x}}→ {VP5}}, and send to P5

2. t = ii@P5 : Alg2a ⇒
{{{FP2,x},VP5}→ {VP5,TP4}}, and send to P4

3. t ∈ {1..11}@ {P1..P3} :
(series o f remote invocations initiated in P1 that
result in re f erence to JP2 being exported to P3;
AP1 becomes unreachable locally in P1;
MP3 now holds the entire cycle globally reachable).

4. 11 ≺ t ≺ iii@P1 :
Take snapshot, update summarized
description (now includes Stub(FP2)P1 ⇒
{ScionsTo ≡ {DP1},Local.Reach ≡ f alse,
IC ≡ x+1}).

5. t = iii@P4 : Alg3a ⇒
{{{FP2,x},VP5,TP4}→ {VP5,TP4,DP1}},
and send to P1

6. t = iv@P1 : Alg4a ⇒ {{{FP2,x},VP5,TP4,DP1}
→ {VP5,TP4,DP1,{FP2,x+1}}}, and send to P2

7. t � iv@P2 : Matching(Alg4a) ⇒
{{{FP2,x}}→ {{FP2,x+1}}}

8. Cycle Found ⇒ f alse, di f f erent IC values
(x and x+1) f or FP2, detection abort

This use of counters also holds the following advan-
tage: detections already in course for real cycles are never
aborted due to updates in summarized graph information or,
in other words, a detection in course, regardless of when it
was initiated can only be aborted if one of its subgraphs was
actually touched by the mutator, after it has begun. Thus,
there are very loose synchronization requirements for cycle
detection and it can be performed lazily without disruption

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

to applications. Race condition detection in the previous ex-
ample can be optimized if P1 analyzes unmatched counters
in the algebra it is about to send to P2. However, that is not
required to maintain safety.

In summary, the safety rules enforced are: i) CDM sent to
non-existent scions are discarded and detection terminated
and, ii) different invocation counter values, in source and
target sets of CDM, for the same object, cause detection
abort.

For lack of space, we address the relevant properties
(safety, liveness, completeness, termination, and scalability)
of any complete distributed garbage collector, with further
detail in [21], discussing them against the algorithm pro-
posed. We also present algorithm pseudo-code.

4. Implementation and Evaluation

The algorithms (reference-listing and cycle detec-
tor) were implemented combining C++ and C#. The
implementation includes Rotor[20] (a free version of Mi-
crosoft .Net[13]) virtual machine modification (for LGC
and DGC integration), remoting code instrumentation (to
detect export and import of references), and distributed cy-
cle detection.

Virtual machine modifications were implemented in
C++, the language Rotor core is implemented in. Re-
moting instrumentation code was developed in C#, since
high-level code of the remoting services is already writ-
ten in this language. Graph summarization and the actual
DCDA were also written in C#.

The reference-listing algorithm must cooperate with the
LGC, essentially, in two ways:

• the LGC must provide, in some way, the reference-
listing algorithm with information about every remote
object referenced by local objects; this is necessary to
ensure that all stubs (representing outgoing remote ref-
erences) are correctly created/preserved;

• the reference-listing algorithm must prevent the LGC
from reclaiming objects that are no longer locally
reachable but are target of incoming remote references;
this ensures that scions actually prevent objects from
being reclaimed.

The approach consists simply on a running thread that
monitors existing stubs verifying that they are still valid,
i.e., the transparent proxies associated with them still ex-
ist. This is achieved using weak-references. This approach
has several advantages: i) it does not impose relevant modi-
fications on the CLR (Common Language Runtime) imple-
mentation, ii) it can be implemented using a high-level lan-
guage such as C#, iii) modifications are mainly restricted to
the Remoting package, and iv) it does not interfere with the
LGC used.

Remoting services code instrumentation intercepts mes-
sages sent and received by processes in the context of re-
mote invocation so that scions and stubs are created accord-
ingly.

Graph summarization is coded in C#. It is performed,
lazily and incrementally, in each process, after a new ob-

RMI calls Rotor Rotor w/ DGC Variation
10 1933 ms 2072 ms 7.19%

100 12417 ms 14731 ms 18.64%
500 58754 ms 70931 ms 20.73%
1000 118890 ms 140191 ms 17.92%

Table 1. RMI in original Rotor and DGC-extended.

ject graph has been serialized, by a separate thread (which
is almost always blocked) or, alternatively, by an off-line
process. It transverses the graph, breadth-first, in order to
minimize overhead (i.e., re-tracing of objects). Once sum-
marized, graph information becomes atomically available to
the DCDA.

CDM algebra matching is implemented in C# both in
Rotor and OBIWAN[3]. The algebra representation, in C#,
is optimized to minimize redundancy and ease matching.
Thus, each scion/stub representation holds two bits, indi-
cating whether they are present in the CDM source and/or
target set.

Performance Evaluation: The most relevant performance
results of our implementation are those related to phases
critical to applications performance: i) stub/scion creation
common to any acyclic DGC, and ii) snapshot serialization.
These phases could delay and potentially disrupt the mu-
tator, therefore applications. Results were obtained using a
Pentium 4 Mobile 1600Mhz with 512 Mb RAM.

We measured the creation of stubs and scions when re-
mote references are exported/imported in remote invoca-
tions; these operations are always performed and cannot be
fulfilled lazily. We tested worst case scenarios, discarding
potentially long network communication times, that could
mask stub/scion creation overhead. Table 1 shows results
for increasing series of remote invocations of a remote
method, with 10 arguments (10 different references being
exported/imported), where client and server processes ex-
ecute in the same machine. This forces the DGC to cre-
ate 10 scions and stubs each time the remote method is in-
voked. The overhead associated with the creation of stubs
and scions, in this worst case scenario without communi-
cation delay, is within 7%-21% which is acceptable for the
functionality provided, i.e., a safe DGC (not a lease-based
one) running on Rotor.

The results regarding snapshot serialization (that does
not have to be performed frequently) were very bad on Ro-
tor. On average, for graphs with 10000 linked dummy ob-
jects (just holding a reference), Rotor serialization takes
26037 ms. To serialize the same graph, with every object
containing an additional remote reference (additional 10000
stubs), takes 45125 ms (73% more). Nevertheless, serial-
izing a remote reference is faster than serializing an addi-
tional dummy object and, therefore, the impact of serializ-
ing stubs is lower than that of objects. However, these rather
un-encouraging results are a direct consequence of the very
inefficient serialization code (for any purpose) included in
Rotor (intentionally as Microsoft regards serialization and
local GC as product critical code in .Net).

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

To fully address this issue, we re-implemented the al-
gorithm (the same acyclic DGC, with the same code for
DCDA, on OBIWAN[3] at user-level), so that it runs on top
of the commercial version of .Net. In this second implemen-
tation, with production-level .Net serialization code, serial-
ization times are, roughly, 100 times faster, thus encourag-
ing. They range from 250ms to 350ms which imposes sig-
nificantly shorter pause times. Furthermore, this needs to
be performed only sporadically. This results should also be
regarded as upper bound values, since in normal circum-
stances, application graphs have much higher density of lo-
cal than of remote references. Stub and scion creation times
are comparable with those presented before. CDM match-
ing in cycle detections is inexpensive and performed infre-
quently and asynchronously.

5. Related Work

Distributed garbage collection has been a mature field of
study for many years and there is extensive literature [1, 18]
about it. Therefore, we focus this section mainly on other
proposals for collecting distributed cycles of garbage, (i.e.,
algorithms that are complete).

Global propagation of time-stamps until a global mini-
mum can be computed was first proposed in [7] to detect
distributed cycles. Distributed garbage collection based in
cycles detection within groups of processes was first intro-
duced in [8]. These algorithms are not scalable since they
require a distributed consensus by the participating pro-
cesses on the termination of the global trace. This is also
impossible in the presence of faults [5].

Migrating objects to a single process in order to convert
a distributed cycle into a local one, that is traceable by a ba-
sic LGC, is used in [2, 10]. Object migration, for the sole
purpose of GC, is a heavy requirement for a system, needs
extra and possible lengthy messages (bearing the actual ob-
jects) among participating processes. It is very difficult to
accurately select the appropriate process that will contain
the entire cycle. Cycles that span many objects, copied into
a single process in charge of tracing may cause overload.

In [11], distributed backtracing starts from suspect ob-
jects (of belonging to a distributed cycle of garbage), and
stops until it finds local roots or when all objects leading
to the suspect have been backtraced. There are two mutu-
ally recursive procedures: one to perform local backtrac-
ing and another is in charge of remote backtracing. Dis-
tributed backtracing results in a direct acyclic chaining of
recursive remote procedure calls, which is clearly unscal-
able. To ensure termination and avoid looping during back-
tracking, each ioref (representing remote references) must
be marked with a list of trace-id’s to remember which back-
traces have already visited it. This requires processes to
keep state about detections on course which raises ques-
tions of fault-tolerance. Local back-tracking is performed
with resort to optimized structures similar to our graph sum-
marization mechanism. To ensure safety, reference copies
(local and remote) must be subject to a transfer-barrier that
updates iorefs. The distributed transfer barrier may need to

send extra messages that are guarded against delayed deliv-
ery. Distributed backtracking is also used in [16] for cycle
detection in CORBA. As in our work, it addresses detailed
issues about implementation of this concept in a real envi-
ronment/system with off-the-shelf software.

In [15], groups of processes are created to scan and de-
tect cycles exclusively comprised within them. Groups of
processes can also be merged and synchronized so that on-
going detections can be re-used and combined. It has fewer
synchronization requirements w.r.t [8]. When a candidate
is selected, two strictly ordered distributed phases must be
performed to trace objects. Mark-red phase paints the dis-
tributed transitive closure of the suspect objects with the
color red. This must be performed for every cycle candidate.
Termination of this phase creates a group. Afterwards, the
scan-phase is started independently in each of the partici-
pating processes. The scan-phase ensures un-reachability of
suspected objects. Objects also reachable from other clients
(outside the group) are marked green. This consists of al-
ternating local and remote steps. The cycle detector must
inspect objects individually. This demands strong integra-
tion and cross-dependency with the execution environment
and the local garbage collector. Mutator requests on objects
are asynchronous w.r.t GC; when this happens during scan-
phase, to ensure safety, all of an object descendants may
need to atomically be marked green, which blocks applica-
tion when it is actually mutating objects. As in [11], GC
structures need to store state about all ongoing detections
passing through them.

In [4], marks associated both with stubs and scions are
propagated between sites until cycles are detected. Marks
are complex holding three fields (distance, range and gen-
erator identifier) and an additional color field. Local roots
first, and then scions, are sorted according to these marks.
Stubs require two marks. Objects are traced twice every
time the LGC runs (with important performance penalty
to applications) starting from local roots and scions: first
in decreasing, and then in increasing order of marks, to-
wards stubs. Mark propagation through objects to the stubs
is decided by min-max marking (this is heavier than sim-
ply reach-bit propagation). One message propagates marks
from stubs to scions.

Cycle detection is started by generators that propagate
marks, initiating in local roots and scions recently created
or touched by the mutator. When a remote invocation takes
place, a new generator is created and its associated mark
must be propagated along the downstream distributed sub-
graph. Generator records include creation time, a range field
and a locator of the mark generator. White marks represent
pure marks while gray marks indicate mixing of marks from
different generators during a local trace. When a generator
receives back its own mark, colored white, a cycle has been
detected. If the mark is gray, it means other paths lead to
the scion and sub-generations must be initiated. Stub mes-
sages need to include, besides marks, additional informa-
tion about every single sub-generator reaching each stub.
Sub-generators are created in the back-trace of the generator
that receives the gray mark. This lazy back-tracking mech-

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

anism can be very slow. An optimistic variation leverages
knowledge about sub-generators triggering several back-
traces in different processes. Possible errors are prevented
resorting to a special black color associated with marks in
scions whose sub-generator status is later revised.

The resulting global approach to cycle detection is
achieved at the expense of additional complexity and per-
formance penalties. It imposes a specific, longer, heav-
ier LGC that must collaborate with the cycle detec-
tor. There is a tight connection and dependency among
LGC, acyclic DGC and cycles detection. This is inflexi-
ble since each of these aspects is subject to optimization
in very different ways, and should not be limited by de-
cisions about the others. Moreover, since it consists of a
global task being continuously performed, it has a per-
manent cost. Instead it should be deferred in time and
localized just for candidates which are a fraction of the ob-
jects.

Our management of unsynchronized summarized
graph descriptions can be related to GC-consistent-cuts
in databases as proposed in [19]. In this work, a GC-
consistent-cut has one or more copies of every page in the
database. These copies, possibly inconsistent from a trans-
actional point of view, can be created at different instants.
However, all these pages, when combined with knowl-
edge from database locks, may be consistently and safely
used for local GC purposes only.

Another example of usage of snapshots in distributed
object stores, while completely unrelated to GC, appears
in[12]. It enables efficient system archiving and allows safe
computation over earlier system states.

In summary, our approach is more flexible. It has fewer
requirements on synchronization, cycle detection state in
processes, disruption to mutator and intrusion to LGC. Fur-
thermore, it has been implemented on realistic off-the-shelf
systems.

6. Conclusions

We presented a comprehensive solution to the problem
of distributed garbage collection. The main contributions of
our work are: i) a novel distributed cycles detector algorithm
that requires no global synchronization, is scalable, not in-
trusive w.r.t mutator and LGC, and makes progress without
requiring all processes to participate, ii) an implementation
on Rotor and on .Net with minimum impact on the source
code of Rotor runtime, iii) the notion of an algebraic match-
ing process for distributed cycle detection.

In comparison with previous work, our approach, while
being complete and scalable, is more flexible. In fact, it im-
poses fewer and lighter restrictions w.r.t. synchronization
among processes, state at each process about detections in
course, and intrusion with the mutator and with the LGC.
Thus, it is specially adequate for realistic systems with off-
the-shelf software. This fact is confirmed by our implemen-
tation on Rotor.

Finally, although we have implemented the DCDA in
Rotor and in OBIWAN, our solutions are rather general. It

is possible to apply the same ideas and, in particular the
notion of the CDM algebra and the DCDA, to other plat-
forms. In the future, we plan to address the formal correct-
ness proof of the DCDA.

References

[1] S. E. Abdullahi and G. A. Ringwood. Garbage collecting the inter-
net: a survey of distributed garbage collection. ACM Computing Sur-
veys (CSUR), 30(3):330–373, 1998.

[2] P. B. Bishop. Computer Systems with a Very Large Address Space
and Garbage Collection. PhD thesis, Massachusetts Institute of
Technology Laboratory for Computer Science, May 1977. Techni-
cal report MIT/LCS/TR-178.

[3] P. Ferreira, L. Veiga, and C. Ribeiro. Obiwan - design and imple-
mentation of a middleware platform. IEEE Transactions on Parallel
and Distributed Systems, 14(11):1086–1099, November 2003.

[4] F. L. Fessant. Detecting distributed cycles of garbage in large-
scale systems. In Conference on Principles of Distributed Comput-
ing(PODC), 2001.

[5] M. Fisher, N. Lynch, and M. Patterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):274–382, Apr.
1985.

[6] M. Fuchs. Garbage collection on an open network. In H. Baker,
editor, Proc. of Int’l W’shop on Memory Management, volume 986
of Lecture Notes in Computer Science, Concurrent Engineering Re-
search Center, West Virginia University, Morgantown, WV, Sept.
1995. Springer-Verlag.

[7] J. Hughes. A distributed garbage collection algorithm. In J.-P.
Jouannaud, editor, Functional Languages and Computer Architec-
tures, number 201 in Lecture Notes in Computer Science, pages 256–
272, Nancy (France), Sept. 1985. Springer-Verlag.

[8] B. Lang, C. Quenniac, and J. Piquer. Garbage collecting the world.
In Conf. Record of the Nineteenth Annual ACM Symposium on Prin-
ciples of Programming Languages, ACM SIGPLAN Notices, pages
39–50. ACM Press, Jan. 1992.

[9] B. Liskov and R. Ladin. Highly-available distributed services and
fault-tolerant distributed garbage collection. In Proceedings of the
5th Symposium on the Principles of Distributed Computing, pages
29–39, Vancouver (Canada), Aug. 1986. ACM.

[10] U. Maheshwari and B. Liskov. Collecting cyclic dist. garbage by
controlled migration. In Proc. of PODC’95 Principles of Dist. Com-
puting, 1995. Later appeared in Dist. Computing, Springer Verlag,
1996.

[11] U. Maheshwari and B. Liskov. Collecting cyclic dist. garbage by
back tracing. In Proc. of PODC’97 Principles of Dist. Computing,
1997.

[12] C.-H. Moh and B. Liskov. Timeline: A high performance archive for
a distributed object store. In Symposium on Networked Systems De-
sign and Implementation (NSDI ’04), 2004.

[13] D. S. Platt. Introducing the Microsoft.NET Platform. Microsoft
Press, 2001.

[14] N. Richer and M. Shapiro. The memory behavior of the WWW, or
the WWW considered as a persistent store. In POS 2000, pages 161–
176, 2000.

[15] H. Rodrigues and R. Jones. Cyclic distributed garbage collection
with group merger. Lecture Notes in Computer Science, 1445, 1998.

[16] G. Rodriguez-Rivera and V. Russo. Cyclic distributed garbage col-
lection without global synchronization in corba. In OOPSLA’97 GC
& MM Workshop, 1997.

[17] M. Shapiro, P. Dickman, and D. Plainfoss. Robust, dist. references
and acyclic garbage collection. In Symp. on Principles of Dist. Com-
puting, pages 135–146, Vancouver (Canada), Aug. 1992. ACM.

[18] M. Shapiro, F. L. Fessant, and P. Ferreira. Recent advances in dis-
tributed garbage collection. Lecture Notes in Computer Science,
1752:104, 2000.

[19] M. Skubiszewski and P. Valduriez. Concurrent garbage collection
in O2. In M. Jarke, M. J. Carey, K. R. Dittrich, F. H. Lochovsky,
P. Loucopoulos, and M. A. Jeusfeld, editors, Proc. of 23rd Int’l Conf.
on Very Large Databases, pages 356–365, Athens, 1997. Morgan
Kaufman.

[20] D. Stutz. The microsoft shared source cli implementation. MSDN
Library Article, Microsoft Corporation, march 2002.

[21] L. Veiga and P. Ferreira. Asyncronous, complete distributed garbage
collection. Technical report rt/11/2004, INESC-ID Lisboa, june
2004.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

