Extending .NET Remoting with Distributed
Garbage Collection

Paulo Pereira
CCISEL
Rua Conselheiro Emidio Navarro N° 1
1959-007 Lisboa, Portugal
palbp@cc.isel.ipl.pt

Luis Veiga and Paulo Ferreira
INESC-ID / Technical University of Lisbon
Rua Alves Redol N° 9
1000-029 Lisboa, Portugal
luis.veiga@inesc-id.pt paulo.ferreira@inesc-id.pt

Distributed Systems Group, INESC-ID Lisboa, Portugal
http://www.gsd.inesc-id.pt/

Abstract. The memory management of distributed objects, when done man-
ually, is an error-prone task. It leads to memory leaks and dangling references
causing applications to fail. Avoiding such errors requires automatic memory
management, named distributed garbage collection (DGC).

Current DGC solutions are either not safe, not complete or not portable to
widely used platforms such as .NET. As a matter of fact, most solutions ei-
ther run on specialized environments or require modifications of the underlying
virtual machine (e.g. Rotor) hindering its immediate utilization.

This paper describes the architecture, implementation and performance mea-
surements of a DGC algorithm that: i) is capable of reclaiming both acyclic and
cyclic garbage, while ii) being portable in the sense that it does not require the
underlying virtual machine to be modified.

The distributed garbage collector was implemented on top of two realizations
of the Common Language Infrastructure (.NET virtual machine specification):
Common Language Runtime (CLR) and Shared Source CLI (SSCLI), commonly
known as Rotor. The implementation requires no modification of the environ-
ment, it makes use of the aspect-oriented functionalities provided, and the pre-
liminary results are encouraging.

1 Introduction

There are several arguments that justify the existence of a system provided memory re-
cycling service, named garbage collector (GC). These arguments, extensively presented
in the context of local garbage collection [1], range from the description of the conse-
quences of errors that result from manual management, namely unreclaimed memory
(memory leaks) and premature reclamation (dangling references), to, according to Wil-
son [2], the classification of the existence of such a service as a fundamental requirement
for accomplishing program modularity.



The strength of the previous arguments has been acknowledged with the inclusion
of garbage collection services in platforms with wide industrial usage, such as .NET
and Java.

In distributed object systems the same arguments apply, simply because these sys-
tems result from the extension of the programming model offered in non distributed
ones. Considering that a local garbage collector exists, a natural extension would be
to provide automatic reclamation of distributed memory. From the previous ideas, a
question emerges: Why not distributed garbage collection (DGC)?

The CLI' includes a distributed object system, known as .NET Remoting. This
distributed object system does not support automatic recycling of distributed memory.
Alternatively, it offers a configurable object lifetime management service, based in
renewable leases. This approach has several drawbacks since it places the problem of
distributed memory recycling at the application programming level, leading to the
previously pointed errors.

This document describes an extension of .NET Remoting with a distributed garbage
collection service. The proposed solution is characterized as safe and complete, even
in the presence of temporary failures (node or network). Permanent failures are not
considered. Additionally, the presented solution is portable, in the sense that it does not
require modification of the underlying virtual machine, and is valid in both considered
realizations of the CLI (CLR? and Rotor?3).

Although our main contribution is the previously characterized solution, another
approach has also been used. This alternative approach differs from the former by the
method used to collect the information required for DGC operation. The first resorts
to techniques based in the existing AOP* support. The latter, by contrast, resorts to
virtual machine source code modification and, for this reason, is only targeted at Rotor.

In both solutions the main design goal was the minimization of imposed application
pause times due to DGC operation.

2 System Model

We consider systems that offer a distributed memory model based in the work done for
the Orca language [3] and further refined for the Modula-3 [4] and Java [5] languages.
These systems are commonly known as distributed object systems.

In the considered distributed memory model, the global address space (global space)
is partitioned into disjoint address spaces (space). Each individual space is composed of
objects and those that are globally accessible are named remote objects. For an object
to be globally accessible it must have a global identifier, usually constructed using the
hosting space identifier and the object local identifier.

Communication between spaces is modelled as remote object method calls, or simply
remote calls. In each remote call two spaces are involved, the caller and called object
hosting spaces. The former is named client space and the latest server space. These roles

! Common Language Infrastructure, .NET virtual machine specification.
2 Commercially used CLI realization.

3 Shared source CLI realization.

4 Aspect-oriented Programming.



are established in a per remote method call basis (i.e. a given space can be both client
and server space). For a remote call to be made, the client space must hold a reference
to the remote object. This reference contains the remote object global identifier and is
named remote reference or inter-space reference.

Furthermore, remote objects are passive (they do not have an internal thread of
execution) and remain in the same hosting space for all their lifetime (not mobile).
Applications are comprised of threads that invoke both local and remote objects.

For memory recycling purposes, objects are considered live if they are reachable
(through graph transversal) from the running program root set. Otherwise, they are
garbage (also called dead). A garbage collector function is to reclaim memory associated
with garbage objects while preserving live ones. The root set is composed of all global
variables and the local variables (residing at the activation stack and registers) of all
existing threads of execution. Once an object is marked as garbage, it will always stay
that way, meaning, unreachable objects cannot become reachable.

Finally, garbage collection algorithms are classified as safe if all live objects are
preserved, and complete if all garbage objects are eventually recycled.

3 Distributed Garbage Collection

Individual spaces are assumed to have a local garbage collector (LGC) that is respon-
sible for reclaiming dead objects. Each space also contains a DGC component that
collaborates with the LGC to prevent reclamation of objects that are only reachable
from remote spaces (through inter-space references). In practice, this collaboration
takes place through local root set extension, meaning, the DGC simply prevents recla-
mation of an object by referencing it explicitly, leaving the existing LGC unmodified.
With this approach the DGC component function is to detect distributed garbage and
update the root set extension accordingly.

3.1 Algorithm

The presented DGC algorithm is classified as hybrid, since it combines a reference-
listing [6, 4] algorithm, that is prevalent, for acyclic distributed garbage detection and,
to ensure completeness, a centralized detector of distributed garbage cycles [7].

In the remainder of this section, we present the data structures maintained by the
algorithm and the main conceptual aspects of its operation, with respect to acyclic and
cyclic garbage detection.

Inter-space reference representation For distributed garbage detection purposes,
inter-space references are represented as stub-scion pairs. The scion resides at the
server space and represents an incoming inter-space reference. Each scion points to its
corresponding locally hosted remote object. The stub resides at the client space and
represents an outgoing inter-space reference. Each stub is associated with exactly one
scion. A stub-scion pair represents all inter-space references that exist between a given
client space and a particular referred remote object.



Stubs and scions are grouped in sets. All stubs in a set have their corresponding
scions in the same server space. Conversely, all scions in a set have their corresponding
stubs in the same referring space. Each space contains a table of stub sets and a table of
scion sets. For simplicity, in the remainder of this document, the former will be called
stub table and the later scion table. The number os sets in each table is determined by
the number of referred and referencing spaces, respectively.

Local root set extension In order to prevent locally hosted remote objects from
being reclaimed by the LGC when exclusively reachable through inter-space references,
the considered local root set must be extended. This is the purpose of the stub and
scion tables.

The stub table is a conservative estimative of all remote references held by its own-
ing space (outgoing inter-space references). The scion table is a conservative estimative
of all existing incoming inter-space references and explicitly references locally hosted re-
mote objects as long as they are reachable from other spaces. Conservative estimations
are used to ensure safety, that is, an object is considered live until proved otherwise.

The main function of both components (acyclic and cyclic) of the DGC algorithm is
to update the previously described data structures, leaving actual object reclamation
to the existing LGCs.

Acyclic Collector The creation of scions and stubs is performed incrementally, ac-
cording to inter-space reference creation. This occurs whenever an application message
bearing a remote object reference is exchanged between spaces. In this case, the sender
space is said to export the reference, and the receiver is said to import it.

Since in distributed object systems communication is modelled as remote method
calls, both intervening spaces (caller and callee) assume the roles of sender and receiver
for each remote method call. The client space (caller) sends a message with the method
parameters to the server space (callee). In response, the server space sends a message
with the method result to the client.

Whenever a reference to a remote object located in a given space is exported, the
corresponding scion must be created. Every time a reference to a remote object is im-
ported into another space, the corresponding stub must be created. To accomplish this,
all application messages must be (conceptually) scanned in search of remote references.
This operation is critical since it imposes an application delay with the duration of the
scan.

Besides the creation of remote references, another result of application execution
is the abandonment of remote references, as they become useless. This leads to re-
mote objects becoming unreachable. As a consequence, stub and scion tables must be
updated to allow the reclamation of these objects.

DGC Protocol: When a LGC execution cycle ends, the stub table is updated according
to the outgoing remote references that were dropped. The resulting table contains the
stubs corresponding to the remote references that are still reachable from the local root
set. The details of this process are explained in section 5.



Changes in the stub table trigger the creation of NewSetStubs messages. The num-
ber of created messages is determined by the number of stub sets that were altered
(stubs removed) as a result of the LGC cycle execution. Each message contains informa-
tion relative to the surviving stubs on that set. Once created, each of these messages
is sent to the server space to which it is related (i.e. where the referred objects are
hosted).

Upon reception of a NewSetStubs message, the space matches the carried informa-
tion against the corresponding scion set. Scions for which a corresponding stub is not
included in the NewSetStubs message, are removed from the set. Remote objects are
recycled when all its scions are removed from the scion table. Naturally, objects are
only recycled if they are also unreachable from the non extended local root set.

If the execution of the previously described tasks implied application suspension,
the application performance penalties would be prohibitive. For this reason, the al-
gorithm was designed to enable deferred execution of the tasks related to the DGC
protocol, while maintaining its safety. Note that deferred execution may lead to con-
current execution.

In order to eliminate race conditions resulting from protocol tasks and application
work being done concurrently, upon creation, scions are time-stamped using a per-space
monotonic global counter, as prescribed in [8,9]. Additionally, each space maintains a
time-stamp vector, or vector clock [10], containing one entry for each referred space.
Each entry has the highest known scion time-stamp value for the corresponding space.
When a NewSetStubs message is sent to a given space, its corresponding entry in the
vector clock is also sent.

Algorithm safety is maintained by associating the view of outgoing inter-space ref-
erences with the time it was taken, ensuring its consistency. This prevents the receiving
space from incorrectly eliminating scions whose corresponding stubs were not yet cre-
ated when the NewSetStubs message was generated (e.g. a NewSetStubs message is
generated when the reply of an ongoing remote method call has not yet been received).

The previously described protocol does not require global synchronization, since
scion tables are updated incrementally, according to the reception of NewSetStubs
messages. It is also fault tolerant, since message loss does not compromise safety, it
only leads to delays in garbage detection.

Cyclic Collector Distributed cycle detection is performed by a centralized algorithm.
Although in the presented solution the algorithm is performed in one of the participat-
ing spaces, selected through DGC configuration, for simplicity, the following description
assumes it is performed in a dedicated space, called distributed cycles detector (DCD).
Note that this no effect in algorithm safety and completeness.

The centralized algorithm operates on a global object graph view, constructed incre-
mentally at the DCD from individual local object graph snapshots. These snapshots are
taken at each participating space, without coordination, and sent to the DCD, where
cycle detection is performed by using an adapted mark-and-sweep on the locally exis-
tent global object graph view. Although coordination between spaces is not required,
the process of taking a local graph snapshot forces suspension of all application threads
in that space.



Note that since the global graph view is constructed incrementally, it can in fact
be a partial view, i.e. snapshots of one or more participating spaces have not yet been
received and hence are not included in the global graph view. In this case, the DCD
simply will not be able to detect distributed cycles that comprise objects belonging to
those spaces. Nevertheless, cycles completely included in the partial view of the global
graph, will be detected.

To ensure global graph view consistency, for cycles detection purposes, messages
bearing local graph snapshots also include the space DGC related information, namely,
time-stamp vector and scion and stub tables.

Snapshot Compression: The size of messages bearing local object graphs snapshots and
DGC related information may lead to significant bandwidth usage, penalizing appli-
cation performance. Additionally, the global graph views, constructed from individual
snapshots, can occupy a large amount of memory space, limiting scalability (i.e. relative
to the number of participating spaces).

These problems are solved through snapshot compression. This is done at each
participating space ensuring that, from the point of view of the DCD operation, there
is no loss of relevant information. This idea results from the observation that the
internal details of each local graph are not relevant to distributed cycles detection. To
this purpose, the only relevant information is the one regarding inter-space references.
In particular, which outgoing remote references are reachable from the unextended
local root set and which are reachable from incoming remote references (i.e. from the
local root set extension). This information can be expressed as reachability relations
between scions and stubs, and between local roots and stubs. Global graph views are
created by connecting each stub with its corresponding scion.

This solution has the merit of making the sizes of the exchanged information and
of the global graph views proportional to the number of existing remote references, as
opposed to being proportional to local graph sizes, favoring scalability.

Compressed Snapshot based Mark-and-sweep: Cyclic garbage detection is performed
trough tracing, starting at a conservative estimative of the global root set. This set is
composed of individual unextended local root sets and, for safety, all the scions that
match the following criteria: i) their corresponding stubs are not yet included in the
global graph view; ii) their time-stamp has a value greater than the highest time-stamp
(regarding the space where its associated object resides) known by the space holding
the corresponding stub.

The tracing phase produces two groups of scions and stubs: marked or unmarked.
Those that are unmarked may belong to a distributed garbage cycle. Note that both
DGC collectors (acyclic and cyclic) are uncoordinated. After identifying the existing
cycles, each cycle is broken through explicit scion deletion. The remaining objects in
broken cycles are reclaimed by the acyclic collector.

In order to support explicit scion deletion, the DGC Protocol described in section
3.1 was extended with a new type of message, ScionDelete. This extension preserves
the fault tolerance property of the protocol, since these messages are idempotent.



3.2 Architecture

The solution architecture is based in a clean separation between relevant event de-
tection, required information gathering, and the DGC service implementation. The
solution is composed of two layered modules: i) the lower module named Instrumenta-
tion and ii) the upper module named DGC Service. A layered organization was adopted
in order to simplify the usage of the DGC algorithm in other realizations of the target
distributed object system, since the only module that requires modification (if any) is
the one named Instrumentation.

The function of the Instrumentation module is to gather the required information
for the execution of the DGC Service module function, distributed garbage detection.
In the remainder of this document, and for implementation description purposes, the
stub and scion tables will be referred to as External Reference Table (ERT) and Object
Data Table (ODT), respectively.

Before describing the implementation techniques used in each module, which is
done in section 5, a functional decomposition is in order. The functionalities provided
by the Instrumentation module are: i) Detection of remote reference import, for ERT
update; ii) detection of remote reference export, for ODT update; iii) detection of LGC
cycle termination, and, for ERT update, consequent gathering of information relative
to unreachable outgoing remote references; iv) local object graph snapshot creation,
for cycles detection.

The DGC Service module includes the following elements: i) an extension of the
local root set, in order to include information about locally hosted objects that are
remotely reachable (ODT); ii) a conservative estimative of locally held remote refer-
ences (ERT) used to update remote ODTs; iii) a well-know communication endpoint
for DGC protocol message exchange.

The previously enumerated functionalities are included in all participating spaces.
Additionally, one of the participating spaces is responsible for performing cycle detec-
tion. This space includes a well known communication endpoint that receives snapshots
from participating spaces and the component responsible for DCD operation.

4 .NET Support

This section describes the features of the target system that are fundamental to un-
derstand the proposed solution. For more details consider [11] and [12].

The target system exposes the distributed memory model described in section 2.
In the exposed model, and using .NET Remoting terminology, types are categorized as
nonremotable or remotable. Only instances of types in the last category are permitted
to cross space® boundaries. Note that an object is said to cross space boundaries each
time it is included in the actual parameters list, or return value, of a remote method
call.

Remotable types are further refined into two subcategories: marshal-by-value and
marshal-by-reference. The subcategory to which a given type belongs determines its

5 In .NET terminology a space is also named Application Domain.



instances behavior in space boundary crossings. As their names suggest, marshal-by-
value instances are passed by value, that is, a copy is used. On the other end, marshal-
by-reference instances are passed by reference, meaning, the instance global identifier
is used.

A type is categorized as marshal-by-reference if it derives (directly or indirectly)
from System.MarshalByRefObject. Global identifiers are represented by instances of
System.Runtime.Remoting.0bjRef, itself a marshal-by-value type.

For a type to be classified as marshal-by-value it must be annotated with the
Serializable attribute. This requirement is justified by the process used for copy
creation. This process, commonly known as serialization, produces a byte sequence
containing the internal state of all objects included in a given graph.

4.1 Communication Infrastructure

Although communication is modelled as remote method calls, it is ultimately achieved
through message exchanges between client and server spaces. When a method call is
made, a message composed of the parameters is sent from the client space to the server
space (these parameters include object and method identifiers). The method call result
is obtained from the received return message.

The previous observation forms the basis of the .NET Remoting communication
infrastructure architecture, depicted in figure 1.

H IMethodCallMessage H

i > i

i i

Real | [ Msg | _ _.
Proxy

1 1

! P IMethodReturnMessage !

i < i
Stack | I Stack
based ! Message based ! based

Fig. 1. Call chain composition

As shown, communication is supported by a configurable chain of message process-
ing nodes®, generally called message sinks (MsgSink). The chain endpoints, transparent
prozy (TP) and stack builder sink (SB Sink), are responsible from converting between
stack frames and messages. The remaining nodes, with the exception of real prozy (Re-
alProxy), constitute the node set that supports the communication protocol. This node
set is named channel.

The transparent proxy function is to represent the server object at the client space.
In other words, the client object makes method calls on the transparent proxy, which

6 Inspired in the name usually used to refer to computer network participants.



in turn, converts them into messages forwarded to the next node in the chain. The
method call result is then produced based in the received return message.

The stack builder sink represents the client object at the server space. Received
messages, passed along the node chain, are converted to local calls on the server object.
The return value is converted to a message that is sent back through the chain.

lient Space | IMethodCallMessage 1 Server Space
1 Ny 1
1 Z 1
client
E P IMethodReturnMessage E
€ :
Stack : i Stack
1 1
based : Message based : based

Fig. 2. Call chain distribution

As shown in figure 2, the chain is physically split across participating spaces. The
half that resides at the server space is constituted upon object activation. The other
half is created at the client space upon reception of the corresponding ObjRef instance.
In order to enable client side chain creation, the received ObjRef, sent by the server
space, contains all the required information (eg. location information, remote object
identifier).

The previously described architecture offers several customization opportunities, in
particular, the possibility to define new channels and new real proxy types. Consider-
ations about their inadequacy for solving the problem at hand can be found in section
5.

4.2 Lifetime Management

Memory associated with remote objects is reclaimed using a lease based algorithm. The
lease value determines if the associated remote object is alive. In each remote call for a
given remote object, its lease is automatically renewed. When an object is considered
dead (if its lease has expired) the corresponding memory is reclaimed.

The previously described approach is characterized as not safe since remote objects
may be, erroneously, considered dead. For example, consider a client holding a remote
reference and not making use of it for a time interval greater than the lease time. In this
scenario, the client space will obtain an error when it tries to use the remote reference
(i.e. by calling a method on the referred remote object).

To prevent such errors, the application has the opportunity to register sponsors that
will decide about lease renewal. Each space contains a lease manager that tracks leases
that are associated with remote objects. Periodically, the lease validity is checked and,



if it has expired, a registered sponsor is queried about the lease renewal. Although inter-
esting, this solution only shifted the problem of memory reclamation to the application
programmer domain.

4.3 AOP Support

Aspect-oriented Programming is a paradigm proposed by Kiczales and colleagues in [13].
In this paper, the authors argue that Object-oriented Programming (OOP) failed to
deliver the promised clean problem decomposition. Quoting them, ”we have found
many programming problems where OOP techniques are not sufficient to clearly cap-
ture all the important design decisions the program must implement. Instead, it seems
that there are some programming problems that fit neither the OOP approach nor the
procedural approach it replaces”.

In fact, as noted, applications tend to be polluted with code snippets not directly
related to the problem domain, but instead, related to system level concerns (e.g.
security, transaction management, concurrency control). A similar observation, with
respect to memory management, leaded to the pro garbage collection argument used
by Wilson [2], in which the existence of such a service was considered a fundamental
requirement for accomplishing program modularity.

In AOP, system properties are classified as components or aspects. Components
contain the implementation of system properties directly related to the problem domain
and that result from its functional decomposition. Aspects are the implementation of
properties related to system level concerns and that are transversal to problem domains.
The overall system is the resulting combination. The process of combining components
and aspects is named aspect weaving.

Although there are several approaches to aspect weaving, usually performed via
code instrumentation (e.g. source code instrumentation), only runtime aspect weaving
will be considered in the current document.

The target system” provides support for runtime aspect weaving, performed through
method call interception. The provided method call interception infrastructure, well de-
scribed in [14], is based in the .NET Remoting communication infrastructure, described
in section 4.1, and is known as context architecture.

Context Architecture In this architecture, spaces are subdivided in contexts. A con-
text is the runtime environment that results from the addition of a particular set of
aspects to the base system properties. This is performed through method call intercep-
tion using the specific chain composition established at instance creation®.

To selectively accomplish the afore mentioned call interception, marshal-by-ref types
were further refined into two subcategories: context-agile and context-bound types. Only
types in the later category are considered in the context architecture. A type is classified
as context-bound if it derives (directly or indirectly) from System.ContextBoundObject,
itself a System.MarshalByRefObject derivate.

" In both considered realizations, CLR and Rotor.
& Also named activation.

10



The association between component (context-bound type) and aspects (sets of
nodes in the interception chain) is performed by annotating the component with a
context attribute. This type of custom attribute ° is responsible for specifying the re-
quired context for the annotated type instances.

Figure 3 depicts the general composition of the call interception chain. The chain
is partitioned into four distinct regions, namely, envoy sinks (ESink), client context
sinks (CCSink), server context sinks (SCSink) and object sinks (ObjSink). Each region
is delimited by its corresponding system provided terminator sink (e.g. ETSink). The
existence of these terminator sinks suggest that the chain is not implemented as a list
of message sinks. In fact it is not, alternatively, each terminator sink is responsible for
forwarding messages to the first node of the next existent region (set of nodes).

Client JL

Context
J

EORCRCRCRCRS

Context

Fig. 3. Context architecture

To help understand the provided interception opportunities, consider the existence
of two contexts (client and server) and the propagation in the chain of the message
that corresponds to a method call. The sequence of events for the return message are
reversed.

While still in the client context, two sets of sinks participate in call interception:
envoy sinks and client context sinks. Although envoy sinks reside in the client con-
text, they were specified by the server and are target object specific. They present
an opportunity for collecting information regarding the client, for usage at the server
context.

The next sinks that are given the opportunity to intercept the call are client context
sinks. This set is specified by the context from which the call is originating.

The remaining two sets will participate in call interception upon arrival at the server
context. Both sets are specified by the server and their names, server context sinks and
object sinks, suggest their purpose. The first set is shared by all instances residing in

9 NET support for metadata extension.

11



the server context. The second is specific to each instance. As an example, consider
the automatic renewal of a remote object lease, described in section 4.2. In this case,
the .NET Remoting infrastructure uses an object sink in order to renew the lease each
time the object receives a remote call.

5 Implementation

For the purpose of distributed garbage collection, marshal-by-reference types are clas-
sified as dgc types or non dgc types. Only instances of dgc types are subject to DGC.
This classification provides a choice between using the proposed .NET Remoting ex-
tension, or the default lifetime management service. A type is classified as dgc type if it
derives (directly or indirectly) from System.Runtime.Remoting.DGC.RemoteObject.

5.1 DGC Service module

Local root set extension is performed by using the default lifetime management service,
in particular, by registering a local sponsor. This sponsor is shared by all dgc type
instances hosted in the space. When queried about lease renewals, the sponsor responds
according to the instance inter-space reachability status, maintained in the ODT.

The conservative estimative of locally held remote references (ERT), is updated
upon LGC execution cycle termination. This event triggers the execution of a low
priority background thread that discards stubs relative to unreachable outgoing remote
references. This is performed by using weak references, a system provided mechanism for
referring objects without preventing their reclamation. Each stub holds weak references
for all locally held transparent proxies to its associated remote object. Note that, at
the client space, and for a given remote object, more than one call chain may exist.
The stub is discarded when all its weak references are invalid, meaning, all referred
transparent proxies were collected.

The previously described techniques require additional event detection, namely: i)
LGC execution cycle termination, to trigger the low priority background thread execu-
tion; ii) transparent proxy creation, to refer the created proxy from the corresponding
stub, using a weak reference.

The remaining elements in this module are the required well-known communication
endpoints. They are implemented as stateless remote objects that exist for the entire
space lifetime.

5.2 Instrumentation module

As previously stated, the presented solution does not require modifications to the un-
derlying virtual machine. Nevertheless, an alternative approach has been used, one
that resorts to virtual machine source code modification. The differences between both
approaches are restricted to the current module and are described in subsections 5.3
and 5.4. The only functionality that is identical in both approaches is the detection
of LGC cycle execution termination. In order to achieve it, an unreachable singleton
instance of type System.Runtime.Remoting.DGC.LocalGcDetector is used. This type

12



redefines the Finalize method in order to generate the required event. Since the sin-
gleton instance is never reachable from the local root set, it is considered garbage. As
a consequence, it is eventually collected and its Finalize method is called, generating
the required event and creating a new unreachable instance.

5.3 Runtime Instrumentation

As described in section 4.1, the .NET communication infrastructure provides two ex-
tensibility points: channels and real proxies. Although it would be possible to detect
remote reference import and export through the definition of a custom channel, that
would perform the required message scanning, this solution would force the usage (by
the application) of that particular communication channel. Alternatively, the DGC
service is considered an aspect, and the provided context architecture is used. This
approach does not impose a specific communication channel.

The base type for dgc types (RemoteObject) derives from ContextBoundObject. It
is annotated with a context attribute that adds an envoy sink to the call interception
chain. Additionally, the context attribute performs proxy creation detection, since it
has the opportunity to inject a custom real proxy in the interception call chain.

Although the envoy sink can be used to scan all messages that traverse the call
chain, this is not the proposed solution, due to the performance penalties that would
result from intensive message scanning. Based in the observation that envoy sinks are
part of the client side call chain, a conclusion can be drawn: envoy sinks must be an
extension of the ObjRef instances that represent the remote object. In fact, they are!
By detecting serialization and deserialization of the inserted envoy sink, we can detect
remote reference export and import, respectively. Upon serialization, the envoy sink
transports the DGC required information (e.g. scion identifier).

With the previously described solution, detection of remote reference boundary
crossings only imposes performance penalties when application messages effectively
contain remote references.

Finally, and for distributed garbage cycle detection, snapshot creation is performed
by specific application request. To the effect, the application programmer contributes
with the information of what transparent proxies are still reachable from the non
extended local root set.

5.4 Source Code Instrumentation

This approach is still a work in progress. At the time of writing, the instrumentation
required for acyclic garbage detection is fully implemented. The work in progress is
related to cycles detection, in particular, to the extension of the local GC with the
code necessary to obtain the local root set snapshot at each participating space.

In this approach, instead of using an extension (envoy sink) of the call interception
chain as a way to extend ObjRef instances with the required information, we actually
extended the ObjRef type with the required code. Additionally, in order to detect
proxy creation, the method SetOrCreateProxy of type RemotingServices was also
modified. This method is called each time the space receives an ObjRef instance and,
as a consequence, the corresponding proxy must be created.

13



5.5 Preliminary results

Due to the deferred nature of the implemented DGC algorithm, the majority of the
DGC related tasks are executed in a low priority background thread. The solution
viability is not conditioned by the performance of these tasks, since they do not penalize
application performance. Nevertheless, it is essential that, eventually, these tasks are
given the opportunity to be executed. We assume that they will. Failure to comply
leads to undetected garbage accumulation.

Note that undetected garbage accumulation is not actually a problem, since its
growth (beyond configured limits) can trigger a priority boost of the background thread,
forcing its detection and consequent reclamation. Naturally, this is has a negative im-
pact (but necessary) on application performance.

The DGC related tasks that are considered critical are those that impose application
pause times (i.e. no application related work is being done, regardless of the urgency).
These pause times occur when DGC book-keeping is performed in application enrolled
threads (i.e. synchronously). Our implementation main performance requirement was
the minimization of these pause times, imposed by the following tasks: i) Remote
reference usage, by calling a method of the referred remote object; ii) Remote reference
import and export detection; iii) Local snapshot creation, for cycle detection.

For the time being, hence the subsection name, we have focused in measuring the
performance penalties imposed by the first two, when using runtime instrumentation.

In the next subsections, the presented times are the average of 100 samples of the
execution time of each sequence of actions to evaluate. Efforts have been made to ensure
that no LGC and DGC collections occur while evaluating the costs of each sequence of
actions.

Although these measurements are presented as absolute times, their single purpose
is to underline the working temporal scale. Conclusions were only drawn from the ob-
served variations between measured times with, and without DGC related operations.

Remote reference usage Here, the goal is to evaluate time overhead imposed by the
usage of the extended call chain to make remote invocations. Note that an additional
node exists in the call chain associated with dgc types instances. Since this additional
node is a pass-through, meaning, it just forwards messages to the next node in the
chain (it is not actually scanning passing messages), the expected additional cost is
low.

In the following scenarios, two spaces are used: a client and a server space. The client
performs a remote invocation on an object hosted at the server space. The elapsed time
is measured at the client, hence it includes round-trip and remote method service times.
Table 1 summarizes the results.

Scenario A This is an unrealistic worst case scenario. Both spaces are hosted in the
same computer and the called method does not perform useful work (i.e. empty
method body).

Scenario B Both spaces are hosted in the same computer and the called method does
perform some work (simulated and a2 1ms long)

14



Scenario C Each space is hosted in a separate computer and the called method does
not perform useful work.

A B C
Non dgc type (x100ns)|2603 (1021466188
Dgc type (x100ns) 3104 (10314(67191
A (%) 19.25| 0.98 | 1.52
Table 1. Remote reference usage costs

With the previous scenarios we intend to show the effects of the inclusion of realistic
factors (i.e. network latency or useful work execution) in the relative cost associated
to the usage of the extended call chain. This relative cost is masked by the cost of
each factor introduced. From the previously stated, we conclude that, as expected, in
realistic scenarios there is no significant penalty for using the proposed DGC solution.

Remote reference import and export detection Here, the goal is to measure
time overhead associated to the export and import of a remote reference to an instance
of a dgc type, as opposed to remote reference export and import to an instance of a
non dgc type. The measured time includes client and server data structures update
times and remote reference propagation.

This measurements will be the cost associated with, conceptually, scasnning mes-
sages that contain remote references, and as a consequence, updating DGC data struc-
tures.

Non dgc type (x100ns)
Dgc type (x100ns)
A (%)

Table 2. Remote reference usage costs

6 Related Work

This work focuses distributed garbage collection, applied to real-world platforms, with-
out intrusive modifications that hinder portability and prevent wide deployment of the
proposed solutions. Distributed garbage collection has been extensively described in
the literature [15-19], comparing different algorithms, based on parameters such as
asynchrony, message traffic, space and time overhead.

In these systems, distributed garbage, including distributed cycles, is frequent and
has been characterized in [20,21]. We use the term GC-solution to designate the set
of components and algorithms involved in performing garbage collection, both local

15



and distributed, and their actual implementation. Incomplete solutions are typically
based on distributed reference-counting and reference-listing [22, 23]. Detection of dis-
tributed cycles has been addressed using i) object migration: explicit [24] and via
indirection [28] (train algorithm), ii) trial deletion [30], iii) propagation of marks or
time-stamps: global [31-33], within groups [35, 36], iv) distributed back-tracing [38, 39,
33], v) centralized detection: loosely-synchronized [40], and asynchronous [41], and vi)
cycle detection algebra [42].

Nonetheless, most of the solutions found in the literature are developed towards very
specific systems, namely research prototypes, where it is assumed the DGC developer
has complete control over the runtime. When applied to a standard, or widely deployed
runtime (as Java and .NET), these solutions frequently require significant modifications
to the underlying runtime.

Thus, we briefly evaluate existing work on a different perspective, with portability in
mind instead, in the sense that we have described. We present a qualitative overview of
two main issues that may hinder the adoption of a complete GC-solution to any widely
adopted runtime: i) runtime intrusion, and ii) coupling between different components
of the GC-solution. Each of these aspects is decomposed in sub-aspects and, for each of
them, we introduce a scale of approaches with increasing degrees of portability and/or
flexibility. Some solutions may be mentioned at different degrees because of different
techniques they employ.

6.1 Runtime Intrusion

Runtime intrusion is defined as the need to deviate from an existing runtime, in order
to provide it with a specific garbage collection solution. These deviations may be caused
by different GC components, and have different degrees. Naturally, the optimum degree
is not requiring any intrusion at all, and this is the case when a specific solution is not
explicitly mentioned.

Local GC The most inflexible technique, w.r.t. LGC, when adopting a GC-solution
is to impose an heterodox LGC' [28,32], substantially different from those typically in-
cluded in the runtime. A GC-solution may require the extension of reachability encoding
of an existing LGC. This is the case of solutions that require the LGC to incorporate, in
object headers, more bit-colors [35, 36] or additional marks, like time-stamps [31-33] or
reachability-maps [40, 38]. An existing GC may also be subject to extension of opera-
tion that is less intrusive that the previous technique, either pre-pending or appending
operations to the ones already performed by the existing LGC, such as generating stub
sets [22, 23], or calculating backward references [39]. A solution may impose direct in-
strumentation, in that the existing LGC must be blocked [38, 36] or triggered at specific
moments (e.g., when coordinating with other GC components), possibly for a partial
collection over a fraction of the objects [36]. Indirect instrumentation consists in using
indirect mechanisms to detect when a local garbage collection has taken place (e.g.,
using finalizer methods on a dummy object). This is portable and is used in our
solution.

Acyclic DGC The most inflexible technique to implement a distributed garbage
collector is to modify the communication protocol, or impose the use of a specific one

16



provided by a non-standard system [24, 31, 30, 22, 35, 28, 32, 36, 33] (e.g., Thor [40, 38]).
Alternatively, intrusion may be confined to modifying remoting mechanisms and its
code [33,41,42]. If it is possible and allowed, DGC may be implemented resorting to
interception of library loading performed by the dynamic linker, either by extending
or overriding the functionality of components regarding communication and remote
method invocation, without modifying code [39]. Portable techniques include extended
communication mechanism, resorting to extensions allowed by the runtime, such as
custom sockets.

Finally, even non-intrusive extensions may be independent of the communication
protocol and restricted to extended remoting mechanisms, such as sink chain extensions
(as this solution provides).

Cycle Detection Some solutions, depending on the adopted algorithm(s) may re-
quire additional direct intrusion in the runtime, for the purpose of cycle detection,
without possibility of delaying the disruptive operations. Examples include blocking
the mutator, while performing bit-color propagation in some situations [36], and ap-
plying barriers to inter-space invocations when back-tracing information is being cal-
culated [38]. In general, most solutions also require information of the local root-set
of each space, in order to differentiate objects targeted by local references, or just by
inter-space references. This may be achieved by modifying the LGC, or indirectly via
hints provided by the programmer. This is required because existing runtimes, neither
inform about different levels of reachability, nor provide reflection services that offer
information about stack variables.

6.2 Coupling of GC components

Coupling is defined as the degree of interdependency among different GC components
(namely LGC, acyclic DGC, and cycle detection), in the sense that the adoption of
one approach for one component, will mandate the adoption of the same or related
approach to one, or both the others. In essence, this assesses how monolithic a GC
approach is, or how it may be flexibly combined with others. This will determine the
difficulty of deploying the algorithm if it is not possible to modify the runtime, namely
its LGC. Furthermore, this may hinder application performance and/or delay garbage
reclamation since garbage of the three kinds is not created at similar rates, and thus
should be addressed with specialized approaches.

One-size-fits-all The most inflexible solutions are those that mandate the use of
the same algorithm, a specific one for all three GC components [28,31-33], i.e., the
use of a acyclic DGC algorithm, or cycle detector, effectively mandates the use the
same algorithm for LGC purposes. Naturally, this seriously undermines the adoption
of these algorithms to an existing runtime, if one of the components cannot by modified
or extended.

LGC and Acyclic DGC Some solutions demand strong integration of the compo-
nents that perform LGC and acyclic DGC. They may require the LGC to propagate in-
formation, through the object graph, received by the acyclic DGC component, namely

17



marks [35,36] and time-stamps [31-33], or otherwise provide inter-space reachability
information of objects to the DGC [40].

Acyclic DGC and Cycle Detection There are solutions that, while avoiding in-
trusive modifications to the LGC of an existing runtime, use the same algorithm for
acyclic and cyclic DGC [31, 40, 28, 32, 33]. This is not as prejudicial as with the case of
LGC, but it may prevent the use of a cycle detector if it imposes changes to an existing
acyclic DGC algorithm (e.g., reference-listing) integrated in the runtime . Furthermore,
using the same algorithm may delay the identification of acyclic garbage that should be
performed more frequently (e.g., [31,28,32]). At an intermediate level, the DGC must
be able to cooperate with the cycle detector, e.g., performing simulated deletions [30].
Other solutions use specialized cycle detectors that do not interfere with normal, more
frequent, acyclic DGC operation, namely [24, 35, 38, 39, 36,41, 42].

LGC and Specialized Cycle Detection The coupling between LGC and cycle de-
tection, in the context of solutions that use the same algorithm for acyclic and cyclic
DGC was already addressed in the second headed paragraph. With respect to solu-
tions with specialized cycle detectors, those based on migration techniques must be
able to detach objects from the local graph and create the appropriate inter-space ref-
erences to preserve their reachability [24, 28]. Trial deletion for cycle detection requires
the LGC to provide tentative reachability information about the outcome of simulated
deletions [30]. Cycle detectors that need to be informed about local root-sets, do not
necessarily preclude the use of the runtime built-in LGC [35, 38, 39, 36, 41, 42].

In this section, we have analyzed the virtues and shortcomings of a number of the
most relevant GC-solutions found in the literature, wit respect to runtime intrusion
and coupling among their components.

There is no optimal solution, i.e., one that does not require any modification nor
extension of the runtime. Nonetheless, we believe that those with increased degrees
of portability (i.e. runtime intrusion) and flexibility (i.e. component decoupling), as
the one described in this paper, can be deployed realistically. Besides our proposal, the
other work we found where the concerns about portability are paramount, despite some
runtime intrusion, is the implementation of distributed back-tracing cycle detector for
CORBA objects [39].

7 Conclusions

18



References

10.
11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Jones, R., Lins, R.: Garbage Collection, Algorithms for Automatic Dynamic Memory
Management. John Wiley & Sons (1996)

Wilson, P.R.: Uniprocessor garbage collection techniques. In: Proc. Int. Workshop on
Memory Management. Number 637, Saint-Malo (France), Springer-Verlag (1992)

Bal, H.E., Tanenbaum, A.S., Kaashoek, M.F.: Orca: A language for distributed program-
ming. SIGPLAN Notices 25(5) (1990) 17-24

Birrell, A., Nelson, G., Owicki, S., Wobber, E.: Network objects. Software—Practice and
Experience 25(54) (1995) 87-130

. Wollrath, A., Riggs, R., Waldo, J.: A distributed object model for the Java system. In: 2nd

Conference on Object-Oriented Technologies & Systems (COOTS), USENIX Association
(1996) 219-232

Shapiro, M., Dickman, P., Plainfoss’e, D.: Robust distributed references and acyclic
garbage collection. In: In Proceedings of the 11th Annual ACM Symposium on Prin-
ciples of Distributed Computing, Vancouver (Canada) (1992) 135-146

Veiga, L., Ferreira, P.: Complete distributed garbage collection: an experience with rotor.
In: IEE Proceedings - Software. Volume 150. (2003) 283-290

Hughes, J.: A distributed garbage collection algorithm. In Jouannaud, J.P., ed.: Func-
tional Languages and Computer Architectures. Volume 201 of Lecture Notes in Computer
Science. Springer-Verlag, Nancy (France) (1985) 256-272

Shapiro, M., Gruber, O., Plainfossé, D.: A garbage detection protocol for a realistic
distributed object-support system. Technical Report 1320 (1990)

Mattern, F.: Virtual time and global states of distributed systems. (In: Parallel and Dis-
tributed Algorithms: proceedings of the International Workshop on Parallel Computing)
Rammer, I.: Advanced .NET Remoting. Apress (2002)

McLean, S., Naftel, J., Williams, K.: Microsoft .NET Remoting. Microsoft Press (2003)
Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Ir-
win, J.: Aspect-oriented programming. In Aksit, M., Matsuoka, S., eds.: Proceedings
European Conference on Object-Oriented Programming. Volume 1241. Springer-Verlag,
Berlin, Heidelberg, and New York (1997) 220-242

Box, D., Sells, C.: Essential .NET, Volume 1: The Common Language Runtime. Addison-
Wesley (2003)

Plainfossé, D., Shapiro, M.: A survey of distributed garbage collection techniques. In:
Proc. Int. Workshop on Memory Management, Kinross Scotland (UK) (1995)

Jones, R., Lins, R.: Garbage Collection, Algorithms for Automatic Dynamic Memory
Management. Wiley, Chichester (GB) (1996) ISBN 0-471-94148-4.

Abdullahi, S.E., Ringwood, G.A.: Garbage collecting the internet: a survey of distributed
garbage collection. ACM Computing Surveys (CSUR) 30(3) (1998) 330-373

Shapiro, M., Fessant, F.L., Ferreira, P.: Recent advances in distributed garbage collection.
Lecture Notes in Computer Science 1752 (2000) 104

Ferreira, P., Veiga, L.: Garbage collection curriculum. Msdn academic alliance curriculum
repository, object id 6812, Microsoft (2005)

Wilson, P.: Distributed garbage collection general discussion for faq. GCList Mailing List
(gelist@iecc.com) (1996)

Richer, N., Shapiro, M.: The memory behavior of the WWW, or the WWW considered
as a persistent store. In: POS 2000. (2000) 161-176

Shapiro, M., Dickman, P., Plainfossé, D.: Robust, dist. references and acyclic garbage
collection. In: Symposium on Principles of Dist. Computing, Vancouver, Canada (1992)
Birrell, A., Nelson, G., Owicki, S., Wobber, E.: Network objects. In: SOSP '93: Proceedings
of the fourteenth ACM symposium on Operating systems principles, New York, NY, USA,
ACM Press (1993) 217-230

Bishop, P.B.: Computer systems with a very large address space and garbage collection.
MIT Report LCS/TR-178, Laboratory for Computer Science, MIT, Cambridge, MA.
(1977)

19



23.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Shapiro, M., Gruber, O., Plainfossé, D.: A garbage detection protocol for a realistic
dist. object-support system. Rapports de Recherche 1320, INRIA-Rocquencourt (1990)
Superseded by [46].

Gupta, A., Fuchs, W.K.: Garbage collection in a distributed object-oriented system. IEEE
Transactions on Knowledge and Data Engineering 5(2) (1993) 257-265

Maheshwari, U., Liskov, B.: Collecting cyclic dist. garbage by controlled migration. In:
Proc. of PODC’95 Principles of Dist. Computing. (1995) Later appeared in Dist. Com-
puting, Springer Verlag, 1996.

Hudson, R., Morrison, R., Moss, J.E.B., Munro, D.: Garbage collecting the world: One
car at time. In: Conf. on Object-Oriented Programming Systems, Languages, and Appli-
cations, Atlanta (U.S.A.) (1997)

Lowry, M.C., Munro, D.S.: Safe and complete distributed garbage collection with the
train algorithm. In: 9th International Conference on Parallel and Distributed Systems
(ICPADS 2002), 17-20 December 2002, Taiwan, ROC. (2002) 651-658

Vestal, S.C.: Garbage collection: an exercise in distributed, fault-tolerant programming.
PhD thesis, Seattle, WA, USA (1987)

Hughes, J.: A distributed garbage collection algorithm. In Jouannaud, J.P., ed.: Func-
tional Languages and Computer Architectures. Number 201 in Lecture Notes in Computer
Science, Nancy (France), Springer-Verlag (1985) 256-272

Louboutin, S.R., Cahill, V.: Comprehensive dist. garbage collection by tracking causal
dependencies of relevant mutator events. In: Proc. of ICDCS’97 Int’l Conf. on Dist.
Computing Systems, IEEE Press (1997)

Fessant, F.L.: Detecting distributed cycles of garbage in large-scale systems. In: Confer-
ence on Principles of Distributed Computing(PODC). (2001)

Philippsen, M.: Cooperating distributed garbage collectors for clusters and beyond. Con-
currency: Practice and Experience 12(7) (2000) 595-610

Lang, B., Quenniac, C., Piquer, J.: Garbage collecting the world. In: Conf. Record of
the Nineteenth Annual ACM Symposium on Principles of Programming Languages. ACM
SIGPLAN Notices, ACM Press (1992) 39-50

Rodrigues, H., Jones, R.: Cyclic distributed garbage collection with group merger. Lecture
Notes in Computer Science 1445 (1998) 260

Fuchs, M.: Garbage collection on an open network. In Baker, H., ed.: Proc. of Int’l
W’shop on Memory Management. Volume 986 of Lecture Notes in Computer Science.,
Concurrent Engineering Research Center, West Virginia University, Morgantown, WV,
Springer-Verlag (1995)

Maheshwari, U., Liskov, B.: Collecting cyclic dist. garbage by back tracing. In: Proc. of
PODC’97 Principles of Dist. Computing. (1997)

Rodriguez-Rivera, G., Russo, V.: Cyclic distributed garbage collection without global
synchronization in corba. In: OOPSLA’97 GC & MM Workshop. (1997)

Liskov, B., Ladin, R.: Highly-available distributed services and fault-tolerant distributed
garbage collection. In: Proceedings of the 5th Symposium on the Principles of Distributed
Computing, Vancouver (Canada), ACM (1986) 29-39

Veiga, L., Ferreira, P.: Complete distributed garbage collection, an experience with rotor.
IEE Research Journals - Software 150(5) (2003)

Veiga, L., Ferreira, P.: Asynchronous complete distributed garbage collection. In: 19th
IEEE International Parallel and Distributed Processing Symposium, Denver, CO, USA
(2005)

Ferreira, P., Shapiro, M.: (1993) IEEE Computer Society Press.

Shapiro, M., Plainfossé, D., Gruber, O.: A garbage detection protocol for a realistic
distributed object-support system. Technical report, INRIA (1990) INRIA 1320.

Stutz, D.: The microsoft shared source cli implementation. MSDN Library Article, Mi-
crosoft Corporation (2002)

Shapiro, M.: A fault-tolerant, scalable, low-overhead dist. garbage collection protocol. In:
Proc. of the Tenth Symposium on Reliable Dist. Systems, Pisa (1991)

20



