
Jano - Specification and Enforcement of Location Privacy
in Mobile and Pervasive Environments

José Simão
ISEL

Rua Conselheiro Emídio Navarro N◦1
1959-007 Lisboa

INESC-ID/Technical University of Lisbon
Distributed Systems Group

Rua Alves Redol N◦9, 1000-029 Lisboa
jsimao@cc.isel.ipl.pt

Carlos Ribeiro, Paulo Ferreira,
Luís Veiga

INESC-ID/Technical University of Lisbon
Distributed Systems Group

Rua Alves Redol N◦9, 1000-029 Lisboa
[carlos.ribeiro, paulo.ferreira,

luis.veiga]@inesc-id.pt

ABSTRACT

Today there are many location technologies providing peo-
ple or object location. However, location privacy must be
ensured before providing widely disseminated location ser-
vices. Privacy rules may depend not only on the identity
of the requester, but also on past events such as the places
visited by the person being located, or previous location
queries.

So, location systems must support the specification and
enforcement of security policies allowing users to specify
when, how and who can know their location. We propose
a middleware platform named Jano1 supporting both pull
and push location requests while enforcing configurable secu-
rity policies. Policies are specified using the Security Policy
Language - SPL, facilitating the use of well known security
models. In particular, Jano supports history-based policies
applied to persons or objects location.

The system was implemented with the integration of sev-
eral location technologies (e.g. GPS, Bluetooth, etc.), and
dealing with the heterogeneity aspects. It provides an inter-
face that facilitates policy specification and has good per-
formance.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed
Systems

Keywords

location-awareness, privacy, declarative policies

1Jano is the god of doors and gates in the roman mythol-
ogy. He is usually depicted with two or four faces turning in
opposite directions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
M-MPAC 2010, November 29th, 2010, Bangalore, India.
Copyright 2010 ACM 978-1-4503-0451-1/10/11 ...$10.00.

1. INTRODUCTION
Being able to locate someone or something has been a need

over the times. Today, as in the past, the reasons why loca-
tion is needed are multiple. We may wish to know where we
are for self orientation. We may want to know where other
persons or objects are placed so that we can meet or find
them. Finally, and more recently, our location could also be
used by third-party applications to send us contextual in-
formation (e.g. receiving advertisements related to the shop
we are arriving at [18], or obtain detailed information about
the work of art we stand by at a museum). In modern so-
cieties, privacy is a necessary condition for freedom, in the
sense that where we are and who we are with, is related to
what we are doing. The possibility of being located by oth-
ers raises the question: “Who, and in what condition, may
someone by allowed to locate me or know I am nearby?”.
This can be as simple as restricting a time interval: “Bob

and Alice can only locate me between 10 a.m. and 4 p.m.”.
Sometimes the decision is not only based on the present sit-
uation but also on past events. For example, Alice may
accept to disclosure her location in isolated instants but not
being tracked, i.e. reveal several locations in sequence.

To address these scenarios the location system must be
capable of responding to location requests but, at the same
time, evaluate each request and decide if it is authorized or
not, based on some previously specified policy. Our main
goals are the specification and enforcement of complex secu-
rity policies, including those based on history events, with-
out compromising usability and performance. We want to
define and enforce these policies to a location service that
supports both synchronous, i.e. pull, and asynchronous, i.e.
push, requests.

Given that we want to build a generic infrastructure, the
policy monitor that will enforce policies can not be made
as a group of static rules. Organizations will want to spec-
ify different policies and have different characterizations of
their elements, not depending on the location system, but
on a previously defined structure. Given the dynamics of
the information, past events are particularly important to
consider. When a user makes a query for someone’s loca-
tion, or arrives at, or leaves from a space, these events must
be recorded by the system with the goal of applying policies
to them; for example, “the administrator can know my lo-
cation if I am in a dangerous place for more than one hour”.



The way these events are represented and stored is crucial
during the evaluation of policies.

Other location services that enforce some kind of privacy
[15][14] do not present an integrated solution to deal with
history based policies. In some of them, responses to push
requests are also not handled as a first class issue, making it
hard to use the location events produced by the service into
the notification decision process.

This paper presents Jano, a generic multi-technology Lo-
cation Service, supporting the specification and capable of
enforcement of privacy policies on the location of persons or
objects. Location information is gathered from an unlimited
variety of sources. Two types of queries are available: pull
and push. While the former answers with the last known
location, the latter corresponds to an asynchronous notifi-
cation request (e.g. “Notify me by e-mail when Alice arrives
to room 19 after she has leaved the cafeteria”). Control ac-
cess policies enforce the requirements of users and owners
of places about disclosure of location information. These
policies can be associated to users, objects or places. No-
tification policies are used to decide about the need for a
notification. They are associated to a user when a push re-
quest is made. The movement of persons and objects makes
Jano generate location events which are evaluated by these
policies to determine if a notification is needed and allowed.

The definition of both types of policies is made through
the use of the Security Policy Language (SPL) [16]. SPL is
a policy language particularly suitable for localization ser-
vices, because it allows the definition of models comprised by
elements specifically adapted to the localization semantics;
namely, it allows for the definition of history-based policies
which are an important element for the definition of local-
ization policies. SPL is also system agnostic which means
that the representation of objects and events can be adapted
to the specification of the location system.

In summary, the contributions of this work are i) the spec-
ification and enforcement of security policies using a multi-
model language. These policies can be made dependent on
history events without compromising usability and perfor-
mance, ii) the implementation of an extensible and interop-
erable tracking and notification mechanism, with the possi-
bility to define complex notification conditions.

In the next section we discuss some related work. Section
3 describes the architecture of the Location Service, focusing
on the main components and their interactions. Section 4
presents the solution to ensure policy enforcement. Some
of the implemented policies are described in Sect. 5, and
conclusions are presented in Section 7.

2. RELATED WORK
The interest in location privacy has been growing with

more services being able to take advantage of persons and
objects locations. Mainly, three lines of research can be iden-
tified: one that takes the object location and blurs it [1],
other that anonymizes users [2, 13] making them indistin-
guishable and finally, one that takes into account security
policies defined by the users of the system. Typically ob-
fuscation deals with the problem of what location accuracy
should be reported to location consumers, not dealing with
conditions like history of events or the origin of the location
request. On the other hand, anonymization is applied in sce-
narios were the real identity of the user is not relevant, e.g.
receiving advertisement when arriving to a defined shopping

area. If the location consumer wants to know the location of
someone or something in particular, it will not be possible
with this technique.

Location privacy with the enforcement of security policy
has been a topic of research for some time. Security policies
of persons, objects or places, can be made dependent on
several location privacy primitives (geographical area, time
interval, historical access, etc.) [2, 17]. Each of these aspects
can be combined to form a user, object or place, security
policy.

Leonhardt and Magee [10] present a system where the ac-
cess control is based on multi-target and multi-object poli-
cies. To simplify the management, the system has three lev-
els of policy control: access, visibility and anonymity. The
Aura project [5] incorporates a location module which, be-
sides being able to handle multiple sources of positing in-
formation, is also structured to protect access to people’s
location [6]. Their option was to use the SPKI/SDSI in-
frastructure, giving the possibility, among other things, to
delegate location access rights.

LocServ [14] represents each person policy by a group of
validators responsible for the evaluation of each location re-
quest. The implementation of these validators can go from
a software that interrogates the user for each request, to
a generic decision maker based on, for example, a security
policy file. Context Fabric [7] is a middleware to organize
and promote communication between different information
spaces where users keep their information (e.g. location).
Associated to the information in each of these spaces is a
description of privacy related actions that the middleware
as to attend to, e.g. the requester of the information cannot
be at a given building.

More recently, Opyrchal [15] focuses on adding support to
location privacy in a content-based publish subscribe mid-
dleware. Their system let publishers, i.e. users, to control
dissemination of location information they own. Publishers
can do so by specifying to which users and in what con-
ditions the disclosure of information is possible, using the
KeyNote Trust-Management System [4]. People Finder [8]
takes a different direction, applying techniques of machine
learning to automatically adjust each user policy based on
their satisfaction of the location information disclosure.

The work in [1] applies obfuscation techniques to loca-
tion information based on user’s privacy preferences. In our
work, we do not attempt to tamper with location data, in-
stead we allow users and administrators to define/use poli-
cies that rule the disclosure of location information for queries
and notifications. The work in [13] assumes the existence of
untrusted servers from which users want to hide their exact
location; this is achieved by anonymizer nodes that reduce
location precision to cloaked spatial areas. In Jano, loca-
tion servers are trusted, nevertheless, the two works could
be combined with enriched support for policies. Coopera-
tive sensing is addressed in [3]: user nodes submit sensing
tasks to accessible mobile devices of other users. To ensure
privacy, all communication is anonymized. In Jano, we do
not attempt to recruit other users’ devices but deployment
of sensing tasks could be defined, reused and enforced by
taking advantage of Jano support for policy definition and
enforcement.

Common to all these works is the lack of support to make
decisions based on past events. The authors in [15] recognize
the need to support history-based policies, but their work is



unable to do so. Performance evaluation of the component
used to evaluate policies is not mentioned, with exception of
[15], where the authors conclude they need a more efficient
policy evaluator. The adaptability of the policies to different
organizations where users, objects and places have different
characterization is also not the main issue.

3. ARCHITECTURE

Rule

Handler

Location

Server

Location

ApplicationsSPL Policy

Enforcer

Location

Manager

Notification

Distributor
Pull/Push response

Pull/Push request
j

m

Evaluate request
k

Decision

l

Location reportLocation

Generators

Figure 1: Jano Location Service Architecture

Figure 1 presents the high-level architecture of Jano. The
figure depicts Jano’s solution for the Rule Handler and the
Location Server modules, complemented with a workflow be-
tween all parts. Consider the following scenario. A Location
Application, e.g. a directory service, is used by Alice to ask
where Bob, her project mate, is located in campus (step 1).
Jano evaluates Bob’s policy (steps 2 and 3) and if the re-
quest is accepted, Bob’s location is disclosed with a certain
degree of accuracy (step 4). Later, Alice uses the campus
notification service (another example of a Location Applica-
tion) requesting to be notified by Short Messaging Service
(SMS) when the book she ordered arrived at the reception
after going through the library for registration. These two
kind of interactions with the Location Server are named pull
and push requests, respectively.

The last kind of interaction is possible because the Lo-
cation Server produces two location events: i) A arrived at
place P ii) A leaved place P , being A a person or an ob-
ject. Location events are based on the information collected
from Location Generators. These components represent the
source of location information and have the responsibility
of translate it to a common hierarchical representation with
the following format <domain>/<sub-domain1>/.../<sub-

domainN>. Because of this common format, policies can be
specified independently of the detail of the low level po-
sitioning technologies, and can encompass many locations
with few rules. The information can be reported by persons
or objects equipped with technology capable of determining
their location, or some kind of tracking technology.

We focused our work on the development of an efficient
and adaptable Rule Handler, named SPL Policy Enforcer.
Our Policy Enforcer enforces Access Control Policies and
Notification Policies. These policies are associated to per-
sons, objects and places. They regulate if a pull or push
response, can be given, controlling the disclosure of loca-
tion information. The Policy Enforcer applies access control
policies after a common policy is enforced. This policy gives
the opportunity for the site administrator to enforce a set of
common rules; for example, “mail objects can only be local-
ized by their receivers and if the object has already left the
distribution department”.

Notification Policies are used by the Notification Distrib-
utor to evaluate the need and the authorization for a push

response, i.e. a notification. This evaluation happens each
time the Location Manager generates a location event. In
the previously presented scenario, each time the book en-
ters or leaves a place, the notification policies of Alice and
other users of the system are evaluated to determine if a no-
tification is needed. SPL is a language for the specification
of policies regulating access control, thus the usage of such
policies in a notification context is a novel approach. This
feature has the following advantages: i) makes it easy to
use past location events when determining the notification
conditions and ii) it is a more general approach because the
system needs not be hard-coded with the parameters that
will be considered in the notifications.

In both cases, the actions of the Policy Enforcer are gov-
erned by policies specified and enforced using SPL. These
policies depend on current and past interactions with Jano,
e.g. location requests and location events. Users of Jano
need not learn SPL, because Jano provides a library with a
pre-defined set of location control and notification policies.
Users only have to parameterize them according to their
needs.

The next section gives a brief description of SPL, applying
the language elements to the context of Jano. Section 5 also
presents examples of history-based access control policies
and notification policies.

4. LOCATION PRIVACY
The Location Service presented here is adaptable in the

sense that the characterization of persons, objects and places
can reflect the information available at the site where Jano
is to be deployed, e.g. person’s department, person’s current
activity, person’s current security level.

Jano imposes minimum restrictions to the structure of
policies governing the disclosure of locations information.
To accomplish this we use SPL, a multi-model security pol-
icy language. The main objective of SPL is to support an
environment where authorization policies can be expressed,
using a combination of known policy models (i.e. MAC,
DAC, history-based, etc.), but also other models that are
specific to problem domains. The next sections show how
policies are built with SPL, using the context of the Jano
Location Service.

4.1 SPL Policies Structure
SPL[16] is composed by four basic blocks: entities, sets,

rules and policies.
Entities are typed objects, described in the language as

a group of properties. Figure 2 shows the definition of the
types for the current implementation of Jano. If Jano is to
be used in an environment where users are also characterized
by a clearance level, a new property could be added to the
object type.

During the evaluation of a policy, when a reference is made
to a property of an entity (e.g. where of type object), this
will result in consulting the Jano platform for the requested
information. How this is done is not under direct control of
SPL. Jano implements an adapter framework to give SPL
the necessary information for the properties of the external
types.

Rules are logical expressions that can take one of three
values: allow, deny or notapply. Client system communi-
cate with SPL using events. The goal of each rule is to decide
on the acceptability of a SPL event. In Jano this events cor-



// characterization of Jano places
type place {

string name;
// policies regulating access to the place
policy set accessControlPolicies;

}

// characterization of Jano objects
type object {

string id;
// last known location
place where;
// groups to whom this object belongs
group set groups;
// access control policies
policy set accessControlPolicies;
// notification policies
policy set notificationPolicies;

}

Figure 2: Definition of entity types

type event {
// kind of interaction between Jano
// and SPL (pull, arrive, leave, accuracy)
string action;
// initiator of the request
object author;
// target of the request
object target;
// place, target of the request
place targetPlace;
// event generation time
number time;

}

Figure 3: Definition of the type event

respond to pull requests, originated from the users of the
location service, and to location events, originated from the
Location Server. SPL events are typified as can be seen in
Figure 3, which presents the SPL event defined to be used
in the communicating between Jano and SPL.

The event representing the current interaction is known
as the current event, and a rule can access it as ce. Figure
3 shows the definition of the event type, used by the Policy
Enforcer. The action field identifies the type of interaction.
The author field can be the person making the location re-
quest or the originator of the location event. Field target

is the person or object to whom the location request refers.
Field targetPlace refers to the place inquired in a pull re-
quest or the place in a location event.

Rules can be simple or composed. A simple rule has
two distinct parts: domain expression and decide expres-
sion. The domain expression determines the applicability of
the rule. The decide expression decides on the acceptability
of the event. The composed rule is a composition of other
rules using tri-value logic operators. Figure 4 shows a com-
posed rule that evaluates only to allow or deny. The policy
evaluates to allow only if i) a person is querying its own lo-
cation and ii) The current event is a pull request (i.e. action
is Get_Location), the requester has the unique identifier of
alice@inesc.pt and the last known location of the owner
of the policy (i.e. the target) is inesc/office600.

Policies are groups of rules and sets, forming a logical
unit. Each policy has one query rule, which is distinguish-
able by the question mark that precedes her definition. This

SpecialRoom:
// domain expression
ce.action = "Get_Location" ::
// decide expression
ce.author = "alice@inesc.pt" &
ce.target.where = "inesc/office600"

TheOwner: ce.target = ce.author :: true;
Composed: TheOwner OR SpecialRoom

policy AllowedRooms {
string set allowedRooms;
InRoom:

ce.action = "Get_Location" ::
ce.author = "alice@inesc.pt" &
ce.target.where IN allowedRooms;

?AllowedRooms: TheOwner AND InRoom
}

Figure 4: Rules and policy

rule is the entrypoint of the policy. Figure 4 shows a policy
that integrates the previous rules with a modification: only
allows the disclosure of the target location if he is in one of
the rooms contained in the set.

Different users can use this policy but with different room
names. This is a big difference when compared to other
policy enforcement languages, making it possible to define a
set of meta-policies that can pe particularized to a domain
and letting users/administrators instantiate them with the
values they want.

SPL policies are not written by persons using the Loca-
tion Service, but by the site policy designer. The policy
designer responsibility is to create a set of policies adapted
to the domain where Jano is to be used (e.g. office building,
university campus, hospital).

4.2 History-Based Policies
The disclosure of location information can be dependent

on previously location events or accepted pull requests. A
usual scenario is to limit the number of location requests (or
in alternative, request frequency or the cardinality of the set
of unique results provided), made by the same person, to a
given target, to avoid tracking.

Other situation can be to avoid cross-referencing infor-
mation about persons in two different rooms, e.g. if Alice

already obtained a list of persons in room A, then she cannot
obtain the list of persons in room B. In this scenario room
B would have a symmetric policy. Figure 5 presents a rule
where the request is allowed only if in the past there were
no more than maxEvents push requests for the same target
made by the same author. If this policy is associated to
Alice and instantiated with maxEvents equal to 3, then she
accepts at most three requests in sequence, from the same
author.

policy TrackingLimit {
?TrackingLimit:

EXIST AT_MOST maxEvents pe IN PastEvents {
pe.action = "Get_Location" ::
pe.author = ce.author & pe.target = ce.target

}
}

Figure 5: History based policies

To enforce this type of policies, a virtual event log is used.
This special log is referred as the PastEvents set and does



policy OnlyOutsideMailRoom {
?OnlyOutsideMailRoom:

EXIST pe IN PastEvents {
pe.action = "Leave" &
pe.targetPlace = "MailRoom" :: pe.target = ce.target

}
}

Figure 6: History based policies

not match a concrete implementation of a global log, only
the semantics are of a global log [16]. The log is associated
to each user’s policy. It is the responsibility of the Policy
Enforcer to fill this log, adding successful pull requests and
location events. Adding an SPL event to this log is an opti-
mized operation in which only events relevant to the history
policy are included. In the policy of Figure 5, only request
location events are relevant. If, a user enter or leaves a
place, that event will not be record by this policy log. This
promotes logs with reduced sizes thus fostering scalability.

Figure 6 shows a policy where a location event leave is
taken into account. If this policy is attached to a mail
object it can only be located outside the mail distribution
room. Section 5.1 shows examples of history-based notifica-
tion policies where location events (i.e. arrive and leave) are
considered to decide whether a notification is needed and in
order.

5. IMPLEMENTATION
Figure 7 depicts some implementation details. Jano pro-

gramming interface (i.e. API) has two main services: i)
for query and administration purposes and ii) for reporting
location information. The query service allows for location
application to i) send pull requests ii) manage access control
policies through the administration interface and iii) man-
age the push interface. The reporting service is used by the
location generators.

Each consumer of location information and each location
generator can be implemented in any language or platform.
To facilitate this goal, Jano API is implemented as a Web
Service, using the framework JAX-WS 2.0 [9]. On top of
Jano API, a web application was developed to provide a hu-
man Graphical User Interface (GUI), to the functionalities
previously described. Using this GUI, a non-SPL expert hu-
man user can make not only location requests but also select
and provide the necessary parameters for his access control
and notification policies. A GPS and RFID translator have
been developed, both using the .NET platform and the C#
language [11].

For demonstration purposes we describe how Jano can be
used to implement a useful location control policy to ensure
the intended privacy in location services. We have designed
a model where there is a common policy, presented in Figure
8. This policy refers to every policy specified for each target
or place (only the target policy is represented), together with
another rule which states that every target can know its
location. Policies specified specifically for a target or place
are kept inside groups addressed by the targets or places
associated with them (property accessControlPolicies in
Figure 2).

Policies of targets and places can be specified indepen-
dently, which can result in conflicting rules. For example,

policy CommonPolicy {
// Evaluate all access control policies of the target

accessControl:
FORALL policy IN ce.target.policies
{ policy };

// Always allow the request, if the author is the target
selfPolicy:

ce.target = ce.author :: true;

?CommonPolicy:
selfPolicy OR accessControl;

}

Figure 8: Common policy

policy GroupsInterval {
allowedGroupInfo set groupsInfo;

// Rule for evaluating about disclosure of location
accessControl:

// for each node in the allowed list
EXIST node IN groupsInfo {

// for each day in the allowed days
EXIST day IN node.daysSet {

// search for the allowed group name in the
// list of groups whom the author of the request belongs

node.allowedGroup IN ce.author.groups
:: day.dayOfWeek = ce.dayOfWeek &

(ce.time.hour >= day.start.hour &
ce.time.hour <= day.end.hour)

}
}

// accuracy of the response
normalAcc: ce.action = "Max" :: ce.time.hour >= 15
defaultAcc: ce.action = "Low" :: true;

?GroupsInterval:
accessControl AND (normalAcc OR defaultAcc);

}

Figure 9: Personal access control policy

Alice is not allowed to see Bob, but Alice can see who is at
P . In this scenario, if Bob is located at P , and Alice makes
a request to see who is at this location, Jano would not in-
clude Bob in the response. Jano will only disclose location
when the combination of target’s and place’s policies allow
it.

Target access control policies must answer to two types
of requests: location and accuracy. The objective of the
first request is to know if the disclosure of location is ac-
cepted in respect to a given requester. The second type of
request inquires what kind of accuracy should be applied
to the location information. For a location to be disclosed,
the necessary SPL events are built and sent to the Policy
Enforcer which will evaluate the target policy in order to
decide on these two aspects.

The implementation of Jano has several access control
policies. In this article we focus on one that could be ap-
plied to a variety of environments (e.g. university campus,
enterprise building), presented in Figure 9. The policy reg-
ulates two events, location request and accuracy. To de-
termine if the location can be know by the author of the
request, the policy takes into account the allowed groups of
users that can obtain the location of the target. For each
of these groups, the policy determines if the author belongs
to it. Each allowed group is represented as an object of the
allowedGroupInfo type, describing the group name, the ac-



R
F
ID

J
a
n
o

C
lie
n
t

Policy

EnforcerGPS

RFID

WiFitag

...

Push

External

Notification

Mechanism

Policy

Adm.

Location

Manager
Pull

Notification

Distributor

G
P
S

J
a
n
o

C
lie
n
t

Serial Port

GPS Signal

Receiver

CompactFlash

RFID Reader

Clients of the

Location Service

Context-aware aplication.

Location context obtained

from Jano

- Locations

- Policies

- Notification

methods

SPL 

policies

SPL

Compiler

Persons or objects collecting

position information and sending

them to Jano

DB layer

Policy designer

Location 

Reporting 

API

Queries

API

A|Arrive|P1

B|Leave |P2

B|Arrive|P2

Web-based 

GUI

Figure 7: Jano implementation

policy SNotify(object id, place place, string evType) {
?SimpleNotify:

ce.author = id ::
ce.action = evType & ce.targetPlace = place;

}

policy VisitAfter(object id, place orig, place dest) {
?VisitAfter:

EXIST pe IN PastEvents {
ce.author = id & ce.action = "Arrive" &
ce.targetPlace = dest ::
pe.author = id & pe.action = "Leave" &
pe.targetPlace = orig

}
}

Figure 10: Notification policies

curacy that the location should be reported with and in what
period of the week. Each of these objects are stored in the
policy instance, in particular in the groupsInfo property.

Each policy, goes through the SPL compiler, which pro-
duces an enforceable policy in the form of a Java class. In-
stances of these classes, with proper initialization, are at-
tached to each target, as access control or notification poli-
cies, that is, to the accessControlPolicies or to the
notificationPolicies properties in Figure 2. The set of
policies associated to each target forms a graph of objects
which is updated each time a new policy is added or re-
moved.2

5.1 Notification Policies
Jano sends notifications based on the evaluation of notifi-

cation policies associated to users. Using SPL, notification
policies can be specified with different conditions, adapted
to the site where the location service is used.

Figure 10 presents a simple notification policy (SNotify),
parameterized by the name of an object, the name of a place
and the location event of interest. This policy could be
used by Alice to be notified by Jano when Bob arrives to
inesc/floor6. If so, a policy with the given parameters
would be instantiated, like in the following example:
new SimpleNotify(bob,

new place("inesc/floor6"), "Arrive").
When the Notification Distributor receives a location event

containing information that Bob has arrived to inesc/floor6,

2As an appendix, we address Jano web interface to support
the configuration of policies.

he will contact the Policy Enforcer, with the objective of
knowing who wants to be notified. For this, a new SPL
event is built, where author is Bob, action is Arrive and
targetPlace is inesc/floor6. Then, this event is used to
evaluate each user pending notification policies. If the poli-
cies allow it, a notification will be sent, through a commu-
nication channel (e.g. web service, e-mail, sms) previous
configured by the user.

Jano can efficiently enforce notification policies with his-
tory based rules. This could be used for a user to be noti-
fied about an object trajectory inside his organization. For
example, a previously ordered book can arrive at the re-
ception, but this event is only interesting if the same book
has already been through the library to be cataloged. Fig-
ure 10 shows a parameterized history-based policy, called
VisitAfter, which can be instantiated to represent the pre-
viously described scenario, and associated to Alice:
new VisitAfter("book:Understanding Privacy",

new place("inesc/reception"),

new place("ist/library"))}.

5.2 Support for Policy Dynamism and Log-
size Management

Policy dynamism is an important issue in policy-driven
systems. Users and administrators may want to install new
policies, edit current ones, or remove some policies alto-
gether from the system. Policy edition amounts to policy
removal and reinstall. When a policy is removed, no special
support is required except to take into account that some
events stored in the log may no longer be required. When a
new policy is installed, relevant events start being recorded.

If the system is required to analyze all past events in the
context of any newly installed policy (full-log mode), then all
events must be available persistently in some form (in some
secondary offloaded storage), which raises issues of log-size
and log processing. Log size can be addressed with partition-
ing, distribution and compression but eventually the whole
data of events must be preserved until some threshold date
for event garbage collection e.g., one week, month, a year).

To ensure that log processing for policy evaluation main-
tains scalability when in full-log mode (i.e., storing all events
regardless of their relevance for the current policies), we may
employ bloom filters[12] to allow efficiency in ulterior testing
of such past events with newly installed policies. Thus, the
occurrence of events of a given type in a specific time-frame
(a partition of the log) is efficiently stored for later testing.
To fetch actual event data and resolve false positives, the



0

20

40

60

80

100

120

140

160

180

200

0 200 500 1000 2500 5000 7500

R
e

sp
o

n
se

 t
im

e
 (

m
s)

Number of events

optimized not optimized

Figure 11: Results for growing number of history

events

secondary storage must be accessed.

6. EVALUATION
In this section we present the results obtained in the eval-

uation of the Policy Enforcer, while enforcing an access con-
trol policy, with and without history rules. We choose this
type of policy because they must always be evaluated, even
before a push response. The results that will be discussed
can also be applied to notification policies.

The policy considered was the one presented in Figure
9. In this policy, the number of groups allowed by the tar-
get (TargetGroups) must be transversed linearly. Each of
these groups is looked up in the groups to which the author
of the request belongs (AuthorGroups). This search has
a worst time computation of log(AuthorGroups). Experi-
ments where made with different numbers of groups allowed
and groups to which the author belongs to. In our test sce-
narios we considered that AuthorGroups tends to be much
bigger than TargetGroups. For example, if a policy defines
15 allowed groups (a number already hard to manage by the
owner of the policy), and the author belongs to 600 groups,
the policy will be evaluated in approximately 5ms.

A critical aspect in the evaluation of the Policy Enforcer
is the measurement of the necessary delay introduced by the
evaluation of history-based policies. The SPL compiler pro-
duces specific data structures to store the events needed in
the evaluation of history-based policies. These data struc-
tures are optimized when compared with a simple list of
events because: i) they take into account the aspects con-
sidered in the policy and only store the relevant information
for each event, ii) location events that are equivalent are
stored as just one object, referring that the event occurred
a certain number of times.

Figure 11 shows the delay introduced by the evaluation
of a policy based on the history rule presented in Figure 5.
Tests were made using the optimized log of SPL and a non
optimized log. In the optimized log, if a person makes 1000
location requests to 20 different objects (i.e. targets), only
20 event objects will be record, instead of 1000. This op-
timization has a significant impact in the space needed to
store the history log, and more importantly, in the evalua-
tion time of history policies, as can be seen when compared
with the non optimized log where all events are record with-
out regarding their redundancy.

Therefore, these results are very encouraging regarding

the scalability and performance of Jano’s policy evaluation
and enforcement core.

7. CONCLUSION
In recent years, location information has been increasingly

used in context-aware applications with the goal of augment-
ing the mobile services offered to the end user. Some exam-
ples are: advertisement on mobile devices from the shop we
are visiting and presentation of more information related to
the product we are shopping or the work of art we stand by.

For an effective deployment and acceptability of location
services, they must support the specification and enforce-
ment of security policies. Users want to specify under what
conditions their location can be disclosed. In some scenar-
ios this can depend on past events like, how many times a
location request was made or what places have been visited.
Finally, the kind of properties that are relevant to character-
ize each object or event is different for each location service.

In this document we have presented Jano, a Location Ser-
vice capable of enforcing security policies. Although the
instant reporting of locations (pull requests) is essential, in
many situation users want to be notified about some kind
of location related event, i.e. push requests. The policies
enforcing the access to location information and the con-
ditions used in the specification of push requests are made
through SPL, a multi-model authorization platform. Using
SPL, policies can be implemented using a variety of dif-
ferent security models and can be made dependent on the
resources of the implementation site, and not the opposite.
We have presented some of the policies developed, and eval-
uation results which have shown that performance is not
compromised. The usability of the system is enhanced by
the simple GUI developed for users to control their security
policies.

8. REFERENCES
[1] C. A. Ardagna, M. Cremonini, E. Damiani, S. D. C.

di Vimercati, and P. Samarati. Location privacy protection
through obfuscation-based techniques. volume 4602 of Lecture
Notes in Computer Science, pages 47–60. Springer, 2007.

[2] A. R. Beresford. Location privacy in ubiquitous computing.
Technical Report 612, University of Cambridge, January 2005.

[3] C. Cornelius, A. Kapadia, D. Kotz, D. Peebles, M. Shin, and
N. Triandopoulos. AnonySense: Privacy-aware people-centric
sensing. In Proceeding of the 6th international conference on
Mobile systems, applications, and services, pages 211–224.
ACM, 2008.

[4] M. B. et. a. Rfc 2704: The keynote trust-management system
version 2, September 1999.

[5] D. Garlan, D. P. Siewiorek, A. Smailagic, and P. Steenkiste.
Project aura: Toward distraction-free pervasive computing.
PERVASIVE Computing, pages 22–31, June 2002.

[6] U. Hengartner and P. Steenkiste. Protecting access to people
location information. In First International Conference on
Security in Pervasive Computing, pages 25–38, 2003.

[7] J. I. Hong. An architecture for privacy-sensitive ubiquitous
computing. In In MobiSYS Š04: Proceedings of the 2nd
international conference on mobile systems, applications, and
services, pages 177–189. ACM Press, 2004.

[8] P. G. Kelley, P. H. Drielsma, N. M. Sadeh, and L. F. Cranor.
User-controllable learning of security and privacy policies. In
AISec, pages 11–18, 2008.

[9] J. Kotamraju. Jsr 224: Java api for xml-based web services
(jax-ws) 2.0. JSRs: Java Specification Requests.

[10] U. Leonhardt and J. Magee. Stability considerations for a
distributed location service. J. Network Syst. Manage., 6(1),
1998.

[11] Microsoft. Standard ecma-335 common language infrastructure
(cli), 2006.



[12] M. Mitzenmacher. Compressed bloom filters. IEEE/ACM
Transactions on Networking (TON), 10(5):604–612, 2002.

[13] M. Mokbel, C. Chow, and W. Aref. The new Casper: query
processing for location services without compromising privacy.
In Proceedings of the 32nd international conference on Very
large data bases, page 774. VLDB Endowment, 2006.

[14] G. Myles, A. Friday, and N. Davies. Preserving privacy in
environments with location-based applications. Pervasive
computing, pages 56–64, 2003.

[15] L. Opyrchal, A. Prakash, and A. Agrawal. Supporting privacy
policies in a publish-subscribe substrate for pervasive
environments. Journal of Networks, pages 17–26, February
2007.

[16] C. Ribeiro, A. Zuquete, P. Ferreira, and P. Guedes. Spl: An
access control language for security policies and complex
constraints. In NDSS. The Internet Society, 2001.

[17] J. Y. Tsai, P. G. Kelley, L. F. Cranor, and N. Sadeh.
Location-sharing technologies: Privacy risks and controls. In In
Research Conference on Communication, Information and
Internet Policy (TPRC, 2009.

[18] U. Varshney. Location management for mobile commerce
applications in wireless internet environment. ACM Trans.
Interet Technol., 3(3):236–255, 2003.

APPENDIX

Web-based GUI
In order to enhance the usability of Jano, a web-based GUI was imple-
mented on top of Jano API, using the ASP.NET platform.Using this
GUI, a non-SPL expert human user can make not only location re-
quests but also select and provide the necessary parameters for his ac-
cess control and notification policies. Figure 12 shows the GUI, during
the initialization of the access control policy of user alice@inesc.pt.
The structure of this policy is based on the one presented in Figure
9, considering also some history-events we will describe next.

The policy parameters in the GUI presented in Figure 12, in the left
side of the figure, are organized as a tree. Each root node represents
a group of users. Each leaf node is a rule restricting access in some
aspect to the location of the user (who is interacting with the GUI).

In this policy the user can specify the acceptability of a location
request or location event (regarding his location) dependent on two
history-based conditions i) the location requests or location events
haven’t exceeded a certain limit, e.g. users of group inesc/Visitors
can get a maximum of 3 location reports ii) the group to whom the
requester belongs has not yet located someone else, e.g. only report
location to group inesc/MailDelivery (the mail distribution work-
ers), if anyone in this group has not yet located a person with id
alice-assistant@inesc.pt. Using the bottom part of the GUI, the
user can add or remove new groups, date intervals, and parametrize
the history-based rules. The GUI developed in Jano supports a large
number of operations so that most of policy specifications can be eas-
ily done without knowing SPL.

Figure 12: Web-based GUI of Jano


