
J. Parallel Distrib. Comput. () –

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Incremental dataflow execution, resource efficiency and probabilistic
guarantees with Fuzzy Boolean nets
Sérgio Esteves ∗, João Nuno Silva, João Paulo Carvalho, Luís Veiga
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal

h i g h l i g h t s

• We offer a framework for resource efficient continuous and data intensive workflows.
• We are able to learn correlations between dataflow input and final output.
• We avoid re-executions when input data is predicted not to be impactful to the output.
• We ensure dataflow correctness within a small error constant.
• We achieve controlled performance, task prioritization and high resource efficiency.

a r t i c l e i n f o

Article history:
Received 19 November 2013
Received in revised form
14 February 2015
Accepted 11 March 2015
Available online xxxx

Keywords:
Workflow
Dataflow
Incremental processing
Continuous processing
Data-intensive
NoSQL
Quality-of-service
Machine learning
Fuzzy logic

a b s t r a c t

Currently, there is a strong need for organizations to analyze and process ever-increasing volumes of data
in order to answer to real-time processing demands. Such continuous and data-intensive processing is
often achieved through the composition of complex data-intensive workflows (i.e., dataflows).

Dataflow management systems typically enforce strict temporal synchronization across the various
processing steps. Non-synchronous behavior often has to be explicitly programmed on an ad-hoc basis,
which requires additional lines of code in programs and thus the possibility of errors. More so, in a
large set of scenarios for continuous and incremental processing, the output of dataflow applications at
each execution can suffer almost no difference when comparing to the previous execution, and therefore
resources, energy and computational power are unknowingly wasted.

To face such lack of efficiency, transparency, and generality, we introduce the notion of Quality-of-
Data (QoD), which describes the level of changes required on a data store that cause the triggering of
processing steps. This, so that the dataflow (re-)execution is reduced until its outcome would reach a
significant and meaningful variation, which is inside a specified freshness limit.

Based on the QoD notion, we propose a novel dataflowmodel, with framework (Fluxy), for orchestrat-
ing data-intensive processing steps, which communicate data via a NoSQL storage, and whose triggering
semantics is driven by dynamic QoD constraints automatically defined for different datasets by means of
Fuzzy Boolean Nets. These nets give probabilistic guarantees about the prediction of the cumulative error
between consecutive dataflow executions. With Fluxy, we demonstrate how dataflows can be leveraged
to respond to quality boundaries (that can be seen as SLAs) to deliver controlled and augmented perfor-
mance, rationalization of resources, and task prioritization.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Whether it is business, engineering or science settings, there is
at present a growing need for organizations to analyze, process,

∗ Corresponding author.
E-mail addresses: sesteves@gsd.inesc-id.pt (S. Esteves), joao.n.silva@inesc-id.pt

(J.N. Silva), joao.carvalho@inesc-id.pt (J.P. Carvalho), luis.veiga@inesc-id.pt
(L. Veiga).

organize and store vast quantities of raw data coming on a daily,
hourly-basis, or more often, from a number of different sources
(e.g., sensors, lab experiments, simulations, individual archives,
enterprise and Internet). Essential to innovation, such data-
intensive processing is often governed by complex data processing
workflows (i.e., dataflows), which allow better expressiveness,
maintainability and flexibility in comparison, for instance, with
low-level data processing, such as Java map-reduce code.

Dataflows can be represented as directed acyclic graphs (DAGs)
that express the dependencies between computations and data.

http://dx.doi.org/10.1016/j.jpdc.2015.03.001
0743-7315/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2015.03.001
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:sesteves@gsd.inesc-id.pt
mailto:joao.n.silva@inesc-id.pt
mailto:joao.carvalho@inesc-id.pt
mailto:luis.veiga@inesc-id.pt
http://dx.doi.org/10.1016/j.jpdc.2015.03.001

2 S. Esteves et al. / J. Parallel Distrib. Comput. () –

(a) Air quality monitoring and measurement.

(b) Fire prevention, detection and prediction.

Fig. 1. Use-case scenarios of continuous, incremental, dataflow processing.

These computations, or processing steps, can potentially be de-
coupled from object location, inter-object communication, syn-
chronization and scheduling. The data is either transferred directly
from one processing step to another, or indirectly using interme-
diate files or via a shared storage system, such as a distributed file
system or database.

There are many such data processing workflow applications
[5,33]. For simplicity, we exemplify in Fig. 1 two scenarios where
dataflows are used to process sensor data gathered from moni-
toring a large population/region and, through several computing
steps, data is transformed and refined in order to produce higher-
level output information that supports decisions (e.g., hotspots for
pollution and fire risk, government issued indicators of air qual-
ity and fire risk for a given city, city district or country region). We
detail such an example in Section 2.1.

We further explain some notions and the work setting. We
consider asynchrony to take place in dataflow execution when the
execution of one of more processing steps is delayed, i.e., it is not
carried out as soon as new input is ready, but onlywhen its amount
or significance justifies it. Therefore, immediate processing of
the new input is avoided. Since results of computations are
incrementally incorporated in results of previous computations,
allowing outputs to be updated and not recomputed, ourwork falls
in the category of incremental processing.

Typically, we expect such decisions as above to enable savings
of computing resources (namely CPU for processing, and network
and I/O bandwidth to read/write data) as that is our main aim.
These can be made available for other jobs in a shared computing
infrastructure, improving its overall efficiency, or simply not hired
from a public infrastructure with consequent financial savings.
Nonetheless, this comes naturally at a cost, the error (that we
intend to limit to preserve usefulness) resulting from maintaining
(now) outdated dataflow output results.We address how to bound
the impact of this phenomenon later in the paperwhenwe present
our model in detail in the next section.

In the use-case scenarios depicted in Fig. 1, this could be
exemplified as follows. In case (a) this would amount to, as

updated values of the sensors scattered over the city become avail-
able (e.g., every 5 min), the entire dataflow would not necessarily
be re-executed immediately; only after a number of rounds with
updated input data (henceforth referred to as waves) have gener-
ated enough modifications, considered relevant for the problem at
hand, and for the dataflow results (e.g., high probability of chang-
ing the resulting air quality index and/or list of city hotspots re-
garding poor air quality). The number of input rounds (waves),
without corresponding dataflow execution, results in obvious sav-
ings in computing resources, but can introduce an error regarding
the previous dataflow results and the real air conditions in the city
(that we will aim to minimize).

In case (b) the situation is analogous. To a significant extent,
variations in updated sensor information (namely temperature)
that are produced continuously, may not be significant enough
to trigger recalculation, every time, of heat maps, hotspots for
fire risk, and issuing alarms for displacement. There is an error
associated with this (e.g., inexact knowledge about the average
temperature in a given area in the forest) delay of execution, but
while it is bounded and manageable, computing resources are
saved and the dataflow results are still perfectly useful for decision
making.

We do not consider this setting as one of distributed stream
processing, for two orders of reasons: technology and concept.
Technology wise, distributed stream processing is associated with
systems such asApache Storm1 and Spark [41] that are not targeted
by this work, that deals with systems like Oozie2 and NoSQL data
stores, hence we want to avoid confusion. Concept wise, stream
processing deals with continuous input of new (immutable) data
items or samples, with no specific container (or data location)
associated, and that are processed in windows of fixed size
(number of samples). Contrarily, in Map-Reduce based dataflow

1 https://storm.apache.org/.
2 http://oozie.apache.org/.

https://storm.apache.org/
http://oozie.apache.org/

S. Esteves et al. / J. Parallel Distrib. Comput. () – 3

processing, input consists both of new (appended) data items as
well as updates to the values of pre-existing (and hence mutable)
data containers (rows, columns) referenced by an ID. Execution
normally considers all relevant input in the stores, and not just
part, hence being batch.

The software infrastructure to setup, execute and monitor
dataflows is commonly referred to as Workflow Management
System (WMS). Generally, WMSs either enforce strict tempo-
ral synchronization (or sequencing) across the various input, in-
termediate and output datasets (i.e., following the Synchronous
Data-Flow (SDF) computing model [26]), or leave the temporal
synchronization logic in the programmers’ hands, who have often
to explicitly program non-synchronous behavior to meet applica-
tion latency and prioritization requirements. Additionally, these
systems do not account for the volume of data arriving at each
dataflow step, in the sense that the size of datasets could and
should be recalled, and taken into account, to reason more accu-
rately about its actual impact on the overall system performance
and dataflow results. Executing a processing step each and every
time a small fragment of data is received can have a great impact
on performance and load, without actually resulting in a relevant
change in the dataflow output (or more importantly, its signifi-
cance), as opposed to executing it only when a certain substan-
tial, relevant (w.r.t. application semantics) quantity of new data is
available.

While not exclusive, this issue gains a special importance on
a class of dataflow applications for continuous and incremen-
tal processing where the final result of the whole computations
does not change significantly in a relatively short-to-medium time
window. Examples include: measuring the impact of social busi-
ness,3 assessing the level of pollution in a given city [34], detect-
ing gravitational-waves [7], weather forecasting [24], predicting
earthquakes [14], among many others. Even for those whose out-
come is always changing, such as a web crawler, the impact of
the updated results may become only relevant when the differ-
ences from the previous crawl accumulate significantly (e.g., rele-
vant change inword counts, page ranking or the number of reverse
links).

Dataflow results are only significant if their variation against
previous results is above a given, user-specific, threshold (which
can be seen as a maximum tolerated error). If a dataflow output is
predicted as not significant,we can postpone the execution of tasks
for a later time, when more data is available, and save computa-
tional resources. In this work we exchange result accuracy, or er-
ror, with resource savings by delaying task execution (or enabling
asynchrony). We tackle this optimization problem resorting to the
notion of Quality-of-Data.

We define Quality-of-Data (QoD), which is akin to Quality-of-
Service, as the specification of the overall level of assurance and
performance of a system (in this case WMS) in terms of its ma-
nipulated data. QoD gives the ability to provide different priority
to different datasets, users or dataflows, or to guarantee a certain
level of performance and correctness of a dataflow. These guaran-
tees can be enforced, for example, based on data size, number of
accesses to a given data store object, or considering delays. With
the QoD concept, we are thus able to define and apply temporal
synchronization and divergence bounding semantics to dataflows,
based on the volume and importance of the data communicated
between processing steps; divergence bounding semantics means
that the deviation of the output of a dataflowwith QoD, in relation
to the synchronous model, is expected to not be above a given tol-
erated error constant. Moreover, relying on QoD, we can augment
the throughput of the dataflow and reduce the number of its actual

3 http://www.socialbusinessindex.com/.

(re-)executions, while keeping the resultswithin acceptable limits,
regarding each application’s semantics, of staleness and/or diver-
gence. When multiple dataflows continuously executing share an
infrastructure (e.g., cloud), resource savings are impactful.

With the current context in mind, we introduce a novel
dataflow model, with a framework and library support we call
Fluχy, for orchestrating data-based and -intensive processing steps
which communicate data via a NoSQL storage, and whose trigger-
ing semantics is driven by dynamic QoD constraints, automatically
defined for different subsets of data by means of Fuzzy Boolean
Nets [8]. These nets are used to learn statistical behavior about
the execution of dataflows, correlating input variation with out-
put generated error. This error comes from postponing the execu-
tion of processing steps when the input variation is not assessed to
have sufficient impact to create significant changes in the dataflow
output; i.e., error corresponds to the output difference as if we
had not delayed the executions (like in the typical synchronous
model). Hence, we trade-off result accuracy (with bounded error)
with computational resource savings.

Fluχy was developed and deployed using Oozie4 as WMS,
and HBase [17] as the underlying NoSQL storage. Experimental
results show that we are able to optimize resource utilization,
while giving probabilistic guarantees about the convergence of
the dataflow final output and maximum error (i.e., the error that
arises from postponing the execution of processing steps against
the synchronous model).

Section 2 presents our dataflow model and Section 3 describes
our learning approach to bound the cumulative error. Section 4
presents the Fluχy framework and Section 5 details its implemen-
tation. Section 6 shows our experimental results with Fluχy, and
Section 7 reviews related work. Section 8 closes the paper.

2. Dataflow model

In this section we describe in detail the QoD dataflow model
(from our previous works: [15,16]), employed by Fluχy, which
was specially designed to address large-scale and data-intensive
scenarios that need to continuously and incrementally process
large sets of data,whilemaintaining strong requirements about the
quality of service and data provided.

Our model inherits from and extends the traditional workflow
model [40] and is to be deployed on cloud scenarios.

Our dataflow model can be expressed as a directed acyclic
graph (DAG), where each node (vertex) represents a processing
step (designated here by action) that carries out read and write
operations in a data store; and the edges between actions represent
dependencies and flow of data, meaning that an action needs
the output of other precedent action(s) to get executed. More
precisely, each action A, in a dataflow D, is executed only after all
actions A′ preceding A (denoted A′

≺D A) in D have been executed
at least once (elaborated hereafter). In addition, actions can be
divided into: input actions, which are supplied with data from
external sources; intermediate actions, which receive data from
other actions; and output actions, whose generated data is read by
external consumers.

It implies that the underlying data, shared among processing
steps, should be done via tabular NoSQL data stores.Whereasmost
workflow models rely on files to store and share the data, which
cannot achieve the same scalability and flexibility [9], hence we
believe this assumption to fit many, if not most, large scale data
processing scenarios. In our model, these NoSQL data stores are
regarded as collections of object containers (hereafter represented

4 http://oozie.apache.org/.

http://www.socialbusinessindex.com/
http://oozie.apache.org/

4 S. Esteves et al. / J. Parallel Distrib. Comput. () –

as o), and may have different granularity and consist of different
data storage units; e.g., column, or group of columns in a table. Each
of these object containers (present in a previously defined schema)
will be associated to a certain level of change necessary in order to
trigger subsequent processings step.

In particular, what differentiates and demarcates our model
from the other typical DAG dataflows is the triggering semantics:
a processing step A, in a dataflow D, is not necessarily triggered for
execution immediately, when all its predecessors A′ (A′

≺D A) have
finished their execution (and insertednewvalues in the data store).
Instead, A should only be triggered as soon as all predecessor steps
A′ have completed at least one execution and have, also, carried out
a sufficient level of changes on the underlying data container, that
comply with certain QoD requirements.

This level of data changes is denoted by QoD bound κ and
is specified through multi-dimensional vectors. These associate
QoD constraints with data object containers, such as a column, or
group of columns, in a table of a given column-oriented database.
κ bounds the maximum level of changes through vectors of
numeric scalars, each defined for one of the following orthogonal
dimensions: time (θ), sequence (σ), and value (ν):

Time Specifies the longest span of time a step can be on hold
(without being triggered) since its last execution oc-
curred. Considering θ(o) provides the time (e.g., seconds)
passed since the last execution of a certain step, that is de-
pendent on the availability of data in the object container
o, this time constraint κθ enforces that θ(o) < κθ at any
given time.

Sequence Specifies the maximum number of updates that can
be applied to an object container o without triggering
a step that depends on o. Considering σ(o) indicates
the number of applied updates over o, this sequence
constraint κσ enforces that σ(o) < κσ at any given time.

Value Specifies the maximum relative divergence between the
updated state of an object container o and its previous
state, or against a constant (e.g., top value), since the
last execution of a step dependent on o. Considering ν(o)
provides that difference (e.g., in percentage), this value
constraint κν enforces that ν(o) < κν at any given time.
It captures the impact or importance of updates in the last
state.

The QoD bound κ , associated with an object container o, is
reached when any of its vectors has been reached, i.e., θ(o) ≥

κθ ∨ σ(o) ≥ κσ ∨ ν(o) ≥ κν . Also, grouped containers (e.g., a
column and a row) are treated as single containers, in the sense
that modifications performed on any of the grouped objects refer
to the same κ .

Moreover, the triggering of a processing step can depend on the
updates performed onmultiple database object containers, each of
which possibly associated with a different κ . Hence, it is necessary
to combine all associated constraints to produce a single binary
outcome, deciding whether or not the step should be triggered. To
address this, we provide a simple QoD specification algebra with
the two logical operators and and or (∧ and ∨) that can be used
between any pair of QoD bounds.5 The and operator requires that
every associatedQoDbound κ should be reached in order to trigger
an associated step; while the or requires that at least one κ should
be reached for the triggering of the processing step. Following the
classical semantics, the operator and has precedence over operator
or. For example, a step A can be associated with the expression
κ1 ∨ κ2 ∧ κ3, which causes the triggering of A when κ1 is reached,
or κ2 and κ3 have been both reached.

5 Currently, not is applied explicitly by inverting conditions.

Besides these tridimensional vectors, it is also possible to
capture the impact of data through more complex functions
with greater expressiveness. For example, through HBase co-
processors,6 or Cassandra triggers,7 it would be possible to provide
user-defined functions, described by Java code snipets, that calcu-
late the significance of updates performed and simply notify the
Fluχy framework through the same API used by the application li-
braries that we further describe in Section 4. Nevertheless, provid-
ing a higher-level, Domain-Specific Language (DSL), is out of the
scope of this particular work, but still in our future plans.

2.1. Prototypical scenario

As a motivational example we describe a dataflow, for contin-
uous and incremental processing, that expresses a simulation of a
prototypical scenario inspired by the calculation of the Air Qual-
ity Health Index (AQHI),8 used in Canada. It captures the poten-
tial human health risk from air pollution in a certain geographic
area, typically a city, while allowing for more localized informa-
tion. The incoming data fed to this dataflow is obtained through
several detectors comprising three sensors to gauge the amount of
Ozone (O3), ParticulateMatter (PM2.5) andNitrogen Dioxide (NO2).

Fig. 2 illustrates the dataflow with the associated QoD
vectors and the main columns (some columns were omitted for
readability purposes) that comprise the data containers in which
the processing steps’ triggering depends on. k specifies (i) the
maximumtime, in hours, the step can be onhold; (ii) themaximum
accepted divergence in updates, in units, and (iii) the minimum
amount, in percentage, of changes necessary to the triggering
(e.g., 20% associated to step C means that this will be triggered
when at least 20% of the detectors have been changed by step B).

We describe each processing step in the following.

Step A This step continuously feeds data to the dataflow by
reading sensors from detectors that perceive changes in
the atmosphere to simulate asynchronous and deferred
arrival of update sensory data. The values from each
sensor are written in three columns (each row is a
different detector) which are grouped as a single data
container with one associated k.

Step B Calculates the combined concentration (of pollution) of
the three sensors for each detector whose values were
changed in the previous step. Every single calculated
value is written on column concentration.

Step C Processes the concentrations of small areas, called zones,
encircled by the previously changed detectors. These
zones can be seen as small squareswithin the overall con-
sidered area and comprise the adjacent detectors (until a
distance of two in every direction). The concentration of
a zone is given by a simple multiplicative model of the
concentration of each comprising detector.

Step D Calculates the concentration of points of the city between
detectors, thereby averaging the concentration perceived
by surrounding detectors; and plots a chart containing
a representation of the concentrations throughout the
whole probed area, for displaying purposes, and refer-
ence of concentration and air quality risk indicator in lo-
calized areas of a city. This step canbe executed in parallel
with Step E.

6 http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/coprocessor/
package-summary.html.
7 http://www.datastax.com/documentation/cql/3.1/cql/cql_reference/trigger_r.

html.
8 www.ec.gc.ca/cas-aqhi/.

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/coprocessor/package-summary.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/coprocessor/package-summary.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/coprocessor/package-summary.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/coprocessor/package-summary.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/coprocessor/package-summary.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/coprocessor/package-summary.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/coprocessor/package-summary.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/coprocessor/package-summary.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/coprocessor/package-summary.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/coprocessor/package-summary.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/coprocessor/package-summary.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/coprocessor/package-summary.html
http://www.datastax.com/documentation/cql/3.1/cql/cql_reference/trigger_r.html
http://www.datastax.com/documentation/cql/3.1/cql/cql_reference/trigger_r.html
http://www.datastax.com/documentation/cql/3.1/cql/cql_reference/trigger_r.html
http://www.datastax.com/documentation/cql/3.1/cql/cql_reference/trigger_r.html
http://www.datastax.com/documentation/cql/3.1/cql/cql_reference/trigger_r.html
http://www.datastax.com/documentation/cql/3.1/cql/cql_reference/trigger_r.html
http://www.datastax.com/documentation/cql/3.1/cql/cql_reference/trigger_r.html
http://www.datastax.com/documentation/cql/3.1/cql/cql_reference/trigger_r.html
http://www.datastax.com/documentation/cql/3.1/cql/cql_reference/trigger_r.html
http://www.datastax.com/documentation/cql/3.1/cql/cql_reference/trigger_r.html
http://www.datastax.com/documentation/cql/3.1/cql/cql_reference/trigger_r.html
http://www.datastax.com/documentation/cql/3.1/cql/cql_reference/trigger_r.html
http://www.datastax.com/documentation/cql/3.1/cql/cql_reference/trigger_r.html
http://www.datastax.com/documentation/cql/3.1/cql/cql_reference/trigger_r.html
http://www.ec.gc.ca/cas-aqhi/

S. Esteves et al. / J. Parallel Distrib. Comput. () – 5

Fig. 2. Fluχy dataflow for AQHI calculation.

Step E Analyzes the previous stored zones and respective
concentrations in order to detect hotspots; i.e., zones
where the overall concentration is above a certain
reference. Zones deemed as hotspots are stored in
column hotspots for further analysis.

Step F Performs final reasoning about the hotspots detected,
thereby combining, through a simple additive model, the
amount (in percentage) of hotspots identified with the
average concentration of pollution on all hotspots. Then,
the AQHI index is produced and stored for each wave of
incoming data.

2.2. Output error

Procrastinating the execution of processing steps introduces
divergence in the dataflow output values, as opposed to the
synchronous model. Each time a step is not executed upon a wave
of incoming data, due to its QoD requirements, an error may be
introduced as in the variation of output that should have been
changed and was not. For example, let us assume the output of a
dataflow is an integer (output of the dataflow is the output of the
last processing steps in the dataflow): in the synchronous model,
we get the values 1, 2, and 3 for three sequential waves; whereas in
the QoD model we get 1, 1, and 3 for those same waves of data; in
the second wave some tasks were not executed in the QoD model
(a change of 1 unity was not considered significant) and therefore
an error was introduced.

Intuitively, for each step, the QoDbounds serve as a hint both on
how to save resources (by postponing re-execution), as well as on
how to bound the admissible error (introduced by such savings).
Nevertheless, small local errors in steps tend to accumulate over
the execution of the dataflow processing chain, which can lead the
processing to an undesirable and incorrect state; in practical terms,
this error is very difficult to predict, estimate analytically or set
bounds on.

The cumulative error, ε, is given in Eq. (1), where xi is the
updated state of the element of order i and x′

i its latest state,m the
number of modified elements, and n the total number of elements
in the respective data container.

ε =

m
i=1

|xi − x′

i| × m


n
i=1

x′

i × n


. (1)

In order to bound the accumulated error and guarantee a certain
level of correctness we learn statistical behavior of dataflows,
elaborated in the next section.

3. Learning

This section presents our learning approach to bound the
cumulative error, intrinsic to our dataflow model, and therefore
provide guarantees about themaximumdeviation of the outcomes.

Our approach falls into the category of supervised learning, since
we need a training phase to understand and infer the behavior,
in terms of input variation versus generated error, of classes of
dataflows over certain periods of time. To accomplish this, we
rely on Fuzzy Boolean Nets (FBN) which provide probabilistic
guarantees about the prediction of the cumulative error between
consecutive dataflowexecutions. Ourmodel is particularly suitable
to dataflows for continuous and incremental processing that
exhibit similar input pattern over a cycle of time, i.e., no random
and completely uncorrelated input over time. While not limited
to, such class of dataflows is commonly found in e-Science [35],
especially in monitoring activities related to nature (e.g., weather
forecasting, temperature and fire risk assessment), as well as in
humanactivities (e.g., commerce) that follow seasonal changes and
patterns.

3.1. Fuzzy Boolean nets overview

FBN [8,38] exhibit the natural or biological neural systems
features that lead to a learning capability when exposed to sets of
experiments from the real world. In FBN, neurons are grouped into
areas. Each area can be associatedwith a given variable, or concept.
Meshes of weightless connections between antecedent neuron
outputs and consequent neuron inputs are used to perform if–then
inference between areas. Neurons are binary, and the meshes are
formed by individual random connections (just like in nature).
Each consequent neuron contains m inputs for each antecedent
area, that is, a total of N × m inputs, and up to (m + 1)N internal
unitary memories (ff), where N is the number of antecedents. This
number corresponds tomaximumgranularity, and can be reduced.
In the case of maximum granularity each ff is addressed by a
unique joint count of activated inputs on the m inputs from each
of the N antecedents. As in nature, the model is robust in the sense
that it is immune to individual neuron or connection errors (which
is not the case of other models, such as the classic artificial neural
net) and presents good generalization capabilities. The value of
each concept,when stimulated, is givenby the activation ratio of its
associated area (the relation between active – output ‘1’ – neurons
and the total number of neurons). Inference in FBN proceeds as
follows: Each consequent neuron randomly samples each of the
antecedent areas using its m inputs, with m always much smaller
than the number of neurons per area. Each neuron then performs
a combinatorial count of the number of activated inputs from
every antecedent (those with Boolean value ‘1’). Neurons have a
unitary memory (ff) for each possible count combination, and its
value will be compared with the corresponding sampled value. If
the ff associated to the sampled values contains a ‘1’, then the
neuron output will be ‘1’; if the ff is ‘0’, then the neuron output
will be ‘0’. As a result of the inference process (which is parallel),
each neuron in the consequent area will assume a binary value,
and the inference result will be given by the neural activation
ratio in the consequent area. As shown in [38], from these neuron
micro operations emerges amacro qualitative reasoning capability

6 S. Esteves et al. / J. Parallel Distrib. Comput. () –

Fig. 3. (Left) Non-linear function used to test interpolation capability in the presence of sparse data; (Right) Training set used to check the interpolation capability in the
presence of sparse data.

if Antecedent1 is A1 and Antecedent2 is A2 and . . . then
Consequent is Ci

end

involving the concepts (fuzzy variables), which can be expressed as
fuzzy rules of type:
whereAntecedent1, Antecedent2, . . . are fuzzy variables andA1, A2,
. . . , Ci are linguistic terms with binomial membership functions
(such as ‘small’ and ‘high’).

Learning is performed by exposing the net to experiments and
modifying the internal binary memories of each consequent neu-
ron according to the activation of the m inputs (per antecedent)
and the state of that consequent neuron. Each experiment will set
or reset the individual neuron’s binarymemories. Since FBN opera-
tion is based on random input samples for eachneuron, learning (as
well as inference) is a probabilistic process. For each experiment,
a different input configuration (defined by the input areas specific
samples) is presented to each and every of the consequent neurons,
and addresses one and only one of the internal binary memories
of each individual neuron. Updating of each binary memory value
depends on its selection (or not) and on the logic value of the con-
sequent neuron. As shown in [38], this may be considered a Heb-
bian (associative) type of learning [19]. Hebbian learning is usually
summarized with the sentence ‘‘Cells that fire together, wire to-
gether’’: if neural area Y becomes active whenever (or shortly af-
ter) neural area X is active, then a relationship should be created
(learned) between X and Y . The principles behind Hebbian learn-
ing state that simultaneous activation of areas lead to pronounced
increases in synaptic strength between those areas, and provide a
biological basis for errorless learning methods for education and
memory rehabilitation.

A FBN is capable of learning a set of different rules without
cross-influence between different rules, and the number of
distinct rules that the system can effectively distinguish (in terms
of different consequent terms) increases with m. As Universal
Approximators, these networks are capable of learning and
implementing any possible multi-input single-output function of
the type [0, 1]n × [0, 1].

3.2. FBN performance under sparse data conditions

When used as universal approximators, FBN compare well with
other competing techniques especially when ease of parameteri-
zation is an issue. The most favorable results are obtained when
the training data is very sparse and with imbalanced datasets; FBN
have a rather good performance in such conditions. The following
case example compares FBN performance in such conditions with
other state of the art approaches.

We compare the behavior of the FBN with other approaches
when learning and interpolating sparse data. Basically we show

FBN generalization capabilities when compared to other popular
alternatives: ANFIS, Artificial Neural Networks (MLP), Cubic
spline interpolation, Support Vector Machines (SVM) and Isotonic
RegressionModel [22]. Since traditional errormeasures such as the
root-mean-square error (RMSE) do not necessarily show howwell
amethodperforms, a (non-linear) single input functionwas chosen
in order to allow for a pictorial representation of the behavior of
each approach. The used function is depicted in Fig. 3 (Left side).
The 7 data points shown in Fig. 3 (Right) were used as the training
set.

ANFIS was implemented using the Fuzzy Matlab toolbox,9

choosing the hybrid optimization method and training error tol-
erance = 0.005. The resulting optimized ANFIS converged after
100 epochs and uses 3 membership functions. The MLP, Support
VectorMachines (SVM) and Isotonic RegressionModelwere imple-
mented using Weka10 (other methods present in Weka were also
tested, but these were the ones that gave the best results). In or-
der to improve the MLP performance, we used two-hidden layers
and 50000 training epochs instead of the Weka default parame-
ters. Finally the cubic spline interpolation was implemented using
an online available tool.11

Table 1 shows the obtained results. The FBN has both the
best correlation and RMSE, followed by ANFIS and the Cubic
Spline Interpolation. The Neural Network also has an acceptable
performance, while SVM and the Isotonic Regressionmodel clearly
give the worse results.

Even if the FBN outperforms the other tested methods in what
concerns the RMSE in the test set, their capabilities to generalize
sparse training data are more evident when observing the results
presented in Fig. 4, where it is clear that the FBN is the onlymethod
able to copewith the sudden inflection in the test function, and the
onlymethod to guarantee an acceptable error bounded reply (SVM
and IRM are not shown in order to simplify the figure).

FBN can be very useful whenever the cost of obtaining data
is high (either in time and/or resources) and a sparse number
of sample data is the best one can afford or aspire for. This
situation is common in problems where data is obtained from
lengthy experiments demanding resources preventing more than
a few experiments to be run simultaneously. In what concerns
the present work, the used dataset is heavily imbalanced (there
are much less training instances over the QoD than under), and
it is also sparse. Therefore, FBN appear to be the most adequate
technique to be used within Fluχy in order to enforce the required
QoD guarantees.

9 http://www.mathworks.com/products/matlab/.
10 http://www.cs.waikato.ac.nz/ml/weka/.
11 http://www.akiti.ca/CubicSpline.html.

http://www.mathworks.com/products/matlab/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.akiti.ca/CubicSpline.html

S. Esteves et al. / J. Parallel Distrib. Comput. () – 7

Table 1
RMSE and correlation results on a very sparse data test.

FBN ANFIS Cubic spline interpolation NN SVM IRM

RMSE (test dataset) 0.052 0.061 0.063 0.071 0.104 0.166
Correlation (test dataset) 0.992 0.990 0.991 0.988 0.965 0.905

.

.

.

.

.

.

.
. . . .

Fig. 4. Correlation results.

3.3. Proposed approach

In the remaining of this section, we only address the more
relevant aspects for applying FBN to our problem scenario.
Training phase.We train FBN to estimate the cumulative divergence
in dataflow execution output, as a function of the cumulative
modifications injected at the input of its first processing step.

During training, at each wave of incoming data (e.g., every
10 min in a real deployment scenario), all processing steps should
be executed synchronously without QoD enforcement. For each
wave is calculated the input impact, ι, and the output generated
error (Eq. (1)). ι is calculated through Eq. (2), where xi is the
updated state of the element of order i and x′

i its latest state,
and m is the number of modified elements in the respective data
container.

ι =

m
i=1

|xi − x′

i|. (2)

When the last processing step of the dataflow completes, a pair
with input impact (ι) and cumulative error (ε) is appended to a log.
The values of this pair have to be normalized and mapped from 0
to 1 so that they can be processed by the FBN. For that, we calculate
the ratio of ι and ε against their correspondingmaxima in the entire
log.

Once the log reaches a considerable size, it is split in half into
two sets: a training set, used to teach the FBN; and a test set,
later used to verify the learning discrepancy in the test phase.
With the training set, the FBN are then trained using the (ι, ε)
pairs. These pairs are presented to the network in sequence for
a number of iterations that conforms with the net dimension
and training quality (further elaborated in Section 4). Unlike most
supervised learning techniques, FBN have excellent generalizing
capabilities and can provide a good approximation even for sparse
and unbalanced training data (cf. Section 6).
Test phase. Firstly, it is necessary to define an upper bound, maxε ,
specifying themaximum tolerated error for a given dataflow. Then,
using the test set, we verify the FBN previously obtained (for each
considered QoD) in order to assess the system performance and,
foremost, the existence of false negatives, i.e., the percentage of
times the FBN estimate an error under the maxε when the real
error is above it. Additionally, the percentage and quality of false
positives is also assessed, i.e., estimations above the maxε while
the real error is under it, and how different was such prediction.
False positives are admissible if the real error is close to maxε

Fig. 5. Fluχy middleware framework architecture.

(e.g. maxε = 5%, real error = 4.7%, estimation is larger than 5%),
but indicate a failure if the difference is large (e.g. maxε = 5%, real
error = 1%, estimation above 5%). That difference between the
estimated and real error is used to assess the quality of the FBN on
guaranteeing a certain QoD. The quality is afterwards recalled to
guide the amount of necessary training (i.e., poor quality implies
more training, and vice-versa).

If the FBN quality is satisfactory, the trained FBN are ready to be
used at runtime to estimate maxε for the error given the current
amount of change.
Application phase. At this phase the trained FBN receive at each
wave of data a tuple with the normalized ι and desired maxε . ι
is given as input to the FBN and the net is executed a sufficient
amount of times (with a certain degree of confidence). FBN
operation is probabilistic, therefore, besides the expected error, we
also obtain its standard deviation (as a result of the execution).
The upper bound (maxε) for the error estimation is given by the
expected error plus its standard deviation. The system uses the
upper bound and the QoD guarantee obtained in the test phase to
give the estimation confidence.

4. Fluχy framework

This section presents the architecture and main design choices
of the Fluχy framework, which implements the model described
in the previous section. Fluχy enables the construction of quality-
driven dataflows in which the triggering of processing steps may
be delayed to comply with QoD constraints. These constraints are
defined over datasets on which those steps depend and, hence,
a tight coupling is assumed between the framework and the
underlying storage system.

Fig. 5 depicts the archetypal architecture of the Fluχy middle-
ware framework, which operates between a workflow manage-
ment system and a NoSQL tabular-like database. Processing steps
run on top of the workflow manager and they must share the in-
termediate data through the underlying database. These stepsmay
consist of Java applications, scripts expressed through high-level
languages for data analysis (e.g., Apache Pig [31]),map-reduce jobs,
as well as other off-the-shelf solutions.

Although Fluχy can operate with its own provided and simple
WMS, we concentrate here on using an existing one (Oozie),

8 S. Esteves et al. / J. Parallel Distrib. Comput. () –

widely deployed, also to assess in what extent it requires changing
its implementation and triggering mechanisms. In effect, an
adaptation component, WMS Adaptation (colored in medium
gray), needs to be provided with a specified API in order to,
foremost, receive from Fluχy, triggering notifications, and control
the execution of the dataflow processing steps. For the input
adaptation, we provide database adaptation libraries (colored in
light gray) at the client side, so that Fluχy may be aware of
the updates performed by steps on the underlying database. The
Application Libraries component consists of adapting application
libraries, that are used by processing steps, to interact directlywith
the data store via their client APIs; thus, albeit applications need to
be slightly modified, we are developing the tools to carry out the
requiredmappings that are straightforward, in order to completely
automatize this process.

At a lower level, WMS Shared Libraries are used to adapt
processing step applications that need to access the database
through some shared library given by the WMS (e.g., pig scripts
or any other high-level language that must be compiled by the
WMS); it provides transparency to executing steps and therefore
applications need not be modified.

Next, we describe the responsibilities and purpose of each of
the components that compose the Fluχy framework (in white).

Monitoring It analyzes all requests directed to the database.
It uses information contained in update requests to
maintain the current state of control data regarding the
quality-of-data.

Session Management It manages the configurations of the QoD
constraints, over data objects, through the meta-data
that is provided, along with the dataflow specification,
and defined for each different dataflow. A dataflow
specification is then derived to the target WMS.

QoD Engine It maintains data structures and control meta-data
which are used to evaluate and decide when to trigger
next steps, obeying to QoD specifications.

Scheduler It verifies the time constraints over the data. When the
time for triggering successor steps expires, the Scheduler
notifies the QoD Engine component in order to clear the
associated QoD state and notify the WMS to execute the
next processing steps.

Knowledge Base It maintains data collected from the Monitoring
component, (ι, ε) pairs, to train the FBN and adjust the
Predictor component.

Predictor It uses a trained FBN from the Knowledge Base com-
ponent and predicts the dataflow output error given the
dataflow input variation at the current wave. The esti-
mated error is used for adjusting the QoD constraints
(i.e., if the error is greater thanmaxε , theQoD is restricted,
otherwise is relaxed).

4.1. Session management

Dataflow specification schemas need to be provided to register
dataflow applications with Fluχy. They should contain the
description of the dataflow graphwhere each processing stepmust
explicitly specify the data containers (e.g., table, column, row, or a
group of any of these) it depends on, and the corresponding QoD
requirements necessary to its triggering. Precisely, oneQoD bound,
κ , can be provided either for single database containers associated
or for groups of object containers (e.g., several columns covered
by the same κ). If no bound is associated with a step A, then it is
assumed that A should be triggered right after the execution of its
precedent steps (i.e., strict temporal synchronism). Additionally, it
is necessary to specify the maximum tolerated error introduced in
the dataflow output for QoD adjustment and learning purposes.

After dataflow registration, the underlying database schema is
extended to incorporate the metadata related with the QoD bound
andQoD control state. Specifically, it is necessary to havemaps that
given a dataflow, a step, and a data container, return the quality
bound and current state.

4.2. Evaluation and enforcement of the quality-of-data bounds

The QoD state of a database object container o, for a process-
ing step A, is updated every time an update is perceived by Fluχy
through the Monitoring component. Upon such event, it is nec-
essary to identify the step A′ that made the update (A′

≺ A)
and the affected data object container, o, which is sent by the
client libraries; this, in order to retrieve the quality bound and cur-
rent state associated through the meta-data. Then, given A′ and
o, we can find all successor steps of A′, including A, that are de-
pendent on the updates performed on o, and thus update their
QoD state (i.e., the state of each successor step depending on o).
Specifically, we need to increment all of the associated vectors
σ and re-compute the ratio modified items/total items (

m
i=1 |xi −

x′

i|/
m

i=1 x
′

i), hold in all ν vectors. Afterwards, the QoD state of a
pair (processing step, object) needs to be compared against its rel-
ative QoD reference bound (i.e., the maximum level of changes al-
lowed, κ).

The evaluation of the quality vectors σ and ν, to decide if a step
A should be triggered or not, may take place at one of the following
times:

(a) every time a write operation is performed by a precedent step
of A;

(b) every time a precedent step completes another execution; or
(c) periodically between a given time frame.

These options can be combined together; e.g., it might be of
use to combine option (c) with (a) or (b), for the case where
precedent steps of A take very long periods of time in performing
computations and generating output. Despite option (a) being the
most accurate, it is the least efficient, especially when dealing with
large bursts of updates.

To evaluate the time constraint, θ , Fluχy uses timers to check
periodically (e.g., every second) if there is any timestamp in θ about
to expire (i.e., a QoD bound that is almost reached). Specifically,
references to processing steps are held in a list ordered ascending
by time of expiration, which is the time of last execution of a
dependent step plus θ . In effect, the Scheduler component starts
from the first element of the list checking if timestamps are less
than or equal to current time. As the list is ordered, the Scheduler
has only to fail one check to ignore the rest of the list.

4.3. Learning

The Monitoring component informs the Knowledge Base about
the input data variation and error introduced in the dataflow. These
data is stored in a log file and exposed to the FBN, which are
constantly being trained and optimized for improved predictions.
Since FBN rely on these random samples, learning and inference is
a probabilistic process. This process is described as follows.

FBN possess binary neurons which are grouped into areas of
concepts (variables). Meshes of weightless connections between
antecedent neuron outputs and consequent neuron inputs are used
to perform if–then inference between areas. Neurons are binary,
and themeshes are formed by individual random connections (like
in nature). Each neuron comprises m inputs for each antecedent
area, and up to (m + 1)N internal unitary memories, where N
is the number of antecedents (corresponding to the maximum
granularity). When stimulated, the value of each concept is given
by the ratio activated/total neurons.

S. Esteves et al. / J. Parallel Distrib. Comput. () – 9

For rules with N antecedents and a single consequent, each
neuron has N ∗ m inputs. The single operation carried out by each
neuron is the combinatorial count of activated inputs from every
antecedent. For all counting combinations, neurons compare the
sampled values with the ones in their unitary memory (FF). If the
FF corresponding to the sampled value of all antecedents contains
1, then the neuron output is also 1. Otherwise, the neuron output
is 0. As a result of the inference process (which is parallel), each
neuron assumes a Boolean value, and the inference result will be
given by the neural activation ratio in the consequent area.

Learning is performed by exposing the net to the dataflow input
and bymodifying the internal binarymemories of each consequent
neuron according to the activation of them inputs (per antecedent)
and the state of that consequent neuron. Each experiment will set
or reset one binary memory of each individual neuron. Due to its
probabilistic nature, it must be repeatedly exposed to the same
training data for aminimumnumber of times (r). The optimization
of r is not critical since FBN cannot be overtrained. Thus, it is only
necessary to guarantee a minimum value that depends on the net
parameters (m,N , granularity) and sparsity of the training dataset.

5. Implementation issues

This section details the implementation of a prototype of
Fluχy we developed, as proof-of-concept, that conforms to
the architecture and model aforementioned to demonstrate the
feasibility, usefulness and benefits of our dataflow model when
deployed as aWMS for high-performance and low latency in large-
scale data store-backed dataflows.

5.1. Adopted technology

Starting from the top layer, and to demonstrate that Fluχy can
be easily and seamlessly integrated with other systems, we have
implemented our model using Oozie, which is a Java open-source
workflow coordination system to manage Apache Hadoop [39]
jobs. In effect, we adapted Oozie by replacing the time-based and
data detection triggering mechanisms, with a notification scheme
that is interfaced with the Fluχy framework process through Java
RMI. Generally, Oozie only has to notify when a step finishes its
execution, and Fluχy only has to signal the triggering of a certain
step; naturally, these notifications share the same processing step
identifiers.

As for the lower layer, and although the framework can be
adapted toworkwith other non-relational data stores, in the scope
of this particular work, our target is HBase [17] (the open-source
Java clone of BigTable [11]), which we used as an instance of
the underlying storage. This database system is a sparse, multi-
dimensional sorted map, indexed by row, column (includes family
and qualifier), and timestamp; the mapped values are simply
an uninterpreted array of bytes. It is column-oriented, meaning
that most queries only involve a few columns in a wide range,
thus significantly reducing I/O. Moreover, these databases scale to
billions of rows andmillions of columns, while ensuring that write
and read performance remain constant.

Finally, Fluχy was also built in Java, and uses, i.a., the Saxon12

XPath engine to read and process XML configurations files (e.g., the
dataflow description).

5.2. Library support and API

In order to intercept the updates performed by processing
steps, we adapted the HBase client libraries by extending the

12 http://saxon.sourceforge.net/.

implementation of some of their classes while maintaining
their original APIs.13 Namely, the implementation of the classes
Configuration.java, HBaseConfiguration.java, and HTable.java, were
modified to intercept every update performed onHBase, especially
put and delete operations, and send the needed parameters
(like step, operation, table, and column identifiers) to the Fluχy
framework.

Applications need therefore only to be slightly modified to use
our API. Specifically, only the import declarations of the HBase
packages need to be changed to Fluχy packages, since our API
is practically the same. To ease such process, we provide tools
that automatically modify all the necessary import declarations,
thereby patching the java bytecode at loading time.

5.3. Dataflow description

The QoD constraints are specified along with standard Oozie
XML schemas (version 0.2), and given to Fluχy with an associated
dataflow description. Specifically, we introduced in the respective
XSD the new element qod, which can be used inside the element
action. Inside qod, it is necessary to indicate the data containers
associated with the elements: table, column, row, or group. Each of
these elements must specify the three constraints time (a decimal
indicating the number of seconds), sequence (an integer), and
value (an integer indicating the percentage of modifications), that
are combined through the method defined in the qod attribute
combine. Additionally, the element group groups object containers,
which are specified through the element item, that should be
handled at the same QoD degree. These particular dataflow
descriptions are then automatically adapted to the regular Oozie
schema (i.e., without the QoD elements) and fed to Oozie.

6. Evaluation

This section presents the evaluation of the Fluχy framework,
building its case on the benefits and advantages against the regular
DAG semantics (i.e., SDF with no QoD enforcement). All tests were
carried out with the Fluχy implementation described previously,
using machines with Intel Core 2 Quad CPUs Q6600 at 2.40 GHz,
7825 MB of available RAM memory, and HDD SATA II 7200RPM
16 MB, with Java 6, Oozie, HBase, and the FBN Python module
installed.

For the evaluation we relied on the prototypical scenario
described in Section 2.1. The number of changed detectors
and its positions in the city are randomly chosen in practice,
simulating detectors that would perceive changes in certain
areas. In effect, each sensor corresponds to a different generating
function, following a distribution with smooth variations across
space (i.e., realistic in the variations and trends,while full exactness
for a given day record is not relevant for our purposes). This sample
variations generated provide the necessary updated input data to
the dataflow in each (re-)execution, a wave, corresponding to an
hour of the day, for a total of 168 waves for a full week simulated.
The generating functions return a value from 0 to 100, where 0 and
100 are, respectively, the minimum and maximum known values
of O3, PM2.5 or NO2. At the end, in the final step of the dataflow, the
index is generated, thereby producing a number that is mapped
into a class of health risk: low (1–3), moderate (4–6), high (7–10),
and very high (above 10).

The FBN relevant parameters [8] for training are: m = 125
neurons per area; n = 25 inputs per neuron;maximumgranularity
(n + 1 = 26). Training was done with 60 iterations, i.e., the

13 http://hbase.apache.org/apidocs/overview-summary.html.

http://saxon.sourceforge.net/
http://hbase.apache.org/apidocs/overview-summary.html

10 S. Esteves et al. / J. Parallel Distrib. Comput. () –

Fig. 6. Samples collected during a day with and without QoD enforcement. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 7. Evolution of relationship among differences in input tables and in the output tables (seen as error).

FBN was executed 60 times for each input value in order to
obtain an error estimation (i.e., the difference to correct output
if the dataflow is not re-executed) and its standard deviation for
assurance purposes. Training time for 82 waves is less than a
minutewhichmeans it can be carried outwith no impact, formany
simultaneous dataflows, in a cloud scheduler/controller machine.
Test execution time for 164 waves is also less than a minute.
Application execution time for one input is less than 1 s. Training,
test and execution times are thus not a relevant factor in system
performance, so we will focus the following evaluation on the
accuracy of error predictions and resources (i.e., full dataflow re-
executions) saved.

To put Fluχy into perspective against regular DAG semantics,
both with and without FBN-based error prediction, we resort to
Fig. 6 that shows the pollution maps generated by step D during a
day. As traditionally, red and darkermeans higher risk, while green
and lighter yellowmeans reduced risk (0–100). The shades of gray
in QoD (error) and Fluχy (error) indicate the per centum difference
among the outputs generated by the dataflow execution with QoD
(bounding variations in input, up to e.g., 30%) and with full Fluχy
(i.e., with adaptive QoD driven by FBN prediction). Framed boxes
indicate when dataflow re-execution is triggered in each of the
approaches, thereby resetting the output error, against the no-QoD
output, to zero, increasing (darkening) otherwise. Fluχy is aimed
at bounding output error at the expense of more (re-)executions
necessary than those triggered just by QoD applied to the input
differences.

6.1. Results

The data in Fig. 7 shows the evolution, across the 168 waves,
of the per centum differences in the input generated by each new
sampling (ι), and the corresponding per centum in the output

tables, i.e., the error ε thatwould be introduced by not re-executing
the dataflow. It shows that while there is a visible correlation, the
relationship is not linear andboth input difference andoutput error
are subject to significant variations across waves (e.g., periods of
more or less intense rise/fall on pollution during the day). This
shows that finding an optimal QoD is not trivial, and arbitrarily
fixing a given QoD on input difference is, on its own, unable to
assure that the output error is bounded, e.g., to 5%; hence the
need for the FBN to learn the input/error relationship and save
resources, while ensuring the error stays within acceptable limits.
Otherwise, the system is not suitable and reliable for decision
makers. Fig. 8 highlights the statistical relationship among per
centum differences in the input (e.g., QoD to trigger re-execution)
and the per centum output error when the re-execution is delayed.
The three lines, from top to bottom, depict: (i) the maximum of
error occurred for a given input difference, (ii) its mean plus the
standard deviation, and (iii) the norm of the output error. It shows
correlation, although significant variance and no strict linearity
among input difference and output error in many occasions.

Fig. 9 shows the evolution, across waves, of the real (per
centum) error perceived in the output due to delaying the
triggering of dataflow steps, and the average error predicted by the
FBN (and its ceiling/majoration). Albeit the real error stays mostly
above the predictions, the important fact is that the trends of the
real and predicted error are always in sync. In greater detail, Fig. 10
allows us to confirm that: (i) this deviation is bounded, always less
than 5%, averaged at about 3%, and (ii) the deviation decreases as
waves go on.

Based on these findings, we use FBN to predict, for each new
input (based on its per centum difference against the previous
samples), how great (per centum) the modifications in the output
are going to be, hence predicting the error of delaying the
triggering of steps with a great precision. To assert this assurance

S. Esteves et al. / J. Parallel Distrib. Comput. () – 11

Fig. 8. Input difference and output error correlation.

Fig. 9. Output error and FBN error estimation.

Fig. 10. Detail on the ratio of deviation/skew between observed error and FBN prediction.

Fig. 11. FBN cumulative prediction accuracy.

given to decisionmakers, we show in Fig. 11, across the 168waves,
the cumulative percentage of correct predictions; in this case, that
the output error would be below 5%, and below 10%. For the first
one, it is fully correct and for 10%, where the FBN skew is more

amplified, the confidence is always above 96% during the 168
waves (the prediction got an error beyond maxε around wave 28).
These results show that Fluχy is able to accurately predict, with
confidence above 95%, when the output error (due to delaying

12 S. Esteves et al. / J. Parallel Distrib. Comput. () –

Fig. 12. Resource usage.

triggering of dataflow steps upon new input) is about to surpass
a given maximum (maxε = 5/10%).

This leads us to expect significant resource savings, especially
in a shared cloud environment where multiple dataflows may
be continuously executing, due to avoiding unnecessary dataflow
re-execution, while being assured that the error introduced is
bounded to a small manageable percentage, with good significant
confidence. This combines quantifiable enough accuracy in error
prediction and confidence (which could be set as an SLA) with sig-
nificant resource savings, free to execute other dataflows or sim-
ply to pay less for infrastructure usage. Fig. 12 shows, normalized to
the original system’s 168 executions, large executions savings (that
are proportional to the resources saved) provided by the sole usage
of QoD on the input. The number is progressively lower for QoD of
(5%, 10%, 20%) since more input is needed in order to trigger steps,
albeit with no guarantees or bounds on the error introduced in the
output. Fluχy, ensuring output error below 5% and 10%, i.e., almost
full (above 95%) confidence is still able to save, at the end, from
12% to 23% of executions, hence almost a quarter of savings in re-
sources, which combined in multiple dataflows is significant.

In summary, Fluχy is able to save resources by wisely avoiding
(unnecessary) dataflow re-executions, i.e., when the new input
is not sufficient to generate errors in the output above a given
accuracy target (maxε). With a very high statistical confidence,
decision makers get probabilistic guarantees on the results. The
larger themaximumerror allowed, the greater the savingsmay be;
as it is expected but while not sacrificing the statistical confidence.
Thus, it is necessary to find optimal QoDs with a good compromise
between those factors. Moreover, given the high confidence level
with which we can estimate error, we are able to dynamically
adjust, during execution, the QoD level applied to the input, in
order to enforce the desired SLA (maximum) on the output error,
hence enhancing the QoD model.

7. Related work

This section reviews relevant proposed solutions, within the
current state-of-the-art, that intersect the main topics approached
in this work.

DAGMan [12] is one of the early workflow languages in
e-science. It interprets and manages text descriptions of jobs
comprising DAGs. DAGMan accounts for job dependencies, allows
pre- and post-processing scripts for each vertex and reissues
failed jobs. Being a meta-scheduler, it relies on the centralized
Condorworkloadmanagement system for scheduling. Pegasus [23]
extends DAGMan in order to allow mapping of workflows jobs
on distributed resources and from the description of computation
tasks, it performs the necessary data transfers among sites. Pegasus
aims at optimizing workflow performance and reliability by
scheduling to appropriate resources, but, unlike our system, there

are no QoD guarantees on continuous processing or dataflow, and
no data sharing.

In [21], it is given a decentralized execution approach to large-
scale workflows based on DAGMan. At runtime, adjustments to
the workflow execution plan are made to meet QoS objectives; in
particular, mapping and migration of tasks to specific resources
in multiple domains. This adaptation is performed based on a
p2p push algorithm and provides a feedback control mechanism
with monitoring of resources. Fluχy also provides a feedback
control mechanism, but to reason about data significance. We
believe that applying our QoDmodel to large-scale workflows and
dynamic scheduling mechanisms, for mapping tasks to resources,
could certainly have a significant impact on the overall workflow
progress with a great quantity of resources being saved (i.e., the
scheduler could adjust the execution plan at runtime to allocate
less resources).

Taverna [27] is heavily used in bioinformatics. It is a WMS with
interoperability support for amultitude of execution environments
anddata formats. Data sources anddata links are considered as first
entities in the dataflow language. Execution canbeplaced remotely
on a large list of resources but without cross-site distribution and
no QoD is enforced.

Dryad [20] executes DAGs explicitly created via an imperative
API. It includes composition of operators/operations and enabled
new ones to be defined, allowing for graph and vertex merger. It
allows the construction of computation pipelines spanning across
a cluster. It has been integrated with LINQ data query capabilities
in.NET languages. It has support for channels of shared mutable
data.

Kepler [2] is a solution for managing scientific workflows.
It was designed to help scientists and other inexpert computer
users to create, execute, and share models and analyses, thereby
including a set of features for reducing the inherent complexity
of deploying workflows in various computing environments.
Other option is Triana [36], a decade proven visual programming
environment, focusing on minimum effort, that allows users to
compose applications from programming components (drawn
from a large library on text, signal and image processing) by drag
and drop into a workspace, and connecting them in a workflow
graph.

MapReduce (MR) [13] was first created for reverse index
creation and page ranking. It forces programmers to obey a
strict model that is different from those used for application
logic. However, the automatic parallelization and fault-tolerance
features made it powerful and led to the development of the open-
source solution Hadoop [39]. WMSs for Hadoop, like Oozie, started
to arise, e.g., Azkaban,14 Cascading.15

14 http://sna-projects.com/azkaban/.
15 http://www.cascading.org.

http://sna-projects.com/azkaban/
http://www.cascading.org

S. Esteves et al. / J. Parallel Distrib. Comput. () – 13

More modern functionality in MR such as supporting social
networks and data analytics are extremely cumbersome to code
as a giant set of interdependent MR programs. Reusability is
thus very limited. To amend this, the Apache Pig platform [31]
eases creation of data analysis programs. The Pig Latin language
combines imperative-like script language (foreach, load, store)
with SQL-like operators (group, filter). Scripts are compiled into
Java programs linked to Map Reduce libraries. An example of
productivity and reusability is a word counting script with 6 lines
of code. The Hive [37] warehouse reinstates fully declarative SQL-
like languages (HiveQL) over data in tables (stored as files in an
HDFS directory). Queries are compiled into MR jobs to be executed
on Hadoop. SCOPE [10] takes a similar approach to scripting but
targeting Dryad [20] for its execution engine.

To avoid recreating web indexes from scratch after each web
crawl, Google Percolator [32] does incremental processing on top
of BigTable, replacing batch processing of MR. It provides row
and table-wide transactions, snapshot isolation, with locks stored
in special Bigtable columns. Notify columns are set when rows
are updated, with several threads scanning them. Applications are
sets of custom-coded observers. Although it scales better than
MR, it has 30-fold resource overhead over traditional RDBMS.
Nova [29] is similar but has no latency goals, accumulating many
new inputs and processing them lazily for throughput. Moreover,
Nova provides data processing abstraction through Pig Latin; and
supports stateful continuous processing of evolving datasets. These
systems are someway close to Fluχy in the sense that tasks are
not executed synchronously and incremental/pipeline processing
is used extensively, highlighting the importance of the focus of our
work on incremental processing.

Yahoo CBP [25] aims at greater expressiveness by expressing
incremental processing as dataflows with explicit mention when
computation stages are stateless or stateful. Input is split by de-
termining membership in frames of new records, allowing group-
ing input to reduce messaging. Thus, as a result of a partial web
crawl, a new input frame is processed. For stateful stages, transla-
tor functions combinedata fromnew framewith existing state. CBP
provides primitives for explicit control flow and synchronize exe-
cution of multiple inputs. It requires an extendedMR implementa-
tion and some explicit programming for a QoS-enabled dataflow
(unlike Fluχy, which allows flexible control, without program-
ming, for enforcing QoD constraints).

Nectar [18] for Dryad links data and the computation that
generated it as unified hybrid cacheable element. On programs
reruns, Nectar replaces results with cached data. Dryad programs
need to be enhanced with cache management calls that check and
update the cache server. This is transparently done in InCoop [6],
which does caching for MR apps. Map, combine and reduce phase
results are stored and memoized. A new memorization-aware
scheduler is used to repeat tasks where cached output is already
stored, reducing data transfers that still cause overhead even if re-
computation is avoided. Somehow like Fluχy, this project attempts
to reduce the number of executions; however, it implies that
the input/output datasets are repeated or intersected among each
other, whereas the QoD model fits a broader range of scenarios.

In [28], it is presented a formal programming and schedul-
ing model for defining temporal asynchrony in workflows. The
workflow vertices consist of operators, that process data, and data
channels, which are pathways through which data flows between
operators. These operators have signatures that describe the types
and consistency of the blocks (i.e., the atomic units of data) ac-
cepted as input and returned as output. Data channels have a
representation of time to a relation snapshot, with an interval of
validity, which are used to enforce consistency invariants. These
constraints, types of blocks permitted on output, freshness and
consistency bounds, are then used by the scheduler which pro-
duces minimal-cost execution plans. This project shares our goals

of exploring and providing non ad-hoc solutions for introducing
asynchronous behavior inworkflows, however, it does not account
with the volume, relevance or impact of modifications of the data
given as input for each workflow step, like in Fluχy.

In [30], it is proposed a set of optimization strategies for large-
scale parallel dataflow systems. Authors state that adaptive query
planning does not resort to a-priori accurate models, but, instead,
adopts a trial-and-error and feedback-driven approach (just like
Fluχy). Key parameters like intermediate data sizes and function
costs are hard to estimate a-priori, and thus model-light optimiza-
tion approaches that gather and react to performance informa-
tion during runtime aremore adequate, which corroborates on the
adequacy of Fluχy to optimize resource utilization in dataflows.
We also take a step further, by trying to determine, with Ma-
chine Learning, such key parameters based on observed dataflow
patterns in the past. Many other systems rely on feedback con-
trol loops to improve workflow execution and performance (e.g.,
[3,4,1]), however none of them focus on the problematic of effi-
cient usage and saving of resources, like Fluχy.

Furthermore, it is important to note that Fluχy is not a stream
processing system, like Apache Storm16 or Spark Streaming [41].
Like other typical WMS, OOzie (the engine behind Fluχy) is trig-
gered by time (frequency) and data availability, which are discrete
events in time, and do not rely on sliding windows (as stream pro-
cessing does). Besides, data is accumulated and persisted in WMS
across processing steps, which does not happen in stream process-
ing systems, where data is mostly kept in volatile memory. Contin-
uous processing in the context of this work means that the same
aggregated computation (dataflow) is executed multiple times
over (‘‘non-contiguous’’) time, and does not mean that dataflows
are uninterruptedly receiving new input data (like stream process-
ing engines).

8. Conclusion

We presented Fluχy, a novel dataflow model and framework
for data-intensive computing that breaks through the SDF model.
It enables temporal asynchrony among the various processing
steps based on the impact of their input data. This impact
relies on a quality-of-service notion that expresses constraints
over the divergence of data (QoD). Fluχy delivers controlled
performance, high resource efficiency, prioritization, flexibility
and elasticity, which is essential in cloud-like environments.
Hence, also playing an important role in green computing and
cloud SLAs (e.g., SaaS services can impose different QoDs for
different budgets). Furthermore, Fluχy learns statistical behavior
from dataflows in order to bound the output deviations and give
probabilistic guarantees about the correctness and freshness of the
results.

Fluχy was implemented and found both easy to integrate
with existing WMS infrastructures, as well as with currently
popular NoSQL storage (HBase) for scalability. To demonstrate
Fluχy feasibility, usefulness, and efficiency, the assessment of
Fluχywas centered on a realistic prototypical example of intensive
data processing, addressing the evaluation of air quality, pollution
and health risks, for a city based on sensory data, gathered
asynchronously, from thousands of sensors.

Therefore, we find Fluχy a compelling effort, within the current
state of the art, to improve dataflows execution, in a performance-
improved, resource efficient and correct manner and, thus, deliver
higher QoS to end-users and drive costs of operation down.

16 https://storm.apache.org/.

https://storm.apache.org/

14 S. Esteves et al. / J. Parallel Distrib. Comput. () –

Acknowledgments

We would like to thank the anonymous reviewers who greatly
contributed to the betterment of this paper.

This work was supported by national funds through Fun-
dação para a Ciência e a Tecnologia (FCT) with reference UID/
CEC/50021/2013.

References

[1] K.R. Abbott, S.K. Sarin, Experienceswithworkflowmanagement: issues for the
next generation, in: Proceedings of the 1994 ACM Conference on Computer
Supported Cooperative Work, CSCW’94, ACM, New York, NY, USA, 1994,
pp. 113–120. http://dx.doi.org/10.1145/192844.192886.
URL: http://doi.acm.org/10.1145/192844.192886.

[2] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, S. Mock, Kepler:
an extensible system for design and execution of scientific workflows, in:
International Conference on Scientific and Statistical Database Management,
Vol. 0, 2004, p. 423. http://doi.ieeecomputersociety.org/10.1109/SSDM.2004.
1311241.

[3] A. Andrzejak, U. Hermann, A. Sahai, FEEDBACKFLOW—an adaptive workflow
generator for systems management, in: Second International Conference on
Autonomic Computing, 2005. ICAC 2005. Proceedings, 2005, pp. 335–336.
http://dx.doi.org/10.1109/ICAC.2005.30.

[4] S. Babu, Towards automatic optimization ofmapreduce programs, in: Proceed-
ings of the 1st ACMSymposiumonCloudComputing, SoCC’10, ACM,NewYork,
NY, USA, 2010, pp. 137–142. http://dx.doi.org/10.1145/1807128.1807150.
URL: http://doi.acm.org/10.1145/1807128.1807150.

[5] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, K. Vahi,
Characterization of scientific workflows, in: Third Workshop on Workflows
in Support of Large-Scale Science, 2008. WORKS 2008, 2008, pp. 1–10.
http://dx.doi.org/10.1109/WORKS.2008.4723958.

[6] P. Bhatotia, A. Wieder, R. Rodrigues, U.A. Acar, R. Pasquin, Incoop: MapReduce
for incremental computations, in: Proceedings of the 2nd ACM Symposium
on Cloud Computing, SOCC’11, ACM, New York, NY, USA, 2011, pp. 7:1–7:14.
http://dx.doi.org/10.1145/2038916.2038923.
URL: http://doi.acm.org/10.1145/2038916.2038923.

[7] D.A. Brown, P.R. Brady, A. Dietz, J. Cao, B. Johnson, J. McNabb, in: I.J. Taylor,
E. Deelman, D.B. Gannon, M. Shields (Eds.), A Case Study on the Use of
Workflow Technologies for Scientific Analysis: Gravitational Wave Data
Analysis, Workflows for e-Science, Springer London, 2007, pp. 39–59.

[8] J.P. Carvalho, J.A. Tomé, Qualitative optimization of fuzzy causal rule bases
using fuzzy Boolean nets, Fuzzy Sets and Systems 158 (17) (2007) 1931–1946.

[9] R. Cattell, Scalable SQL and NoSQL data stores, SIGMOD Rec. 39 (4) (2011)
12–27. http://dx.doi.org/10.1145/1978915.1978919.
URL: http://doi.acm.org/10.1145/1978915.1978919.

[10] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver, J. Zhou,
Scope: easy and efficient parallel processing of massive data sets, Proc. VLDB
Endow. 1 (2) (2008) 1265–1276. http://dx.doi.org/10.1145/1454159.1454166.

[11] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows, T.
Chandra, A. Fikes, R.E. Gruber, Bigtable: a distributed storage system for
structured data, in: Proceedings of the 7th USENIX Symposium on Operating
SystemsDesign and Implementation—Volume7, OSDI’06, USENIXAssociation,
Berkeley, CA, USA, 2006, pp. 15–15.
URL: http://dl.acm.org/citation.cfm?id=1267308.1267323.

[12] P. Couvares, T. Kosar, A. Roy, J. Weber, K. Wenger, Workflow management in
condor, in: I.J. Taylor, E. Deelman, D.B. Gannon, M. Shields (Eds.), Workflows
for e-Science, Springer, London, 2007, pp. 357–375.
URL: http://dx.doi.org/10.1007/978-1-84628-757-2_22.

[13] J. Dean, S. Ghemawat,MapReduce: simplified data processing on large clusters,
in: Proceedings of the 6th Conference on Symposium on Opearting Systems
Design & Implementation—Volume 6, OSDI’04, USENIX Association, Berkeley,
CA, USA, 2004, pp. 10–23.
URL: http://dl.acm.org/citation.cfm?id=1251254.1251264.

[14] E. Deelman, et al., Managing large-scale workflow execution from resource
provisioning to provenance tracking: the cybershake example, in: Proceedings
of the Second IEEE International Conference on e-Science andGrid Computing,
E-SCIENCE’06, IEEE Computer Society, Washington, DC, USA, 2006, pp. 14–22.
http://dx.doi.org/10.1109/E-SCIENCE.2006.99.

[15] S. Esteves, J.N. Silva, L. Veiga, Fluchi: a quality-driven dataflow model
for data intensive computing, J. Internet Serv. Appl. 4 (1) (2013) 12.
http://dx.doi.org/10.1186/1869-0238-4-12.
URL: http://www.jisajournal.com/content/4/1/12.

[16] S. Esteves, L. Veiga, WaaS: workflow-as-a-service for the cloud with schedul-
ing of continuous and data-intensive workflows, Comput. J. (2015) http://dx.
doi.org/10.1093/comjnl/bxu158. URL:
http://comjnl.oxfordjournals.org/content/early/2015/01/08/comjnl.bxu158.
abstract.

[17] L. George, HBase: The Definitive Guide, first ed., O’Reilly Media, 2011, URL:
http://www.amazon.de/HBase-Definitive-Guide-Lars-
George/dp/1449396100/ref=sr_1_1?ie=UTF8&qid=1317281653&sr=8-1.

[18] P.K. Gunda, L. Ravindranath, C.A. Thekkath, Y. Yu, L. Zhuang, Nectar: automatic
management of data and computation in datacenters, in: Proceedings of the
9th USENIX Conference on Operating Systems Design and Implementation,
OSDI’10, USENIX Association, Berkeley, CA, USA, 2010, pp. 1–8.
URL: http://dl.acm.org/citation.cfm?id=1924943.1924949.

[19] D.O. Hebb, The Organization of Behavior: A Neuropsychological Theory, John
Wiley and Sons, 1949.

[20] M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, Dryad: distributed data-
parallel programs from sequential building blocks, in: Proceedings of the
2nd ACM SIGOPS/EuroSys European Conference on Computer Systems 2007,
EuroSys’07, ACM, New York, NY, USA, 2007, pp. 59–72.
http://dx.doi.org/10.1145/1272996.1273005.
URL: http://doi.acm.org/10.1145/1272996.1273005.

[21] S. Kalayci, G. Dasgupta, L. Fong, O. Ezenwoye, S.M. Sadjadi, Distributed and
adaptive execution of condor dagmanworkflows, in: SEKE, 2010, pp. 587–590.

[22] V. Kecman, Learning and Soft Computing: Support Vector Machines, Neural
Networks, and Fuzzy Logic Models, MIT Press, Cambridge, MA, USA, 2001.

[23] K. Lee, N.W. Paton, R. Sakellariou, E. Deelman, A.A.A. Fernandes, G. Mehta,
Adaptive workflow processing and execution in pegasus, Concurr. Comput.:
Pract. Exper. 21 (16) (2009) 1965–1981. http://dx.doi.org/10.1002/cpe.v21:16.

[24] X. Li, B. Plale, N. Vijayakumar, R. Ramachandran, S. Graves, H. Conover, Real-
time stormdetection andweather forecast activation through datamining and
events processing, Earth Sci. Inf. 1 (2008) 49–57.
http://dx.doi.org/10.1007/s12145-008-0010-7.

[25] D. Logothetis, C. Olston, B. Reed, K.C. Webb, K. Yocum, Stateful bulk processing
for incremental analytics, in: Proceedings of the 1st ACM Symposium on
Cloud Computing, SoCC’10, ACM, New York, NY, USA, 2010, pp. 51–62.
http://dx.doi.org/10.1145/1807128.1807138.
URL: http://doi.acm.org/10.1145/1807128.1807138.

[26] B. Ludäscher, et al., Scientific process automation and workflow man-
agement, in: A. Shoshani, D. Rotem (Eds.), Scientific Data Management,
in: Computational Science Series, Chapman & Hall, 2009, (Chapter 13) URL:
http://daks.ucdavis.edu/~ludaesch/Paper/ch13-preprint.pdf.

[27] P.Missier, S. Soiland-Reyes, S. Owen,W. Tan, A. Nenadic, I. Dunlop, A.Williams,
T. Oinn, C.A. Goble, Taverna, reloaded, in: SSDBM, 2010, pp. 471–481.

[28] C. Olston, Modeling and scheduling asynchronous incremental workflows,
Tech. Rep., Yahoo! Research, 2011.

[29] C. Olston, G. Chiou, L. Chitnis, F. Liu, Y. Han, M. Larsson, A. Neumann, V.B.
Rao, V. Sankarasubramanian, S. Seth, C. Tian, T. ZiCornell, X. Wang, Nova:
continuous Pig/Hadoop workflows, in: Proceedings of the 2011 International
Conference on Management of Data, SIGMOD’11, ACM, New York, NY,
USA, 2011, pp. 1081–1090. http://dx.doi.org/10.1145/1989323.1989439. URL:
http://doi.acm.org/10.1145/1989323.1989439.

[30] C. Olston, B. Reed, A. Silberstein, U. Srivastava, Automatic optimization of
parallel dataflow programs, in: USENIX 2008 Annual Technical Conference on
Annual Technical Conference, ATC’08, USENIX Association, Berkeley, CA, USA,
2008, pp. 267–273. URL: http://dl.acm.org/citation.cfm?id=1404014.1404035.

[31] C. Olston, B. Reed, U. Srivastava, R. Kumar, A. Tomkins, Pig Latin: a not-so-
foreign language for data processing, in: Proceedings of the 2008ACMSIGMOD
International Conference on Management of Data, SIGMOD’08, ACM, New
York, NY, USA, 2008, pp. 1099–1110.
http://dx.doi.org/10.1145/1376616.1376726.
URL: http://doi.acm.org/10.1145/1376616.1376726.

[32] D. Peng, F. Dabek, Large-scale incremental processing using distributed trans-
actions and notifications, in: Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation, OSDI’10, USENIX Association,
Berkeley, CA, USA, 2010, pp. 1–15.
URL: http://dl.acm.org/citation.cfm?id=1924943.1924961.

[33] L. Ramakrishnan, D. Gannon, A survey of distributed workflow characteristics
and resource requirements, Tech. Rep., Indiana University, Bloomington, IN,
USA, 2008.

[34] M. Richards, M. Ghanem, M. Osmond, Y. Guo, J. Hassard, Grid-based
analysis of air pollution data, Ecol. Modell. 194 (1–3) (2006) 274–286.
http://dx.doi.org/10.1016/j.ecolmodel.2005.10.042.
URL: http://www.sciencedirect.com/science/article/pii/S0304380005005259.

[35] I.J. Taylor, E. Deelman, D.B. Gannon, Workflows for e-Science: Scientific
Workflows for Grids, Springer, 2006,
URL: http://www.worldcat.org/isbn/1846285194.

[36] I. Taylor, M. Shields, I. Wang, A. Harrison, The triana workflow environment:
architecture and applications, in: I. Taylor, E. Deelman, D. Gannon, M. Shields
(Eds.), Workflows for e-Science, Springer, New York, Secaucus, NJ, USA, 2007,
pp. 320–339.

[37] A. Thusoo, J.S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff,
R. Murthy, Hive—a warehousing solution over a map-reduce framework, in:
IN VLDB’09: Proceedings of the VLDB Endowment, 2009, pp. 1626–1629.

[38] J.A. Tomé, J. Carvalho, Fuzzy Boolean nets—a nature inspired model
for learning and reasoning, Fuzzy Sets and Systems 253 (2014) 1–27.
http://dx.doi.org/10.1016/j.fss.2014.04.020.

[39] T. White, Hadoop: The Definitive Guide, first ed., O’Reilly Media, Inc., 2009.
[40] J. Yu, R. Buyya, A taxonomy of workflow management systems for grid com-

puting, J. Grid Comput. 3 (2005) 171–200. http://dx.doi.org/10.1007/s10723-
005-9010-8.

[41] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, Spark: cluster
computing with working sets, in: Proceedings of the 2Nd USENIX Conference
onHot Topics in CloudComputing,HotCloud’10, USENIXAssociation, Berkeley,
CA, USA, 2010, pp. 10–17.
URL: http://dl.acm.org/citation.cfm?id=1863103.1863113.

http://dx.doi.org/10.1145/192844.192886
http://doi.acm.org/10.1145/192844.192886
http://doi.ieeecomputersociety.org/10.1109/SSDM.2004.1311241
http://doi.ieeecomputersociety.org/10.1109/SSDM.2004.1311241
http://doi.ieeecomputersociety.org/10.1109/SSDM.2004.1311241
http://doi.ieeecomputersociety.org/10.1109/SSDM.2004.1311241
http://doi.ieeecomputersociety.org/10.1109/SSDM.2004.1311241
http://doi.ieeecomputersociety.org/10.1109/SSDM.2004.1311241
http://doi.ieeecomputersociety.org/10.1109/SSDM.2004.1311241
http://doi.ieeecomputersociety.org/10.1109/SSDM.2004.1311241
http://doi.ieeecomputersociety.org/10.1109/SSDM.2004.1311241
http://dx.doi.org/10.1109/ICAC.2005.30
http://dx.doi.org/10.1145/1807128.1807150
http://doi.acm.org/10.1145/1807128.1807150
http://dx.doi.org/10.1109/WORKS.2008.4723958
http://dx.doi.org/10.1145/2038916.2038923
http://doi.acm.org/10.1145/2038916.2038923
http://refhub.elsevier.com/S0743-7315(15)00050-7/sbref7
http://refhub.elsevier.com/S0743-7315(15)00050-7/sbref8
http://dx.doi.org/10.1145/1978915.1978919
http://doi.acm.org/10.1145/1978915.1978919
http://dx.doi.org/10.1145/1454159.1454166
http://dl.acm.org/citation.cfm?id%3D1267308.1267323
http://dx.doi.org/10.1007/978-1-84628-757-2_22
http://dl.acm.org/citation.cfm?id%3D1251254.1251264
http://dx.doi.org/10.1109/E-SCIENCE.2006.99
http://dx.doi.org/10.1186/1869-0238-4-12
http://www.jisajournal.com/content/4/1/12
http://dx.doi.org/10.1093/comjnl/bxu158
http://dx.doi.org/10.1093/comjnl/bxu158
http://dx.doi.org/10.1093/comjnl/bxu158
http://dx.doi.org/10.1093/comjnl/bxu158
http://dx.doi.org/10.1093/comjnl/bxu158
http://dx.doi.org/10.1093/comjnl/bxu158
http://dx.doi.org/10.1093/comjnl/bxu158
http://dx.doi.org/10.1093/comjnl/bxu158
http://comjnl.oxfordjournals.org/content/early/2015/01/08/comjnl.bxu158.abstract
http://comjnl.oxfordjournals.org/content/early/2015/01/08/comjnl.bxu158.abstract
http://comjnl.oxfordjournals.org/content/early/2015/01/08/comjnl.bxu158.abstract
http://comjnl.oxfordjournals.org/content/early/2015/01/08/comjnl.bxu158.abstract
http://comjnl.oxfordjournals.org/content/early/2015/01/08/comjnl.bxu158.abstract
http://comjnl.oxfordjournals.org/content/early/2015/01/08/comjnl.bxu158.abstract
http://comjnl.oxfordjournals.org/content/early/2015/01/08/comjnl.bxu158.abstract
http://comjnl.oxfordjournals.org/content/early/2015/01/08/comjnl.bxu158.abstract
http://comjnl.oxfordjournals.org/content/early/2015/01/08/comjnl.bxu158.abstract
http://comjnl.oxfordjournals.org/content/early/2015/01/08/comjnl.bxu158.abstract
http://comjnl.oxfordjournals.org/content/early/2015/01/08/comjnl.bxu158.abstract
http://comjnl.oxfordjournals.org/content/early/2015/01/08/comjnl.bxu158.abstract
http://www.amazon.de/HBase-Definitive-Guide-Lars-George/dp/1449396100/ref%3Dsr_1_1?ie%3DUTF8%26qid%3D1317281653%26sr%3D8-1
http://www.amazon.de/HBase-Definitive-Guide-Lars-George/dp/1449396100/ref%3Dsr_1_1?ie%3DUTF8%26qid%3D1317281653%26sr%3D8-1
http://www.amazon.de/HBase-Definitive-Guide-Lars-George/dp/1449396100/ref%3Dsr_1_1?ie%3DUTF8%26qid%3D1317281653%26sr%3D8-1
http://dl.acm.org/citation.cfm?id%3D1924943.1924949
http://refhub.elsevier.com/S0743-7315(15)00050-7/sbref19
http://dx.doi.org/10.1145/1272996.1273005
http://doi.acm.org/10.1145/1272996.1273005
http://refhub.elsevier.com/S0743-7315(15)00050-7/sbref22
http://dx.doi.org/10.1002/cpe.v21:16
http://dx.doi.org/10.1007/s12145-008-0010-7
http://dx.doi.org/10.1145/1807128.1807138
http://doi.acm.org/10.1145/1807128.1807138
http://daks.ucdavis.edu/~ludaesch/Paper/ch13-preprint.pdf
http://refhub.elsevier.com/S0743-7315(15)00050-7/sbref28
http://dx.doi.org/10.1145/1989323.1989439
http://doi.acm.org/10.1145/1989323.1989439
http://dl.acm.org/citation.cfm?id%3D1404014.1404035
http://dx.doi.org/10.1145/1376616.1376726
http://doi.acm.org/10.1145/1376616.1376726
http://dl.acm.org/citation.cfm?id%3D1924943.1924961
http://refhub.elsevier.com/S0743-7315(15)00050-7/sbref33
http://dx.doi.org/10.1016/j.ecolmodel.2005.10.042
http://www.sciencedirect.com/science/article/pii/S0304380005005259
http://www.worldcat.org/isbn/1846285194
http://refhub.elsevier.com/S0743-7315(15)00050-7/sbref36
http://dx.doi.org/10.1016/j.fss.2014.04.020
http://refhub.elsevier.com/S0743-7315(15)00050-7/sbref39
http://dx.doi.org/10.1007/s10723-005-9010-8
http://dx.doi.org/10.1007/s10723-005-9010-8
http://dx.doi.org/10.1007/s10723-005-9010-8
http://dl.acm.org/citation.cfm?id%3D1863103.1863113

S. Esteves et al. / J. Parallel Distrib. Comput. () – 15

Sérgio Esteves received his B.S. and M.S. degrees in
Computer Science and Engineering in 2009, from Instituto
Superior Técnico (IST), Universidade de Lisboa, Portugal.
He is a Ph.D. student at IST and a researcher in the
Distributed Systems Group at INESC-ID since 2009.
His research interests include parallel and distributed
computing; massive scale software systems for big data;
data/workflow management; stream processing systems;
and machine learning.

João Nuno Silva has a Ph.D. in Computer and Systems
Engineering (2011) by Instituto Superior Técnico, Lisbon
University. He is an Assistant Professor at Instituto Su-
perior Técnico (Electrical and Computer Engineering De-
partment) and a researcher at INESC-ID, in the Distributed
Systems Group. He is the head instructor of Operating
Systems and Distributed Systems courses in the Electrical
and Computer Engineering Master Degree, at Instituto Su-
perior Técnico. His research interests include middleware
for mobile and cloud computing. He is the Technical Man-
ager of the PCAS FP7 European Project.

João Paulo Carvalho has a Ph.D. (2002) and M.Sc. (1996)
degree from Instituto Superior Técnico, Universidade de
Lisboa, Portugal, where he is currently a Professor at the
Department of Electrical Engineering and Computation.
He has taught courses on Computational Intelligence,
Distributed Systems, Computer Architectures and Digital
Circuits since 1998. He is also a senior researcher at L2F—
Spoken Language Systems Laboratory, INESC-ID Lisboa,
where he has been working since 1991. His current
main research interest involves applying Computational
Intelligence techniques in Engineering and Soft Sciences.

He has authored over 90 papers in international scientific Journals, book
chapters and peer-reviewed conferences. He was program co-chair and organizer
of IFSA-EUSFLAT 2009, webchair for IEEE-WCCI 2010, publicity chair of FUZZ-
IEEE2015 and program committee member of several conferences in the area of
computational intelligence.

Luís Veiga is a tenured Assistant Professor at Instituto
Superior Técnico (IST), ULisboa, Senior Researcher at
INESC-ID, and Group Manager of GSD for 2014–2015.
He coordinates locally the FP7 CloudForEurope project,
participates in FP7 Timbus project on digital preservation
and virtualization. He has lead 2 National funded research
projects on P2P cycle-sharing and virtualization, and is
locally coordinating 2 on distributed virtual machines and
multicore programming, and evaluated FP7 and third-
country project proposals (Belgium). He has over 75 peer-
reviewed scientific publications in journals, conferences,

book chapters, workshops (Best Paper Award at Middleware 2007, and Best-Paper
Award Runner Up at IEEE CloudCom 2013, Best-Paper Award Candidate at IEEE
CloudCom 2014). He was General Chair for Middleware 2011, and belongs to
Middleware Steering and Program Committee. He was Virtualization track co-
Chair for IEEE CloudCOM 2013, and is Local Chair for Euro-Par 2014 track on
Distributed Systems and Algorithms. He was an ‘‘Excellence in Teaching in IST’’
mention recipient (2008, 2012), and awarded Best Young Researcher at INESC-ID
Prize (2012), and Best Researcher Overall at INESC-ID Prize (2014).

He has previously served in international conferences as member of program
committee, proceedings editor (ACM Middleware 2011, EuroSys 2007, ACM PPPJ
2007 and 2008, and MobMid/M-MPAC Workshop at ACM Middleware 2008, 2009,
and 2010) and as reviewer.

He is a member of the Scientific Board of Erasmus Mundus European Master
and Joint Doctorate in Distributed Computing. He is Chair of IEEE Computer Society
Chapter, IEEE Section Portugal for 2014–2015.

	Incremental dataflow execution, resource efficiency and probabilistic guarantees with Fuzzy Boolean nets
	Introduction
	Dataflow model
	Prototypical scenario
	Output error

	Learning
	Fuzzy Boolean nets overview
	FBN performance under sparse data conditions
	Proposed approach

	 Flu χ y framework
	Session management
	Evaluation and enforcement of the quality-of-data bounds
	Learning

	Implementation issues
	Adopted technology
	Library support and API
	Dataflow description

	Evaluation
	Results

	Related work
	Conclusion
	Acknowledgments
	References

