
UNIVERSIDADE DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

Practical Dynamic Software Updating

Lúıs Gabriel Ganchinho de Pina

Advisor: Doctor Lúıs Veiga

Co-Advisor: Doctor Michael Hicks

Thesis specifically prepared to obtain the PhD Degree in
Information Systems and Computer Engineering

Draft

July 2015

Resumo

Actualizar um programa é indispensável para corrigir erros, adicionar funcionalidade, ou melhor a per-

formance. No entanto, actualizações interferem com a normal execução do program dado que requerem

parar e recomeçar o programa, com perda de disponibilidade e dados como efeito secundário. A capaci-

dade de actualizar um programa sem o parar — Actualização Dinâmica de Software — é cada vez mais

importante, especialmente quando perda de disponibilidade se traduz directamente em perda de receita.

Existem, claro, sistemas com requisitos de alta disponibilidade que já suportam actualizações

dinâmicas. Estes sistemas, no entanto, requerem hardware redundante, já presente para tolerância a

faltas, para actualizar incrementalmente algumas máquina enquanto o resto continua a fornecer serviço.

Estas abordagens usam algoritmos complexos e especif́ıcos a cada sistema em particular que restrigem a

flexibilidade das actualizações. A comunidade cient́ıfica investigou este problema, tendo produzido uma

vasta bibliografia acerca do tema. No entanto, até à data, não existe nenhuma abordagem prática para

actualizações dinâmicas de software.

Neste trabalho, proponho a primeira solução prática para Actualizações Dinâmicas de Software para

linguagens que executam num ambiente gerido, Java em particular. A abordagem que proponho suporta

modificações sem restrições entre versões sucessivas do programa e não limita o program de usar qualquer

caracteŕıstica da linguagem ou funcionalidade do ambiente de execução. Além disso, não adiciona qual-

quer custos de performance adicional e apenas requer uma pausa curta durante a normal execução do

programa para realizar uma actualização (que não é proporcional ao tamanho do estado do programa).

Proponho que as actualizações sejam suportadas explicitamente como qualquer outra funcionalidade

do programa. Portanto, o programador precisa de alterar o programa para suportar actualizações. A

solução que proponho minimiza o número de alterações manuais necessárias e gera automaticamente

a maior parte do código que descreve cada actualização. Além disso, dado que o programador pode

inadvertidamente introduzir erros no programa que apenas se tornam viśıveis durante o proceasso de

actualização, a abordagem que proponho permite que o programador use testes de sistema já existentes,

e escreva novos testes, que garantem que o programa exibe o comportamento esperado após uma actual-

ização.

i

ii

Abstract

Updating a program is unavoidable to fix bugs, add features, or improve performance. This is, however,

a disruptive operation that involves stopping and restarting the running program, with the side-effect of

service downtime and data loss. The ability to update a program without stopping it — to perform a

Dynamic Software Update — is thus increasingly important in a world where service downtime and data

loss maps directly to loss of revenue.

There are, of course, highly-available systems deployed that simply cannot stop and already sup-

port dynamic updates. These systems, however, rely on redundant hardware, already present for fault

tolerance, to incrementally update some machines while the remainder keep providing service. These

approaches employ complex and domain-specific algorithms that restrict the flexibility of updates. The

research community has focused on this problem and produced a vast body of work. However, to date,

there is no practical solution for dynamic software updating.

In this work, I propose the first practical solution for Dynamic Software Updating for languages that

run in a managed environment, in particular Java. The approach I propose supports unrestricted changes

between successive program versions and does not limit the updatable program from using any language

or runtime feature. Moreover, it does not add any steady-state overhead and requires only a short pause

in program execution to perform an update (that is not proportional to the size of the program state).

I propose updates to be supported explicitly as a program feature. Therefore, the developer needs to

change their application to support updating it. The solution I propose minimizes the manual changes

required and automates most of the code that describes each update. Furthermore, given that the

developer may inadvertently introduce errors, only visible during the update process, the approach I

propose provides a way for the developer to re-use existing system tests, and write new ones, that ensure

that the updated program behaves as expected after an update.

iii

iv

Palavras-Chave

Keywords

Palavras-Chave

Actualizações Dinâmicas de Software

Java

Máquina Virtual Java

Memória Transacional em Software

Testes Sistemáticos

Alta Disponibilidade

Proxies

Re-escrita de Binário

Reciclagem Automática de Memória

Testes de Software

Keywords

Dynamic Software Updates

Java

Java Virtual Machine

Software Transactional Memory

Systematic Testing

High Availability

Proxies

Binary Rewriting

Garbage Collection

Software Testing

v

vi

Acknowledgments

XXX

vii

viii

Contents

1 Introduction 1

1.1 Challenges of Dynamic Software Updating . 2

1.1.1 When to update . 2

1.1.2 Migrate the program state . 3

1.1.3 Update induced pause . 3

1.1.4 Steady-state overhead . 4

1.1.5 Update correctness . 4

1.2 Goals . 4

1.2.1 Flexibility . 4

1.2.2 Correctness . 5

1.2.3 Efficiency . 6

1.2.4 Effectiveness . 7

1.3 Past Work . 7

1.4 Thesis Statement . 9

1.5 Contributions . 9

1.6 Structure of this document . 10

2 State of the Art 11

2.1 Classification of Dynamic Software Updating Systems . 11

2.1.1 Timing . 13

2.1.2 State Transformation . 15

2.1.3 Semantics . 16

2.2 Formal Approaches . 18

2.2.1 General Update Correctness . 18

2.2.2 Update Calculus . 19

2.2.3 Update Modularity Conditions . 21

2.3 Compiled Imperative Languages — C . 22

2.3.1 Update Preparation Methodology . 22

2.3.2 Timing . 25

2.3.3 Code Updates . 26

2.3.4 Data Updates . 28

2.3.5 State Transformation and Semantics . 29

2.3.6 Discussion . 29

2.4 Managed Object-Oriented Languages — Java . 31

2.4.1 Implementation Level . 32

2.4.2 Flexibility . 37

2.4.3 Timing . 38

ix

2.4.4 Update Semantics . 39

2.4.5 State Transformation . 40

2.4.6 Discussion . 42

2.5 Object-Oriented Database Management Systems . 44

2.5.1 Language Bindings . 45

2.5.2 Change Detection . 45

2.5.3 Update Semantics . 46

2.5.4 State Transformation . 47

2.5.5 Discussion . 49

2.6 Programming Language Support for DSU . 50

2.6.1 Common LISP . 50

2.6.2 Smalltalk . 51

2.6.3 Erlang . 52

2.6.4 UpgradeJ . 53

2.6.5 Discussion . 54

2.7 Other Approaches . 55

2.7.1 Modular Systems . 55

2.7.2 Distributed Systems . 56

2.8 Discussion . 57

2.8.1 Flexibility . 57

2.8.2 Efficiency . 58

2.8.3 Effectiveness . 59

2.8.4 Correctness . 59

2.8.5 Rest of this document . 60

3 Composable Updates 63

3.1 Claims . 64

3.2 Notation . 65

3.3 Atomic Dynamic Software Updates with DuSTM . 66

3.3.1 Updatable Application Example . 67

3.3.2 Atomic Updates and Quiescence . 68

3.3.3 Immediate Update Semantics . 68

3.3.4 Lazy Update Semantics . 70

3.3.5 Program-State Migration Semantics . 70

3.3.6 Developing and Updating Applications . 73

3.4 Implementing Atomic Updates . 75

3.4.1 Handles as Transactional Proxies . 76

3.4.2 Supporting Inheritance . 78

3.4.3 Post-Processing Method Bodies . 82

3.4.4 Object Identity Semantics . 86

3.4.5 Limitations . 86

3.4.6 Optimizations . 88

3.5 Experimental Evaluation . 89

3.5.1 Updating an STM Based Application . 90

3.5.2 Cost of the Handles . 95

3.6 Discussion . 98

x

4 Efficient Real-World Updates 101

4.1 Claims . 102

4.2 Dynamic Software Updates with Rubah . 103

4.2.1 Workflow . 104

4.2.2 Updatable Application Example . 105

4.2.3 Quiescence and Update Points . 107

4.2.4 Control-flow Migration . 109

4.2.5 State Transformation . 109

4.3 State Transformation Algorithms . 111

4.3.1 Notation . 112

4.3.2 Parallel State Transformation Algorithm . 112

4.3.3 Lazy State Transformation Algorithm . 115

4.4 Implementing Efficient Updates . 118

4.4.1 Name Mangling and Class Replacement . 118

4.4.2 State Transformation . 119

4.4.3 Bytecode Rewriting . 122

4.4.4 Portability Among JVMs . 123

4.5 Evaluation . 123

4.5.1 Updatable Applications . 123

4.5.2 Programmer Effort . 124

4.5.3 Experimental Setup . 125

4.5.4 Steady-State Overhead . 126

4.5.5 Parallelizing State Transformation . 127

4.5.6 Performing Updates . 127

4.5.7 Post-update performance . 131

4.6 Discussion . 132

4.6.1 Flexibility . 132

4.6.2 Efficiency . 133

4.6.3 Effectiveness . 133

4.6.4 Correctness . 134

5 Correct Updates 137

5.1 Claims . 138

5.2 Failures during Dynamic Software Updating . 138

5.2.1 Updatable Applications . 138

5.2.2 DSU Failures . 140

5.3 Tedsuto — A Framework for DSU Testing . 141

5.3.1 Architecture . 142

5.3.2 Adapting Existing Tests . 142

5.3.3 Exploring Update Opportunities . 144

5.3.4 DSU Testing . 144

5.4 Experimental Evaluation . 146

5.4.1 Experimental Configuration . 146

5.4.2 Manual Effort . 146

5.4.3 Overhead . 147

5.4.4 Intensive Update Testing: Practical Coverage . 148

5.4.5 Extensive Update Testing: Sampling Effectiveness 148

xi

5.4.6 Bugs Found . 149

5.5 Discussion . 153

6 Conclusion 155

6.1 Contributions . 156

6.2 Future Work . 156

Appendices 159

A Transactional Memory 161

A.1 Concurrent Application Example . 161

A.2 Transactions as Composable Concurrency Control . 165

A.3 Basic Concepts of Transactional Memory . 166

A.3.1 Semantics and Consistency . 166

A.3.2 Concurrency Control . 169

A.3.3 Version Management . 170

A.3.4 Conflict Detection . 171

A.3.5 Nesting . 171

A.4 Multiversioned Transactional Memory and the JVSTM . 171

A.4.1 Transactional Sorted List using JVSTM . 172

A.4.2 Transactions, Versions, and Global Clock . 172

xii

List of Figures

1.1 Example of interaction between different versions . 2

2.1 Example why function quiescence is not correct . 14

2.2 Value of an updatable application over time . 17

2.3 Informal illustration of the update validity property . 19

2.4 Example of transactional version consistency . 20

2.5 Method to prepare updates for several DSU systems for C 24

2.6 Updating code for C programs . 26

2.7 Simple example of control-flow migration on a C program 27

2.8 Updating data for C programs . 28

2.9 JRebel program transformation . 34

2.10 DUSC program transformation . 34

2.11 Kim and Tilevich program transformation . 35

2.12 JavAdaptor program transformation . 36

2.13 Example of a transformation code for JDrums and JVolve 41

2.14 Method to prepare updates for JDrums and JVolve . 42

2.15 PJama API for program state transformation . 48

2.16 Example of code update in Erlang . 53

2.17 Example of UpgradeJ class updates . 54

3.1 Notation for executions of concurrent threads . 66

3.2 Notation for real-time order and logical order . 66

3.3 First version of an updatable application example . 67

3.4 Second version of an updatable application example . 68

3.5 Possible options for the atomic DSU semantics . 69

3.6 Immediate update semantics . 69

3.7 Lazy update semantics . 70

3.8 Conversion ordering problem . 71

3.9 Atomic update semantics . 72

3.10 Solution for the conversion ordering problem . 73

3.11 Structure of an application updatable through DuSTM . 74

3.12 Methodology for generating an updatable version using DuSTM 74

3.13 Conversion code for the updatable application example . 75

3.14 Old classes for the updatable application example . 76

3.15 Outline of class Handle . 77

3.16 Updatable application example after post-processing by DuSTM 78

3.17 Second version of the updatable application example after post-processing 79

3.18 Example of a small updatable application before and after post-processing 80

xiii

3.19 Possible implementations for downward methods . 81

3.20 Example of how DuSTM supports method overloading . 84

3.21 Example of how DuSTM supports constructor overloading 84

3.22 Location of handles in the operand stack . 85

3.23 Bytecode transformation to support the instanceof operator 86

3.24 Example of updatable instances safely passed to non-updatable code 87

3.25 Class hierarchy changes supported and not supported by DuSTM 88

3.26 Optimization for reading the current program version . 89

3.27 Maximum latency for STMBench7 operations . 91

3.28 Increase of maximum latency introduced by DuSTM . 91

3.29 Throughput of STMBench7 with different update semantics 92

3.30 Throughout overhead that DuSTM introduces to STMBench7 93

3.31 Number of instances DuSTM transforms during an update 93

3.32 Number of instances DuSTM transforms during an update with increasing program-state

size . 94

3.33 Maximum latency for STMBench7 operations with fixed size 95

3.34 Outline of non-transactional class Handle . 96

4.1 Workflow for deploying and updating a program using Rubah 104

4.2 Small server example . 106

4.3 Small server example retrofitted with Rubah . 108

4.4 Example of an update class . 110

4.5 Example showing how to save local variable during an update 111

4.6 Parallel state transformation algorithm . 113

4.7 Order in which Rubah calls conversion methods along the class hierarchy 113

4.8 Example of tasks concurrently transforming the same object 114

4.9 Lazy state transformation algorithm . 116

4.10 Race between lazy state transformation and application 117

4.11 Memory layout of a Java object . 118

4.12 Implementation of proxies . 121

4.13 Progress during lazy program state tranformation . 121

4.14 Throughput of updatable applications before, during, and after an update 130

4.15 Program change that Rubah supports but DuSTM does not 133

5.1 Example of data semantics changing between versions . 141

5.2 Example of a misplaced update point and respective fix 141

5.3 Architecture of Tedsuto . 142

5.4 Tedsuto’s API for adapting system tests. 143

5.5 Example system tests . 143

5.6 Updates performed per test . 148

5.7 Example of a misplaced update point . 153

A.1 Implementation of a sequential sorted simply linked list 162

A.2 Inconsistent concurrent execution of a sequential linked list 163

A.3 Implementation of a synchronized sorted simply linked list 163

A.4 Consistent execution of a synchronized linked list . 164

A.5 Implementation of method swap on the sequential linked list 164

A.6 Inconsistent concurrent execution of method swap . 165

xiv

A.7 Implementation of method swap on the synchronized linked list 165

A.8 Implementation of a transactional sorted simply linked list 167

A.9 Difference between serializability and strict-serializability 168

A.10 Execution of two transactions using pessimistic concurrency control 169

A.11 Execution of two transactions using optimistic concurrency control 170

A.12 Implementation of a sorted list using VBoxes . 172

A.13 Example of a JVSTM transaction . 173

A.14 Example of two concurrent JVSTM transactions . 173

A.15 Example of two concurrent conflicting JVSTM transactions 174

A.16 Implementation of a transactional sorted linked list with JVSTM 175

xv

xvi

List of Tables

2.1 Summary of the State-of-the-art on DSU . 12

2.2 DSU for applications and OS kernels written in C . 22

2.3 DSU systems for applications written in Java . 32

2.4 OODBMSs that support DSU . 45

3.1 Details about how DuSTM post-processed each DaCapo benchmark 97

3.2 Overhead introduced by DuSTM handles . 97

4.1 Changes between releases and effort to retrofit Rubah . 124

4.2 Updatable application performance with and without Rubah 127

4.3 Time taken to transform the program state with the parallel algorithm 128

4.4 Pause required to perform an update with varying program state sizes 129

5.1 Effort required to adapt existing testing frameworks . 147

5.2 Overhead introduced by an external observer process . 147

5.3 Comparison of different techniques to explore update opportunities 150

5.4 Summary of all bugs found . 150

xvii

xviii

List of Abbreviations

ACID Atomic-Consistent-Isolated-Durable

API Application Program Interface

CAS Compare-and-swap

DBMS Database Management System

DSL Domain Specific Language

DSU Dynamic Software Update/Updating

GC Garbage Collection

IDE Integrated Development Environment

JIT Just-in-time

JVM Java Virtual Machine

LOC Lines of code

MOP Meta-object Protocol

OODBMS Object-Oriented Database Management System

OS Operating System

OSGi Open Services Gateway initiative

PC Program Counter

RFC Request for comments

SQL Structured Query Language

STM Software Transactional Memory

TM Transactional Memory

VM Virtual Machine

xix

xx

Chapter 1

Introduction

The ubiquity of the Internet changed dramatically how software is perceived: Security bugs leave systems

vulnerable to malicious entities and must be fixed as soon as possible; service providers must ensure high

availability and frequently updated features to win and keep their user base. Software updates have the

ability to correct bugs, add features, or improve performance. They are unavoidable in the constant

struggle for responding quickly to any of these forces.

Updating a program is, however, a disruptive operation. It typically involves stopping the outdated

program and starting its new version. Besides reducing availability, the update also leads to the loss of all

non-persistent program state such as the contents of the memory heap, the execution stack and program

counter, and any network connection the program was using at the time of the update. The ability to

perform dynamic software updates (DSU), i.e. to update a running program in place without stopping

it, provides the solution to this problem.

Designing and deploying highly available systems is not a new problem. Such systems have been

studied since before the internet age and are nowadays successfully deployed on a massive scale. They

implement dynamic software updates using techniques such as rolling updates or big flips [Bre01] that

leverage on redundant hardware, already present to tolerate faults, to update some machines separately

while others keep providing service. Besides requiring additional hardware, these techniques have their

own shortcomings. In particular, they require complex algorithms to migrate the program state between

versions. Such algorithms are hard to reason about, to ensure correctness, and too domain specific to be

applicable to other programs as a framework. As a result, these techniques end up restricting the overall

flexibility of updates, e.g. by requiring stateless programs/protocols to ensure safety or compatibility

between versions.

Over the past 15 years, the way in which software systems are developed and deployed changed to

accommodate the vast growth of the Internet and the research on Dynamic Software Updating has taken

advantage of the new opportunities this change created. Most notably:

• Operating System (OS) kernels are now more modular and sophisticated, which allowed for the

development of DSU systems that specifically target OS kernels [BHA+05, CCZ+06, MR07, AK09,

GKT13].

• On the user-space, C applications are still used today to run the backbone of the services that the

Internet provides. If anything, the focus on their high-availability is now stronger than ever, and

the research community acknowledged that focus with a new generation of DSU systems [ABBS05,

NHSO06,CYC+07,MB09,HSHF11,HSD+12,PBG13];

• Languages with a managed runtime, such as Java, have become more important. These languages

provide developers with memory safety through Garbage-Collection (GC) [JHM11] and performance

1

1 run() {
2 process();
3
4 cleanup();
5 }

Figure 1.1: Example illustrating different versions of the same program interacting due to an update. In
one program version, function cleanup initializes and uses some state. The following program version
moves the initialization code to function process. Updating this program at line 3, when all the modified
code is not active, results in the old function process interacting with the new function cleanup and
thus crashing the program when function cleanup uses the uninitialized state.

for expressive high-level language constructs (such as dynamic dispatch) through Just-In-Time (JIT)

optimizing compilers. The research community provided several systems that target such languages

at their various levels of implementation [RA00, MPG+00, Dmi01, Orab, ORH02, SHM09, WWS10,

PGS+11,KV12].

Despite all this research in DSU, state-of-the-art software systems today do not employ most of the

knowledge it generated to improve their availability. Few DSU systems ever made it to the industry:

KSplice [AK09] and HotSwap [Dmi01, Orab]; providing support for deploying security patches and for

implementing stop-edit-continue debugging functionalities, respectively. These systems place restrictive

limitations on the flexibility of updates they support. For instance, they only support changing the code

that the program executes to a new version that has the same structure, i.e. same functions/method-

s/classes with the same name and signature. I thus claim that a practical solution to perform dynamic

software updates still eludes researchers and practitioners.

1.1 Challenges of Dynamic Software Updating

A software update is free to, and even expected to, change the semantics of a program. As a consequence,

dynamic software updating raises several challenges that require careful reasoning about the meaning of

an update taking place while the program is executing.

The ability to perform an update may introduce steady-state overhead, making the program run slower

when not updating than it would run without the ability to perform DSU. When updating, the system

starts by choosing an instant during program execution when to perform the update. During the update,

it transforms the program state to be compatible with the new program code, which may introduce a

noticeable update-induced pause in execution. Update correctness is orthogonal to all challenges, given

that an incorrect update may result in a program that crashes, corrupts its data, or otherwise misbehaves.

In this section, I explain each challenge in further detail.

1.1.1 When to update

Let us start by considering the instant when the update takes place. Suppose that the program being

updated is simply a set of functions that call each other starting from one main function, and the update

changes a subset of those functions. Functions are sequences of instructions and the program counter

(PC) keeps track of the current instruction being executed. Calling a function pushes a frame to the

top of the execution stack, which contains the current PC as the return address and the arguments/local

variables of the called function, and changes the PC to the start of the function. The function thus

becomes active, until the invocation completes, at which point the frame is popped from the stack and

the PC is reset to the return address.

2

Even in this simple computation model, the ability to perform DSU raises questions. For instance,

should we allow updates to active functions? One option is to allow it but keep executing old functions

active at the time of the update; only new calls are made to the updated code. Another option is to

map all the frames of the old function to equivalent frames of the new function [MB09]. It also has to

map the current PC to an equivalent position in the new code. Considering that functions might change

arbitrarily between two versions, mapping the frames and PC is a hard problem.

The alternative is to not support updates to active functions. This approach is indeed simpler, but

has its own problems. For instance, if an updated function never becomes inactive, the program might

never get updated. Such long running functions are common on server software that executes commands

from clients on a long-running loop. The function that contains the loop never becomes inactive.

Regardless of the alternative, the choice of updating a program at the level of function calls enables

the interaction between old code and new code. For instance, consider the example shown in Figure 1.1.

Function run calls functions process and cleanup in sequence. An update moves initialization code

from function cleanup to function process. Note that no updated function is active on function run
at line 3. However, performing the update at this point crashes the program because the new function

cleanup will access state that was supposed to be initialized by the new function process but was not,

because the old function process ran instead.

1.1.2 Migrate the program state

A running program keeps state in many forms. For instance, in the previous challenge, I mentioned the

execution stack and the PC. Both are forms of program state. Besides the stack, programs typically keep

their data structures on the heap.

Data structures have a structured format that allows the program code to manipulate them. A

program update can change the format and update the program code accordingly so that any program

that starts executing with a blank state in the new version uses the new format.

A Dynamic Software Update (DSU), however, starts executing the new code with the old program

state. Executing the updated code on the old data structures might result in a crash or in wrong behavior.

To avoid this possibility, DSU systems must be able to migrate the data structures when updating a

program so that they keep the same data but in the new format and, therefore, are compatible with the

new code.

1.1.3 Update induced pause

The first challenge can be reduced to choosing the instant when the update takes place. Suppose that we

have an answer to what is an acceptable instant to update a running program. A possible way to enforce

updates taking place only at those instants is to wait until the program reaches such an instant after the

update is made available.

The second challenge can be reduced to transforming the program state to an equivalent state that

is compatible with the updated program. A simple approach is to transform the whole program state at

once, pausing the execution of the program while the transformation is taking place.

These are two prudent solutions to each of the previous challenges. However, each one introduces

latency between the moment an update is available and the moment the program starts executing the

new version. During this time, the program is paused and not providing service. Even worse, the length

of the pause grows with the complexity of the control-flow structure of the program and the total size of

the program state, respectively.

In the worst case, the pause in program execution that a DSU introduces becomes comparable, if

not higher, to the downtime required to stop the program and restart it in the following version. Even

3

though a DSU does not result in the loss of any part of the program state, such a long pause partially

defeats the main motivation for supporting DSU.

1.1.4 Steady-state overhead

The ability to update programs dynamically may require modifications to the program or the runtime

environment that executes it. For instance, we can implement functions by using a jump table and

ensuring that all function calls in the updatable program are made through the jump table. To update

the definition of a function, all we need to do is update the respective entry in the table.

Rewriting the program or changing its runtime environment may result in lower performance while

the program is not performing an update, i.e. while it is executing in steady-state. In the example we

are following, each function call now requires a table lookup.

The fact that performing a DSU induces a pause in the execution of the program is expected. However,

besides that expected cost, executing the program in such a way that it has the ability to be updated

dynamically might add constant performance overhead, even when not updating.

1.1.5 Update correctness

To fully support DSU, the developer of the updatable program might be required to perform extra tasks

besides just writing the new program version. For instance, he might have to write code that migrates the

data structures from one version to the following one. Or he might be required to point out, manually,

program points where updates can take place.

An error made by the developer in any of these extra tasks might translate to a crash, or other

program misbehavior, when performing a DSU. When developing the original program, the developer

already has to deal with possible errors. However, he has tools that help him find and fix those bugs

before the program is considered ready to be put into production and start providing service.

Throughout this section, I have listed several scenarios that result in an unexpected program crash

due to the DSU process itself. In addition, the update may also involve executing code written by the

developer. How can the developer trust that the DSU will not result in an immediate program crash?

Or that it will not corrupt the program state? Or add a latent bug that will crash the program in an

indeterminate amount of time after a DSU? At a higher level: How can the developer be sure that the

client-visible behavior is correct, despite potential updates happening while processing client requests?

1.2 Goals

In the previous section, I listed the main challenges that come up when considering DSU. Together with

some challenges, I gave examples of possible solutions that are straightforward but not acceptable for

some reason. These examples highlight how the problem of DSU is complex and why a good solution

requires careful reasoning about subtle details.

I did not, however, describe what a good solution is. In this section, I present a set of goals that a

solution for DSU should reach and I argue why these goals matter when designing and using DSU in

practice.

1.2.1 Flexibility

In Section 1.1.1, I explored the design space for performing DSU at the function level for a simple language

based on functions. Supporting DSU when updated functions are active is challenging because we have to

migrate the PC and the stack frames for all updated functions that are active at the time of the update.

4

Suppose that we place the following restrictions on the supported DSU: Local variables cannot be

modified and functions can only replace one instruction by another. These restrictions trivially solve the

technical challenge of supporting DSU for active functions: There is a one-to-one mapping between the

local variables and the PC in both program versions.

This is, however, a very restrictive form of DSU. It is not clear whether we can use it to perform

even simple code changes, such as adjusting a loop guard to avoid an out-of-bounds access to an array.

Another way to say this is that the flexibility of this type of DSU is very limited.

Goal. A flexible DSU maximizes the types of program modifications that it supports.

Flexibility is not a binary choice that states whether a DSU solution reaches it. Flexibility identifies,

instead, a continuous dimension in the DSU design space. For instance, a flexible DSU for the example

we are following can modify the body of any function present in the outdated program in any way. An

even more flexible DSU system can, on top of that, add or remove functions between versions.

A possible way of validating this goal is to use existing software, originally built without support for

DSU, and check whether a DSU can update it from one release to the following. A particular design

choice for DSU that limits the types of program changes it supports might still be flexible enough to be

used in practice.

1.2.2 Correctness

After performing a DSU, it is natural to expect that the program is executing on the new version in a

state equivalent to the one in which the old version was stopped executing. We expect that a correct

DSU does not result in a crash at update time and does not corrupt data in a way that introduces any

semantical errors in the new version. What does it mean, however, for a DSU to be correct?

Researchers have studied the topic of DSU correctness and there are several definitions in the literature.

Kramer and Magee [KM90] consider updates to be correct if the updated program preserves all observable

behaviors of the old program, that is, if updates are observationally equivalent. Although intuitive, this

definition is too restrictive, as Bloom and Day [BD93] point out: An update that fixes bugs or adds new

features is not considered to be correct.

Gupta et. al. [GJB96] address the limitations of strict observational equivalence by proposing reach-

ability as the correctness condition for DSU. Their definition takes into account the difference between:

(1) Performing a DSU on a program running an old version, and (2) running a program from scratch on

the new version. They consider a DSU in case 1 to be correct if it eventually reaches a program state

that case 2 would be able to reach.

Reachability improves on observational equivalence because it clearly considers fixing bugs and adding

new features as correct updates. Unfortunately, as Hayden et al. [HMH+12] discuss, reachability has

serious shortcomings. For instance, consider an update that adds a limit to the maximum number of

connected clients to a server program. What happens when this update is performed while the server

has more clients connected than the maximum allows? On one hand, allowing those clients to remain

connected violates reachability because the clients may remain connected for an indefinite amount of time.

On the other hand, forcefully terminating client connections at update time does not violate reachability

but defeats the purpose of using DSU to avoid losing any part of the program state. Either alternative

is not acceptable.

Hayden et. al. [HMH+12] take a different approach to define DSU correctness. They argue against

attempts to define correctness in a completely general way and, instead, suggest that it makes more sense

for programmers to specify the behavior they expect as a collection of properties called client-oriented

specifications (CO-specs). CO-specs are client programs that resemble tests which interact with the

5

updated program, before and after the DSU, to assert if the behavior of the updated program is correct.

The authors further classify CO-specs into three major categories: Behaviors unaffected by the update

(backward-compatible), behaviors specific to the new program version (post-update), and updates that

change interfaces but keep core functionality (conformable).

A flexible DSU, as introduced in the previous section, that supports arbitrary changes to how the

program represents its state between successive versions, only worsens the problem of asserting the

correctness of a DSU. We cannot expect a flexible DSU to be able to migrate the program state between

versions automatically. As a consequence, a flexible DSU must allow the developer to write code that

migrates the program state. This is yet another moving part that has to be tested to ensure DSU

correctness, and that makes the case for CO-specs even stronger.

Goal. A correct DSU takes some specification of expected behaviors after an update takes place and can

either verify exhaustively or test systematically that a DSU conforms to its specifications.

Ensuring that a DSU is correct thus becomes similar to ensuring that a program conforms to a

specification. Verifying that a program written in a general-purpose language conforms to a specification

is computationally unfeasible. In practice, verified programs are small and written either in a limited

subset of a general-purpose language or in a special language. For larger programs, developers use testing

methodologies to ensure correctness up to some bound limited by test coverage. Developers should be to

able to do the same for DSU.

1.2.3 Efficiency

The ability to perform DSU has two main advantages: It allows updating a running program without

(1) losing any program state, (2) incurring a large execution pause due to the update process, or (3)

introducing overhead in steady-state execution just to support future updates. So far in this section, I

only introduced goals for point 1. The efficiency goal addresses points 2 and 3.

Goal. An efficient DSU minimizes both the performance overhead on steady-state (i.e. when not updat-

ing) and the pause in execution required to perform an update.

A DSU that takes place instantly but requires the program to execute at a fraction of its original

performance to support future DSUs cannot be considered efficient. This is exactly what the first part

of the efficiency goal states. The execution speed of running an updatable program version when not

performing DSU should be as close as possible to the execution speed of running the same program

version without the ability to perform DSU.

The pause introduced when performing a DSU should be, ideally, indistinguishable from normal

program execution. A DSU needs to migrate the program state so that it is compatible with the new

program version. An efficient DSU therefore must minimize the pause in execution required to perform

the program state migration.

Pausing the program to perform a DSU for an amount of time proportional to the size of the program

state only works for programs that keep a small amount of program state. Otherwise, it is easy to

imagine a program execution that builds up an arbitrarily large program state, which in turn introduces

an arbitrarily long pause in program execution. Even such programs do not need all their program state

all the time: They only require a small portion of it to be readily available to execute without overhead.

Such small portion of program state — the working set — contains the call stack, the program code, and

important program state.

It is reasonable to assume the existence of a working set. In fact, the memory management and

paging algorithms in modern operating systems do it [Tan07]. For these types of programs, an acceptable

6

solution for DSU should impose a pause that does not depend linearly on the size of the whole program

state. Whilst this may not be possible for all programs, the ideal length of the update pause should be

near constant.

1.2.4 Effectiveness

All the goals that this section listed so far can be broadly described as properties of DSU itself. The

ability to perform DSU on a running program, however, depends on several factors such as, for instance,

the language and runtime environment of the programming language in which the program undergoing

DSU is written.

A possible way to perform DSU is to require programs to be written in a language specifically designed

for that purpose. Or, in alternative, to write the updatable program in a popular language but in a way

that simplifies the challenges of implementing DSU according to the goals so far introduced, however

cumbersome it might be (e.g. writing C code in Continuation Passing Style [SS75]).

I argue that a solution that does so greatly reduces the utility of DSU, to the point it becomes

practically unusable and, ultimately, ineffective.

Goal. An effective DSU targets popular languages, minimizes any restriction on the style in which up-

datable programs are written, and allows programmers to use the same development time tools that they

would otherwise use.

An effective solution for DSU maximizes its impact, bringing the advantages of DSU to a potentially

large number of existing programs while requiring minimal, if any, effort to adapt those programs to

support DSU.

1.3 Past Work

There is already a vast body of literature dedicated to the topic of DSU. The combination of goals that

I propose in the previous section, however, is novel as there are no DSU approaches that achieve all of

them. In this section I describe the most relevant approaches and I explain why they still fall short of

the intended goals. I leave a more detailed discussion of the state of the art on DSU to Chapter 2.

Some languages have built-in support for DSU. Notable examples are: The CLOS object system for

LISP [Ste90], Smalltalk [GR83], and Erlang [AVWW96]. Other languages are designed with the explicit

goal of supporting DSU, such as UpgradeJ [BPN08]. The problem with language based approaches to

DSU is that they require programs to be written in a particular language which, unfortunately, is not

very popular. Therefore, most of the existing code cannot benefit from the DSU support that these

approaches provide. Language based approaches thus fail the effectiveness goal.

There are some systems that provide support for DSU and that are used in practice. Notable examples

are: The KSplice system [AK09], which allows a Linux kernel to be updated with security patches without

restarting; and the JVM HotSwap mechanism [Orab,Dmi01], which allows JVM bytecode to be redefined

to enable break-edit-continue features on Java IDEs and debuggers. The problem with these systems

is that they provide very limited flexibility: These approaches support updates that can only change

the body of existing functions/methods and that do not change the static structure of the program.

Furthermore, neither of these approaches support updates that might require transforming the program

state between successive versions.

Some systems are designed around modules: The main program provides only support for module

registration and communication, and the behavior of the whole system comes from the interactions

between different modules. A notable example is OSGi [OSG14]. In fact, the earliest document that

7

proposes DSU, by Fabry et. al. [Fab76], suggests that such a modular approach eases the task of providing

support for DSU because each module can be updated internally in a way that is transparent to the rest of

the system. Modular systems, however, are not a panacea for DSU. As Gregersen and Jørgensen [BTW07]

point out, a module A can hold an internal reference to another module B that becomes invalid when

module B is updated. Migrating the state between successive versions of the same module is also a

challenge, as well as updating several inter-dependent modules in a single atomic step. All these problems

defeat the flexibility and effectiveness goals.

The most recent line of work that discusses update correctness [HMH+12, HSH+12] is based

on Ginseng, which enables DSU for existing C applications and was tested with 6 existing pro-

grams [NHSO06, NH09]. It is possible to assert the correctness of a DSU made through Ginseng using

systematic testing [HSH+12]. Ginseng is very flexible and supports lazy program state migration. Gin-

seng, however, introduces measurable performance overhead on steady-state execution. Ginseng supports

updates that increase the size of existing structures up to some limit. Once the size of an updated struc-

ture hits the limit, Ginseng does not support updates that further increase the size of that structure

without restarting the program and limits the programming style to satisfy its conservative static analy-

sis. These three issues, the performance overhead, the limit on the maximum size of updated structures,

and the programming style limits, mean that Ginseng fails to achieve the efficiency and effectiveness

goals.

Kitsune [HSD+12] is a recent system that supports DSU for C programs. It is very flexible and

supports nearly any update made to a C program. Kitsune was tested on 5 existing real-world programs

and does not introduce any measurable performance overhead on steady-state execution. Kitsune requires

manual changes to the updatable program to support DSU. The developer has to mark update points,

which are program points when updates can take place. When an update becomes available, Kitsune

stops all threads at the next update point each thread reaches. When all threads are stopped this way,

Kitsune traverses the heap and migrates the program state according to state transformation code that

the developer can customize. Finally, Kitsune restarts all threads from the top. The developer has to

add control-flow migration code that guides the restarting thread to the update point in which it was

stopped, avoiding any code that would re-initialize state that Kitsune already migrated. This approach

comes very close to reach all the goals I propose, but it has two problems: (1) It only supports immediate

program-state migration, which means that an arbitrarily large program state would impose an arbitrarily

large pause to migrate it between versions; and (2) it does not support any framework to test whether

the update points, control-flow migration, and program-state migration are correct and will not crash the

program when performing a DSU. These two issues mean that Kitsune fails the efficiency and correctness

goal, respectively.

There are several approaches for supporting DSU for Java. The vast majority adds non-trivial per-

formance overhead to steady-state execution [RA00, MPG+00, ORH02] and thus fail the efficiency goal.

JRebel [KV12] is an extension of the HotSwap mechanism that adds support to updating the set of fields

and methods that a class defines. However, it does not support migrating the program state between

versions (new fields are initialized with their default values) or changes to the class hierarchy. Therefore,

JavaRebel fails the flexibility goal.

Both JVolve [SHM09] and the DCE-VM [WWS10] are custom JVMs that support DSU without

imposing any noticeable performance overhead. The DCE-VM stops threads at VM safe-points1 to

perform DSU. Updates may fail because update safe-points are a subset of VM safe-points. JVolve also

stops threads at VM safe-points but then checks if all threads are stopped at an update safe-point. If

JVolve fails to stop all threads at update safe-points after a certain amount of time, the update fails and

1A VM safe-point is a point in the execution of a thread where it is safe to perform garbage collection and to
reschedule threads.

8

the program keeps executing in the old version. There are still some situations in which an update with

JVolve might cause the program to crash if the developer fails to blacklist some methods that cannot

be interrupted to perform a DSU. Neither the DCE-VM nor JVolve has any mechanism to ensure that

bad timings cannot happen or to test exhaustively all timings. Therefore, in both approaches, it is very

hard to reason about the correctness of a DSU because a particular bad timing might cause an update

to crash the program. None of these approaches support updates that change the class hierarchy. Also,

both approaches migrate the program state between versions by executing a full garbage-collection cycle,

whose duration is proportional to the size of the program state and thus may pause the program for

an arbitrarily long amount of time when performing a DSU. Therefore, both these approaches fail the

correctness, flexibility, and efficiency goals.

1.4 Thesis Statement

In Section 1.2, I defined a set of goals that a good solution for DSU should reach. Then, in Section 1.3,

I briefly discussed why the most relevant systems that support DSU only reach some, but not all, of the

goals I defined.

The main contribution of this document is the description of the design, implementation, and evalu-

ation of a system that supports performing DSU and that reaches all the goals that I defined. In short,

I shall show that:

It is possible to design and implement a system that can perform Dynamic Software Updating on

a running program in an effective and efficient way, that maximizes flexibility, and that allows the

developer to reason about and to test the correctness of the program after performing a DSU.

1.5 Contributions

This document makes the following contributions:

1. It proposes a semantics for performing DSU on programs running on a transactional memory (TM)

system that naturally supports lazy program state transformation;

2. It describes the design and evaluation of DuSTM, a prototype system that implements the semantics

mentioned in the previous point for programs written in the Java programming language, and that

does not require a custom JVM;

3. It presents two algorithms for performing program-state transformation when updating running

Java programs that either: (1) Eagerly use multiple threads to minimize the update-induced pause;

or (2) lazily transform the program state as the new program code reaches it for the first time

after the update, amortizing the cost of program-state transformation over the execution of the

new program version and thus minimizing the update-induced pause in execution;

4. It describes the design and evaluation of Rubah, a prototype system that implements the algorithms

mentioned in the previous point for programs written in the Java programming language, that does

not require a custom JVM, that enjoys good steady-state performance before and after the update

and low update-induced pauses, and that can be readily applied to existing Java programs with

little developer effort;

9

5. It introduces testing techniques that use existing system tests to assess the correctness of programs

updated through DSU, and that uses systematic testing to explore all possible timing opportunities

at which the update could be applied to the running program;

6. It describes the design and implementation of Tedsuto, a framework for testing updates performed

with Rubah that uses the techniques described in the previous point; that is effective at finding

update errors, having discovered several unknown problems; and that can be implemented for any

DSU system with simple modifications to how they work.

The contributions that I present is this document have been validated by the research commu-

nity [PC12, PVH13, PVH14, PH16]. In particular, the work on Rubah [PVH14] was published on a

top tier conference (A* in the CORE ranking).

1.6 Structure of this document

The rest of this document is structure as follows:

Chapter 2 describes the existing solutions for DSU and why they do not reach all the goals that I

introduced earlier in this section;

Chapter 3 describes DuSTM, which is a DSU system for a rich programming model (Java + STM), that

provides simple update semantics and allows any part of the program to change between versions,

thus reaching the goal of flexibility. DuSTM also transforms the program state lazily between

versions and does not require a custom JVM, thus paving the way to an efficient and effective DSU

system.

Chapter 4 describes Rubah, which is a DSU system that is: effective, relaxing the programming model

of DuSTM so that it is applicable to existing Java software; efficient, introducing no steady-state

overhead and transforming the program state lazily between versions, and as flexible as DuSTM.

Chapter 5 describes Tedsuto, which is a systematic testing framework for DSU that allows the developer

to test updates using Rubah, and thus ensure their correctness.

Chapter 6 concludes this document.

10

Chapter 2

State of the Art

Upgrading a running program without stopping it is a problem well known to the research community.

Fabry [Fab76] was the first to notice this research problem, focusing on changing program modules on the

fly. Much has changed since then and other approaches have since appeared: Programming languages that

support dynamic updates directly at the language level [Ste90, GR83, AVWW96], update systems that

increase the productivity of programmers by performing DSU during development time [Orab,WWS10,

KV12,PGS+11], runtime environments that support DSU for managed languages [SHM09,ORH02,RA00],

operating systems that can install new updates without requiring a reboot [AK09,MR07,GKT13], formal

approaches to dynamic software updates [GJB96,BLS+03b,BHSS03,SHB+07,NHFP08], etc. This is an

active topic that still gathers the attention of ongoing research.

In this chapter, I discuss the state of the art on dynamic software updating. I start by proposing

a classification of software updates in Section 2.1, useful to reason about the applicability of different

systems in a common framework that makes comparison easier. At the end of each section, I discuss all

presented approaches and relate them back to the original goals that I set in Section 1.2. In Section 2.2,

I explain the approaches that formalize DSU to reason about its correctness. In Sections 2.3 to 2.7, I

present the state of the art on DSU; Table 2.1 summarizes the all the considered solutions. Finally, in

Section 2.8, I discuss the presented state-of-the-art as a whole, referring back to Table 2.1.

The Notation of Table 2.1 provides visual clues about whether each particular solution (row) achieves

a particular goal (column). Each cell has a circle, which can be empty, fully filled, or partially filled.

Empty circles — — mean that the solution does not achieve the goal. Fully filled circles — —

mean that the solution fully achieves the goal. Partially filled circles — , , and — mean

that the solution partially achieves the goal. There is an order relation between partially achieve goals:

is further away from achieving the goal than , which in turn is further away than . In the

sub-sections with title Discussion on this chapter, I refer back to Table 2.1 and justify each symbol choice

in the context of is sub-section. Finally, in Section 2.8, I discuss the table as a whole and justify each

symbol choice for each solution in the context of the whole state-of-the-art.

2.1 Classification of Dynamic Software Updating Systems

Systems that support dynamic software updates must deal with several orthogonal challenges: The timing

at which an update takes place; how to perform state transformation between versions when updating,

and what semantics dynamic updates provide. In this section, I propose a classification that compares

update systems according to how they solve each of these challenges.

11

System Goals
Target Section Name Refs Flexible Correct Efficient Effective

C programs

2.3

OPUS [ABBS05]

Ginseng

[NHSO06,
SHB+07,
NHFP08,
NH09]

POLUS [CYC+07]
UpStare [MB09]
Ekiden [HSHF11]
Kitsune [HSD+12]
DynSec [PBG13]

OS Kernel

K42 [BHA+05]
LUCOS [CCZ+06]

DynaMOS [MR07]
KSplice [AK09]

PROTEOS [GKT13]

Java Programs 2.4

JDrums [RA00]
DVM [MPG+00]

HotSwap [Dmi01,
Orab]

DUSC [ORH02]
JVolve [SHM09]

DCE VM [WWS10]
JavAdaptor [PGS+11]

JRebel [KV12]

OODBMS 2.5

O2
[FMZ+95,
Zic91]

N/A N/AVersant [Ver15]
Objectivity/DB [Obj13]

GemStone [Gem14]
PJama [DA99]

Language 2.6

LISP [Ste90]
Smalltalk [GR83]

Erlang [AVWW96]
UpgradeJ [BPN08]

Modules 2.7.1
OSGi [OSG14]

Netbeans [BTW07]
Eclipse [ML05]

Distr. Systems 2.7.2
Rolling Upgrade

[Bre01]
Big flip
Imago [DN09b]

Java Programs
3 DuSTM —
4 Rubah —
5 Rubah + Tedsuto —

Table 2.1: Summary of the state-of-the-art on the various approaches to Dynamic Software Update. The
columns under Goals refer to the goals for practical DSU that I introduce in Section 1.2. The last three
rows on the separate table at the bottom provide a very brief overview of the rest of the document.

12

The goals for practical DSU that I defined earlier in Section 1.2 define a framework that could also

be used to classify the different DSU systems. However, the classification that I propose in this section

highlights the subtle differences between each different solution, making the task of comparing them much

easier. At the end of each section, I shall discuss how each system achieves, or not, each of the goals for

practical DSU.

2.1.1 Timing

The timing at which the update can take place is an important decision when designing a solution for

DSU. Restricting when an update can take place has technical repercussions that make each particular

solution for DSU easier or harder to implement.

Besides the technical aspects of choosing when updates can take place, timing is also closely tied

with the correctness of the update process. During the update, the program state is transformed to be

compatible with the new program version. The transformation code may assume certain invariants that

may not hold during all the possible times at which an update can be performed. Besides, the semantics

of the program may change due to the update, and this change may only make sense at certain points

in program execution. A correct solution for DSU cannot crash the program simply by performing an

update at the wrong time; an incorrect solution may crash a program by performing an update at instants

that make the program misbehave after the update.

Note that timing is just a part of DSU correctness. Even if the update process itself does not directly

crash the program, a bug introduced by the update can still make the program crash, corrupt its own

data, or otherwise misbehave.

In the following, I discuss the different solutions for DSU timing.

Unrestricted

This approach provides the least guarantees possible. Updates can happen at any point during the

program execution, even if code that the update changes is active.

This approach is, of course, inherently unsafe. However, by assuming that updates simply may fail,

this approach greatly simplifies the implementation of the update system and does not require any type

of manual intervention from the developer to support DSU.

The sheer simplicity of unrestricted updates makes them the preferred solution when considering

DSU as a development time tool [Orab, KV12, PGS+11, WWS10]. For instance, modern IDE’s provide

stop-edit-continue support when debugging. As the name implies, this feature allows the developer to:

Stop the program at a breakpoint, edit the code while the program is running, and continue execution

from the breakpoint with the modified code. In this scenario, it is acceptable to use a DSU system that

may sometimes crash the program when resuming from the update. It is an improvement over restarting

the program after each modification to continue debugging.

Quiescence

Consider that a program is composed by a set of functions. A function f is active if the program is

executing either function f or some other function that was called by f (i.e. f ’s return address is in any

stack frame). When function f is not active, we can say that f is quiescent. We can extend the notion of

quiescence to programs: A program is quiescent with relation to a set of functions F if all of the functions

in F are quiescent.

Some solutions for DSU allow updates only when the program is quiescent when considering all the

functions that the update modifies. Such systems take this approach by design, to ensure safety, rather

13

1 Object global;
2
3 m() {
4 process();
5
6 cleanup();
7 }
8
9 process() {

10 ...
11
12 }
13
14 cleanup() {
15 global = new Object();
16 ...
17 global.hashCode();
18 }

19
20
21
22
23
24
25
26
27 process() {
28 global = new Object();
29 ...
30 }
31
32 cleanup() {
33
34 ...
35 global.hashCode();
36 }

(a) Initial program. (b) Updated program.

Figure 2.1: Example illustrating why function quiescence is not a valid correctness property. The left-
hand side shows an initial program in Java-like pseudo-code. Method cleanup initializes and uses an
object referred to by a global reference (e.g. static field) global. The right-hand side shows an update
that moves the initialization code to method process. Both methods are quiescent at line 5. However,
performing an update at this point results in executing the initial version of method process and the
updated version of method cleanup, which in turn crashes at line 35.

than by technical limitation.

Considering quiescence as a safety condition seems like a reasonable and safe approach. It is hard to

reason about the behaviour of the program if code may change in the middle of a function. However,

limiting DSU timing to quiescence also limits the functions that an update can change. For instance,

functions that are never quiescent, such as main in C programs, cannot be changed.

Unfortunately, quiescence still allows for updates to be installed at unsafe instants. For instance,

consider the example that Figure 2.1 shows, adapted from Subramanian et al. [SHM09], which shows

the initial version of a simple program (Figure 2.1a) and a possible update (Figure 2.1b). Note that

all functions (methods, in this case) that the update changes, process and cleanup, are quiescent in

line 5. Still, performing an update at this point results in a crash in line 35 because the updated version

of method cleanup (lines 32–36) expects that the updated version of method process (lines 27–30)

executed before, and set the reference global on line 28. In this case, however, the initial version of

method process (lines 9–12) executed instead, leaving reference global uninitialized.

Manual Identification of Update Points

Finding program points where it is safe to perform a DSU is undecidable [GJB96]. Automatic approaches

to find such program points thus result in false-negatives that can lead to program crashes [HSH+12]. An

alternative is to require the developer to manually annotate the points in the program execution where it

is safe to perform an update. Let us refer to those points as safe update points, or simply update points.

Limiting the number of update points greatly simplifies reasoning about the timing at which the

update takes place. However, the program must reach update points frequently, otherwise updates may

be delayed for a long time. Besides, this approach offloads the problem of safety to the developer, who

may identify wrong update points that still result in a program crash at update time.

14

Transactions

Transactions group units of work in an application. A transactional application evolves in steps of one

atomic transaction: Either a transaction executes completely, with its results becoming visible to all

other transactions that start after it; or it aborts, with the rest of the system behaving as if it never took

place. Transactions are also a composable way of performing concurrency control.

The isolation between transactions naturally provides safe update points for DSU. The idea is to

execute each transaction Tx in the same program version in which Tx started. The obvious downside is

this approach requires applications to be written in a particular style, i.e. organized around transactions.

Even though transactions provide a more structured way of reasoning about old and new code than

manually identified program points, performing an update between transactions may still be wrong.

Ultimately, it is up to the developer to ensure that it does not happen.

2.1.2 State Transformation

While executing, programs keep a state that is tightly coupled with their code. Dynamic software updates

change the code that programs execute. Therefore, DSU must also transform the program state to an

equivalent version that is compatible with the new code.

Existing solutions for DSU use different approaches to transform the program state that range from

fully automatic to fully manual, with intermediate steps that try to combine the best of both extremes.

In the following, I discuss the different solutions for state transformation when performing a DSU.

Automatic

When performing an update, the system compares the new program version with the one in execution

and automatically transforms the state to match the structure that the new program version expects.

This is the simplest approach, which requires no manual effort from the developer. It is also the most

limited form of program state transformation because certain program changes are completely outside

the capabilities of any automatic system (e.g. an update that changes a data structure from a linked list

to a binary tree).

Update systems designed as development time tools can take advantage of this limited approach. For

instance, by simply copying values from unchanged fields, matching names and types between versions,

and initializing new fields with default values (e.g. zero, false, or null) [BFdH+13].

Indirect

An alternative to transfer the program state between versions is to require the old program version to

export its state to an abstract format that can be later interpreted by the new program version to initialize

its state. Ebraert et. al. [EVDB05] name such a solution as indirect state transfer and I shall borrow

their term in this classification. This solution has the obvious problem of choosing the right abstract

format to export and import the program state, which is application-specific.

Direct

A dynamic update system can provide means for the new program version to transfer the program state

directly from the old program version. Ebraert et. al. [EVDB05] name such a solution as direct state

transfer, opposed to indirect state transfer, and I shall also borrow their term in this classification.

With direct state transformation, developers use the same programming language in which the pro-

gram is written to specify the transformation logic. The update system must thus provide means for

15

them to specify such transformation code. Existing update systems that use direct state transfer allow

the developer to specify conversion code using one of the following two options:

Manual Transformation. Developers provide code that performs all the required transformation logic.

When performing a DSU, the update system executes this code between program versions. When

the transformation code terminates, the update system assumes that the program state is now

compatible with the new program code.

This is the most flexible and expressive option. The developers are free to traverse each portion of

the program state in any particular order. However, they must navigate through the program state

and identify each relevant portion that needs to be transformed, which can be a hard problem on

itself, depending on the structure of the updatable program.

Assisted Transformation. Programs typically have a modular structure, enforced by the constructs

of the programming language in which they are written. Programs keep their data in structures,

records, object, or any other type of structured data representation. Assisted conversion takes ad-

vantage of this modular program structure, and requires developers to provide code that transforms

each different type of data structure that the program uses. The update system then traverses the

program state automatically and executes the appropriate transformation logic for each outdated

data structure it finds.

While this approach is less flexible than manual transformation, it frees the developers from the

burden of traversing the program state and finding all the portions that need to be transformed.

2.1.3 Semantics

Performing a DSU involves changing the code that the program executes and transforming the state the

program keeps to be compatible with the new code. The previous section focused on how to transform the

program state between versions, but it left an important question unanswered: When does the program

transformation actually takes place? The answer to these two questions provides the semantics of the

update; in the following I focus on the possible answers for the latter and present the different solutions

for update semantics.

Offline

Offline update semantics means that the update is not dynamic: The program must stop and restart in

the new version, losing all transient program state in the process. DSU improves this scenario in two

ways: (1) It does not require any downtime to restart the program, and (2) it transforms the program

state to be compatible with the new program version without losing any part of it.

I mention this semantics for completeness and to guide the discussion on the other alternatives.

Immediate

The simplicity of the very strict stop-the-world approach that offline semantics provide is enticing: Before

the update, the program is executing the old version; after the update, the program is executing the new

version. Immediate updates provide a similar semantics by performing DSU in three steps: (1) Pause the

program, (2) transform the program state, and (3) resume the program in the new version.

Similarly to offline updates, this semantics is clear and simple: The updated program can see only the

transformed program state. Developers writing the new program do not need to consider the possibility

of new code accessing old program state.

16

V
a
lu
e

Time

Immediate
Lazy

Figure 2.2: Value of an updatable application over time, adapted from Gharaibeh et. al. [GRC11].
This plot compares two types of state transformation semantics: Immediate and lazy. The shaded area
represents the difference in perceived value of an application. Lazy state transformation adds more steady
state overhead than immediate state conversion. It should be preferred when the dark shaded area is
greater than the light shaded area.

Immediate updates still impose some update-related downtime because they do not execute the pro-

gram while transforming its state. Their main advantage, when compared to offline updates, is that

immediate updates do not not lose any portion of the program state between versions. Instead they

transform it to be compatible with the new program. The state transformation logic operates between

the two versions and each DSU solution must specify exactly what the transformation code can access

(e.g. both versions of the program state without any restriction, or the outdated program state and just

a portion of the updated program state).

Lazy

Immediate update semantics is the logical step ahead of offline semantics, pausing the program execution

instead of stopping the whole program. It transforms the program state while the program is paused. It

is impossible for new code to access outdated program state. Immediate update semantics thus requires

a pause that is proportional to the program state. Given that the program state can be arbitrarily large,

immediate semantics has the potential to pause the program for an arbitrarily long period.

Transforming all the program state at update time is a very conservative approach. In fact, a DSU

does not need to transform all the program state before starting to execute the new program code. It only

needs to ensure that the new code can never access outdated program state. Therefore, DSU systems

can delay transforming the program state until the updated program tries to access it for the first time

after the update. This is exactly what lazy semantics do.

Lazy update semantics amortize the pause required to transform the program state over the normal

execution of the updated program, thus trading steady state performance for short update-induced pauses.

Gharaibeh et. al. [GRC11] discuss when to prefer lazy over immediate semantics. Figure 2.2, adapted

from their work, plots the perceived value over time of a program given the level of service it provides.

The shaded area represents the difference in perceived value of an application. The authors also assume

that supporting lazy updates imposes a constant performance overhead on steady-state.

After an update, lazy semantics require the normal execution of the new code to be interleaved with

the execution of state transformation logic. Updates performed with lazy semantics thus provide a lower

level of service immediately after the update. However, lazy semantics allow updates to be installed more

readily, without a large period of zero value due to service unavailability. Operators should deploy lazy

updates when the dark shaded area in the plot is greater than the light shaded area.

Lazy update semantics do not offer the same clear division between program versions that offline

17

and immediate semantics do. At version n, a program updated through lazy updates can have up to n

portions of its state in different versions. Some systems leave that complexity level for the developer to

handle [Ste90,BPN08]; other systems provide means to enforce that the program always accesses its state

in the appropriate version.

2.2 Formal Approaches

The ability to change the behaviour of a program while it keeps executing is a powerful tool. Several

researchers have studied how to reason accurately about the properties of DSU by formalizing the update

model. In particular, the formal approaches focus on the goal of correctness. This section describes those

approaches.

2.2.1 General Update Correctness

A possible way of ensuring the correctness of DSU is to state a property about the end-to-end behavior

of each update that, when observed, ensures that the update can only be correct. One such property

was proposed by Kramer and Magee [KM90]: An update is correct if the updated program preserves all

the behaviors of the old program. Bloom and day [BD93] observed that, while intuitive, this correctness

property is too restrictive because it rules out updates that fix bugs or add new features.

These first attempts to define an end-to-end general property for update correctness were made in the

context of updating a distributed system, without a formal framework. Gupta et al. [GJB96] were the first

to introduce a formal framework to reason about update correctness. Their approach considers updates

to be correct according to reachability : After the update, the updated program eventually reaches some

state of the new program.

The authors consider the following model: A running process P has program code Π and state s.

An update has new program code Π′ and a state mapping function S such that s′ = S(s) means that

the function transforms the existing program state s to an equivalent version s′ that is compatible with

the new code Π′. A dynamic update is thus equivalent to stopping P in state s, replacing Π by Π′, and

resuming P from state s′.

The authors introduce the update validity property as follows: A DSU in process P from Π to Π′

in state s and using the state mapping function S is valid if and only if P is guaranteed to reach a

reachable state of Π′ after the change and in a finite amount of time. They thus allow a program to

behave arbitrarily during a transition period after performing a DSU. However, the new program must

eventually behave as if it had been executing from the start.

Figure 2.3 illustrates, informally, the validity property. The top part shows a program updated from

version n− 1 to version n, and then from version n to version n+ 1. Let us consider the validity of the

latter update. It is valid if and only if there is a point in time past which we cannot distinguish the top

part of Figure 2.3 from the bottom part, in which version n never executed. That is, performing a DSU

from version n to version n+ 1 is guaranteed to reach a state that is reachable by running version n+ 1

from the start.

When proposing the update validity property, the authors also prove determining whether a given

arbitrary update is valid is undecidable in the general case. They provide sufficient conditions for ensuring

update validity on a procedural language.

Update validity is an intuitive way of reasoning about updates. It captures the notion that the

updated program must adopt the behavior of its new code and allows for a bounded period of post-

update behavioral divergence that can be used to transform the state between versions.

18

n-1

n-1 n n+1

n+1

Figure 2.3: Informal illustration of the validity property. The top part shows an update that installs
version n + 1 from n. This update is valid if and only if the program reaches a state after the update
that is undistinguishable from the bottom part, in which version n never executed. Note that there is no
need to provide a state-mapping function S such that S(sn−1) = sn+1 for the bottom half; valid updates
ensure this property automatically from both updates on the top half.

Unfortunately, as Hayden et. al. [HMH+12] point out, update validity is a loose correctness condition

that can be both too permissive and too restrictive. They give the example of a version of an FTP server

that introduces a feature that limits the number of connections. Performing a DSU to install this version

on a server that already has more connections than the limit allows is problematic. We expect a DSU

to preserve all active connections. But, in this case, doing so violates validity: The connections, which

already exceed the limit when the update takes place, may remain open forever and thus prevent the

server from ever entering a reachable state. The alternative is to drop all connections when performing

the DSU. Doing so, however, defeats the purpose of DSU in the first place: If we are willing to drop

existing connections we could just restart the server.

However, update validity has important shortcomings as Hayden et al. [HMH+12] discuss. Consider

that an update to a server program that adds a limit to the maximum number of connected clients. What

happens when this update is performed while the server has more clients connected than the maximum

allows? On one hand, allowing those clients to remain connected violates validity because the clients

may remain connected for an indefinite amount of time. On the other hand, forcefully terminating client

connections at update time does not violate validity but defeats the purpose of using DSU to avoid losing

any part of the program state. Either alternative is not acceptable.

2.2.2 Update Calculus

There is a line of work on formalisms [BHSS03,SHB+07,NHFP08] that explores the idea of adding DSU

to the programming language itself, at the level of the type system. This approach allows developers

to reason about updates directly as a language feature, and compilers to reason about the effects of an

update in terms of type-safety between successive versions. Type-safe updates are useful to reason about

the overall correctness of a DSU. In this section, I present these formalisms.

The first contribution towards an update calculus was made by Bierman et. al. [BHSS03] by ex-

tending the first-order simply-typed lambda-calculus with mutually-recursive modules and a primitive

for updating them. Their calculus allows to update any module, including changes to types and their

definitions. Updates are correct as long as the updated program does not get stuck, i.e. cannot apply

any reduction rule after the update. The update calculus provides an update primitive that lists update

points, and the type system accepts only updates that are correct.

Proteus [SHB+07] is the next work in this line. Proteus is a program calculus that supports DSU on

procedural, C-like languages. Programs in Proteus consist of functions, data definitions, and definitions

of named types. The developers label program points at which an update can occur. Dynamic updates

can add/replace types and definitions, and change functions (even while they are active). The developer

can provide type transformer functions to transform the program state to be compatible with the new

19

1 f();
2 // Executing here when update becomes available
3 g();
4 // Update point

Figure 2.4: Example of transactional version consistency. All the code in this example is inside a transac-
tion. There is an implicit update point after the transaction finishes, in line 4. Consider that the program
is executing line 2 when an update becomes available. Depending on which functions the update changes
— f, g, or both — it can take place immediately — if it changes either f or g — or only after the
transaction finishes — if it changes both f and g.

program definition.

The authors consider updates to be correct in Proteus if they satisfy the con-freeness property: For

each update point and for all types t that an update changes, the program does not use t concretely after

the update point. The representation of t can thus safely change. The authors show how this property can

be enforced dynamically, at update time. The authors also show how to enforce con-freeness statically,

which means that it is possible to annotate every program point with the set of types that can be modified

by a correct DSU performed at that point.

Limiting the program points at which updates can happen creates a tension between correctness and

timeliness: If these points are not frequent enough, an update may be postponed for a long time until

the program finally reaches a point in which the update can take place. Multi-threaded programs only

exacerbate this tension by requiring all threads to reach such a program point and wait there until all

other threads do the same.

Proteus-tx [NHFP08] addresses the tension between update timeliness and correctness. Proteus-tx

extends Proteus with support for multi-threaded programs. It considers that updatable programs are

structured around transactions and it proposes a new property for update correctness called transactional

version consistency (TVC): Transactions execute entirely in the same program version, even if an update

takes place in the middle of the transaction.

A simple solution to ensure TVC is to not start new transactions when an update is ready, wait for

all active transactions to finish, and only then perform the update while no transaction is executing. The

authors consider this approach to be overly restrictive. For instance, let us consider the example shown

in Figure 2.4. It shows a transaction that calls functions f and g in this sequence, and an update that

becomes available in between calling each function. Updating the program when the transaction finishes

clearly satisfies TVC. However, consider the following scenarios:

1. The update changes only f. Performing the update mid-transaction makes the whole transaction

use the old program version, which satisfies TVC ;

2. The update changes only g. Performing the update mid-transaction makes the whole transaction

use the new program version, which satisfies TVC ;

3. The update changes both f and g. Performing the update mid-transaction makes the half of

the transaction use the old program version and another half use the new program version, which

violates TVC.

Updates can thus be performed mid-transaction in cases 1 and 2. The challenge here is reasoning

about the past and future behavior of active transactions. Proteus-tx solves this problem with contextual

effects.

Recent work questions the tension between timeliness and correctness. By studying updates made to

six real-world multi-threaded C applications with Kitsune,1 Hayden et al. [HSHF12] show that carefully

1Kitsune is explained in detail in Section 2.3.

20

placed manual update points provide enough update opportunities for all applications to perform updates

within acceptable delays, even for applications with soft real-time requirements such as media streaming

servers (most below 1ms, with a maximum of 100ms).

Hayden et. al. [HMH+12] propose a novel way to reason formally about the correctness of dynamic

updates. Based on the Proteos calculus, the authors provide a program merging semantics that merges

two successive versions of the same program, together with the program-state transformation code that

executes in-between. The authors also use Client-Oriented Specifications (CO-specs), which are small

programs that state invariants that the update process must always maintain. CO-specs are similar to

system tests. The authors then used the CO-specs to verify the merged programs with well known analysis

for regular programs (the verification tool Thor [MTLT08] and the symbolic executor Otter [RSM+10]).

2.2.3 Update Modularity Conditions

Boyapati et. al. [BLS+03b] describe how to perform dynamic updates to persistent object stores. Client

applications of the object store mutate the state of the store inside application transactions.

Their system uses transform functions [Zic91,FMZ+95] for each updated class whose objects need to

be transformed. A transform function is a way of implementing the state transformation logic. For each

object that belongs to the outdated class, the update system creates a blank object that belongs to the

updated class and invokes a transform function to initialize it using the outdated instance. When the

transform function returns, the updated object will take the place of the outdated one. Each transform

function runs inside its own conversion transaction.

The authors consider transform functions to be well-behaved if they access only the object being

transformed and the objects it encapsulates. An object A encapsulates another object B if objects not

encapsulated by A cannot access object B. For instance, consider a stack implemented as a linked-list.

The stack encapsulates the nodes that implement the linked-list if no other object outside the stack and

the nodes themselves cannot access any node.

It is obvious that well-behaved transform functions can only find the old version of the objects they

access. Given that they encapsulate all objects that they use, it is not possible for those objects to be

updated before the transform function updates the encapsulating object (e.g. it is not possible for a list

node to be updated before the head of the list).

Considering that all transform functions are well-behaved greatly simplifies reasoning about the trans-

formation logic. The authors thus propose a formal modularity property for updates that captures the

intuition that all transform functions are well-behaved.

The authors present and formalize a set of update modularity conditions that ensure that the update

system satisfies the modularity property when performing lazy updates. The update modularity condi-

tions state how to order application transactions with conversion transactions and conversion transactions

among themselves.

Of course, if all transform functions are well-behaved, the system does not need to enforce any

particular serialization order. The authors propose the usage of ownership types [CPN98, BLS03a] to

allow the compiler to infer and enforce encapsulation properties. When encapsulation fails (e.g. in

mutually referent objects and circular data structures), the authors propose to use triggers: If two

objects A and B do not encapsulate each other, there may be a third object C that encapsulates both

A and B. Developers can set up a trigger to force the conversion of C before converting either A or B.

The transform function of C thus satisfies the modularity property when accessing objects A and B.

When it is not possible to find an encapsulating object, the authors propose to use versions: After

transforming an object O0 to object O1, the update system does not discard O0. Then, when converting

another object with a transform function that needs to access O0, the update system can still provide

21

Code Data Update State
Target System Timing Updates Updates Semantics Transf.

Apps

OPUS Quiescence Trampoline — — —
DynSec Unrestricted Trampoline — — —
POLUS Unrestricted Trampoline Struct Replacement Immediate Assisted
UpStare Manual Replacement Struct Replacement Immediate Assisted
Ginseng Manual* Indirection Type Wrapping Lazy Assisted
Kitsune Manual Replacement Struct Replacement Immediate Assisted
Ekiden Manual Replacement Struct Replacement Immediate Indirect

Kernels

LUCOS Quiescence Trampoline Struct Replacement Immediate Assisted
DynaMOS Quiescence* Trampoline Shadow structure Immediate —

KSplice Quiescence Trampoline Shadow structure Immediate Assisted
K42 Quiescence Indirection Shadow structure Immediate —

PROTEOS Manual* Replacement Struct Replacement Immediate Assisted

Table 2.2: Systems that support DSU for applications and OS kernels written in C. This table summarizes
the discussion on this section. Rows titled timing, update semantics, and state transformation use the
classification introduced in Section 2.1. The remaining rows, code updates and data updates, describe
how these systems implement updating loaded code and existing data and are described in detail in
Sections 2.3.3 and 2.3.4, respectively. Some timing decisions are marked with an asterisk: Ginseng can
automatically detect extra update points, DynaMOS can update some functions that never quiesce, and
PROTEOS requires the developer to specify when updates cannot happen instead of when they can
happen.

it and thus ensure the update modularity property. However, the authors require developers to specify

manually where versions are needed and do not discuss when the old versions can be safely discarded.

2.3 Compiled Imperative Languages — C

The C programming language [KR88] is an imperative procedural programming language. C programs

are compiled to executable binary code that runs natively on the hardware. Programs written in C have

a fine grained level of control over their performance and memory usage.

There is a vast amount of programs written in C that provide the non-stop services that serve as the

backbone of most of today’s infrastructure. DSU systems designed for C have an unique set of challenges

to solve. Performing DSU on programs written in C is thus a pressing research problem.

This section presents and classifies the following dynamic software update systems that target

general applications written in C: OPUS [ABBS05], Ginseng [NHSO06, SHB+07, NHFP08, NH09],

POLUS [CYC+07], UpStare [MB09], Ekiden [HSHF11], Kitsune [HSD+12], and DynSec [PBG13].

Besides used to write general applications, the C programming language is also used to write operating

system kernels. There is some overlap between DSU systems for operating systems and for applications

written in C. I shall, therefore, also consider the following DSU systems that target updating operating

systems without requiring the machine to reboot: K42 [BHA+05], LUCOS [CCZ+06], DynAMOS [MR07],

KSplice [AK09], and PROTEOS [GKT13]. LUCOS is essentially a version of POLUS that uses VMMs

to effect changes in operating systems, all comments made about POLUS also apply to LUCOS.

Table 2.2 summarizes the design decisions that each DSU system for applications and OS kernels take.

It also gives an overview of the rest of this section.

2.3.1 Update Preparation Methodology

Most solutions require the developer to prepare a program version as an update before performing it

as a DSU on a running program. Each solution provides a set of tools that allows the developer to

22

prepare an update. While preparing an update, the update preparation tools get the chance to analyze

the update for correctness, generate stub code for the program-state migration, and pack everything into

a deployable update. Figure 2.5 shows the process for each DSU system.

23

.c1

.c0

pg .c0−1 xcc .so0−1

(a) UpStare

.c1

.c0

.dat0

pg

.c0−1

.dat1

gcc .so0−1

(b) POLUS
.c1

.c0

.dat0

pa .dat1 xcc .so0−1

(c) OPUS

.c1

.c0

.dat0

pg .c0−1 xcc

.so0−1

.dat1

(d) Ginseng
.c1

.c0−1

gcc .so1

(e) Ekiden

.c1

.dat0

.xf0−1

kitc .c′1

.dat1

xfgen

gcc .o1

st0−1 gcc .so1

(f) Kitsune

Figure 2.5: Method to prepare updates for several systems. Upstare, POLUS, OPUS, and Ginseng
generate dynamic patches to be applied on the running process; Ekiden and Kitsune generate new program
versions to replace the current one in execution (whole-program updates). Tools have a solid border
around them: pg stands for patch generator, pa for patch analyzer, gcc for standard compiler, xcc for
custom compiler. Other items represent artifacts: .c stand for source files, .dat for update meta-data,
and .so for binary patches. The subscript shows the version to which each artifact is for: 0 for the old
program, 1 for the new program, and 0–1 for the patch/update. Kitsune uses its own tools, discussed in
the main text.

Each update system provides either a source-to-source patch generator or a custom compiler. These

tools, implemented using CIL [NMRW02] or LLVM [LA04], typically perform the following tasks:

1. Rewrite the code so that it can be updated in the future;

2. Generate meta-data that describes the current version, so that future versions can be compared

against it;

3. Identify the portion of the program that changed between versions, and extract that portion of

code as a self-contained patch to be applied.

Figure 2.5 shows the toolchain that each update system supports. The update systems not shown

(DynSec, DynAMOS, K42, and PROTEOS) require the developer to prepare patches manually and do

not provide tools to help him in the process. KSplice is the notable exception in this figure; I shall discuss

how it prepares updates later on this section.

Most systems follow a dynamic patching approach to DSU: UpStare, POLUS, OPUS, Ginseng, and

KSplice. The prepared update is a patch that contains the changed code and information about how to

weave it into the running process. Ekiden and Kitsune follow a whole-program approach, in which they

completely replace the code of the program by new code and transfer the program state between code

versions, transforming it in the process.

UpStare, POLUS, and Ginseng use a patch generator that extract the patch as source code. The path

generator also generates stub source code for the program state transformation that the developer can

24

customize before compiling the dynamic patch. Out of these systems, only POLUS generates patches

that can be processed by the standard compiler. All the other systems require non-standard compilers

to process annotations and meta-data for each patch.

OPUS and Ekiden require the developer to write the state transformation logic from scratch. OPUS

provides a patch analyzer that can warn the developer about potential errors on the state transformation

code, and generate meta-data about the current version for the custom compiler and future updates to

use.

Kitsune separates the task of writing the new program code from the task of writing the transformation

logic. The new program is processed by a source-to-source translator — kitc — that prepares it to be

updatable or installed as an update. The developer specifies the state transformation logic through a DSL

implemented by an automated tool — xfgen — that generates the source code for state transformers —

st0−1 — according to the input — .xf0−1. Finally, the program is compiled using the standard compiler,

and then linked with the state transformation logic to yield the binary update file.

KSplice operates directly on the compiled kernel. This creates problems when detecting exactly

what changed between versions due to compiler interference (e.g. different inlining decisions in different

versions). KSplice thus uses two kernel builds: One with the original kernel — the kernel that is currently

executing — and another with the original kernel patched with the update — the kernel that we want to

execute without rebooting. This allows KSplice to detect changes that the compiler introduced, and list

symbols that are resolved only during runtime. When updating, KSplice checks that the kernel currently

in execution matches the expected kernel version, and then resolves all dynamic symbols left unresolved

on previous stages using the symbol table that the running kernel keeps.

2.3.2 Timing

Once the update is prepared, we can perform it as a DSU on the running program. To do so, each

solution must pause the program at a point where it is safe to perform the update. In the following, I

describe how each DSU system pauses the running program.

Unrestricted

POLUS performs updates at the level of function calls and can update live functions. When the update

process begins, POLUS pauses all threads where they happen to be. It then inspects the stack of each

thread and modifies return addresses of changed functions, making them refer to the new code. As a

consequence, a program can execute old and new code at the same time. After POLUS releases all

threads, it intercepts write attempts that old code performs, translating them to proper writes to the

new program state using state synchronization functions defined by the developer.

DynSec performs updates at the level of basic-blocks. When loading a binary application, it uses a

Dynamic Binary Translator (DBT) to rewrite the binary before executing it. When doing so, it adds an

update point to the end of each basic block.

Quiescence

OPUS, KSplice, and K42 stop each thread when all functions that the update modifies are not active.

DynaMOS employs a similar activeness-checking approach. However, it can update functions that are

always active but sleep for long periods of time inside a loop. Typically, such functions are executed by

dedicated threads that follow a similar pattern: Sleep until an event that requires action awakes them,

execute the loop until the event is processed, and go back to sleep to wait for the next event. DynaMOS

25

Unchanged
Function

Old
Function

New
Function

(a) Trampolines

Function
Table

Unchanged
Function

Old
Function

New
Function

(b) Extra level of indirection

Unchanged
Function

Old
Function

Unchanged
Function

New
Function

(c) Whole-program update

Figure 2.6: Different approaches to support updating code on when performing DSU on C programs.
Each box represents a program composed by functions. The shaded area represents a trampoline in 2.6a
and an entry in the function table in 2.6b. Values overridden by an update are crossed-out.

updates these functions by injecting code after each sleep invocation that jumps to the new version of

that loop if an update took place while the thread was sleeping.

Manually Identified Update Points

Kitsune, UpStare, Ginseng, and Ekiden allow updates to happen in active code at developer-defined

program points (UpStare may also determine these points automatically).

STUMP [NH09] extends Ginseng to automatically expand the available update points besides the

ones that the developer manually identifies. If follows a intuition similar to Proteus-tx, presented in

Section 2.2.2, to generate a set of induced update points that are proved to be equivalent to the manually

identified update points using version-consistent execution traces, which are computed through contextual

effects.

PROTEOS requires the developers to state when updates cannot happen, thus taking a blacklist

approach. PROTEOS requires the developer to provide a set of state filters to specify constraints on the

program state. When an update becomes available, PROTEOS performs is at any point in the execution

of the program that does not violate any of the state filters.

2.3.3 Code Updates

The mechanism through which DSU solutions support changing the code on a running program is an

important challenge. This is specially true for the C programming language because it is compiled to

native code. Mechanisms for updating the running code on a C program can thus be re-used, internally,

by other techniques that provide DSU at a higher level of abstraction. Figure 2.6 summarizes the possible

alternatives to support code updates; I shall describe them in detail in the rest of this section.

The first option to update already loaded code is through trampolines, shown in Figure 2.6a. When

preparing the update, the DSU system prepends a dummy jump at the start of each function called a

trampoline. At update time, the DSU system redirects that jump on each updated function to its new

version. This technique can also be used without pre-reserving the space for the trampoline and simply

overwriting the first few bytes on the code of the outdated function, at the expense of not being able to

26

1 int main(int argc, char ** argv) {
2
3 if (!dsu_updating())
4 parse_arguments(argc, argv);
5
6 process();
7 }

Figure 2.7: Simple example of control-flow migration on a C program. Function dsu updating returns
false when the program is running for the first time, true when the program is being restarted due
to an update. The developer can use it to adapt the behavior of the program after an update and thus
rebuild the stack on the new program version.

execute the old version of updated functions after the update. OPUS, KSplice, POLUS, DynaMOS, and

DynSec update the code through trampolines.

Another option is to rewrite the original program to add an extra level of indirection to each function

call, shown in Figure 2.6b. When preparing the update, the DSU system creates a function table and

rewrites every direct function call as an indirect call through the function table. At update time, the

DSU system updates the function table so that the entries for the updated functions refer the new version

of the code. Ginseng and K42 follow this approach.

The remaining option is through whole-program update when performing a DSU, shown in Figure

2.6c. The DSU system loads the new program code as a whole, instead of a collection of new functions,

and jumps from the current point in the old program to an equivalent point in the new program. UpStare,

Ekiden, PROTEOS, and Kitsune follow this approach.

Whole-program updates create the subproblem of matching the old program code with the new one.

PROTEOS replaces a process with a new one and rebinds all the end-points of the original process.

UpStare performs stack-reconstruction on the updated program, unwinding the old stack and rewinding

it into the new stack, one stack frame at the time.

Kitsune and Ekiden require the developer to match both versions manually through control-flow

migration. The idea is to restart the program from the main function, and each thread from its starting

function, and allow it to rebuild its stack through developer annotations. Figure 2.7 shows a very simple

example. When running for the first time, function main parses its arguments. When running after an

update, function main skips parsing its arguments and calls the process function. The call to function

dsu updating in line 3 is a part of the control-flow migration code added by the developer.

Each alternative to updating the program code represents a different compromise. Trampolines are

easy to implement but require a writable code segment, which makes the application vulnerable to code

injection attacks. Adding an extra level of indirection centralizes the decision of which code should run

for each function. However, it requires a non-trivial program transformation and adds constant overhead

during steady-state execution due to the indirect function calls. Neither of these two approaches supports

updating programs compiled with function inlining (the inlined functions cannot be updated); updating

programs that jump to the middle of functions, which is a valid C idiom; or updating programs with

functions that never (or rarely) exit, such as main or functions with event-processing loops.

Whole program updating deals directly with all the downsides of the other two approaches: The code

segment is never writable; it naturally supports function inlining (and other compiler optimizations that

require code mobility) and code that jumps to the middle of functions; and can update active code. The

challenge is how to map old program points to equivalent points in the new program, and most systems

that follow this approach require developer annotations to solve this problem.

27

Fields

Initial:

Fields
New
Field

Updated:

(a) Shadow data structure

Fields
Unused
padding

Initial:

Fields
New
Field

Unused
padding

Updated:

(b) Type wrapping

Fields

Initial:

Fields

Updated:

Fields
New
Field

(c) Struct replacement

Figure 2.8: Different approaches to support updating data on when performing DSU on C programs.
Each box represents a struct in memory. Shaded areas represent modifications to the original structure
to support DSU. Type wrapping (2.8b) and shadow data structure (2.8a) update each data structure
in-place; struct replacement (2.8c) replaces existing structures with their updated version.

2.3.4 Data Updates

C programs keep their data anchored on a set of globally accessible variables and local variables of

functions that are always active, such as main. Their data is structured as a collection of structs with

pointers to other structs that compose a graph. When the definition of a struct type changes between

versions, the DSU system must transform the existing structs according to the state transformation logic.

There are several options to perform this transformation. Figure 2.8 summarizes the possible alternatives

to support data updates; I shall describe them in detail in the rest of this section.

The simplest way is to do so in-place. This naturally supports pointers to structs that are spread

throughout the application. However, the new structure may require a larger memory representation

than the old structure. To deal with that case, DSU systems for C use either shadow data structures or

type wrapping.

Shadow data structures, shown in Figure 2.8a, are extensions to the original structs that have the

extra fields that do not fit in the original struct. When preparing the initial version, the DSU system

adds a pointer to a shadow structure to the end of every updatable struct. When preparing each update,

the DSU system rewrites the code that accesses the new fields to use the shadow instead. This approach

adds performance overhead when accessing the new fields due to the indirect access. Given that programs

written in C require manual memory management, this option has the added challenge of managing the

lifetime of the shadow together with the struct that refers to it. KSplice, DynaMOS, and DynSec use

shadow data structures.

Type wrapping, shown in Figure 2.8b, is the alternative to shadow data structures for in-place data

updates. When preparing the initial version, the DSU system adds some unused padding to the end of

each struct so that it can grow in future updates. This option adds memory overhead to steady-state

execution and imposes a hard limit on the maximum size of future versions of each struct. It also breaks

programming idioms that rely on the memory alignment and size of structs. Ginseng uses type wrapping.

The alternative to in-place data updates is struct replacement, shown in Figure 2.8c. The DSU

does not change the original representation of each struct in any way. When performing an update and

transforming the program state, the DSU system moves the struct to a new memory location, transforming

the struct in the process according to the state transformation logic. Relocating the structure provides

the opportunity to reserve more memory for its new version. However, this technique requires the DSU

system to find all the pointers in the program state that refer to the old struct, and update them to refer

to its new version. Both shadow data structures and type wrapping add steady-state overhead due to

reduced cache locality; struct replacement does not add any overhead. It also supports all programming

idioms in C and can grow structs without limits. Kitsune, K42, POLUS, Ekiden, UpStare, and PROTEOS

use struct replacement.

28

OPUS and DynSec do not support any type of data migration between versions.

2.3.5 State Transformation and Semantics

The previous section described how each DSU system supports transforming the program state at update

time. This section describes how the developer can specify the program state transformation logic.

Of all the systems that support program state transformation (all but OPUS and DynSec), Ginseng

is the only one that supports lazy update semantics. It rewrites the program to add calls to mediator

functions to access updatable structs. These functions then transform outdated structs after an update

takes place, as the natural control flow of the new program reaches each struct for the first time. All the

others support immediate update semantics.

Most update systems for C support assisted manual state transformation. Figure 2.5 shows that the

patch generator for UpStare, POLUS, and Ginseng generates source code. In fact, the generated code has

stub transformation code that the developer can customize. UpStare and Ginseng automatically copy

unchanged program state, the developer just has to specify how to transform the remainder. UpStare

has the richest state transformation model: It provides support for the developer to convert all program

state, including stack frames, program counters for each thread, and global variables in the heap. POLUS

provides the most complex state transformation support. Given that it can execute code from different

versions simultaneously, it keeps N copies of the same data for each of the N versions in execution. The

developer must keep all versions consistent through a callback mechanism.

Kitsune also provides support for assisted manual state transformation. The developer specifies the

state transformation logic using a separate simple DSL. Kitsune provides a tool called xfgen to generate

source code from the DSL that transfers the state between versions, copying the state that did not change

and transforming the state that did change by following the logic that the developer specified.

KSplice supports assisted state transformation. It provides macros to annotate code that must run

during the update, while all threads are stopped. The developer can use these macros to annotate

functions that run inside the kernel to find and transform outdated kernel data.

PROTEOS also supports assisted state transformation. At update time, it transfers the state from

the old process and transforms it to be compatible with the new process. The state transfer is mostly

automatic, but the developer can define a set of callbacks that are evaluated every time PROTEOS

transfers the intended type.

The authors of DynAMOS and K42 do not discuss how to specify the state transformation logic.

Ekiden supports indirect state transfer, without providing any automated developer assistance. It

transfers the state between both versions by requiring the old version to serialize its state and then

deserializing it in the new version.

2.3.6 Discussion

This section described the state of the art in DSU systems for the C language and for OS kernels. I

now explain its respective rows on Table 2.1, page 12, by relating each DSU system with the goals that

I introduced earlier in Section 1.2.

Effectiveness

Some of the systems that I presented in this section target the kernel of operating systems and are

not applicable to general applications written in C: K42, LUCOS, DynaMOS, KSplice, and PROTEOS.

These solutions target a specific type of C application, with a very specific architecture. This affects their

29

effectiveness — . Still, KSplice and PROTEOS were implemented for the Linux and MINIX kernels,

respectively, which are complex and mature OS kernels used in practice — .

DynSec, Ekiden, and Ginseng cannot be considered fully flexible — . DynSec requires the target

program to execute inside a sandboxed environment, which limits its effectiveness. Ekiden requires the

developer to write code that serializes the program state of each program version and then reads the

serialized state in the updated program version, and it does not provide any tool to help the developer

in doing so. Ginseng uses type wrapping to support data updates, which breaks memory alignment and

forbids popular valid C idioms, and requires the updatable program to be structure in such a way that

satisfies its conservative static analysis.

The remaining systems require a special toolchain to build the original C program so that it can

be either updated or applied as an update. Section 2.3.1 describes how to prepare an update for every

system. While each system has a different toolchain, these are similar and can be automated in the

process that builds each release. These DSU solutions are thus effective — .

Efficiency

OPUS, POLUS, UpStare, DynSec, LUCOS, and DynaMOS add performance overhead during steady-

state execution, i.e. when not performing an update — . Some of the systems transform the program

using a source-to-source translator. The transformed program supports DSU but executes slower than

the original (UpStare and Ginseng). Other systems require some compiler optimizations to be disabled

(POLUS, OPUS, and LUCOS). DynSec requires that the program executes inside a sandbox that adds

performance overhead.

Ekiden, Kitsune, K42, KSplice, and PROTEOS introduce a negligible amount of steady-state over-

head. However, they introduce a long pause in the execution of the original application when performing

a DSU — . Ginseng, which does introduce steady-state overhead, supports lazy program state trans-

formation between versions. This means that Ginseng does not introduce a long update-induced pause

— .

Flexibility

OPUS, LUCOS, and DynSec are not flexible because they do not support any form of program state

transformation — . All the other systems provide some mechanism for transforming the program

state between versions. Ginseng, however, imposes a hard limit on the maximum size that a structure

can ever take, which limits its flexibility — .

POLUS and PROTEOS require the code that the update changes to quiesce before performing a DSU,

but they do not support transforming the local variables of functions active at update time. They thus

assume that the program state kept in the local variables of functions active at update time does not need

to be transformed. This assumption might not be accurate: Consider an data structure kept in a local

variable of function main that is always passed as argument to other functions. If an update changes

the representation of this data structure, these systems are not able to perform such an update correctly.

POLUS also requires updates to be backwards compatible — . PROTEOS supports non-backwards

compatible updates — .

Update systems that target an OS kernel and require quiescence perform updates only when no process

is performing a system call. The only active code is long-running threads inside the kernel itself. KSplice

and DynaMOS provide support for redirecting these threads at update time, which involves transferring

any state they keep — . K42 is structured around objects, that are accessible through a globally

accessible table. Local variables thus refer to objects that the state transformation can access at update

time — .

30

UpStare allows the developer to migrate all the program state at update time — . This includes

stack frames and program counters per thread. Kitsune follows a different approach: It supports migrating

local variables between versions, and requires the developer to add control-flow migration code to rebuild

the stack per thread after the update, effectively migrating it — . Ekiden uses a similar approach.

Correctness

All the systems that I presented in this section allow the developer to perform erroneous updates. This

is true in particular for all the systems that rely on quiescence for correctness: OPUS, K42, LUCOS,

DynaMOS, and KSplice — . DynSec and POLUS offer even weaker correctness guarantees due to

their update timing — . All these approaches are inherently unsafe, as I discussed in Section 2.1.1.

UpStare, Ekiden, Kitsune, and PROTEOS only allow updates on program points that the developer

annotates as safe. They do not provide any way for the developer to assess the correctness of the update

process or the updated program — .

Ginseng is the only system that allows the developer to assess the correctness of updates performed

through it — . Even though it does not forbid developers from writing erroneous updates, later work

uses systematic testing [HSH+12] and static analysis of merged program versions [HMH+12] to assess the

correctness of updates performed using Ginseng.

2.4 Managed Object-Oriented Languages — Java

Java [GJS96] is a very popular object-oriented programming language, ranking among the top 2 most

popular languages for the past 15 years [tio]. However, it does not support DSU directly at the language

or runtime level. This is unfortunate because many programs in Java provide non-stop service and would

greatly benefit from DSU.

Java programs are typically compiled to a binary format. However, and unlike C programs, the

binary is not executable natively by the hardware. Instead, the binary, also called the bytecode, is

executed by the Java Virtual Machine (JVM) [LY99]. Programs written in Java thus execute inside

a managed environment. The JVM provides extensive runtime support to Java programs, including a

garbage collector (GC) that handles memory management and a just-in-time optimizing compiler (JIT)

that compiles the bytecode down to native code that executes directly on the hardware.

The presence of the GC and the JIT make the problem of supporting Dynamic Software Updates for

managed languages such as Java different from compiled languages such as C, described in the previous

section. Researchers have already considered the problem of supporting DSU for managed languages,

namely Java. In this section, I describe the state-of-the-art on this topic.

This section presents and classifies the following DSU solutions that target applications written in

Java: JDrums [RA00], DVM [MPG+00], HotSwap [Orab,Dmi01], DUSC [ORH02], JVolve [SHM09], DCE

VM [WWS10], JavAdaptor [PGS+11], and JRebel [KV12], Table 2.3 summarizes the design decisions

that each DSU system takes.

Some Java applications provide their functionality by composing several different modules. These

applications are structured around a module system that enables module registration and lookup, and

provides support for inter-module communication. Examples of such approaches are: The Eclipse Rich

Client Platform [ML05], the Netbeans platform [BTW07], and the Open Services Gateway initiative

(OSGi) [OSG14]. Such systems typically also support updating loaded modules with a newer definition,

which qualifies as a DSU technique. However, given that these approaches are rather based on a particular

architectural style, I defer discussing them until Section 2.7.1 (page 55).

31

Implementation Flexibility Timing Update State
System Level Semantics Tansf.
HotSwap JVM Methods Unrestricted Immediate —
JRebel Bytecode Classes Unrestricted? Lazy Automatic

DCE VM JVM Hierarchy Unrestricted Immediate Automatic
DUSC Bytecode Classes Quiescence Immediate Assisted

JDrums JVM Classes Quiescence Lazy Assisted
DVM JVM Classes Quiescence Lazy Automatic
JVolve JVM Classes Quiescence Immediate Assisted

JavAdaptor Bytecode Hierarchy Unrestricted? Immediate Assisted

Table 2.3: Systems that support DSU for applications written in Java. This table summarizes the
discussion on this section. Columns titled timing, update semantics, and state transformation use the
classification introduced in Section 2.1. The remaining columns, implementation level and flexibility,
describe the level at which each system is implemented and the types of changes that each system
supports, and they are described in detail in Section 2.4.1 and Section 2.4.2, respectively. Some timing
decisions are marked with a question mark, meaning that the authors do not discuss this design decision
on the original article that describes the DSU system.

Table 2.3 summarizes the design decisions that each DSU system takes. It also gives an overview of

the rest of this section.

2.4.1 Implementation Level

Java programs are compiled to bytecode which is then executed by the Java Virtual Machine (JVM).

JVM bytecode is a binary representation that is not executable natively on the hardware. The JVM

interprets the program, using an optimizing JIT compiler to generate native code for the most frequently

executed parts of the Java program. The JVM also provides automatic memory management through

a Garbage Collector (GC) that reclaims objects that are not reachable through the transitive closure

of a set of root references accessible by the program (references on stack frames and static variables).

Therefore, there are two levels at which a DSU system for Java can be implemented: (1) At the bytecode

level, and (2) at the JVM level.2

JVM Level

Implementing a DSU system at the JVM level has several advantages: The ability to customize the

existing GC to transform the program state when performing a DSU, and the ability to customize the JIT

compiler to replace outdated code. JDrums, DVM, HotSwap, JVolve, and the DCE VM are implemented

at the JVM level.

Existing GCs are implemented through mark-and-sweep, in which the GC follows the transitive closure

of reachable (live) instances to determine which instances can be reclaimed. State-of-the-art JVMs also

support generational garbage-collectors, that copy objects between different generations according to

their observed/expected longevity. Garbage-collection algorithms, strategies, and implementation are

described in detail elsewhere [JHM11].

By forcing a GC cycle at update time, a DSU system can use the GC to find all the outdated

instances. Furthermore, when the GC moves an outdated instance between generations, the DSU system

has a great opportunity to transform it. Given that the object is being moved, this approach naturally

supports increasing the size of updates objects without requiring shadow structures or type wrapping, as

2Conceptually, it is possible to implement a DSU system for Java as a source-to-source translator. However,
there are no known DSU systems at that level. Also, the bytecode is very similar to the original source and easier
to analyze (e.g. all references to fields and methods are fully qualified with the owner of the field/method.)

32

some DSU systems for C do (described in Section 2.3.4). DVM, JVolve, and the DCE VM use a custom

GC to transform the state between versions. JDrums modifies the JVM to represent objects internally

through an extra level of indirection in the form of an object table. To find and update existing objects,

JDrums simply traverses the object table, thus skipping the need to customize the GC algorithm.

Another advantage of supporting DSU at the JVM level is the ability to install new code for already

loaded classes by customizing the JIT compiler to do so. During its normal operation, the JIT compiler

may recompile a given method several times, with increasing levels of optimization as the program

executes it more frequently. The ability to recompile a method dynamically means that the JIT compiler

can also find calls to the outdated compiled method, even inside inlined code, and update them to refer

to the newly compiled method instead. In fact, some JIT compilers even support replacing methods that

are active on the stack through on-stack replacement (OSR) by adjusting return addresses and program-

counters on stack frames that refer to the compiled method. The support that JIT compilers provide to

replace compiled methods can be adapted to instead replace outdated methods by their new definition

after an update. HotSwap, the DCE VM, and JVolve support updating code this way. DVM can only

run in interpreted mode, without the JIT compiler enabled. JDrums adds a level of indirection to each

method invocation to decide which code to run.

The great disadvantage of implementing DSU support at the JVM level is portability: DSU systems

implemented at the JVM level are tightly coupled with the particular JVM they use. They are thus

very hard, if not impossible, to port to a different JVM without a complete rewrite. These systems are

therefore hard to maintain, specially if the JVM they support changes the implementation of the GC/JIT

compiler between versions.

Bytecode Level

An alternative to support DSU for Java is to rewrite the bytecode program in such a way that the

rewritten program has the same semantics as the original program but nevertheless supports DSU. DUSC,

JavAdaptor, and JRebel support DSU through bytecode rewriting.

To support performing DSU, each system transforms the original program in a different way. Figure 2.9

shows how JRebel transforms each updatable class. It moves the implementation of all methods out of

the original class ClassA and into implementation class ClassA0. When moving each method to the

implementation class, JRebel turns it into a static method that expects the receiver object to be passed

as the first argument. Other classes in the program still refer to ClassA; each method of this class

simply queries the JRebel API to lookup its most recent implementation and then calls the appropriate

method. To perform an update, JRebel generates a new implementation class Class1 with the new

method definitions. The authors do not discuss how other classes, which refer to the original (unchanged)

ClassA, can find new methods added by an update, or how to use this technique to support adding fields.

DUSC also transforms the original program. Figure 2.10 shows how DUSC transforms class ClassA.

DUSC makes each class C updatable by breaking it into four classes:

1. Implementation class Ci, contains the implementation of each version of class C. Each DSU

introduces a new implementation class for each modified class;

2. Wrapper class Cw, provides the same interface as class C to any client class of C. The implemen-

tation of each method delegates on the most recent implementation class. Each implementation

class refers to other updatable classes through their wrapper;

3. Interface class Ca, an abstract class that all implementation classes Ci extend. The wrapper

class uses interface classes to refer to each implementation class indirectly. This way, when the

33

ClassA

field1
field2
field3

method1(x: int)
method2(y: String)
method3(z: double)

ClassA

field1
field2
field3

method1(x: int)
method2(y: String)
method3(z: double)

ClassA0

method1(a: ClassA, x: int)

method2(a: ClassA, y: String)

method3(a: ClassA, z: double)

ClassA

field1
field2
field3

method1(x: int)
method2(y: String)
method3(z: double)
method4()

ClassA1

method1(a: ClassA, x: int)

method4(a: ClassA)

(a) Original
initial version

(b) Transformed
initial version

(c) Original
updated version

(d) Transformed
updated version

Figure 2.9: Example of how JRebel transforms an class to be updatable. All the methods on the
original class ClassA (2.9a) query the JRebels API to find the most recent method to execute located
in implementation class ClassA0 (2.9b). When an update adds method method4 and changes existing
method method1 (2.9c), JRebel generates a new implementation class ClassA1 (2.9d) and updates its
internal state to delegate method invocation to the new methods. Underlined methods are static.

ClassA

field1
field2
field3

method1(x: int)
method2(y: String)
method3(z: double)

wrapper

method1(x: int)
method2(y: String)
method3(z: double)

state

interface

method1(x: int)
method2(y: String)
method3(z: double)

implementation

field1
field2
field3

method1(x: int)
method2(y: String)
method3(z: double)

ClassA

(a) Original
initial version

(b) Transformed initial version

Figure 2.10: Example of how DUSC transforms a class to be updatable. DUSC breaks the original class
ClassA (2.10a) into 4 classes (2.10b): The wrapper, which other classes refer to; the implementation, one
per each program version; the interface, which the wrapper uses to delegate execution on the implemen-
tation; and the state, that encodes the state of the outdated implementation to pass it to an updated
implementation. The relations between classes, represented as arrows, are as follows: The wrapper refers
to the interface and uses the state when performing an update; the implementation implements the
interface and uses the state when performing an update.

34

ClassA

field1
field2
field3

method1(x: int)
method2(y: String)
method3(z: double)

invoke(String, Class[], Object[])

ClassA

field1
field2
field3

method1(x: int)
method2(y: String)
method3(z: double)

invoke(String, Class[], Object[])

HelperClass

method4()

(a) Transformed initial version (b) Transformed updated version

Figure 2.11: Example of how Kim and Tilevich’s technique transforms an class to be updatable. The
original class is shown in Figure 2.9a and the update is shown in Figure 2.9c. The technique adds method
invoke to the first program version to redirect calls to methods added in future versions (Figure 2.11a).
During the update, this technique creates a new class HelperClass to hold the new method method4
(Figure 2.11b) and rewrites all client classes that call the new method to do so through method invoke
instead.

implementation class changes, the new implementation class is still a subclass of Ca and the wrapper

class can still refer to it with the same code;

4. State class Cs, encodes the state of an instance of the implementation class, and is used to migrate

the state of existing instances of implementation classes to the new program version.

The rest of the approaches that transform the bytecode of the program relies on the presence of

HotSwap on the underlying JVM. HotSwap is available on most JVMs since Java version 1.4 [Orab] but

it supports a very limited version of DSU that allows only the bodies of existing methods to change.

Kim and Tilevich [KT08] propose a program transformation to support unrestricted changes to Java

classes on JVMs that support HotSwap. Figure 2.11 shows how their approach works. They inject method

invoke on all classes of the initial program version. To support a DSU that adds/changes methods, they

move the definition of the new method to an helper class, and adjust the implementation of all client

classes, through HotSwap, to call the new/modified method through the invoke method. This approach

can also support updates that add fields. Still, it does not support updates that change the position of

a class on the hierarchy.

JavAdaptor also assumes that the underlying JVM has the ability to update the bodies of methods

through HotSwap. It changes the original program to support future changes through containers and

proxies. Figure 2.12 shows an example of how JavAdaptor supports DSU. It transforms the original

program by adding a container field to every updatable class (line 7). In this example, an update changes

method averageTemp (line 2) to currentTemp (line 20). JavAdaptor loads the new version of class

TempSensor, changing its name to TempSensor v2 to avoid name clashes (line 19). It also generates

a container class (lines 40–42) and a proxy class (lines 44–46). Finally, it uses HotSwap to change the

existing outdated code to use the container class (line 28) and the proxy class (line 34).

This section focuses on the program transformations that directly add support for DSU. Besides these,

each approach needs to perform minor transformations to deal with other properties of JVM bytecode.

35

1 class TempSensor {
2 float averageTemp() { ... } ;
3 }
4
5 class TempDisplay {
6 TempSensor ts;
7 IContainer cont;
8
9 void displayTemp() {

10 ts
11 .averageTemp();
12 ...
13 }
14
15 TempSensor getSensor() {
16 return ts;
17 }
18 }

19 class TempSensor v2; {
20 float currentTemp() { ... } ;
21 }
22
23 class TempDisplay {
24 TempSensor ts;
25 IContainer cont;
26
27 void displayTemp() {
28 ((Container) cont).ts
29 .currentTemp();
30 ...
31 }
32
33 TempSensor getSensor() {
34 return new Proxy((Container) cont).ts ;
35 }
36 }
37
38 // Generated for this update
39
40 class Container implements IContainer {
41 TempSensor__v2 ts;
42 }
43
44 class Proxy extends TempSensor {
45 TempSensor__v2 update;
46 }

(a) Inital version (b) Update

Figure 2.12: JavAdaptor program transformation. The left-hand side shows the original program version.
The update changes method averageTemp (line 2) to currentTemp (line 20) , and updates all calls
accordingly (line 11 becomes 29). All changes that JavAdaptor introduces are highlighted. JavAdaptor
also generates two extra classes: Container and Proxy (lines 40–46).

36

For instance, fields may not be directly accessible from other classes and each technique might change their

modifier to public or inject accessor methods (getters/setters) to be able to intercept field manipulation.

DUSC and JRebel represent what would be one instance in the original program with several instances

in the rewritten program. These two approaches thus have to rewrite how the transformed program

constructs its instances, invokes methods on a super class, handles the this reference, among others.

2.4.2 Flexibility

Being an object-oriented language, the basic unit of encapsulation in Java is a class. Java classes keep

their state in a set of fields and define their behavior through a set of methods. Classes are related with

each other through an inheritance relationship: Each class has a single parent class3 and may implement

several interfaces. The inheritance relationship defines the position each class takes on the class hierarchy.

Dynamic update systems for Java can thus support two types of changes: Class structure mod-

ifications, which change the set of fields and methods of a class; and class hierarchy modifications,

which change the position a class takes in the class hierarchy. I refer to the former as internal class

changes and the latter as external class changes. Other authors provide alternative classifications of class

changes [Gus03,WWS10], which I adapt throughout this section to highlight the different design choices

of each DSU system for Java.

Internal Class Changes

The least flexible DSU system for Java is HotSwap, which can update only the bodies of existing methods

— . However, HotSwap is deployed on most available production JVMs. As explained in the previous

section, Kim and Tilevich [KT08] propose a program transformation to support unrestricted updates to

Java classes on JVMs that support HotSwap.

DUSC is slightly more flexible than HotSwap. It allows any type of internal class change, as long

as it is backwards compatible with the previous version. That is, new versions can add new fields and

methods, as long as they still define all the fields and methods that were present on the initial program

version — .

JRebel allows almost any type of internal class change. It still imposes some restrictions on the

types of modifier changes it supports on fields and methods. For instance, it does not support adding

synchronized or transient modifiers. It may also crash the program when running static initializers

for updated classes. JRebel also does not support any type of custom state transformation between

program versions — .

The remaining DSU systems for Java — JDrums, DVM, JVolve, the DCE-VM, and JavAdaptor —

allow any type of internal class change as long as the resulting updated program is type-safe. For instance,

if a field is removed and the signature of a method changes, the new program version must not use the

removed field anymore and must use the correct signature when calling that method. The developer can

use the Java compiler to enforce this property: If the new program verifies when loaded, it is type-safe

and can be installed as a DSU. Ensuring that the new program version compiles ensures that the JVM

can verify the updated program.

External Class Changes

The inheritance relationship of all classes in a Java program defines a tree. Any changes to the class

hierarchy are changes to the shape of this inheritance tree.

3Except for class java.lang.Object, which has no parent class.

37

Adding leaf classes does not pose any challenge because the JVM already supports it through its lazy

class-loading mechanism [LB98]. On its own, this is not very useful because the old program code cannot

refer to the newly added classes. However, even the simpler DSU system for Java — HotSwap — allows

to change existing code to refer to new classes. Alternatively, the old program can use reflection to detect

new classes that implement/extend old interfaces/classes. All DSU systems for Java thus support adding

new leaf classes. JDrums, DUSC, JVolve, and JRebel do not support any other form of external class

changes — .

DVM, the DCE VM, and JavAdaptor support external class changes. DVM requires that the program

resulting from the update is type-safe, as explained earlier. The DCE VM does not require type-safe

updates and, as a result, may crash the programs due to a DSU that violates type-safety. JavAdaptor

generates new Java classes, at update time, for each class that the update modifies. It then changes the

bodies of the methods on the outdated Java class (through HotSwap) to call a method on the updated class

instead. JavAdaptor uses proxies to support updated methods that return an updated type incompatible

with the return type of the outdated method. However, the authors do not discuss how JavAdaptor

supports updates that remove methods from the outdated class. Unfortunately, DVM and the DCE VM

only support automatic program transformation when performing an update — . JavAdaptor is the

only DSU system for Java that is fully flexible — .

2.4.3 Timing

Each approach can apply updates to a running Java program at different points in its execution. I now

discuss the update timing options supported by each DSU system for Java.

Unrestricted

The simplest DSU system for Java programs, HotSwap, has also the simplest update timing restrictions:

A DSU can be performed at any point in program execution. If a DSU changes a given method m,

replacing it with m′, that is active at the time of the update, HotSwap will continue executing m after

the update until the call returns. Future calls will execute method m′.4 However, if the outdated method

calls an updated method, then the call will be resolved to the new code, which may cause program crashes

after a DSU.

JavAdaptor and JRebel build on top of HotSwap, so they are bound by the same update restrictions.

However, the authors do not discuss any restrictions or constraints about update timing.

The JVM pauses the execution of the program frequently to perform thread scheduling, garbage

collection, JIT compiling, and other runtime related tasks. Update systems implemented at the JVM

level can use these pauses to perform DSU. To pause the program without any risk of crashing it,

the JVM introduces the notion of VM safe-points, which are statically determined points in program

execution where it is safe to pause the program and perform all these tasks. For instance, the OpenJDK

documentation5 defines a GC safe-point as: “A point during program execution at which all GC roots are

known and all heap object contents are consistent.”.

The DCE-VM performs updates at GC safe-points. However, from the point of view of the application,

this is no different from performing unrestricted updates. In particular, methods that an update modifies

can be active at GC safe-points. In this case, the DCE-VM behaves as HotSwap and keeps executing the

outdated code until the method returns. If the outdated method calls a method that the update removed,

4This feature is used to implement stop-edit-continue features in IDEs such as Eclipse. To force the program
to run the new method, the IDE typically also pops the stack frame correspondent to the active call. That is
why, when changing a running method, it looks like the method call restarts.

5http://openjdk.java.net/groups/hotspot/docs/HotSpotGlossary.html

38

http://openjdk.java.net/groups/hotspot/docs/HotSpotGlossary.html

the DCE-VM will attempt to resolve that call to new (non-existent) code and crash the program in the

process.

Quiescence

JDrums, DVM, and DUSC require that no method from any class that the update modifies is active at

update time. These approaches do not perform an update if there are any such active methods. In this

case, the program keeps executing in the old version and the update can be retried at a later time.

JVolve, similarly to the DCE-VM, performs updates at GC safe-points. However, JVolve checks if any

method of any class that the update changes is active before performing an update at a particular GC

safe-point. If so, JVolve skips that GC safe-point and attempts to perform the update at the next one

the program reaches. If JVolve fails to perform an update within a certain amount of time, the update

fails and the program is left executing in the old program version.

JVolve allows the developer to blacklist methods that cannot be active at update time, even if the

update does not modify them. For instance, in the example that Figure 2.1 shows, in page 14, the

developer can blacklist method m and thus remove the possibility of crashing the program if JVolve

performs an update at line 5.

2.4.4 Update Semantics

Performing an update involves changing the code that the program executes and updating the state that

the program keeps to be compatible with the new code. The new program code has to be installed

at update time so that the updated program follows the new behavior. However, each DSU solution

has more freedom to choose when to transform the program state. This section describes the possible

semantics that DSU systems for Java use.

Immediate Updates

Programs written in Java are typically not compiled to native code that is executable directly on the

CPU. They are instead compiled to bytecode that is executed by the JVM. Besides interpreting the

bytecodes of a Java program, the JVM also provides runtime support in the form of automatic memory

management through a garbage collection (GC) mechanism.

As described in Section 2.4.1, DSU approaches implemented at the JVM level can take advantage of

the existing GC algorithms to find and transform the outdated program state. The DCE-VM and JVolve

force a GC run at update time, which stops the program until all the GC algorithm traverses all the

program state. They use a customized GC that detects outdated instances and transforms them while

traversing the program state.

DUSC is not implemented at the JVM level, so it cannot take advantage of the GC to transform the

program state between versions. It instead rewrites the program to make it updatable. When doing so,

DUSC adds an instance vector to each wrapper class to track all instances of the interface class across the

application. It also changes the constructors so that they register the new instance on the appropriate

vector, and adds a finalizer method to every implementation class that removes the garbage-collected

instance from its vector. This way, DUSC can traverse all live instances of updatable objects while the

program is stopped.

JavAdaptor also supports immediate update semantics and, as DUSC, is not implemented at the JVM

level. JavAdaptor uses the Java Platform Debugger Architecture (JPDA) [Oraa] to find all outdated

instances that need to be transformed. This API provides method instances that finds all objects

of a given class, and method referringObjects that, given an object o, find all objects in the heap

39

that refer to o. Internally, method referringObjects is implemented through a GC run. The authors

of JavAdaptor do not discuss the timing of the updates explicitly. The original paper suggests that

JavAdaptor supports immediate updates.

HotSwap simply installs new code for already loaded classes and does not transform any program

state in the process. We can consider that it has immediate update semantics.

Lazy

Some GC algorithms allow the program to keep executing concurrently with the GC process [JHM11].

This allows the GC to be performed incrementally, thus reducing the pause in the program execution

otherwise required to reclaim unused memory.

DVM stops all program threads just to change the program code and to prepare the state transfor-

mation logic. It then starts an incremental GC run, customized to detect outdated program state and

transform it. Of course, the program can find outdated program state before the GC transforms it. To

handle that case, DVM traps all accesses that the program makes to fields and methods, so that the

outdated instances can be transformed if needed as the program uses them.

JDrums is implemented at the JVM level, but it does not use a modified GC to transform the state

between program versions. Instead, it adds an extra level of indirection to the internal representation

of objects in the JVM: Objects refer other objects through handles. After an update, JDrums can

use handles to intercept when the program manipulates an outdated object. At that point, JDrums

transforms the state of the outdated object into a new object, and then it updates the respective handle

to refer to the new object instead.

JRebel instruments the body of every method with a runtime redirection call. After an update takes

place, JRebel can use the redirection to detect when the program is about to use an outdated instance,

and update it before allowing the program to use it.

2.4.5 State Transformation

The DSU systems for Java that this section presents are flexible enough to support updates that change

the set of fields that classes have. As a result, these DSU systems need to transform outdated instances

to conform to their new representation. This section discusses how existing DSU solutions for Java do

that.

HotSwap is the exception because it does not support any type of updates that changes the repre-

sentation of modified classes; I shall not discuss it further on this section. All other approaches support

either automatic or assisted program state transformation.

Automatic

Automatic approaches match fields between versions by name and type and copy all the fields that the

update does not modify. DSU systems that support automatic state transformation can use the default

field initialization rules that the Java programming language defines [GJS96] to initialize the set of fields

that an update modifies. DVM, the DCE-VM, and JRebel support only this style of automatic state

transformation.

Assisted

Automatic approaches minimize the burden on the developer to write state transformation code, at the

cost of supporting only very simple updates that do not change how the program represents its state. For

40

1 class Conversion_Point {
2 static class Old {
3 static double x, y;
4 }
5
6 static class New {
7 static double rho, theta;
8 }
9

10 public static void convertObject() {
11 New.rho =
12 sqrt(square(Old.x) + square(Old.x));
13 New.theta = arctan(Old.y / Old.x);
14 }
15 }

16 public class V1_Point {
17 double x, y;
18 }
19
20 public class JvolveTransformers {
21 ...
22 static void jvolveObject (Point to,
23 V1_Point from) {
24 double squared_x = square(from.x)
25 double squared_y = square(from.y)
26 to.rho = sqrt(squared_x + squared_y);
27 to.theta = arctan(from.y / from.x);
28 }
29 }

(a) JDrums (b) JVolve.

Figure 2.13: Example of a JDrums conversion class (2.13a) and a JVolve transformer class, on the right
hand side (2.13b). Both classes convert a point in rectangular coordinates (x, y) to polar coordinates

(ρ, θ) through the transformation (ρ =
√
x2 + y2, θ = tan−1(y/x)).

instance, consider the case where the data kept in a list in version 0 is kept in a tree in version 1. This

modification, clearly out of the capabilities of automatic state transfer, requires manual intervention.

Some DSU systems for Java support assisted state transformation, in which the DSU system automates

as much as it can but still allows the developer to customize the transformation logic. JDrums, DUSC,

JVolve, and JavAdaptor follow this approach.

DUSC generates a state class for each updatable class in the application, as shown in Figure 2.10.

State classes encode the state of instances of updatable classes. Each state class has the same set of fields

as the original class used to generate it. To transform an object, DUSC instantiates the appropriate state

classe, copies the fields from the outdated object to the instance of the state class, and then passes that

instance to the transformation code that the developer wrote. Unfortunately, the authors of DUSC do

not show any example of the transformation code.

JavAdaptor automatically maps fields that exist in both versions and performs default initialization

for fields that the update adds. The authors state that JavAdaptor supports more complex mappings

through mapping functions manually defined by the developer. Unfortunately, the authors do not show

any example of manually defined mapping functions.

JVolve and JDrums allow the developer to specify the transformation logic through different ap-

proaches. To introduce them, consider the example of a class Point that represents a geometric point in

a two dimensional plane. Consider that points are internally represented using rectangular coordinates

(x, y) in version 0 and polar coordinates (ρ, θ) in version 1. Each point in the form (x, y) can be trans-

formed to (ρ, θ) through the transformation: (ρ =
√
x2 + y2, θ = tan−1(y/x)). Figure 2.13 shows how

JVolve and JDrums allow the developer to specify the transformation logic.

For each class that an update modifies, JDrums creates one conversion class. Each conversion class

has two inner classes, New and Old, that reflect the fields of the new and old versions, respectively.

Figure 2.13a shows an example of a conversion class for the point-transformation example. The developer

specifies the conversion logic by manipulating static fields on each inner class. When transforming an

outdated point into an updated one, JDrums translates each manipulation of the static fields to the

correct manipulation of the respective field in the correct version.

JDrums provides a tool to generate stub conversion classes. Figure 2.14a shows how to use the tool

41

.java1 javac .class1

JDrums
Tool

JDrums
JVM

conversion
.java

javac

Update
Package

conversion
.class

(a) JDrums

.java0 .java1

JVolve
UPT

javac .class1

transformers
.java

JVolve
javac

transformers
.class

specfile
.dat

(b) JVolve

Figure 2.14: Method to prepare updates for JDrums (2.14a) and JVolve. (2.14b). JDrums queries
the JVM for information about the current version of the program; JVolve requires the operator to
provide the source for the current version of the program. JDrums updates take the form of an update
package; JVolve uses a special tool (omitted) to load the new version of the application together with the
customized transformer code and the update specfile as a DSU.

JDrums provides. It takes as input the new version of the program6 and it queries the JDrums JVM

directly to compare the new version against the current version in execution. It then generates a stub

conversion class, that the developer can customize with the program state transformation logic. JDrums

copies automatically all the fields that did not change between versions. The developer then creates the

conversion package7 by bundling together the conversion class and the updated code. At this point, it is

possible to start the DSU process by signaling JDrums that a conversion package is ready.

JVolve generates a transformer class that contains an object transformer method for every class that

an update changes. Figure 2.14b shows an example of a transformer class for the point transformation

example that we are following. Each transformer method takes two arguments: A blank new object and

an outdated object. The transformer method transfers the state from the outdated object to the blank

object.

JVolve provides a tool called Update Preparation Tool (UPT) to generate stub transformer classes,

and the types to represent the outdated objects. Figure 2.14b shows how to use UPT. UPT compares

both program versions and generates code to copy the state that did not change between versions. The

resulting transformer class may contain invalid Java code, such as writing to final fields. JVolve thus

provides a modified compiler to generate the bytecode for the transformer class. Once the developer

customizes the transformer logic, he can can signal JVolve to perform an update, providing the bytecode

for the transformer class together with the new program version and an update specfile with metadata

about the update, which is also generated by UPT.

2.4.6 Discussion

This section described the state of the art in DSU systems for the Java language. I now explain its

respective rows on Table 2.1, page 12, by relating each DSU system for Java with the goals that I

introduced earlier in Section 1.2.

Flexibility

Programs written in Java are composed by a set of classes, that are related with each other through an

inheritance relationship in which each class has a parent class and implements a set of interfaces.

All systems support updates that simply add new classes to the application. In fact, the JVM itself

already supports that feature through lazy classloading [LB98]. However, the ability to load new classes

on itself is not a very flexible DSU system.

6The authors are not specific about the form of the input, source-code or bytecode.
7The authors do not specify how to do this step.

42

HotSwap is the least flexible DSU system for Java. It allows updates to change only the bodies of

existing methods. Updates cannot change the class signature in any way, and this includes changing the

signature of any method — .

The rest of the DSU systems for Java support any internal class change, i.e. updates that change the

set of methods and fields that each class defines. The vast majority of the remaining systems — JDrums,

DUSC, JVolve, and JRebel — do not support updates that change the position of existing classes in the

class hierarchy — .

The only DSU systems for Java that support internal and external class changes are DVM, the

DCE VM, and JavAdaptor — . However, the DCE VM does not support custom program state

transformation — .

Efficiency

The JVM executes Java programs by interpreting their bytecode. To improve performance, it uses a

Just-in-time (JIT) optimizing compiler to generate native code for the portions of the Java program

that are most frequently interpreted. The JIT compiler is thus an important part of the performance of

Java programs. JDrums and DVM disable it, using a modified interpreter to execute, and update, Java

programs. Therefore, these DSU solutions impose a large steady-state overhead when not performing an

update. However, both DVM and JDrums support lazy program-state migration, which means they do

not impose a large update pause when performing an update — .

The other systems implemented at the JVM level — HotSwap, JVolve, and the DCE VM — can

update programs without disabling the JIT compiler. They impose little, if any, performance overhead in

steady-state execution. However, JVolve and the DCE VM require a GC run to transform the program

state at update time. The program does not execute during this GC run, whose duration is proportional

to the overall size of the program state — .

JavAdaptor and DUSC are not implemented at the JVM level but also pause the application at update

time to transform its state — . Besides, DUSC adds a non-trivial amount of steady state overhead —

.

The remaining DSU systems for Java, HotSwap and JRebel, impose low overhead on steady-state and

do not pause the program at update time for arbitrarily long periods of time. HotSwap does not provide

any support for transforming the program state and JRebel is able to do so lazily — .

Correctness

All the DSU systems for Java that I present in this section can crash a running program by performing

an update at a wrong time.

When performing an update, both HotSwap and the DCE VM keep executing the old version of

updated methods active at update time. These approaches thus execute old code concurrently with new

code, which is inherently unsafe. The authors of the DCE VM point out that deleting a method can

crash the application if any method active at update time calls the deleted method after the update —

.

Even though the authors of JRebel and JavAdaptor do not discuss the timing at which updates

happen, these systems are based on HotSwap. I assume that they have similar update timing constraints

— .

To perform an update, JDrums, DVM, and DUSC require modified methods to become quiescent.

This approach is precludes some obviously wrong updates, but still allows updates to happen at the

wrong time as I explained when introducing the goal of correctness in Section 1.2.2 (page 5) — .

43

JVolve also relies on quiescence, but it uses a blacklist to prevent updates while sensitive methods are

active. The blacklisted methods must be identified by the developer. This blacklisting approach is an

important step towards correctness. However, it does not provide any tool that allows the developer to

identify which methods to blacklist, or to test that the blacklist is not missing any method — .

Effectiveness

All DSU systems that this section presented target a popular language, Java; none requires that the

updatable program to follow a particular architecture; and none restricts the set of language features

and idioms that a generic Java program can use to still be updatable. This is an important part of the

effectiveness goal.

Some DSU systems are built specifically as a development time tool — HotSwap, JRebel, the DCE

VM, and JavAdaptor. A DSU approach designed to be used as a development time tool has more relaxed

constraints than a DSU system designed to be used in production. For instance, it is perfectly reasonable

to expect updates to fail randomly and crash the program in the former case (as long as it does not

happen too frequently), whilst an update-related crash defeats the purpose of a DSU system in the latter

case. We can use the same argument for efficiency and flexibility. Therefore, DSU systems designed as

development time tools are not fully effective — .

Other DSU systems require a custom JVM — JDrums, DVM, JVolve, and the DCE VM. Given that

the JVM plays a central role in executing Java programs, restricting it to one particular implementation

limits the effectiveness of these approaches — .

DUSC is the only DSU solution for Java that targets programs running in production and does not

require a custom JVM. Therefore, it is the only approach fully effective for Java programs — .

2.5 Object-Oriented Database Management Systems

A large class of applications do not persist their own state, they delegate that responsibility to a Database

Management System (DBMS). A popular choice is to use a Relational DBMS (RDBMS) that represents

the state of the application through a set of relations between tables. The structure of the data that the

database keeps; i.e. the names of the tables, the columns that each table has, and the relations between

columns in different tables; is called the database schema, or just schema for short. The data itself is

kept in rows in all the different tables, and is thus consistent with the database schema.

RDBMSs need to evolve to support unanticipated changes to the original schema. They do so through

a special language, typically a dialect of SQL, to modify the schema. Each different RDBMS provides a

different level of support to transforming the data to be consistent with the new schema. The literature

on updating schemas without stopping the RDBMS is plentiful but, however, outside the scope of this

document. I shall not discuss it any further.

An alternative to using RDBMSs is to use Object-Oriented DMBSs (OODBMSs) to persist the state

of the application through a set of interconnected objects. The database schema in this case is a set

of classes, each class declaring a set of fields, and the inheritance relationship between all the different

classes. The data itself is represent by a graph of objects. Each object belongs to a class, which keeps

the data consistent with the database schema.

This is very similar to how programs written in object-oriented languages structure their state, as I

described in the previous section. Given the similarity between the two, this section briefly describes the

state of the art on OODBMS systems. In particular, it describes how each OODBMS supports changes

to the structure of the data it keeps, either online or offline.

44

Language Change Update State
System Bindings Detection Semantics Transf.
O2 C++ API Lazy / Deferred Assisted

Versant C++, Java API Lazy Automatic
Objectivity/DB C++, Java, . . . Comparison Lazy / Deferred Automatic

GemStone Smalltalk, Java, C API Immediate Manual
PJama Java (OPJ) Hybrid Offline Assisted / Manual

Table 2.4: Systems that support DSU for OODBMSs. This table summarizes the discussion on this
section. Rows titled update semantics and state transformation use the classification introduced in
Section 2.1. The remaining rows, language bindings and change detection, describe which languages
each OODBMS supports and how each OODBMS detects changes between versions, and are described
in detail in Sections 2.5.1 and 2.5.2, respectively.

This section presents and classifies the following OODBMSs, according to how they support changing

the structure of the data that they keep, and transforming the existing data to conform to a different struc-

ture: O2 [FMZ+95], Versant [Ver15], Objectivity/DB [Obj13], GemStone [Gem14], and PJama [DA99].

Table 2.4 summarizes the design decisions that each OODBMS takes, in terms of supporting schema

changes. It also gives an overview of the rest of this section.

2.5.1 Language Bindings

O2 and PJama are research OODBMSs. The rest of the OODBMSs considered — Versant, Objectivi-

ty/DB, and GemStone — are commercial systems.

O2, Versant, and Objectivity/DB provide bindings for C++. Versant and Objectivity/DB also provide

bindings for Java. Objectivity/DB supports bindings for more languages: C#, Python, SQL++, and

Smalltalk.

GemStone is designed for Smalltalk and also provides bindings for Java.

PJama is a research project for Orthogonally Persistent Java (OPJ) programs [AM95]. It includes a

modified JVM (PJVM) and an object store to persist the state of the modified JVM.

2.5.2 Change Detection

Generally, OODBMSs do not restrict the types of class updates they support as I classified them in

Section 2.4.2. However, they provide two different ways for the developer to specify how the database

schema changed between versions: (1) The OODBMS compares the new schema and the old one and

detects the changes automatically, or (2) the developer uses an API to declare the changes between

schema versions.

Change API

O2, Versant, and GemStone require the developer to use an API to describe what changed between two

successive database schemas.

O2 provides a special DSL to declare the schema changes. In this DSL, the developer lists all updated

classes, and all fields that were added/removed/modified in each updated class. The DSL also allows the

developer to specify the transformation logic to make existing instances consistent with the new schema.

Versant provides a change API that supports adding new classes and adding/removing/renaming

fields belonging to an existing class. It does not provide direct support for any other class change, such

as renaming a class or changing its position in the class hierarchy. In this case, Versant considers that the

update deleted the old class and introduced a new class. As an unfortunate side effect, this action deletes

45

all the objects that belong to the old class. To avoid losing data this way, the developer must follow a

multi-step process that involves: (1) Adding the updated class to the schema, (2) writing a program to

manually transform all instances of the old class into instances of the new class, and (3) removing the

outdated class.

GemStone does not allow classes to change. The developer must declare class updates as new classes.

GemStone provides the concept of class histories to relate class updates: Each class belongs to a class

history and GemStone provides API support to declare that a new class belongs to the same class history

of an existing class. GemStone then allows instances of any class to be transformed into instances of

any other class in the same class history. The two classes do not need to be similarly named, or have

anything in common except the class history. When transforming instances to the newest class on their

class history, GemStone provides a change API to map fields between classes.

Schema Comparison

When the schema changes, Objectivity/DB can compute all the differences between the old and the new

database schema. It does not require the developer to specify any change explicitly. Objectivity/DB then

keeps the old schema in a schema-evolution history, which it uses to construct programs for converting

each object to the latest schema during on-demand object conversion (discussed in detail in Section 2.5.3).

Hybrid Approaches

PJama detects schema changes following a hybrid approach: It compares the schema to detect changes

at the class level, e.g. adding/removing/renaming fields, but it requires the developer to explicitly list

schema changes to the class hierarchy through its change API.

2.5.3 Update Semantics

Typically, OODBMSs execute in their own process, separate from the applications that use them. There

may be several client applications connected to a single OODBMS, modifying it concurrently. Performing

a dynamic schema update on a database kept in an OODBMS is thus different from performing a dynamic

update on a running program. One main difference is backwards compatibility : Maintaining backward

compatibility with clients already using the old version of the schema. Backwards compatibility enables

OODBMSs to support schema changes without requiring clients to disconnect. DSU systems for programs

that do not allow old code to execute after the update do not need to provide backwards compatibility.

In this section, I present the different update semantics that each OODBMS considered provides.

Lazy

O2, Versant, and Objectivity/DB provide lazy update semantics by default. This makes sense because

schema updates in OODBMSs require transforming the data to be compatible with the new schema.

The main goal of an OODBMS is to keep a potentially large amount of data accessible to a set of

client applications. Immediate updates impose a pause in the service provided by an OODBMS that is

proportional to the size of the database, which is not acceptable in this scenario.

Deferred

Deferred update semantics is a variant of lazy update semantics where a background thread ensures

progress in the transformation of the program-state (“pushes the world forward”) by traversing the

46

program state and triggering lazy updates eagerly. The program state, in this case, is the data that the

updated database keeps.

Deferred update semantics has the advantage that updates can be performed as fast as lazy updates,

with the guarantee that eventually all the program state will have been transformed to the new program

version, i.e. the new schema.

O2 and Objectivity/DB provide support for deferred update semantics. O2 does so through a tool

that traverses the database and performing the lazy migration algorithm on-demand, for all objects that

need to be transformed. Objectivity/DB allows a finer grain of control when performing deferred data

transformation: The developer can start an update transaction and update a set of objects, on demand,

inside that transaction. Objectivity/DB provides API to transform all objects in a container and in a

database during an update transaction, and the manual encourages developers to use deferred updates

to control the performance impact of data transformation.

Immediate

GemStone provides immediate update semantics. After the update, the developer starts a transaction to

perform the immediate state transformation. In GemStone, a class is updated by adding a newer definition

to the same class history and then explicitly transforming the outdated instances to the updated class.

However, the developer can decide to not transform some instances and thus leave them in the old schema.

Offline

Some OODBMSs require that no client is accessing a particular database while it is transforming the

data to the latest schema definition. These are offline update semantics.

PJama requires that no client is accessing a particular database while it is transforming the data

to the latest schema definition. Versant also supports offline update semantics, besides the default lazy

update semantics. Versant provides a tool — schevol — to transform all instances in a database to the

latest schema definition. The Versant manual describes that multiple schema versions in the database

can negatively impact query performance, as the query is repeated for each schema version. The provided

tool schevol thus ensures good query performance in the presence of schema updates. However, schevol

must be only used in an offline database, i.e. without any active transaction, and may take a long time

to complete.

2.5.4 State Transformation

The main goal of using an OODBMS is to keep the data that a program uses, persist it, and make

it readily available to the client programs. Transforming the state between schema updates is thus an

important part, if not the most important part, of considering schema updates in the context of DSU. In

this section, I discuss the different approaches to transform the data that each OODBMS supports.

Automatic Transformation

All the OODBMSs that I consider in the section — O2, Versant, Objectivity/DB, GemStone, and PJama

— support automatic transformation of the data that a database keeps when performing a schema update.

During automatic transformation, all fields that were not affected by the schema change retain their value.

Automatic transformation also initializes new fields to a default value — zero, false, or null, depending

on the type of the field.

Versant and Objectivity/DB do not support any other type of state transformation.

47

1 // Class C changed
2 static void convertInstance(C_old_ver_ c0, C c1);
3 static C convertInstance(C_old_ver_ c0);
4 static <? super C> convertInstance(C_old_ver_ c0);
5
6 // Class C deleted
7 static void migrateInstance(C c0, <? super C> c1);
8 static <? super C> migrateInstance(C c0);
9

10 // Perform automatic conversion
11 static void copyDefaults(Object oldObject, Object newObj);

Figure 2.15: API that PJama provides for the developer to specify the state transformation logic when
updating the schema of an existing datastore. When an update changes a class that requires any transfor-
mation logic, the developer defines one of these methods in a conversion class. Each conversion method
provides the logic to transform all objects of an outdated class by initializing a blank object of the up-
dated class. Some methods take an outdated object as argument, with the type prefixed by old ver .
PJama uses a modified Java compiler and a modified JVM that understand the special meaning of these
class names. Method copyDefaults is an utility that the developer can call from conversion methods to
perform the automatic (default) conversion on-demand. PJama predates Java templates but I use them
to specify the constraints on some of the arguments and return values.

Assisted Transformation

Besides automatic state transformation, O2 and PJama also support direct assisted state transformation.

Both do so through conversion functions or conversion methods, one for each class that an update changes.

Each conversion function takes an existing object that belongs to the outdated class, Oold, and a blank

object that belongs to the updated class, Onew. After the update, Onew takes the place of Oold in the

object graph. The developer writes the code that initializes the state of Onew given Oold.

O2 classifies conversion functions as either simple or complex. Simple conversion functions access only

the objects being transformed (Oold and Onew); complex conversion functions access more objects besides

the one being transformed. To implement complex transformation code, O2 keeps Oold after Onew takes

it place in the new object graph, hidden from as a screened value. Future complex conversion functions

that require Oold can still access it. O2 statically analyzes the transformation code and computes a

dependence graph to avoid keeping screened values when they are not needed, i.e. for classes that are

never accessed by complex transformation code. O2 cleans all the screened values after a deferred update

completes.

PJama does not support lazy program state transformation; it transforms the whole state in a single

step. PJama always keeps Onew separate from the object graph until the transformation finishes. That

is, the transformation code of other objects can only see Oold, even if PJama has already produced Onew.

This way, the transformation code can traverse the whole heap during transformation, and always find

old objects. After transforming the whole program state, PJama fixes all references to outdated objects

so that they refer to their updated version instead. Then, PJama can safely dispose of all the outdated

objects.

PJama provides several ways for the developer to write the state transformation logic. Figure 2.15

shows the possible alternatives. When a class changes, the developer can define one of the possible

methods to transform objects of the changed class. Some methods take two instances and require the

developer to initialize the new instance with the state on the existing outdated instance (lines 2 and

7). Other methods require the developer to create the new instance (lines 3, 4, and 8), which gives the

developer the chance to change the class of the new instance. When using these methods, the developer

can still use the automatic conversion through method copyDefaults (line 11). The methods shown

in lines 4 and 8 allow the developer to break the type system by transforming an existing instance to

48

an instance of an incompatible type. Once the developer writes all conversion methods for a particular

schema change, he places them in one conversion class.

Manual Transformation

PJama supports two types of state transformation: Bulk and fully controlled conversion. In bulk state

transformation, PJama applies the same transformation logic to all the objects that belong to the same

class, using the conversion methods defined in the preceding text in this section. It traverses all the

program data to find all the outdated instances. For each outdated instance it finds, PJama transforms

it by copying all the unmodified fields and initializing new fields with a default value through automatic

transformations, and then running any custom transformation code present in the conversion class.

The alternative is to perform fully controlled conversion. In this mode, the developer provides trans-

formation code that runs instead of any automated transformation logic. When using fully controlled

transformation, the developer writes all the code to traverse the relevant portion of the state and to

transform the outdated instances. Fully controlled conversion is useful to ensure a specific order of trans-

formation of outdated objects, or to restructure the data in addition to transforming it to comply with

the new schema.

GemStone also provides support for manual transformation. The developer is required to start a new

transaction to transform instances to be compatible with a new schema definition. Only transactions that

start after such a transformation transaction finishes will see the transformed state. GemStone requires

the developer to write code to find all the outdated instances, and then transform them to their latest

definition. It does make the task easier by providing methods to iterate over all instances of a particular

class.

2.5.5 Discussion

The problem of performing a dynamic schema update on a database kept in an OODBMS is similar to

the problem of performing a Dynamic Software Update on a running program. However, despite the

similarities, these are two separate problems and some of the goals that I defined in Section 1.2 do not

map well to OODBMSs. In the following, I explain how each goal can be interpreted in the context of

OODBMS schema changes, and how each OODBMS considered achieves, or not, each goal. The rows on

Table 2.1, page 12, relative to this section summarize this discussion.

Flexibility still makes sense in this context. An OODBMS is flexible if it supports the developer to

both: (1) Change the schema between versions in any arbitrary way, and (2) transform existing databases

conforming to the old schema to a state that is equivalent and conforms to the new schema. Versant and

Objectivity/DB are not flexible because they support only automatic database transformation between

schemas, which does not generate an equivalent database in the presence of complex schema changes —

. All other OODBMSs considered — O2, GemStone, and PJama — are flexible because they allow the

schema to change arbitrarily between versions and provide the developer with a way to express custom

state transformation logic — .

Efficiency is another goal that still makes sense in this context. An OODBMS is efficient if it both:

(1) Supports schema changes without performance degradation, and (2) does not impose a pause that is

proportional to the size of the database to perform a schema change. PJama is not efficient because it

supports only offline schema changes — . O2 and Objectivity/DB support lazy database transformation

after a schema change, but the particular implementation may affect post-update performance — .

To deal with that, they also provide deferred updates, that “push the world forward” by traversing the

database in a background thread and transforming all relevant state to the new schema. Furthermore,

49

Objectivity/DB allows the developer to transform a subset of objects immediately after an update to

control the performance impact of a schema change.

The efficiency of GemStone is hard to fit in this model because all schema changes are backwards-

compatible, and GemStone may keep objects that belong to multiple schemas — . When updating, the

developer starts an update transaction to manually transform existing objects to the new schema while

transactions still execute with the old schema, isolated from such an update transaction. The developer

does not need to transform all objects to the new schema.

Effectiveness and Correctness do not make much sense on this context. Effectiveness requires the

DSU system to target popular languages to maximize its impact, which does not make much sense for

the schema update solutions discussed for OODBMSs. Correctness requires that the developer can ensure

that the updated program behaves as expected after a DSU takes place. Given that OODBMSs do not

execute application code, this goal also does not make much sense.

2.6 Programming Language Support for DSU

Supporting Dynamic Software Updates directly at the programming language is appealing: All programs

written in such a language benefit directly from the high availability that DSU provides.

Some programming languages provide support for DSU. In this section, I present the most relevant

work on DSU support at the programming language level. In particular, I discuss the support for

DSU on the following languages: Common LISP [Ste90], Smalltalk [GR83], Erlang [AVWW96], and

UpgradeJ [BPN08].

2.6.1 Common LISP

LISP8 is a multi-paradigm programming language. LISP is an homoiconic language: LISP programs rep-

resent code in the same way as data. Code is, therefore, a first-class citizen. This makes LISP a naturally

reflective language [BGW93] that has direct support for program introspection — the program can learn

about its own structure — and, depending on the particular implementation, program intercession — the

program can modify its own structure. LISP also provides an extensive system of macros that enables

programmers to extend its syntax simply by writing LISP code that processes LISP code as a any other

data structure.

LISP directly supports DSU through the Common LISP Object System (CLOS). CLOS is an object-

oriented programming language built around the concept of generic functions, which are functions whose

behavior depends on the classes of the arguments supplied to it, and methods, which are specializations

of generic functions for a particular set of argument classes.

To explain CLOS using a more popular programming language, let us consider how they map to Java.

CLOS classes hold their data in slots, which are similar to fields of Java classes. Generic functions can be

considered as virtual (i.e. non-final) Java methods. Each CLOS method is an implementation of a Java

method. For instance, consider Java method Object.toString(). In CLOS, it would be a generic

function defined as (defgeneric toString (obj)) with a default method defined as (defmethod
toString (obj Object) ...). Overriding Java method toString means defining a new method for

the generic function toString in CLOS.

One major difference between Java (or similar well-known object-oriented programming languages

such as C++ and C#) and CLOS is how methods are selected. When invoking a method in Java, there

is a special argument called the receiver. Java performs dynamic dispatch, i.e. selects which overriden

8Common LISP is a dialect of the LISP programming language [Ste90]. Throughout this section, I shall refer
to Common LISP simply as LISP.

50

method to run, based on the type of the receiver. CLOS also performs dynamic dispatch to select

which method to execute when calling a generic function. However, CLOS considers the types of all the

arguments.

The behavior of CLOS is defined through a Meta-Object Protocol (MOP). The MOP is written in

CLOS and specifies a set of interactions between generic functions which defines the behavior of CLOS

itself. For instance, generic function compute-effective-method selects which method to execute

when calling a generic function, and generic functions slot-value-using-class and (setf slot-
value-using-class) implement reading and modifying slots, respectively.9 The developer can provide

new methods for all generic functions defined in the MOP, and thus customize the behavior of CLOS.

CLOS supports redefining classes simply by defining a new class with the same name. When redefining

a class, the set of slots that a class defines can change. In that case, CLOS propagates the changes to the

instances of the redefined class and its subclasses. The moment in which the instances are updated is left

implementation dependent, as long as it is no later than the first access made to a slot of the outdated

instance. This allows implementations to support either immediate or lazy update semantics.

The MOP specifies a 2-step process to update instances, when the new class definitions has a different

set of slot:

1. Modifying the structure of the instance by adding new slots and discarding slots that are not present

in the new class definition old and new class definitions retain their value. This step is completely

automatic. It retains the identity of each updated instance, even if the implementation needs to

allocate physical space for the new slots.

2. Initializing the newly added slots and performing any other custom actions. Slots that are present

in both the old and new class definitions retain their value. Newly added slots are initialized, by

default, with the slot initialization logic present in the new class definition. The developer can

further customize this step by providing methods for generic function update-instance-for-
redefined-class, which takes 4 arguments:

(a) The instance being updated;

(b) List of names of new slots;

(c) List of names of discarded slots;

(d) Property list with the values of the discarded slots.

CLOS also provides support for changing the class to which an instance belongs to, through function

change-class. The MOP specifies a 2-step process to do this, similar to the process for updating

instances. The developer can customize it in the same way, by providing methods for generic function

update-instance-for-different-class which is called on step 2.

2.6.2 Smalltalk

Smalltalk is an object-oriented programming language. Smalltalk programs work by passing messages

between objects. Each object holds some state, private to itself, and receives messages sent by other

objects or itself, by executing a method. While processing messages, the object can send messages to

other objects and to itself. Calling a method in Smalltalk is equivalent to sending a message to an object

(the receiver) with all the method arguments.

Similarly to LISP and CLOS, Smalltalk is almost entirely written in itself. However, unlike LISP,

Smalltalk is not homoiconic. Instead, Smalltalk provides a comprehensive support for reflection, both

9This example is very simplified. The exact protocol to perform these tasks involves the interaction of more
generic functions.

51

introspection and intercession. Smalltalk provides a meta-object protocol (MOP) that gives meaning to

Smalltalk programs by describing all aspects of the language, including compilation. Rivard [Riv96]

describes the reflective capabilities of Smalltalk in detail; in the following I provide a brief overview of

the parts that provide support for Dynamic Software Updating.

The classes of the MOP that are most relevant to DSU are Object, and Behavior. Everything in

Smalltalk is an object, which means everything is an instance of class Object. This class provides the

basic protocol common to all objects. Class Behavior, as the name indicates, provides behavior that is

common to all classes. Class Behavior is a subclass of Object.

The process of defining a new class in Smalltalk involves interacting with class Behavior to create a

method dictionary for the new class. The new method dictionary can then be used to compile, and thus

make available, all the methods that the new class defines. During program execution, class Behavior
keeps the method dictionary of each class and allows the program to inspect and modify it. This enables

changing the code while the program is running, which in turn provides basic support for DSU.

Besides defining new code, Smalltalk also supports traversing and transforming the program state.

Class Behavior supports listing all the instances of a particular class through method allInstances,

and executing a block of code for each instance of a particular class through method allInstancesDo.

Given one particular instance, class Behavior can list all its instance variables through method

allInstVarNames. Unfortunately, Smalltalk does not support manipulating instance variables directly.

However, it supports injecting methods that manipulate each instance variable. Besides manipulating

the state of existing objects, Smalltalk also supports copying them through methods shallowCopy and

deepCopy of class Object. Class Object also provides method become that takes a single argument

and swaps the identity of the receiver and the argument. Smalltalk thus provides more than enough

support to traverse and transform the program state when performing a DSU.

Of course, an important part of the program state is the call stack and program-counter. Smalltalk

reifies10 the call stack as a chain of linked stack frames called contexts. Each method can access its

own context through variable thisContext, which contains the current method being executed and

its arguments, the program-counter, and the receiver object. All Smalltalk implementations support

inspecting the call stack. Modifying the call stack depends on the particular Smalltalk implementation.

Still, this provides support for accessing/transforming the control-related program state when performing

a DSU.

2.6.3 Erlang

Erlang is a programming language designed for building large-scale distributed systems. Erlang provides

language support for concurrency through the concept of a process. Each process in Erlang is executed by

a single thread and communicates explicitly with other processes by exchanging asynchronous messages.

All data that a process keeps is private to itself, so there is no implicit communication through shared

data, which removes the need for complex concurrency control mechanisms such as locks.

Erlang code is structured in modules. Each module defines a set of functions. Erlang provides support

DSU through code replacement at runtime at the level of modules. Figure 2.16 provides an example of

Erlang code. The example defines module xyz with a single function loop that calls itself with a tail-call

on line 7.

The code replacement mechanism in Erlang is built on top of the dynamic module loading mechanism.

Erlang allows new modules to be loaded dynamically while the program is executing. Dynamic code

loading happens when the program first references a module that is not yet loaded. When loading each

module, Erlang resolves references to itself and other modules. For instance, in the code example shown

10Reification is the process of encoding execution state as data. [BGW93]

52

1 - module(xyz).
2
3 loop(Arg1, ..., ArgN) ->
4 receive
5 ...
6 end,
7 loop(NewArg1, ..., NewArgN).

8 - module(xyz).
9

10 loop(Arg1, ..., ArgN) ->
11 receive
12 ...
13 end,
14 xyz: loop(NewArg1, ..., NewArgN).

Figure 2.16: Example of code update in Erlang. Both sides define module xyz with function loop.
Function loop on the left-hand side ends with a tail-call to itself, on line 7, that Erlang resolves at
load-time. However, function loop on the right-hand ends with a fully qualified tail-call, on line 14,
which Erlang resolves dynamically at every call to the most recent version of module xyz. This code
replacement feature can be used to replace module xyz.

in Figure 2.16, Erlang resolves the tail-call in function loop (line 7) to itself when the module is loaded.

All future calls will be made to the function resolved at load-time.

Erlang treats fully qualified accesses differently, like the one on line 14. Erlang dynamically resolves

fully qualified accesses every time they are made, and not once when it loads the module. As a result, the

operator can load a new version of module xyz and wait for function loop to reach the fully qualified

tail-call. At that point, Erlang will resolve that call to the function defined in the updated module,

effectively performing a DSU.

The code of each Erlang module can have up to two versions: The current and the old version. When

Erlang loads a module for the first time, its code becomes current. If Erlang later loads a new instance

of that module, the code of the previous instance becomes old and the new code becomes current.

Erlang allows old and current code to execute concurrently in the same program. The current code

can be accessed through fully qualified accesses, the old code can still be accessed through lingering

processes. If Erlang loads a third instance of the same module, it removes (purges) the old code and

terminates all processes still lingering in it.

2.6.4 UpgradeJ

UpgradeJ is an extension to the Java programming language that provides language support for DSU

at the class level. UpgradeJ extends Java syntactically by requiring all classes to be annotated with a

version number. Figure 2.17 provides an example of a simple class Button written in UpgradeJ, together

with two updates. This example highlights the syntactic changes and shows the three different types of

class updates that UpgradeJ supports:

New class upgrades: (line 1) Add a new class definition to the program. New class upgrades are similar

to dynamically loading new classes, which the JVM already supports through class-loaders [LB98].

Revision upgrades: (line 11) Change the method bodies of a class. Revision updates cannot change

the signature of the updated class. Revision updates are very similar to the DSU support provided

by HotSwap [Orab], described in detail in Section 2.4. In UpgradeJ, revision upgrades allow existing

code to refer to classes added by new class upgrades.

Evolution upgrades (line 13) Add methods and/or fields to a class. Evolution upgrades must be

backwards compatible, i.e. retain all methods and fields that the outdated class defines.

A program written in UpgradeJ can declare instances to be exact (line 3) or upgradable (lines 4 and

5). An upgradable instance automatically uses the latest revision of its class (and its superclasses), and

53

1 new class Button[1] { public Color getColor() { return Color.WHITE;} }
2
3 Button[1] a = new Button[1=](); // Creates an exact version instance of Button[1]
4 Button[1] b = new Button[1+](); // Creates an upgradable instance of Button[1]
5 Button[1] c = new Button[1++]();// Creates an upgradable instance of Button[1]
6
7 a.getColor(); // White
8 b.getColor(); // White
9 c.getColor(); // White

10
11 new class Button[2] revises Button[1] { public Color getColor() { return Color.BLACK; } }
12
13 new class Button[3] evolves Button[2] {
14 private Color color = Color.RED;
15 public Color getColor() { return this.color; }
16 public void setColor(Color color) { this.color = color; }
17 }
18
19 upgrade(); // Installs classes Button[2] and Button[3]
20
21 a.getColor(); // White
22 b.getColor(); // Black
23 c.getColor(); // Black
24
25 c = new Button[1++](); // Creates an upgradable instance of Button[3]
26 c.getColor(); // Red

Figure 2.17: Example of UpgradeJ class updates.

an exact instance always uses the same revision of its class. In the example shown in Figure 2.17, note

how UpgradeJ propagates the revision upgrade performed on line 19 to all upgradable instances.

UpgradeJ does not propagate evolution upgrades to existing upgradable instances. To use the latest

evolution upgrades, developers create upgradable instances using the syntax shown in lines 5 and 25.

This creates an instance in the latest evolution upgrade of a class. However, the instance will remain in

the same evolution upgrade throughout its life time.

The restrictions on each type of class upgrade that UpgradeJ supports allow instances in different

versions to co-exist in the same program and still retain type-safety. This allows UpgradeJ to perform

DSU without traversing the whole program state to transform it to be compatible with the new program

version. The authors explain how revision and evolution upgrades can be used together to provide a

flexible update model. The authors also formalize the type system of UpgradeJ and prove its soundness.

2.6.5 Discussion

Providing DSU support directly at the programming language level is a promising approach. Ideally, all

programs written in a language that supports DSU can provide a high level of availability with no extra

effort in development. Unfortunately, all the approaches that I consider in this section fall short of the

goals for a pragmatic DSU system that I defined in Section 1.2. The relevant rows of Table 2.1, in page

12, summarize this discussion.

The approaches that I consider in this section require the program to be written in a particular

programming language to support DSU. The applicability of these approaches is thus limited to the

programs written in each language. Unfortunately, these languages are not very popular11 and that

limits the applicability of these approaches for DSU — .

Efficiency is hard to reason for DSU supported at the programming language level. Steady-state

performance — pre and post update — and update pause are all left implementation dependent. Still,

LISP, Smalltalk, and Erlang allow developers or implementations to provide lazy update semantics, and

11Some, like Erlang, are very popular inside specialized niches.

54

thus perform updates without inducing a long pause in the execution of the application — . UpgradeJ

is carefully developed to support DSU at the type system, which means the compiler can optimize version

checks and the update process does not impose a long pause — .

Regarding correctness, LISP and Smalltalk leave the exact moment at which an update takes place

completely implementation dependant — . In Erlang, the points in execution in which updates takes

place are explicitly identified in the program text, one per module. However, it is hard to reason about

updating several, inter-dependent, modules in Erlang. Furthermore, given that Erlang uses a dynamic

type-system, an update can break the type system and cause the program to crash — . UpgradeJ is

designed around a static type system and the authors prove its soundness even in the presence of updates.

However, it is still possible to design an update that breaks the program semantics without breaking the

type system, e.g. by programmer error, and UpgradeJ does not provide any way for ensuring that the

updated program will behave as intended — .

Finally, all programming languages that support DSU achieve the flexibility goal because they allow

programs to change arbitrarily between successive versions — .

2.7 Other Approaches

There are some well known existing approaches to support DSU that require programs to be written in a

particular style, follow a particular design architecture, or that require redundant hardware. This section

describes the most relevant of such approaches.

2.7.1 Modular Systems

Systems such as OSGi [OSG14], the Netbeans Platform [BTW07], or the Eclipse Rich Client Plat-

form [ML05] allow software to be developed by creating a set of modules that interact with the platform

and with each other to provide the required functionality. The platform itself simply manages the life-

cycle of each module by providing support for adding, removing, or swapping modules. The framework

also provides a modules discovery service, so that modules can discover other modules and establish

communication channels for inter-module collaboration.

Developing software for these platforms naturally promotes good practices of software engineering such

as encapsulation and code re-use. This eases the challenge of providing support for DSU. For instance,

given that a module A communicates with other module B though its public interface, without knowing

the specific implementation of B, it is possible to swap B by another module B′ that provides the same

interface but has a different implementation. In fact, this is exactly the approach that Fabry [Fab76]

proposes on the earliest research on DSU.

However, modular systems are far from being a panacea for DSU. Gregersen and Jørgensen [BTW07]

point out the main shortcomings when they consider DSU on the NetBeans modules framework through

module reloading. In the following, I summarize the most relevant points they make.

Dependent modules. Consider the example that I introduced earlier: Module A communicates with

module B. To do so, module A uses the module discovery service that the platform provides to

discover module B. It then proceeds to invoke methods of B through its interface. However, in

doing so, A holds a reference to the current module B. If the platform later reloads module B,

swapping it for B′ that implements the same interface through a different implementation (e.g. an

updated version of B), module A will still hold references to the outdated module B. When module

A uses those references to invoke a method on the now outdated module B, the invocation will

either execute on the outdated module or fail and crash module A. Both options are incorrect.

55

State transfer. The previous point describes how modular systems typically update existing modules:

By replacing each outdated module B by their updated version B′. However, B might hold state

that was created during its lifetime by interacting with other modules. Unfortunately, all existing

platforms do not provide any way of transferring that state to B′, which results in data loss.

Updating multiple modules. Module platforms replace one modules at the time; there is no atomic

step that allows a set of modules to be replaced in one indivisible step. Therefore, if two modules

are inter-dependent, there is a period of time in which one of those modules is in the new version

while the other is in the old version. This limits the flexibility of updates because each module has

to be backward compatible with older versions of all the other modules it uses.

Module systems replace modules without pausing the whole application to stop. In fact, all other

modules can remain providing service while a module is being replaced. This makes DSU through module

systems efficient — .

Unfortunately, module systems do not achieve any other goal. DSU in module systems is not correct

because it is hard to reason about the behavior of an update due to all the reasons that I discussed earlier

in this section — . Updates through module systems are also not flexible because each module has to

retain the same interface between updates so that other client modules can still use it — . Finally,

module systems are not effective ways of performing DSU because they require updatable applications

to follow a particular program architecture — .

2.7.2 Distributed Systems

A distributed system uses several machines — nodes — to provide a service. Distributed systems improve

their availability by tolerating node faults and improving their overall scalability by adding more nodes.

The presence of redundant hardware poses new challenges and opportunities for DSU in the context of

distributed systems, but also ultimately limits the effectiveness of DSU systems for distributed systems

— .

Brewer [Bre01] discusses two basic algorithms to perform DSU on a distributed system: Rolling

upgrades and big flip. In a rolling upgrade, each node is updated at a time. The node being updated is

taken offline for the update process while the remaining nodes keep providing service. Rolling upgrades

thus require the old and new program versions to be compatible. A big flip takes half the nodes offline

and updates them while the other half keeps providing service. Then, the up-to-date nodes are brought

online to provide service while the outdated nodes go offline to be updated.

The main problem with these two techniques is that they don’t explain how to transfer the program

state that each node keeps between successive versions. As a result, the downtime required for updating

each node is not well defined, which may lead to inefficient DSU — . Rolling upgrades require the new

and old versions to be compatible, which limits their flexibility — . None of these techniques provides

any way for the developer to ensure the correctness of a DSU — .

Kramer and Magee [KM90] propose a technique for updating a distributed system without requiring

any node to be taken offline. In their system model, nodes can only communicate through transactions

and are either active or passive. An active node is operating fully, it can initiate new transactions and

participate in ongoing transactions. A passive node continues to participate in ongoing transactions but

cannot initiate any new transaction. A node n becomes quiescent when: n is passive, all transactions

in which n participated or had initiated terminate, and no other node will initiate any transaction that

requires service from n. The authors describe how to design a system to achieve quiescence and outline

a protocol for updating quiescent nodes.

56

Quiescence as proposed has several drawbacks, as Vandewoude et. al. [VEBD06] discuss. Enforcing

quiescence on a distributed system is very disruptive: The node to be updated must be in a passive

state, other nodes cannot start transactions that need the participation of the quiescent node, and every

node involved in a transaction must be aware of the state of all other nodes involved in that transaction.

All these factors increases the coupling between nodes. The authors propose a different property called

tranquility that, even though weaker than quiescence, is sufficient for DSU. It is based on a black-box

abstraction: Each node knows the services that each other node exports but does not know the state

of other nodes nor their involvement in ongoing transactions. Using tranquility, nodes can participate

in transactions unaware that their actions are part of such a transaction. Tranquility also requires less

nodes to be in the passive state than quiescence to perform a DSU.

Dumitraş and Narashimhan [DN09b] propose a dynamic update system called Imago that is able to

perform end-to-end upgrades on distributed systems. Imago requires updatable distributed systems to

have an an ingress interceptor, between the world and the front-end of the system, and an egress point,

between the system and the persistent storage. Imago can then instantiate a parallel system, running

the new version, and initializes it with state from the datastore. Then, it enforces quiescence either using

the ingress interceptor to block incoming write requests or using the egress interceptor to make all data

read-only. Finally, it atomically switches to the new system.

Imago is able to deploy the new system in an environment similar to the production environment.

It is also able to test the update using two approaches: (1) Static offline system testing, or (2) running

both systems in parallel, feeding the same requests to both systems, and testing if both produce the

same result at the data-store level. Imago, therefore, provides support for correct DSU — . Imago

also supports flexible DSU: The authors used it to update the RUBiS benchmark, changing it from the

Java implementation to the PHP implementation — . The fact that Imago requires enough redundant

hardware to run both versions in parallel limits its effectiveness — . However, each version can run

without any performance penalty, which makes it efficient — . The authors suggest the concept of

Upgrade as a Service [DN09a], in which the owner of the system undergoing an update can rent the

infrastructure needed to perform an update, to alleviate this shortcoming.

2.8 Discussion

This chapter presented the state of the art in Dynamic Software Updating found in the existing literature.

There are existing solutions that reach some of the goals that I propose for practical DSU, in Section 1.2.

However, no existing solution reaches all of the goals. This section concludes this chapter by discussing

the state of the art for each goal. Table 2.1, in page 12, summarizes this discussion.

2.8.1 Flexibility

Flexibility is the goal that most existing solutions for DSU achieve — 16 out of the 35 considered

fully achieve it; 13 of the remaining 19 partially achieve it. This goal can be considered the hallmark

of Dynamic Software Updating, and most solutions maximize the ways in which a running program

can change between successive versions. The solutions that achieve this goal succeed at removing any

constraint on the types of changes that a new program version can make to the version in execution at

the time of the update.

The most restrictive DSU system of all considered is HotSwap. It can update only the bodies of

existing methods. It does not support any type of structure change to the static structure of a Java

program, such as adding/removing/modifying fields/methods.

While executing, programs build state that is tightly coupled with their code/behavior. Updating the

57

code without transforming the state limits the flexibility of DSU: The new code has to be compatible with

the old program state. OPUS, DynSec, and LUCOS do not support any program state transformation

at all; DVM, the DCE-VM, and JRebel support only automatic (default) program state transformation.

Versant and Objectivity/DB place limits on what custom transformation code can do to the existing

program state at update time.

HotSwap requires all updates to retain the same class signature for all classes between program

versions. This is an extreme case of requiring the program to retain the same interface between versions.

This constraint can be relaxed by breaking the program into units of abstraction, e.g. modules or

classes, and require that only the public interface of each unit of abstraction to remain constant between

updates. The public interface is the interface that other units of abstraction use. In this case, DSU can

be implemented by simply swapping the implementation by another that provides the same interface.

All module systems presented in Section 2.7.1 follow this approach. DUSC follows a similar approach,

considering Java classes as units of abstraction: Classes can be updated if the new version retains the

same interface as the previous version.

Another way in which DSU systems limit flexibility is by requiring updates to be backwards compatible,

which means that the behavior that the update introduces is compatible with the behavior of the program

version in execution. This eases the challenge of supporting DSU because the program can execute both

versions at the same time. Rolling upgrades and POLUS require updates to be backwards compatible.

Some DSU systems limit their flexibility for technical reasons. POLUS and PROTEOS do not support

update functions that are always active throughout the entire lifetime of a program, such as main.

Ginseng allocates extra space at the end of existing structures, so that future updates can increase their

size. However, this imposes a hard limit on how updates can change existing structures. JDrums, DVM,

DUSC, JVolve, and JRebel do not support updates that change the class hierarchy of a Java program,

which is notoriously hard to implement.

2.8.2 Efficiency

Apart from flexibility, discussed in the previous section, efficiency is the goal that most existing solutions

achieve — 7 out of the 36 considered fully achieve it; and 17 out of the remaining 29 partially achieve

it. I consider solutions for DSU to be efficient if they do not impose any overhead when executing in

steady-state, i.e. when not performing an update, and if they do not impose arbitrarily large pauses to

perform updates.

Solutions for DSU need to choose the instant in which the update takes place. At that instant, they

pause the program to load the new version. After the pause, the program resumes execution in the new

program version. This creates an opportunity for transforming the program state while the program

is paused and thus ensure that the new program can only access transformed state. However, when

performing such immediate updates, the execution of the program is paused while the transformation is

taking place. The length of the pause is proportional to the size of the program state, which may be

arbitrarily large. Ekiden, Kitsune, PROTEOS, JVolve, the DCE VM, and JavAdaptor all impose long

pauses when performing DSU.

One option to avoid transforming all the program code at once is to rewrite the program code so that

it manipulates the program state through a level of indirection. The system can then use the level of

indirection to intercept when the program manipulates the program state for the first time after an update,

and transform it on-demand. This approach, however, trades a long update-time pause for a constant

level of performance overhead in steady-state execution. Ginseng, K42, and JDrums do exactly this.

There are other reasons for the updatable program to run slower in steady-state: Compiler optimizations

not supported (OPUS, POLUS, and LUCOS), updatable program executed inside a sandbox (DynSec),

58

Just-In-Time compiler disabled (JDrums and DVM).

DUSC suffers from these two problems. It both imposes a long update-induced pause, and it adds

steady-state overhead.

LISP, and Smalltalk leave enough room for the implementation to decide on how to support their DSU

features, allowing implementations that provide inefficient support for DSU. Erlang leaves this problem

entirely up to the developer to solve. UpgradeJ can perform DSU without any steady-state overhead or

long update-time pauses.

PJama requires that no clients are connected to the data-store undergoing state transformation.

GemStone requires explicit manual intervention to transform the program state. Rolling upgrades and

big flip omit details about how to transform the program state between program versions. All of these

approaches leave room for inefficient DSU.

2.8.3 Effectiveness

An effective solution for DSU can be readily applied to existing code that was not developed with DSU

in mind. It targets popular languages and does not restrict the style in which the program is written or

the tools required to build and execute the program. 5 of the 36 solutions fully achieve the effectiveness

goal; 26 out of the remaining 31 partially achieve it.

This definition directly rules out DSU solutions that target niche applications: OS kernels and

OODBMSs. It also rules out DSU solutions that require the updatable program to be written in a

particular style or architecture: Module systems and distributed systems. It also rules out DSU solutions

that require programs to be written in a different language. The only categories that can fully achieve

this goal are DSU systems that target C or Java programs.

For C programs, Ginseng does not reach the effectiveness goal because changes the size of structures

defined in the updatable C program, which breaks memory alignment and thus forbids the updatable

program to use any C idiom that relies on memory alignment. Ginseng also requires the updatable

program to have a form that is easy to understand by its conservative static analysis. For Java programs,

HotSwap, JavAdaptor, and JRebel are development-time tools that do not target programs running in a

production environment, therefore they cannot be considered effective. JDrums, DVM, JVolve, and the

DCE VM require a non-standard execution environment (a custom JVM) to support DSU.

2.8.4 Correctness

The correctness goal can be summarized as ensuring that the updated program behaves as expected.

This is a very strong property that requires developers to specify what is the expected behavior of the

updated program. Only 2 out of the 36 solutions considered for DSU fully achieve this goal; and 15 out

of the remaining 34 partially achieve it.

Correctness is related, to some extent, with the timing of the update. The most common approach to

ensure correctness is to limit the instants at which updates can take place while the program is running.

One option is to perform DSU only when the updated code is not active (is quiescent). However, this

approach does not preclude all bad timings that may crash a program at update time. Worst still, all

completely automatic approaches to ensure update correctness have false positives that result in program

crashes, as Hayden et al. discuss [HSH+12].

As a consequence, the developer has to be involved in specifying which are the program points where

it is safe to perform an update. However, the developer can still make mistakes in identifying the program

points where an update can take place and, as a result, crash the running program at update time. Or

specify an erroneous transformation logic that corrupts the program state after the update, or makes the

updated version misbehave and diverge from the expected behavior in some way. To avoid this scenario,

59

the whole update process must be verifiable or testable. Ginseng allows updates to be tested before

applying them, and Imago allows both offline testing to the updated system or running the updated

system in parallel with the outdated system, by feeding both the same input, and then compare their

output. These are the only two approaches that provide support for ensuring the correctness of the

update process and the updated program.

All other approaches fail to provide the developer with any way to ensure that the update will not

crash the program and that the new program will behave as expected after the update. Some options do

not restrict the instants at which the update may take place: POLUS, DynSec, HotSwap, the DCE VM,

JavAdaptor, JRebel, all the module systems. Others rely on the (unsafe) activeness checking: OPUS,

K42, LUCOS, DynaMOS, KSplice, JDrums, DVM, and DUSC, all follow that approach. JVolve follows a

similar approach but allows the developer to blacklist functions that, even though did not change, cannot

be active when an update takes place. The approaches that require developers to identify program

points where updates can happen do not provide any other way to ensure that these program points

lead to correct updates: UpStare, Ekiden, Kitsune, PROTEOS, Erlang, and UpgradeJ. The remaining

approaches — LISP, Smalltalk, rolling upgrades, and big-flip — do not specify exactly when updates

take place; they instead leave that decision up to each particular implementation. UpgradeJ provides a

strong type-system that forbids a vast category of wrong updates due to timing and interaction between

old and new code. However, it does not provide any way for the developer to test the correctness of the

updates.

2.8.5 Rest of this document

The last three rows of Table 2.1 provide a brief overview on the rest of this document.

Chapter 3 presents DuSTM, a DSU system for the Java programming language that supports flexible

class and hierarchy updates between versions. DuSTM requires the updatable system to be structured

around transactions, which limits its effectiveness but provides a stronger guarantee of correctness than

manually identified update points. DuSTM does not require a custom JVM; it re-writes the bytecode in-

stead to add an extra level of indirection to support future updates with lazy update semantics. However,

that extra indirection comes at a cost of steady-state overhead.

Whilst DuSTM is a step in the right direction, it has a number of shortcomings; most notably, the

requirement on a particular architecture for the updatable application. Chapter 4 presents Rubah, a DSU

system for Java that lifts that requirement and still provides the same flexibility and support for lazy

update semantics. Besides describing the design of Rubah and its prototype implementation, Chapter 4

also provides empirical evidence of Rubah’s effectiveness by applying it to 5 real-world applications that

were originally developed without a support for DSU, together with an experimental evaluation using

those applications to benchmark the performance of Rubah and thus show show that it is also efficient.

When compared to DuSTM, Rubah improves on effectiveness and efficiency at the cost of correctness.

Rubah requires retrofitting applications with support for DSU and adding annotations about where, in

the program, is safe to perform an update. DuSTM can take any transactional application and does not

require any change to support updates, extracting all information it needs about update points from the

transactions that make up the application.

To bridge the gap between effectiveness/efficiency and correctness, Chapter 5 presented Tedsuto,

which is a systematic testing framework for DSU systems. Tedsuto takes existing system tests and re-

runs each test several times, performing an update during the test and checking if the test still passes.

Chapter 5 describes a prototype implementation of Tedsuto for Rubah which did find real bugs in 2 of

the 5 applications used to evaluate Rubah. Tedsuto does not rely on any particular part of Rubah and

can be implemented for other DSU systems.

60

Together with Tedsuto and borrowing ideas from DuSTM, I claim that Rubah is the first practical

solution for Dynamic Software Updating. The rest of this document explains why.

61

62

Chapter 3

Composable Updates

The applications with high availability requirements are the ones that most benefit from DSU support.

These applications are typically highly concurrent so that they can take full advantage of the hardware

and network resources available. Developing correct concurrent applications is itself a challenge. One

way to ease that burden is to structure the application in sequences of steps that are logically related

and that execute in isolation — transactions. When a transaction finishes, the system validates it against

all other transactions that executed concurrently and either makes the transaction globally visible to the

rest of the system in an atomic step — commits — or re-runs the transaction using the most recent

data — rollbacks. Rollbacks are due to conflicts in which other transactions that have already committed

overwrote something that the finished transaction reads or writes, in which case the transaction cannot

be allowed to commit because it executed over stale or inconsistent data.

Database Management Systems (DBMSs) are a great example of such transactional systems. DBMSs

execute transactions providing Atomicity, Consistency, Isolation, and Durability. This set of properties is

typically referred to as ACID. I have already described isolation (transactions execute without seeing the

changes made by other concurrent transactions) and atomicity (transactions either take place atomically

or are rolled-back without changing the system). ACID systems also ensure that transactions preserve

data integrity (consistency) and persist the changes that transactions make to the system (durability).

More recently, researchers explored the idea of bringing the atomicity, consistency, and isolation properties

to the application level with transactional memory to simplify developing highly-available concurrent

applications without requiring a DBMS to support transactions.

Transactions are therefore composable units of work that group logically related actions. Transactions

expect a consistent state when they start and are required to leave the system in a consistent state when

they finish. This greatly simplifies reasoning about concurrent systems: The developer only needs to

care about the interleaving of transactions as a whole. This same property can also be used to simplify

reasoning about the correctness of DSU. If we assume that each transaction always executes on the same

program version in which it starts, the only program points at which a DSU can occur are those between

transactions.

When reasoning about DSU and transactions, it makes sense to consider the update itself as a trans-

action that changes the program code that new transactions will execute and that migrates the program

state to an equivalent version that is compatible with the new program code. An important observation

here is that migrating the program state has to happen, to other transactions, in the same instant as

the transaction that performs the DSU. We can imagine a system that keeps that illusion but, in fact,

migrates objects just before they are needed for the first time after the DSU takes place. By performing

such a lazy program state migration, this system minimizes the time required to perform a DSU on a

program with an arbitrarily large program state.

63

The major advantages that transactions bring to DSU can thus be resumed as: (1) With transactions,

it is easy to find points in the program execution where it is safe to perform the DSU, and (2) the program

state can be migrated lazily with the same semantics as if it was completely migrated at update time.

In this chapter I describe the design and implementation of a system — DuSTM — that enables DSU

for transactional Java programs that use a versioned TM called JVSTM. I start by claiming how DuSTM

achieves some of the goals for a practical DSU system in Section 3.1. I then introduce the notation I shall

use throughout this chapter in Section 3.2. In Section 3.3, I describe the update semantics that DuSTM

provides and how the developer can use it to reason about DSU. Then, I describe how to implement

DuSTM, in Section 3.4; evaluate the performance of a prototype implementation, in Section 3.5; and

discuss DuSTM as a solution for practical DSU, in Section 3.6.

This chapter assumes that the reader is familiar with current Transactional Memory (TM) terminology

and implementation. Appendix A provides all the detail about TM needed to follow the rest of the

discussion.

3.1 Claims

Throughout the remainder of this chapter, I shall describe DuSTM in detail. This section explains

how DuSTM reaches the goals that I defined earlier in Section 1.2.1, with particular focus on how each

following section contributes to each particular goal. This section also discusses the extent to which

DuSTM reaches each goal.

Flexibility DuSTM considers updatable application to be composed of updatable classes and non-

updatable classes. Updatable classes are the classes that the updatable application defines. Non-updatable

classes are all the other classes that the updatable application uses, such as libraries and classes belong-

ing to the Java runtime environment. Only updatable classes can change due to program updates.

Section 3.3.6 explains the difference between updatable and non-updatable classes in further detail.

DuSTM supports a wide range of program changes made to updatable classes. It supports any class

structural changes, such as adding/removing/changing the signature of fields/methods. It also supports

changing the bodies of existing methods. Besides changes local to a single class, DuSTM supports updates

that change the class hierarchy with a few restrictions. The types of program modifications that DuSTM

supports are discussed in further detail in Section 3.4.

Besides all the different program changes it supports, DuSTM also supports custom program state

migration between successive program versions. In fact, DuSTM provides tools, such as the update class

and old classes, that allow the developer to describe the program state migration using regular Java code

that resembles the actual program classes being migrated. The program state migration that DuSTM

supports is described in further detail in Section 3.3.6.

I claim that DuSTM fully achieves the goal of flexibility as defined in Section 1.2.1 — following

the notation introduced by Table 2.1.

Correctness DuSTM considers updates to happen inside an update transaction that installs the new

code and migrates the program state. Transactions that start after the update transaction commits

execute in the new program version and can access only the migrated program state. Transactions that

start before the update transaction and finish after always execute the old program.

DuSTM ensures that no program code executes on the wrong program version. Custom program state

migration code, however, has to execute between two program versions by design. DuSTM migrates each

object in its own separate migration transaction. Every migration transaction behaves as if it was the

first migration transaction to execute: It expects all the program state to be still in the previous program

64

version and uses that program state to transfer the state of an outdated object to an updated blank object

that will take the identity of the outdated object in the new program version. Section 3.3.5 describes the

semantics of DSU in DuSTM in further detail.

DuSTM naturally extends the transactional model to support DSU, ensuring that the updated code

does not execute over outdated program state; and it does not require the developer to adapt the original

program in any way to support future updates. These are important steps towards correctness. However,

DuSTM still requires the developer to write program code that executes in-between versions, to migrate

the program state; and does not provide the developer any way to verify, test, or otherwise ensure that

a program will not misbehave after an update.

I claim that DuSTM partially achieves the goal of correctness as defined in Section 1.2.2 — following

the notation introduced by Table 2.1.

Effectiveness DuSTM targets transactional programs written in the Java programming language and

does not require a custom JVM or a custom compiler to support DSU. DuSTM uses a post-processor to

turn a mature program version into an updatable program version by rewriting the bytecode. Section 3.3.6

describes how to turn a program version into an updatable version using DuSTM, and Section 3.4 explains

the bytecode rewriting process in detail.

I claim that DuSTM only partially achieves the effectiveness goal as defined in Section 1.2.4 —

following the notation introduced by Table 2.1.

Efficiency DuSTM supports lazy program state migration. On programs that have an arbitrarily

large program state, migrating the program state lazily avoids a proportionally arbitrarily large pause

in program execution to perform a DSU. Instead, DuSTM amortizes that pause over the execution of

the new program version. Section 3.5.1 describes the experimental evaluation that shows that the pause

induced by a DSU is constant, despite the overall size of the program state, when using program state

migration.

DuSTM supports DSU by introducing an extra level of indirection in the form of handles. Section 3.4

describes how DuSTM uses the post-processor to inject handles, and transform the original program,

while retaining the original semantics.

Although lazy program state migration is necessary for efficient DSU, it is not sufficient. The over-

head for transactional applications is within reasonable bounds, as Section 3.5.1 explains. However,

Section 3.5.2 describes an experimental evaluation that shows that the cost of adding the required extra

level of indirection to existing non-transactional applications can add up to 56% performance overhead

on steady-state execution.

I claim that DuSTM partially achieves the efficiency goal as defined in Section 1.2.3 — following

the notation introduced by Table 2.1.

3.2 Notation

Throughout this chapter, I shall discuss concurrent executions in which several threads perform operations

in parallel. This section introduces the graphical notation that I shall use on the diagrams that depict

concurrent executions.

Figure 3.1 shows the basic diagram a concurrent execution involving two threads. Operations per-

formed by the same thread are in the same row. In this case, thread T1 performs two operations: O1

and O2. Thread T2 performs a single operation: O3. The horizontal axis denotes time. On this partic-

ular execution, we can see that no thread executes any operation in parallel because because there is no

overlap in time between operations on different threads.

65

Time

T1

T2

O1 O2

O3

Figure 3.1: Notation for executions of concurrent threads. In this example, thread T1 performs operations
O1 and O2, and thread T2 performs operation O3.

Real Time

Logical Time

T1

T2

T1

O1

O2

O3

Real Time

Logical Time

T1

T2

T1

O1

O2

O3

Figure 3.2: Notation for real-time order and logical order. This figure shows how the same real-time
order of operations might result in a different logical order. In the left-hand side, logical order matches
real-time order: Operation O3 sees the result of operation O1 but not operation O2. In the right-hand
side, operation O3 does not see the result of operation O1 or O2.

The execution that Figure 3.1 shows suggests that operation O3 sees the result of operation O1 but

not the result of operation O2 because O3 starts after O1 finishes and ends before O2 starts. This might

not be always true. It is possible that the logical order in which operations take place — the order in

which a thread sees operations performed by other threads — might not match the real-time order in

which those operations were executed — the order in which the CPU actually executed each operation

on each thread.

Figure 3.2 shows two possible logical orderings for the execution that we are following. In this figure,

the horizontal axis now refers to real time and the vertical axis refers to logical time. We can see that

the same real-time order might lead to different logical orders. Given that rows now mean logical time

instants, each operation is labelled with which thread executes it. However, in some executions, the

mapping between threads and operations is not relevant information to the diagram. In those cases, I

shall omit it.

Concurrent operations can overlap in real-time order, but never in logical order. The notation with

the two time axes that denote logical and real-time orders is thus limited to atomic operations. I shall

use the single axis notation to discuss executions with non-atomic operations or when both real-time and

logical orders are the same.

3.3 Atomic Dynamic Software Updates with DuSTM

This section introduces DuSTM, which is a technique for performing DSU on transactional programs

implement using JVSTM as their transactional memory.

The Java Versioned Software Transactional Memory (JVSTM) [CRS06] is a software implementation

of a Transactional Memory that provides optimistic concurrency control through lazy version manage-

ment, lazy conflict detection, and implements a flat nesting model. JVSTM uses special memory locations

66

1 class Point {
2 private final double x, y;
3
4 public Point(double x,double y) {
5 this.x = x; this.y = y;
6 }
7
8 public double dist(Point p) {
9 return sqrt(square(p.x-x)+square(p.y-y));

10 }
11 }
12
13 class Rectangle {
14 private final Point topLeft, botRight;
15
16 public Rectangle(Point tl,Point bt) {
17 topleft = tl; botRight = br;
18 }
19
20 public double area() {
21 Point tr = new Point(botRight.x,topLeft.y);
22 return topLeft.dist(tr) * tr.dist(botRight);
23 }
24
25
26 }

Figure 3.3: First version of the updatable application example. Methods sqrt and square compute the
square root and the square of their argument, respectively.

to keep transactional values. These memory locations are called Versioned Boxes, or just VBoxes. A

conventional memory location keeps a single value which is the last value that was written to it. A

VBox is unconventional because it keeps a history of values that were written to it. I refer the reader to

Appendix A, in particular Section A.4 in page 171, for details about the implementation and particular

semantics of JVSTM. For the reader familiar with STM terminology, it suffices to know at this point that

JVSTM provides opaque transaction semantics [GK08].

3.3.1 Updatable Application Example

To guide the upcoming discussion and to provide concrete code that highlights the challenges of supporting

DSU, this section introduces a simple application that shall be used throughout the remainder of this

chapter as a running example.

The application represents geometric data, namely points and rectangles. Figure 3.3 shows the first

version of the application. Points are represented using rectangular coordinates. Rectangles are repre-

sented using two opposite vertexes.

Note that both points and rectangles are immutable, so they can be freely shared across threads

without any synchronization or without adding VBoxes. This makes the code on Figure 3.3 to be as

simple as possible. The rest of this chapter, however, shall consider that points are part of a larger

application that creates and manipulates them inside transactions. For instance, we can consider that

the application uses a transactional list to keep points sorted by their distance to the origin (0, 0) and

rectangles sorted by their vertexes.

Figure 3.4 shows a possible second version of the example application. The new version changes

the internal representation of both points and rectangles. Points are now implemented using polar

coordinates. Rectangles are represented using one extra vertex, so that the application supports rotated

rectangles.

67

1 class Point {
2 private final double rho,theta;
3
4 public Point(double rho,double theta) {
5 this.rho = rho; this.theta = theta;
6 }
7
8 public double dist(Point other) {
9 double raa = square(this.rho), rbb = square(other.rho);

10 double rab = this.rho*other.rho;
11 double cosab = cos(this.theta-other.theta);
12 return sqrt(raa+rbb+2*rab*cosab);
13 }
14 }
15
16 class Rectangle {
17 private final Point topLeft, botRight, botLeft;
18
19 public Rectangle(Point tl,Point bt,Point bl) {
20 topleft = tl; botRight = br; botLeft = bl;
21 }
22
23 public double area() {
24 return topleft.dist(botLeft) * botRight.dist(botLeft);
25 }
26 }

Figure 3.4: Second version of the updatable application example. Methods sqrt, square, and cos
compute the square root, the square, and the cosine of their argument, respectively.

3.3.2 Atomic Updates and Quiescence

To support DSU, we have to deal with several challenges as Section 1.1 explained. One of the major

design challenges is how to find update points — program points in which it is safe to perform a DSU.

Finding update points is simpler for the case of programs structured around memory transactions

than for the general case. The major concerns in this case are: (1) To ensure that transactions observe

transactional version-consistency (TVC) [NHFP08], which means that each transaction starts and finishes

in the same program version;1 and (2) to ensure that transactions that start after an update only execute

new program code. Figure 3.5 shows an example of the two possible alternatives of enforcing single-version

consistency for transactions: Either the system requires transactions to quiesce to install an update or it

isolates transactions running at the time of the update and thus in the old program version — outdated

transactions — from the new program version.

Ensuring each transactions that starts after DSU only executes the new program guarantees progress.

Without this constraint, it is not possible to distinguish a system that does not support DSU from a

system that supports it but keeps executing all transactions in the old version after the DSU.

Ensuring that DSU can only happen at the granularity of whole transactions relieves the developer of

the burden of mapping program points in the old program code to equivalent program points in the new

program code. Even though this solves the problem of mapping program points, it does not address the

problem of mapping program-state between successive versions.

3.3.3 Immediate Update Semantics

The simplest way to map the program-state between versions is to do it while the program is performing

the update. If transaction quiescence is required to perform a DSU (top half of Figure 3.5) then there

are no transactions reading/writing the program-state while the update takes place. The alternative case

1Transactional Version Consistency (TVC) was explained in further detail in Section 2.2.2, page 19.

68

Time

T1 T2

Update
Ready

Update
Performed

Time

T1

T2

Update
Ready

Update
Performed

Figure 3.5: Possible options for the atomic DSU semantics. The instant when an update becoming
ready is different from the instant when the system performs DSU. The top half of this figure shows an
alternative where the system reaches quiescence, i.e. no transactions running, before performing a DSU.
The bottom half shows the alternative where the system isolates running transactions at the time that the
DSU takes place so that they keep executing in the old program version. In both alternatives, transaction
T1 always executes the old program version and transaction T2 always executes the new program version.

Time

Version 0 Version 1
Program-State Migration

Update

Figure 3.6: Immediate update semantics. All the program-state is migrated when the DSU takes place.

(bottom half of Figure 3.5) is not much more complex. Note that, in this case, the system already has

to provide isolation between transactions running on the old program version and transactions running

on the new program version. A trivial solution is to abort all transactions that were still running the old

program code when they finally commit after the update takes place.2

Figure 3.6 shows an example of the atomic update semantics that highlights program-state migration.

The program executes version 0 for a while, which creates some program-state. Then, the system performs

a DSU that migrates all the program-state at once. After that, the new program version starts to execute.

It is obvious that, at this point, the new program version can access only program-state that was migrated

during the DSU. This atomic update semantics, in which the DSU migrates all the program-state before

starting to run the code of the new program version, is called the immediate update semantics.

2In fact, the system only has to abort transactions that perform any write. If an outdated transaction does
not perform any write, the transactional system already has ensures that it never sees an inconsistent version of
the program-state. Such a read-only outdated transaction can still be allowed to commit.

69

Time

Version 0 V1
Program-State Migration

Update

Figure 3.7: Lazy update semantics. The program-state is migrated lazily as the natural control-flow of
the new version reaches each portion of it for the first time after the DSU. V1 is short for Version 1,
which starts executing after the DSU takes place.

3.3.4 Lazy Update Semantics

The state that a program keeps can grow to be arbitrarily large. As I discussed on Section 1.2.3, requiring

the DSU to migrate all the program-state before the program starts executing the new version might,

therefore, impose an arbitrarily large pause in program execution and, ultimately, partially defeat the

main motivation for supporting DSU.

Fortunately, there is a way to solve this problem. Note that the program-state is divided into logical

portions. In Java, and other object-oriented languages, those portions are called objects. Given that

DuSTM targets Java, I shall refer to those logical portions as objects as well.

The key observation is that the new program version will not need the whole program state to be

migrated in its entirety when it starts executing. In fact, a DSU can delay migrating each individual

object until the instant in which the natural control-flow of the new program version reaches that object

for the first time after the update. This is the lazy update semantics. Figure 3.7 shows how the example

that Figure 3.6 looks like for lazy update semantics.

The choice between immediate and lazy update semantics is orthogonal to requiring transactions

to quiesce or not before performing a DSU. In particular, please note that immediate non-quiescent

updates make sense. This combination migrates the program-state between versions in parallel with

old transactions still running. This is not a problem as long as the underlying transactional memory

isolates the old transactions from the migrated program state. Quiescence in this case can be seen as

a clear way of enforcing isolation between transactions executing in different program versions, which

is equivalent to the isolation that the transactional memory already provides to support non-quiescent

immediate updates.

3.3.5 Program-State Migration Semantics

A flexible DSU system, in the sense that Section 1.2.1 defines, allows the developer to customize how to

migrate the program-state between successive versions. The main goal of custom program-state migration

is to allow the developer to write code that operates over the old program-state and generates an equivalent

program-state that is compatible with the new program code.

As discussed in the previous section, let us consider that the program-state is divided into logical

portions called objects. A simple approach to ensure flexibility is to provide support for the developer to

customize migrating each object individually. That is, the developer provides code that, given an object

Oold, produces an equivalent object Onew that will take the place of the outdated object Oold in the new

program-state.

Limiting the developer to only use the outdated portion is very restrictive. For instance, consider the

geometric application example introduced in Section 3.3.1. To migrate the rectangle between versions,

the developer needs to access the points of the old rectangle to compute the extra points that the new

rectangle keeps in its internal representation.

Giving the developer unrestricted access to the program-state increases flexibility at the cost of com-

70

Time

DSU

Point
Migrated

Rectangle
Migrated

Time

DSU Tx

Point
Migrated

Rectangle
Migrated

Figure 3.8: Conversion-ordering problem for both immediate (top) and lazy (bottom) semantics. The
program-state in this example is, at the time of the update, one rectangle with two points. In both cases,
the point is migrated before the rectangle. When the rectangle is migrated, each of its points is in a
different program version.

plexity and safety. The order in which each object is migrated now becomes relevant. For instance,

following the same example, let us now consider that one of the points in a rectangle gets migrated before

the rectangle. This can happen if, for instance, the point is aliased somewhere else in the program-state.

In this case, by the time the rectangle migration code runs, each point is in a different program version.

This is the migration-ordering problem. Figure 3.8 depicts the migration-ordering problem for both the

immediate and lazy semantics.

There is an interesting middle ground between the two extreme positions of restricting the custom

migration code to access only the object being migrated and giving it complete access to all the program-

state. The key observation is that the new program-state is equivalent to the old program-state at the

time the update takes place. The two are merely different representations of the same state. We can thus

limit the custom migration code to access only the old program-state without any loss of expressivity.

The only part of the new program-state that the custom code can access is the object being migrated.

The transactional memory model allows us to define this update semantics in terms of transactions

and their ordering. The idea behind this semantics is very simple: All objects are migrated in the same

logical instant as the one in which the update takes place. First, let us consider that the update happens

within a special transaction, the update transaction, which installs the new code and migrates the program

state. Also, let us assume that every object is migrated in its own separate transaction, the migration

transaction.

The atomic update semantics that I propose simply states that all migration transactions must take

place in the same logical instant as the update transaction that install that version. Figure 3.9 shows

this update semantics for both immediate and lazy updates.

A consequence of the atomic update semantics is that the real-time order in which each object is

migrated is not relevant anymore. In fact, any possible real-time order should result in exactly the same

migrated program-state.

The atomic update semantics greatly simplifies reasoning about migration code. In particular, it

means that each migration transactions T sees the program state as if transaction T was the first migration

transaction to execute after the update. This means that transaction T can find all the old program-state

as it was at the time of the update and it cannot find any new program-state because it does not exist

yet, except for the particular object being migrated.

Figure 3.10 shows how the atomic update semantics naturally solve the migration-ordering problem.

When the rectangle gets migrated, the custom migration code sees the old rectangle with the old points

71

Real Time

Logical Time

Tx1

Tx2

Rectangle Conversion

Point Conversion

Upgrade Transaction

Real Time

Logical Time

Tx1

Tx2

Figure 3.9: Atomic update semantics for both immediate program-state migration (top) and lazy
program-state migration(bottom). The program-state before the update is, in this example, a rectangle
with its two respective points.

72

Real Time

Logical Time

Tx1

Tx2

Rectangle Conversion

Point Conversion

Upgrade Transaction

Real Time

Logical Time

Tx1

Tx2

Figure 3.10: Solution to the conversion ordering problem using atomic update semantics for both im-
mediate program-state migration (top) and lazy program-state migration (bottom). Even though some
portions of the program state are migrated in a different order, these executions should result in the same
migrated program-state as the ones shown in Figure 3.9.

as they existed at the time of the update even though one of the points was already migrated.

3.3.6 Developing and Updating Applications

DuSTM [PC11a, PC12] implements the atomic update semantics that the previous section introduced.

This section describes how to build an application that can perform DSU using DuSTM.

Updatable Application Structure

DuSTM provides support for DSU on transactional applications that use JVSTM. By transactional, I

mean applications that: (1) Delimit transactions that perform consistent, atomic modifications to the

program-state atomically; and (2) protect program-state shared between transactions with VBoxes.

Besides this restriction, the application must be structured in two separate layers, as Figure 3.11

shows. The updatable code, which is the top layer, contains all the classes (and interfaces) that the

application defines. The execution platform contains the remainder of the code that the application

requires to execute: Third-party libraries, classes that belong to the Java platform, DuSTM itself, etc.

Classes that belong to the updatable code can directly reference classes that belong to the execution

platform, but not the reverse. Of course, library classes do not directly reference application classes, so

this restriction poses no practical difficulty.

DuSTM can update only classes that belong to the updatable code layer. It cannot update any class

that belongs to the execution platform. The developer can thus use DuSTM to update any class that

73

Execution Platform (e.g. java.lang.String)
Updatable Code (e.g. Point)

Figure 3.11: Layered structure of an application updatable through DuSTM. The top layer contains all
the code that the application defines. The bottom layer contains all other code that the application needs
to execute (third-party libraries, Java runtime environment, DuSTM itself, etc). Classes on the bottom
layer cannot reference directly any class on the top layer. DuSTM supports updates to only classes on
the top layer.

Figure 3.12: Process and tools for generating an updatable version of a program version using DuSTM.
This process uses an unmodified Java compiler and the post-processor tool that DuSTM provides. The
post-processor rewrites the application bytecode in a way that is semantics-preserving and that supports
performing DSU in the future without requiring a modified Java Virtual Machine.

the application defines with little restrictions3 as long as the new version requires the same execution

platform.

Development Process

DuSTM does not require a custom JVM to support DSU. Instead, it rewrites the program bytecode to

generate a DSU-enabled version that has the same semantics as the original program. Figure 3.11 shows

the full process and tools required to prepare a DSU-enabled version.

Besides rewriting the bytecode of the original program, the post-processor tool that DuSTM uses also

generates helper old classes that allow the developer to refer the correct version of the program-state

when writing the migration code. The following section presents a more detailed example that shows

how to use the old classes.

The developer can execute the tool-chain that Figure 3.12 only when he has a mature version of the

program that is ready to be deployed into production via DSU. Before that point, he does not need to

post-process the bytecode. Consequently, he can use the regular development process to develop the new

version of the application. That means that DuSTM does not interfere with any development-time tools

such as IDEs, debuggers, and profilers. Section 3.4 explains in detail how DuSTM rewrites the original

program code.

Migrating the Program State

DuSTM supports custom program-state migration between versions. That means that the developer

can write code to migrate the program-state existing at update time to a version that is equivalent but

compatible with the updated program.

Let us denote a class that the update modifies by C. The old version of C, that exists before the

update, is C0. The new version of C, that the update introduces, is C1. For each such class C that

3Section 3.6 explains the restrictions in further detail.

74

1 class Point {
2 private double rho,theta;
3 ...
4 static void convert(old.Point o,Point n) {
5 n.rho = sqrt(square(o.x) + square(o.x));
6 n.theta = arctan(o.y / o.x);
7 }
8 }
9

10 class Rectangle {
11 static void convert(old.Rectangle o,Rectangle n) {
12 n.topLeft = o.topLeft.convert();
13 n.botRight = o.botRight.convert();
14 old.Point botLeft = new old.Point(o.topLeft.x, o.botRight.y);
15 n.botLeft = botLeft.convert();
16 }
17 ...
18 }

Figure 3.13: Conversion code for the geometric application example. The types declared on package old
— the old types — are shown in Figure 3.14. The ellipsis denotes the rest of the code defined for each
type on Figure 3.4.

an update modifies, the developer writes a migration method named convert on C1 to migrate the

program state from instances of C0. Migration methods take two arguments: An instance of C0 that

holds the state to be migrated, and an instance of C1 that will replace the first argument in the migrated

program-state. DuSTM then runs the migration methods to migrate each object on the program-state

between successive versions inside a migration transaction, as explained in Section 3.3.5.

Figure 3.13 shows the migration methods for the geometric application example that Section 3.3.1

introduced. Each method defines the migration logic between the previous version of the same class.

Note that the first argument of each of the migration methods belongs to package old. This is, in fact,

a synthetic old class that DuSTM’s post-processor generates, as shown in Figure 3.12.

Old classes allow the developer to refer to each version of the program-state unambiguously. They

provide symbolic integration for both versions of the program, the old and the new, at the level of the

migration code so that the developer can use the unmodified Java compiler to generate the bytecode for

the new version.

For each class in the old program version, the post-processor generates a respective old class with the

same fields and methods but with two differences: (1) fields and methods are publicly visible, so that the

developer can fully access the old program version; and (2) methods have empty bodies4. Figure 3.14

shows the old classes that DuSTM generates for the geometric application example that we are following.

On each old class it generates, DuSTM adds an extra method named convert. This method allows

the developer to specify that a field in the new version retains the same object it had in the previous

version. To understand the need for these methods, let us consider the code that migrates a Rectangle,

shown in Figure 3.13. More specifically, consider line 12. Note that the line n.topleft = o.topLeft
does not compile because n.topLeft has type Rectangle and o.topleft has type old.Rectangle,

which are incompatible. In this case, the developer uses the convert method to write n.topLeft =
o.topLeft.convert(), as shown in the Figure.

3.4 Implementing Atomic Updates

DuSTM is implemented as a bytecode post-processor and a runtime library. The post-processor takes as

input the bytecode that the Java compiler generates and produces classes enhanced with DSU support via

4The body of methods with a return type different than void is a single return statement of either 0 or null.

75

1 class old.Point {
2 public double x, y;
3
4 double dist(old.Point p) {return 0.0;}
5
6 public Point convert() { return null; }
7 }
8
9 class old.Rectangle {

10 public old.Point topLeft, botRight;
11
12 double area() { return 0.0; }
13
14 public Rectangle convert() { return null; }
15 }

Figure 3.14: Old classes that DuSTM generates for the geometric application example. The old classes
have the same fields and methods as the original classes, except that they are made publicly visible and
methods have a dummy implementation. Each old class has an extra method convert to allow the
developer to state that new fields should retain the same object they had in the previous version. Refer
to line 12 on Figure 3.13 for an example of its usage.

a a semantics-preserving binary refactoring performed using ASM [BLC02,Kul07]. This section describes

how the post-processor modifies the original bytecode.

3.4.1 Handles as Transactional Proxies

A Java program can be broadly defined as a set of classes related to each other in a hierarchy. An

well-formed Java program only contains classes that refer to only other classes existent in the same Java

program.5 It is trivial to generate well-formed Java programs using the Java compiler: If a program

compiles, then it can only be well-formed. An update modifies a subset of those classes by changing their

structure (adding/removing fields or methods, changing the class hierarchy) and their behavior (changing

the code of existing methods).

A program update can be defined has a set of class updates. Each class update defines a new version

of an existing class. An well-formed program update contains all class updates that make the new version

of the program well-formed. Again, this is trivial to ensure using the Java compiler: If the new program

version compiles, then it can only be a complete Java program and we can get a complete program update

by considering all classes that changed between versions as class updates.

Let us consider that a class update Cupd changes class C0 into class C1. When DuSTM performs

a DSU, the program has class C0 loaded and is executing its methods inside JVSTM transactions.

Performing a destructive change on class C0 to transform it into class C1 would restrict DuSTM to

quiescent updates, as defined in Section 3.3.2 (top half of Figure 3.5). Besides, the JVM does not support

making destructive changes to loaded classes. As a consequence, implementing this approach would

require a custom JVM.

DuSTM follows a different approach to support class updates when performing DSU: It introduces a

new Java class C1 for a class update that a program update contains for class C0. The bytecode post-

processor renames all classes to avoid name collisions between their current version and possible future

updates. When post-processing the geometric application example, defined in Section 3.3.1, DuSTM

renames class Rectangle to Rectangle 0 in version 0 and Rectangle 1 in version 1. It renames all

the other updatable types, just class Point in this case, in the same way.

Note that classes C0 and C1 are two separate and unrelated Java classes. Class C1 is free to define

5Let us consider that the Java runtime is a part of a Java program, for the sake of simplicity and clarity of
presentation.

76

1 class Handle {
2 static VBox<Integer> systemVersion;
3 VBox<Pair> pair;
4
5 static Object getObject(Handle h) {
6 Pair p = h.pair.get();
7 if (systemVersion.get() > p.version) { p = h.convert(); }
8 return p.object;
9 }

10
11 Pair convert() {
12 //Creates an instance in the new program version
13 //Creates a new transaction in the past
14 //Invokes the custom convert method
15 //Puts the migrated instance in the VBox pair
16 //Returns the new pair of object/version
17 }
18 }
19
20 class Pair { Object object; int version; }

Figure 3.15: Outline of class Handle. The code shows how handles use VBoxes to keep an history of
updatable instances. Handles also provide the opportunity to intercept the first access to an outdated
instance after a DSU takes place and thus migrate it (line 7).

a completely different set of fields/methods or to be in a different position in the class hierarchy. The

only restriction is that they look the same to the execution platform, the layer that contains all the

non-updatable code as explained in Section 3.3.6. The discussion at the end of Section 3.4.2 shall explain

this restriction in further detail.

Performing class updates this way allows DuSTM to support DSU without requiring a custom JVM.

However, introducing a new Java class per class update creates a new problem: A single object can now

be represented by several instances of different classes. For instance, consider that a rectangle refers to a

point p. On version 0, the rectangle refers to instance p0 of class Point 0. After the update, on version

1, that same rectangle refers to instance p1 of class Point 1.

Both instances p0 and p1 represent the same conceptual point p in different versions of the program.

The identity of p is thus kept by a different instance in each version of the program. But, at the time a

DSU takes place, the rectangle has a reference to instance p0. After the update, that reference should be

fixed to refer to instance p1 instead. A possible way to solve this problem is to use a modified garbage-

collection that finds all references to p0 and replaces them by references to p1. That approach has three

problems: (1) It requires a custom JVM; (2) it restricts update semantics to immediate updates, as

defined in Section 3.3.3; and (3) it restricts DuSTM to quiescent updates, as defined in Section 3.3.2.

DuSTM solves this problem using handles. A handle is an extra level of indirection responsible for

keeping the identity of an object across program versions. When transforming the bytecode, DuSTM

ensures that all updatable objects are accessed through their handle. Handles, in turn, ensure that the

program manipulates the right instance according to the current program version it is executing.

Handles are transactional memory locations implemented using JVSTM VBoxes, as Figure 3.15 shows.

An important property of handles is that they keep a history of instances, each one corresponding to a

version of the object in a particular program version.

Using VBoxes to implement handles is more than a particular implementation decision. VBoxes,

which embody JVSTM multi-versioned approach, play a key role to ensure DuSTM’s atomic update

transactions: When executing a conversion transaction, which takes place in the logical past as explained

in Section 3.3.5, handles use their VBox to return the correct (older) instance.

Handles naturally solve the conversion ordering problem that was introduced in Section 3.3.5. Fig-

77

Rectangle$0

Handle Handle

Point$0 Point$0 Point$1

topLeft botRight

v0 v0 v1

Figure 3.16: Rectangle represented using two points, as described in Section 3.3.1, after post-processing.
Note how classes were renamed according to their version (Rectangle to Rectangle$0 and Point to
Point$0 and Point$1). In this figure, the rectangle has not been migrated yet from version 0 but one
of its points, the bottom right vertex, already has. The handle for the bottom right vertex keeps both
versions of the point.

ure 3.16 shows how DuSTM introduces handles to the geometric application example that we are follow-

ing. Note how the rectangle keeps a reference to handle botRight, which in turn has a reference to an

instance of class Point 0 in version 0 and Point 1 in version 1. This handle is thus responsible for

keeping the identity of the point across program versions. When the program access this handle during

transaction T , the handle checks the current program version in which T is being executed and returns

the correct instance.

3.4.2 Supporting Inheritance

The post-processor that DuSTM uses transforms the program to ensure that all instances of updatable

types are always manipulated through their respective handle. This means replacing the type of fields,

local variables, and method arguments by handles.

We can see the results of the replacement process in Figure 3.17. In this particular example, the

figure shows a single handle class that is used for both points and rectangles. This works in this case

because both points and rectangles look the same for a class in the execution platform: Given that they

both extend Object and do not implement any non-updatable interface, both classes look like Object
to code outside the updatable types.

Using a single handle class to represent all possible updatable types does not generalize. For instance,

consider the example that the left-hand side of Figure 3.18 shows. In this case, the handle DuSTM would

use for both classes Square and Pixel has the following Java signature: class Handle extends
Rectangle implements Comparable. Such a general handle has two problems: (1) Class Square
does not implement interface Comparable but the handle used to represent its instances does; and (2)

the general handle would require multiple inheritance to represent any other updatable class that inherits

from a non-updatable class different from Rectangle. Solving problem 1 would make the post-processing

more complex, but problem 2 makes the general handle approach impossible to implement because Java

does not support multiple inheritance.

The solution to support handle inheritance in a way that generalizes to any Java program is to use

several specific handles for each branch in the class hierarchy that crosses the boundary between updatable

types and the execution platform. The updatable types that we find closest to this boundary are the

root updatable types, which are the updatable types that inherit directly from non-updatable types. In

this case, class Square is the only root-updatable type. For each root updatable type, DuSTM generates

two classes: A primary handle and a handle helper. For each remaining updatable type that implements

aditional non-updatable interfaces, DuSTM generates a secondary handle.

The right-hand side of Figure 3.18 shows how the classes from its left-hand side look after DuSTM post-

78

1 class Point 1 {
2 private final double rho,theta;
3

4 public Point 1 (double rho,double theta) {
5 this.rho = rho; this.theta = theta;
6 }
7
8 public double dist(Handle other) {
9 double raa = square(this.rho), rbb = square(((Point 1) other .get()) .rho);

10 double rab = this.rho* ((Point 1) other .get()) .rho;

11 double cosab = cos(this.theta- ((Point 1) other .get()) .theta);
12 return sqrt(ra+rb+2*rab*cosab);
13 }
14 }
15

16 class Rectangle 1 {

17 private final Handle topLeft, botRight, botLeft;
18

19 public Rectangle 1 (Handle tl, Handle bt, Handle bl) {
20 topleft = tl; botRight = br; botLeft = bl;
21 }
22
23 public double area() {
24 return ((Point 1) topleft .get()) .dist(botLeft)

25 * ((Point 1) (botRight .get()) .dist(botLeft);
26 }
27 }

Figure 3.17: Example of the second version of the geometric application example after being post-
processed. The original code is shown in Figure 3.4. This example uses a single generic handle class,
which is the one defined in Figure 3.15. The code that the post-processing tool introduces or modifies is
highlighted with a gray background. The first version of the geometric application, shown in Figure 3.3,
can be post-processed in the same way. In this code, the name of method Handle.getObject was
shortened to get.

79

object

handle

Rectangle

<init>(Point,Point)
area(): double

Point

Square

<init>(Point,double)
area(): double

Pixel

<init>(Point)
area(): double
compareTo(Object): int

javautilComparable

compareTo(Object): int

java.util.Comparable

compareTo(Object): int

Updatable Types Execution Platform

Rectangle

<init>(Point,Point)
area(): double

Point

ususRectangle

<init>(Point,Point)
hashCode(): int
equals(Object): boolean
toString(): String
area(): double
$build(Point, Point)

Rectangle

<init>(Point,Point)
hashCode(): int
equals(Object): boolean
toString(): String
area(): double
$build(Point, Point)

Squareusus0

<init>(Point,double)
area(): double
$build(Point, Point)

Square 0

<init>(Point,double)
area(): double
$build(Point, Point)

Pixelusus0

<init>(Point)
area(): double
compareTo(Object): int
$build(Point, Point)

Pixel 0

<init>(Point)
area(): double
compareTo(Object): int
$build(Point, Point)

RectangleususHandle

<init>(Point)
hashCode(): int
equals(Object): boolean
toString(): String
area(): double
$hashCode(): int
$equals(Object): boolean
$toString(): String
$area(): double

Rectangle Handle

<init>(Point)
hashCode(): int
equals(Object): boolean
toString(): String
area(): double
$hashCode(): int
$equals(Object): boolean
$toString(): String
$area(): double

javautilComparable

compareTo(Object): int

java.util.Comparable

compareTo(Object): int

RectangleComparableHandle

<init>(Point)
compareTo(Object): int

RectangleComparable Handle

<init>(Point)
compareTo(Object): int

Updatable Types Execution Platform

Figure 3.18: Example of a small updatable application before and after DuSTM post-processes it. The
updatable applications is composed of two classes: Square and Pixel. Note that classes Rectangle
and Point, in this case and unlike the application introduced in Section 3.3.1, are not updatable. The
left-hand side shows how the application looks before post-processing. The right-hand side shows how
DuSTM transforms the original code when post-processing and all the handles and helper classes that
DuSTM generates, shaded in gray. Constructors are denoted by method <init> with no return type.
The return type of method $build, omitted for the sake of space, is Rectangle Handle. Method
$build in class Rectangle is abstract, which makes the class abstract as well.

80

Option 1 Option 2 Option 3

1 class Rectangle__Handle {
2 Rectangle object;
3
4 double area() {
5 return object.area();
6 }
7 }

1 class Rectangle__Handle {
2 Square__0 object;
3
4 double area() {
5 return object.area();
6 }
7 }

1 class Rectangle__Handle {
2 __Rectangle object;
3
4 double area() {
5 return object.area();
6 }
7 }

Figure 3.19: Possible implementations for downward methods. This figure shows 3 possible implemen-
tations for downward method Rectangle Handle.area(), shown in Figure 3.16. Only option 3 is
correct. Option 1 does not work because Rectangle is not a subclass of Rectangle and option 2
creates a strong coupling between the execution platform and the updatable code that prevents updating
root updatable types in the future. Option 3 uses handle helpers to implement the downward method
without any of these issues.

processes them. Primary handles and handle helpers (classes Rectangle Handle and Rectangle,

respectively) override all the methods they inherit from the root updatable type. Secondary handles

(class RectangleComparable Handle) implement all the methods defined by the set of non-updatable

interfaces they implement.

Downward Methods

All the handle classes that Figure 3.18 shows on the right-hand side override all the methods that

they inherit. These are the downards methods and their implementation forwards the execution to the

same method on the updatable instance that the handle keeps. Figure 3.19 shows several options for

implementing handles and downward methods.

Note that DuSTM broke the inheritance relationship between updatable and non-updatable types

during the post-processing. In the right-hand side of Figure 3.18, classes Square 0 and Pixel 0 are

not subclasses of class Rectangle. As a consequence, handles cannot keep the updatable instance typed

as a the non-updatable type. Option 1 in Figure 3.19 is thus incorrect.

An alternative approach is to generate handles that keep the object typed with its updatable type,

as option 2 in Figure 3.19 shows. However, this creates a strong coupling between the handle and one

particular program version. What happens when a new program version defines a new version of class

Square? Given that handles are non-updatable themselves, this option cannot support any future class

updates.

Handle helper classes bridge the gap between updatable and non-updatable types. Handle helpers

provide the same interface as their respective non-updatable type. Downward methods can use them to

delegate on the correct method of the updatable instance. Option 3 of Figure 3.19 shows this approach.

Default and Updward Methods

Helper classes provice a default method for each each downward method on the handle class. To under-

stand the need for these methods, let us consider invoking method toString on an instance of handle

RectangleComparable Handle that keeps an instance of class class Pixel 0. The first method

invoked is the downward method RectangleComparable Handle.toString, which invokes method

Rectangle.toString.

At this point, the JVM performs a virtual method invocation to select the most specific method to

run based on the type of the receiver. In this case, it follows the order: (1) Pixel 0.toString, (2)

Square 0.toString, and then (3) Rectangle.toString. Given that methods 1 and 2 do not exist,

the JVM invokes method 3 — the default method on the handle helper.

81

To match the semantics of the original program, default methods have to perform non-virtual method

invocation to call the original method on the non-updatable instance, Rectangle.toString on this

case.6 However, the JVM forbids non-virtual method invocation outside the same inheritance branch.

DuSTM solves this problem by injecting an upward method to the handle for each downward. Upward

methods use non-virtual method invocation to call the original non-updatable method. Default methods

can thus simply invoke the respective upward method.

To complete this example, the default method Rectangle.toString invokes upward method

Rectangle Handle.$toString7, which in turn invokes method Rectangle.toString thus matching

the original program semantics.

Regular Java programs use non-virtual method invocation to call methods on the super-class through

the keyword super or to invoke constructors. The post-processor adjusts all relevant invocations through

super to use upward methods instead. I shall discuss how DuSTM handles constructor calls to build

updatable instances in the following section.

3.4.3 Post-Processing Method Bodies

The JVM is a stack based virtual machine [LY99]. Method arguments are pushed into the operand stack

in the right order before invoking the method, which consumes all arguments and leaves the return value,

if any, on the top of the stack. Arithmetical and logical instructions also take their operands from the

operand stack, consuming them in the process and leaving the result on the top of the stack.

DuSTM transforms the updatable code following the rationale: Direct references to instances of

updatable types reach the stack only if they are going to be immediately used by the following bytecode

instruction. Otherwise, any reference on the stack is either to an handle or to an instance of a non-

updatable type.

For instance, let us consider the bytecode instruction that reads a field from an instance — GETFIELD.

This bytecode instruction expects a direct reference to an instance of the right type to be on the top of the

operand stack.8 After post-processing, there will be an handle instead of the expected direct reference.

The post-processor thus injects a sequence of instructions to consume the reference to the handle and

leave a direct reference that matches the type that the GETFIELD instruction expects.

For the sake of readability, throughout the rest of this section I shall use the term direct reference

meaning a direct reference to an updatable type.

Constructing Updatable Instances

DuSTM transforms the original program so that each updatable instance is always accessed through its

handle. Constructing a new updatable instance has three challenges: (1) The correct handle that will rep-

resent the identity of the new instance must be constructed at the same time of the instance, (2) no direct

references to the newly constructed instance can escape, and (3) all the constructors that would be called

in the original program, one per super class, must be called in the same order. For instance, considering

the example introduced by Figure 3.18 that we are following, the challenges are: (1) Constructing an

instance of class Pixel 0 implies constructing an instance of class RectangleComparable Handle;

(2) no references to the new instance of class Pixel 0 can escape, they could later be used to bypass

the handle; and (3) constructors should run in the following order to match the semantics of the original

program: Rectangle, Square 0, and Pixel 0.

6Performing a virtual method invocation would result in an infinite loop.
7Upward methods have the same name as the downward method that originated it, with a $ character

prepended to the original downward method name.
8The type signature and the name of the field are passed as immediate operands in the bytecode instruction

itself.

82

Invoking the constructor of an updatable type on the post-processed program naturally invokes the

constructors of all its parent updatable types until this chain of invocation reaches the handle helper

class. For instance, on the example that we are following, invoking the constructor of class Pixel 0
naturally results in invoking the constructor of classes Square 0 and then Rectangle. However, given

that the post-processor broke the hierarchy at this point, the construction does not continue naturally to

class Rectangle. To solve this problem, and to address challenge 3, the constructor of a handle helper

starts by creating the handle, thus resuming the sequence of constructor invocations in the same order

as in the original program.

Solving challenge 1 is more complex. The handle helper must create the right type of handle: Rect-
angle Handle for class Square 0 and RectangleComparable Handle for class Pixel 0. For that

purpose, DuSTM injects a method named $build to every updatable class that creates the right type

of handle. In the example that we are following, method Rectangle.$build is abstract, method

Square 0.$build creates an instance of Rectangle Handle, and method Pixel 0.$build creates

an instance of RectangleComparable Handle. The constructor on the helper class invokes method

$build to create the approriate handle and resuming the sequence of constructors in the correct order.

This approach, however, has a subtle problem: What happens if the constructor of class Rectan-
gle invokes method area? Assuming that we are building an instance of class Pixel 0, the method

that should be executed is Pixel 0.area, which should be invoked through downward method Rect-
angle Handle.area as explained earlier. However, for downward methods to work, field Rectan-
gle Handle.object should be set to the updatable instance that the handle keeps. When the con-

structor of class Rectangle calls method area, this field is not yet set.

DuSTM solves this problem by exploring the semantics of object construction at the bytecode

level [LY99], which is slightly different from the semantics at the Java level [GJS96]. In Java, every

constructor should start by invoking a constructor of its superclass.9 However, at the bytecode level,

constructing an object involves two bytecode instructions. First, NEW creates an uninitialized object of

a given class. Second, INVOKESPECIAL is used to invoke the correct constructor through non-virtual

method invocation. In between these two instructions, the program can perform any arbitrary computa-

tion that either does not involve the uninitialized object, or only writes values to fields on the uninitialized

object.10 When generating the body of each $build method, the post-processor injects bytecode to set

field object on the uninitialized handle object before invoking the handle’s constructor.

Finally, challenge 2 is the easiest to solve. Constructing an updatable instance leaves a direct reference

to that instance on the operand stack. DuSTM injects code immediately after invoking the updatable

constructor to replace the direct reference by a reference to its respective handle.

Method Signatures and Overloading

Any method m that belongs to an updatable type can declare updatable types as its arguments. In that

case, the body of m expects direct references to instances of updatable types to be passed as arguments

when invoking m. To follow the rationale about direct references only being used just before bytecode

instructions that require them, the post-processor modifies the signature of method m so that it declares

each argument with an updatable type as being the type of the primary handle for that updatable type.

For instance, consider the code that Figure 3.20 shows. Note how the post-processor changes the signature

of both methods visit in class Visitor so that they take instances of Rectangle Handle as their

argument.

9Except for class java.lang.Object which has no superclass.
10The javac compiler uses this feature to support building instances of inner classes, setting the reference to the

instance of the outer class before invoking the constructor of the inner class. Any other operation on uninitialized
objects, such as reading fields or invoking methods, throws an exception.

83

1 // Original
2 class Square extends Rectangle {
3 void accept(Visitor v);
4 }
5
6 class Pixel extends Square {
7 void accept(Visitor v);
8 }
9

10 class Visitor {
11 void visit(Square s);
12 void visit(Pixel p);
13 }

1 // Post-processed
2 class Square__0 extends __Rectangle {
3 void accept(Object__Handle v);
4 }
5
6 class Pixel__0 extends Square__0 {
7 void accept(Object__Handle v);
8 }
9

10 class Visitor__0 {
11 void visit__Square(Rectangle__Handle s);
12 void visit__Pixel(Rectangle__Handle p);
13 }

Figure 3.20: Implementation of visitor pattern to show how DuSTM handles overloaded methods. This
code builds on the example introduced in Figure 3.18. It introduces a new type of handle for class
Visitor that inherits directly from java.lang.Object: Object Handle. The implementation of
this handle is not important for this example and is thus omitted.

1 // Original
2 class C {
3 C(Square s);
4 C(Pixel p);
5 }
6
7
8
9

10
11 new C(new Square());
12 new C(new Pixel());

1 // Post-processed
2 class C__0 {
3 C__0(Rectangle__Handle s, Dummy1 d);
4 C__0(Rectangle__Handle p, Dummy2 d);
5 }
6
7 class Dummy1 { /* Empty */ }
8
9 class Dummy2 { /* Empty */ }

10
11 new C(new Square__0().handle, (Dummy1) null);
12 new C(new Pixel__0().handle, (Dummy2) null);

Figure 3.21: Example of how DuSTM handles overloaded constructors This code builds on the example
introduced in Figure 3.18. The extra argument that DuSTM adds to each constructor is used just
to differentiate between the signature of the two constructors after replacing the arguments that have
updatable types by their handle. DuSTM also changes all sites that invoke these particular constructors
so that they pass a null reference as the extra argument, which is then ignored by the body of the
constructors.

When replacing argument types from updatable types to handles, the fact that several updatable

types share the same primary handle can generate name and signature collisions for overloaded methods.

For instance, in the example that Figure 3.20 shows, the direct substitution would yield two undistin-

guishable methods with the same name and signature: void accept(Rectangle Handle h). Given

that method overloading is resolved at compile time, the post-processor scans all classes and renames

overloaded methods.11 In the example that we are following, note how methods named visit in the

original program get renamed to visit Square and visit Pixel in the post-processed program.

The post-processor cannot rename constructors, even though they can be overloaded and suffer from

the same problem as regular methods. In this case, the post-processor adds a dummy argument of

a synthetic type to distinguish them. For instance, consider class C in Figure 3.21. It declares two

constructors, one that takes a Square and another that takes a Pixel. The post-processor generates

two synthetic classes Dummy1 and Dummy2 and adds an extra argument to each constructor with a different

synthetic type. The two constructors are now distinguishable. The post-processor also updates all sites

that call the modified constructors to pass a null reference as the extra argument.

11Method overloading can occur by declaring a method with the same name on different classes along the same
hierarchy. The post-processor can handle this, and renames methods consistently.

84

handle handle

new value

handle

Argument 1

. . .

Argument N

invokevirtual
invokespecial
invokevirtual

putfieldgetfield

Figure 3.22: Location of handles in the operand stack just before each type of bytecode instruction.
These bytecode instructions require direct references to the instance that the handle keeps. The stack
grows from bottom to top. Each stack is annotated with the instructions in the original program that
expect the shaded handle to be a direct reference.

Receiver Reference this

There are two cases in which a direct reference can reach the stack: (1) On non-static methods, the

receiver reference this is a direct reference; and (2) when creating an instance of an updatable type,

the constructor leaves a direct reference on the stack. This section has already explained how DuSTM

deals with case 2 (page 82). To eliminate direct references escaping through case 1, the post-processor

adds a bytecode preambe to every non-static method that an updatable type defines. The preamble is

equivalent to the Java code this = this.handle. The this reference, in bytecode, translates to a

regular local variable with number zero. Therefore, even though the Java equivalent is not correct Java

code because the receiver reference this cannot be a left-value, the bytecode preamble is correct and

accepted by a standard JVM.

Replacing Handles by Direct References

When the post-processor finds a bytecode instruction that requires a direct reference, it can safely assume

that a reference to its handle is on the stack position where the instruction expects a direct reference. It

must thus inject a sequence of bytecode instructions to produce a direct reference from the handle and

place it on the right position on the operand stack.

We can group the bytecode instructions that require direct references in two groups: (1) Field ma-

nipulation instructions, and (2) method invocation instructions. Figure 3.22 shows how the stack looks

like just before executing each of these instructions. Field manipulation instructions expect the direct

reference to be within the top 2 positions of the stack. When the handle is on the top of the operand

stack — left-hand stack on Figure 3.22 — the post-processor injects a single instruction to call method

getObject which consumes the handle reference and leaves a direct reference on the stack. When the

handle is one position deeper — center stack on Figure 3.22 — the post-processor injects a sequence of

instructions that swap the top 2 positions, get a direct reference from the handle in the same way, and

swap the top 2 positions of the stack back to their original configuration.

Dealing with method invocation instructions is more complex because instructions that invoke meth-

ods expect the method receiver to be a direct reference and to be arbitrarily deep on the stack —

right-hand stack on Figure 3.22 — under all the arguments for the method. For the general case the

post-processor uses trampolines, which are static methods that take the handle for the receiver as the

first argument and perform the original invocation using the rest of the arguments after getting a direct

reference from the handle. The post-processor optimizes for invocations of methods with less than two

arguments by using the same approach that it uses for field instructions, described earlier in this section.

85

1 // Original
2 Square s = new Square();
3 Rectangle r = s;
4 ... r instanceof Rectangle ...
5 ... s instanceof Rectangle ...
6 ... s instanceof Square ...

1 // Post-processed
2 Handle s = new Square().handle;
3 Rectangle r = s;
4 ... r instanceof Rectangle ...
5 ... s instanceof Rectangle ...
6 ... s.object instanceof Square ...

Figure 3.23: Transformation of instanceof operator. After the program transformation, variable s
refers to a handle. The post-processor injects bytecode to get the reference to the instance that the
handle keeps prior to executing an instanceof operator on updatable types. The original classes in
this example are shown in Figure 3.18. Class Handle is short for class Rectangle Handle.

Implementing trampolines has a small technical challenge: The post-processor needs to generate

several trampolines per each method, one per invocation type that the JVM supports [LY99]. Therefore,

for each method that an updatable class defines, the post-processor generates two trampolines: One for

virtual invocations and another for non-virtual invocations. For each updatable interface, it generates a

trampoline that performs interface invocation for each method that the interface declares. Given that

interfaces in Java cannot have concrete methods, the post-processor places these trampolines in special

helper classes.

3.4.4 Object Identity Semantics

To ensure handles are transparent and retain the semantics of the original program, DuSTM has to keep

the original semantics of object identity. In Java, the == operator compares the identity of two objects.

Given that the post-processor replaces all references to proxied objects by references to their handles, the

== operator ends up being applied to handles which, naturally and correctly, considers that two objects

that have the same handle has having the same identity.

The == operator is not the only way that a Java program can compare the identity of two objects. Each

class defines two methods that are related with the identity of an object: (1) Method equals determines

if two objects are equal, and (2) method hashCode returns an integer hash-code for the object. These

methods have some restrictions, related with the identity of the objects they are invoked on: Method

equals must consider as equal two objects that the == determines to have the same identity; method

hashCode must return the same value for two objects that method equals considers to be equal. The

transformed program invokes both these methods on the handle, which delegates them to the instance

of the updatable type that it keeps. This way, handles retain the identity semantics of the objects they

keep.

The instanceof operator in the Java language checks if the object referred to by its operand is an

instance of a particular Java class. After the post-processor transforms the program, the occurrences

of this operator in the updatable code would end up receiving handles as their operator, instead of a

direct reference to an updatable type. For instance, consider the example shown in Figure 3.23. After

post-processing, variable s refers to an handle. The expression on line 6 on the original program would

return false and thus violate the original program semantics. To solve this problem, the post-processor

injects code to get the instance that the handle keeps just before each time the operator instanceof is

used to compare a reference against an updatable type. We can see an example of the transformation on

right-hand side of Figure 3.23.

3.4.5 Limitations

The separation between the updatable types and the execution platform, introduced in Section 3.3.1,

means that updatable types can be instantiated only inside updatable code. The program transfor-

86

Updatable Code Non-updatable Code

1 // Original
2 void updatableMethod(Point p) {
3 Pixel px =
4 new Pixel(p);
5 nonUpdatableMethod(px);
6 }
7
8 // Post-Processed
9 void updatableMethod(Point p) {

10 RectangleComparable__Handle px =
11 new Pixel__0(p).handle;
12 nonUpdatableMethod(px);
13 }

1 List lst;
2
3 void nonUpdatableMethod(Rectangle r) {
4 lst.add(r);
5 }
6
7 void anotherNonUpdMethod(Rectangle r) {
8 lst.sort();
9 System.out.println(lst.get(0));

10 }

Figure 3.24: Example showing how updatable instances can be safely passed to non-updatable code. This
code uses the types introduced in the example shown in Figure 3.16. Note that the non-updatable code
does not get a direct reference to the updatable instance of class Pixel 0, it gets instead a reference to
its handle.

mations described in this section ensure that the updatable code cannot get a direct reference, it can

only manipulate updatable instances through their handle. Therefore, the updatable code can only pass

updatable instances through their handle to the execution platform.

For instance, consider the example shown in Figure 3.24. Note how the post-processor injects code

to replace the direct reference to object px by its handle immediately after construction, in line 11 of

the left-hand side. Line 12 on the left-hand side shows how the updatable code can only pass updatable

instances through their handle to the non-updatable code.

Allowing the execution platform to interact with updatable types only through handles in this way

has two shortcomings. First, the execution platform cannot instantiate any updatable type. Some Java

frameworks are configured through reflection, by specifying an instance of class java.lang.Class as a

parameter for the framework to later create instances of client code. DuSTM does not support updatable

code that uses such frameworks. Reflection allows updatable instances to be created outside of post-

processed code, which opens the possibility of creating direct references to updatable instances.

Second, all class updates of updatable types must have the same non-updatable signature as the first

version, i.e. they must have the same non-updatable parent and implement the same set of non-updatable

interfaces. The reason for this restriction is the fact that handles are not updatable by design and they

may be kept inside instances of non-updatable types. For instance, consider the non-updatable code

shown on the right-hand side of Figure 3.24. The code on the left-hand side passes a pixel through its

handle to the non-updatable code, that keeps it as a rectangle. If a later DSU changes the pixel to not

inherit from rectangle anymore, the non-updatable code that has references to the handle will break.

Figure 3.25 shows examples of supported and unsupported changes to a class hiearchy. The left-hand

side shows the initial hierarchy. Class A is non-updatable, classes B and C updatable. Furthermore,

class A is a superclass of B, which is a superclass of C. In this example, DuSTM supports any DSU

in which classes B and C are subclasses of A, such as the two examples in the center of Figure 3.25.

DuSTM, however, does not support performing a DSU that changes the class hierarchy as the example

on the right-hand side of Figure 3.25 shows because it changes the non-updatable signature of class C,

which no longer inherits from class A.

Reflection

Preserving the original program semantics when performing bytecode transformation on programs that

use reflection is notoriously hard, as other authors acknowledge [TS02,GR09]. A possible approach is to

87

A

B

C

Original

A

C

B

Supported

A

B C

Supported

A

B C

Unsupported

Figure 3.25: Supported and unsupported program evolutions. This figure shows 3 possible program
evolutions over an original simple program composed by 3 classes: A, which is non-updatable; B; and C,
which are updatable. DuSTM can perform the first two evolutions as a DSU but not the last because it
breaks the inheritance between a non-updatable type (A) and an updatable type (C).

create a custom reflection library that mimics the behaviour of regular Java reflection but hides handles

and other program transformations (such as class name mangling). The bytecode transformation tool

can then rewrite all reflection calls to calls to equivalent methods on the custom reflection library.

I used this approach when implementing DuSTM. Ensuring that this approach supports the full

reflection API is a matter of engineering effort. DuSTM’s prototype currently provides minimal reflection

support, but enough to execute real-world applications as Section 3.5 shall describe. In fact, the choice of

which reflection calls to support was guided by the efforts of supporting the execution of those real-world

applications.

This approach to deal with reflection still poses two problems. First, to achieve full transparency,

DuSTM would also have to post-process reflection invocations on methods that belong to the execution

platform. Second, reflection calls made inside native code are hard to intercept and DuSTM currently

does not support it.

3.4.6 Optimizations

DuSTM transforms the original code to ensure that instances of updatable classes are always manipulated

through their respective handle. Every time DuSTM manipulates any updatable instances through its

handle (e.g. when executing a downward method), it uses the getObject method shown in Figure 3.15

on page 77. This method is called frequently and thus represents an important source of performance

overhead.

A closer look at this method reveals that it reads two VBoxes12: One to get the object-version pair

(line 6) and other to get the current program version (guard of the if statement in line 7). Reading

VBoxes is an expensive operation13 because it involves several tasks: (1) Check whether the VBox was

previously written in the context of the current transaction, (2) ensure that the read-set of the current

transaction contains the VBox being read, and (3) iterate through the versions that the VBox keeps to

find the most recent version that the transaction can read.

12When not migrating the instance that the handle keeps, which is the common case
13Details in Appendix A, Section A.4 (page 171).

88

Time

Tx1

Tx2

a b c d

Figure 3.26: Optimization for reading the current program version. Transaction Tx1 reads the same
VBox at instants a and d. Transaction Tx2 writes to that VBox at instant c and commits at instant d.
Note that Tx1 always reads the same value both times. Knowing that transaction Tx1 will read, and
only read, that VBox creates the opportunity to save overhead by reading the value when Tx1 starts and
caching it locally for subsequent reads. This is how DuSTM optimizes reading the VBox that keeps the
current program version.

Task 3 ensures isolation between transactions, as Figure 3.26 shows. Transaction Tx1 reads a VBox

at instants a and d. Transaction Tx2 writes to that VBox at instant b and then commits at instant c.

For this execution to be consitent with opacity, JVSTM has to ensure that transaction Tx1 reads the

same value on instants a and d. When the transaction reads the VBox at instant d, task 3 skips over the

value written by transaction Tx2 and returns the value previously read at instant a.

There is an interesting observation in the execution that Figure 3.26 shows: Reading the same VBox

v multiple times inside the same transaction T that does not write to v always results in the same value,

which is the most recent value that v has when transaction T starts. In the general case, it is hard

to know in advance which VBoxes will only be read during a transaction.14 For programs that use

DuSTM, however, every transaction will only read the VBox that keeps the program version. DuSTM

thus starts every transaction by reading the VBox that keeps the program version and then saves that

value in a thread-local variable15, effectively reducing the cost of reading the current program version

when executing method getObject.

As for the other VBox that method getObject reads, the one that keeps the updatable object and

its program version in a pair, it is possible to optimize its access by skipping tasks 1 and 2. Task 1 is

not necessary because handles are written only during conversion transactions. Task 2 is also redundant

because the if statement on line 7 performs the same validation that adding the VBox to the read-set

would trigger at commit time. DuSTM can thus safely skip these tasks.

These two optimizations significantly lower the performance overhead that DuSTM imposes on steady-

state execution.

3.5 Experimental Evaluation

To evaluate DuSTM, I developed a prototype that follows the implementation that Section 3.4 describes.

This section describes the experimental evaluation that I performed to evaluate that prototype. Sec-

tion 3.5.1 describes a series of experiments that evaluate the prototype in the context of updating an

application that already uses memory transactions as its concurrency control mechanism and, in particu-

lar, a JVSTM backend as the provider of memory transactions. Section 3.5.2 evaluates how the prototype

can be applied to existing real-world applications that no not use memory transactions.

14Except for read-only transactions, which only read VBoxes. JVSTM optimizes for the case of read-only
transactions, but not for the case that Figure 3.26 depicts.

15In JVSTM, there is a one-to-one correspondence between threads and transactions.

89

3.5.1 Updating an STM Based Application

This section describes an experimental evaluation of the DuSTM’s prototype using STMBench7 [GKV07].

STMBench7 is is a synthetic benchmark for evaluating STM implementations that simulates the workload

of a real-world Computer-Aided Design (CAD) application. The benchmark builds several sets of object

graphs that resemble how a CAD application structures its program state. The workload consists of a

series of operations, executed concurrently, that traverse and/or modify those graphs following different

patterns that resemble the different ways that a CAD application mutates its state. The program state has

invariants that each operation should preserve and that allow the benchmark to confirm the correctness

of the underlying STM implementation.

STMBench7 is highly configurable. Among several other configuration options not interesting for this

discussion, STMBench7 can be configured with the type of the workload, the number of threads to use,

and the duration of the benchmark run. This section reports results obtained by configuring STMBench7

with a JVSTM backend and selecting the read-write workload with 1 and 4 threads.

All the instances that STMBench7 keeps can be reached through the transitive closure of a small

number of root objects accessible via static fields. This property enables DuSTM to simulate immediate-

update DSU by suspending all transactions when performing a DSU and then traversing all instances

that STMBench7 keeps. After it finishes traversing (and migrating) the program-state, DuSTM resumes

all transactions that it previously suspended.

The workload that STMBench7 uses was further configured with two types of operations disabled:

(1) long traversals and (2) structural modifications. Long traversals access a large portion of the total

available program-state, which cause the JVSTM backend to build large read-sets. In fact, these large

read-sets put so much pressure on the garbage-collection mechanism that it renders any experimental

result unusable. Structural modifications perform random modifications (add a leaf node, delete a leaf

node, delete a whole branch) at random points in the graphs that STMBench7 keeps. At some point

during the benchmark execution, these operations delete a small set of branches that make unreachable

a large portion of the whole program-state, which then results in trivial update times when comparing

immediate versus lazy updates.

As explained in Section 3.3.6, DuSTM separates an updatable application into the updatable code

and the execution platform. The updatable code, in this case, is composed by the classes that implement

the JVSTM backend used for STMBench7. Semantically, this means that it would not be possible to

update the behavior of STMBench7’s operations, but it would be possible to replace the current JVSTM

backend by a more efficient one, for instance replacing a set currently implemented using a list by a more

efficient one that is implemented using a tree.

To evaluate updating STMBench7, I used a synthetic v0v0 update which does not introduce any

modification but considers that all updatable types were modified. A v0v0 update is a conservative

approximation of the worst-case scenario for DSU because it migrates the complete program-state by

making a deep copy of it from the old to the new program version.

The machine used to run the experiments that the remainder of this section presents is, unless noted

otherwise, a system equipped with an Intel Core i5 750 processor (4 cores) and 8GB RAM, running a

64-bit Linux 2.6.36, and Java SE version 1.6.0 24 (Java HotSpot 64-Bit Server VM, build 19.1-b02, mixed

mode).

Maximum Latency

STMBench7 measures the latency of each operation, measured as the time interval between issuing an

operation and its completion. STMBench7 aggregates the maximum latency that it measured by type

90

10

100

1000

10000

ST ST-RO OP OP-RO

la
te

n
cy

 (
m

s)

Maximum Latency

DuST'M 1 thread
Lazy 1 thread
Immediate 1 thread
DuST'M 4 threads
Lazy 4 threads
Immediate 4 threads

10000

ST ST-RO OP OP-RO

la
te

n
cy

 (
m

s)

Maximum Latency

DuST'M 1 thread
Lazy 1 thread
Immediate 1 thread
DuST'M 4 threads
Lazy 4 threads
Immediate 4 threads

Figure 3.27: Maximum latency for each different type of operation in STMBench7 when performing lazy
and immediate DSU using DuSTM. DuSTM refers to a benchmark execution in which there no DSU
is performed. Each bar cluster represents data from a different type of operation: ST stands for Short
Traversal, OP for Operations, and RO for Read-Only.

0
100
200
300
400
500
600

ST ST-RO OP OP-RO

la
te

n
cy

 (
m

s)

DuST'M Overhead

Normal 1 thread
DuST'M 1 thread
Normal 4 threads
DuST'M 4 threads

0

600

ST ST-RO OP OP-RO

la
te

n
cy

 (
m

s)

DuST'M Overhead

Normal 1 thread
DuST'M 1 thread
Normal 4 threads
DuST'M 4 threads

Figure 3.28: Increase of maximum latency introduced by DuSTM. Normal refers to the benchmark
without being post-processed, DuST’M refers to the benchmark after being post-processed. ST stands
for Short Traversal, OP for Operation, and RO for Read-Only.

of operation. Figure 3.27 reports the maximum latency observed per operation over 15 benchmark runs,

each lasting for 180 seconds and performing a DSU at 90 seconds.

As expected, immediate updates noticeably increase the maximum latency of each operation. In this

case, immediate updates increase the maximum latency by a factor of almost 2 orders of magnitude over

the base case. Lazy updates, on the other hand, add a modest increase on the maximum latency for each

operation.

Steady State Overhead

DuSTM introduces an extra level of indirection on the original application in the form of handles. I

performed an experiment designed to measure how this extra indirection affects the maximum latency

on steady state. The experiment consists of running two versions of STMBench7 in which one is left

unmodified and another is post-processed using DuSTM and executed without performing any DSU

during the benchmark run.

Figure 3.28 shows how the program transformation that DuSTM performs through the post-processor

increases the maximum latency for every operation. The difference in performance shows the performance

cost that DuSTM introduces during steady-state execution to pay for the ability to perform DSU in the

future.

Throughput

STMBench7 measures the overall throughput of a benchmark run, i.e. how many operations were com-

pleted on average per second. With a simple customization, I adapted STMBench7 to measure how

many operations were completed during each second of the benchmark run. The resulting measurements

provide a clearer look into how the throughput varies over time.

91

 0

 1000

 2000

 3000

 4000

 0 30 60 90 120 150 180

T
h
ro

u
g

h
p

u
t

(O
p

s
/

S
e
c)

Time (sec)

Throughput (1 thread)

DuSTM
Immediate

Lazy
 0

 2000

 4000

 6000

 8000

 0 30 60 90 120 150 180

T
h
ro

u
g

h
p

u
t

(O
p

s
/

S
e
c)

Time (sec)

Throughput (4 threads)

DuSTM
Immediate

Lazy

Figure 3.29: Throughput tracing at each second during a 180 second STMBench7 run. Line DuSTM
represents a benchmark that does not perform any update, lines immediate and lazy perform an update
at 90 seconds using immediate and lazy updates, respectively. Each line shows the aggregate results of
15 benchmark runs. To aggregate the results, each second reports the average of a sliding window of the
previous 5 seconds.

Figure 3.29 shows the results of an experiment that measures the number of operations STMBench7

completes per second during a 180 seconds benchmark run that performs a DSU at 90 seconds. Each

line reports the aggregate results of 15 benchmark runs. The noise in the original results would make all

lines in Figure 3.29 unreadable.16 Simply averaging the data from the 15 executions does not smooth the

lines enough for them to be easily read. To generate this figure, each second shows instead the average

of a sliding window of 5 seconds (the current and the past 4 seconds). This technique makes the plotting

readable at the cost of loss of precision on a per-second basis. In particular, the time required to perform

an update (while the throughput drops to zero in the plot) is inaccurate.

After a lazy update, transactions that execute the new program are interleaved with conversion

transactions that migrate instances. Immediate updates, on the other hand, just execute new program

transactions with any interruption. This explains why the performance after lazy updates takes some

time to reach the plateau after the update. The throughput drop for 1 thread is deeper than for 4 threads.

This happens because the probability of all 4 threads performing conversion transactions simultaneously

after the update is lower.

Immediate updates reach post-update performance in less time than lazy updates. These results show

that immediate updates are more appropriate for applications that keep a small program size and that

must resume maximum performance after the update as soon as possible (e.g. FTP servers, SSH servers).

The results show that, when converting the state immediately, there is a time period following the

update during which the throughput is zero. This null-throughput window lasts for 10 seconds in average,

which agrees with the 10 seconds increase of the maximum latency that Figure 3.27 shows for immediate

state conversion. Updates performed using lazy state migration still result in a sharp performance drop

that reaches zero but then recovers quickly. The period during which the performance is zero is, on

average, less than one second.

This experiment can be adapted to measure the throughput overhead that DuSTM adds to steady-

state execution in the absence of updates. Figure 3.30 shows how the throughput varies over time for two

scenarios, one running STMBench7 unmodified and another running STMBench7 post-processed with

DuSTM but without performing any DSU. The difference between the two lines shows the throughput

cost that DuSTM introduces to steady-state execution to pay for the ability to perform DSU in the

future.

The results show that DuSTM introduces, on average, 18% overhead for 4 threads and 37% for 1

thread. The cost of synchronizing threads masks the overhead for the scenario with a higher number of

16For instance, garbage-collection cycles influence the shape of each line at random points during the execution
of the benchmark.

92

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 30 60 90 120 150 180

T
h
ro

u
g

h
p

u
t

(O
p

s
/

S
e
c)

Time (sec)

Throughput Overhead (1 Threads)

DuSTM
Normal

 0

 2000

 4000

 6000

 8000

 10000

 0 30 60 90 120 150 180

T
h
ro

u
g

h
p

u
t

(O
p

s
/

S
e
c)

Time (sec)

Throughput Overhead (4 Threads)

DuSTM
Normal

Figure 3.30: Throughput overhead during a 180 second STMBench7 run. Line Normal represents the
unmodified benchmark and line DuSTM represents the benchmark post-processed by DuSTM without
performing any update. Each line shows the aggregate measurements from 15 benchmark executions
using a similar aggregation technique to the one used for Figure 3.29.

 0

50 k

100 k

150 k

200 k

250 k

300 k

 90 135 180#
 o

f
co

n
v
e
rt

e
d

 i
n
st

a
n
ce

s
/

se
c

Time (sec)

Converted Instances

Immediate 1 thread
Immediate 4 threads

Lazy 1 thread
Lazy 4 threads

 0

200 k

400 k

600 k

800 k

 1 M

 1 M

 1 M

 2 M

 90 135 180To
ta

l
#

 o
f

co
n
v
e
rt

e
d

 i
n
st

a
n
ce

s

Time (sec)

Converted Instances (Partial Sums)

Immediate 1 thread
Immediate 4 threads

Lazy 1 thread
Lazy 4 threads

Figure 3.31: Number of instances DuSTM transforms during an update. The left-hand side plot shows
how many instances DuSTM migrates at each second. The right-hand side plot shows how many instances
DuSTM migrated in total up to each second. These plots were generated using the average results for 15
benchmark runs of 180 seconds each that perform a DSU at 90 seconds. The initial 90 seconds of execution
do not migrate any instance because they take place before the update and are therefore omitted.

threads.

Migrated Instances

The results that this document presented so far show that lazy updates require a shorter pause in the

execution of the application to perform a DSU. This empirical evidence meets the expectation that lazy

updates require less time to resume execution following an update because they need to migrate less

instances. This section describes an experiment designed to compare the number of instances migrated

by each type of update, and presents its results.

To measure how many instances were migrated after an update, I modified DuSTM to count the

number of instances that it migrates at each second. Figure 3.31 shows the number of instances migrated

per second after performing a DSU. The results are the average of 15 benchmark runs, each lasting for

180 seconds and installing an update at 90 seconds. The left-hand side shows the number of instances

migrated at each second, the right-hand side shows the total number of instances migrated up to each

second.

DuSTM uses a single thread to traverse, and migrate, the program-state when performing immediate

updates. This explains the similarity between the lines for the immediate updates on the single-threaded

and multi-threaded versions of the benchmark: When migrating the program-state, both use a single

thread to traverse it.

After a lazy update, the program executes new code in transactions that are interleaved with con-

version transactions that migrate the program-state as it is accessed for the first time. This is why

93

 0

 3 M

 6 M

 9 M

12 M

15 M

 90 135 180 225 270

#
 o

f
co

n
v
e
rt

e
d
 i
n
st

a
n
ce

s
/

se
c

Time (sec)

Converted Instances (Immediate)

Heap Size x1
Heap Size x5

Heap Size x10
Heap Size x20

0.0

500.0 k

1.0 M

1.5 M

2.0 M

2.5 M

 90 135 180 225 270

#
 o

f
co

n
v
e
rt

e
d
 i
n
st

a
n
ce

s
/

se
c

Time (sec)

Converted Instances (Lazy)

Heap Size x1
Heap Size x5

Heap Size x10
Heap Size x20

Figure 3.32: Number of instances migrated after performing an update with a varying program-state size.
Each plot shows the total number of instances migrated up to each second after the update. The left-hand
size plot shows the measured numbers for the immediate program-state migration and the right-hand side
for the lazy program-state migration. Please note the discrepancy between the scales on both charts, the
lazy update migrates much less instances in total than the immediate update. These plots were generated
using the average results for 10 benchmark runs of 270 seconds each that perform a DSU at 90 seconds.
The initial 90 seconds of execution do not migrate any instance because they take place before the update
and are therefore omitted.

the lazy single-threaded update has a lower peak on the number of migrated instances per second than

the immediate updates. This also explains why the multi-threaded lazy updates have the highest peak:

Even though each thread has to interleave program execution with program-state migration, the com-

bined effect of the 4 threads migrates more instances than a single thread dedicated to program-state

migration.

The right-hand side shows that lazy updates migrate less instances, in total, than immediate updates.

Moreover, both lazy update configurations reach a similar plateau of approximately 900, 000 migrated

instances. This observation supports the hypothesis that lazy updates naturally identify the working-set

of the application, migrate it at a high rate following an update, and migrate the rest of the program

state at a much lower rate while executing the application.

I conducted another experiment to measure how the number of migrated instances and the rate of

migration varies with the size of the program-state. I modified STMBench7 so that it builds a larger

program-state by multiplying the total number of a common instance type in the benchmark by a factor

of 5, 10, and 20. Figure 3.32 shows the total number of instances migrated up to each second after the

update. Each line in the plotting is the average of 10 benchmark executions. Each benchmark execution

runs for a total of 270 seconds and installs an update at 90 seconds. Due to its increased memory

requirements, this experiment was conducted on a different machine, equipped with 4 AMD Opteron

6168 chips (12 cores per chip, 48 cores total) and 128GB of memory, running a 64-bit Linux 2.6.32, and

Java SE version 1.6.0 22 (Java HotSpot 64-Bit Server VM, build 17.1-b03).

The total number of instances that immediate updates migrate is also the total number of instances

that make up the entire program-state of an application. We can see that number in Figure 3.32 by

looking at the point in which the line of each immediate update stops increasing. From this observation,

we can confirm the hypothesis that the total number of instances that lazy updates migrate is much lower

than the total number of instances that in the program-state. Lazy updates are thus more appropriate

to perform DSU on programs that keep a large program-state.

Maximum Latency of Constant Operations

Some operations that STMBench7 executes traverse a percentage of all the existing objects in the

program-state. By increasing the total size of the program-state we are also increasing the amount

of work that these operations perform and, therefore, their latency.

94

100

1000

10000

100000

Immediate Lazy

la
te

n
cy

 (
m

s)

Max Latency (Increasing Heap Size)

Heap x1
Heap x5
Heap x10
Heap x20

Figure 3.33: Maximum latency measured for STMBench7 operations that perform a fixed amount of
work. The behavior of these operations is not dependent on the total size of the program-state. For this
experiment, I executed each scenario for 270 seconds and installed an update at 90 seconds. The results
show the maximum latency observed for 10 executions per scenario.

However, there is a class of operations — short traversals — that traverse a fixed number of objects,

independently of the total size of the program-state. To measure how the maximum latency of these

operations varies with the program size, I adapted the experiment performed to measure the total number

of migrated instances, which results are shown in Figure 3.32, to instead measure the maximum latency

of short traversals. Figure 3.33 shows the maximum latency observed on 10 benchmark executions, each

one lasting 270 seconds and installing an update at 90 seconds. The experiment was repeated for a total

heap size multiplied by a factor of 5, 10, and 20.

The results confirm our expectations by showing that immediate updates increase the maximum

latency of the fixed-work operations by a factor that is proportional to the total size of the program-

state. On the other hand, there is no visible relation between the latency of fixed-work operations and

the total size of the program-state when performing lazy updates. The results from this experiment

also confirm that lazy updates are more appropriate to perform DSU when the latency of operations

that perform a fixed amount of work should be minimized or otherwise kept below a certain value (e.g.

multimedia streaming).

3.5.2 Cost of the Handles

Section 3.4 explains how DuSTM provides support for DSU through injecting an extra level of indirection

in the original program. Section 3.5.1 evaluates the cost of using DuSTM on transactional applications.

This section evaluates the cost of using DuSTM on non-transactional applications, in particular it evalu-

ates the penalty, in terms of memory usage and performance, that the extra level of indirection adds to

non-transactional real-world17 Java applications:

To evaluate the cost that the extra level of indirection adds to existing non-transactional programs,

I used a version of DuSTM’s post-processor modified to generate handles that keep the reference to

the instance of the updatable type using a regular Java field instead of a JVSTM VBox. This is the

equivalent of generating handle types following the outline that Figure 3.34 shows, while still performing

all the program transformations that Sections 3.4.2, 3.4.3, and 3.4.4 describe. This approach separates the

overhead that JVSTM would introduce from the overhead that the handle injection technique introduces.

I used the modified post-processor to introduce handles to eight Java applications:

Avrora An AVR microchip simulator;

17In the sense that they are not small synthetic programs like STMBench7 is.

95

1 class Handle {
2 Object object;
3
4 static Object getObject(Handle h) {
5 return h.object;
6 }
7 }

Figure 3.34: Outline of non-transactional class Handle. Unlike the outline shown in Figure 3.15, on
page 77, the handle does not use a transactional VBox to keep the reference to the instance of the
updatable type.

Batik A SVG renderer;

Daytrader An online stock trading benchmark;

FOP A tool that generates PS and PDF files from XSL-FO files;

H2 A SQL DBMS implemented in Java;

Lucene A text-search engine;

PMD A Java bug finder;

Sunflow A ray-tracer.

The DaCapo benchmark suite [BGH+06] provides benchmarks with a representative workload for

each of these applications. Most applications have a single benchmark and some applications, Daytrader

and Lucene, have two different benchmarks. For Daytrader, one benchmark uses regular Java beans while

other performs the operations through a SOAP layer. For Lucene, one benchmark indexes an existing

text while another searches for keywords on an existing index.

All these applications generate deterministic output that allows the DaCapo benchmark suite to

detect semantical errors by comparing the results of each benchmark with the expected result. All the

benchmarks generated the expected results, which provides empirical evidence that the post-processor

does not change the semantics of the original program.

Experimental Setup

Table 3.1 shows the details about how each application was post-processed. Column package specifies

the name of the package that I considered to have all the updatable types.18 The following column lists

the total number of classes considered updatable for each benchmark.

Some applications used reflection calls that are not supported, as Section 3.4.5 explains. In those

cases, I manually modified the small parts of each application that relied on reflection and that the

benchmark needed to run. The two columns under Manually Modified on table 3.1 show how many files

and lines were modified to support reflection calls.

To assess the overhead that handles introduce to the original application, I executed the benchmark

suite on a quadcore system, with an Intel Core i5 750 processor (4 cores) and 12GB RAM, running a

64-bit Linux kernel version 3.2.0. For each benchmark, I ran the original application and a modified

version in which I post-processed all classes considered updatable (located under the packages shown in

Figure 3.1) using DuSTM. I used JVM version 1.6.0 33 (HotSpot build 20.8-b03, mixed mode), configured

to use a max heap size19 of 10GB.

18All the types found on the sub-packages are also considered updatable.
19Using the -Xmx option when launching the JVM

96

Benchmark Package
of Manually Modified

Classes Files Lines
avrora avrora 1545 2 47
batik org.apache.batik 2547 0 0

tradebeans org.apache.geronimo.
37 0 0

tradesoap samples.daytrader
fop org.apache.fop 1314 5 12
H2 org.h2 471 0 0

luindex org.apache.lucene 542 3 3
lusearch

PMD net.sourceforge.pmd 720 0 0
sunflow org.sunflow 221 0 0

Table 3.1: Details about how DuSTM post-processed each DaCapo benchmark. Column Package lists
the top-level package considered updatable. Column # of Classes lists the number of classes that DuSTM
post-processed for each application. Some applications required manual changes to avoid unsupported
reflection calls. The two columns under Manually Modified list the files and lines that were modified for
each application.

Benchmark TTC (ms) Heap (MB) GC (#)
O P/O O P/O O P

avrora 35032.63 1.12 8.79 1.25 36.11 28.63
batik 3431.95 1.04 42.08 1.08 1.95 2.00

tradebeans 29919.89 1.07 477.80 0.72 4.95 10.58
tradesoap 28147.42 0.99 443.98 0.99 12.11 12.21

fop 439.63 1.50 6.87 2.13 2.26 2.21
H2 45308.84 1.50 214.18 1.06 4.32 6.21

luindex 1004.37 1.30 6.82 1.36 2.16 2.16
lusearch 1992.16 1.56 133.16 0.63 20.42 27.11

PMD 4685.21 1.43 125.75 1.35 2.47 2.42
sunflow 9467.68 1.51 29.39 1.87 59.79 46.58

Table 3.2: Overhead introduced by DuSTM handles. TTC stands for time to complete, GC for garbage
collection runs, O for original, P for proxified, and P/O for overhead.

I executed each benchmark using the DaCapo suite configured to perform 20 iterations for each

benchmark. Therefore, every value that this section reports corresponds to the average of those 20

executions. Furthermore, I ran two different sets of 20 executions for each benchmark: One to measure

the runtime overhead and another to measure the memory overhead. I monitored the memory usage

by sending a QUIT signal to the JVM periodically (every second), which generates a heap summary

(total and used size per generation). Obviously, this technique alone introduces non-negligible runtime

overhead, which is the reason why I used a different set of executions for measuring the memory overhead.

All the benchmarks are part of the DaCapo benchmark suite version 9.12-bach. I ran all benchmarks

using DaCapo’s large workload size configuration except for FOP and luindex, which I ran with the default

workload size because that is the largest workload that the DaCapo benchmark suite has available for

these benchmarks.

Performance Overhead

Table 3.2 shows the overhead, in terms of performance and memory, that the post-processing adds. I

executed each program using the DaCapo benchmark suite, which already reports the time-to-complete for

each benchmark. To measure the performance overhead, I compared the time-to-complete a benchmark

run using the original program with the time-to-complete using the post-processed version.

97

The performance overhead depends on the application and clusters around two groups: Either it

is negligible (batik, tradebeans, and tradesoap) or significative (fop, H2, lusearch, PMD, and sunflow).

Avrora and luindex are the exceptions that present an acceptable non-negligible overhead.

The benchmarks tradebeans and tradesoap are part of the Daytrader application and they represent

a well-known and popular type of Java applications: Web applications. The overall performance of web

applications depends on the persistence layer, that keeps the application data; and on the application

server, that processes client requests using the web application and sends the replies back. The per-

formance sensitive kernel of code is therefore located outside the updatable types and in the execution

platform.

These results suggest that DuSTM can be applied to web applications without imposing a noticeable

performance overhead. They also suggest that performance-sensitive kernels should be kept in the exe-

cution platform to retain performance (at the cost of not being updatable anymore). The challenge here

is to identify and isolate those application kernels without violating the separation between updatable

types and execution platform that DuSTM requires, as explained in Section 3.3.6.

Memory Overhead

Table 3.2 shows the overhead, in terms of memory usage, that the post-processing introduces. Note

that the absolute value of used memory varies from benchmark to benchmark. The memory overhead

reaches its highest values for benchmarks with the lowest absolute heap usage (avrora, fop, lunidex, and

sunflow). This happens because the JVM minimizes garbage collection cycles to improve performance,

thus allowing more garbage to accumulate for benchmarks that use less memory. This effect artificially

bloats the memory usage measurements for benchmarks with low memory usage.

The memory usage measured for tradebeans and lusearch is lower for the post-processed version than

for the original version. These results are inconsistent with the fact that the post-processed version uses

more objects to represent the same program-state. The number of garbage collections cycles explains

the measured value: The post-processed version triggers more garbage-collection cycles that free more

memory than the original version. This suggests that the rate at which the post-processed versions use

memory is higher than the original versions, which is expected.

The post-processed code has the potential to double the amount of objects that an application uses

and thus increase the required memory by a comparable factor. The results show, however, that such

a worst-case scenario never happens in practice. In particular, the memory overhead is acceptable for

benchmarks that keep larger heaps such as tradebeans, tradesoap, H2, lusearch, and PMD.

3.6 Discussion

This chapter presented DuSTM, a system that allows to perform DSU on a transactional Java application.

Section 1.2 defines a set of goals that a practical DSU system should reach, and Section 3.1 presents a

set of claims about DuSTM reaches some of those goals. This section explains how this chapter supports

those claims.

Flexibility DuSTM is a flexible DSU system. It supports a wide range of modifications between

updates, including any type of structural modification of updatable classes and, with some restrictions,

changing the shape of the class hierarchy. DuSTM also supports custom program state migration between

successive program versions, and provides tools, such as the update class and old classes, that allow the

developer to describe the program state migration using regular Java code.

98

Before Rubah, the DSU system presented in the following chapter, DuSTM was the most flexible DSU

system to the best of my knowledge. DuSTM thus fully achieves the flexibility goal.

Correctness DuSTM provides clear update semantics that can be used to reason about its correctness.

Given that it supports DSU for transactional Java applications, it provides a modular framework for

developers to reason about the correctness of updates in terms of transactions that take place in either

the old or new program versions. Update transactions install the new code and migrate the program state

and migration transactions transform each object that needs to be migrated between versions. DuSTM

provides clear semantics for each of these transactions, and ensures that regular application transactions

always execute in the same program version. Furthermore, DuSTM does not require the developer to

changes the original program so that it can support future updates.

These are good and important properties in the sense of correctness. However, DuSTM still requires

the developer to write code that executes in-between program versions (to transform the program state)

and does not provide any tools to ensure that an updated program will behave as expected. DuSTM

could be adapted to use Tedsuto, a framework for testing updates, and thus reach the goal of correctness.

However, as it stands, DuSTM does not fully achieve the goal of correctness.

Efficiency DuSTM transforms the program state lazily when it performs an update. This amortizes

the large pause required to transform the whole program state over the execution of the new program

version, resuming execution after an update as soon as possible.

To avoid long update-induced pauses, DuSTM introduces an extra level of indirection in the original

application. This increases memory usage and adds steady-state overhead. As a result, DuSTM does not

fully achieve the goal of correctness.

Effectiveness DuSTM targets a popular language — Java — and is implemented as a runtime library

and a post-processor that rewrites the updatable code so that it supports DSU without requiring a

custom compiler or JVM. While developing the updatable application, programmers do not need to use

the post-processor and can thus use the same development time tools they would otherwise use.

DuSTM, however, can only be used with transaction Java applications. This requirement is a hard

restriction on the possible programs that can benefit from DuSTM, and it limits the effectiveness of

DuSTM. Therefore, DuSTM does not fully achieve the goal of effectiveness.

DuSTM is an important step towards all the goals that I defined for a practical DSU system. The

fact that it requires the updatable program to be written for a transactional memory model is its most

limiting factor. Unfortunately, there are not a large number of applications written for TMs. Should

applications for TMs become widely available, DuSTM would be a ready-to-deploy solution for practical

DSU.

Transactional memory enriches the programming model to make reasoning about concurrency modular

and easier. In the process, it achieves the same goals for DSU. In the following chapter, I explore the

consequences of relaxing the requirement for a transactional memory programming model, together with

the rewards in terms of effectiveness and efficiency.

99

100

Chapter 4

Efficient Real-World Updates

The applications that most benefit from DSU are those that have high availability requirements. These

applications typically provide service to a large number of clients that expect fast request processing and

low latency between successive requests. Important on-line services are written in managed languages

such as Java. For example, Twitter has moved most of its major infrastructure to Java,1 and the Java-

based Voldemort noSQL database is used by large companies such as LinkedIn.

In the previous chapter, I described a mechanism for performing DSU on Java programs that are

structured around transactions. The major advantages that transactions bring to DSU are: (1) Correct

Correct update points are easy to find, and (2) the program state can be migrated lazily. For 1, the

transactional system just needs to ensure that each transaction executes always on the same program

version in which it started. That is, only transactions that start after the DSU execute on the new

program version. For 2, the system can keep the illusion that all the program state was migrated at the

time of the DSU but actually only migrate each outdated object just before it is needed after the update.

Unfortunately, the vast majority of existing applications with high-availability requirements is not

structured around transactions. However, we can adapt the ideas presented in the previous chapter by

considering that each program version executes in one coarse-grained transaction, instead of requiring

the program to be structured around fine-grained transactions. This way, updates still take place in

their own transaction that, as before, installs the new program code and migrates the program state to

an equivalent state that is compatible with the new program code. The process of performing a DSU

now involves committing the current coarse-grained transaction, executing the update transaction, and

starting the new coarse-grained transaction for the new version. This insight allows us to apply the

benefits of a transactional approach to programs that are not transactional.

In this chapter, I describe a mechanism that uses such an approach — Rubah — to support DSU

on regular Java programs. Rubah enjoys all the advantages of DuSTM without requiring the updatable

program to use transactions at all. Rubah, however, requires the developer to change the original appli-

cation to support DSU in the following ways: Identify update points, which are program points where it

is safe to perform a DSU, and add control-flow migration code to unroll the stack at update time and

then rebuild it after the update finishes so that the program resumes executing from the same point in

which it was when the update took place.

This chapter is structured as follows: Section 4.1 provides an overview of the contributions of Rubah

with regards to the set of goals introduced in Section 1.2. Then, Section 4.2 explains how to modify

existing applications to support DSU through Rubah, explaining the update semantics in detail. Sec-

tion 4.3 presents the algorithms that Rubah uses to transform the program state between successive

program versions. Section 4.4 describes a prototype implementation of Rubah, and Section 4.5 describes

1http://www.gmarwaha.com/blog/2011/04/11/twitter-moves-from-rails-to-java/

101

http://www.gmarwaha.com/blog/2011/04/11/twitter-moves-from-rails-to-java/

an experimental evaluation using that prototype and five real-world applications. Finally, Section 4.6

discusses Rubah’s contributions.

4.1 Claims

This section presents claims about how Rubah reaches the goals defined in Section 1.2.1, providing an

overview of the rest of this chapter guided by those goals and enumerating Rubah’s main contributions.

Flexibility. Rubah is extremely flexible. It was able to handle release-level updates for five applications,

described in Section 4.5.1. In fact, to the best of my knowledge, no prior system can handle the same

range of updates Rubah can.

The updatable application model that Rubah supports is similar to DuSTM in the sense that Rubah

also considers the updatable application to be composed of updatable classes and non-updatable classes.

Rubah, however, supports a wider range of program changes than DuSTM to updatable classes. Rubah

supports all the program changes that DuSTM does, and it lifts the requirement that updatable classes

have to keep the same non-updatable superclass between updates. Section 4.4.1 discusses the types of

updates that Rubah supports in further detail.

I claim that Rubah fully achieves the goal of flexibility as defined in Section 1.2.1 — following the

notation introduced by Table 2.1.

Effectiveness. Rubah targets programs written in the Java programming language. It works by per-

forming a semantics-preserving bytecode rewriting that enhances the original program with support for

DSU. Rubah does not require a custom JVM to support DSU. Rubah therefore allows the developer to

use the same development time tools as he would otherwise use.

All these ideas were previously introduced and explored by DuSTM. Rubah’s approach is, however,

more effective because it rewrites the bytecode as classes are loaded by the running program. This

approach eliminates the need for a post-processing stage after compilation and enables Rubah to modify

non-updatable code as well as updatable code. Section 4.2.1 explains the workflow required to run an

updatable version of an application and install an update at a future time.

Rubah requires the developer to modify the original programs to support DSU. In particular, devel-

opers have to add update points and control-flow migration to the updatable program. Section 4.2.2

presents an example of an updatable application and Sections 4.2.3, 4.2.4, and 4.2.5 explain in detail the

changes that developers have to perform to make any program updatable, using the example to motivate

each change.

Rubah places some restrictions on the control structure of updatable programs. In particular, Rubah

expects updatable programs to be written around long running loops that: Take a request; process it;

and return the result to the entity that performed the request, eventually keeping some state about that

entity between requests. This control-structure is very common among high-available server software and

Section 4.5.2 measures the effort to add support for Rubah to the five real-world server applications listed

in Section 4.5.1.

I claim that Rubah fully partially achieves the effectiveness goal as defined in Section 1.2.4 —

following the notation introduced by Table 2.1.

Efficiency Rubah enjoys good steady-state performance. Unlike DuSTM, Rubah imposes negligible

steady-state performance overhead (-1.0–2.5%), as measured by a comprehensive experimental evaluation

described in Section 4.5.4.

102

When performing a DSU, Rubah provides two novel program state migration algorithms: A parallel

algorithm, that migrates the program state as fast as possible using several threads; and a lazy algorithm,

that migrates each object as the new program version requires it for the first time after the update.

Sections 4.3.2 and 4.3.3 present the parallel and lazy algorithms in detail, respectively. Section 4.4

discusses how Rubah implements each algorithm.

Both algorithms were evaluated experimentally. The results show that the parallel algorithm reduces

the time required to perform an update, in Section 4.5.5. The results also show that the lazy algorithm

imposes a smaller and nearly-constant update pause that does not depend on the total size of the program

state by amortizing the time required to transform the heap over the execution of the new program version,

in Section 4.5.6.

I claim that Rubah fully achieves the efficiency goal as defined in Section 1.2.3 — following the

notation introduced by Table 2.1.

Correctness. Rubah requires developers to change their applications to add support for DSU. Failure

to add an update point means that the program may stop executing, not making any progress until an

update is installed and not being able to install any update. An error on the control-flow migration means

that the program might lose program state or even crash after an update. An error on the program-state

migration can introduce a silent semantic error that might crash the program sometime after the update.

My experience, when adding support to Rubah to the existing applications listed in Section 4.5.1,

is that any error introduced typically crashes the program immediately after an update. This happens

even for small tests that the developer can run locally before performing a DSU on the program running

in a production environment. However, when using Rubah, the developer does not have any other tools

besides small trial-and-error tests to ensure the correctness of updates.

DuSTM relies on an underlying transactional memory to isolate program versions and to ensure that

transactions that start after an update always execute the new program code and can only see the migrated

program version. The semantics of updates are thus composable with application transactions. Rubah,

however, does not rely on memory transactions. Instead, each program thread executes each program

version in a conceptual coarse-grained transaction that finishes when the thread reaches an update point.

After pausing all threads at update points and migrating the program state, Rubah restarts each thread

in a new conceptual coarse-grained transaction to execute the new program code with the migrated

program state.

Unfortunately, Rubah is further away from the goal of correctness than DuSTM. DuSTM requires a

richer programming model than Rubah, and takes advantage of it to support modular and composable

updates, exploring the knowledge about transactions to automatically find correct update points. Rubah,

on the other hand, places less restrictions on the programming model but requires the developer to identify

those manually.

I claim that Rubah does not fully achieve the correctness goal as defined in Section 1.2.2 —

following the notation introduced by Table 2.1.

4.2 Dynamic Software Updates with Rubah

This section explains how developers can use Rubah to add support for DSU to their applications. It

starts by describing the workflow for using Rubah. Then, it introduces a example, adapted from the

H2 SQL database management system. Using the example, this section then explains how the developer

retrofits it, i.e. adapt its code to support future DSU using Rubah, by adding update-points and control-

flow migration. Finally, it explains how the developer transforms the program state between versions

when Rubah performs a DSU.

103

JVM

driver
.jar

v0

Analyzer

v0 Descriptor

1 2

.jar

v1

Analyzer

3

v1 Descriptorv1 Descriptor

Updater

.java

Update Class

javac .class

Update Class

5

.jar

Skeleton Classes

4

6

Figure 4.1: Workflow for deploying a program and preparing an update for it using Rubah. After
compiling the first version of the updatable application (v0), the developer uses Rubah analyzer tool to
generate a version descriptor (step 1). The developer can then run the first version using Rubah driver
tool (step 2). When the developer writes the next version of the application (v1), he passes it to the
Rubah analyzer tool, together with the descriptor of the previous version (step 3). The Rubah analyzer
tool generates a version descriptor for the new version, the source code for a stub update class, and
the bytecode for skeleton classes. The developer customizes the update class with the state migration
logic and compiles it using the regular Java compiler and the skeleton classes (step 4). At that point,
the developer can use the Rubah updater tool with the new version bytecode, the descriptor of the new
program version, and the compiled update classe (step 5), which un turn connects to the Rubah driver
tool to start the update process (step 6).

4.2.1 Workflow

The workflow for using Rubah is given in Figure 4.1. Prior to deploying the initial version of a program

(“version 0” or v0), that version’s bytecode is given to the Rubah analyzer tool, which produces a version

descriptor that contains meta-data, such as the list of all updatable classes, for that version (step 1).

The program is executed by Rubah’s driver, which takes the application’s classes and the descriptor

(step 2). The driver uses a custom classloader that intercepts each class that the application loads

and performs a semantics-preserving bytecode transformation that adds support for future updates to

the loaded class, most notably in support of state transformation. The state transformation algorithms

and the semantics-preserving bytecode transformation are described in detail in Sections 4.3 and 4.4.3,

respectively.

Once a new version of the program is available (“version 1” or v1), the developer prepares a dynamic

update by passing the new code and the v0 descriptor to the analyzer (step 3), which produces, along

with the v1 descriptor, an update class that describes how existing objects should be transformed to work

with the new code. The programmer can customize this class as needed, and then compile it using the

analyzer-produced skeleton classes as a placeholder for the old-version classes (step 4).

The dynamic update is deployed by the updater (step 5), which signals the running driver (step 6),

providing the new code and the update class. The driver then deploys the update in three stages. In the

104

first stage, quiescence, the driver gets each thread to a point at which it is safe to perform the update.

In the second stage, state transformation, the driver initiates (and may complete) the transformation

of object instances whose class changed (according to the update class). In the final stage, control-flow

migration, each thread is restarted and shepherded to a point equivalent to the one at which the update

took place. At this point, the update is logically complete. Future versions repeat the bottom half of the

figure (steps 3–6).

This approach is extremely flexible. Rubah permits changing any class in an arbitrary manner, with

few exceptions, whereas past approaches often limit which classes can be changed, and in what ways.

For Rubah, the only classes that cannot be updated are the Java runtime classes and libraries (e.g., Java

collections). Updatable classes can directly reference non-updatable classes but not the reverse, due to

issues involving the bootstrap class path of a Java application [LB98]. Of course, library classes do not

directly reference application classes, so this restriction poses no practical difficulty.

Rubah requires the programmer to write (or retrofit) the program so that the update process works

properly. In particular, to achieve quiescence, the programmer must insert update points that identify safe

moments to perform updates. The programmer must also add code to perform control-flow migration.

Finally, for each new version that comes out, the programmer may also need to customize the default

update class. The remainder of this section describes what must be done, using an example.

4.2.2 Updatable Application Example

Rubah’s design for whole-program DSU is inspired by Kitsune’s approach for C [HSD+12].2 In particular,

Rubah is well-suited for complex server applications.

The smallest full example that shows all of Rubah’s features would be too large to be easily presented

here. Instead, for the sake of simplicity, I present an example adapted from part of H2, a SQL database

management system that I modified to support updating through Rubah. I omit all the code that is less

interesting. This example will be used throughout the rest of this section.

Figure 4.2a shows the code that listens for connecting clients. The code starts by creating a socket

to accept incoming connections (line 7) and initializing the database, e.g. opening the files persisted to

disk (line 8). The server then enters a long running loop that handles connecting clients (lines 11–16).

During each iteration, the code accepts the new connection (line 12) and creates a new thread to handle

the connected client (lines 13–15) using the code shown on the right-hand side, Figure 4.2b. The server

catches and logs any exception that might happen (lines 17–21). A finally block ensures the socket

gets closed when the server exits (lines 21–23). Finally, the server stops the database, e.g. saving files

back to disk and flushing its I/O buffers (line 25);

Figure 4.2b shows the code that handles each connected client. This code shows the method run of

class TcpServerThread created on line 13 of Figure 4.2a. The server starts by initializing the connection

and negotiating the protocol parameters with the client, e.g. version of the protocol (lines 32–37). The

server then processes each command that the client issues on a long-running loop (lines 39–45) that calls

method process to handle the each command that the client issues (line 41). Method process reads

the next operation that the client issues, blocking until the client either issues an operation or disconnects

(line 55). The code then switches on the operation (lines 56–64). The example shows the outline for

the EXECUTE QUERY operation case (lines 57–61): It reads the remainder of the query parameters from

the client, using the transfer object to so do (line 58); then internally processes the query (line 59);

and finally sends the response, a result-set, back to the requesting client (line 60). The code for other

operations is similar and omitted from this example (lines 62–63).

2The word Kitsune means “fox” in Japanese; the word Rubah has the same meaning in Indonesian, which the
language spoken on the island of Java.

105

1 boolean stop = false;
2 ServerSocket serverSocket;
3
4 void listen() {
5
6 serverSocket =
7 NetUtils.createServerSocket(port);
8 initManagementDb();
9

10 try {
11 while (!stop) {
12 Socket s = serverSocket.accept();
13 ServerThread c = new ServerThread(s);
14 Thread thread = new Thread(c);
15 thread.start();
16 }
17 } catch (Exception e) {
18 if (!stop) {
19 TraceSystem.traceThrowable(e);
20 }
21 } finally {
22 NetUtils.close(serverSocket);
23 }
24
25 stopManagementDb();
26 }

27 Transfer transfer;
28 Socket socket;
29
30 void run() {
31 try {
32 transfer = new Transfer(socket);
33 transfer.init();
34 trace("Connect");
35 // Negotiate protocol with client
36 transfer.flush();
37 trace("Connected");
38
39 while (!stop) {
40 try {
41 process();
42 } catch (Throwable e) {
43 sendError(e);
44 }
45 }
46 trace("Disconnect");
47 } catch (Throwable e) {
48 server.traceError(e);
49 } finally {
50 transfer.close();
51 }
52 }
53
54 void process() {
55 int operation = Transfer.readOperation();
56 switch (operation) {
57 case EXECUTE_QUERY:
58 // Read query parameters from client
59 // Process query
60 // Send result set back to client
61 break;
62 case ...:
63 ...
64 }
65 }

(a) Code for listener thread. (b) Code for server thread.

Figure 4.2: Small server example adapted from H2. The left-hand side shows class TcpServer, which
listens for new clients and creates a server thread to handle each client that connects. The right-hand
side shows class TcpServerThread, which handles each client.

106

This example also shows the complex handling of exceptions, typical in server code. All exceptions

raised while processing each command are initially caught in the catch block in line 42 and passed

to method sendError in line 43. Method sendError decides how to handle exceptions: It sends

recoverable exceptions back to the client and re-raises unrecoverable exceptions, which break the loop,

are re-caught in the catch block on lines 47, and logged on line 48. A finally block on lines 49–51 ensures

that the connection gets always closed when method run exits.

Adding support for DSU through Rubah requires the developer to change the original program.

Figure 4.3 shows how this example looks after introducing all the necessary modifications. The following

Sections 4.2.3, 4.2.4, and 4.2.5 explain each modification in detail. I must emphasize that this example is

tiny, therefore the changes required are disproportionally high. Section 4.5.2 provides empirical evidence

that the changes required are much smaller than the whole size of the updatable application, for the five

real-world applications listed in Section 4.5.1.

4.2.3 Quiescence and Update Points

Rubah performs dynamic updates by safely stopping the program in the old version, migrating the

program state, and then restarting the program in the new version. The meaning of safely stopping

depends on the particular semantics of each updatable program, so Rubah requires the developer to

mark program locations where it is safe to stop for an update as update points.

A good approach is to place update points where the program is quiescent.3 In the example that

we are following, the listener thread, which code is shown on Figure 4.2a, becomes quiescent just before

line 12. At this point, it has accepted the previous client and started a thread to handle it and it has not

accepted the next one (or blocked waiting for it). The server thread, which code is shown on Figure 4.2b,

becomes quiescent just before line 41. At this point it has finished processing the last client command

and has not started to process the next one. Note that both quiescence points keep minimal in-flight

state, which simplifies reasoning about the update.

Developers mark update points by placing a call to method Rubah.update. This method takes a

string as its sole argument, which is a label to identify logically different update points.4 Figure 4.3 shows

two update points, one per each thread, on lines 15 and 59.

Calling method Rubah.update when an update is available results in it throwing an UpdatePoint-

Exception. This exception must ultimately reach a Rubah-provided wrapper for a thread’s run (or

main) method, where it is caught and dealt with. The thread wrapper is implemented in the class

RubahThread, which is a drop-in replacement for class java.lang.Thread that applications must use.

Line 24 on Figure 4.3a shows how an example of using class RubahThread.

Of course, the exception may be caught by intervening catch blocks in the application, so the

developer may need to make changes to avoid this (lines 27–28, 63–64, and 70–71). The developer also

needs to ensure that the exception does not change any state by being propagated, therefore actions

within finally blocks must be guarded to account for possible updates (lines 35 and 76).

When an update becomes available, the program may be blocked waiting for some I/O operation. To

avoid an undue delay to the update, Rubah requires the program to either: (1) Use non-blocking sockets

and select operations, which are blocking but can be interrupted without closing the socket [HSHF12];

or (2) have each thread voluntarily wake-up from I/O calls frequently and reach an update point before

blocking again. Rubah provides an API that simplifies retrofitting a program to use non-blocking I/O if

needed.

3Note that our definition of quiescence differs from (and is not comparable to) that of some prior work [MR07],
which defines it to mean that all updated functions are inactive, i.e., not running.

4Section 4.2.4 discusses the meaning of this argument in further detail when presenting control-flow migration.

107

1 boolean stop = false;
2 ServerSocketChannel serverSocketChan;
3
4 void listen() {
5

6 if (!Rubah.isUpdating()) {
7 serverSocketChan =
8 NetUtils.createServerSocketChannel(port);
9 initManagementDb();

10 }
11
12 try {
13 Selector sel = Selector.open();
14 while (!stop) {
15 Rubah.update("listen");

16 SocketChannel s;
17 try {
18 s =
19 Rubah.accept(serverSocketChan, sel);

20 } catch (UpdateRequestedException e) {

21 continue;
22 }
23 ServerThread c = new ServerThread(s);
24 RubahThread thread = new RubahThread(c);
25 thread.start();
26 }
27 } catch (UpdatePointException e) {

28 throw e;
29 } catch (Exception e) {
30 if (!stop) {
31 TraceSystem.traceThrowable(e);
32 }
33 } finally {
34 sel.close();
35 if (!Rubah.isUpdateRequested())
36 NetUtils.close(serverSocketChannel);
37 }
38
39 stopManagementDb();
40 }

41 Transfer transfer;
42 SocketChannel socketChan;
43
44 void run() {
45 try {
46 if (!Rubah.isUpdating()) {

47 transfer = new Transfer(socketChan);
48 transfer.init();
49 trace("Connect");
50 // Negotiate protocol with client
51 transfer.flush();
52 trace("Connected");
53 }
54

55 Selector sel = Selector.open();
56
57 while (!stop) {
58 try {
59 Rubah.update("process");

60 process(sel);
61 } catch (UpdateRequestedException e) {

62 continue;
63 } catch (UpdatePointException e) {

64 throw e;
65 } catch (Throwable e) {
66 sendError(e);
67 }
68 }
69 trace("Disconnect");
70 } catch (UpdatePointException e) {

71 throw e;
72 } catch (Throwable e) {
73 server.traceError(e);
74 } finally {
75 sel.close();
76 if (!Rubah.isUpdateRequested())
77 transfer.close();
78 }
79 }
80

81 void process(Selector sel) {
82 int operation = Transfer.readOperation(sel);
83 ...
84 }
85 }

(a) Code for listener thread. (b) Code for server thread.

Figure 4.3: Changes required to retrofit the example shown in Figure 4.2 to use Rubah. The modified
code is highlighted: Update-points have a black background (lines 15 and 59), control-flow migration has
a light-grey background (lines 6–10, 24, 27–28, 35, 46–53, 61–64, 70–71, and 76), and I/O has a dark-grey
background (lines 2, 13, 16–22, 34, 42, 47, 55, 60, 75, 81, and 82).

108

In the example that we are following, the listener thread may be blocked on line 12 on the original

code on Figure 4.2 when an update becomes available. The example that Figure 4.3 shows how to modify

the original code to use Rubah’s API for nonblocking I/O operations. The programmer has to use Java’s

nonblocking socket channels (line 2), create a selector object (line 13),5 use Rubah’s API to make the

blocking call (line 19), and treat a potential UpdateRequestedException raised if an update becomes

available while blocked (lines 20– 22). The server thread, originally shown in Figure 4.2b, can be modified

in the same way, as Figure 4.3b shows.

When all threads have been stopped at update points, the program is quiescent, and the update may

take place. This happens in two steps: state transformation, which loads in new and updated classes

and transforms existing objects to use those new classes, and control-flow migration, which returns the

threads to their logically correct positions in the (new) application code. I defer discussion of state

transformation to Section 4.2.5 and discuss control-flow migration next, completing the explanation of

the code in the example.

4.2.4 Control-flow Migration

The goal of the control-flow migration is to return each program thread to an update point in the new

version that is equivalent to the point at which it stopped in the previous version. Rubah begins control-

flow migration by re-starting each thread’s (possibly updated) run method (or the main method for the

main thread, if it is still alive). Each thread eventually reaches an update point with same label as the

update point at which the thread quiesced originally. At that point, Rubah blocks that thread. Once

all threads have so blocked, control-flow migration is complete, and all threads may continue. Besides

application threads and the main thread, Rubah also supports control-flow migration of thread pools.

When a thread starts for the first time, it typically performs initialization actions that should not

be re-performed during control-flow migration. In the example that we are following, the original server

code initializes the connections and negotiates the protocol to be used when it starts (lines 32–37 in

Figure 4.2b). Executing these lines post-update would result in overwriting state that Rubah migrated

and deviating from the protocol that the client is expecting, possibly resulting in the client disconnecting.

To avoid initialization code during control-flow migration, Rubah provides API calls that the developer

can use to determine whether a thread is running for the first time or as a result of an update. In the

example that we are following, line 46 guards the initialization code on Figure 4.3b with a call to method

Rubah.isUpdating which returns true if called while performing the control-flow migration and false
otherwise.

We can see another instance of control-flow migration on the listener portion of the example that

we are following. Lines 7–8 on the original code on Figure 4.2a create the server socket and start the

database management system. Figure 4.3a guards these lines with a call to method Rubah.isUpdating
on line 6.

Note that some systems, like UpStare [MB09], attempt to perform control-flow migration automati-

cally. Following Kitsune, Rubah prefers the manual approach because (a) it makes the updating process

manifest in the program code and thus easier for the programmer to reason about, and (b) it imposes

less overhead than would full support for program-wide stack unwinding and rewinding (as in UpStare).

4.2.5 State Transformation

Prior to restarting each thread, Rubah performs state transformation to convert the existing program’s

objects to use the updated classes. Conceptually, this happens by visiting each object in the heap that

5Of course, the programmer has to manage the lifetime of the selector object by releasing it when updating
(line 34).

109

1 class Session {
2 User user;
3 // Added in version 1
4 String userName;
5 }

6 class UpdateClass {
7 void convert(v0.Session o0, v1.Session o1) {
8 // Automatically generated
9 o1.user = o0.user;

10 o1.userName = null;
11 // Customized
12 o1.userName = o0.user.name;
13 }
14 }

Figure 4.4: Example, adapted from CrossFTP, of an update class. From version 0 to version 1, class
Session gained field userName, as the left-hand side shows (line 4). The right-hand side shows how the
stub update class that Rubah’s analyzer tool generates copies all the fields that retain the same name
and signature between versions (line 9), and generates a default initialization to the new/modified field
(line 10). The developer customizes the stub class with the logic needed to migrate the program state
between versions (line 12).

was affected by an update and transforming it to work with the new version’s code. In most cases this

transformation is simple; e.g., version v0 of a class has two fields while version v1 has three, and the newly

added field is initialized with its default value. In rare cases the transformation is more involved, and so

the programmer can specify what to do in the update class.

Figure 4.4 shows an example of an update class, which specifies the transformation. This example

has a single instance conversion method that transforms instances of class Session by taking an existing

instance o0 that belongs to version v0 and using it to initialize the equivalent new instance o1 that shall

take o0’s place in v1.

Update classes have one instance conversion method for each class that has a different set of fields

from version v0 to version v1. Even if the set of fields is the same, with regards to name and type, the

developer can define instance conversion methods to account for fields whose semantics changes. If a field

has changed neither name nor type, then Rubah copies its value from the old to new version by default;

the developer can override this behavior by assigning to the field in the conversion method. Update

classes may also define static conversion methods to transform static fields.

In Figure 4.4, adapted from the CrossFTP server, field user in v0 keeps information about the current

user. The FTP protocol authenticates users through a sequence of USER/PASS messages with the right

arguments. Version v0 drops the connection if the password is incorrect or the user name is not known;

version v1 allows retrying using the same connection. It saves the user name supplied by the last USER

command on the new field userName to support multiple commands PASS in sequence. The custom

migration code just copies the value of the known user name to the new field, in case the update is

installed between an USER/PASS interaction.

The arguments of the conversion method in Figure 4.4 are skeleton classes, which as the name implies,

have been stripped of a lot of the original’s contents: All methods are removed, and all fields are made

public (so as to be accessible to the update class’s code). Each class is placed in a distinct namespace,

depending on its version, allowing the developer to refer to version v0 or v1 unambiguously and still use

the regular Java compiler to compile the update class.

Rubah’s analyzer generates a default update class that the programmer may customize. The analyzer

compares v0 and v1 and matches fields by owner class name, field name, and field type. It generates a

conversion method for each class with unmatched/changed fields that copies over the fields that match

between versions and initializes the fields that do not match to a default value (0, false, or null). The

developer then “fills in the blanks.”

Rubah’s state transformation algorithms are responsible for finding outdated instances and updating

110

1 int inflightOperation;
2
3 void process() {
4 int operation;
5 if (Rubah.isUpdating())

6 operation = this.inflightOperation;
7 else
8 operation = Transfer.readOperation();
9

10 try {
11 switch (operation) {
12 ...
13 }
14 } catch (UpdatePointException e) {

15 this.inflightOperation = operation;

16 throw e;
17 }
18 }

Figure 4.5: Example showing how to save local variables during an update. In this example, one of the
operations has an update point in the code omitted on line 12. The code that processes each operation,
originally shown between lines 55–64 in Figure 4.2, must be changed to support the extra update point.
The changes required are highlighted in light gray (lines 1, 10, and 14–17). After the update, the server
needs to resume the operation it was performing before the update through control-flow migration. The
changes required to perform control-flow migration are highlighted in dark gray (lines 5–7). Any other
state kept in local variables that the updatable operation keeps must be saved using a similar program
modification.

them via the update class. Rubah has two algorithms, a parallel one and a lazy one, which have different

trade-offs and are discussed in detail in the next section.

Note that Rubah does not migrate state kept in local variables. This happens because the stack of

each thread is unwound during quiescence by propagating the UpdatePointException. There are no

active stack frames (and, therefore, no active local variables) at update-time.

My experience with Rubah, and the experience of the authors of the similar Kitsune [HSD+12] DSU

system for C, is that values in local variables at update-time are rarely needed. If they are needed, the

developer can store them away temporarily just before the update, and retrieve them after the update.

For instance, in the example that we are following from Figure 4.2, consider that one of the operations

takes a long time to complete. The developer can add an update point to the slow operation, so that

updates are readily installed when they become available. However, to do so, he has to save, at least, the

operation local variable that method process declares on line 55.

Figure 4.5 shows the manual program modification required to save local variables at update time.

This example saves local variable operation by creating an instance variable inFlightOperation
(line 1), which Rubah migrates between versions. When propagating the update point exception, the

developer needs to save the local variables he is interested in (catch block on lines 14–17). After the

update, the developer can use the control-flow migration to reset the saved local variables (lines 5–7).

4.3 State Transformation Algorithms

To perform a Dynamic Software Update, Rubah stops every application thread at an update point.

When all threads stop this way, and the application thus becomes quiescent, Rubah transforms the

existing program state to an equivalent version that is compatible with the new code. Section 4.2.5

111

showed how the developer specifies the program state transformation logic. This section explains how

Rubah uses that logic to transform the program state between program versions.

Rubah supports two novel state transformation algorithms. The first, parallel algorithm transforms

all outdated objects eagerly, using multiple threads, while the program is stopped. The second, lazy

algorithm transforms each outdated object as late as possible, just before the program attempts to use

the object after the update takes place. This section describes each algorithm in detail.

4.3.1 Notation

This section uses Java-like pseudocode to present each state transformation algorithm. However, there

are some subtle differences to Java code, made for conciseness and readability:

• Brackets are omitted, and indentation determines scope;

• A map visited keeps track of visited objects. The map associates outdated objects with

either their transformed versions or with themselves, if they have not changed. Expression

visited[key] = val associates key with val. Expression visited[key] retrieves the cur-

rent mapping for key. If no such mapping (yet) exists, visited[key] yields ⊥;

• Visiting each field in an object, used to compute the transitive closure of the object graph, is written

using notation: for (Field f : obj) ... obj.f

• We use atomic compare and swap (CAS) to ensure safe concurrency. The expression

CAS(lval,expectVal,setVal) atomically sets the l-value lval to setVal assuming that lval’s

contents are currently expectVal, in which case setVal is returned, otherwise the current con-

tents are. Thus, if obj.f=0, then the expression CAS(obj.f,0,1) sets obj.f to be 1, and returns

1, at which point the expression CAS(obj.f,0,2) would make no change to obj.f and return 1.

We assume the map supports atomic semantics so that map[key] can be used as an l-value, i.e.,

CAS(map[key],expect, newKey) denotes an atomic map insertion.

The rest of this section explains how to actually implement these notational conveniences.

4.3.2 Parallel State Transformation Algorithm

The simplest way to transform the program state is to do so eagerly, while the program is stopped. A

single thread can, starting from the root references, follow each object reference transitively until all

the program state is visited and transformed. This is very similar to a stop-the-world tracing garbage

collection algorithm [JHM11] and object graph serialization techniques [VF02,LDS92]. In fact, many DSU

systems follow this approach [HSD+12, SHM09, WWS10]. We improve on this basic idea by performing

tracing in parallel, using multiple threads.

For the purposes of state transformation, note that Rubah only needs to consider the root references

to be the static fields in all loaded classes and the fields in all stopped RubahThread objects. It does not

need to consider local variables to be root references because the stack of each thread is unwound during

quiescence by propagating the UpdatePointException.

Figure 4.6 shows the parallel state transformation algorithm as well as a single-threaded variant, for

comparison. The main code is in the migrate method.

The algorithm calls migrate(o) for each root object o. This method starts by looking up the object

in the map (line 5). If not present, it proceeds to map the old class to the new one by calling method

Rubah.mapClass (line 8) which, for argument class c, returns either class c if the update does not

112

1 Map visited;
2 TaskQueue queue;
3
4 migrate (Object obj) =
5 if (visited[obj])
6 return visited[obj];
7 Class c = obj.getClass();
8 Class newC = Rubah.mapClass(c);
9 Object newObj;

10 if (newC != c)
11 newObj = Rubah.new(newC);
12 Rubah.convert(obj, newObj);
13 else
14 newObj = obj;
15 Object mapped = map(obj, newObj);
16 if (mapped != newObj)
17 return mapped;
18 traverse(newObj);
19 return newObj;

20 ST:traverse (Object obj) =
21 for (Field f : obj)
22 obj.f = migrate(obj.f);
23
24 ST:map(Object pre, Object post) =
25 visited[pre] = post;
26 return post;
27
28 MT:traverse (Object obj) =
29 for (Field f : obj)
30 Task t = new Task()
31 { obj.f = migrate(obj.f); }
32 queue.add(t);
33
34 MT:map(Object pre, Object post) =
35 return CAS(visited[pre], ⊥, post);

Figure 4.6: Parallel state transformation algorithm. The traverse (line 18) and map (line 15) methods
differ for the single- and multi-threaded variants. Their code is prefixed with ST and MT, respectively, on
the right-hand side. Method MT:traverse uses a TaskQueue. The notation for creating tasks (lines
30–31) uses braces which form the boundary of a closure: obj and f are free variables inside task t
resolved to those in the lexical scope (i.e., the variables defined in lines 28 and 29, respectively). The
implementation of three methods is omitted: Rubah.mapClass (line 8) takes a single argument c and
returns either class c if the update does not modify c or the updated version of outdated class c; method
Rubah.new (line 11) creates a new object of the given class without running any constructor; and method
Rubah.convert (line 12) transfers the state from an outdated object to its updated version, performing
the state transformation logic described in the update class.

N

n

A

a

B

b

1 B o0; // Existing outdated instance
2 B o1; // Blank new instance
3
4 o1.n = o0.n;
5 o1.a = o0.a;
6 A.convert(o0,o1);
7 o1.b = o0.b;
8 B.convert(o0,o1);

Figure 4.7: Order in which Rubah calls conversion methods along the class hierarchy. The left-hand side
shows the class hierarchy: Class N is non-updatable, classes A and B are updatable. Class A extends N
and class B extends A. The right-hand side shows pseudo-code that explains the order in which Rubah
copies over the unchanged state and calls the custom conversion methods defined for classes A and B in
the update class.

113

o0

o1

o2

f

f
(a) visited[o0] = ⊥

o0

o1

o2

o3 1

o3 2

f

f
(b) visited[o0] = ⊥

o0

o1

o2

o3 1

o3 2

f

f
(c) visited[o0] = o3 1

o0

o1

o2

o3 1

o3 2

f

f

(d) visited[o0] = o3 1

Figure 4.8: Two tasks concurrently try to transform the same object. (a) Task t1 finds o0 through o1.f ,
task t2 through o2.f . (b) Each task migrates the same object, generating o3 1 for t1 and o3 2 for t2. (c)
Task t1 succeeds at mapping o0 to o3 1, thread t2 fails. (d) Both tasks set their respective reference to
o3 1.

modify c; or the updated version of outdated class c. For outdated objects, the algorithm creates an

instance of the new class, and transforms the object (lines 11 and 12).

Method Rubah.convert(o0,o1) transfers the state from outdated object o0 to the updated version

o1 performing the state transformation logic described by the programmer, as described in Section 4.2.5.

Note that instance conversion methods are called in a hierarchical way similar to how Java calls construc-

tors [GJS96]. Let us consider the example that Figure 4.7 shows, in which classes A and B are updatable,

class B extends A, class N is non-updatable, and class A extends N. In this case, to transform instances of

class B, Rubah: (1) copies all fields inherited from class N (line 4), (2) copies all unchanged fields from

class A (line 5), (3) calls A’s conversion method to transform A’s updated fields (line 6), (4) copies all

unchanged fields from class B (line 7), and (5) calls B’s conversion method to transform B’s updated fields

(line 8).

After transforming the object, the parallel state transformation algorithm shown in Figure 4.6 marks

the object as visited (lines 15 to 17) and traverses the transformed object (line 18). In the single-threaded

variant of the algorithm, traversal is done by the method ST:traverse, which simply calls migrate
for every field that the object has. In this variant, ST:map simply updates an object in the map, so the

condition on line 16 is always false.

The multi-threaded algorithm uses a TaskQueue to coordinate state transformation among multiple

threads. The multi-threaded object traversal (method MT:traverse) creates tasks to do object trans-

formation for each field (line 32). Each task, itself, creates further tasks and the algorithm finishes when

the task threads complete with an empty queue.

There is a possibility of races given the presence of multiple threads concurrently transforming the

heap. For instance, consider the case where two threads find the same outdated object o0 through different

referring objects o1 and o2, as shown in Figure 4.8a. Both threads find the map empty on line 5 and

proceed to convert o0 (Figure 4.8b).

Allowing both threads to continue at this point would result in field o1.f referring to o3 1 and field

o2 referring to o3 2. This is a clear semantical error. The parallel algorithm avoids it by requiring both

threads to synchronize when they try to map the converted object by calling method MT:map on line 15,

114

which is implemented using an atomic map update on line 35. Only one thread succeeds at performing

the atomic update (Figure 4.8c).

Due to the possibility of races as described in the previous paragraph, the instance conversion meth-

ods presented in Section 4.2.5 must be idempotent when using the parallel program state migration

algorithm. We shall see that the same restriction applies to the lazy program state algorithm, presented

in Section 4.3.3.

Once the parallel algorithm registers a mapping from outdated object o0 to its updated version o3 1,

future threads will find it on line 5 and not attempt to convert it. The thread that lost the race simply

returns the converted object on line 17 while the thread that won traverses the object on line 18 before

returning it on the following line. Finally, when returning from method migrate on line 31, each thread

sets its referring field o1.f and o2.f to the converted object o3 1 (Figure 4.8d).

4.3.3 Lazy State Transformation Algorithm

Lazy state transformation takes place while the program is running. The goal is to postpone the trans-

formation of each object to the last possible moment. Laziness avoids the significant pause that would

otherwise occur for large heaps.

To implement lazy transformation, Rubah uses proxies to intercept control when the program is about

to dereference an object (i.e., read/write one its fields or call a method) that is outdated. The proxy does

the necessary work to bring the object up-to-date before allowing the program to continue. To simplify

the presentation, I present the algorithm as if every object can behave like a proxy to itself by setting

a flag, rather than using a separate proxy object. The start of each method is modified to check the

proxy flag, and perform the necessary work if the flag is set, before executing the original method body.

Section 4.4 discusses the actual implementation.

Correctness Conditions

Any state transformation algorithm is correct if, once the program threads are restarted after reaching

quiescence, they only run up-to-date code and access up-to-date state. This is trivially true for the

parallel algorithm.

For the lazy algorithm to guarantee correctness, it must ensure that the restarted threads will only

ever use objects that are safe to access. In the following text, I explain what it means for an object to

be safe to access by presenting two invariants that the lazy algorithms keeps during the execution of the

new program version.

Invariant 1: After the update, the program only uses objects that are safe to access.

An object o is safe to access if and only if: (1) o’s class is not outdated, and (2) either o is a proxy

(i.e., its proxy flag is set) or all of its fields are safe to access. By ensuring this invariant, Rubah ensures

that whenever the program uses an object, the object is either up-to-date or a proxy. In the latter case,

the algorithm updates the proxied object’s fields so that they are safe to access and uninstalls the proxy

before letting the program use the (now up-to-date) object. This approach causes the object graph to

have a clear frontier between the up-to-date and partially updated program state that is composed of

proxies. This frontier starts at the root references and expands outward as more proxies get dereferenced.

In addition to this core invariant, the lazy algorithm maintains another important invariant, which is

that all objects mapped to by the visited map are safe to access.

Invariant 2: If visited[o] = p then p is safe to access.

115

1 Map visited;
2
3 LAZYmigrate (Object obj)
4 LAZYtraverse(obj);
5 obj.isProxy = false;
6 visited[obj] = obj;
7
8 LAZYtraverse (Object obj)
9 for (Field f : obj)

10 Object ref = obj.f;
11 if (ref.isProxy)
12 continue;
13 else if (visited[ref])
14 CAS(obj.f, ref, visited[ref]);
15 continue;
16 else
17 Class c = ref.getClass();
18 Class newC = Rubah.mapClass(c);
19 if (c != newC)
20 Object p = Rubah.new(newC);
21 Rubah.convert(ref, p);
22 p.isProxy = true;
23 p = CAS(visited[ref], ⊥, p);
24 CAS(obj.f, ref, p);
25 else
26 ref.isProxy = true;
27
28 Object method(Object ... args)
29 if (this.isProxy)
30 LAZYmigrate(this);
31 // Rest of original method

Figure 4.9: Lazy state transformation algorithm. For the sake of simplicity, the pseudo-code assumes
that field isProxy was injected to every class. Section 4.4 explains how to actually implement proxies.
The implementation of three methods is omitted: Rubah.mapClass (line 18) takes a single argument c
and returns either class c if the update does not modify c or the updated version of outdated class c;
method Rubah.new (line 20) creates a new object of the given class without running any constructor;
and method Rubah.convert (line 21) transfers the state from an outdated object to its updated version,
performing the state transformation logic described in the update class.

As we shall see shortly, this invariant helps ensure that after converting a proxy object to one that is

up to date, the latter is safe to access.

Algorithm

Figure 4.9 shows the lazy state transformation algorithm. The algorithm first handles the roots by

running the loop on line 9, where each field obj.f considered is a root reference.6 Lines 17 to 19 test if

each referred object needs to be transformed. If not, the algorithm simply proxies the object (line 26).

Otherwise, the algorithm creates an object of the new class without running any constructors (line 20),

runs the conversion code to initialize the new object using the state of the outdated object (line 21),

proxies the new object (line 22), marks the old object as visited (line 23), and sets the original reference

to point to the new object (lines 24).7 Note that assigning visited[ref] to p on line 23 satisfies

invariant 2 because p is not outdated, and is a proxy. Objects are transformed only once: aliased proxies

are skipped (lines 11–12) and aliased objects are set to the correct, safe-to-access object (lines 13–15).

For now, assume that the CAS operations on lines 14, 23, and 24 always succeed; their role shall become

evident later on this section.

6Similarly to the parallel algorithm, Rubah only needs to consider the root references to be the static fields in
all loaded classes and the fields in all stopped RubahThread objects.

7Recall from Section 4.3.1 that the first argument of CAS is treated as an l-value, not an r-value.

116

T1

T2

m migrate mresumed

(a) (b) (c) (d)

m migrate migrateresumed

pa o0 o1
f

a o0

o1 o2

f a o0

o1 o2

b

f

(a) visited[o0] = ⊥ (b) visited[o0] = o1 (c,d) visited[o0] = o1

Figure 4.10: Race between lazy state transformation code and application code. The top half shows a
timeline of events composed of two threads, T1 and T2. The bottom half shows a relevant portion of the
heap, composed by proxy p0, converted object o1, and objects a and b. Thread T2 is scheduled out of
execution between instants (b) and (d). Both threads start by invoking method pa.m, which triggers the
transformation of outdated object o0 through method migrate (short for LAZYMigrate).

At this point all root references refer to proxies. Invariant 1 is therefore true and Rubah can safely

start running each paused thread’s run/main method at the new version, beginning the process of

control-flow migration. Assuming that all accesses to objects are via method calls, then the next method

call on an object will be to a proxy. We assume all methods have been modified according to the bottom

of the figure: the program calls method LAZYmigrate (line 30), which traverses the proxy (line 4) using

LAZYtraverse.

As explained above, method LAZYtraverse ensures all of the proxy’s fields are safe to access: Each

field: is already a proxy (line 11), is made into a proxy (lines 22 and 26), or was previously visited

(line 13), in which case Rubah updates it with the new version from the map. Invariant 2 ensures that

this new version is safe to access.

Once a proxied object is traversed, LAZYmigrate uninstalls the proxy (line 5), and marks the object

as visited (line 6) by mapping the object to itself. Doing so satisfies invariant 2 since the object’s fields

are all safe to access. This fact also ensures invariant 1 when, at line 31, Rubah resumes running the

object’s code.

Let us now revisit the uses of CAS in the algorithm. Figure 4.10 shows an example that makes clear

the need for all uses. At instant (a), proxy pa refers to outdated object o0 through field f . Two threads,

T1 and T2, execute method pa.m() concurrently, which triggers the execution of method LAZYmigrate.

Each thread converts object o0, yielding o1 for T1 and o2 for T2, and race to register their converted

object in the visited map. They do so using the atomic update operation on line 23, which ensures

that only one thread wins the race and all the threads use the same transformed object. Note that the

lazy transformation algorithm may convert the same object more than once, as this example show. As a

consequence, the conversion code used with the lazy migration algorithm must be idempotent, similarly

to the parallel algorithm.

At instant (b), thread T1 wins the race and T2 is scheduled out of execution until instant (d). After

executing method LAZYmigrate to completion, thread T1 resumes executing the new program method

a.m() which performs a.f = b at instant (c). Thread T2 resumes executing at instant (d) and executes

line 24. Note that thread T2 cannot be allowed to simply perform a.f = o1 because that would overwrite

b and thus change the program’s semantics and introduce an error. That is why line 24 has a CAS
operation, CAS(a.f ,o1,p0), which in this case (correctly) fails for T2. This race is also the reason for the

117

mark klass field1 ... fieldN

Figure 4.11: Memory layout of a Java object. This object has fields 1 through N. The object header uses
two words before the first field: mark contains the hash code, lock state, and GC information about this
obect; klass refers to a structure that contains information about the class of the object and its vtable.

CAS operation in line 14.

Assuming that the visited map is wait-free, this algorithm is trivially wait-free: All operations are

guaranteed to finish in a bounded number of steps because there are no loops. The following section

explains why the implementation of this algorithm is also wait-free.

4.4 Implementing Efficient Updates

Rubah is the first DSU system for Java that is both full-featured (flexibly handling release-level updates)

and VM-independent. This section details the implementation of Rubah’s prototype, in particular how

the driver (1) rewrites the application, adding support for DSU whilst preserving the original semantics,

and (2) performs a dynamic update once one becomes available. Rubah’s prototype is implemented in

roughly 9KLOC of Java and uses the ASM bytecode rewriting tool [BLC02,Kul07].

4.4.1 Name Mangling and Class Replacement

Rubah renames updatable classes to distinguish those of different (past and future) versions. A class

named AppClass gets renamed to AppClass 0 in version v0 and AppClass 1 in version v1. For

brevity, in the following text I write C0 for C 0 and C1 for C 1. Changing the name of a class may

break reflection calls, such as Class.forName. Rubah rewrites all invocations of these methods to call

Rubah’s API instead (e.g. Rubah.classForName), which provides the same semantics and accounts for

name mangling.

When the updater signals that an update is ready (step 6 in Figure 4.1), the driver will load the

new classes. Rubah updates classes by generating a new class C1 for each class C in the new version of

the program. Given that there is no relation between the two versions C1 and C0 of the same class C,

Rubah can support any changes made between versions without requiring any modification to how the

underlying JVM represents classes internally.

Rubah generates a new class C1 for each updatable class C even if class C is unchanged from the

previous version. As a consequence, Rubah must transform all instances of C0 to instances of class C1.

But executing the state transformation algorithms for objects of classes that did not change would be

inefficient. Rubah takes advantage of how the JVM lays out objects in memory to avoid such transfor-

mations.

Figure 4.11 shows how an object looks in memory. Note that the object’s fields are preceded by two

words, mark and klass, that contain meta-data about the object. HotSpot finds the class to which

any object belongs by looking for that object’s reference to its klass structure (Jikes and OpenJDK

have a similar object layout). If two classes A and B define the same fields in the same order, we can turn

an instance of A into an instance of B by simply modifying the klass reference. The mark word also

keeps meta-data about the object. In particular, this word stores the identity hash code of the object,

its lock status, and GC information about it.8

8Assuming the object is not locked. Typical JVM implementations use thin locks [BKMS98, Dic01] that get
inflated when an object is locked, effectively moving the hash code to the lock structure. Rubah can deal with
either case.

118

Rubah uses the unsafe operations available in class sun.misc.Unsafe to manipulate klass and

mark words. If the structure of a class C does not change between versions, Rubah turns all instances

of class C0 it finds into instances of class C1 by setting the klass reference. When transforming an

object, Rubah migrates the identity hash code using the unsafe API to overwrite the one saved in the

mark structure.

Note that, when Rubah installs a new klass reference, it also changes the vtable of the object.

Given that the bodies of the methods might change between versions, this effectively installs the new

code. This technique is analogous to using HotSwap [Orab,Dmi01] to install new code for loaded classes.

It has, however, two important advantages over HotSwap: (1) It does not require the JVM to run in

debug mode, which I have found adversely affects JIT performance; and (2) it supports changing the

set of methods that a class defines, which HotSwap does not. The downside is that this technique

requires a heap traversal to find (and fix) all outdated instances, whereas HotSwap changes the internal

representation directly on the class that all instances use.

Changing the klass reference of an object is potentially unsafe because the code that the JIT

compiler emits (e.g. when inlining) assumes that the klass reference does not change. As such,

changing the klass could crash the JVM. We developed Rubah carefully to ensure that this violation

only happens in methods inside of Rubah that never get inlined in the program’s code and that such

methods never perform any virtual method invocation that might reach the vtable, which is only accessible

through the klass structure.

The garbage-collector also uses the klass structure. However, it assumes far less than the JIT

compiler about it and just looks for the relevant metadata at a fixed offset for all objects. Given that

both the old and the new klass structures agree on this metadata, this optimization does not cause

the garbage-collector to crash the JVM.

4.4.2 State Transformation

Rubah’s implementation of state transformation largely follows the algorithms given in Section 4.3, with

two exceptions: (1) the visited map is often implemented as an added field rather than entirely as a

separate data structure, and (2) the isProxy field is actually implemented by manipulating the klass
reference to refer to a proxy class.

Visited Map

The visited map from Section 4.3 marks objects as visited and maps outdated v0 object instances

to their v1 equivalents as they are transformed. Rather than implementing the map entirely as a sepa-

rate data structure, Rubah adds an extra instance field to updatable and non-updatable classes called

$forward that points to an object’s updated version. This approach adds a small per-object memory

overhead, but avoids adding the extra memory pressure at update-time that a separate data structure

would impose. It also permits more fine-grained concurrency control: reading or writing the forwarding

pointer can be done with a regular compare-and-swap operation.

Unfortunately, not all classes can be changed to add this new field. For instance, the JVM directly

accesses the fields in all java.lang.Reference subclasses by a fixed index. Adding a field changes the

index and cause the JVM to crash. Also, arrays cannot have extra fields. In these cases, Rubah uses

an adaptation of java.util.concurrent.ConcurrentHashMap that provides the same semantics as

java.util.IdentityMap and supports an atomic update operation that checks if a key is present,

otherwise inserting a mapping in a single step.

119

Lazy Proxies.

Section 4.3.3 suggests that a proxy is just an object whose added isProxy flag is set, where the flag

changes how methods work. Checking this flag would degrade performance at the entrance of every

method. Furthermore, given that the JVM JIT optimizing compiler aggressively inlines small methods,

the flag check would increase the code size of all methods, making the JIT compiler miss inline oppor-

tunities for small methods and thus generate slower code. It would also require an extra field in every

class.

Instead, Rubah generates a proxy class to hold the proxy code and turns regular objects into proxies,

and proxies back into regular objects, by manipulating the reference to the klass structure through

unsafe operations in the same way we describe in Section 4.4.1.

Rubah generates a proxy class CP for each class C that it loads. CP extends C and overrides all of

C’s methods, redirecting the control flow to Rubah’s API.9 Proxies thus inherit the fields of the classes

they extend, having the same layout as the object they proxy, with the only difference between an object

and a proxy is the vtable it keeps.

Changing the vtable through the klass pointer makes proxies intercept virtual method invocations.

However, besides those, proxy classes must also intercept other ways that the proxied object might be

manipulated, which are field accesses and non-virtual method calls.10

Rubah rewrites all field accesses so that they are made through accessor methods, which can be

overriden and intercepted by proxy objects. When such accessors are called from within the class’s own

methods, the JIT safely optimizes the call away by inlining; the only overhead will be due to accesses

from outside the class.

For non-virtual calls, there is no issue if the call is made via this or super, since the current object

cannot be a proxy. The only time the receiver of a non-virtual call can be a proxy is when invoking a

private method of a different object (having the same class). Rubah emits a check before the invocation

to ensure that the other object is not a proxy; if it is, it must be transformed.

Both cases described in the last two paragraphs are very rare in typical Java programs, and the extra

calls do not add any measurable overhead in practice.

Wait Freedom

The pseudocode of the algorithm given in Figure 4.12a (copied from Figure 4.9) checks the isProxy flag

on line 2 to determine if an object is a proxy, and calls LAZYmigrate if so, before continuing with the body

of the original method. In Rubah’s actual implementation, shown in Figure 4.12b, the klass reference

has been modified to refer to a proxy class whose methods consist simply of a call to LAZYmigrate,

followed by a call to this.method(args). Because LAZYmigrate resets the klass reference to that

of the original object (equivalent to resetting the isProxy flag on line 5 in the LAZYmigrate method

shown in Figure 4.9), this call executes the correct method.

However, there is a possibility that another thread could re-proxy the object after line 8. When this

happens, line 9 calls the same proxied method. There is an implicit loop, made explicit in Figure 4.12c,

that executes method LAZYmigrate while the klass pointer is set to the proxy class. Now we must

be concerned: Is it possible that a thread will be stuck in the while loop forever, thus violating wait

freedom? Fortunately, the answer is ’no’.

Consider the following scenario, shown in Figure 4.13: An object o is aliased by two objects such that

a.f = b.f = o. Furthermore, object b is proxied (denoted by pb). Two threads, T1 and T2, are executing

9Rubah removes all final modifiers from classes and methods (but not fields) it loads to ensure that every
class and method can be proxied. There are some classes in the java.lang package that do not support this,
such as java.lang.String, but these classes are never proxied.

10In Java, calls to private methods are non-virtual, as are calls to methods via super.

120

1 method(Object... args)
2 if (this.isProxy)
3 LAZYmigrate(this);
4 // Rest of method

5 method(Object... args)
6
7 LAZYmigrate(this);
8 this._klass = C1._klass;
9 this.method(args);

10 method(Object... args)
11 while (this._klass != C1._klass)
12 LAZYmigrate(this);
13 this._klass = C1._klass;
14 this.method(args);

(a) Pseudo-code (b) Real code (c) Implicit loop

Figure 4.12: Implementation of proxies. Proxies were originally described as implemented by adding a
prefix to every method that checks field isProxy (a). In fact, Rubah generates separate proxy classes
(b) with methods that convert/traverse the proxied object (line 7), turn the proxy into a regular object
by adjusting the klass reference (line 8), and call the method on the converted object (line 9). It is
possible that other threads concurrently turn the object back into a proxy after line 8, which makes Java’s
virtual method invocation on line line 9 call the proxy code again and thus act as an implicit while loop
(c).

a

pb

po
f

f

a

pb

o
f

f

a

pb

po
f

f

(a) (b) (c)

Figure 4.13: Progress during lazy program state transformation. In this example, two threads are ex-
ecuting the code on Figure 4.9 : T1 is running method LAZYmigrate(po) and T2 is running method
LAZYtraverse(pb). At (a), T1 is at line 5 and T2 is at line 10 (a.f=po). At (b), T1 executes line
5 (a.f=o). At (c), T2 executes until line 26, including it (a.f=po, again). Note that visited[o] = ⊥
throughout the whole execution. Object a is the reason why two threads can get to the initial configu-
ration.

121

the lazy transformation algorithm, shown in Figure 4.9, concurrently. Thread T1 traverses a.f, proxies

o (e.g., on line 26), and then calls a method on proxied po (Figure 4.13a). Because po is a proxy, this

prompts Rubah to traverse it, eventually executing line 5 (Figure 4.13b). But before T1 can execute

line 6, suppose thread T2 traverses pb.f and, because o is not marked as visited yet, the test on line 13

fails and T2 re-proxies o (Figure 4.13c).

The similarity between Figures 4.13a and 4.13c suggests that the lazy migration algorithm can enter a

loop where no progress is made. In fact, at this point, when thread T1 returns from method LAZYmigrate,

the guard in the explicit while loop on Figure 4.12c is true and LAZYmigrate is called again. However,

notice that thread T1 marked o as visited in line 6. The next time a thread finds o while traversing an

object, the conditional on line 13 is true, so the object is not be re-proxied again. Therefore, once T1

executes line 5 the second time, the object will be de-proxied permanently.

The worst case scenario is if half of the threads in the application behave as T1 and the other half

as T2, alternately, as in Figure 4.13. However, because there is a bounded number of threads, there is a

bounded number of times that a proxy can be installed and uninstalled in sequence for the same object.

Assuming that the map visited is wait-free, it follows that there is a bound on the number of steps

required for each proxy to break out of its while loop. Therefore, I can state that the implementation of

the lazy state transformation algorithm remains wait-free.

4.4.3 Bytecode Rewriting

Rubah rewrites the original program at class load time. The rewritten program preserves the original

program semantics and supports DSU. All the bytecode transformations have already been described,

scattered throughout the preceding sections. This section enumerates all transformations, summarizing

each one and specifying where each transformation is described in detail.

Class Renaming. Rubah renames the updatable classes to avoid name collisions between multiple

versions of the same class. Class C becomes class C 0 in version 0 and C 1 in version 1. Section 4.4.1

describes class renaming in full detail.

Field Redirection. Rubah’s lazy algorithm is based on the assumption that Rubah can intercept all

possible ways of manipulating objects. Rubah intercepts method invocation by generating proxies that

extend the proxied classes and override all methods. Rubah intercepts field manipulations by rewriting

them into calls to accessor methods, that Rubah adds to each class. Any other accesses to objects (e.g.

bytecode instruction instanceof) are always preceded by a method call or a field manipulation to load

the object to the operand stack. Section 4.4.2 describes field redirection in full detail.

Class/Method Protection. To generate proxies, Rubah needs to be able to inherit from all classes

and override all methods. When a class or a method is annotated with the modifier final, it is not

possible to extend it or override it, respectively. Rubah removes the final modifier from every class it

loads. Section 4.4.2 describes field redirection in full detail.

Note that this transformation has no impact on performance because the JIT compiler does not use

this information. It instead optimizes on a per call-site basis. The performance evaluation on Section 4.5.4

provides empirical evidence to this claim.

Hash code. The identity hash code is located in the header of the object on field mark, near field

klass. Rubah uses unsafe low-level operations to copy the identity hash code for the same objects

between different versions. Section 4.4.1 describes field redirection in full detail.

122

This approach does not work for all classes. When performing an update, the JVM creates objects

relevant to the new program version and stores them before Rubah has a chance to migrate the identity

hash code. This happens for objects of class java.lang.Class that represent classes of the new program

version. In these cases, Rubah injects an integer code to keep the hash code and overrides method

hashCode to return the extra field. These cases are very rare and do not add any noticeable performance

overhead.

Reflection/Unsafe. The updatable program may rely on reflection and on the same unsafe API that

Rubah uses. Rubah rewrites all sensitive reflection calls that might expose the bytecode transformation

(e.g. java.lang.Class.forName or java.lang.Class.getName) to call an equivalent Rubah API

instead that behaves as the original program. Rubah also rewrites calls to the unsafe API that can access

proxies directly and thus override how Rubah intercepts their manipulation. Section 4.4.1 describes field

redirection in full detail.

4.4.4 Portability Among JVMs

Rubah was tested on Oracle’s HotSpot JVM. It does not modify any part of it, but it relies on a

number of assumptions about it. In particular, Rubah (1) uses “unsafe operations” to read fields directly,

circumventing access checks and bounds checks, and to compare-and-swap on arbitrary memory locations;

and (2) assumes the JVM lays out fields in the same order along the class hierarchy, and places each

object’s vtable in a fixed location accessible to unsafe operations. Besides Oracle’s HotSpot, IBM’s Jikes

and OpenJDK also satisfy these assumptions.

4.5 Evaluation

This section reports an experimental evaluation of Rubah along three axes:

Programmer effort How difficult is it to retrofit an application to use Rubah? How difficult is it to

write an update class (which describes how to transform the application’s state)? How flexible is

Rubah (which types of changes does it support)?

Steady-state overhead How much slower is the normal operation of the Rubah-retrofitted version of

an application than its unmodified version?

Per update overhead How is the performance of an application negatively affected while the update

is being installed? That is, how long is the application paused and/or its performance degraded?

To provide empirical data for each of these questions, I designed a series of experiments that use

Rubah to run existing server applications in one process while another process benchmarks the server.

Some experiments involve updating the server process during a benchmark run.

4.5.1 Updatable Applications

Rubah was used to dynamically update the following five applications:

1. H2, an SQL DBMS written in Java;

2. Voldemort, a key-value store used by LinkedIn;

3. CrossFTP, an FTP server;

123

Version
Release Release Retrofit Update
Code Changes Modifications Class

(#lines / #files) (#classes / #methods / #fields) (#lines / #files) (#stub / #mod) LOC

H2
1.2.121 40119 / 98 - 267 / 9 -
1.2.122 40566 / 98 63 / 149 / 12 Same 106 / 45
1.2.123 40655 / 99 44 / 86 / 3 Same 40 / 30

Voldemort
1.5.3 87516 / 517 - 175 / 7 -
1.5.4 87539 / 517 8 / 12 / 2 Same 12 / 2

Jake2
0.9.5 85408 / 256 - 29 / 2 -

CrossFTP
1.07 18221 / 161 - 224 / 8 -
1.08 18108 / 161 9 / 20 / 1 Same 16 / 1
1.09 18173 / 160 30 / 58 / 4 +4 / Same 47 / 2
1.11 18435 / 161 10 / 34 / 11 Same 51 / 23

JavaEmailServer
1.3.3 2368 / 20 - 183 / 6 -
1.3.4 2447 / 20 5 / 11 / 1 Same 26 / 2
1.4 2529 / 20 7 / 17 / 3 Same 55 / 9

Table 4.1: Changes between releases and programmer effort to support Rubah. Column release code
shows the total lines of code, excluding comments and blank lines, and number of files on the original
application. Column release changes shows the code changes between the previous release, in terms of
modified classes, methods, and fields. Column retrofit modifications shows how many lines of code I
added/modified to support Rubah and how many files were changed. Column update class shows the
LOC of the automatically generated update class file and the number of its lines I added/modified.

4. Jake2, a Java port of the shooter game Quake 2;

5. JavaEmailServer, a POP3/SMTP mail server.

All these applications are long-running, and maintain important in-memory state (the database/store

contents, the game state, and/or the protocol’s state for each client) that would be lost on restart.

Rubah was able to install application releases as dynamic updates. The first three columns on Ta-

ble 4.1 list the application versions, their size, and how they changed between releases. H2 changed

considerably in the releases considered: Among other changes, developers implemented support for new

SQL commands/idioms and full-text search, and improved the performance of H2’s page store.

Voldemort did not change as much: the new release fixes a race and improves throttling when cleaning

up data after rebalancing a server cluster.

CrossFTP added support for new configuration options for the PASV command and the international

character encoding for directory lists. JavaEmailServer added support for limiting the maximum size for

incoming messages, maximum delivery attempts before dropping a message, and relaying messages based

on the recepient’s address.

4.5.2 Programmer Effort

Table 4.1 assesses the programming effort to use Rubah on each supported application. In total, I

retrofitted four versions of CrossFTP, three versions of H2 and JavaEmailServer, two of Voldemort, and

one of Jake2 (as other versions lack sufficiently different functionality). The fourth column counts the

number of files and lines affected by retrofiting each application to use Rubah. For all five, I added

124

update points to long-running loops and control-flow migration as described in Sections 4.2.3 and 4.2.4,

respectively.

To be updatable through Rubah, applications must reach update points shortly after an update is

available. In the following paragraphs, I describe how I placed update points so that each application

can always reach them.

When idle, all applications wait either for new clients to connect, or for new requests from connected

clients. I retrofitted each application so that it can be interrupted while waiting. For H2, CrossFTP, and

JavaEmailServer, I changed I/O calls to use Rubah’s equivalent interruptible calls that use non-blocking

I/O11 (accounting for 134 and 49 LOC, respectively); Voldemort already uses non-blocking I/O; and

Jake2 polls I/O frequently rather than blocking.

When active, each application processes requests from clients: H2 processes SQL commands, Volde-

mort processes read/store operations, Jake2 processes network frames, CrossFTP processes FTP com-

mands, and JavaEmailServer processes POP3/SMTP commands. I retrofitted each application so that

it finishes processing the current requests it already started processing at the time an update became

available, and reaches an update point before starting to process any new requests.

Some applications might take a long time processing some requests. For instance, CrossFTP RETR/S-

TOR commands involve sending/receiving an arbitrarily large file over the network. To avoid large periods

of quiescence, while the server is not accepting new clients/requests because an update is available but it

cannot start the update process because it is executing such a command, I took advantage of the presence

of a transfer buffer that CrossFTP fills before sending/receiving data and added an update point reached

when the buffer gets filled.

The numbers that table 4.1 reports are consistent with the numbers reported for dozens of updates to

six C applications using Kitsune [HSD+12]. The number of changes required is relatively small and not

strongly correlated with program size, but rather with its control structure—notice that Jake2 required

only 29 lines changed compared to 183 for Java Email Server, but is actually larger, 85K LOC versus

2K LOC. Moreover, as indicated by the table, no new changes were required for subsequent versions of

H2, Voldemort, and JavaEmailServer. I expect that retrofitting an application to support Rubah is, like

Kitsune, a modest, largely one-time cost.

For H2, Voldemort, CrossFTP, and JavaEmailServer, I developed update classes to implement state

transformation between the supported versions; the fifth column provides some data about these classes.

We can see that stub update classes eased the burden placed on the developer: The maximum number of

lines that I had to modify was 45. These updates were tested by running standard benchmarks (described

in Section 4.5.3), updating while they were underway, and confirming the integrity of the final results.

4.5.3 Experimental Setup

The experimental evaluation described in this section measures Rubah’s influence on an application’s

steady state performance, and its performance at update time. Measurements were carried out on a

machine equipped with two Intel Xeon E5520 processors (8 physical cores, 16 logical) and 24GB of RAM

running Ubuntu 10.04 (Linux kernel 2.6.32). I used the Oracle JVM version 1.7.0 25 with HotSpot 64-Bit

Server VM (build 23.25-b01) configured to use a maximum heap size of 16GB for the server and 2GB for

the client.

All of the experiments start the application server process and then launch a separate client process

that executes a performance benchmark that interacts with the server and measures its performance.

To measure steady-state overhead I compare the performance of the unmodified server with that of the

11Rubah’s I/O library does not support SSL at this point, so I commented out CrossFTP’s code that uses SSL.
Supporting SSL is just a matter of engineering effort.

125

Rubah-enabled one—no updates are performed. To assess per-update overhead I update the Rubah-

enabled server in the middle of the benchmark run and measure the performance impact of doing so. In

addition to performing a real update from one version to the next (which I call a v0v1 update), I also

consider a v0v0 update, which installs the same version that the program is running, but considers all

classes incompatible and transforms all the updatable program state, copying (and not simply adjusting

the klass pointer, as described in Section 4.4.1) all instances while the program state traversal takes

place. This is a good approximation of a worst case scenario. Given that I lack an usable second release

for Jake2, v0v0 updates were the only way to test updating it.

To measure H2’s performance, I used the TPC-C benchmark available in the DaCapo benchmark

suite [BGH+06] as the client process. We can configure the TPC-C benchmark with the number of

transactions to run and the size of the database to create before running the workload. The database

size is expressed in terms of a scale factor with which TPC-C multiplies the number of rows in several

tables it creates. I configured the H2 server to keep all data in memory.

Voldemort ships with a performance benchmark that I used as the client process. The benchmark has

several configurable parameters. The most interesting are: The number of operations to perform, number

of key-value pairs created before running the workload, the size (in bytes) of each stored key, and the

ratio of read and write operations performed by the workload. Besides these parameters, I extended the

benchmark with support to run the workload for a fixed period of time (as opposed to a fixed number of

operations). I configured Voldemort’s server in a single node setting, with all the data in memory. The

benchmark executes a realistic mix of 95% read and 5% write operations [BAC+13].

To evaluate CrossFTP, I implemented an FTP benchmark. Existing FTP benchmarks focus on

measuring the bandwidth of file transfer, typically downloading/uploading the same file as many times

as possible over the duration of the benchmark. This workload does not exercise the parts of a server

that deal with other FTP commands, e.g. browsing the file structure. The benchmark I implemented

connects to a remote FTP server, randomly browses the directory structure in a depth-first manner,

and downloads the first file it finds. The benchmark spawns multiple threads, each one representing one

client. I configured CrossFTP to serve a directory tree that is D = 2 levels deep, with each non-leaf

folder containing W = 10 sub-folders, and each leaf folder containing a file. Files have random contents

with sizes in the range 2MB–300MB following an exponential distribution with a mean size of 50MB. I

chose these parameters so that the workload resembles a repository of binary software packages used by

current GNU/Linux distributions, which are typically made available through an FTP server.

Jake2 and JavaEmailServer lack an automated performance benchmark. As such I only measure the

pause time resulting from applying an update to an idle process; for Jake2 this is a v0v0 update after

loading the game state, and for JavaEmailServer it is v0v1 update after startup.

4.5.4 Steady-State Overhead

To measure steady-state overhead, I compare the performance of the unmodified server, referred to as

vanilla, with that of a Rubah-enabled one that does not perform any update.

I ran the following experiments for each application:

• H2 Measure the time it takes to run 256K transactions on a database with a scale factor of 32;

• Voldemort Measure the time it takes to run 25M operations over a key-value store populated with

5M entries of size 128 bits;

• CrossFTP Measure the bandwidth used during a 5 minute run with 8 client threads.

I repeated each experiment 10 times. Table 4.2 reports the median and semi-interquartile range of

10 benchmark runs. We can see that the imposed overhead is between −1.0% and 2.5%. This range is

126

Version Vanilla Rubah Overhead

H2
Elapsed time (seconds)

1.2.121 350.5± 6.4 351.4± 3.9 0.3%

1.2.122 348.8± 7.0 350.0± 3.5 0.8%

1.2.123 347.1± 7.0 350.0± 3.5 0.8%

Voldemort
Elapsed time (seconds)

1.5.3 469.1± 3.1 471.6± 1.3 0.5%

1.5.4 469.1± 2.5 473.7± 3.5 1.0%

CrossFTP
Bandwidth (Mbps)

1.07 829.9± 5.5 811.1± 15.6 2.3%

1.08 827.8± 3.7 813.7± 6.0 2.5%

1.09 801.8± 4.9 809.7± 5.5 −1.0%

1.11 803.5± 14.1 809.1± 3.4 −0.7%

Table 4.2: Results of benchmark runs, with and without Rubah, thus reporting steady-state performance.
Reported values are the median and semi-interquartile range of 10 benchmark runs. Overhead is computed
by (Rubah/V anilla) − 1. Size is measured in scale factor, for H2 (explained in detail in Section 4.5.3);
and in number of key-value pairs, for Voldemort.

well within the experimental noise on modern systems [MDHS09]. I thus claim that Rubah imposes no

measurable overhead in normal execution.

4.5.5 Parallelizing State Transformation

When transforming the program state eagerly, the application does not execute while Rubah threads

traverse and transform the heap. To measure the benefits of parallelizing eager state transformation, I

configured each benchmark to install an update 10 seconds after populating the server with test data,

and measured the time Rubah took to perform parallel transformation.

I repeated the experiment for both v0v0 and v0v1 updates (1.2.121 to 1.2.122 in H2’s case) and with

a varying number of transformation threads (1, 2, 4, 8, 12, and 16). The H2 benchmark used a database

with a scale factor of 32 and the Voldemort benchmark used a key-value store with 5M entries. CrossFTP,

Jake2, and JavaEmailServer keep such a modest amount of program state that increasing the number of

threads does not influence the state transformation time, and are thus excluded from this experiment.

Table 4.3 reports the average and standard-deviation of 10 executions of each setting.

Comparing to single-threaded transformation, Rubah achieves speedups using up to 16 threads on

H2 and Voldemort, despite the fact that the test machine has only 8 physical CPUs. The v0v0 case has

more work to do per object, therefore sees a higher speedup than the v0v1 case. In Voldemort’s case,

changing from 1 to 2 threads yields little or no speedup, and sometimes even slows down. This happens

because 2 threads create a much larger number of in-flight conversions, thus creating a larger task queue

and triggering more garbage collections. Adding more threads amortizes this added memory pressure.

4.5.6 Performing Updates

Installing an update temporarily pauses the application while waiting for the threads to quiesce, and

then while loading the new classes. On top of that, when transforming the program state eagerly, the

application remains paused while Rubah threads traverse and transform the heap. The next experiment

measures the pause introduced for both the eager and lazy state transformation algorithms, as well as

the impact on post-update performance.

127

Num.
Threads

v0v0 v0v1
Time (sec) Speedup Time (sec) Speedup

H2
1 31.2± 0.7 1 18.8± 0.7 1
2 19.0± 0.5 1.7 12.3± 0.5 1.5
4 12.6± 0.3 2.5 9.2± 0.2 2.0
8 10.0± 0.2 3.1 8.2± 0.4 2.3
12 9.3± 0.3 3.3 8.1± 0.3 2.3
16 9.2± 0.2 3.4 7.8± 0.2 2.4

Voldemort
1 42.5± 1.0 1 29.2± 0.9 1
2 39.5± 1.0 1.1 30.4± 1.1 0.9
4 22.0± 0.8 1.9 18.0± 0.9 1.6
8 13.7± 0.7 3.0 12.1± 1.0 2.5
12 12.6± 0.7 3.3 10.6± 0.5 2.8
16 12.0± 0.4 3.5 10.7± 0.4 2.7

Table 4.3: Elapsed time (in seconds) of parallel state transformation. The first column under each
benchmark is the median time and semi-interquartile range, in seconds, required to transform the program
state. The second column is the speedup relative to one thread. Reported values are the average and
standard-deviation of 10 benchmark runs. The H2 benchmark used a database with a scale factor of 32
and the Voldemort benchmark used a key-value store with 5M entries.

To approximate the pause due to an update, this experiment measures the maximum server latency

that the client ever experiences during the benchmark run. I expect that the pause induced by an update

will dwarf the normal latency a client would experience, specially in this experimental setting that has

negligible network latency.

For each application, the experiment consists of:

• H2 Executing the benchmark for 256K transactions; with a database scale factor of 32, 64, and

128; and performing an update from version 1.2.121 to 1.2.122 at T=60 seconds; while measuring

the maximum time each successful12 SQL command takes to execute;

• Voldemort Executing the benchmark for 20 minutes; with a store size of 1M, 5M, 10M and 15M

key-value pairs; and performing an update from version 1.5.3 to 1.5.4 at T=300 seconds (5 minutes);

while measuring the maximum time each store read/write takes to complete;

• CrossFTP Executing the benchmark for 5 minutes and performing an update from version 1.08

to 1.09 at T=10 seconds while measuring the time the server takes to reply to each CWD/LIST

command and the time it takes to fill a 4MB transfer buffer when downloading a file;

• Jake2 and JavaEmailServer Perform an update, from version 1.3.4 to 1.4 for the JavaE-

mailServer and v0v0 for Jake2, after loading and initializing the servers, while they are idle (since

I had no good automated performance benchmark to use).

Besides considering a real update, I also performed each experiment with a v0v0 update (for Jake2,

that was the only experiment possible). I repeated each experiment 10 times for the parallel (using 16

threads) and lazy state transformation algorithms. Table 4.4 reports the measured pause times.

For Jake2, both the parallel and lazy algorithms induce short pauses. I confirmed that the update was

non-disruptive by playing several matches of Quake2 while performing the update;13 the Quake2 client

12The TPC-C benchmark issues commands that timeout due to table locking made by other commands. We
discard such unsuccessful commands.

13I thank Piotr Mardziel and James Parker for having helped me evaluate Jake2 by playing several matches
during regular work hours.

128

Size
v0v0 v0v1

Parallel Lazy Parallel Lazy
H2

32 11.0± 0.3 3.3± 0.2 9.0± 0.1 3.1± 0.1
64 20.9± 0.8 3.7± 0.4 15.3± 0.6 3.7± 0.1
128 71.0± 1.2 4.0± 0.5 30.9± 0.9 3.7± 0.3

Voldemort
1M 4.9± 0.3 1.5± 0.3 4.4± 0.4 1.9± 0.4
5M 13.5± 1.0 1.6± 0.6 10.7± 0.8 2.2± 0.5
10M 24.7± 1.8 1.6± 0.5 19.1± 2.1 2.2± 0.5
15M 158.2± 7.1 1.8± 0.5 107.4± 0.8 2.4± 0.4

Jake2
1.5± 0.1 1.2± 0.1 - -

CrossFTP
0.33± 0.04 0.35± 0.08 0.35± 0.07 0.44± 0.06

JavaEmailServer
0.11± 0.01 0.09± 0.01 0.10± 0.01 0.09± 0.02

Table 4.4: Pause time (in seconds) required to install each update under various heap sizes. Reported
values are the median and semi-interquartile range of 10 benchmark runs. The first column is the size
that each benchmark used to populate the server with test data (scale factor for H2 and number of
key-value pairs for Voldemort). The parallel transformation used 16 threads.

already tolerates network latency and the Jake2 server keeps a very small program state.

CrossFTP and JavaEmailServer also have small pause times. These programs keep a modest amount

of program state—consisting of meta-data about each connected client (e.g. current working directory,

transfer mode, permissions for CrossFTP; authentication state, list of messages, message being composed

for JavaEmailServer)—so Rubah takes little time to traverse and transform their state. The parallel

algorithm has slightly better results than the lazy algorithm. I interacted manually with JavaEmailServer

through a telnet client connected to the POP3/SMTP port while an update was taking place to ensure

that the server does not drop connections or any session data due to the update process.

Table 4.4 shows the update-time pause for a variety of heap sizes for H2 and Voldemort. The pause

times for the parallel algorithm, shown in the second and fourth columns, grow with the heap size, as

expected. For larger heaps, the update pause causes a pronounced increase in the maximum latency.14

For the lazy algorithm, we can see that the update pause is constant regardless of the total heap size,

and is quite small compared to the parallel algorithm.

Besides measuring the maximum time taken to complete each operation, the experiments previously

described in this section also keep track of how many operations the benchmark completes per second for

H2 and Voldemort. Figure 4.14 shows the performance data measured during the experiment. The figure

presents plots where the x-axis is elapsed time, and the y-axis is the throughput in transactions/operations

per second.

The left column of charts in the Figure 4.14 show the results when using parallel state transformation.

These charts show a sharp performance drop when performing the update, followed by a rapid rise back

toward the pre-update peak. There are two things to notice: First, the update pause increases with the

heap size, particularly for v0v0, which must traverse all of the heap. Second, we see that performance does

not completely return to its pre-update level. We observed a similar drop in steady-state performance

14Note that the results that Table 4.4 reports are not directly comparable to those of Table 4.3; e.g., the numbers
in Table 4.3 for Voldemort are measured for an update taken at T=10 seconds, but for Table 4.4 the update is
at T=300 seconds. For the latter, I measured a heap transformation time of 10.3 seconds for Voldemort v0v1 at
5M (out of the 10.7 second pause reported in Table 4.4), which is slightly less than the 10.7 seconds reported in
Table 4.3, but within the reported error range.

129

Voldemort
v0v0 parallel v0v0 lazy

0

10k

20k

30k

40k

50k

 0 120 240 360 480 600 720 840 960 1080 1200

O
p

e
ra

ti
o
n
s

p
e
r

se
co

n
d

 (
#

)

Time (seconds)

0

10k

20k

30k

40k

50k

 0 120 240 360 480 600 720 840 960 1080 1200

Time (seconds)

v0v1 parallel v0v1 lazy

0

10k

20k

30k

40k

50k

 0 120 240 360 480 600 720 840 960 1080 1200

Time (seconds)

0

10k

20k

30k

40k

50k

 0 120 240 360 480 600 720 840 960 1080 1200

Time (seconds)

1M 5M 10M 15M

H2
v0v0 parallel v0v0 lazy

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 60 120 180 240 300 360 420 480

O
p
e
ra

ti
o
n
s

p
e
r

se
co

n
d
 (

#
)

Time (seconds)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 60 120 180 240 300 360 420 480

O
p
e
ra

ti
o
n
s

p
e
r

se
co

n
d
 (

#
)

Time (seconds)

v0v1 parallel v0v1 lazy

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 60 120 180 240 300 360 420 480

O
p
e
ra

ti
o
n
s

p
e
r

se
co

n
d
 (

#
)

Time (seconds)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 60 120 180 240 300 360 420 480

O
p
e
ra

ti
o
n
s

p
e
r

se
co

n
d
 (

#
)

Time (seconds)

32 64 128

Figure 4.14: Plotting of Rubah’s performance while installing an update under varying heap sizes. Each
line shows the performance for a different-sized database (the line label is the scale factor for H2 and
the number of key-value pairs for Voldemort). Each line reports the average of 10 benchmark runs. The
occasional performance dips are due to garbage collections; their number and magnitude indicate the
level of memory pressure.

130

on an experiment that traverses the whole heap starting from the root references without making any

changes. I thus believe that the performance drop is due to a change in some internal JVM state triggered

by the state traversal. On a separate experiment, I installed a second update for the parallel v0v0 case

and confirmed that the performance after the second update reached the same levels as the performance

after the first update.

The right column of charts in Figure 4.14 plots performance when using lazy transformation. The

key feature is the far smaller drop in performance at update-time, after which performance slowly rises,

depending on the heap size. Table 4.4 shows that the update pause is constant regardless of the total

heap size, and is quite small compared to the parallel algorithm.

Returning briefly to Figure 4.14, we note that the experiment also shows that lazy transformation

does disproportionately better than the parallel transformation with larger heaps. For Voldemort, the

15M case consumes nearly the entire heap. The parallel transformation makes the GC thrash, triggering

numerous full-GC cycles that are not able to free much memory. The lazy algorithm performs much

better. It still triggers one full-GC cycle, but that one cycle actually frees enough memory to keep the

GC from ever thrashing. We can see a similar thrashing pattern for H2’s 128 v0v0, even though it happens

after the update is installed.

Figure 4.14 also shows that the lazy algorithm converges very quickly to steady-state performance

after the update. Several reasons contribute to this behavior: Converting an object lazily is fast, thus

imposing a small performance penalty; the working set of each application is small and constant despite

the heap size; and the rate of lazy object conversion drops quickly after the update.

4.5.7 Post-update performance

The results on Figure 4.14 show that the post-update drop of peak performance is larger for the lazy

case, compared to the parallel one. This happens due to decisions that the JIT compiler takes when

optimizing the code immediately after an update, when proxies are present and used frequently. To

diagnose this behavior, I ran Oracle’s HotSpot JVM with debug flags that log the optimization decisions

the JIT compiler makes.15 The compilation logs show differences in how the JIT optimizes virtual

method invocation after a lazy update. The following text explains those differences, and why the peak

performance is lower.

The JVM supports method dispatch based on the runtime type of the object in which the method is

executed — the receiver. The JVM uses the object’s vtable to choose the most specific concrete method to

execute when performing a virtual method invocation. However, looking up the vtable at each invocation

is costly and the JVM optimizes for the common cases, as follows:

1. Single method always invoked: The JIT compiler inlines the method at the call site, protected

with a trap that checks the receiver object type and ensures that the inlined code is correct for each

call;

2. Two methods always invoked: Similar to 1. The JIT compiler inlines both methods after a

conditional branch that jumps to the right method. A trap is also used to ensure correctness;

3. More than two methods invoked The JIT inlines the two most frequently invoked methods, as

in 2. The JIT emits code to perform a slow virtual method call that consults the object’s vtable

for all the other concrete methods.

After a lazy update, some virtual method invocations are resolved to proxy methods. This affects

the JIT compiler’s optimization decisions, turning (a) case 1 into 2, (b) 2 into 3, or (c) changing the two

15-XX:+UnlockDiagnosticVMOptions -XX:+LogCompilation

131

methods inlined in case 3. For (a), the size of the optimized code increases due to the extra inlined method.

This might prevent the optimized code from being itself inlined elsewhere, resulting in a performance

penalty. For (b) and (c), the JIT might decide to inline proxy code. As the program executes after an

update, the number of proxies found by the code drops because they get transformed. This optimization

thus increases the number of slow virtual method invocations that use the vtable and bypass the inlined

code, which in turn yields lower steady-state performance.

A possible solution to this problem is to implement a mechanism to reset the JIT compiler on demand,

dropping all the emitted code and collected performance metrics. Another alternative is to implement a

flag to keep the JIT compiler from inlining code belonging to particular Java classes, or an anotation that

prevents some methods from being inlined.16 Both options require JVM changes. However, the changes

required are minimal and completely backwards compatible.

4.6 Discussion

This chapter presented Rubah, a system that supports DSU on regular Java applications. Rubah is a

step forward from DuSTM, presented in Chapter 3, in the direction of a practical system that supports

Dynamic Software Updates. Section 1.2 defines a set of goals that a practical DSU system should reach,

and Section 4.1 presents a set of claims about Rubah reaches some of those goals. This section explains

how this chapter supports those claims, comparing Rubah with DuSTM.

4.6.1 Flexibility

Rubah is a flexible DSU system. Rubah loads each class update as a completely separate class, without

any relation to the previous version. This approach is extremely flexible. Rubah permits changing any

class in an arbitrary manner, with few exceptions, whereas past approaches often limit which classes can

be changed, and in what ways. For Rubah, the only classes that cannot be updated are the Java runtime

classes and libraries (e.g., Java collections). Updatable classes can directly reference non-updatable classes

but not the reverse, due to issues involving the bootstrap class path of a Java application [LB98]. Of

course, library classes do not directly reference application classes, so this restriction poses no practical

difficulty.

Rubah is more flexible than DuSTM. DuSTM uses a post-processor to rewrite the updatable classes

so that they have the same behavior but support DSU. Rubah also uses a bytecode rewriting mechanism.

An important difference, however, is that Rubah uses a modified classloader to rewrite the bytecode as it

is loaded. This approach allows Rubah to rewrite all the bytecode, updatable and non-updatable, that

a program ever loads.

As a result, Rubah supports more types of changes between versions than DuSTM. In particular,

DuSTM does not support the case where non-updatable code creates updatable instances through reflec-

tion. Rubah supports this case without problems.

DuSTM also requires future updates to a class to preserve the same non-updatable root class. For

instance, if class N is non-updatable and class A extends N , then all future versions of A have to extend

N . Future versions of A can extend any other non-updatable class, as long as they still extend N

transitively.

Rubah lifts this restriction. A particular reason is that Rubah can traverse the program state and find

all instances to outdated types, even if they are kept inside non-updatable classes, and transform them

accordingly. For instance, consider the change in that class WebThread underwent between H2 versions

16Microsoft’s C# runtime environment provides support for method annotations that disable inlining of that
method.

132

1 class WebThread extends Thread {
2 }
3
4 // Launching an web thread
5 new WebThread().start();

1 class WebThread implements Runnable {
2 }
3
4 // Launching an web thread
5 new Thread(new WebThread()).start();

Version 1.2.122 Version 1.2.123

Figure 4.15: Program change that Rubah supports but DuSTM does not. This change happens
between versions 1.2.122 and 1.2.123 of H2. Class org.h2.server.web.WebThread inherits from
java.lang.Thread in version 1.2.122. It implements interface java.lang.Runnable in version
1.2.123.

1.2.122–1.2.123, depicted in Figure 4.15. The root non-updatable parent of class WebThread changed

from Thread to Object. DuSTM does not support this update, Rubah does. Rubah is thus the most

flexible DSU system for Java to date.

4.6.2 Efficiency

Rubah imposes no measurable performance overhead when executing in steady-state. That is, a program

that supports DSU through Rubah gets that feature for free in terms of performance overhead when not

actually performing a DSU. This is an important difference that separates Rubah from DuSTM, which

introduces non-trivial performance overhead of up to 50% to support DSU.

When performing a DSU, Rubah pauses the application to transform the program state to a version

that is compatible with the new code. Rubah provides two algorithms to perform such transformation: A

parallel one, that uses several threads to speed up the transformation and thus minimize the pause; and

a lazy one, that simply transforms root references and restarts the program as soon as possible, leaving

behind a trail of proxies that transform the remainder of the program state as the new version access it

for the first time after the update.

The proxies that Rubah uses are very different from the proxies that DuSTM uses in the form of

handles. Each proxy that Rubah uses only exists for a limited period, wheres handles in DuSTM are

permanent. As a result, Rubah proxies effectively amortize the time required to migrate the program

state over the execution of the updated program version. Furthermore, each proxy removes itself from

the object graph after being used, effectively removing all proxy related overhead.

The experimental evaluation showed that the parallel algorithm scales well by increasing the number

of threads used to transform the program state, reducing the pause time. It also shows that the lazy

transformation requires a constant pause, independent of the total size of the heap, confirming the similar

results obtained for DuSTM.

Existing DSU systems for Java either support lazy program state transformation (JDrums [RA00],

DVM [MPG+00]) or do not impose any performance overhead on steady-state execution (Jvolve [SHM09],

DCE-VM [WWS10]); bot not both. I argue that the ability to perform lazy program state transformation

is key for an efficient DSU system. Together with no performance overhead on steady-state execution,

these features make Rubah the most efficient DSU system for Java to date.

4.6.3 Effectiveness

Rubah targets a popular language — Java — and is implemented without requiring a custom compiler

or a custom JVM. Rubah is directly applicable to programs that have a typical control-flow structure

where each thread executes a long-running loop that reads requests from clients, processes them, and

sends back the response.

133

Rubah can be used on a broader class of application than DuSTM, which requires updatable appli-

cations to be transactional. Even though Rubah still requires a particular structure on the updatable

applications, the experimental evaluation described how to adapt five existing applications to use Rubah.

Even though Rubah does not require a custom JVM, its implementation is tightly coupled with the

particular JVM it uses. DuSTM puts much less restrictions on the underlying JVM and can be readily

used on a different JVM. Rubah needs to be adapted before it works on a different JVM.

However, Rubah is a step forward in effectiveness when compared to other DSU systems with com-

parable performance, JVolve [SHM09] and the DCE-VM [WWS10]. These two systems are implemented

inside the JVM through considerable modifications to the garbage-collector. As such, these two systems

are tied to a specific garbage collection implementation. Porting these systems to a different JVM effec-

tively means rewriting them almost from scratch. Rubah is much easier to port to a different JVM that

provides an escape hatch to perform low-level memory access inside the JVM addressing space, being

able to take immediate advantage of future improvements in garbage collectors. Even though Rubah’s

prototype is implemented for the Oracle HotSpot JVM, other popular JVMs provide the required escape

hatches. For instance, OpenJDK supports sun.misc.Unsafe and IBM Jikes has a similar class VM-
Magic. It is possible to port Rubah to these systems by rewriting a small portion of it, and without

making any change to the JVM.

JDrums [RA00] and DVM [MPG+00] require a special JVM, not just a custom garbage-collection

algorithm. These systems are thus impossible to port to another JVM. JavAdaptor [PGS+11] and

JRebel [KV12] require HotSwap [Dmi01,Orab], which is a debugging feature available in modern standard

JVMs. Although these systems are directly applicable to JVMs that provide HotSwap with zero porting

effort, they are development time tools that cannot be used in production, which limits their effectiveness.

Therefore, Rubah is the most effective DSU system for Java to date.

4.6.4 Correctness

When performing an update, Rubah needs to perform three tasks: (1) Stop the program safely, (2)

transform the program state so that it is compatible with the new code, and (3) migrate the control-flow

to start executing the program in the new version.

All these tasks require manual annotations, which take the form of update points for task 1, update

classes for task 2, and control-flow migration for task 3. On top of that, the developer needs to retrofit

the application to ensure that it stops safely after reaching an update point.

Rubah automates the state transformation to a great extent. It compares two program versions and

generates a stub update class that highlights what changed between versions. The developer has to

initialize all the fields that Rubah couldn’t match between versions.

All other DSU systems for Java rely on timing restrictions to detect correct update points. DUSC [?],

JDrums [RA00], DVM [MPG+00], and JVolve [SHM09] require active code to be quiescent at the time

of an update. Unfortunately, as I discuss in Section 2.1.1, quiescence can lead to false positives, which

in turn lead to update-induced crashes. The remaining DSU systems for Java (HotSwap [Dmi01,Orab],

JRebel [KV12], JavAdaptor [PGS+11], and the DCE-VM [WWS10]) are development time tools that

perform updates as soon as they are ready without any restriction, which is clearly an unsafe choice that

may lead to incorrect updates.

JVolve goes one step further and allows developers to list program points at which the update cannot

happen. Rubah requires the developer to manually specify which program points allow updates to take

place. Whilst Rubah still allows the developer to list incorrect update points, the ability to manually

identify those points is a key step to correct updates.

Errors triggered during an update can crash the application, make it hang forever or otherwise deviate

134

from its expected behavior. These errors defeat the whole purpose of DSU, which is to improve the

availability of running software. Worse still, these errors are hard to detect because they might not

happen on either version in isolation, just when the old version is updated to the new one.

Without any assurance of correctness, no DSU system can ever be claimed as practical. The next

chapter presents Tedsuto, a testing framework specifically designed to test the update process system-

atically, thus detecting and reproducing errors introduced by the update itself. Together with Tedsuto,

Rubah is the first practical system that supports Dynamic Software Updates.

135

136

Chapter 5

Correct Updates

The main goal of Dynamic Software Updating (DSU) is to improve availability by removing the downtime

required to update a program by stopping it. DSU is not a panacea, of course; it must be done with care.

The program code assumes the execution state adheres to a certain format and invariants. Changing the

code at run-time requires corresponding changes to the state that the program keeps, so that the new

program state is compatible with the new program code.

It is often the responsability of the programmer to define how to transform the program state between

successive versions. One particular challenge is timing : The transformation code may assume certain

invariants, and these must hold under all the circumstances in which an update might take place. There

is also the challenge that the semantics of the program may change due to the update, and this change

may only make sense at certain points in execution.

Manual intervention in the dynamic update process improves the flexibility of the update, i.e. what

type of program changes can be performed dynamically. But it has the possibility of error. Performing an

erroneous update may cause the updated program to crash, hang, silently corrupt its state, or otherwise

misbehave. This defeats the main goal of DSU. As such, we need a reliable way to test that dynamic

updates are correct before we attempt to deploy them on live systems.

In this chapter, I present Tedsuto, a framework for systematic testing of DSU. To use Tedsuto, the

programmer annotates existing system tests, which check the end-to-end behavior of a program. Tedsuto

uses the annotated tests to assert the correctness of an update by checking if the program’s behavior

before, during, and after an update makes sense. The basic idea is to systematically repeat each system

test automatically, performing updates at different points in each re-execution. Tedsuto is implemented

for the Rubah Java DSU system (presented on the previous Chapter), but can be adapted to other state-

of-the-art DSU systems, such as DuSTM (presented on Chapter 3), Kitsune [HSD+12], JVolve [SHM09],

or the DCE-VM [WWS10].

This chapter is structured as follows: Section 5.1 lists all of the contributions that Tedsuto makes in the

form of claims that shall be supported by the remainder of the chapter. Section 5.2 explains how updates

can fail, providing some examples of failures with the respective consequences. Section 5.3 describes

Tedsuto in detail, in particular how to implement it for existing DSU systems (Section 5.3.1), how to

adapt existing system tests (Section 5.3.2), how Tedsuto explores different update opportunities for each

test (Section 5.3.3), and the different types of testing strategies that Tedsuto supports (Section 5.3.4).

Section 5.4 describes the experimental evaluation that validates Tedsuto’s contributions using known

bugs to measure its effectiveness and provides detail about the new bugs that Tedsuto found. Finally,

Section 5.5 discusses how Tedsuto reaches the goals defined in Section 5.1.

137

5.1 Claims

Tedsuto is not a full solution for DSU so I cannot use the goals that I defined in Section 1.2 to describe

Tedsuto’s contributions. Regarding those goals, I can only claim that Tedsuto can be implemented for a

DSU system so that such DSU system reaches the correctness goal.

However, there are a number of claims that I can make about Tedsuto that provide a better overview

of its contributions. The rest of this section describes each claim in detail. The name of each claim is a

property of Tedsuto.

Portable. Tedsuto can be implemented for any DSU system.

Section 5.3.1 shows Tedsuto’s architecture and, in particular, the type of support that Tedsuto requires

from the underlying DSU system. I claim that Tedsuto can be implemented for any other DSU system

that provides the required support.

Low Effort. Tedsuto requires the developer to adapt existing system tests. I claim that Tedsuto

requires a small amount of manual effort to adapt those tests so that they can be used to check the

behavior of the program in the presence of DSU. Section 5.3.2 describes the changes required to existing

system tests and Section 5.4.2 measures the effort required to add support for Tedsuto to existing testing

frameworks.

Practical. Tedsuto finds bugs by executing each system test several times. Furthermore, the support

that Tedsuto requires from the underlying DSU systems slows down test execution. The total time

that Tedsuto needs for each system test is thus a factor of the total number of re-executions times the

(increased) time per test execution. I claim that the total time per test is feasible. Section 5.3.4 describes

the different strategies that Tedsuto uses to repeat each system test, and thus explore different update

opportunities; and Section 5.4.4 measures the number of re-executions per test. Section 5.4.3 measures

the overhead that Tedsuto adds to normal execution.

Effective. I claim that Tedsuto can find timing-sensitive update bugs, even if those bugs require several

threads to trigger. Tedsuto does so by executing each system test several times and performing updates

at different times during each re-execution. Section 5.3.4 describes the different strategies that Tedsuto

uses to repeat each system test and Section 5.3.3 explains how to choose different opportunities during

the same test. Section 5.4.5 measures how Tedsuto was able to find and report known (manually injected)

bugs. Section 5.4.6 describes bugs that Tedsuto found and that were previously unknown.

5.2 Failures during Dynamic Software Updating

Performing an erroneous DSU can fail in a different number of ways. Given that Tedsuto is implemented

for Rubah, in this section I briefly re-introduce how the developer needs to modify the program to make

it updatable using Rubah. Then, I describe what can go wrong when performing an update.

5.2.1 Updatable Applications

The previous chapter described how to add support for Rubah to an existing application. In particular,

Figure 4.2 in page 106 introduces a small server example adapted from H2. Figure 4.3 in page 108 shows

how to add support for Rubah to that small example.

138

In short, the programmer needs to perform three tasks. In the following, I describe each of those

tasks, using Figure 4.3 as an example.

Update Points

The programmer specifies update points as calls to method Rubah.update. When this method is called,

if a dynamic update is available, then the Rubah run-time system will initiate (or continue) the process

of applying the update. A good place to put an update point is at a point in a long-running loop at

which a thread is quiescent, meaning that it has finished processing a unit of work and has not started

to process the next one. State relevant to an update is not in the middle of being modified, which will

make writing the update class easier. The Rubah.update method takes a string as its sole argument,

which serves as a kind of label—update points across versions that share the same label are in some sense

equivalent. In Figure 4.3, the code related to update points is highlighted in black.

When an update is underway, calling Rubah.update throws an UpdatePointException; unhin-

dered, this exception will ultimately reach a Rubah-provided wrapper for a thread’s run (or main)

method, where it is caught and the throwing thread is paused. Of course, the exception may be caught

by intervening catch blocks in the application, so the developer may need to make changes to avoid

this (e.g. lines 63–64). The developer also needs to ensure that the exception does not change any state

by being propagated, therefore actions within finally blocks must be guarded to account for possible

updates (e.g. line 76). When all threads have been paused after reaching update points, the next stage

of updating may begin, involving control flow migration and data migration.1

Control-flow Migration

Once the new version’s code is installed, the next step is to guide the paused threads to update points

equivalent to (i.e., having the same label as) the ones at which they were originally stopped; this process

is called control migration.

Rubah restarts each paused thread’s (possibly updated) run (or main) method. When a thread

executes this method normally, it typically performs actions that should not be re-performed during

control migration. In the example we are following, lines 47–52 negotiate protocol parameters with the

client, which should not be repeated post update. To address this issue, Rubah provides API calls that

the developer can use to determine whether a thread is running for the first time or as a result of an

update. In the example, line 46 guards the initialization code with a call to Rubah.isUpdating which

returns true if called while performing the control migration and false otherwise.

Data Migration

Prior to restarting each thread, Rubah performs data migration to convert the existing program’s objects

to use the updated classes. Conceptually, this happens by visiting each object in the heap that might

have been affected by an update and transforming it to work with the new version’s code.

Rubah finds outdated instances and converts them lazily, while the new program executes.2 To start

this off, Rubah transforms the root references; these are just the instances of class java.lang.Thread
and all the static fields of loaded classes (no local variables need be considered, since all stacks are

unrolled). When each object is transformed, pointers to child objects instead point to proxies that

1One note: When an update becomes available, the program may be blocked waiting for some I/O operation.
To avoid an undue delay, I/O operations should be interruptible. In this example, blocking I/O code was made
non-blocking through a special Rubah API and is highlighted in dark gray.

2Rubah also supports eager migration, while the threads are stopped, in the style of a parallel garbage-collector,
but it can induce a long pause.

139

initiate the transformation when accessed for the first time, and then remove themselves from the object

graph.

How to convert an object is determined by the update class. Figure 4.4, in page 110, shows an

example of a class that changed between versions, together with the update class which specifies its

transformation. This example has a single instance conversion method that transforms instances of class

Session by taking an existing instance o0 that belongs to version v0 and using it to initialize the

equivalent new instance o1 that shall take o0’s place in v1.

5.2.2 DSU Failures

There is room for error in each of the three steps discussed in the previous section. For example,

the developer might have done something wrong regarding update points, e.g., by not placing them in

sufficiently many places in the program, or by failing to properly propagate the UpdatePointException
to the top of the call-graph, or by failing to ensure that relevant I/O operations are interruptible. There

is also room for error in the control migration code; e.g., the program fail to avoid previously taken

initialization actions, or fails to reach an update point with the same label after the update. Finally, the

update class may be incorrect, e.g., due to newly added fields not being initialized properly, or due to

new invariants among existing fields failing to be established.

One particular challenge is timing : Updates might work under some, but not all, circumstances. For

example, consider that the control migration code leading up to update point A is correct, but is incorrect

leading up to point B. This means the testing framework must exercise the program to try out updates

at various points under different circumstances.

To conclude this section, I present two example bugs I experienced when developing updates using

Rubah. I will return to these and other bugs later in this chapter to show how the testing framework

was able to find them.

Erroneous Update Class. When a class changes its fields between versions, e.g., by adding a field

or changing the type of an existing, it is easy for the developer to see that some customization of the

update class may be needed. However, in some cases, the program state retains the same structure

between versions but still require transformation because the new program code interprets the same state

differently.

Consider the TransactionCommand class in Figure 5.1, which is adapted from H2. The field type is

the type of the command, as defined by the enumeration that precedes it; the execute method switches

on the type when handling a command. Version 1 introduces a new command, together with new constant

SHUTDOWN COMPACT, which shifts the value of the constant that represents another command, BEGIN,

from 14 to 15. As such, the update class must change existing instances of TransactionCommand
that have type 14 to type 15; otherwise executing a BEGIN command, which should start a database

transaction, instead shuts down the database and compacts it.

Erroneous Control Migration. Correct control migration requires that a restarted thread makes its

way back to the equivalent update point, and does neither redundant nor insufficient work in the process.

Figure 5.2a shows an example of a subtle control migration bug. Here, the code iterates over a set of rows

on a table and adds some to a result set. Unfortunately, if an update takes place, the value returned by

iterator.next() is not processed. We might attempt to fix this problem by moving the update point

to the end of the loop, after the element is processed. But even this is wrong: If this is the last iteration

of the loop (i.e., the iterator is now empty), then on restart, the thread will not re-enter the loop in the

new version. Therefore, the correct fix is to also place an update point, with the same label, just before

140

1 class TransactionCommand {
2 // Version 0
3 static final int SHUTDOWN_IMMEDIATELY = 13;
4 static final int BEGIN = 14;
5 // Version 1
6 static final int SHUTDOWN_IMMEDIATELY = 13;
7 static final int SHUTDOWN_COMPACT = 14;
8 static final int BEGIN = 15;
9

10 int type;
11
12 void execute() {
13 switch (type) {
14 ...
15 }
16 }
17 }

Figure 5.1: Example of data semantics changing between versions. In this example, class Transac-
tionCommand represents each type of command as an integer. Version 1 adds a new command, SHUT-
DOWN COMPACT, that is represented by the same value as command BEGIN in version 0: 14.

1 while(iterator.next()) {
2 Rubah.update("query-group");
3 // Conditionally add row to result set
4 }

5 if (Rubah.isUpdating())
6 Rubah.update("query-group");
7
8 while(iterator.next()) {
9 // Conditionally add row to result set

10 Rubah.update("query-group");
11 }

(a) Incorrect code. (b) Correct code.

Figure 5.2: Example of a misplaced update-point (left-hand side) and respective fix (right-hand side).
Reaching the update point in line 2 when an update is available causes the current value on the iterator
to be skipped. Note that, during the control-flow migration, the restarting program will call method
iterator.next() again, moving the iterator forward without having processed the previous value. On
the correct code, the update point is instead located at the end of the loop, at line 10. Also, the update-
point may be reached while processing the last element of the iteration. In this case, after the update,
the loop guard is false and the program fails to reach the update-point. An extra update-point, only
reached during control-flow migration in line 6, accounts for that case.

the loop, so that control migration completes even when the loop is not entered. Figure 5.2b shows how

the correct code looks like.

5.3 Tedsuto — A Framework for DSU Testing

DSU is a whole-program operation, and the correctness of an update can be determined by checking that

the program’s behavior before, during, and after an update makes sense. To use Tedsuto, developers make

small changes to existing system tests which check the back-to-back behavior of a program. Tedsuto will

then repeat each system test automatically, performing an update at different points in each re-execution.

Tedsuto easily tests backwards-compatible behaviors, i.e. those externally visible behaviors that the

update does not change, and new behaviors, e.g. that a bug is fixed correctly or that a newly added

feature functions properly. It is thus a complete solution for testing DSU. Even though I implemented

Tedsuto using Rubah, the basic concepts can be adapted to other DSU systems such as DuSTM, described

in Chapter 3; Kitsune [HSD+12]; JVolve [SHM09]; or the DCE-VM [WWS10].

141

Updatable
Application

Rubah

System
Test

Rubah
Observer

Tedsuto

IPC

request

1

update

2

update? 3

4

5
Y/N

6

7
reply

8

Figure 5.3: Architecture of Tedsuto. Straight arrows (1, 3, 6, and 8) mean inter-process communication
(IPC) between the test and the updatable application. Curved arrows (2, 4, 5, and 7) mean control-flow
transfer through method calls within each process. Following the arrows, we can understand the sequence
of calls that Tedsuto makes when processing each request that the system test makes.

5.3.1 Architecture

Figure 5.3 shows Tedsuto’s architecture. The updatable application and the system test run in separate

processes that communicate through Inter-Process Communication (IPC). During its workload, the sys-

tem test performs several requests to the updatable application (1). While processing each request, the

execution of the updatable application triggers several update opportunities (2). In Rubah, these happen

when the updatable application reaches update points.

A novel part of Tedsuto’s approach is that the DSU framework queries an update observer at every

update opportunity to decide whether to install an update or not (3). The update observer, located on

the same process as the system test, then notifies Tedsuto about the opportunity to perform an update

(4).

Tedsuto requires manual effort to adapt each system test, so that it can then use information about the

system test to explore different update opportunities systematically, repeating the test and relaunching

the updatable application at every re-execution.

Once Tedsuto decides whether to update or not (5), the observer sends the decision back to Rubah

(6), which reacts accordingly before returning the control to the updatable application (7).

Eventually, the updatable application finishes processing the request and sends the response back to

the system test (8). At this point, the system test can check if the response is correct. Note that the

system test can query Tedsuto to see if the update took place or not, so that it can test for old or new

behavior.

All that Tedsuto requires is that the DSU system notifies it about update opportunities and then waits

for its decision about taking them or not. Porting Tedsuto to other DSU systems requires modifying them

to implement this feature. In my experience with Rubah, this feature required little effort to implement. I

believe that implementing this feature in other state-of-the-art DSU systems, such as Kitsune [HSD+12],

Jvolve [SHM09], or the DCE-VM [WWS10], would require a comparably small effort.

5.3.2 Adapting Existing Tests

Tedsuto requires adapting existing system tests. Figure 5.4 shows the API available to do so. Methods

Tedsuto.allowUpdates and Tedsuto.disallowUpdates delimit portions of the test where the test-

ing framework should explore different update opportunities. Method Tedsuto.updated returns true

142

1 class Tedsuto {
2 static void allowUpdates();
3 static void disallowUpdates();
4 static boolean updated();
5 static void operation(String label);
6 }

Figure 5.4: Tedsuto’s API for adapting system tests.

1 byte[] testData = ...;
2 byte[] testDataHash = md5(testData);
3 login(USERNAME, PASSWORD);
4 TestUtil.writeDataToFile(FILE1, testData);
5 String fileName = FILE1.getName();
6

7 Tedsuto.allowUpdates();
8 int resp = sendCommand("MD5 " + fileName);
9 Tedsuto.disallowUpdates();

10

11 if (Tedsuto.updated()) {

12 byte[] replyBytes = getReplyBytes();

13 assertEquals(251, resp);

14 assertEquals(testDataHash, replyBytes);

15 } else {
16 assertEquals(502, resp);
17 }
18
19 logout();
20 FILE1.delete();

1 int n_threads; int inc;
2
3 // Launch n_threads that do:
4 void run() {
5 for (int i = 0 ; i < inc ; i++)
6 Tedsuto.operation("BEGIN");
7 sql("BEGIN TRANSACTION");
8 Tedsuto.operation("INC");
9 int c = sql("SELECT v FROM count");

10 c++;
11 sql("UPDATE count SET v="+c);
12 Tedsuto.operation("COMMIT");
13 sql("COMMIT");
14 }
15
16 // After all threads join, check result
17 int total = sql("SELECT v FROM count");
18 assertEquals(total,n_threads * inc);

(a) Test for the FTP MD5 command (b) Test for serializable SQL transactions

Figure 5.5: Example system tests that check the implementation of the MD5 command on an FTP server
(a) and the semantics of concurrent SQL transactions (b). The highlighted code represents the code
added to integrate each test with Tedsuto.

if an update has taken place on the current test, false otherwise.

To understand the need for these methods, consider the example that Figure 5.5a shows, which tests

the implementation of the MD5 command on an FTP server. The test starts by generating some state

(set-up, lines 1–5), then perform the testing logic on the generated state (line 8) and checks if obtained

results matches the expected (lines 11–17). Finally, the test rests the state (tear-down, lines 19–20).

The structure of this test is representative of many system tests. Methods Tedsuto.allowUpdates
and Tedsuto.disallowUpdates delimit the portion of the test where it is interesting to explore different

update opportunities.3 In this particular test, the new version adds support for the MD5 command, which

was not supported on the old version. Note how the developer can use method Tedsuto.updated to

adjust how the test interprets the result (lines 11–17).

The test that Figure 5.5a shows is simple, in the sense that it is composed by a single logical operation,

which is to test the MD5 command. System tests can be more sophisticated. For instance, consider the

example that Figure 5.5b shows. This is a system test for SQL databases that implement a serializable

level of isolation between concurrent transactions.4 It launches several threads, each incrementing the

3This FTP test assumes that updates cannot happen while processing an FTP command.
4Section A.3.1 on page 166 explains what a serializable level of isolation between transactions means in detail.

143

same row a number of times. Each increment takes place inside its own database transaction. At the

end, the test checks the contents of the row to ensure that all transactions were in fact executed under

serialized semantics.

The isolation level test in Figure 5.5b is more complex than the MD5 test in Figure 5.5a. In particular,

it uses multiple threads and is composed of different logical operations: Each thread starts a transaction

(line 7), reads the current value (line 9), writes the increment (line 11), and commits the transaction

(line 13). The developer can use method Tedsuto.operation, to inform Tedsuto about when each of

these operations starts (lines 6, 8, and 12, respectively). Tedsuto is thus able to differentiate update

opportunities by when the test triggers them. Furthermore, Tedsuto can explore updates that happen on

different combinations of operations on multithreaded scenarios, e.g. thread 1 writing the incremented

counter while thread 2 is reading the value of the counter.

5.3.3 Exploring Update Opportunities

Update bugs can depend on the timing of the update. For instance, consider the example that Figure 5.1

introduced. Consider also that the developer forgot to add state migration to transform existing BEGIN
transaction commands across versions. This bug will be visible only if all of the following steps happen

in this order: (1) A client prepares a BEGIN statement, (2) the server performs a DSU, and (3) the

client runs the prepared BEGIN statement in the same session that crossed the update. At this point,

the prepared BEGIN statement will instead behave as a SHUTDOWN COMPACT statement. Worst still, the

evidence of the bug is short-lived: After the client closes the session, any evidence about the bug gets

destroyed. Future sessions, not crossing two program versions, never trigger this bug.

Finding the particular timing that causes an update to pass or fail the test is hard. Tedsuto thus

executes each test multiple times and installs an update at different points during each re-execution. This

way, Tedsuto explores different timings at which the update can be performed.

Re-executing each system test multiple times changes the question about when to install an update

to how many different update opportunities should be explored for each test. The trivial answer is to

exhaustively explore all possible update opportunities for each system test. Given that each system test

can only install one update per execution, this approach has two drawbacks. First, the sheer number of

update opportunities that each system test generates may require an infeasible number of re-executions.

Second, to explore different update opportunities over multiple test executions, the testing framework

needs to be able to map update opportunities from one execution to the next. Otherwise, it might get

stuck exploring the same set of update opportunities or miss important update opportunities.

Another approach is to use sampling, i.e. probabilistically deciding when to take an update, until

enough update opportunities have been explored. This approach solves the two drawbacks of exhaustively

exploring all opportunities, but has a drawback of its own: Finding when enough update opportunities

have been explored is hard (or impossible), and getting it wrong means potentially missing bugs.

5.3.4 DSU Testing

Tedsuto provides three strategies to explore opportunities during a system test. The first — control-flow

reboots — explores all update opportunities during a single execution of a system test by performing only

control migration without changing the program code or transforming the program state. The second

— intensive update testing — exploits the typical structure of system tests (set-up, test, tear-down) to

repeat each system test until it has explored all update opportunities on just the relevant portion. The

third — extensive update testing — uses the information about the operations that make up the test to

explore update opportunities that happen during different test operations.

144

Control-flow Reboots

Control-flow reboots perform control migration at every possible update opportunity while the program is

running without actually installing a new version or performing any data migration. For instance, consider

the updatable application example shown in Figure 4.3, in page 108. Under control-flow reboots, every

time the program reaches any update point (lines 15 or 59), Rubah acts as if an update was available.

When all threads stop to perform the dummy update, Rubah proceeds to restart each thread in the

same program version, without transforming any program state. When restarted, each thread follows the

control-flow migration logic until it reaches an update point with the same label in which it originally

stopped. When all threads do so, Rubah releases them to execute the program. The next time any thread

hits any update point, Tedsuto makes Rubah repeat this process.

It is my experience when using Rubah that the control migration code does not change much between

versions. The authors of Kitsune report a similar experience [HSD+12]. Retrofitting is mostly a one-time

effort on the first version that supports DSU. This observation is the basis of control-flow reboots, which

stress the retrofitted code and the control migration thoroughly and systematically. This technique can be

used together with manual testing during development time to systematically test the control migration

at each different update point. Control reboots are thus a no-effort and low-cost solution to test control

migration during development time.

Intensive Update Testing

Intensive update testing is applicable to system tests that focus on a single feature, such as the MD5

system test shown in Figure 5.5a. This test is small and self-contained, which means it generates a

small number of update opportunities inside the allowed window that the developer specified. Besides,

this particular test is deterministic. That is, the nth update opportunity on a particular test run is the

same as the nth update opportunity on a different test run. Given these two properties, it is feasible to

exhaustively explore all update opportunities that this test triggers.

Intensive update testing is not suitable for all multithreaded system tests due to the non-determinism

present in thread scheduling. For instance, consider the transaction isolation test shown in Figure 5.5b.

It is not possible to match update opportunities during different test runs because thread execution

may have been interleaved in a different order. Some tests, however, use several threads and fix their

interleaving. For instance, consider a test for lock timeouts that consists of a thread that acquires a lock

and then sleeps, and another that tries to acquire the same lock and times out. Given that this test has

to fix the thread scheduling in advance, we can use intensive update testing to ensure its correctness in

the presence of updates.

Extensive Update Testing

Extensive update testing is applicable to more complex system tests, potentially multithreaded, that

check a broader feature of the updatable program and generate a large number of update opportunities

in doing so. The transaction isolation test, shown in Figure 5.5b, is a good example of such tests.

Given the complexity of the system tests it uses, extensive update testing requires the developer to

annotate the test with information about which logical operations the test performs. This information is

useful for two reasons: (1) The testing framework can use it to chose update opportunities that happen

in different parts of the test; and (2) when the test fails, the testing framework can report when the

update happened in terms of which operations the test was performing at the time of the update. Later,

the developer can run the test limited to exploring opportunities only during the failed operation to

reproduce the bug or test that it is fixed.

145

Extensive update testing groups the operations per thread to consider combinations of operations.

For instance, in the transaction isolation test that we are following, all possible combinations for two

threads are: BEGIN/BEGIN, BEGIN/INC, BEGIN/COMMIT, INC/INC, INC/COMMIT, COMMIT/-

COMMIT. The number of update opportunities in each may vary between executions. For instance,

consider that reading a value is implemented by acquiring a lock and that, in combination INC/COM-

MIT, the thread that is trying to read spins while waiting for the lock and reaches an update point at

every spin. The number of update points reached in this combination depends on how long the commit

operation takes.

Furthermore, for higher numbers of threads, the sheer number of different combinations may make it

infeasible to even explore them all. As a consequence, sampling is the best technique to explore different

update opportunities between executions while performing extensive update testing.

5.4 Experimental Evaluation

This section presents experiments that provide empirical data about how Tedsuto reaches the goals that

Section 5.1 introduced.

5.4.1 Experimental Configuration

All experiments that this section describes were run on a machine equipped with an Intel Core i7-

4770 CPU (4 physical cores, 8 logical) and 16GB of RAM, running GNU/Linux Ubuntu 14.04.2 LTS

with kernel version 3.13.0-45-generic. All tests were conducted with Oracle’s JVM version 1.7.0 75-b13

(HotSpot version 24.75-b04).

I performed the experimental evaluation using two applications retrofitted to support DSU through

Rubah: H2, which is a SQL DBMS written in Java; and CrossFTP, which is an FTP server. I updated

H2 from version 1.2.121 to version 1.2.123, spanning intermediate version 1.2.122; and CrossFTP from

version 1.07 to version 1.11, spanning intermediate versions 1.08 and 1.09. Section 4.5.2, in page 124,

describes how each application was retrofitted in detail.

Tedsuto requires existing system tests. H2 already ships with a comprehensive testing framework that

includes suitable tests. Given that performance benchmarks can also be considered system tests, I also

used the TPC-C benchmark shipped with the DaCapo benchmark suite [BGH+06] as a multi-threaded

system test for H2. CrossFTP does not have a testing framework of it own, so I adapted the testing

framework of another Java FTP server (Apache’s MINA project5) to work with CrossFTP. I also used

the FTP benchmark FTP-bench that I implemented to measure the performance of CrossFTP [PVH14]

as a multi-threaded system test. Both performance benchmarks are described in detail in Section 4.5.3,

in page 125.

5.4.2 Manual Effort

Table 5.1 shows the effort required to adapt the existing testing frameworks to use Tedsuto. Lines were

counted with CLOC, modified lines were counted with DIFFSTAT on the patch that adds support. The

results show that adapting existing system tests to use our technique required modifying 2% or less of

the total lines of code.

It was not possible to adapt all system tests in each framework for several reasons. MINA tests

features that CrossFTP either does not support, or supports in a non RFC compliant way. Other tests

depended on the particular implementation of the MINA FTP server they were designed to test. Some

5https://mina.apache.org/ftpserver-project/index.html

146

https://mina.apache.org/ftpserver-project/index.html

Framework Total Adapted
Tests Files LOC Tests Files LOC

H2 417 122 32287 48 16 389
MINA 188 50 7590 110 23 154
TPC-C - - 8563 - - 32
FTP-bench - - 392 - - 31

Table 5.1: Effort required to adapt existing testing frameworks. Columns under total show the total size
of the existing system tests in each framework in terms of individual tests (tests), files containing those
individual tests (files), and lines of code (LOC). Columns under adapted show how many of those tests
I adapted with Tedsuto, and how many lines of code I needed to modify in doing so.

Program Regular (ms) Observed (ms) Overhead
H2 11,181 ± 278 15,268 ± 447 1.37
CrossFTP 9,008 ± 3 17,806 ± 390 1.98

Table 5.2: Overhead introduced by attaching an external process as an observer for Rubah. The results
report the average of 5 executions and the standard deviation. Columns regular and observed show the
time to complete a fixed-size workload. Column overhead shows how slower the observed execution is,
computed as observed/regular.

tests required the server to be run with slightly different configurations and Tedsuto does not yet support

that.

H2 can be configured to work on several different modes: Memory vs disk-based storage, and differ-

ent types of disk-based stores, recovery modes, and indexes; lock vs multi-version concurrency control;

networked vs in-process databases; encrypted vs plain database; ssl vs plain client-server channels; etc.

Some tests require very specific combinations of these modes. H2 was retrofitted using Rubah to only

support memory storage, lock concurrency control, networked database server, plain database over a

plain channel. All tests that required a different configuration were skipped. Some tests check client-only

behaviour, and were also skipped as well.

The results in table 5.1 show that I mostly reused existing code, only modifying up to 2% of it.

However, I do not support all available system tests. Still, if we assume that adding support for all

available system tests requires a comparable amount of effort, supporting all H2 and CrossFTP system

tests would require modifying 11% and 3% of the respective testing framework. Of course, these are

worst case numbers. Still, I argue these values are acceptable.

5.4.3 Overhead

To measure the base overhead that any of the testing techniques impose, I used the benchmarks to

measure the time H2 and CrossFTP take to finish a fixed-sized workload (TPC-C size default, with a

scale factor of 4, and FTP’s download of 160 files of 1MB each, both using 4 threads) under two settings:

Executing with regular Rubah and with observed Rubah. Both versions do not perform any update. I

ran each version 5 times. Table 5.2 shows the average completion time and overhead.

Running an updatable program while Tedsuto is attached to Rubah introduces significant overhead.

Tedsuto is thus not applicable to performance sensitive tests. Still, the performance penalty was accept-

able for the set of considered system tests, even taking into account all the re-executions that Tedsuto

performs.

147

1 10 100 1000 10000

Total

Allowed

Update Opportunities per Test

S
eq

ue
nt

ia
l N

um
be

r
of

 T
es

t

(a) H2 Test Opportunities

1

25

55

85

115

145

0 2 4 6 8 10 12 14 16

Total
Allowed

Update Opportunities per Test

S
eq

ue
nt

ia
l N

um
be

r
of

 T
es

t

(b) FTP Update Opportunities

Figure 5.6: Updates performed per test. Each bar represents a single test, its size represents how many
update opportunities that test had, and the black part represents how many updates were tested. The
vertical axis just counts the bars. The largest bar on (b) is not shown completely: It allows 4 out of 108
total update opportunities.

5.4.4 Intensive Update Testing: Practical Coverage

Intensive system testing supports precise update testing (considering most or all update opportunities)

within a window specified by the tester using annotations. To measure how much these annotations

reduce the total number of update opportunities that an intensive test would otherwise explore, I ran a

version of this strategy that counts all update opportunities during a test run, and how many of those

are explorable according to the added annotations.

Figure 5.6 shows the average results for 5 runs of this experiment. Each bar is a different test. Bars

are horizontally sorted by the total number of update opportunities each test generates (light bars). Dark

bars report the explorable update opportunities during that test. The difference between bars shows the

reduction. Originally, each H2 test had in average 454 opportunities (3590 max) and each FTP test

had in average 7 opportunities (108 max, bottom bar not fully shown). Only considering the annotated

portions of each test reduced the average opportunities to 58 for H2 (188 max) and 4 for FTP (15 max).

Note that I report 110 tests for MINA in table 5.1 but 145 in Figure 5.6. This happens because

table 5.1 counts the tests statically, and some tests dynamically repeat others on a different setting (e.g.

repeating RETR/STOR/LIST in active/passive modes). H2 tests are not as easy to run separately as

MINA’s because earlier tests set results that later tests re-use. As a result, I had to repeat each file as a

whole. Figure 5.6 thus shows the results per file for H2.

The manual effort that intensive update testing requires maximizes its applicability. These results

show how that effort reduces the space of possible update opportunities to explore. It may be acceptable

to consider all update opportunities for simple system tests, such as the ones on MINA’S FTP testing

framework. However, in the general case and for more complex system tests such as H2’s, the gains in

annotating the interesting portions of the tests are clear.

5.4.5 Extensive Update Testing: Sampling Effectiveness

Extensive update testing explores update opportunities during system test, repeating the test until enough

opportunities have been explored. This section describes an experiment to compare how different tech-

niques for selecting update opportunities detect known bugs.

The experiment starts with three profiling runs that do not perform any update, during which the

tool gathers data about the possible update opportunities. Update opportunities are identified by the

148

label of the last call to Tedsuto.operation. On multi-threaded scenarios, update opportunities are

identified by combination of labels on all threads.

The tool only considers update opportunities that happen during all three runs, and uses three different

techniques to explore them: (1) Random points during the test run, (2) perform a number of updates

(2 in this case) per opportunity starting from the most common and moving towards the least common,

and (3) the same but from the least common to the most common.

I performed this experiment on CrossFTP and H2, introducing some errors to check if extensive

update testing can find them. For CrossFTP, I manually skipped a conversion method that migrates

the user name to its own field, as shown in Figure 4.4, in page 110, which causes the server to reject

a valid sequence of commands USER–PASS if an update happens in between. I also used the wrong

update-point bug explained in the next section. For H2, I added the bug that Figure 5.1 describes, which

causes a BEGIN statement to close the database after an update. All these bugs were tested using a

single thread. For multi-threaded scenarios, I used the lock timeout bug described in the next section.

I used TPC-C and the FTP benchmark as system tests for H2 and CrossFTP, respectively. TPC-C

was modified to issue an explicit BEGIN statement to start each transaction, thus creating a window for

one of the bugs I tested. I than run each technique for 50 updates on each bug, in isolation.

Table 5.3 shows the results of this experiment. Rows titled TOTAL report the total number of different

operations in which each technique explored performing updates. Columns titled faulty report how many

of those can potentially display the bug if an update is performed at the right time and with the right

data. Columns titled found report how many of the potential faulty operations actually displayed the

bug during the test run. I repeated the experiment three times and the table reports the average values.

The data from CrossFTP shows that extensive update testing failed to detected the wrong update bug

because the timing window for this bug is very narrow. Exploring update opportunities systematically,

either starting by the least common or most common, could find the USER–PASS bug while random

updates could not.

The FTP system test only had 10 different operations, and systematic exploration could reach full

operation coverage. On H2, systematic exploration always tries 25 operations, each twice over 50 up-

dates. Random exploration tries less operations by repeating more times the few operations it finds.

By increasing the thread count, random exploration finds more operations than systematic exploration

because the total number of available operations increases exponentially.

For H2, the BEGIN–SHUTDOWN window is large enough for random updates to perform as well

as systematic updates. On multi-threaded scenarios, random exploration outperforms systematic explo-

ration by finding more bugs.

These results show that taking the effort to annotate existing tests generally improves the outcome

of extensive tests. Even when random sampling outperforms systematic sampling, the information about

what operations the test was performing at update time when a bug was detected allows the developer

to understand what went wrong.

5.4.6 Bugs Found

This section describes the bugs found using Tedsuto. It provides a description of each bug, the technique

that found it first, and other techniques that confirmed it. Table 5.4 summarizes all the information that

this section describes in detail.

Resource Leak

Retrofitting Rubah means turning all blocking I/O operations into non-blocking. A possible way of doing

that is to use Rubah’s API, that requires a selector as input for each blocking I/O operation. The example

149

Bug Random Least Common Most Common
Found Faulty Found Faulty Found Faulty

CrossFTP
TOTAL 1.33 10 10
User/Pass 0 0 1 1 1 1
Wrong update 0 1 0 1 0 1

H2 1 Thread
TOTAL 15.33 25 25
Begin/Shutdown 2 3 2.33 3 2 4

H2 2 Threads
TOTAL 41.67 25 25
Wait for lock 1.6 16 0 5.67 0.67 10.33

H2 4 Threads
TOTAL 50 25 25
Wait for lock 24.67 46.67 12 22.33 21.67 25

Table 5.3: Comparison of the different techniques to explore update opportunities. This table shows
three different techniques for finding bugs across different operations: Random, least common operations,
and most common operations. The experiment injected three known bugs for single-threaded scenarios
(User/Pass, Wrong update, and Begin/Shutdown) and one for multi-threaded scenarios (Wait for lock).
Rows TOTAL show how many different operations were considered over 50 runs, rows faulty show how
many of those can display the bug, rows found show how of the faulty opportunities actually displayed
the bug.

Bug Program Contro-flow Intensive Extensive
Reboot Testing Testing

Resource Leak Both Found — —
Internal Data-races Both Found — —
Lock Timeout H2 — Confirmed Confirmed
New FTP Command CrossFTP — Found —
Batch FTP Commands CrossFTP — Found —
Slow SQL Query H2 — Found —
Early update-point H2 Confirmed — Found
Wrong update-point CrossFTP Found Confirmed —

Table 5.4: Summary of all the bugs found with Tedsuto for CrossFTP and H2. Bug Resource Leak was
found for both programs and bug Internal Data-races was found inside Rubah and affects both programs.
Cells Found mean that the technique found the bug first, and cells Confirmed mean that the technique
confirmed a bug that other technique had found. Bug Lock Timeout was originally found manually while
developing Rubah.

150

shown in Figure 4.3, in page 108, does exactly that. Note how it creates one selector object per thread

after each update without closing it before the next update (line 13).

When I adapted H2 to use Rubah for the first time, I did not close the selector after each update

(e.g. omitting line 34). Each selector object uses a different file descriptor internally, which have a limit

per process. As a consequence, after a number of updates, the updatable program reached the maximum

number of file descriptors and terminated when trying to open a new selector after an update.

This bug was found with control-flow reboots and no other technique could repeat it.

Internal Data-races in Rubah

There were internal data-races in Rubah that the ad-hoc testing made during its development could not

find.

For instance, consider control-flow migration. For N threads, Rubah waits until all N reach an update

point with same label in which each thread originally stopped. It then releases all threads, each one at

the time. Consider that N = 2 and that thread 1, released before thread 2, reaches an update point

before Rubah even releases thread 2. If there is an update available at that point, Rubah will ignore the

fact that thread 1 reached an update point and release thread 2. When thread 2 reaches an update point,

Rubah will stop it and then wait for thread 1, which was already stopped but ignored.

This bug is caused by an internal data-race in Rubah and represents a corner-case scenario that is very

unlikely to happen in practice. However, it results in the program hanging and having to be manually

restarted. The other data-races happen in similar corner-cases.

This bug was found with control-flow reboots and no other technique could repeat it.

Lock Timeout

H2 implements transaction isolation through row locks. If a thread A attempts to grab a row that is

locked by another thread B, A spins until either B releases the lock or the operation times-out. If an

update happens while A is spinning, B will reach an update-point, and thus stop executing, while A

keeps waiting for the lock. Eventually, A will reach the time-out and fail the operation. Only then will

A reach an update-point.

This bug manifests as an increase in latency in some updates. The increase in latency is on the same

order of magnitude as the configured operation time-out. In this case in particular, all H2 threads would

stop for an update in either approximately 50 milliseconds or 1.9 seconds when configured with a time-out

of 2 seconds per operation.

This bug was found with extensive updates and then confirmed by intensive updates.

This bug was originally found and fixed after a laborious manual debugging process before the first

Rubah submission, in an ad hoc way that required detailed knowledge about both the internals of Rubah

and H2. Providing a simple way for developers to detect these types of bugs was a considerable part of

my original motivation to develop Tedsuto.

New FTP Command

CrossFTP adds support for the MD5/MMD5 commands6 in one of the retrofitted versions (ver-

sion 1.09). Internally, CrossFTP implements each supported command as a class in package

org.apache.ftpserver.command. It also represents each supported command in a map from com-

mand names to command implementation. In addition, a configuration file loaded at server start-up

describes how to format the response with the result of each supported FTP command.

6These commands allow a client to request the checksum of a remote file.

151

When performing a server update to the version that supports the new commands, the server would

fail to recognize that the new commands are in fact supported. This happened because the update, despite

correctly loading the classes that implement the new commands, did not register the new commands on

the map and did not re-load the (updated) configuration file after the update. This bug was fixed by

adding two extra conversion methods to the update class that do exactly that.

This bug was found with intensive updates and no other technique could repeat it.

Batch FTP Commands

CrossFTP was retrofitted in a way that did not support receiving FTP commands in batch. The FTP

command allows several commands to be concatenated in a single message, separated by a new line. After

the original retrofitting, CrossFTP would process the first command and then wait for more commands

directly on the network socket without checking if a command buffer was empty. As a result, the server

would only execute the first command in a batch and ignore the rest.

This bug was found with intensive updates and no other technique could repeat it.

Slow SQL Query

Originally, H2 reached update-points only between queries. Any query can thus delay an update until

it finishes, which is particularly bad for long queries that take a long time to process. Internally, H2

implements queries by iterating over rows and conditionally adding each row to the result set, based on

the parameters of the query. To fix this bug, I added an update point to the loop.

This bug was found by intensive updates and no other technique could repeat it.

Early update-point

When fixing the previous bug, I added an update point to the top of the loop that iterates over all rows

as Figure 5.2a shows. However, this is not a correct fix because it causes the row being processed at the

time of the update to be skipped. Note that, when returning from an update, the program would call

iterator.next(), which advances the iterator one position.

This issue can remain undetected if that row would be filtered out either way. However, consider that

the program is about to process the last row when it reaches the update point. After the update, the call

to iterator.next() would return false and prevent the thread from ever reaching the update point

with the same label in which it had stopped. As a consequence, the program hangs after an update and

needs to be restarted manually.

To fix this bug, the update point must be reached at the end of the loop. Also, to account for updates

when processing the last entry, an update point has to be added before the while loop and reached only

during control-flow migration. Figure 5.2b shows how the correct code looks like.

This bug was found by extensive update testing and confirmed by control-flow reboots.

Wrong Update-point

Originally, CrossFTP reached update-points only between FTP commands. Any FTP command can thus

delay an update until it finishes. In particular, the FTP commands that transfer files (STOR/RETR)

can delay an update for an arbitrarily long period, until the file transfer finishes.

Therefore, I retrofitted CrossFTP to support installing an update while transferring a file. Figure 5.7

shows how. Local variable transferredOffset, which keeps the offset of the file already transferred,

is saved on the heap following a program transformation similar to the one explained by Figure 4.5, on

page 111.

152

1 if (Rubah.isUpdating())
2 transferredOffset = saved.transferredOffset;
3
4 Rubah.update("transfer");
5
6 while (transferredOffset != file.size()) {
7 // transfer a block and increase the offset
8 try {
9 Rubah.update("transfer");

10 } catch (UpdateRequestedException e) {
11 saved.transferredOffset = transferredOffset;
12 throw e;
13 }
14 }

Figure 5.7: Example adapted from CrossFTP that shows a badly placed update-point. This example saves
the local variable transferredOffset using a technique similar to the one introduced by Figure 4.5,
on page 111. However, performing an update at line 4 does not save the variable and results in a crash
after the update. The update-point should be reachable only during control-flow migration, i.e. guarded
by the conditional on line 1.

However, an update that takes place after starting the transfer but before sending any data could

reach the update point on line 4 without saving the local variable first, which results in a program crash

after the update. To fix this problem, the update point should be guarded by line 1 so that it can be

reached only during control-flow migration.

This bug was found by control-flow reboots and confirmed by intensive update testing.

5.5 Discussion

This chapter presented Tedsuto, a DSU testing framework that tests the correctness of updates through

systematic testing. In Section 5.1 I made a series of claims about Tedsuto. The rest of this chapter

provided evidence for those claims. In this section, I summarize the evidence that supports each claim.

Tedsuto is portable. It can be implemented for any DSU system, given that such DSU system supports

delegating the decision about whether to take an update opportunity to an external process, as described

in Section 5.3.1. Even though I only implemented Tedsuto for Rubah, it is possible to also implement

it for DuSTM, described in Chapter 3. In this case, update opportunities would not be reaching update

points, but instead accessing object kept inside transactional handles.

Tedsuto requires low effort. Tedsuto assumes the existence of a collection of system tests for the

updatable program. System tests, in this context, test the back-to-back behavior of the whole program.

Tedsuto requires the developer to annotate those tests with information about what the test is doing. I

added support for Tedsuto to two system test frameworks and two performance benchmarks by modifying

up to 2% of the original code, as Section 5.4.2 reports.

Tedsuto is practical. Tedsuto slows down test execution by a factor of 2 at most as Section 5.4.3

reports. While this overhead is non-trivial, it is still feasible and allows tests to be executed within

an acceptable amount of time. Besides slowing down test execution, Tedsuto also re-executes each test

potentially several times. The manual annotations that Tedsuto requires to be added to each system test

keep the number of re-executions per test within a feasible bound, as Section 5.4.4 reports.

Tedsuto is effective. It found manually injected bugs, even if those bugs require multiple threads

to trigger, as Section 5.4.5 reports. Furthermore, it found new, previously unknown, bugs on both

applications and on Rubah itself, described on Section 5.4.6.

Tedsuto allows the developer to use existing system tests to reason about update correctness. With

Tedsuto, the developer can write tests that check both backwards-compatibility of features that an update

153

does not change, and the correct behavior of features that an update modifies/introduces.

As a systematic testing technique, the level of assurance that Tedsuto provides has limits. Tedsuto

can only find bugs on the code and program states that the system tests execute. Besides, to be prac-

tical, Tedsuto bounds the total number of re-executions and misses update opportunities. The manual

annotations that the developer adds to the system tests allow Tedsuto to choose the opportunities to test

more carefully. But still, it is possible that Tedsuto misses a bug during testing.

The results that the Section 5.4 reports, however, show that Tedsuto performs well and can effectively

find update-related bugs. Together with Tedsuto, Rubah reaches the goal of correctness that I introduced

in Section 1.2.2.

154

Chapter 6

Conclusion

In this dissertation, I show that it is possible to design and implement a practical solution to solve the

problem of Dynamic Software Updating (DSU). To demonstrate this thesis, I have described the design

and implementation of two DSU systems — DuSTM and Rubah — and a systematic testing framework

for DSU — Tedsuto — that reach all the goals for a practical DSU system:

• Effectiveness. Both DSU systems that I present in this dissertation target programs written in

the Java programming language. DuSTM requires Java programs to be written in a transactional

style; Rubah requires Java programs to be structured around a long-running event-processing loop,

which is very common in server programs. Neither system limits the development-time tools that

developers can use while writing updatable programs.

• Flexibility. Both DSU systems that I present in this dissertation allow almost any change of a

Java program between two versions. Both systems support changing the structure of existing classes

without any limitation. DuSTM supports changing the class hierarchy with some restrictions and

Rubah supports changing the class hierarchy without any restriction, as long the updated program

is still type-safe according to Java’s type system and the developer can write state transformation

logic that migrates the program-state to a version that is compatible with the new program.

• Efficiency. Both DSU systems that I present in this dissertation minimize the pause in execution

required to perform an update by migrating the program state lazily, i.e. object by object as the

natural control-flow of the updated program reaches it for the first time after the update. Rubah

imposes negligible steady-state performance overhead, i.e. while the program is executing normally

and not performing an update.

• Correctness. In this dissertation, I present a systematic testing framework — Tedsuto. Tedsuto

allows developers to reuse existing system tests, and write new ones, to ensure that the updated

program behaves as expected. This dissertation describes how to implement Tedsuto for Rubah.

Throughout this dissertation, I support these claims by describing the design, implementation, and

performance profile of DuSTM, Rubah, and Tedsuto. In addition, I used Rubah to add DSU support to

13 versions of 5 existing Java programs, originally developed without any type of support for DSU. I use

Tedsuto to ensure the correctness of 2 of these programs using a collection of existing system tests for

each program.

This work represents an important advance in the state of the art. In particular, no existing DSU

system can be considered practical by the goals that I set in this dissertation. These goals were chosen

carefully to ensure that state-of-the-art DSU systems can be readily applied to a large number of existing

155

programs. Rubah is the first of such practical DSU systems. Moreover, Tedsuto allows developers to test

the process of performing a DSU in the same way they test the end-to-end correctness of their system,

ensuring that the updated parts of the program behave as expected and the non-updated parts of the

program behave as before, regardless of the timing when the update was performed.

6.1 Contributions

1. A technique to atomically update a running transactional program without stopping it, using a

versioned STM to expose a simple update semantics to the developer;

2. A semantics-preserving transformation to add support for DSU to the bytecode of a transactional

program that does not require a custom JVM to execute the transformed DSU-enabled program;

3. The design, implementation, and evaluation of DuSTM, an update system that supports a wide

range of modifications between successive program versions and that can migrate the program state

between versions atomically using modular program-state transformation code;

4. A semantics-preserving transformation to add support for DSU to existing Java programs that

imposes no steady-state overhead while executing on steady-state;

5. Two algorithms to transform the program-state while performing an update: A parallel algorithm

that uses several threads to minimize the time required to transform all the program-state; and a

lazy algorithm that uses proxy objects to transform each outdated object as late as possible after

the update takes place and thus minimize the pause required to start executing the new program

after an update;

6. The design, implementation, and evaluation of Rubah, an update system that: Supports release-

level updates to Java programs not originally designed with DSU support, does not require a

custom JVM, and provides good performance while executing the program in steady-state and

while performing an update;

7. Three techniques to systematically test the behavior of a program undergoing DSU: Control-flow

reboots, intensive update testing, and extensive update testing. All techniques re-run system tests

to explore updating at different timings and thus find errors or provide empirical guarantees about

their absence; each technique focus on a different type of update error.

8. The design, implementation, and evaluation of Tedsuto, a complete solution to testing DSU that

can check both backwards-compatible behaviors, i.e. those externally visible behaviors that the

update does not change; and new behavior, i.e. that a bug is fixed correctly or that a new feature

works as expected.

6.2 Future Work

The work presented in this document motivates a number of directions for future work. In particular, the

following topics represent important unanswered questions that can further improve the state-of-the-art

on DSU in the direction that this dissertation points:

• DuSTM performance. Improve the steady-state performance of DuSTM. Steady-state perfor-

mance is the biggest problem with DuSTM; 50% overhead on steady-state is not an acceptable cost

for the ability to perform DSU. One option is to explore the feasibility of using on-demand proxies,

similar to the proxies that Rubah uses on the lazy state transformation algorithm;

156

• DuSTM portability. Research if it is possible to port DuSTM to other STM models besides the

multi-versioned STM currently used;

• Rubah portability. Port Rubah to other JVM and refactor it to contain all implementation-

related parts in a separate, pluggable, module;

• Java unsafe API. Refactor the current JVM unsafe features that Rubah uses into the Java API to

make them safe, usable by future DSU systems, and to make Rubah easier to port to other JVMs;

• Tedsuto portability. Implement Tedsuto for other Java DSU systems (DuSTM, DCE-VM,

JVolve, etc) and other non-Java DSU systems (Kitsune, UpStare, Ginseng, etc);

• Static DSU optimization. Use an offline conservative static analysis on both versions of the

program, the current in execution and its new version, to avoid traversing portions of the object

graph that are guaranteed to not have any outdated object or any reference to an outdated object.

This improves the performance of both state transformation algorithms that Rubah uses;

• Usability. Perform a controlled study using programmers developing and then updating an ap-

plication using DuSTM, Rubah, and Tedsuto to assess how easy to use they are and improve their

overall usability.

• Tedsuto scope. Research how Tedsuto can be applied to other fields, e.g. testing checkpoint/re-

store algorithms, deterministic replay systems, testing DSU in distributed systems;

• DuSTM/Rubah scope. Research how DuSTM and Rubah can improve synchronize multiple

nodes to improve the state-of-the-art of DSU for distributed systems.

157

158

Appendices

159

Appendix A

Transactional Memory

The purpose of this appendix is to give an overview of the design and implementation of Transactional

Memory in general and JVSTM in particular so that the reader can follow the discussion about DuSTM

on Chapter 3. Throughout this appendix, I re-use the same notation that I introduced in Section 3.2.

This appendix is based on the introductory chapters of the book by Harris et al. on Transactional

Memory [HLR10] which describes the state of the art on the topic in greater detail.

A.1 Concurrent Application Example

To help guiding the discussion about Transactional Memory, this section introduces a simple running

example of a concurrent application. Let us consider a simply linked ordered list of integers that supports

adding new elements, removing the lowest element, and computing the sum of all the elements on the list.

For the sake of simplicity, I shall refer to the list that contains elements 0, 1, and 2 using the notation

(0, 1, 2).

Before reasoning about concurrency, let us consider a list that implements its specification for sequen-

tial executions. In the following, I define the semantics of the sequential list in terms of pre and post

conditions of each operation:

add n

Pre-condition List is (A, i, B) such that n <= i, and A and B denote zero or more elements a

and b such that a < n and b > n, respectively;

Post-condition List is (A, n, i, B).

remove

Pre-condition List is (i, rest), where rest denotes zero or more elements a such that a >= i;

Post-condition List is (rest);

Result i

sum

Pre-condition List is (a1, . . . , an)

Post-condition List is (a1, . . . , an)

Result a1 + · · ·+ an

161

1 class SeqSortedList {
2
3 final Node head = new Node(Integer.MIN_VALUE);
4
5 void add(int el) {
6 Node n = new Node(el);
7
8 Node p = head;
9

10 while (p.next != null && p.element < el)
11 p = p.next;
12
13 n.next = p.next;
14 p.next = n;
15 }
16
17 int remove() {
18 Node n = head.next;
19 if (n == null) throw new NoSuchElementException();
20 head.next = n.next;
21 return n.element;
22 }
23
24 int sum() {
25 int sum = 0;
26
27 for (Node p = head.next ; p != null ; p = p.next)
28 sum += p.element;
29
30 return sum;
31 }
32 }
33
34 class Node {
35 final int element;
36 Node next;
37
38 Node(int el) {
39 element = el;
40 }
41 }
42
43 class NoSuchElementException extends RuntimeException { }

Figure A.1: Possible implementation of a sequential sorted simply linked list.

162

Time

Thread 2 add(5)

Thread 1 add(6)

R6 R5 W6 W5

0 20 0 6 20 0 6 20

5

(c) After W5(b) After W6(a) At R6 / R5

Figure A.2: Thread interleaving that results in an inconsistent execution of the code that Figure A.1
shows. The top half a possible concurrent execution of two threads over time. Thread 1 executes lines
8 and 14 at instants R6 and W6, respectively; thread 2 executes the same lines at instants R5 and W5.
The bottom half shows how the list looks after each time instant.

1 class SyncList extends SeqSortedList {
2 synchronized void add(int el) {
3 super.add(el);
4 }
5
6 synchronized int remove() {
7 return super.remove();
8 }
9

10 synchronized int sum() {
11 return super.sum();
12 }
13 }

Figure A.3: Implementation of a thread-safe sorted simply linked list. The super class SeqSortedList
is defined in Figure A.1.

Figure A.1 shows a possible implementation for the sorted list in Java that is not not thread safe.

The lack of thread safety means that, in the presence of multiple concurrently executing threads, the

interleaving of the various threads can leave the list in a state that is inconsistent with the operations that

each thread performed on the list. For instance, consider the list (0, 20). Consider also two concurrent

threads that add 5 and 6. Figure A.2 shows a possible interleaving that leads to the resulting list (0, 5,

20) instead of the expected (0, 5, 6, 20).

In Java, we can turn the sequential list defined in Figure A.1 into a thread-safe list by adding the

modifier synchronized to all methods that read or modify the list. When a thread executes a synchro-

nized method on a particular object, it acquires the monitor of that object before starting to execute

the method and releases it just before returning. While that thread is executing the method, and thus

holding the monitor, no other thread is able to acquire the same monitor. As a result, the execution

of a synchronized method on one object by one thread cannot be interleaved with the execution of an-

other synchronized method on the same object by a different thread. Figure A.3 shows an alternative

thread-safe list that is implemented using synchronized list methods.

By requiring all list methods to acquire a monitor during their execution, the code that Figure A.3

shows effectively rules out any thread interleaving that leaves the list in an inconsistent state. This list

implementation is this thread-safe. For instance, if we consider the interleaving shown in Figure A.2 that

left the sequential list in an inconsistent state, Figure A.4 shows how that same interleaving leaves the

163

Time

Thread 1

Thread 2

Monitor

add(5)

add(6)

L6 L5 U6 U5

Monitor owner

Thread 1

Thread 1 (Thread 2 waiting)

Thread 2

0 20 0 6 20 0 5 6 20

(c) After U5(b) After U6(a) At L6 / L5

Figure A.4: Thread interleaving that results in a consistent execution of the code that Figure A.3 shows.
The top part shows how thread operations interleave over time, together with the status of the monitor
that guards the list. Time instants L6/L5 and U6/U5 refer to operations that try to acquire/release the
monitor, respectively. The bottom part shows how the list looks after each time instant.

1 class SeqSortedListWithSwap extends SeqSortedList {
2 static void swap(SeqSortedList l1, SeqSortedList l2) {
3 int tmp = l2.remove();
4 l2.add(l1.remove());
5 l1.add(tmp);
6 }
7 }

Figure A.5: Implementation of method swap. Class SeqSortedList is defined in Figure A.1.

synchronized list in a consistent state.

Java’s synchronized modifier can turn sequential objects into a thread-safe objects, but that comes

with a cost. In particular, the synchronized list does not support any concurrent operation. For instance,

consider list (0, 20) and concurrent operations add(5) and add(30). The synchronized list only executes

one operation at the time, even though these two operations change different parts of the list and could

make progress in parallel while still leaving the list in a consistent state. Worse still, the synchronized

list does not allow methods add and sum to progress in parallel, or even concurrent sum methods over

the same list.

Suppose that we implement the sorted list using a more sophisticated locking strategy that allows

methods to make progress in parallel. Let’s call this implementation a fine-grained list, hinting that

methods should lock each element at a time instead of locking the list as a whole. Unfortunately, even

the fine-grained list is not without problems. In particular, it is not composable. Suppose that we want

to implement an operation swap that takes two lists as argument and swaps the first elements of the two

lists. Figure A.5 shows a straightforward implementation that works for sequential code.

The code that Figure A.5 is not thread-safe. Suppose that method swap executes on lists l1 = (1, 2)

and l2 = (3, 4) concurrently with method sum(l2). The two possible results of method sum are either

7 or 5, because list l2 is either (3,4) or (1,4). Figure A.6 shows a possible interleaving in which method

sum returns 4, which is incorrect.

Figure A.7 shows a possible implementation of method swap using synchronized blocks. Unfortu-

nately, this implementation is not correct. Consider an execution in which two threads T1 and T2 execute

methods swap(a,b) and swap(b,a) in parallel. Consider also, that thread T1 acquires the monitor for

164

Time

Thread 1

Thread 2 l2.add(4) l2.sum()

swap(l1,l2)

t1 t2 t3 t4

1 2

3

l1:

l2:

1 2

3 4

1 2

4

2 3

1 4

(d) At t4(c) At t3(b) At t2(a) At t1

Figure A.6: Thread interleaving that results in an inconsistent execution of the code that Figure A.5
shows. The top part shows how thread operations swap and sum interleave over time. The bottom part
shows how the list looks after each time instant. Time instant t1 refers to the initial state of the lists.
At t2, thread 2 finishes executing method l2.add(4). At t3, thread 1 executes line 3. At t4, thread 2
finishes executing method swap. In this execution, all the states that list l2 takes are: (3), (3,4), and
(1,4). Method sum sees an inconsistent state of list l2 that never existed: (4).

1 class SyncListWithSwap extends SyncList {
2 static void swap(SyncList l1, SyncList l2) {
3 synchronized(l1) {
4 synchronized(l2) {
5 int tmp = l2.remove();
6 l2.add(l1.remove());
7 l1.add(tmp);
8 }
9 }

10 }
11 }

Figure A.7: Implementation of method swap using synchronized blocks. Class SyncList is defined in
Figure A.3.

object a and then thread T2 for object b. From this point on, each thread will try to acquire the lock

that the other thread holds. Both threads are thus in a deadlock.

Any implementation of method swap that uses locks/monitors as a concurrency control mechanism

breaks abstraction because it cannot compose existing simpler and correct operations add and remove
to implement a larger more complex operation and still remain correct.

A.2 Transactions as Composable Concurrency Control

A memory transaction is an abstraction similar to database transactions but available at the programming

language level. Database transactions ensure the consistency of data shared among several concurrent

operations while preserving composability. In this context, a database transaction is a sequence of

actions that appear indivisible and instantaneous to the system as a whole. A database transaction

provides Atomicity, Consistency, Isolation, and Durability. This set of properties is typically referred to

as ACID. Atomic transactions take place as a whole, either making all constituent actions visible on one

165

indivisible step or none of them appears to have ever executed. A transaction that completes successfully

commits and one that fails aborts. Consistency requires that all transactions preserve data integrity. If

a transaction starts from a consistent state, it can commit only if it leaves the state consistent after

executing. Isolation requires that transactions execute without ever seeing any change made by other

concurrent transactions. Finally, durability requires that the changes that transactions make to the

system are persisted.

Transactions provide an alternative approach for coordinating concurrent threads. All the programmer

has to do is to wrap computation in memory transactions. Atomicity guarantees that the computation

either completes successfully and commits its result in its entirety or aborts. Isolation ensures that every

transactions produces the same result as it would if no other transactions were executing concurrently.

Consistency is guaranteed by atomicity and isolation: Transactions that fail do not change the state and

are completely invisible to other transactions, the only transactions that change the state are transactions

that commit successfully.

Figure A.8 shows how to implement a thread-safe sorted integer list, introduced in Section A.1, using

transactions.

Figure A.3 takes the sequential list implementation introduced in Figure A.1 and uses the synchro-
nized modifier to wrap all methods with operations that acquire and release the object monitor, thus

making the code thread-safe via mutual-exclusion. We can implement a thread-safe list in a similar way

but wrap the sequential code with memory transactions instead of monitor acquire/release operations.

The code in Figure A.8 shows a possible implementation of a thread-safe list using memory transactions.

Note that the developer effort is comparable to using the synchronized modifier.

Figure A.2 showed problematic execution that results in an inconsistent list. Consider that we wrap

thread 1 with transaction Tx1 and thread 2 with transaction Tx2. It is clear that both transactions

Tx1 and Tx2 cannot run concurrently and commit. One option is to delay one transaction until the

other finishes, just like the synchronized list does on Figure A.4. Other option is to allow them to run

concurrently but only allow one transaction to actually commit. The other transaction will fail and can

be re-executed, this time using the list that the committed transaction generated.

Besides providing thread-safety, transactions also compose naturally. Consider the implementation

of method swap that Figure A.8 shows. This method provides complex behavior through composing

simpler methods add and remove inside a transaction. Isolation guarantees that no other transaction

can ever see any intermediate state. In particular, isolation and atomicity guarantee that the execution

that Figure A.2 shows, in which method sum sees an intermediate and inconsistent list state, is not

possible.

A.3 Basic Concepts of Transactional Memory

This section provides a brief overview on the design space and the basic concepts of transactional memory.

A.3.1 Semantics and Consistency

Transactional Memory ensures that all possible ways of interleaving threads executing concurrent trans-

actions can only result in correct executions. But what does it mean for an execution to be correct? This

section answers that questions by describing the correctness property for concurrent transactions that

TM provides.

• Serializability is the basic correctness condition for database systems. It states that the result

of executing concurrent transactions must be the same as a result in which the transactions were

executed sequentially in some order. Transactions appear to execute in isolation, as if no other

166

1 class TrList extends SeqSortedList {
2 void add(int el) {
3 Transaction tx = TM.start();
4 try {
5 // Method super.add(el) is inlined for better readability of
6 // discussion in the text on this section
7 Node n = new Node();
8 n.element = el;
9

10 Node p = head;
11
12 while (p.next != null && p.element > el)
13 p = p.next;
14
15 p.next = n;
16 } finally {
17 tx.commit();
18 }
19 }
20
21 int remove() {
22 Transaction tx = TM.start();
23 try {
24 return super.remove();
25 } finally {
26 tx.commit();
27 }
28 }
29
30 int sum() {
31 Transaction tx = TM.start();
32 try {
33 return super.sum();
34 } finally {
35 tx.commit();
36 }
37 }
38
39 static void swap(TrList l1, TrList l2) {
40 Transaction tx = TM.start();
41 try {
42 int tmp = l2.remove;
43 l2.add(l1.remove());
44 l1.add(tmp);
45 } finally {
46 tx.commit();
47 }
48 }
49 }

Figure A.8: Transactional implementation of a thread-safe sorted simply linked list. The code is the same
that Figure A.2 with a transaction wrapping the execution of each method. This code assumes a linear
flat nesting model for transactions on method swap, as I shall define in Section A.3.5.

167

Real Time

Logical Time

T1

T2

add(4)

sum

Real Time

Logical Time

T1

T2

add(4)

sum

Figure A.9: Execution of two transactions that highlights the difference between serializability and strict-
serializability. Both executions are correct according to serializability. On both executions, transaction
T1 executes method add(4) over list (1,2,3) and transaction T2 executes method sum over the same
list. On the left-hand side, method sum returns 6. Even though transaction T2 starts after transaction
T1 commits, it does not see the changes T1 made. This is correct according to serializability, but not
according to strict serializability. On the right-hand side, method sum returns 10. Only this execution is
correct according to strict-serializability.

transactions was executing concurrently, and they can be reordered1 or interleaved as long as their

execution remains serializable.

Serializability does not require transactions to preserve execution order. Figure A.9 shows two

possible executions of two transactions T1 and T2 over list (1,2,3). Transaction T1 adds element

4 to the list, transaction T2 computes the sum of the elements on the list. Both executions that

Figure A.9 shows are correct according to serializability.

• Strict Serializability is a stronger correctness condition: On top of serializability, it requires that

transactions preserve execution order. Strict serializability does not allow the interleaving that

Figure A.9 shows on the left-hand side. Under strict serializability, the result of transaction T2 can

only be 10, as the right-hand side of Figure A.9 shows.

1Transactions executed by the same thread cannot be re-ordered.

168

Time

T1

T2 add(5)

add(6)

t1 t2 t3 t4

0 20

0 6 20

0 5 6 20

(c) At t4

(b) At t3

(a) At t1/t2

Figure A.10: Execution of two transactions using pessimistic concurrency control. Transactions T1 and
T2 execute line 10 of Figure A.8 at instants t1 and t2, respectively. At that time instant, a conflict for list
element 0 occurs between transactions T1 and T2. With pessimistic concurrency control, the TM detects
and resolves the conflict at that same time instant, allowing T1 to proceed and making T2 wait for T1 to
commit.

• Opacity is even stronger than strict serializability. Strict serializability only specifies what happens

to committed transactions. It does not say anything about what happens while a transaction is

running. Can a transaction break isolation and read dirty values from other transactions, as long

as it is guaranteed to abort?

Note that transactions that execute on TM systems can interact with non-transactional code and

perform irrevocable actions (e.g. sending an email). Therefore, these transactions cannot break

isolation and execute on inconsistent data, even if they are guaranteed to abort at commit time.

Guerraoui and Kapa lka [GK08] proposed opacity as a form of strict serializability in which both

running and aborted transactions must also preserve execution order. An opaque TM ensures that

all transactions always read a consistent version of the world, otherwise the tentative transaction

could not be part of the serial order because some work would have to appear before a conflicting

update from another transaction and some work would have to appear after. Opacity is a popular

correctness condition that most TMs provide.

A.3.2 Concurrency Control

Transactional Memory requires some synchronization to mediate concurrent access to data. Conflits occur

when two transactions perform conflicting operations on the same data — either two writes or a read

and a write. Conflicts are detected when the TM determines that the conflict has occurred. The conflict

is resolved when the TM takes some action to avoid the conflict. These three events (conflict, detection,

and resolution) can occur at different times, but not in a different order. Different concurrency control

approaches differ on when each of the events happen.

• Pessimistic concurrency control detects and resolves conflicts at the same time they occur.

With this type of concurrency control, transactions acquire exclusive control of data before accessing

it and release all resources only after they finish. Figure A.10 shows an example of pessimistic

concurrency control, where two transaction T1 and T2 attempt to add elements 5 and 6, respectively,

to list (0, 20) and transaction T2 ends up waiting for transaction T1 to commit before being able

to acquire the data it needs to make progress.

169

Time

T1

T2

add(6)

add(5) add(5)

t1 t2 t3 t4 t5

0 20

0 6 20

0 5 6 20

(c) At t5

(b) At t3/t4

(a) At t1/t2

Figure A.11: Execution of two transactions using optimistic concurrency control. Transactions T1 and
T2 execute line 10 of Figure A.8 at instants t1 and t2, respectively. At t2, a conflict for list element 0
occurs between transactions T1 and T2. At t3, transaction T1 commits. With optimistic concurrency
control, the TM detects and resolves the conflict when transaction T2 attempts to commit at instant t4.
In this particular example, the TM rolls-back transaction T23 and executes it again with the changes
that transaction T1 made to the list.

• Optimistic concurrency control detects and resolves conflicts after they occur. This type

of concurrency control allows concurrent transactions to access the same data and to continue

executing even if they conflict, as long as the TM detects and resolves these conflicts before a

transactions commits. Figure A.11 shows an example of optimistic concurrency control for the

same example described in the previous paragraph. However, instead of waiting, one of the two

concurrent transactions is allowed to commit while the other is rolled-back and executed again. Note

that the transaction that is rolled-back always sees a consistent state and never breaks isolation.

Both approaches require a careful implementation to ensure progress. Pessimistic concurrency control

has to avoid deadlock — two transactions T1 and T2 attempt to acquire locks A and B in reverse order

— and optimistic concurrency control has to avoid livelock — transaction T1 forces transaction T2 to be

aborted only for transactio T2, on restart, force transaction T1 to abort. Pessimistic concurrency control

works best when conflicts are common and optimistic concurrency control when conflicts are rare.

A.3.3 Version Management

A memory transactions performs several changes as it executes. The TM has to manage those tentative

changes, isolating them from other concurrent transactions but making them visible after the transaction

commits.

• Eager version management or direct update modifies the data directly in memory and keeps

the overwritten values on an undo-log so that the TM can abort and roll-back the transaction.

Eager version management requires pessimistic concurrency control because the transaction requires

exclusive access to the location to write to it directly.

• Lazy version management or deferred update delays the updates until the transaction commits.

Each transaction keeps its tentative writes on a redo-log. Reads have to consult the log so that they

see earlier writes made by the same transaction. When a transaction commits, the TM copies the

values from the redo-log to their actual memory locations. Aborting a transaction is as simple as

discarding the redo-log.

170

A.3.4 Conflict Detection

The insight behing using TM for optimistic concurrency control is that the instant in which an optimistic

TM detects a conflict can be different from the instant in which that conflict occurs.

• Eager conflict detection is when the TM detects conflicts for each transaction T when T declares

its intent to access shared data or when T references shared data for the first time. At that point,

the TM can check if the data that T is about to access is not stale, i.e. not overwritten by any

other concurrent transaction.

• Lazy conflict detection is when the TM logs all accesses made during each transaction on a

read-set and validates that the data that a transaction has read is not stale when the transaction

tries to commit.

A.3.5 Nesting

A nested transaction is a transaction whose execution is contained by another transaction. If we assume

that transactions can have at most one pending child transaction (linear nesting), that the inner trans-

action can see changes made by the outer transaction, and that there is just one thread running within

each transaction; the behavior of nested transactions can follow one of the following options:

• Flattened Nesting propagates the abort of an inner transaction, causing the surrounding trans-

action to abort too. Committing the inner transaction, however, has no effect until the surrounding

transaction commits.

• Closed Nesting allows the inner transaction to abort without terminating its surrounding trans-

action.

• Open Nesting commits inner transactions globally, making their changes visible to every other

transaction in the system. This happens even if the surrounding transaction is still executing. The

TM does not undo the results of committed open transactions if the surrounding transaction aborts.

A TM system can provide support for multiple nested transactions to take place in parallel inside the

same surrounding transaction. This alternative to linear nesting is called parallel nesting.

A.4 Multiversioned Transactional Memory and the JVSTM

The Java Versioned Software Transactional Memory (JVSTM) [CRS06] is a software implementation of

a Transactional Memory that provides optimistic concurrency control through lazy version management,

lazy conflict detection, and implements a flat nesting model. JVSTM uses special memory locations

to keep transactional values. These memory locations are called Versioned Boxes, or just VBoxes. A

conventional memory location keeps a single value which is the last value that was written to it. A

VBox is unconventional because it keeps a history of values that were written to it. This section explains

how JVSTM uses VBoxes to ensure isolation between concurrent transactions and to provide opaque

transaction semantics. Section 3.3 shall explain how to use JVSTM and its VBoxes to support DSU on

transactional applications.

171

1 class VBoxList {
2 final Node head;
3
4 void add(int el) {
5 Node n = new Node();
6 n.element = el;
7
8 Node p = head;
9

10 while (p.next != null && p.element > el)
11 p = p.next.get();
12
13 p.next.put(n);
14 }
15 ...
16 }
17
18 class Node {
19 final int element;
20 VBox<Node> next = new VBox();
21
22 Node(int el) {
23 element = el;
24 }
25 }

Figure A.12: Implementation of a sorted list using VBoxes. Field Node.next, declared in line 20, is
wrapped by a VBox. The ellipsis represents the code for other list methods, which are similar to the code
that shows except that all lines that read/write field Node.next are modified in the same way as lines
11/13.

A.4.1 Transactional Sorted List using JVSTM

JVSTM requires the programmer wrap VBoxes around transactional memory locations: The memory

locations that must be isolated from modifications made by concurrent transactions.

In the example of the sorted list that we have been following, introduced in Section A.1, the only

field that needs to be isolated between transactions is Node.next.2 Figure A.12 shows how to adapt the

sequential code, shown in Figure A.2, to use VBoxes to keep field Node.next.

A.4.2 Transactions, Versions, and Global Clock

The left-hand side of Figure A.13 shows an example of a JVSTM transaction T that adds element 5 to

list (1,10). JVSTM uses a global logical clock to serialize transactions. When a transaction starts, it

reads the global clock and uses the current value as its transaction number. When a transaction commits,

JVSTM increments the global clock and assigns the new value as the transaction commit number.

Each VBox keeps an history of values that transactions have written to it. In the example that we

are following, transaction T adds element 5 to the list (1,10). The right-hand side of Figure A.13 shows

how a list implemented using VBoxes looks before and after transaction T executes. Note that T creates

a new node and adds it as a new version to the history of the VBox on field 1.next. Also, note that

all new versions that T creates — on the VBoxes on fields 1.next and 5.next — are tagged with the

commit number of T — 4 in this case.

The commit number provides a clear way to serialize transactions. It is a direct representation of a

sequential ordering that is equivalent to the execution of multiple concurrent transactions. For instance,

Figure A.14 shows a scenario in which two concurrent transactions T1 and T2 add elements 11 and 5,

respectively, to list (1,10). Using their commit number, we can see that this execution is equivalent to

2This is highlighted by the fact that all other fields are marked as final.

172

Time

3 4

Global clock 3 4

T add(5)

t1 t2

1 2 10

1 4
2

5 4 10

After t2

Before t2

Figure A.13: Example of a JVSTM transaction. The initial list and the global clock are, at instant
t1, (1,10) and 3, respectively. VBoxes are represented as stacks of black squares, in which each square
represents a version that the VBox keeps associated with the timestamp written in white letters. At t1,
field next on node 1 has Vbox 1.next with just one version that refers to node 10 and has timestamp
2. The transaction executes method add(5) and it commits at instant t2, adding a new version to VBox
1.next that keeps a reference to node 5 with timestamp 4.

Time

3 4

3 5

T1

T2

t1 t2 t3

add(11)

add(5)

1 2 10 2

1 2 10 4
2

112

1 5
2

5 2 10 4
2

11

At t3

At t2

At t1

Figure A.14: Example of two JVSTM concurrent transactions that do not conflict. The initial list and
the global clock are, at instant t1, (1,10) and 3, respectively. At instant t2, transaction T1 commits and
adds a version to VBox 10.next, with timestamp 4 and value 11. The gray box represents the read-set
of transaction T2 — in this case just VBox 1.next. At instant t3, transaction T2 is able to validate its
read-set, because all VBoxes it contains have a smaller timestamp than the start timestamp of T2, and
thus T2 commits and adds a version to VBox 1.next with timestamp 5 and value 5.

executing T1 and then T2 in sequence.

Besides providing a total order between transactions, the global logical clock also allows JVSTM to

detect conflicts. In addition to its transaction number, a JVSTM transaction also keeps a local set of

all the VBoxes that it read: The read-set. JVSTM can use these three elements — the transaction

number, the transaction read-set, and the current value of the global logical clock — to detect conflicts

when a transaction tries to commit. For instance, let us consider a simple change to the execution that

Figure A.14 so that transactions T2 commits first and gets commit number 4 instead of 5. Figure A.15

shows such an execution. In this execution, transaction T1 has Vbox 1.next on its read-set. The latest

version of this VBox is higher than the transaction number of T1. This means that T1 read stale data

because another committed transaction, T2 in this case, has modified something that T1 read.3

The program code that uses JVSTM must delimit transactions. When a conflict occurs, the commit

method throws a CommitException that the program code must handle to resolve that conflict. A

3This is a benign conflict because T1 could still be allowed to commit without violating the list semantics.
However this is not always the case. By detecting read-write conflicts, JVSTM ensures that the commit number
of each always transaction generates a totally ordered sequential execution, at the cost of false-positive conflicts
like this. It is possible to avoid benign conflicts with other JVSTM mechanisms [PC11b].

173

Time

3

43

T1

T2

t1 t2

add(5)

add(11)
1 2 10 2

1 4
2

5 2 10 24
2

2

At t2

At t1

Figure A.15: Example of two JVSTM concurrent transactions that conflict. The initial list and the
global clock are, at instant t1, (1,10) and 3, respectively. At instant t2, transaction T2 commits and adds
a version to VBox 1.next, with timestamp 4 and value 5. The gray boxes represent the read-set of
transaction T1 — VBoxes 1.next and 10.next. After instant t2, transaction T1 is no longer able to
validate its read-set, because VBox 1.next has a version with a timestamp greater than the timestamp
of T1.

possible way to resolve conflicts is to roll-back the transaction, by aborting it, and try it again. The

retrying transaction will now be able to see the changes that made it roll-back. Figure A.16 shows how to

adapt method add, shown in Figure A.12, to resolve conflicts that way. JVSTM provides an annotation

@Atomic that performs this transformation automatically to annotated methods that already use VBoxes.

During its execution, JVSTM transactions can perform tentative writes to existing VBoxes. Those

writes become permanent, and globally visible to other transactions, only when the transaction commits.

While a transaction executes, JVSTM keeps its tentative writes makes in a map that is private to that

transaction. This map is called the write-map and associates each VBox that the transaction wrote with

the respective new value. This means that JVSTM has to lookup the write-map when the transaction

reads a VBox so that the transaction can read its own writes. When the transaction commits, JVSTM

copies all the values on the write-map as new versions to their respective VBoxes, labelled with the

transaction commit number.

We can now understand all the steps that JVSTM takes to commit a transaction:

1. Acquire a global lock;

2. Validate that all the VBoxes on the transaction read-set are still valid, i.e. their latest version

number is not greater than the transaction number. Abort the transaction if any box fails to

validate;

3. Increment the global logical clock and assign the new value as the transaction commit number;

4. Write all the values on the write-map back to their respective VBoxes, as new versions labelled

with the transaction commit number;

5. Release the global lock.

The global lock mentioned in steps 1 and 5 ensure that only one transaction can commit at the same

time. This vastly simplifies validating the read-set and ensuring that each transaction gets an unique

commit number. However, it is a bottleneck that limits the maximum rate of commits that JVSTM can

process. There is an alternative commit algorithm [FC11] that performs steps 2–4 providing a lock-free

progress guarantee.

174

1 class JVSTMList extends VBoxList {
2 void add(int el) {
3 while (true) {
4 Transaction.begin();
5 boolean txFinished = false;
6 try {
7 super.add(el);
8 Transaction.commit();
9 txFinished = true;

10 return;
11 } catch (CommitException e) {
12 Transaction.abort();
13 txFinished = true;
14 } finally {
15 if (!txFinished)
16 Transaction.abort();
17 }
18 }
19 }
20 ...
21 }

Figure A.16: Implementation of a sorted list with atomic operations using JVSTM. The ellipsis on line 7
represents the body of method add shown in Figure A.12. The exception handler on line 11 aborts the
transaction if a conflict happens at commit time, on line 8. Line 16 aborts the transaction if the original
body fails for any other reason. On either case, the loop on lines 3–18 keeps retrying the transaction
until it eventually commits successfully, in which case line 10 breaks the loop. All other methods of can
be adapted to use JVSTM by changing them to use VBoxes, as Figure A.12 shows, and then wrapping
them with the code that this figure shows.

175

176

Bibliography

[ABBS05] Gautam Altekar, Ilya Bagrak, Paul Burstein, and Andrew Schultz. OPUS: Online Patches
and Updates for Security. In Proceedings of the 14th Conference on USENIX Security Sym-
posium, SSYM, 2005.

[AK09] Jeff Arnold and M. Frans Kaashoek. Ksplice: Automatic Rebootless Kernel Updates. In
Proceedings of the 4th ACM European Conference on Computer Systems, EuroSys, 2009.

[AM95] Malcolm Atkinson and Ronald Morrison. Orthogonally Persistent Object Systems. The
VLDB Journal, 4(3), 1995.

[AVWW96] Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams. Concurrent Program-
ming in Erlang. Prentice Hall, second edition, 1996.

[BAC+13] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding,
Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov, Dmitri Petrov,
Lovro Puzar, Yee Jiun Song, and Venkat Venkataramani. TAO: Facebook’s Distributed
Data Store for the Social Graph. In Proceedings of the 2013 USENIX Conference on Annual
Technical Conference, USENIX ATC, 2013.

[BD93] Toby Bloom and Mark Day. Reconfiguration and module replacement in Argus: theory and
practice. Software Engineering Journal, 8, 1993.

[BFdH+13] Sebastian Burckhardt, Manuel Fahndrich, Peli de Halleux, Jun Kato, Sean McDirmid, Michal
Moskal, and Nikolai Tillmann. It’s Alive! Continuous Feedback in UI Programming. In
Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI, 2013.

[BGH+06] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKin-
ley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Mar-
tin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar,
Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. The
DaCapo Benchmarks: Java Benchmarking Development and Analysis. In Proceedings of the
21st Annual ACM SIGPLAN Conference on Object-oriented Programming Systems, Lan-
guages, and Applications, OOPSLA, 2006.

[BGW93] Daniel G. Bobrow, Richard P. Gabriel, and Jon L. White. Object-oriented programming.
chapter CLOS in Context: The Shape of the Design Space. 1993.

[BHA+05] Andrew Baumann, Gernot Heiser, Jonathan Appavoo, Dilma Da Silva, Orran Krieger,
Robert W. Wisniewski, and Jeremy Kerr. Providing Dynamic Update in an Operating
System. In Proceedings of the 2005 Conference on USENIX Annual Technical Conference,
USENIX ATC, 2005.

[BHSS03] Gavin Bierman, Michael Hicks, Peter Sewell, and Gareth Stoyle. Formalizing Dynamic
Software Updating. In Proceedings of the 2nd International Workshop on Unanticipated
Software Evolution, USE, 2003.

[BKMS98] David F. Bacon, Ravi Konuru, Chet Murthy, and Mauricio Serrano. Thin Locks: Feather-
weight Synchronization for Java. In Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation, PLDI, 1998.

177

[BLC02] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. ASM: A Code Manipulation Tool to
Implement Adaptable Systems. In Adaptable and Extensible Component Systems, 2002.

[BLS03a] Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Ownership Types for Object
Encapsulation. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL, 2003.

[BLS+03b] Chandrasekhar Boyapati, Barbara Liskov, Liuba Shrira, Chuang-Hue Moh, and Steven Rich-
man. Lazy Modular Upgrades in Persistent Object Stores. In Proceedings of the 18th Annual
ACM SIGPLAN Conference on Object-oriented Programing, Systems, Languages, and Ap-
plications, OOPSLA, 2003.

[BPN08] Gavin Bierman, Matthew Parkinson, and James Noble. UpgradeJ: Incremental Typechecking
for Class Upgrades. In Proceedings of the 22Nd European Conference on Object-Oriented
Programming, ECOOP, 2008.

[Bre01] Eric A. Brewer. Lessons from Giant-Scale Services. IEEE Internet Computing, 2001.

[BTW07] Tim Boudreau, Jaroslav Tulach, and Geertjan Wielenga. Rich Client Programming: Plugging
into the NetbeansTMPlatform. Prentice Hall, first edition, 2007.

[CCZ+06] Haibo Chen, Rong Chen, Fengzhe Zhang, Binyu Zang, and Pen-Chung Yew. Live Updating
Operating Systems Using Virtualization. In Proceedings of the 2Nd International Conference
on Virtual Execution Environments, VEE, 2006.

[CPN98] David G. Clarke, John M. Potter, and James Noble. Ownership Types for Flexible Alias
Protection. In Proceedings of the 13th ACM SIGPLAN Conference on Object-oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA, 1998.

[CRS06] João Cachopo and António Rito-Silva. Versioned Boxes As the Basis for Memory Transac-
tions. Science of Computer Programming, 63(2), 2006.

[CYC+07] Haibo Chen, Jie Yu, Rong Chen, Binyu Zang, and Pen-Chung Yew. POLUS: A POwerful
Live Updating System. In Proceedings of the 29th International Conference on Software
Engineering, ICSE, 2007.

[DA99] Misha Dimitriev and Malcolm P. Atkinson. Evolutionary Data Conversion in the PJama
Persistent Language. In Proceedings of the Workshop on Object-Oriented Technology, 1999.

[Dic01] David Dice. Implementing Fast Java Monitors with Relaxed-locks. In Proceedings of the 2001
Symposium on JavaTM Virtual Machine Research and Technology Symposium - Volume 1,
JVM, 2001.

[Dmi01] M. Dmitriev. Towards Flexible and Safe Technology for Runtime Evolution of Java Language
Applications. In Proceedings of the Workshop on Engineering Complex Object-Oriented Sys-
tems for Evolution, 2001.

[DN09a] Tudor Dumitraş and Priya Narasimhan. Toward Upgrades-as-a-service in Distributed Sys-
tems. In Proceedings of the 10th ACM/IFIP/USENIX International Conference on Middle-
ware, Middleware, 2009.

[DN09b] Tudor Dumitraş and Priya Narasimhan. Why Do Upgrades Fail and What Can We Do
About It?: Toward Dependable, Online Upgrades in Enterprise System. In Proceedings of
the 10th ACM/IFIP/USENIX International Conference on Middleware, Middleware, 2009.

[EVDB05] Peter Ebraert, Yves Vandewoude, Theo D’Hondt, and Yolande Berbers. Pitfalls in unantic-
ipated dynamic software evolution. In Proceedings of the Workshop on Reflection, AOP and
Meta-Data for Software Evolution, SSYM, 2005.

[Fab76] Robert S. Fabry. How to Design a System in Which Modules Can Be Changed on the Fly.
In Proceedings of the 2nd International Conference on Software Engineering, ICSE, 1976.

[FC11] Sérgio Miguel Fernandes and João Cachopo. Lock-free and Scalable Multi-version Software
Transactional Memory. In Proceedings of the 16th ACM Symposium on Principles and Prac-
tice of Parallel Programming, PPoPP, 2011.

178

[FMZ+95] Fabrizio Ferrandina, Thorsten Meyer, Roberto Zicari, Guy Ferran, and Joëlle Madec. Schema
and Database Evolution in the O2 Object Database System. In Proceedings of the 21th
International Conference on Very Large Data Bases, VLDB, 1995.

[Gem14] GemStone Systems, Inc. GemStone/S 64 bit programming guide, release
3.2. http://downloads.gemtalksystems.com/docs/GemStone64/3.2.x/
GS64-ProgGuide-3.2/, 2014.

[GJB96] Deepak Gupta, Pankaj Jalote, and Gautam Barua. A Formal Framework for On-line Software
Version Change. IEEE Transactions on Software Engineering, 22(2), 1996.

[GJS96] James Gosling, Bill Joy, and Guy L. Steele. The Java Language Specification. Addison-
Wesley Longman Publishing Co., Inc., 1st edition, 1996.

[GK08] Rachid Guerraoui and Michal Kapalka. On the Correctness of Transactional Memory. In
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP, 2008.

[GKT13] Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. Safe and Automatic Live
Update for Operating Systems. In Proceedings of the Eighteenth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS, 2013.

[GKV07] Rachid Guerraoui, Michal Kapalka, and Jan Vitek. STMBench7: A Benchmark for Soft-
ware Transactional Memory. In Proceedings of the 2Nd ACM SIGOPS/EuroSys European
Conference on Computer Systems, EuroSys, 2007.

[GR83] Adele Goldberg and David Robson. Smalltalk-80: the language and its implementation.
Addison-Wesley Longman Publishing Co., Inc., 1983.

[GR09] Hendrik Gani and Caspar Ryan. Improving the transparency of proxy injection in java. In
Proceedings of the Thirty-Second Australasian Conference on Computer Science - Volume
91, ACSC, 2009.

[GRC11] Bashar Gharaibeh, Hridesh Rajan, and J. Morris Chang. Analyzing Software Updates:
Should You Build a Dynamic Updating Infrastructure? In Proceedings of the 14th Interna-
tional Conference on Fundamental Approaches to Software Engineering, FASE, 2011.

[Gus03] Jens Gustavsson. A Classification of Unanticipated Runtime Software Changes in Java. In
Proceedings of the International Conference on Software Maintenance, ICSM, 2003.

[HLR10] Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory. Morgan and Claypool
Publishers, 2nd edition, 2010.

[HMH+12] Christopher M. Hayden, Stephen Magill, Michael Hicks, Nate Foster, and Jeffrey S. Foster.
Specifying and Verifying the Correctness of Dynamic Software Updates. In Proceedings of the
4th International Conference on Verified Software: Theories, Tools, Experiments, VSTTE,
2012.

[HSD+12] Christopher M. Hayden, Edward K. Smith, Michail Denchev, Michael Hicks, and Jeffrey S.
Foster. Kitsune: Efficient, General-purpose Dynamic Software Updating for C. In Pro-
ceedings of the ACM International Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA, 2012.

[HSH+12] Christopher M. Hayden, Edward K. Smith, Eric A. Hardisty, Michael Hicks, and Jeffrey S.
Foster. Evaluating Dynamic Software Update Safety Using Systematic Testing. IEEE Trans-
actions on Software Engineering, 38(6), 2012.

[HSHF11] Christopher M. Hayden, Edward K. Smith, Michael Hicks, and Jeffrey S. Foster. State
Transfer for Clear and Efficient Runtime Updates. In Proceedings of the 3rd Workshop on
Hot Topics in Software Upgrades, HotSWUp, 2011.

[HSHF12] Christopher M. Hayden, Karla Saur, Michael Hicks, and Jeffrey S. Foster. A Study of
Dynamic Software Update Quiescence for Multithreaded Programs. In Proceedings of the
4th International Workshop on Hot Topics in Software Upgrades, HotSWUp, 2012.

179

http://downloads.gemtalksystems.com/docs/GemStone64/3.2.x/GS64-ProgGuide-3.2/
http://downloads.gemtalksystems.com/docs/GemStone64/3.2.x/GS64-ProgGuide-3.2/

[JHM11] Richard Jones, Antony Hosking, and Eliot Moss. The Garbage Collection Handbook: The
Art of Automatic Memory Management. Chapman & Hall/CRC, 1st edition, 2011.

[KM90] Jeff Kramer and Jeff Magee. The Evolving Philosophers Problem: Dynamic Change Man-
agement. IEEE Transactions on Software Engineering, 16(11), 1990.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice Hall
Professional Technical Reference, 2nd edition, 1988.

[KT08] Dong Kwan Kim and Eli Tilevich. Overcoming jvm hotswap constraints via binary rewrit-
ing. In Proceedings of the 1st International Workshop on Hot Topics in Software Upgrades,
HotSWUp ’08, 2008.

[Kul07] Eugene Kuleshov. Using the ASM framework to implement common Java bytecode trans-
formation patterns. In Proceedings of the 6th International Conference on Aspect-Oriented
Software Development, AOSD, 2007.

[KV12] Jevgeni Kabanov and Varmo Vene. A thousand years of productivity: the JRebel story.
Software: Practice and Experience, 2012.

[LA04] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In Proceedings of the International Symposium on Code Gener-
ation and Optimization: Feedback-directed and Runtime Optimization, CGO, 2004.

[LB98] Sheng Liang and Gilad Bracha. Dynamic Class Loading in the Java Virtual Machine. In Pro-
ceedings of the 13th ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications, OOPSLA, 1998.

[LDS92] Barbara Liskov, Mark Day, and Liuba Shrira. Distributed object management in thor. In
Proceedings of the International Workshop on Distributed Object Management, IWDOM,
1992.

[LY99] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification. Addison-Wesley Long-
man Publishing Co., Inc., 2nd edition, 1999.

[MB09] Kristis Makris and Rida A. Bazzi. Immediate Multi-threaded Dynamic Software Updates
Using Stack Reconstruction. In Proceedings of the 2009 Conference on USENIX Annual
Technical Conference, USENIX ATC, 2009.

[MDHS09] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. Producing
Wrong Data Without Doing Anything Obviously Wrong! In Proceedings of the 14th In-
ternational Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS, 2009.

[ML05] Jeff McAffer and Jean-Michel Lemieux. Eclipse Rich Client Platform: Designing, Coding,
and Packaging Java(TM) Applications. Addison-Wesley, 2005.

[MPG+00] Scott Malabarba, Raju Pandey, Jeff Gragg, Earl Barr, and J. Fritz Barnes. Runtime Support
for Type-Safe Dynamic Java Classes. In Proceedings of the 14th European Conference on
Object-Oriented Programming, ECOOP, 2000.

[MR07] Kristis Makris and Kyung Dong Ryu. Dynamic and Adaptive Updates of Non-quiescent
Subsystems in Commodity Operating System Kernels. In Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems, EuroSys, 2007.

[MTLT08] Stephen Magill, Ming-Hsien Tsai, Peter Lee, and Yih-Kuen Tsay. THOR: A Tool for Rea-
soning About Shape and Arithmetic. In Proceedings of the 20th International Conference on
Computer Aided Verification, CAV, 2008.

[NH09] Iulian Neamtiu and Michael Hicks. Safe and Timely Updates to Multi-threaded Programs.
In Proceedings of the 30th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI, 2009.

180

[NHFP08] Iulian Neamtiu, Michael Hicks, Jeffrey S. Foster, and Polyvios Pratikakis. Contextual Ef-
fects for Version-consistent Dynamic Software Updating and Safe Concurrent Programming.
In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL, 2008.

[NHSO06] Iulian Neamtiu, Michael Hicks, Gareth Stoyle, and Manuel Oriol. Practical Dynamic Software
Updating for C. In Proceedings of the 27th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI, 2006.

[NMRW02] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer. CIL: Interme-
diate Language and Tools for Analysis and Transformation of C Programs. In Proceedings
of the 11th International Conference on Compiler Construction, CC, 2002.

[Obj13] Objectivity, Inc. Objectivity for java programmer’s guide, release 11.2. http://support.
objectivity.com/docs/objectivity/11_2_0/java/guide/html, 2013.

[Oraa] Oracle(TM). Java Platform Debugger Architecture. https://docs.oracle.com/
javase/6/docs/technotes/guides/jpda/.

[Orab] Oracle(TM). Java SE 1.4 Enhancements. http://download.java.net/jdk8/docs/
technotes/guides/jpda/enhancements1.4.html.

[ORH02] Alessandro Orso, Anup Rao, and Mary Jean Harrold. A Technique for Dynamic Updating
of Java Software. In Proceedings of the IEEE International Conference on Software Mainte-
nance, ICSM, 2002.

[OSG14] OSGiTMAlliance. Osgi Core Release 6 Specification. OSGiTMAlliance, 2014.

[PBG13] Mathias Payer, Boris Bluntschli, and Thomas R. Gross. DynSec: On-the-fly Code Rewrit-
ing and Repair. In Proceedings of the 5th Workshop on Hot Topics in Software Upgrades,
HotSWUp, 2013.

[PC11a] Lúıs Pina and João Cachopo. DuSTM - Dynamic Software Upgrades using Software Trans-
actional Memory. Technical Report 32/2011, 2011.

[PC11b] Lúıs Pina and João Cachopo. Profiling and Tuning the Performance of an STM-based Con-
current Program. In Proceedings of the Compilation of the Co-located Workshops on DSM’11,
TMC’11, AGERE! 2011, AOOPES’11, NEAT’11, & VMIL’11, SPLASH Workshops, 2011.

[PC12] Lúıs Pina and João Cachopo. Atomic Dynamic Upgrades Using Software Transactional Mem-
ory. In Proceedings of the 4th International Workshop on Hot Topics in Software Upgrades,
HotSWUp, 2012.

[PGS+11] Mario Pukall, Alexander Grebhahn, Reimar Schröter, Christian Kästner, Walter Cazzola,
and Sebastian Götz. JavAdaptor: Unrestricted Dynamic Software Updates for Java. In
Proceedings of the 33rd International Conference on Software Engineering, ICSE, 2011.

[PH16] Lúıs Pina and Michael Hicks. Automated Support for Testing Dynamic Software Updates.
In Proceedings of the 9th International Conference on Software Testing, Verification and
Validation, ICST, 2016. (Submitted).

[PVH13] Lúıs Pina, Lúıs Veiga, and Michael Hicks. Rubah: Efficient, General-purpose Dynamic
Software Updating for Java. In Proceedings of the 5th Workshop on Hot Topics in Software
Upgrades, HotSWUp, 2013.

[PVH14] Lúıs Pina, Lúıs Veiga, and Michael Hicks. Rubah: DSU for Java on a Stock JVM. In
Proceedings of the 2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA, 2014.

[RA00] Tobias Ritzau and Jesper Andersson. Dynamic Deployment of Java Applications. In Java
for Embedded Systems Workshop, 2000.

[Riv96] Fred Rivard. Smalltalk: a Reflective Language. In Proceedings of Reflection 96, 1996.

181

http://support.objectivity.com/docs/objectivity/11_2_0/java/guide/html
http://support.objectivity.com/docs/objectivity/11_2_0/java/guide/html
https://docs.oracle.com/javase/6/docs/technotes/guides/jpda/
https://docs.oracle.com/javase/6/docs/technotes/guides/jpda/
http://download.java.net/jdk8/docs/technotes/guides/jpda/enhancements1.4.html
http://download.java.net/jdk8/docs/technotes/guides/jpda/enhancements1.4.html

[RSM+10] Elnatan Reisner, Charles Song, Kin-Keung Ma, Jeffrey S. Foster, and Adam Porter. Using
Symbolic Evaluation to Understand Behavior in Configurable Software Systems. In Pro-
ceedings of the 32Nd ACM/IEEE International Conference on Software Engineering, ICSE,
2010.

[SHB+07] Gareth Stoyle, Michael Hicks, Gavin Bierman, Peter Sewell, and Iulian Neamtiu. Mutatis
Mutandis: Safe and Predictable Dynamic Software Updating. ACM Transactions on Pro-
gramming Languages and Systems, 29(4), 2007.

[SHM09] Suriya Subramanian, Michael Hicks, and Kathryn S. McKinley. Dynamic Software Updates:
A VM-centric Approach. In Proceedings of the 30th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI, 2009.

[SS75] Gerald Jay Sussman and Guy Lewis Steele. Scheme: An Interpreter for Extended Lambda
Calculus. Technical Report AI Memo No. 349, Massachusetts Institute of Technology, De-
cember 1975.

[Ste90] Guy Steele. Common Lisp: The Language. Digital Press, 1990.

[Tan07] Andrew S. Tanenbaum. Modern Operating Systems. 3rd edition, 2007.

[tio] TIOBE Software: Tiobe Index. http://www.tiobe.com/index.php/content/
paperinfo/tpci/index.html. Accessed July 2015.

[TS02] Eli Tilevich and Yannis Smaragdakis. J-Orchestra: Automatic Java Application Partitioning.
In Proceedings of the 16th European Conference on Object-Oriented Programming, ECOOP,
2002.

[VEBD06] Yves Vandewoude, Peter Ebraert, Yolande Berbers, and Theo D’Hondt. An Alternative
to Quiescence: Tranquility. In Proceedings of the 22Nd IEEE International Conference on
Software Maintenance, ICSM, 2006.

[Ver15] Versant Corp. Versant C++ Programmer’s Guide, Release 9.0. http://esd.actian.
com/product/Versant_Object_Database/9/docs/Versant_Object_Database_9_
Documentation, 2015.

[VF02] L. Veiga and P. Ferreira. Incremental replication for mobility support in OBIWAN. In Pro-
ceedings of the 22nd International Conference on Distributed Computing Systems, ICDCS,
2002.

[WWS10] Thomas Würthinger, Christian Wimmer, and Lukas Stadler. Dynamic Code Evolution for
Java. In Proceedings of the 8th International Conference on the Principles and Practice of
Programming in Java, PPPJ, 2010.

[Zic91] Roberto Zicari. A Framework for Schema Updates In An Object-Oriented Database System.
In Proceedings of the Seventh International Conference on Data Engineering, 1991.

182

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://esd.actian.com/product/Versant_Object_Database/9/docs/Versant_Object_Database_9_Documentation
http://esd.actian.com/product/Versant_Object_Database/9/docs/Versant_Object_Database_9_Documentation
http://esd.actian.com/product/Versant_Object_Database/9/docs/Versant_Object_Database_9_Documentation

	Introduction
	Challenges of Dynamic Software Updating
	When to update
	Migrate the program state
	Update induced pause
	Steady-state overhead
	Update correctness

	Goals
	Flexibility
	Correctness
	Efficiency
	Effectiveness

	Past Work
	Thesis Statement
	Contributions
	Structure of this document

	State of the Art
	Classification of Dynamic Software Updating Systems
	Timing
	Unrestricted
	Quiescence
	Manual Identification of Update Points
	Transactions

	State Transformation
	Automatic
	Indirect
	Direct

	Semantics
	Offline
	Immediate
	Lazy

	Formal Approaches
	General Update Correctness
	Update Calculus
	Update Modularity Conditions

	Compiled Imperative Languages — C
	Update Preparation Methodology
	Timing
	Unrestricted
	Quiescence
	Manually Identified Update Points

	Code Updates
	Data Updates
	State Transformation and Semantics
	Discussion
	Effectiveness
	Efficiency
	Flexibility
	Correctness

	Managed Object-Oriented Languages — Java
	Implementation Level
	JVM Level
	Bytecode Level

	Flexibility
	Internal Class Changes
	External Class Changes

	Timing
	Unrestricted
	Quiescence

	Update Semantics
	Immediate Updates
	Lazy

	State Transformation
	Automatic
	Assisted

	Discussion
	Flexibility
	Efficiency
	Correctness
	Effectiveness

	Object-Oriented Database Management Systems
	Language Bindings
	Change Detection
	Change API
	Schema Comparison
	Hybrid Approaches

	Update Semantics
	Lazy
	Deferred
	Immediate
	Offline

	State Transformation
	Automatic Transformation
	Assisted Transformation
	Manual Transformation

	Discussion

	Programming Language Support for DSU
	Common LISP
	Smalltalk
	Erlang
	UpgradeJ
	Discussion

	Other Approaches
	Modular Systems
	Distributed Systems

	Discussion
	Flexibility
	Efficiency
	Effectiveness
	Correctness
	Rest of this document

	Composable Updates
	Claims
	Notation
	Atomic Dynamic Software Updates with DuSTM
	Updatable Application Example
	Atomic Updates and Quiescence
	Immediate Update Semantics
	Lazy Update Semantics
	Program-State Migration Semantics
	Developing and Updating Applications
	Updatable Application Structure
	Development Process
	Migrating the Program State

	Implementing Atomic Updates
	Handles as Transactional Proxies
	Supporting Inheritance
	Downward Methods
	Default and Updward Methods

	Post-Processing Method Bodies
	Constructing Updatable Instances
	Method Signatures and Overloading
	Receiver Reference this
	Replacing Handles by Direct References

	Object Identity Semantics
	Limitations
	Reflection

	Optimizations

	Experimental Evaluation
	Updating an STM Based Application
	Maximum Latency
	Steady State Overhead
	Throughput
	Migrated Instances
	Maximum Latency of Constant Operations

	Cost of the Handles
	Experimental Setup
	Performance Overhead
	Memory Overhead

	Discussion

	Efficient Real-World Updates
	Claims
	Dynamic Software Updates with Rubah
	Workflow
	Updatable Application Example
	Quiescence and Update Points
	Control-flow Migration
	State Transformation

	State Transformation Algorithms
	Notation
	Parallel State Transformation Algorithm
	Lazy State Transformation Algorithm
	Correctness Conditions
	Algorithm

	Implementing Efficient Updates
	Name Mangling and Class Replacement
	State Transformation
	Visited Map
	Lazy Proxies.
	Wait Freedom

	Bytecode Rewriting
	Portability Among JVMs

	Evaluation
	Updatable Applications
	Programmer Effort
	Experimental Setup
	Steady-State Overhead
	Parallelizing State Transformation
	Performing Updates
	Post-update performance

	Discussion
	Flexibility
	Efficiency
	Effectiveness
	Correctness

	Correct Updates
	Claims
	Failures during Dynamic Software Updating
	Updatable Applications
	Update Points
	Control-flow Migration
	Data Migration

	DSU Failures

	Tedsuto — A Framework for DSU Testing
	Architecture
	Adapting Existing Tests
	Exploring Update Opportunities
	DSU Testing
	Control-flow Reboots
	Intensive Update Testing
	Extensive Update Testing

	Experimental Evaluation
	Experimental Configuration
	Manual Effort
	Overhead
	Intensive Update Testing: Practical Coverage
	Extensive Update Testing: Sampling Effectiveness
	Bugs Found
	Resource Leak
	Internal Data-races in Rubah
	Lock Timeout
	New FTP Command
	Batch FTP Commands
	Slow SQL Query
	Early update-point
	Wrong Update-point

	Discussion

	Conclusion
	Contributions
	Future Work

	Appendices
	Transactional Memory
	Concurrent Application Example
	Transactions as Composable Concurrency Control
	Basic Concepts of Transactional Memory
	Semantics and Consistency
	Concurrency Control
	Version Management
	Conflict Detection
	Nesting

	Multiversioned Transactional Memory and the JVSTM
	Transactional Sorted List using JVSTM
	Transactions, Versions, and Global Clock

