
Concurrent and Distributed CloudSim Simulations

Pradeeban Kathiravelu
INESC-ID Lisboa

Instituto Superior Técnico, Universidade de Lisboa
Lisbon, Portugal

Email: pradeeban.kathiravelu@tecnico.ulisboa.pt

Luis Veiga
INESC-ID Lisboa

Instituto Superior Técnico, Universidade de Lisboa
Lisbon, Portugal

Email: luis.veiga@inesc-id.pt

Abstract—Cloud Computing researches involve a tremendous
amount of entities such as users, applications, and virtual ma-
chines. Due to the limited access and often variable availabil-
ity of such resources, researchers have their prototypes tested
against the simulation environments, opposed to the real cloud
environments. Existing cloud simulation environments such as
CloudSim and EmuSim are executed sequentially, where a more
advanced cloud simulation tool could be created extending them,
leveraging the latest technologies as well as the availability of
multi-core computers and the clusters in the research laboratories.
This research seeks to develop Cloud2Sim, a concurrent and
distributed cloud simulator, extending CloudSim while exploiting
the features provided by Hazelcast, Infinispan and Hibernate
Search to distribute the storage and execution of the simulation.

I. INTRODUCTION

Simulations empower the researchers with an effective
and quicker way to test the prototype developments of their
research. As cloud computing environments consist of data
centers and applications distributed on a planetary-scale, cloud
simulations are used for evaluating algorithms and strategies
that are under research and development. While some of
the simulators are general-purpose, others focus on a nar-
rower domain. CloudSim [1], EmuSim [2], SimGrid [3], and
GreenCloud [4] are some of the mostly used general-purpose
cloud simulation environments. MDCSim [5] and DCSim [6]
are simulators designed specifically for datacenter simulation.
OverSim [7], PlanetSim [8], and PeerSim [9] are simulators for
peer-to-peer and overlay networks. Many grid simulators such
as SimGrid [3] evolved into cloud simulators, or have been
extended into a cloud simulator.

Cloud simulation environments require a considerable
amount of memory and processing power to simulate a complex
cloud scenario. Processors are increasingly becoming more
powerful with multi-core architectures. Computing clusters in
the research laboratories themselves could be used to run
complicated large simulations in a distributed manner, as in
BOINC derivatives [10]. However, current simulation tools
provide limited support to utilize these resources, as they are
mostly written with a sequential execution model targeting
to run on a single server. This work researches and imple-
ments a concurrent and distributed cloud simulator, named
“Cloud2Sim”, using the distributed shared memory provided by
Hazelcast [11] and Infinispan [12], while exploiting the search
capabilities offered by Hibernate search [13].

Originally developed as GridSim, a grid simulation tool,
CloudSim was later extended as a Cloud Simulation environ-
ment. Initially having GridSim as a major building block [14],

CloudSim was further developed as a cloud simulator on its
own. Due to its modular architecture which facilitates cus-
tomizations, it is extended into different simulation tools such
as CloudAnalyst [15] and NetworkCloudSim [16]. Developed
in Java, CloudSim is portable. CloudSim can be easily modified
by extending the classes, with a few changes to the CloudSim
core. Its source code is open and maintained. Hence, CloudSim
was picked as the core module to build the distributed simulator.

In the remaining of the paper, we will discuss the pre-
liminary background information on CloudSim in section II.
Section III discusses design and implementation of Cloud2Sim,
and how CloudSim is customized and extended to be a dis-
tributed and concurrent cloud simulator. Section IV presents
some preliminary evaluation results. Section V closes the paper
with some conclusions and ongoing efforts.

II. BACKGROUND

A. CloudSim

CloudSim defines the parameters of the cloud environ-
ments such as hosts, VMs, applications, and datacenters by
the instances of different classes. Datacenter is the resource
provider which simulates infrastructure as a service. Multiple
hosts are created inside datacenters [17]. There should be
at least one datacenter in the system, for CloudSim to start
execution. DatacenterBroker is responsible for application
scheduling and coordinating the resources. Datacenter broker
functions as the coordinating entity of resources and user
applications. A single broker or a hierarchy of brokers can be
initiated depending on the simulation scenario.

Fig. 1. CloudSim scheduling operations

Figure 1 shows how a cloud environment is represented by
the architecture of CloudSim in a high level, focusing on the
resource scheduling. CPU unit is defined by Pe (Processing
Element) in terms of million instructions per second (MIPS).



Multi-core processors are created by adding multiple Pe objects
to the list of processing elements. All processing elements of
the same machine have the same processing power (MIPS). Pro-
cessing elements are the shared resources. Cloudlets represent
the applications that share these resources among them. Status
of a processing element can be FREE (1), BUSY/Allocated (2),
or FAILED (3), indicating its availability for the cloudlet.

Each of the VMs is assigned to a host. Each cloudlet is
assigned to a VM, and the processing elements are shared
among the VMs in a host and among the executing cloudlets
in the VMs. Complicated real-world cloud scenarios can be
simulated by appropriately extending the broker and the other
classes. Virtual machines and cloudlets are created and added
to the respective lists. Once the simulation is started, the list of
cloudlets and virtual machines are submitted to the broker. The
broker handles the allocation of VMs to the hosts and cloudlets
to the VMs, and leads the simulation behavior such as deciding
which of the available cloudlets to be executed next.

B. Hazelcast

Hazelcast provides the distributed implementations for
the java.util.concurrent package. By extending the concurrent
hashmaps, executor service, and other data structures to func-
tion in a distributed environment, Hazelcast facilitates a seam-
less development and deployment of a distributed execution
environment. Computer nodes running Hazelcast can join or
create a Hazelcast cluster using either multicast or TCP-IP.
Multiple Hazelcast instances can also be created from a single
node by using different ports, hence providing a distributed
execution inside a single machine. The Hazelcast monitoring
tool monitors the execution and the distribution of the data
structures across the partitions, as well as the status and health
of the nodes. As a distributed in-memory data grid, Hazelcast
has been already used in researches, mostly to distribute the
storage across multiple instances [18].

C. Infinispan

Infinispan is a distributed key/value data-grid [12]. When
used as a cluster-aware data-grid over multiple nodes, Infinis-
pan can execute applications that would not run on a single
node/computer due to the limited availability of resources. By
utilizing multiversion concurrency control, Infinispan permits
concurrent readers and writers, opposed to the coarse grained
Java concurrency control and synchronization. Hence, when
used as a local in-memory cache, Infinispan outperforms Con-
currentHashMap.

While Infinispan can be used as a distributed cache for
scaling the storage and execution out, fault-tolerance can be
achieved with Infinispan as a replicated cache. Built-in eviction
allows Infinispan to store huge objects that do not fit into the
memory, by integrating with a persistency layer consisting of
relational or NoSQL databases. Infinispan has been used in
many researches, as an in-memory data-grid. Infinispan depends
on two-phase commit based replication, which can further be
made more efficient with partial replication techniques with
weak consistency [19].

Hazelcast and Infinispan have similar functionality, and both
can be used as an in-memory cache to build a Data-as-a-Service
solution. While Infinispan has been optimized to function as a

distributed as well as a local cache, Hazelcast targets mostly to
be a distributed cache.

III. CLOUD2SIM

Cloud2Sim, our contribution, is designed to be run on top
of a cluster. It uses Hazelcast and Infinispan to distribute the
storage of VM, Cloudlet, and datacenter objects and also to
distribute the execution to the instances in the cluster. Users
have the freedom to choose Hazelcast based or Infinispan
based distribution, customize to use both, or develop their own
distribution methodology.

Fig. 2. Cloud2Sim Architecture

A. Architecture and Design

Figure 2 depicts a layered architecture of Cloud2Sim,
hiding the fine architectural details of CloudSim. Classes of
CloudSim are extended and a few are also modified. Hazelcast,
Infinispan, and Hibernate Search are used unmodified. The
packages cloudsim.hazelcast and cloudsim.infinispan re-
spectively integrate Hazelcast and Infinispan into the simulator.
HazelSim is a singleton class that is responsible for initiating
the Hazelcast clusters and ensuring that the minimum number
of instances are present in the cluster before the simulation
begins. Properties of the cluster such as whether the caching
should be enabled in the simulation environment, and when
the unused objects should be evicted from the instances are
configured by hazelcast.xml. Hazelcast can also be con-
figured programmatically for Cloud2Sim using HazelSim.
HzObjectCollection provides access to the distributed objects
such as Hazelcast maps. InfiniSim provides similar function-
ality for the Infinispan based distribution.

The compatibility layer enables the execution of the same
CloudSim simulations, on top of either the Hazelcast and
Infinispan based implementations, or the pure CloudSim dis-
tribution, by abstracting away the dependencies on Hazelcast
and Infinispan. The concurrency layer consists of callables and
runnables for asynchronous invocations to concurrently exe-
cute. As complex objects should be serialized before sending
them to other instances over the wire, custom serializers were
written for V m, Cloudlet, Host, Datacenter, and the other
distributed objects.

The scheduling package provides enhancements to the
existing application scheduling capabilities of CloudSim.
Matchmaking-based scheduling algorithms have to search



through the object space to find a matching resource for the
application requirements [20], [21]. Hibernate search is used to
handle the scheduling in highly complex scenarios that involve
searching large maps consisting of VMs, cloudlets, and the user
requirements. An additional layer of cloudsim.app on top of
CloudSim provides user level utility functionalities, assisting
the construction of simulations. config.properties is used to
input CloudSim specific parameters such as the number of
resources and users to be present in the simulation, such that
simulations can be run with varying loads, without recompiling.
DatacenterBroker and Datacenter are extended to provide a
distributed execution. Extended brokers and their interaction
with the resources and cloudlets are depicted in Figure 3.

Fig. 3. Class Diagram of Cloud2Sim Brokers

B. Implementation Details

Distributing the simulation environment has been imple-
mented using an incremental approach.

1) Distributed Storage: Initially, Hazelcast was just used to
provide a distributed storage. An instance of the Initiator class
initiates a Hazelcast instance and keeps the node connected to
the Hazelcast cluster. Simulator, the simulator instance is run
from the master class, while an instance of Initiator is run
from the other instances. Instances of Hazelcast IMap are used
as the data structure. Hazelcast monitoring tool indicated equal
partitioning of storage across all the instances. It was possible
to execute the memory-hungry applications that would not run
in a single node, as the required memory to store the objects
exceeded the available memory in any single node in the cluster.
However, distributing the complex VM and Cloudlet objects
introduced communication and serialization costs.

2) Distributed Execution: Classes extending the Runnable
and Callable interfaces are used to submit the VMs and
Cloudlets concurrently. Further, Hazelcast IExecutorService
make the execution distributed. Initially, master and workers
were implemented as different classes, named Simulator and
SimulatorSub. Later, the Simulator instances were unified,
such that a same Simulator class can be run from all the
instances. The first instance to join the cluster becomes the
master, where other instances will be the workers. Master
executes the core fractions of the logic which should not be
run parallel for a correct execution. The different approaches
of distributed execution is depicted by Figure 4.

3) Data locality: Pulling data from each of the nodes for
execution has a higher communication cost. To overcome this,
Data locality features provided by Hazelcast are exploited to
send the logic to the data instead. Callables and runnables
are made to implement HazelcastInstanceAware interface,
where each member of the cluster executes part of the logic on
the objects that are stored in the local partitions of the respective
nodes.

Fig. 4. Partitioning Approaches

TABLE I. EXECUTION TIME (SEC) FOR CLOUDSIM VS. CLOUD2SIM

nodes Simple Simulation Simulation with a workload
CloudSim 3.678 1247.400

Cloud2Sim (1 node) 20.914 1259.743
Cloud2Sim (2 nodes) 16.726 120.009
Cloud2Sim (3 nodes) 14.432 96.053
Cloud2Sim (6 nodes) 20.307 104.440

IV. EVALUATION

A cluster with 6 identical nodes (Intel(R) Core(TM) i7-
2600K CPU @ 3.40GHz and 12 GB memory) was used for
evaluations. Table I shows the time taken to simulate a round
robin application scheduling with 200 users, 15 datacenters
each with 20 hosts, 200 VMs, and 400 cloudlets. CloudSim
outperformed Cloud2Sim in the base execution without an
actual workload, due to the inherent overloads involved in
Cloud2Sim. Cloud2Sim with 2 or 3 nodes showed a consid-
erable improvement in the execution time when the cloudlets
contained a relevant workload to be simulated once scheduled.

A fair matchmaking-based scheduling [20], [21] scenario
is implemented to depict a practical use case of distributed
execution of simulations. While other parameters are kept
constant as in the previous scenario, the number of cloudlets
was changed. The workload of this execution is a matchmaking-
based cloudlet scheduling. Each cloudlet and VM has a variable
length or size. Each cloudlet requires the executing VM to
have a minimal size, which is a function of the cloudlet
length. Cloudlets search the object space to find the best fit
for this specification, and bind themselves to the VM that is
the best fit. While ensuring that the minimal specifications
are met, cloudlets also ensure fairness, by not binding to a
VM that is much larger than their specification size. This
avoids overloading the large VMs, and schedules a fair share of
cloudlets to the VMs that they are bound to, in a round robin
manner.

Figure 5 depicts the time taken for simulations with different
number of cloudlets to complete the scheduling, with multiple
nodes. Execution time for CloudSim was almost the same as the
simulation time in a single node in Cloud2Sim, except when the
simulation size was very small. As the simulation size becomes
larger with large number of VMs and cloudlets, simulation
time grows exponentially due to the increasing search and
matchmaking space, when running on a single instance. This
exponential growth is handled and mitigated when running on
multiple instances, as the execution is evenly distributed across
the instances.

As more instances are added, simulation performs faster.
The performance gain, or the percentage improvement in the
simulation time for the multiple instances is shown by Figure 6.



Fig. 5. Simulation Time for Matchmaking-based scheduling

Fig. 6. Speedup - Percentage Improvement of the Distributed Execution

As shown by the simulation experiments, Cloud2Sim pro-
vides a considerable performance gain to the simulations,
compared to their serial execution. It also exhibits a positive
scalability for larger simulations, handling the simulations
effectively through a distributed execution.

V. CONCLUSION

Simulation tools try to portray a geo-distributed decen-
tralized environment using network and topology simulation
code that is serial and manipulating a large global state that
is considered consistent. Hence, their performance is far from
ideal. Cloud2Sim attempts to address this concern by extending
the existing CloudSim cloud simulator, utilizing distributed
shared memory projects. A Hazelcast based Cloud2Sim imple-
mentation has already been completed, and is being fine-tuned
and benchmarked against CloudSim for multiple scenarios.
Infinispan and Hibernate Search based distributed simulations
are currently researched and designed. Cloud2Sim1 scales rea-
sonably well, and distributes the storage and execution almost
equally among all the instances. Upon completion, Cloud2Sim
will have the advantages of CloudSim, while being efficient,
faster, customizable, and scalable.

Acknowledgments: This work was partially supported by
national funds through FCT - Fundação para a Ciência e a Tecnologia,
under project PEst-OE/EEI/LA0021/2014.

REFERENCES

[1] Calheiros, R.N., Ranjan, R., De Rose, C. A. F. and Buyya, R. “CloudSim:
A Novel Framework for Modeling and Simulation of Cloud Computing
Infrastructures and Services,” Technical Report, GRIDS-TR-2009-1, Grid

1The source code can be accessed from https://sourceforge.net/p/
cloud2sim/code/ci/master/tree/, with user name, “cloud2sim” and password,
“Cloud2Simtest”.

Computing and Distributed Systems Laboratory, The University of Mel-
bourne, Australia.

[2] Calheiros, R. N., Netto, M. A., De Rose, C. A., and Buyya, R. “EMUSIM:
an integrated emulation and simulation environment for modeling, eval-
uation, and validation of performance of cloud computing applications,”
Software: Practice and Experience, 00-00 2012.

[3] Casanova, H. “Simgrid: A toolkit for the simulation of application
scheduling,” in Cluster Computing and the Grid, 2001. Proceedings. First
IEEE/ACM International Symposium, 2001 (pp. 430-437).

[4] Kliazovich, D., Bouvry, P., and Khan, S. U. “GreenCloud: a packet-level
simulator of energy-aware cloud computing data centers,” in The Journal
of Supercomputing, 62(3), 2012, pp. 1263-1283.

[5] Lim, S. H., Sharma, B., Nam, G., Kim, E. K., and Das, C. R. (2009,
August). MDCSim: A multi-tier data center simulation, platform. In Clus-
ter Computing and Workshops, 2009. CLUSTER’09. IEEE International
Conference on (pp. 1-9). IEEE

[6] Tighe, M., Keller, G., Bauer, M., and Lutfiyya, H. ”DCSim: A data centre
simulation tool for evaluating dynamic virtualized resource management,”
in Network and Service Management (CNSM), 2012 8th International
Conference, 2012 (pp. 385-392).

[7] Baumgart, I., Heep, B., and Krause, S. “OverSim: A flexible overlay
network simulation framework”, in IEEE Global Internet Symposium,
2007 (pp. 79-84).

[8] Garcı́a, P., Pairot, C., Mondéjar, R., Pujol, J., Tejedor, H., and Rallo,
R. (2005). Planetsim: A new overlay network simulation framework.
In Software engineering and middleware (pp. 123-136). Springer Berlin
Heidelberg.

[9] Montresor, A., and Jelasity, M. “PeerSim: A scalable P2P simulator,”
in Peer-to-Peer Computing, 2009. P2P’09. IEEE Ninth International
Conference, 2009 (pp. 99-100). IEEE September.

[10] Silva, J. N., Veiga, L., and Ferreira, P. (2008, October). nuboinc:
Boinc extensions for community cycle sharing. In Self-Adaptive and
Self-Organizing Systems Workshops, 2008. SASOW 2008. Second IEEE
International Conference on (pp. 248-253). IEEE.

[11] Johns, M. Getting Started with Hazelcast. Packt Publishing Ltd, 2013.
[12] Marchioni, F. Infinispan Data Grid Platform. Packt Publishing Ltd, 2012.
[13] Bernard, E., and Griffin, J. Hibernate search in action. Manning, 2009.
[14] Calheiros, R.N., Ranjan, R., De Rose, C. A. F. and Buyya, R. “CloudSim:

a toolkit for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms”, Softw. Pract. Exper.
2011; 41:23-50. Published online 24 August 2010 in Wiley Online Library
(wileyonlinelibrary.com). DOI: 10.1002/spe.995.

[15] Wickremasinghe, B., Calheiros, R. N., and Buyya, R. “Cloudanalyst:
A cloudsim-based visual modeller for analysing cloud computing envi-
ronments and applications,” in Advanced Information Networking and
Applications (AINA), 2010 24th IEEE International Conference, 2010,
(pp. 446-452).

[16] Garg, S. K., and Buyya, R. “NetworkCloudSim: modelling parallel
applications in cloud simulations,” in Utility and Cloud Computing
(UCC), Fourth IEEE International Conference, 2011, (pp. 105-113).

[17] Buyya, R., Ranjan, R., and Calheiros, R. N. (2009, June). Modeling and
simulation of scalable Cloud computing environments and the CloudSim
toolkit: Challenges and opportunities. In High Performance Computing
& Simulation, 2009. HPCS’09. International Conference on (pp. 1-11).
IEEE.

[18] Pachori, V., Ansari, G., and Chaudhary, N. “Improved Performance of
Advance Encryption Standard using Parallel Computing”.

[19] Ruivo, P., Couceiro, M., Romano, P., and Rodrigues, L. (2011, Decem-
ber). Exploiting total order multicast in weakly consistent transactional
caches. In Dependable Computing (PRDC), 2011 IEEE 17th Pacific Rim
International Symposium on (pp. 99-108). IEEE.

[20] Raman, R., Livny, M., and Solomon, M. “Resource management through
multilateral matchmaking,” in High-Performance Distributed Computing,
2000. Proceedings. The Ninth International Symposium, 2000, (pp. 290-
291).

[21] Raman, R., Livny, M., and Solomon, M. “Matchmaking: Distributed re-
source management for high throughput computing,” in High Performance
Distributed Computing, 1998. Proceedings. The Seventh International
Symposium, 1998 (pp. 140-146).


