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Abstract

Mobile devices are still memory-constrained when com-
pared to desktop and laptop computers. Thus, in some cir-
cumstances, even while occupied by useful objects, some
memory must be freed. This must be performed while pre-
serving referential integrity in object-oriented applications
and without permanently losing data.

We propose a novel approach to object swapping in con-
strained devices, that favors portability and avoids most of
the requirements of the previous approaches.

Objects are incrementally replicated to devices in groups
(clusters) of adaptable size. When there is shortage of mem-
ory, the middlewaredetachesthe objects belonging to se-
lected clusters from the application graph. It maintains
graph correctness (via proxy replacement objects), and
stores the swapped objects (in XML-format) in any nearby
device with wireless connectivity and available storage.

Nearby devices do not require any specific VM or mid-
dleware. They simply must be able to store and provide XML
text. This approach is suited to an envisioned future in which
there will be a myriad of small memory-enabled devices
with wireless connectivity, scattered all-over, available to
any user either to store data or to relay communications.

1. Introduction

Replication is a widely used technique to enable mo-
bile computing by improving data availability and applica-
tion performance as it allows to collocate data and code.
Data availability is ensured because, even when the network
is not available, data remains locally available. Further-
more, application performance is potentially better (when
compared to a remote invocation approach) as all data ac-
cesses are local. Together with the file system paradigm
(the most fundamental and ubiquitously adopted), object-
oriented programming is the most widely used program-
ming model as it is highly flexible (e.g., Java, C# and

VB.Net, Python, etc.). It is natural then, that application de-
velopment for mobile devices should be based upon repli-
cated objects (thus keeping application data and logic lo-
cally, as most as possible) and adhering to the same devel-
opment environment programmers are accustomed to.

However, mobile devices are so memory-constrained
that, in some circumstances, even the memory occupied by
useful reachable objects must be freed. This may occur be-
cause, at a particular instant, there are other more relevant
replicas for which there is no memory available. Freeing the
memory occupied by useful objects is delicate. Given that
such objects can be accessed by applications through navi-
gation of the object graph, the middleware must still ensure
the referential integrity, while freeing such memory.

Shortcoming of Current Solutions: There is previ-
ous work in the literature regarding the decrease of mem-
ory occupation by applications, particularly w.r.t. mobile
constrained devices. They address memory limitations ei-
ther by transferring objects residing in mobile devices
to other near-by computers [6, 1] or to persistent stor-
age [7] and re-fetching them later, or they attempt at reduc-
ing memory usage by compressing object data [2, 3].

All existing solutions impose changes to the existing un-
derlying VMs on mobile devices and computers receiving
transferred objects, such as modified object tables, use of
object surrogates, and dedicated distributed garbage collec-
tion (DGC) algorithms. This limits the range of devices
where these solutions may be applied, as opposed to one
based exclusively on user-level code. Furthermore, some so-
lutions impose important additional CPU load and energy
cost, paramount in mobile devices, since compression is a
computational-intensive process.

Contribution and Paper Organization: We propose an
alternative approach to freeing memory on mobile devices
that favors portability and, as it avoids most of the require-
ments of the previous approaches, is more suited to be de-
ployed on a myriad of existing and future devices. It resorts
exclusively to user-level code and therefore does not require
modification of the underlying virtual machine, making it



rather portable. It further obviates the need to manage inter-
process references among individual resident and swapped-
out objects.

It was developed in the context of OBIWAN [4, 8], a
middleware platform for object replication, with a compiler
to automatically generate proxies and augment classes, that
runs on mobile devices, on top of Java and .Net.

In OBIWAN, objects are incrementally replicated to de-
vices in groups (clusters) of adaptable size. Objects not yet
replicated are replaced, on the device, by proxies transpar-
ent to application code. When these proxies are invoked,
object replication is triggered and, after replicating another
cluster of objects, the proxies are removed from the object
graph (i.e.,replacedby the actual object replicas). Thus,
there are no further indirections w.r.t. object invocation (i.e.,
the application runs at full-speed), once objects are repli-
cated.

Our approach consists in considering a number (also
adaptable) of chained (via references) object clusters as a
single macro-object. We call such macro-object aswap-
cluster. For every reference linking two different swap-
clusters, proxyreplacement(taking place when objects are
replicated) is performed differently. For objects belonging
to different swap-clusters, a special proxy always remains
in the way. There is a performance penalty associated with
these extra invocations, which can be rendered negligible,
even when compared to existing solutions.

The remainder of this paper is organized as follows. The
next section provides a system overview of the OBIWAN
middleware, upon whichObject-Swappingis incorporated.
Section 3 describes in detail the architecture of theObject-
Swapping, namely integration with object replication and
memory management mechanisms, alongside with a proto-
typical scenario. In Section 4, we describe the main imple-
mentation aspects, and relevant issues regarding integration
with programming languages such as Java and C#.Object-
Swappingis evaluated in Section 5, and the relevant related
work is presented and discussed in Section 6. The paper
closes with some conclusions in Section 7.

2. OBIWAN Middleware

OBIWAN [4, 8] is a middleware platform aimed at pro-
viding flexibility for application development and runtime
adaptability, allowing applications to cope with the multi-
ple requirements and usage diversity found in mobile set-
tings. Typically, applications running on OBIWAN, invoke
objects locally replicated into the computer where they are
being executed.

OBIWAN consists in a set of middleware component
modules, portrayed in Figure 1, which provide runtime ser-
vices to applications and to other higher-level services. Run-
time services execute on top of a virtual machine (Java or
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Figure 1. OBIWAN Middleware Components.

.Net) in every node. These are services that are available to
the application regular code if explicitly wanted, but were
designed to be used by code automatically generated that
extends application code. The most relevant modules w.r.t.
Object-Swappingare described next.

The Object Replication[9, 13] module provides the
mechanisms for handling object-faults transparently, and
supporting incremental object replication.The architecture
is based on a set of OBIWAN core interfaces which deal
with : i) creation and update of object replicas, ii) object-
fault handling by proxy objects, and iii) proxy replacement,
once the corresponding object is replicated.

These core interfaces are implemented by middleware
code in application objects and proxies, which is automat-
ically generated. The programmer is oblivious of them.
Proxy objects also implement (via generated code) the same
interfaces as application objects, since invocation of a proxy
triggers object replication.

The Memory Management[11, 12] module is responsi-
ble for the distributed garbage collection (DGC), integration
with the local garbage collector (LGC) provided by the vir-
tual machine, andObject-Swapping. Memory management
depends on object replication to be aware of which objects
have been replicated in the process, and/or swapped-out.

The Context Managementmodule abstracts resources
and manages the corresponding properties whose values
vary during applications execution. In particular, it is re-
sponsible for monitoring available memory and network
connectivity.

ThePolicy Engine[10] is the inference component that
manages, loads, and deploys declarative policies to over-
see and mediate responses to events occurred in the system.
Policies are stored and categorized by nature. A policy en-
gine receives events generated by OBIWAN modules and
applications, evaluates policy rules and triggers events, han-
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Figure 2. Object-Swapping to nearby devices.

dled by actions based on evaluation results.
The Communication Servicesabstract applications, and

the rest of the OBIWAN middleware, from the limitations
of existing virtual machines for mobile constrained devices
(e.g., absence of remote method invocation and proper ob-
ject serialization). They are circumvented by using a com-
munication bridge [13] based on web-services, and auto-
matic conversion of objects into wrappers, using XML.

3. Transparent Object-Swapping in OBIWAN

Mobile devices are so memory-constrained that, in some
circumstances, even the memory occupied by useful reach-
able objects must be freed. This may occur because, at a
particular instant, there are other more relevant replicas for
which there is no memory available. This is more evident in
resource constrained devices but also occurs in desktop sys-
tems [3] even with large memory heaps.

The memory management premise of preserving objects
which are reachable from thread stacks and global variables
(i.e., live objects) must be enforced with a somewhat re-
laxed approach: there are situations where live data must
be ”demoted” to accommodate for other data being repli-
cated that is considered, at that moment, more important.
Data should not be plainly discarded, but the memory occu-
pied by it, should nevertheless be cut down.

Our proposal consists in swapping-out the content of
such objects to other devices with more resources available,
in particular, free memory. Freeing the memory occupied
by useful objects is delicate. Given that such objects can
be accessed by applications through navigation of the ob-

ject graph, the middleware must still ensure referential in-
tegrity, while freeing such memory.

Figure 2 depicts a prototypical scenario in which a PDA
is running applications, on behalf of the user, on top of OBI-
WAN middleware. From time to time, the memory occu-
pied by the object graphs of applications reaches a thresh-
old value, possibly near the limit of the memory capacity of
the device. At those moments, the OBIWAN middleware,
evaluating the policies loaded, decides to swap-out a set of
objects to nearby devices, if there are any. This action frees
some memory while not discarding the swaped objects per-
manently. Later, each set of objects previously swapped-out
may be fetched back from the device where it was trans-
ferred to.

The devices that receive swapped objects need not have
neither OBIWAN nor even a virtual machine installed. They
need only be able to store and return a textual representa-
tion of the serialized objects being swapped-out. If a device
is able to store more than one set of swapped objects, each
set must be given a unique ID (e.g., a number, a file name).
Therefore, objects may be swapped-out to desktop and lap-
top PCs, other PDAs, or future wireless devices, with ex-
tended memory capacity, present in the room.

Management of Swap-Clusters: Taking into account the
management of replicas described in Section 2, clusters of
objects (or groups of clusters) are natural candidates to be
swapped-out as they have been incrementally replicated,
previously, into the mobile device as a whole. Hopefully,
when one of the objects enclosed in the cluster becomes
needed again, there is a high probability that the others will
be as well. So, later, they will be swapped-in as a whole.

A swap-clusteris the basic unit of swapping. Each one
contains all the objects comprised in a group of one or more
object clusters, previously replicated. Swap-clusters are cre-
ated by regarding a number (also adaptable) of chained (via
references) object clusters as a single macro-object, i.e. a
single swap-unit. As mentioned in Section 1, for every refer-
ence linking two different swap-clusters, proxy replacement
(taking place when objects are replicated) is performed dif-
ferently, as we describe next.

The proxy object is replaced with the corresponding ob-
ject replica, but another type of proxy is also created. We
call it a swap-cluster-proxyto distinguish it from proxy ob-
jects that once replaced, are discarded. Theswap-cluster-
proxy, in turn, holds a reference to the newly replicated ob-
ject. This way, the reference returned by the middleware
to application code does not target an object replica, but a
swap-cluster-proxy instead. Thus, for objects belonging to
different swap-clusters, a proxy always remains in the way.

Figure 3 depicts a situation in which the object graph
of a process (P1) is divided in four swap-clusters:swap−
cluster− 1 to swap− cluster− 4. Global variables (i.e.,
static fields), and variables defined in static methods, are
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Figure 3. Object graph of a process comprising
four swap-clusters.

regarded as belonging to a special swap-cluster,swap−
cluster−0. Swap−cluster−1 andswap−cluster−3 are
reachable directly from the variables of the application.
Both of them contain objects that reference other objects
contained inswap− cluster− 2. When there are multiple
references to the same object, across the same pair of swap-
clusters, only a swap-cluster-proxy is required. This is the
case inswap−cluster−1. Objects inswap−cluster−4are
only referenced from objects inswap−cluster−2. Each in-
dividual swap-cluster may contain any number of objects.

Middleware code in swap-cluster-proxies also monitors
reference-passing across swap-cluster boundaries (analo-
gously to monitoring of inter-process references), and cre-
ates/reuses the appropriate swap-cluster-proxies. The mid-
dleware keeps track, for each swap-cluster, of swap-cluster-
proxies regarding it, and their usage. This provides infor-
mation about inbound/outbound references from/to other
swap-clusters, and basic data w.r.t. recency and frequency,
as these boundaries are transversed by the application.

Swap-Cluster Swapping-Out: When required (e.g., due
to shortage of memory), the middleware maydetachthe ob-
jects belonging to a specific swap-cluster from the applica-
tion graph, while maintaining correctness. This process is
described by the following example depicted in Figure 4. It
portrays the resulting situation after detachment of a swap-
cluster, in this case,swap−cluster2.

A replacement-object for a swap-cluster (i.e.,
ReplacementOb ject− 2 which is simply an array of ref-
erences) is created and filled with references to every
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Figure 4. Object graph of a process after
swapping-out swap−cluster2.

swap-cluster-proxy referenced byswap− cluster− 2.
Then, every swap-cluster referencing objects con-
tained in swap− cluster− 2 will be made to refer-
ence ReplacementOb ject− 2 instead, by patching the
internal references of every swap-cluster-proxy target-
ing objects inswap−cluster−2.

Once a swap-cluster (e.g.,swap− cluster− 2) is de-
tached from the object graph (though still referenced by
middleware code), the enclosed objects are serialized to
XML and sent to a nearby device (e.g., via Bluetooth), along
with a swap-cluster ID. The receiving device needs no other
infrastructure (e.g., specific VM, adhering to a specific mid-
dleware, holding application class files, etc., as opposed to
other existing solutions) other than being able to receive
XML data and store it.

After a swap-cluster is swapped-out, the objects enclosed
in it are completely detached from the application graph,
and eligible for collection by the LGC running on the de-
vice. Thus, memory is released without destroying applica-
tion graph integrity. Any swap-clusters may be swapped-out
using this mechanism.

Swap-Cluster Reload: When a replacement-object is in-
voked, this means that the application is trying to access
an object that belongs to a swap-cluster, which was previ-
ously swapped-out. Since one of the objects enclosed in the
swap-cluster becomes needed again, there is a high proba-
bility that the others will be as well. So, they are swapped-in
back as a whole by demanding the same XML-data, con-
taining wrapped objects, that was sent earlier during swap-



out.
All swap-cluster-proxies targeting objects enclosed in

the swap-cluster being swapped-back must be updated. To
this purpose, their internal references are patched in order
to target the corresponding object replicas being swapped-
in. Then, the replacement-object, as it is no longer needed,
becomes eligible for local reclamation. Therefore, after
swap−cluster−2 is brought back toP1, the resulting ob-
ject graph would be similar to the one initially shown in
Figure-3.

Integration with GC Mechanisms: The middleware pre-
vents dead objects, belonging to swap-clusters that later be-
came unreachable (unusable to the application), from con-
suming resources while being stored on the swapping de-
vices. Therefore, the middleware cooperates with the LGC
running on the virtual machine, w.r.t. to managing those ob-
jects. However, the reachability of a swap-cluster must be
considered as a whole.

Thus, when a replacement-object, standing in for a swap-
cluster that has been swapped-out, becomes unreachable,
this means that all object replicas enclosed in it are already
unreachable to the application. Therefore, the swapping de-
vice may be instructed to discard the XML text with the
contents of the swap-cluster.

Conversely, while the replacement-object (and its associ-
ated swap-cluster) is reachable, the LGC must behave con-
servatively. Thus, it must regard as reachable all objects be-
longing to the swap-cluster, even if all but one of them are
garbage. Therefore, the whole swap-cluster must be pre-
served on the swapping device.

When ultimately deemed as unreachable to the appli-
cation, a swap-cluster may be dropped from the swapping
node, or set-aside if their content is still required for other
purposes (consistency, reconciliation, versioning, etc.). The
replacement-object is simply reclaimed by the LGC.

The integration with LGC mechanisms just described
does not constitute a DGC infrastructure covering swapping
devices. There are no explicit references among the objects
residing in devices running applications, and those serial-
ized in swapping devices. All the decisions are made lo-
cally to the device running the application. The swapping
device is instructed just to store, return, or drop XML-data.

4. Implementation

Object-Swapping in the OBIWAN middleware was im-
plemented in the context of itsMemory Managementmod-
ule. It runs on top of the .Net Compact Framework installed
on a IPAQ 3360 Pocket PC with Bluetooth connectivity at
700Kbps. The primary programming language used is C#.
Policies that deploy the various modules are coded in XML.
Transfer of swapped-out objects is achieved resorting to the

Communication Servicesmodule which leverages the abil-
ity of .Net CF to invoke web-services.

Code for swap-cluster-proxies is automatically gener-
ated by the OBIWAN compiler (obicomp ). It generates a
specific class of swap-cluster-proxy, for each type class
(e.g., class A) defined by the application (analogous to gen-
eration of proxy objects). Thus, the class for each type
of swap-cluster-proxy implements two interfaces: i) the
ISwapClusterProxy interface for common methods such
aspatch anddetach , and ii) the interface containing the
public methods of the type class (e.g., interface IA contain-
ing public methods of class A).

The code generated for swap-cluster-proxies implements
all methods of the application interface (e.g., IA), with a
similar code excerpt that verifies references being passed as
parameters and return values, while also relying on invok-
ing the actual object replica it refers to. With every refer-
enced intercepted, this code verifies whether it is necessary
to: i) create another swap-cluster-proxy to wrap a reference
from/to another cluster, ii) patch an existing swap-cluster-
proxy that is being handed to/from another swap-cluster, iii)
dismantle a swap-cluster-proxy received but that refers to an
object within the same swap-cluster.

Implementation of methods belonging to interface
ISwapClusterProxy (e.g.,patch , detach ) delegate to
static methods of a class (SwapClusterUtils ) that con-
tains behavior common to all swap-cluster-proxy types.

Enforcing Object Identity: Within each swap-cluster, ob-
ject identity is ensured because references to object repli-
cas are never compared against references to swap-cluster-
proxies, referring to objects in the same swap-cluster, due
to rule iii) presented earlier.

Enforcing object identity when comparing references to
objects in other swap-clusters (i.e., actually comparing ref-
erences to swap-cluster-proxies) cannot rely solely on ref-
erence comparison (operator==). A simple example would
be that of an object inswap− cluster−X, if referenced
from two different swap-clusters, will be necessarily repre-
sented by two different swap-cluster-proxies (because they
regard different source swap-clusters).

This is solved by overloading the reference comparison
operator== in C#, for each class of swap-cluster-proxy,
with a method that verifies whether the two arguments re-
ceived are swap-cluster-proxies (i.e., implement interface
ISwapClusterProxy ), and actually refer to the same ob-
ject. In other languages, such as Java, that do not allow
this overloading, comparisons must rely solely on method
Object.Equals , that can be overloaded.

Optimizing Code for Iterations: The use of global vari-
ables, while iterating object graphs (e.g., lists) that may span
several swap-clusters, causes the creation of a new swap-
cluster-proxy for each object reference returned, and con-
sequent discard of the swap-cluster-proxy that the variable



previously pointed to. In this cases, with a little help from
the programmer, this behavior can be optimized re-using al-
ways the same instance of swap-cluster-proxy (as it was in-
deed the actual variable).

Class SwapClusterUtils provides a static method
(assign ) that may be invoked with swap-cluster-proxies
with source in swap− cluster− 0. This method up-
dates an internal field in the swap-cluster-proxy that
marks it, and changes its behavior. The next time the
swap-cluster-proxy intercepts a reference to be returned, in-
stead of creating a new swap-cluster-proxy to be returned
to application code (discarding itself), it patches itself. This
way, it now refers to the object being returned by the ap-
plication method that was invoked. Therefore, in practice,
the swap-cluster-proxy will return to application code a ref-
erence to itself (though already modified internally), that
minimizes creation of swap-cluster-proxies and opti-
mizes iterations.

Swapping Manager: The SwappingManager class, by
policy definition, is registered as a listener of all events re-
garding replication of clusters of objects, by using specific
methods as actions. It also triggers specific events regard-
ing object-swapping but that are presently not listened by
any other module.

It manages swapping by maintaining information regard-
ing all swap-clusters (loaded or swapped), and all objects
belonging to each one, stored in hash-tables. It also contains
entries for all swap-cluster-proxies w.r.t. references to/from
each swap-cluster (using weak-references). When a swap-
cluster-proxy becomes unreachable, itsfinalizer invokes
code that eliminates entries referring to it.

5. Evaluation

Qualitative (Portability): Object-Swappingin OBIWAN
is a novel approach to reduce memory usage by repli-
cated objects in mobile devices that is portable, and im-
poses fewer demands on the surrounding infrastructure,
w.r.t. other approaches found in previous related work. It
is compliant with LGC and DGC managing replicated ob-
jects. It does not require modification of the underlying vir-
tual machine on the mobile device. It further obviates the
need to manage inter-process references among individual
resident and swapped-out objects.

With object-swapping, devices receiving swapped ob-
jects do not need to have VM or middleware installed. The
swapping device is instructed simply to store, return or drop
XML-data. This favors portability since it does not require
swapping devices to install a specific VM, or even a mid-
dleware platform like OBIWAN, but simply store portions
of text (XML-encoded) data with a corresponding key (that
would be the cluster name).

Performance Impact of Swapping on Graph Transversal
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Figure 5. Performance penalty of Object-Swapping
w.r.t. swap-cluster size and graph transversals.

Quantitative (Performance): Our approach incurs a mi-
nor performance penalty since there are extra invocations,
due to the indirection maintained in swap-cluster-proxies.
Nonetheless, this only happens when an swap-cluster
boundary is crossed. In favorable scenarios, they are
only required with frequency inverse to the average num-
ber of objects per swap-cluster (e.g., 1/20, 1/50, 1/100),
which could render them negligible.

In Figure 5, we present a study of the performance im-
pact (i.e., slowdown) imposed by theObject-Swapping
mechanism (namely due to the management of swap-
clusters and the indirection of method calls in swap-
cluster-proxies) during normal application execution. We
employed a micro-benchmark that measures the perfor-
mance of three illustrative graph transversal strategies.
These strategies are based on recursive and iterative in-
vocations, on a list of 10000 64-byte objects, of simple
(quasi-empty) methods, in order not to mask the over-
head being measured.

The benchmark consists of 4 tests (A1, A2, B1, andB2).
Each test was executed against 4 different swapping con-
figurations, i.e., with swap-clusters containing 20, 50, and
100 objects each and, finally, without swapping (No Swap-
Clusters) in order to provide a lower-bound case w.r.t. tim-
ing. Naturally, the overhead will decrease as the size of
swap-clusters increases, and be null ifObject-Swappingis
not active.

Test A1 consists of recursively executing a sim-
ple method on each object along the list containing the
10000 objects. The method receives, as argument, an inte-
ger that is initially set to 0 and incremented in each recur-
sion step, thus measuring therecursion depth. In this test,



each swap-cluster-proxy is invoked only once when the cor-
responding swap-cluster boundary is crossed during the
recursion. The results range from 37 to 43 ms, with a maxi-
mum overhead of 16%. Therefore, it is not significative and
is negligible for swap-clusters containing 100 or more ob-
jects.

Test A2 is an extension of TestA1 with higher com-
putational complexity and isexplicitly aimed at produc-
ing greater overheads due to larger number of swap-cluster-
proxies invocations. It makes use of the same recursive ex-
ecution (namedouter recursion) along the list of 10000 ob-
jects. In this test, however, each step of the recursion, in-
stead of simply passing an integer argument as inTest A1,
is extended to trigger aninner recursionthat stops when it
reaches depth 10 (or the end of the list) and returns a ref-
erence to the object reached in the list (i.e., at most 10 po-
sitions ahead within the list) without modifying the object
graph.

This test takes substantially more time since there are
roughly 10 times more object invocations. Furthermore,
whenever aninner recursioncrosses a swap-cluster bound-
ary, an additional swap-cluster-proxy is created to mediate
the object reference being returned. The swap-cluster-proxy
is later reclaimed by the LGC when theouter recursionad-
vances to the next step.

The results range from 305 to 467 ms, indicating a max-
imum overhead of 53%. This larger overhead is due to
the extra swap-cluster-proxies being created. In the case
of swap-clusters containing 20 objects, this happens for
roughly half of the object references returned by theinner
recursions(recall these have a maximum depth of 10).

Test B1 consists of performing a fulliteration over the
10000 objects of the list, using afor loop and a global vari-
able. When invoked, each object returns a reference to the
next element in the list. Recall that global variables are
considered as belonging to a special swap-cluster (swap-
cluster-0), as described in Section 3. Therefore, a swap-
cluster-proxy is created for every reference transversed dur-
ing the loop.

The results range from 36 to 339 ms. As expected, this
kind of iterations based on successive assignments of global
variables produces a significant overhead due to the con-
stant creation and deletion of swap-cluster-proxies (one for
each new value the variable assumes). Recall that this situ-
ation has been predicted and described in Section 4.

Therefore,Test B2 consists of performing the same full
iterationover the complete list, this time using the optimiza-
tions for iterations described in Section 4. The results of this
test are much more encouraging and range from 36 to to 64
ms. The speed-up provided by the optimizations described
is more than five-fold in all cases.

In overall analysis, note these tests depict worst-case
scenarios since the remaining overheads could easily be

masked if there was any object functionality actually be-
ing invoked in each iteration or recursion step (e.g., access-
ing some object properties or invoking on or more meth-
ods). Therefore, these results show that it is feasible to
addressObject-Swappingfor resource-constrained devices,
by employing a portable approach, resorting exclusively
to user-level code, without modifying existing virtual ma-
chines used in mobile computing (e.g., .Net CF).

In addition, our proposed solution also has several ben-
efits over anaiveone that would have one proxy per each
object and all references mediated by them. Common ap-
plication objects are small. So, this could potentially double
memory occupation when fully-loaded or roughly the same
as full. This approach would also inevitably impose a higher
performance penalty, due to indirections. Furthermore, even
when all objects were swapped, the proxies would still re-
main, which would incur in higher memory overhead.

6. Related Work

Freeing memory on mobile devices has been addressed
previously. In [6, 1, 5], some objects are migrated to a
nearby server machine from where will be re-fetched later,
if needed. To provide transparency to applications, such ob-
jects are replaced by a surrogate. It imposes changes to the
underlying VM. These include i) object tables must account
for objects residing in other machines; ii) modifications to
LCG behavior instrumenting the LGC to monitor on an
object-by-object basis, which objects to swap-out; and iii)
there must be a distributed garbage collection (DGC) al-
gorithm managing references among resident and migrated
objects. Even though these approaches are distributed, they
do not address replication and related issues (replica man-
agement, consistency, etc.).

In [2], a mechanism is proposed to perform compres-
sion on the Java virtual machine heap, where large objects
(greater than 1.5 Kb) are compressed and decompressed. In
addition, large array objects are broken down into smaller
sub-objects, each being “lazily allocated” upon its first write
access. Constant on-the-fly data compression performed on
the heap saves memory but imposes additional CPU load
and energy cost, since compression is a computational-
intensive process. This solution also imposes the use of a
modified VM.

The work in [3] describes an analytical model for main
memory compression, based exclusively on software. Ap-
plying compression to pages in main memory was first sug-
gested in [14]. The system reserves a number of pages in
main memory that act as an additional intermediate level
in memory hierarchy (compressed memory pool). Pages
about to be swapped to disk are compressed and swapped
to the compressed pool instead. Both page compression and
disk writing can be performed asynchronously. Neverthe-



less, even if compression takes more time than disk writing,
the gains obtained during page reload to main memory (de-
compression is much faster than reading for disk) are much
greater.

The only disadvantage is that the compressed-memory
pool actually reduces the memory available to applications.
Therefore, the system must balance, according to applica-
tion behavior and needs, the size of the compressed memory
pool. Thus, devoting too much memory to the compressed-
memory pool hurts performance as much as not reserving
enough [14]. In multi-core systems, one of the processors
may be dedicated solely to compression/decompression ac-
tivities. This solution is not suited for resource constrained
devices as it is directed mainly at workstations. Further-
more it requires modifications to the OS kernel which hin-
ders portability.

The .Net Micro Framework [7] is a very small .Net vir-
tual machine for embedded systems with very limited re-
sources (e.g., wrist-watches). It employs several techniques
to reduce memory foot-print w.r.t. both application code and
data. It maintains a global string table that is shared to store
names of types, methods and fields, to reduce RAM (w.r.t.
application code) and ROM (w.r.t. framework code) usage.

Another innovation provided by .Net Micro is the use
of extended weak references. References of this type have
precedence over regular weak references. A specialized
garbage collector attempts to copy to available persistent
memory (e.g., flash-memory in CompactFlash/Secure Digi-
tal cards) unreachable objects that are targeted by extended
weak references, instead of reclaiming them, which is the
case with objects targeted exclusively by regular weak ref-
erences. This is performed locally and is therefore limited
by the total memory (main, and additional memory cards)
of the device.

7. Conclusion

We present an approach to reduce memory usage by
replicated objects in mobile devices that is portable, and im-
poses fewer demands on the surrounding infrastructure.

As a negligible trade-off, our approach requires that ev-
ery reference between objects in different swap-clusters be
mediated by a proxy. It does not require modification of the
underlying virtual machine on the mobile device. It further
obviates the need to manage inter-process references among
individual resident and swapped-out objects. Nodes receiv-
ing swapped objects do not need to have VM or middleware
installed. The swapping node is instructed just to store, re-
turn or drop XML-data.

In the future, we expect a scenario where (much as wire-
less access points are becoming omni-present) there will
also be an increase in small memory-enabled devices with
wireless connectivity, scattered all-over, that are available to

any user (either to store data or to relay communications).
Our approach is the most suited to this scenario.
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