Mercury, a reflective middleware for automatic
parallelization of Bag-of-Tasks

Joao Nuno Silva
INESC-ID / IST
Rua Alves Redol, 9
Lisboa, Portugal

joao.n.silva@inesc-id.pt

ABSTRACT

Automatic aprallel application adaptation

Bag opf tasks,

multiple object creation method invocations. Paralleliza-
tion of the execution of such methods.

Execution of such methods in different platforms : multi-
processor/ multicore or remote objects in remote machines
(cluster, cloud, or distributed computing systems.

Selection of best target environments.

1. INTRODUCTION

There has been an increase of use of scripting languages
(such as python) on the management of scientific computing
jobs. Pyhton has been used to interact with grid enabled
simulations, as with Ganga [3], or access and manipulation
of scientific data sets as in PyRAF [4]. Furthermore the
performance obtained when using Python is on par with
some other commonly available programming languages or
environments [1, 6], making a suitable language for scientific
processing.

The use of python is not limited to the invocation of serial
simulations. With a suitable middleware or libraries it is
possible to take advantage of multiprocessors or clusters of
computers. For instance Star-P [5] offers a set of APIs to
data and code distributions, while MPI [2] have the usual
functions for task creation and synchronization, and data
transfer.

For large scale projects, besides the use of parallel kernel
(such as BLAS parallel implementations) the use of MPI is
the best way for the data and work distribution. Not only
the programmer is able to take advantage of the remote
resources, but also is hidden from network and computing
platforms heterogeneity.

For the execution pure of bags-of-tasks or embarrassingly
parallel jobs, the use of such libraries may be overkill. With
an increased complexity on the parallel implementation, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Luis Veiga
INESC-ID /IST
Rua Alves Redol, 9
Lisboa, Portugal

luis.veiga@inesc-id.pt

Paulo Ferreira
INESC-ID / IST
Rua Alves Redol, 9
Lisboa, Portugal

paulo.ferreira@inesc-
id.pt

gains can not be enough to justify it.

for i in range(1000):
inputData = getTaskInput ()
objectList[i] = processinObject(inputData)
objectList[i] .processData()

for i in rangel000):
outputresult = objectList[i].getResult()
process (outputResult)

O N O Ui W

Figure 1: Tipical bag-of-tasks problem serial version

In order to parallelize the application shown in Figure 1
(allowing all processData() methods to execute concur-
rently) using MPI, some modifications had to be made: i)
the identification of the master and slave tasks, ii) the send-
ing of the input data, and iii)the receiving the results. To
accomplish that, the overall organization of the code would
have to be changed. These modifications would require the
programmer to know the MPI API and would introduce er-
ror prone code.

To reduce the modification effort necessary to transform
a serial application in structure to the example presented
in Figure 1 into a parallel Bag-of-tasks we developed Mer-
cury. Mercury is a middleware that allow the parallelization
of independent object methods, allowing their concurrent
execution on different local threads or different remote com-
puters.

Our proposed solutions transparently transforms an ap-
plications with a processing cycles where in each iteration a
different set of data is processed. With no user intervention
the lengthy tasks executed on each iteration of the cycle is
executed on different thread. This thread can be executed
locally, in the case of a multiprocessor (or multi-core) com-
puter, or on remote computers.

The programmer must write its data processing applica-
tion in the form of the example in Figure 1, and state on
XML configuration file the class and method that can be
executed concurrently.

Our middleware will be responsible for spawning the nec-
essary threads, and synchronize the invocation of the abjects
methods. In the previous example, only after the conclusion
of the processdata, the corresponding getResult () method
can be executed.

Mercury also allows different execution environments for
the parallelized methods. A set of adaptation classes al-

low the execution of the methods on different threads on
the same multiprocessor/multicore computer or the remote
execution of faster computers. The indication of what par-
allel execution environments are available is also made in a
descriptive way. The selection of the best location to exe-
cute the parallel code is made during runtime and taking
into account both the code requirements and the computing
resources availability.

The distribution of work among several computers or pro-
cessors can now be done using libraries such as MPI, but
require the programmer to know their API. With run-time
code this need disappears, as the work distribution code is
inserted in the correct places during application execution.
Furthermore it becomes easier to add or change the possible
execution environments.

The proposed solution uses metaclasses, allowing the mod-
ification of the code to be done on run-time, without any
need to transform and recompile the source code. The de-
veloped metaclass intercepts all class creation and modifies
the implementation of those that are to be parallel, without
any user intervention: the user must only state what classes
have methods that can be executed concurrently with the
rest of the code.

In the next section we present some technologies and sys-
tems that address similar issues as our work (parallel exe-
cution, reflection and parallel methods definitions). In sec-
tions 3 and 4 we describe the architecture and implementa-
tion (respectively) of our system. Finally we show perfor-
mance and functional evaluation as well as the conclusions
and future work.

2. RELATED WORK

mobile midlleware

p2p programming systems
aspect oriented,

reflection, meta-programming

3. ARCHITECTURE

The architecture of Mercury is closely mapped to its mains
functionality: load the various class adaptors, load informa-
tion about parallel classes, transform parallel classes, and
adapt transformed classes to the various execution environ-
ments.

The organization and linking between the several compo-
nents is shown in Figure 3.

The Application Transformer module replaces the en-
try point of the program being transformed, loads the trans-
formation code and initiates the original application trans-
formation. This module starts loading and creating the
Adaptor Loader, Metaclass Loader modules, then ini-
tializes the necessary data structures and starts the Appli-
cation Loader.

The adaptor Loader reads an configuration file (the Adap-
tors List on Figure 3) stating the available Adaptors,
loads each Adaptor code, and creates and registers the
corresponding class. For each available computational re-
source (threads and other parallel execution environments
with suitable middleware) there is one Adaptor. Each of
these Adaptors are responsible for the creation and termi-
nation of the concurrent tasks on one infrastructure.

The Metaclass Loader reads the ClassTransformer
Metaclass code, creates it and registers it for use when

Adaptor Metaclass Aplication
Loader Loader Loader

Application Code Application Transformer

ClassTransformer Metaclass .

Unmodified Application code

P E——

Transformed classes

Application
Configuration

Adaptors List

B}

—
Distributed

Thread Cluster
Adantar 1 Adaptor Adaptor
Adantar 2

computing
Adaptor

Distributed
Threads API Migzil::;?arre computing
Middleware

Figure 2: architecture

Adaptor n

|

Aplication Loader starts loading and processing the Ap-
plication Code, taking into account the name of the paral-
lel classes and methods stated on the Application Config-
uration. The way the application is transformed and how
this is implemented will be presented in sections 3.1 and 4

During the application execution the classes and objects
organization is the one shown in Figure 3.

Transformed
Class

Adaptation|
Class

Adaptor Objects

Adaptor code

Middleware

L]
Original
objects

Parallel Execution
environment

Figure 3: Transformed classes organization

After loading the application besides the original classes
(and their objects), some more auxiliary classes are created
and instantiated.

The transformed class is a wrapper for the original
class, to which it has one reference. When an instance of
the original class was supposed to be created, it is respon-
sibility of the transformed class to decide what kind of
Adaptation object to create. No instances of this trans-
formed class exist during execution: only instances of the
original class (locally or on remote computers) and in-
stances of the adaptation classes.

The adaptation objects server the purpose of handling
all particularities of the underlying Middleware parallel
execution mechanisms: threads, or processes on remote com-
puters. These objects act as proxies, being responsible for
redirecting all calls to the original objects (instances of the
original classes), and handling all synchronization issues.
During execution unmodified objects interact with adaptor
abjects transparently.

3.1 execution

The code loading process and initialization of a trans-

formed application is shown in Figure 4.

VM Start

A

metaclass
registration

!

parallel classes
info reading

Y

start reading app.py

more classes

-

5]
o
@
o
g}
Adaptor code . s
& class transforming =
reading 3
L 7 =3
l g =
[}
o
@
o
Adaptor Class =
registration 2 Code loading end
I— 3
<

Figure 4: Aplication start fluxogram

The first steps are straightforward. First the supplied
metaclass is loaded and registered for latter use: when the
information about the parallel classes is read. The supplied
Application Configuration files must contain for each
classes that have parallel methods its name, and the name
of those methods. This information is stored and will be
used when loading the application class, and when invoking
their different methods as will be shown in the next section.

The Adaptor Loader Module is responsible for loading
the Adaptor List file and create the Adaptor classes
refereed on that file. This configuration file contains the list
of classes. From those names the Adaptor Loader gets
the file with the class implementation and imports it. From
this moment forward the corresponding class is available for
use. The names of all Adaptor classes are stored in a list.

The last step before the application execution is it load-
ing from disk and transformation. Inside the Application
Loader whenever a class is loaded from disk it is verified if
its name was read from the Application Configuration
file. If the name was present in the configuration file, a
class transforming should occur, on the other hand ordinary
classes are created normally.

The python mechanisms used in the interception of the
classes loading and the classes transformation are presented
in the next section.

4. IMPLEMENTATION

In Section 3.1 we made an overview on how the applica-
tion transformation is made. The implementation details
and how exactly the presented steps are carried out is now
presented: i)interception of the class load, ii) class trans-
forming and iii) adaptor implementation.

4.1 Class loading interception

The class transformations are performed by a custom meta-
class. While python allow the use of a global metaclass some
libraries do not allow its classes to be created by a metaclass.
So, it was necessary to after loading each class code (but

before actually creating it) to check if it was necessary to
invoke a metaclass. Before starting reading the application
code our initialization code installs a custom import func-
tion. Whenever a python file was included, it is our import
function that is executed, whose pseudo-code is shown in
Figure 5.

def my__import__(fileName):
mod = __old_-_import__(fileName)
for name, object in mod:
if isClass(object):
if (name in paralelClasses):
mod [name] = classTransformer.
newClass (className)
7 return mod

UL W

Figure 5: Custom file import

On line 2, the original import function load all the file
code, which is stored in the mod variable. Then, on line 3, for
every object loaded (that includes constants, function, and
classes) we check if it is on class. If the class was referred in
the Application Configuration file (its name is stored in
the paralelClasses) we replace it for a new class created by
our metaclass named classTransformer. After the loading
of the python file, object containing the classes

4.2 Class transforming

As stated earlier the transformation of the parallel classes
is performed by a metaclass. In python, classes and meta-
classes are first-class objects, and as such have the ordinary
class methods: __new__ where the instances are actually cre-
ated, and __ini__ used to initiate the state of its instances.

As we want to intervene on the actual creation of the
classes the __new__method should be defined. The actual im-
plementation of the classTransformer metaclass is shown
in Figure 6.

1 class classTransformer (type):

2 def __new__(cls, name, bases, dct):

3 oldclass = newClass (name+”0ld”, cls)

4 proxyclass = newClass(name,
transformedClass)

5 proxyclass.originalClass = oldclass

6 return proxyclass

Figure 6: classTransformer metaclass pseudo-code

On line 3 we build a copy of the original class but with a
different name. From this point forward, the original class
can be accessed globally by its new name, or locally to this
_mnew__ method through the oldclass variable.

On the following lines name a copy of pre-existent class
(transformedClass) is made and a link to the original class
is set ans a class attribute.

The __new__ method concludes returning a reference to
a copy of the transformedClass class. From this point
forward, on the original code, whenever the programmer
created an instance on the original class, that object creation
will be handled by a copy of the transformedClass class.

The transformed class transformedClass can be seen as
an object factory. When trying to creating an instance of
this class the return objects will belong to on of the adaptor

classes.

Also in this case the method _new__ (shown in

Figure 7) is executed.

clas

1
2
3
4

s transformedClass (object):

def __new__ (cls, xargs):

adaptorClass = select Adaptor Class()
proxyObj = adaptorClass(cls.
originalClass , paralelClasses|
originalClassName], *args)
return proxyObj

Figure 7: Transformed Class

On line 3 the best adaptor is selected. This has to be done
to optimize the allocation of available resources (processors,
memory, ...) taking into account the object computational
requirements. The way the best adaptor is chosen is out of
scope of this paper, but possible solutions will be presented
on the Conclusion.

On the next line, an instance of the selected Adaptor

class is

created. The constructor receives as parameters the

original class, the list of parallel methods (those from
the original class that can be executed concurrently) and
the original arguments that are to passed to the original
class constructor.

This method return a proxy object, that is an instance
of an adaptor class, that forwards all method call to the

original
Durin,

objects.
g normal program operation, different instances of

the same class can live concurrently and execute on different
computers.

4.3 Adaptor implementation

The Adaptor classes are responsible a series of manage-
ment activities: i) evaluation of the adequacy of the exe-
cution environment to the classes parallelized, ii) creation

of original objects on the target platform iii) proxying of

the methods invocation, and iv) synchronization of invoked
methods.

The fundamental Adaptor class is the one that takes
advantage of local multiprocessors/multicores to allow the

efficient
Besides

concurrent execution of several original classes.
allowing the concurrent execution of some meth-

ods, this adaptor class must also block other method in-
vocations until parallel methods terminate. Other adaptor
classes, are built on/with this classes to accomplish the same
objectives, but must create the original objects on differ-
ent computing infrastructures.

In figures 8 and 9 we present the Thread Adaptor pseudo-

code.

1 def

__init__(self, originalClass,
_paralelMethods , *args):

2 self._proxiedObject=originalClass (xargs)
3 self._lock = threading.Lock()
4 self._paralelMethods = _paralelMethods

Figure 8: Thread Adaptor Class

The initia;lizatio of the Thread Adaptor is shown on Fig-
ure 8. The adaptor will have a reference to an instance on
the original class.This object is created on line 2 and will

be responsible for actually perform all computational tasks,
not the Adaptor.

The lock created on line 3 will be used to guarantee that
no methods executed by the same object will execute concur-
rently. The list with the parallel methods (_-parallelmethods
is necessary to know which methods should be executed in
a separate thread from the rest of the application.

In order to synchronize method invocations and launch
threads when necessary, it is necessary to intercept all method
calls. The necessary code, present in the adaptor object, is
shown on Figura 9.

def __getattr__(self, attr):
if type(attr) is MethodType:
self . _name.append(attr)
if attr in self._paralelMethods:
return self.__invokeParalel__
else:
return self.__invokeSerial__
else:
self. _lock.acquire();
ret = getattr(self._proxiedObject
attr)
11 self. _lock.release ();
12 return ret

QOO Uk WN -

14 def __invokeSerial__(self, xvargs):

15 self._lock.acquire();

16 methodName = self._name.pop ()

17 method = getattr(self. _proxiedObject ,
methodName)

18 ret = method(*xvargs)

19 self._lock.release ()

20 return ret

22 def __invokeParalel__(self, xvargs):
23 self._lock.acquire();
24 self._thread =

25 threading . Thread(self.
__paralelCode__, vargs)

26 self._thread.start ()

27

28 def __paralelCode__(self, xargs):

29 methodName = self._name.pop()

30 method = getattr(self._proxiedObject,
methodName)

31 method(*vargs)

32 self._lock.release()

Figure 9: Threads Adaptation Class

Before the execution of any method or access to an object
attribute, the method __getattr__ is called. This method
returns either the value of the attribute or a a reference
to the method object, as in python methods are first class
objects. If the access is to an attribute, the access is forward
to the original object (in linee 9-11) and guarded by a lock.

If it is a method call, two cases are possible: parallelizable
methods or not. In either case the method returned does
not belong to the original object but to the Adaptor
(lines 5 and 7). Before returning references to these methods
(--invokeSerial__ or __invokeParalle__) the name of the
called method is pushed to a stack (line 3).

The __invokeSerial__method gets the name of the method
to being called (line 15), obtains from the original object
the actual method (line 16), and invokes it (line 17).

The __invokeParalle__ acts in a similar way but on a

different thread. The code that gets a reference to the
called method and its execution (method __parallelCode__
on lines 26-30) runs on a different thread. This thread is
started on lines 22-24 inside the __invokeParalle__ method.

The synchronization that guarantees that the execution
of a transformed objects is the same as the one of it un-
modified version is performed by the various acquires and
releases of the lock in various places: i) when accessing the
attributes of the original object (lines 9-11), ii) during the se-
rial execution of the methods (lines 15-19), and iii) when the
parrallel methods execute the lock is aquired before starting
the thread (line 23) and release at its end (line 32).

S. EXECUTION

6. EVALUATION
7 segundos para 1000 threads/objectos parallelos

7. CONCLUSIONS

8. REFERENCES

[1] O. Broker, O. Chinellato, and R. Geus. Using python
for large scale linear algebra applications. Using Python
for large scale linear algebra applications, 21(6):969 —
979, 2005.

[2] L. Dalcin. Mpi for python - python bindings for mpi.
http://code.google.com/p/mpidpy/.

[3] U. Egede, K.Harrison, R. Jones, A. Maier, J. Moscicki,
G. Patrick, A. Soroko, and C. Tan. Ganga user
interface for job definition and management. In Proc.
Fourth International Workshop on Frontier Science:
New Frontiers in Subnuclear Physics, Italy, September
2005. Laboratori Nazionali di Frascati.

[4] S. T. S. Institute. Pyraf home page.
http://www.stsci.edu/resources/software_hardware/pyraf.

[5] I. Interactive Supercomputing. Star-p overview.
http://www.interactivesupercomputing.com/products/.

[6] J. K. Nilsen. Montepython: Implementing quantum
monte carlo using python. Computer Physics
Communications, 177(10):799 — 814, 2007.

