
VMR: Volunteer MapReduce over the Large Scale Internet

Fernando Costa, Luís Veiga, and Paulo Ferreira
Distributed Systems Group, INESC-ID

Technical University of Lisbon
R. Alves Redol, 9

1000-029 Lisboa, Portugal

ABSTRACT
Volunteer Computing systems (VC) harness computing re-
sources of machines from around the world to perform dis-
tributed independent tasks. Existing infrastructures follow a
master/worker model, with a centralized architecture, which
limits the scalability of the solution given its dependence on
the server. We intend to create a distributed model, in or-
der to improve performance and reduce the burden on the
server.
In this paper we present VMR, a VC system able to run

MapReduce applications on top of volunteer resources, over
the large scale Internet. We describe VMR’s architecture
and evaluate its performance by executing several MapRe-
duce applications on a wide area testbed.
Our results show that VMR successfully runs MapReduce

tasks over the Internet. When compared to an unmodi-
fied VC system, VMR obtains a performance increase of
over 60% in application turnaround time, while reducing
the bandwidth use by an order of magnitude.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation]: Group
and Organization Interfaces—Collaborative Computing ; D.1.1
[Programming Techniques]: Applicative (Functional) Pro-
gramming; C.2.4 [Computer-Communication Networks]:
Distributed Systems—Cloud Computing

General Terms
Experimentation, Performance

Keywords
Volunteer Computing, MapReduce, Large Scale Distributed
Systems

1. INTRODUCTION
The use of volunteer PCs across the Internet to execute

distributed applications has been increasing in popularity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MGC2012, December 3, 2012, Montreal, Quebec, Canada.
Copyright 2012 ACM 978-1-4503-1608-8/12/12 ...$15.00.

since its inception, with projects like Seti@home[2] or Fold-
ing@home[12]. These Volunteer Computing (VC) systems
harness computing resources from machines running com-
modity hardware and software, and perform highly parallel
computations that do not require any interaction between
network participants (also called bag-of-tasks).

Existing VC systems support over 60 scientific projects,1

and have over a million participants, rivaling supercomput-
ers in computing power. The number of Internet connected
devices is expected to increase exponentially with the advent
of mobile devices [6]. Furthermore, Moore’s law continuous
relevance shows that we can expect a sustained evolution of
the hardware in the last mile of the Internet. This translates
to an incredible amount of untapped computing and storage
potential in machines spread throughout the world.

However, current VC systems have a centralized architec-
ture that follows a master/worker model, as a small number
of servers is responsible for task distribution and result val-
idation. This limitation has prevented Volunteer Comput-
ing from reaching its true potential. In addition, the single
point of failure inevitably creates a bottleneck, as projects
expand and storage and network requirements become more
demanding.

1.1 Goal
Our goal is to improve the performance of Volunteer Com-

puting systems, by decentralizing some of the mechanisms of
existing systems that place an excessive burden on the cen-
tral server. There are several challenges and requirements
to consider, in order to achieve our objective.

First and foremost, our solution must be able to take ad-
vantage of the huge amount of VC resources that we previ-
ously mentioned. We must consider both the hardware ca-
pabilities of individual machines and the network bandwidth
that is at our disposal, at the last mile of the Internet.

Our system must also be compatible with existing VC so-
lutions (e.g. BOINC [1]). Developing a whole new platform
from scratch would be of no practical use once the research
was finished. In fact, our solution would undoubtedly bring
significant disadvantages if it required that only our system’s
clients were attached to a project.2 To avoid this situation
we must guarantee compatibility with existing projects. Any

1List of active VC projects.
http://www.distributedcomputing.info/projects
2A VC Project runs on top of existing middleware (e.g.
BOINC) by developing an application and defining all pa-
rameters concerning its execution. Project developers only
have to make sure their tasks are properly configured and
provide a publicly accessible machine to act as the VC server.

client must be able to run any project application. On the
other hand, our solution must support existing applications,
and successfully schedule tasks on existing clients.
Additionally, the execution of our system on unreliable,

non-dedicated resources requires fault tolerance mechanisms.
This means it must account for unreachable clients, which
have disconnected from the server, or are simply offline.
Another potential problem is caused by byzantine behav-

ior. Clients may maliciously return incorrect results, or in-
advertently produce an incorrect output.
Finally, our solution must be able to withstand transient

server failures. This is particularly important in our case
because we will be dealing with long running applications,
with a potentially high level of server interactions. We need
to prevent task execution on the clients from coming to a
halt, as they wait for the server to come back up.

1.2 Programming Paradigm
As parallel and distributed computing becomes the an-

swer for increased scalability for varied computational prob-
lems, several paradigms and solutions have been created dur-
ing the last decade. In our first attempt at running data-
intensive applications on top volunteer resources, we de-
cided to select a popular paradigm, representative of differ-
ent tasks. Among the potential candidates, MapReduce [9]
has taken its place as one of the most widely used paradigms
in cloud computing environments, such as Amazon’s EC2. 3

MapReduce leverages the concept of Map and Reduce
commonly used in functional languages: a map task runs
through each element of a list and produces a new list; re-
duce applies a new function to a list, reducing it to a single
final value or output. In MapReduce, the user specifies a
map function that processes tuples of key/values given as
input, and generates a new intermediate list of key/value
pairs. This map output is then used as input by a reduce
function, also predefined by the user, that merges all in-
termediate values that belong to the same key. Therefore,
all reduce inputs are outputs from the previous map task.
Throughout the rest of the paper, we will be referring to
them as map outputs. The adaptation of MapReduce to
a volunteer environment is an interesting challenge because
current implementations are limited to cluster environments.

1.3 Our Solution
Existing solutions do not fulfill the goal we described, and

are inadequately prepared to meet the requirements men-
tioned above.
Most Volunteer Computing systems have a centralized

architecture, with communication going through a single
server. There are few exceptions and they were created with
a smaller scope or environment in mind [5]. In BOINC [1],
XtremWeb [3] and Folding@home[12], the server or coor-
dinator must fulfill the role of job scheduler, by handling
task distribution and result validation. This architecture
creates too much overhead on the server when considering
more complex data distribution or storage. Existing projects
such as Climateprediction.net and MilkyWay@home have
encountered problems when dealing with large files or hav-
ing the same data shared by many clients [7].
Fault tolerance is strictly confined to the client-side in

current VC systems. Although some projects do have a set of
mirrors that act as data repositories, all client requests and

3Amazon EC2. http://aws.amazon.com/ec2

task scheduling goes through the central server. Therefore,
any server fault that prevents it from communicating with
clients has a very high probability of disrupting clients and
stopping further task execution.

Finally, a considerable limitation of existing VC systems
is their focus on bag-of-tasks applications, without commu-
nication or dependencies between the tasks. None of the
current platforms support MapReduce, a widely used pro-
gramming model that adapts well to a data-intensive class
of applications. Supporting MapReduce requires fundamen-
tal changes on existing algorithms, and the introduction of
on-the-fly task creation.

In this paper we present VMR, a prototype that is able to
execute MapReduce tasks over the large scale Internet, on
top of volunteer resources. Our system is compatible with
existing solutions (in particular BOINC). VMR is able to de-
centralize the existing architecture, by using client to client
transfers, thus allowing VMR to tolerate transient server
failures, as the clients depend merely on other peers for data.
Our system is also capable of tolerating VC clients’ failure by
using replication (i.e. running the same task on several VC
machines). Finally, byzantine behavior is controlled through
the use of task validation in the server. By replicating each
task at least twice, it is possible to compare the outcome and
accept only the results in which a quorum has been reached.

This paper is organized as follows: VMR is presented in
more detail in Section 2; Section 3 presents experimental
results; related work is discussed in Section 4; and Section 5
concludes.

2. VMR
VMR’s architecture consists of a central server, and clients

which can assume two different roles: mappers, which are
responsible for bag-of-tasks in the map stage; and reducers,
which perform the aggregation of all map output in the re-
duce step. VMR is compatible with BOINC (Berkeley Open
Infrastructure for Network Computing), the most successful
and popular VC middleware to date. Consequently, it is
able to borrow its mechanisms and algorithms to deal with
many of the challenges of VC systems.

However, BOINC suffers from the fundamental drawback
of overloading the server by following a master/worker model,
in which a central server is responsible for scheduling and
validating tasks. Although it is possible to use mirrors to
hold data, many projects use a single machine for both data
storage and scheduling. Furthermore, these mirrors act as
web servers, as all data is transferred through HTTP, mak-
ing this impractical to implement on VC clients. Therefore,
BOINC projects do not fully exploit users’ increasing band-
width, and deploy compute intensive applications, since a
few problems arise in data-intensive scenarios [8, 10].

The parameters of the MapReduce job to run on top of
VMR are defined by the user, and stored in the server. This
includes the number of map and reduce tasks, the executable
files used by map and reduce tasks, as well as their hardware
and software requirements. Once all the MapReduce job
characteristics have been defined, the VMR server creates
the map tasks, and stores this information in the its database
− the VMR database is responsible for holding all persistent
information on tasks, clients, and applications being run.

The overall VMR execution model is presented in Fig.
1. A group of mappers first requests work from the server
(1). The server follows a simple scheduling procedure when

Figure 1: VMR Execution Model.

selecting which available task is assigned to each mapper
or reducer: whenever it receives a work request, it matches
each task’s predefined hardware or software requirements
to the client’s machine characteristics. These requirements
may include memory, disk space, CPU or Operating System
specifications. If the client is suitable for the task, the server
assigns it the task and saves this information in its database.
After selecting an appropriate map task for the requesting
mapper, the server sends back information on the task that
the mapper must execute. This information includes the
location of input and executable files, the deadline for task
completion and the previously mentioned task requirements.
The machines holding input and executable files are called
data servers. Most VC projects store the data in the central
server, as represented in Fig. 1.
The mapper must then download the required data from

the data server (2) before starting the computation (3). Af-
ter the task execution is completed, the mapper creates an
MD5 hash for each of the map output files. Therefore, at
the end of the computation, each mapper is left with both
the map output files and the same number of correspond-
ing hashes. These hash sums are sent back to the server in
place of the output files (4) (so it is compatible with current
VC solutions, e.g. BOINC). This greatly reduces the upload
volume from mappers to the server.
The hashes are compared at the server in order to vali-

date each corresponding task (5). If the result is valid, the
mapper’s address is stored in VMR’s database (6). Each
time a map result is validated, the VMR server checks if
all map tasks have been executed and validated. When this
condition is met, the server creates the predefined number
of reduce tasks. A reducer may then send a work request to
the project server (7), in order to be assigned a reduce task.
The server follows task scheduling procedure defined earlier
and looks through the database to find a task that can be
assigned to the reducer. If the reducer meets all the hard-
ware and availability requirements, the server replies with a
reduce task that fits the request.
MapReduce jobs require communication between map and

reduce stages since map outputs are used as input for reduce
tasks. In the reduce step, each task performs join operations
on the map outputs. Therefore, each reduce task must ob-
tain all the map outputs that correspond to the key range it
is responsible for. In order to achieve good performance in
MapReduce jobs, we leverage clients’ resources by moving
as much of the communication as possible to the client-side.
This helps reduce the load on the central server, and cre-

ates a more suitable decentralized model for data-intensive
scenarios, typical of MapReduce.

Note that, as previously stated, in current VC systems all
data would have to be uploaded and downloaded from the
server. However, the VMR server stores the address of all
mappers that returned valid map results. This information
is included in the work request reply, and allows reducers to
download the map output directly from the mappers, with-
out having to go through the server (8). Once the input files
have been downloaded, the reduce task is executed (9) and
the final result is returned to the server (10) for validation.

3. EXPERIMENTS
We evaluate VMR by running several tests over the In-

ternet, in a scenario that resembles a typical VC environ-
ment. We run experiments with 3 different applications
(word count, inverted index, and N-Gram), in order to gauge
our system’s performance under different conditions. This
section presents experimental results, describes the applica-
tions we use and reveals some of the implementation details.

3.1 Experimental Setup
Our goal is to improve the performance of VMR when run-

ning MapReduce applications. Therefore, we compare VMR
with an existing VC system (BOINC). We use the VMR
server in all our experiments, since current VC systems are
unable to schedule MapReduce applications. As we previ-
ously mentioned, the server is compatible with clients from
existing VC solutions. Therefore, we are able to use both
VMR and unmodified BOINC clients in our experiments.

We measure application turnaround, while differentiating
between map and reduce stages in order to pinpoint po-
tential bottlenecks and areas that would benefit most from
improvement. Additionally, we monitor network traffic on
the server. This allows us to identify the benefits of reducing
the dependence on the central server.

We run our experiments on PlanetLab [4], a wide-area
testbed that supports the development of distributed sys-
tems and networks services. In all our experiments, we use
50 nodes that work as the clients, and one node to act as
server.

We use an initial input text file of 1GB, divided into 100
chunks (one 10MB chunk per map task), in the word count
and inverted index experiments. For the N-Gram applica-
tion, we use 100 5MB chunks, due to the larger size of in-
termediate files.

The applications we use to evaluate our system are pack-
aged by many MapReduce implementations as benchmarks,
and thus have the characteristics expected of data-intensive
jobs. We describe each of them in turn.

3.1.1 Word Count
The word count application is a widely accepted bench-

mark in MapReduce implementations. Each map task re-
ceives a file chunk as input, counts the number of words in
it and outputs an intermediate file with “word 1” pairs for
each word found. The reduce step collects all the map inter-
mediate outputs and aggregates them into one final output.

3.1.2 Inverted Index
This is another typical benchmark of MapReduce sys-

tems, in which the final output lists all the documents each
word belongs to. The map task parses each chunk, and

emits a sequence of “word document ID” pairs. The reduce
task merges all pairs for a given word, and emits a “word
list(document ID)” pair.

3.1.3 N-Gram.
An N-Gram is a contiguous sequence of N items from a

given input. Its output can be used in various research areas,
such as statistical machine translation or spell checking. In
our case, it is useful to extract text patterns from large size
text and give statistical information on patterns’ frequency
and length.
Each map task receives its corresponding file chunk as in-

put, and counts all sequences of words of length 1 to N. In
our case, we defined N as 2, for reasons explained in the next
subsection. As in the previous applications, a map output
produces a “sequence 1” pair for each sequence with 1 or
2 words. The reduce step collects all the map intermedi-
ate outputs and aggregates all coinciding sequences into one
final count, thus producing a pattern frequency result.
The map task from the two previous applications pro-

duces output files that are a little larger than the initial
input. Therefore, the amount of data uploaded by map-
pers is similar to the volume downloaded as input. On the
other hand, for each 5MB input, N-Gram’s map task cre-
ates around 30MB of intermediate files which must be trans-
ferred to reducers. Therefore, N-Gram is helpful in assessing
the performance of our system with applications with large
intermediate files.

3.1.4 Limitations of PlanetLab
Each node in PlanetLab may be shared by multiple virtual

machines (slivers) at any time. For obvious reasons, users
do not have access to slivers they do not own, and cannot
predict when they will be executed. As such, our experi-
ments were occasionally influenced by other slivers running
at the same time. This was especially notorious in the node
acting as the server, as the network bandwidth could reduce
suddenly and drastically. We were able to identify these in-
correct experiments due to their unusually long execution
time, and through the use of HTTP commands to occasion-
ally download files from the server.
PlanetLab has another significant limitation: disk space.

Each node running our virtual machine has access to 8GB
in disk, which is very limited for our purpose. This was
especially true when running a normal VC server, which has
to hold the initial map input, map output files and the final
reduce output. For this reason, we confined our input size
to 1GB for word count and inverted index, and 500MB for
N-Gram.

3.2 Experimental Results
Throughout this section, we refer to the existing Volunteer

Computing system we use for comparison as VCS. We run
tests on two versions of our system: VMR corresponds to our
unmodified prototype; whereas VMR-NH is a VMR version
that does not use hashes for map outputs.
The VMR-NH client returns the map output files to the

server, exactly as the VCS clients. However, both VMR-NH
and VMR use inter-client transfers, while all communication
goes through the server in VCS. VMR-NH allows us to as-
sess the impact of uploading and downloading map outputs
from the central server, independently. As we mentioned
previously, all our experiments are run with 50 clients.

Figure 2: Turnaround
Time of Word Count
Application.

Figure 3: Turnaround
Time of Inverted Index
Application.

Figure 4: Turnaround
Time (N-Gram).

Figure 5: Turnaround
Time by Stage (N-Gram).

3.3 Application Turnaround
We begin by measuring application turnaround on all three

experiments. We measure the time it took each MapReduce
job to finish, starting from the initial download of map input
files, and ending with the upload of the last reduce output.
We separate the map and reduce steps in order to identify
their respective weight in regards to the overall application
turnaround time. The map stage is considered to be finished
once all its output has been validated in the server.

We run the word count application with VMR, VMR-NH
and VCS. The turnaround time of the word count appli-
cation for the three alternatives is shown in Fig. 2. For
this application, the scenario with VMR clients has the low-
est turnaround, followed by VMR-NH and then VCS. Both
VMR and VMR-NH perform considerably better than VCS
in the reduce step, with taking only 40% of VCS’s time.
This speedup can be attributed to the inter-client transfers,
which reduce the communication with the central server. On
the map stage, VMR-NH and VCS have similar results, with
VMR-NH performing marginally better. This was expected
as both clients download map inputs and return its output
files to the server. The use of hashes yields a considerable
improvement on the map step, with VMR reducing its exe-
cution interval to 65% of VCS’s value. When considering the
full job turnaround, with map and reduce execution, VMR
is able to cut the time required by existing VC systems in
more than half.

The results of the Inverted Index application support our
previous findings, as we can see in Fig. 3. VMR’s map tasks
finished almost twice as fast as VCS. The reduce step is also
faster with VMR, with an overall speedup of 1.25.

In the N-Gram experiments the server had to be deployed

on a faster node in order to make sure the jobs finished. The
results obtained with N-Gram are shown in Fig. 4. The first
conclusion we can gather from a first look at the graph is that
VMR is able to finish the MapReduce job in half the time of
VCS. This is consistent with previous results from the word
count application. However, in this experiment we can also
observe that the reduce stage on VMR is only slightly faster
than VCS (Fig. 5). This can be explained by the better
network connection of the node used as server specifically for
this application. Despite its larger bandwidth, inter-client
transfers still perform better than the centralized system.
On the other hand, the differences in the map step are, as
expected, much more significant. VMR is 4 times faster in
executing the map stage, which translates to just a quarter
of time needed by VCS to validate all its map tasks. This
result shows us that VMR performs better with applications
that create large intermediate files.

3.4 Network Traffic
We measure upload and download traffic in the server, for

VMR and VCS while running the applications. Monitoring
the network traffic on the server provides a more accurate
measure of its overhead. It also allows us to quantify the
impact of our solution concerning the decentralization of the
VC model. We present the amount of data downloaded from
the clients by the server, as well as the amount uploaded by
the server to the clients.
Figure 6 shows the results for download traffic in the server

while running the word count application. We include the
results of VMR-NH to show the difference between returning
hashes (VMR) or map outputs (VMR-NH). Since VMR-NH
clients must return the map output back to the server, ex-
actly as the regular VCS clients, the server has to download
the same amount of data from the clients in both cases.
This is clearly shown in Fig. 6, where we can see VMR-NH
reaching the same value as VCS. VMR, on the other hand,
has almost completely eliminated server downloads through
the use of hashes. The VMR server receives a mere 250MB
from clients, a value 10 times smaller than VCS’s 3GB.
The server upload traffic is presented in Fig. 7. We can

see that up until around second 2000, both the VCS and the
VMR server send the required map input files to the clients.
However, once that step is completed, the VMR server is no
longer responsible for uploading map outputs to reducers,
unlike VCS which holds that responsibility. That explains
the steep increase in the VCS line, around second 5000. Our
server is required to upload 2.5GB, to clients whereas VCS
uploads more than double that amount.
The inverted index application experiments yielded very

similar results, so they are not shown here. VMR is able to
reduce the amount of data sent to to clients from 6.5GB to
2.3GB and cut downloaded data by 96%.
N-Gram presents a different scenario from the two other

applications, so it is worthwhile to analyze its results. The
upload traffic for a server running N-Gram is shown in Fig.
8. Note that, as mentioned in the previous section, GiGi-MR
has a much lower application turnaround than VCS. This is
why the GiGi-MR line in Fig. 8 stops around second 3000
(the same happens in Fig. 9), while VCS only finishes its
execution much later. It is clear that there is a significant
difference in the amount of data uploaded by GiGi-MR and
VCS. This is due to the large size of intermediate files, which
causes the VCS server to send almost 5 times more data to

Figure 6: Server down-
load traffic (Word Count).

Figure 7: Server upload
traffic (Word Count).

Figure 8: Server upload
traffic (N-Gram).

Figure 9: Server down-
load traffic (N-Gram).

the clients than the VMR server in the reduce step.
The server’s download traffic is exhibited in Fig. 9. Here,

we can see the benefits of using hashes for map task vali-
dation. Up until second 2000, the VMR server has received
almost no data from the clients. At around that time in the
experiment, reducers that finished their task began sending
their output back to the server. The VMR server downloads
a total of 820MB from the clients. On the other hand, the
VCS server is responsible for downloading all map outputs
from mappers, which corresponds to the steep increase up
until second 4000. The VCS server is required to download 6
times more data than VMR. Therefore, we can conclude that
VMR not only can perform better than VCS when running
jobs with large intermediate files, but is also able to alleviate
the server’s network connection.

4. RELATED WORK
Combining the concepts of Cloud and VC was proposed

in [11], in which the authors studied the cost and benefits of
using clouds as a substitute for volunteers or servers.

In [14], the authors define a P2P model under the MapRe-
duce framework. Their system is tailored to a dynamic cloud
environment, creating a federation or cluster of data centers
through a P2P overlay network.

MOON (MapReduce On opportunistic eNvironments) [13]

proposes an extension to the Hadoop4 project that imple-
ments adaptive task scheduling in order to account for node
failure. However, MOON is tailored for a cluster environ-
ment, such as a research lab, in which nodes are trusted or
even dedicated.
MapReduce was also adapted to desktop grids in [15].

The authors claim it is able to run MapReduce jobs on
XtremWeb [3], over the Internet. However, their experi-
ments were conducted in a cluster interconnected by Gigabit
Ethernet. This environment more closely resembles a com-
mon scenario of XtremWeb, which consists of a federation
of research labs.
BOINC, on the other hand, has millions of users, and is

actually tailored for a truly volunteer environment over the
Internet. This allows us to state with more certainty what
are the advantages and shortcomings of this paradigm on a
Volunteer Computing environment.

5. CONCLUSION
We have presented VMR, a Volunteer Computing plat-

form that leverages client resources in order to execute Map-
Reduce applications over the Internet. Our system is able
to tolerate volunteer faults, and transient server failures.
Furthermore, it is compatible with existing VC systems (in
particular BOINC). VMR significantly reduces the depen-
dence on the central server, which is typically overburdened
in current VC platforms, thus allowing it to obtain a better
performance.
We evaluated VMR by measuring the application turn-

around, server network traffic and overhead while running
three different MapReduce applications. Our solution was
able to improve the performance of all the MapReduce jobs
we tested. The map stage was up to 4 times faster than in
an existing VC system. The reduce step also showed an im-
provement, thus reducing each MapReduce job’s execution
time down to less than half.
Regarding the server’s network traffic, VMR reduced server

download traffic by an order of magnitude on the word count
and inverted index applications. The N-Gram application
provided a different scenario, due to its large intermediate
data. Therefore, we were able to witness a decrease in up-
loaded data to 20% of the existing VC system server’s value.
We were able to conclude that VMR not only performs

better than VCS when running MapReduce jobs, but is also
able to significantly remove the burden on the server’s net-
work connection.

6. ACKNOWLEDGMENTS
This work was partially supported by national funds through

FCT - Fundação para a Ciência e a Tecnologia, under projects

PTDC/EIA-EIA/102250/2008, PTDC/EIA-EIA/108963/2008,

PTDC/EIA-EIA/113613/2009, and PEst-OE/EEI/LA0021/2011.

7. REFERENCES
[1] D. P. Anderson. Boinc: A system for public-resource

computing and storage. In Proc. of the 5th
IEEE/ACM Int’l Workshop on Grid Computing,
GRID ’04, pages 4–10, Washington, DC, USA, 2004.

[2] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky,
and D. Werthimer. Seti@home: an experiment in

4Apache Hadoop. http://hadoop.apache.org/

public-resource computing. Commun. ACM, 45:56–61,
November 2002.

[3] F. Cappello, S. Djilali, G. Fedak, T. Herault,
F. Magniette, V. Néri, and O. Lodygensky.
Computing on large-scale distributed systems:
Xtremweb architecture, programming models,
security, tests and convergence with grid. Future
Gener. Comput. Syst., 21:417–437, March 2005.

[4] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. Planetlab: an
overlay testbed for broad-coverage services.
SIGCOMM Comp. Commun. Rev., 33:3–12, July 2003.

[5] W. Cirne, F. Brasileiro, N. Andrade, L. Costa,
A. Andrade, R. Novaes, and M. Mowbray. Labs of the
world, unite!!! Journal of Grid Computing, 4:225–246,
2006.

[6] I. Cisco. Cisco visual networking index: Forecast and
methodology, 2011−2016. CISCO White paper, pages
2011–2016, February 2012.

[7] F. Costa, I. Kelley, L. Silva, and G. Fedak. Optimizing
data distribution in desktop grid platforms. Parallel
Processing Letters, 18(3):391–410, September 2008.

[8] F. Costa, L. Silva, G. Fedak, and I. Kelley. Optimizing
the data distribution layer of boinc with bittorrent.
Parallel and Distributed Processing Symposium,
International, 0:1–8, 2008.

[9] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Commun. ACM,
51:107–113, Jan. 2008.

[10] G. Fedak, H. He, and F. Cappello. Bitdew: a
programmable environment for large-scale data
management and distribution. In Proceedings of the
2008 ACM/IEEE conference on Supercomputing, SC
’08, pages 45:1–45:12, Piscataway, NJ, USA, 2008.

[11] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and
D. P. Anderson. Cost-benefit analysis of cloud
computing versus desktop grids. In Proceedings of the
2009 IEEE International Symposium on
Parallel&Distributed Processing, IPDPS ’09, pages
1–12, Washington, DC, USA, 2009.

[12] S. M. Larson, C. D. Snow, M. Shirts, V. S. P, and
V. S. Pande. Folding@home and genome@home:
Using distributed computing to tackle previously
intractable problems in computational biology.
Computational Genomics, 2002.

[13] H. Lin, X. Ma, J. Archuleta, W.-c. Feng, M. Gardner,
and Z. Zhang. Moon: Mapreduce on opportunistic
environments. In Proc. of the 19th ACM Int’l
Symposium on High Performance Distributed
Computing, HPDC ’10, pages 95–106, New York, NY,
USA, 2010.

[14] F. Marozzo, D. Talia, and P. Trunfio. Adapting
mapreduce for dynamic environments using a
peer-to-peer model. In Proc. of the First Workshop on
Cloud Computing and its Applications (CCA 2008),
Chicago, USA, October 2008.

[15] B. Tang, M. Moca, S. Chevalier, H. He, and G. Fedak.
Towards mapreduce for desktop grid computing. In
Proceedings of the 2010 International Conference on
P2P, Parallel, Grid, Cloud and Internet Computing,
3PGCIC ’10, pages 193–200, Washington, USA, 2010.

