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Abstract. Alongside the rise of multi-processor machines, concurrent
programming models have grown to near ubiquity. Programs built on
these models are prone to bugs with rare pre-conditions, arising from
unanticipated interactions between parallel tasks. Replayers can be ef-
ficient on uni-processor machines, but struggle with unreasonable over-
head on multi-processors, both concerning slowdown of the execution
time and size of the replay log. We present Ditto, a deterministic replayer
for concurrent JVM applications executed on multi-processor machines,
using both state-of-the-art and novel techniques. The main contribu-
tion of Ditto is a novel pair of recording and replaying algorithms that:
(a) serialize memory accesses at the instance field level, (b) employ par-
tial transitive reduction and program-order pruning on-the-fly, (c) take
advantage of TLO static analysis, escape analysis and JVM compiler op-
timizations to identify thread-local accesses, and (d) take advantage of a
lightweight checkpoint mechanism to avoid large logs in long running ap-
plications with fine granularity interactions, and for faster replay to any
point in execution. The results show that Ditto out-performs previous
deterministic replayers targeted at Java programs.
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1 Introduction

The transition to the new concurrent paradigm of programming has not been
the easiest, as developers struggle to visualize all possible interleavings of paral-
lel tasks that interact through shared memory. Concurrent programs are harder
to build than their sequential counterparts, but they are arguably even more
challenging to debug. The difficulty in anticipating all possible interactions be-
tween parallel threads makes these programs especially prone to the appearance
of bugs triggered by rare pre-conditions, capable of evading detection for long
periods. Moreover, the debugging methodologies developed over the years for se-
quential programs fall short when applied to concurrent ones. Cyclic debugging,
arguably the most common methodology, depends on repeated bug reproduction
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to find its cause, requiring the fault to be deterministic given the same input.
The inherent memory non-determinism of concurrent programs breaks this as-
sumption of fault-determinism, rendering cycling debugging inefficient, as most
time and resources are taken up by bug reproduction attempts [1]. Furthermore,
any trace statements, added to the program in an effort to learn more about
the problem, can actually contribute further to the fault’s evasiveness. Hence,
cyclic debugging becomes even less efficient in the best case, and ineffective in
the worst.

Memory non-determinism, inherent to concurrent programs, results from the
occurrence of data races, i.e., unsynchronized accesses to the same shared mem-
ory location in which at least one is a write operation. The outcomes of these
races must be reproduced in order to perform a correct execution replay. In uni-
processors, these outcomes can be derived from the outcomes of a much smaller
subset of races, the synchronization races, used in synchronization primitives to
allow threads to compete for access to shared resources. Efficient deterministic
replayers have been developed taking advantage of this observation [2–5].

Replaying executions on multi-processors is much more challenging, because
the outcomes to synchronization races are no longer enough to derive the out-
comes to all data races. The reason is that while parallelism in uniprocessors
is an abstraction provided by the task scheduler, in multi-processor machines it
has a physical significance. In fact, knowing the task scheduling decisions [6, 7]
does not allow us to resolve races between threads concurrently executing in
different processors. Deterministic replayers have difficulties with unreasonable
overhead when applied in this context, as the instructions that can lead to data
races make up a significant amount of the instructions executed by a typical
application. Currently there are four distinct approaches to deal with this open
research problem, discussed in Section 2. Even using techniques to prune the
events of interest, long running applications can make the log of events grow
to an unmanageable size. To avoid this, a checkpointing mechanism can also
be used to transparently save the state of the program, with the events before
the checkpoint truncated from the log. The last saved state, may be potentially
smaller than the original untruncated log, and can also be used as a starting
point for a future replay allowing for a faster replay solution.

In this paper, we present Ditto, our deterministic replayer for unmodified
user-level applications executed by the JVM on multi-processor machines. It
integrates state-of-the-art and novel techniques to improve upon previous work.
The main contributions that make Ditto unique are: (a) A novel pair of logical
clock-based [8] recording and replaying algorithms. This allows us to leverage
the semantic differences between load and store memory accesses to reduce trace
data and maximize replay-time concurrency. Furthermore, we serialize memory
accesses at the finest possible granularity, distinguishing between instance fields
and array indexes; (b) Reduced trace and log space. We use a constraint pruning
algorithm based on program order and partial transitive reduction to reduce the
amount of trace data on-the-fly and a checkpointing mechanism to employ in long
running applications; (c) A trace file optimization that highly reduces the size of



Deterministic Execution Replay for Java VM on Multiprocessors 407

logical clock-based traces; Though we discuss and implement Ditto in the context
of a JVM runtime, its underlying techniques may be directly applied to other
high-level, object-oriented runtime platforms, such as the Common Language
Runtime (CLR).

We implemented Ditto on top of the open-source JVM implementation Jikes
RVM (Research Virtual Machine). Ditto is evaluated to assess its replay cor-
rectness, bug reproduction capabilities and performance. Experimental results
show that Ditto consistently out-performs previous state-of-the-art determinis-
tic replayers targeted at Java programs in terms of record-time overhead, trace
file size and replay-time overhead. It does so across multiple axes of application
properties, namely number of threads, number of processors, load to store ratio,
number of memory accesses, number of fields per shared object, and number of
shared objects.

The rest of the paper is organized as follows: Section 2 describes some in-
stances of related work; Section 3 explains the base design and algorithms of
Ditto; Section 4 presents fundamental optimizations; Section 5 discusses some
implementation related details; Section 6 presents and analyzes evaluation re-
sults; and Section 7 concludes the paper and offers our thoughts on the directions
of future work.

2 Related Work

Deterministic replayers for multi-processor executions can be divided into four
categories in terms of the approach taken to tackle the problem of excessive
overhead. Some systems replay solely synchronization races, thus guaranteeing
a correct replay up until the occurrence of a data race. RecPlay [3] and JaRec
[4] are two similar systems that use logical clock-based recording algorithms to
trace a partial ordering over all synchronization operations. RecPlay is capable of
detecting data races during replay. Nonetheless, we believe the assumption that
programs are perfectly synchronized severely limits the effectiveness of these
solutions as debugging tools in multi-processor environments.

Researchers have developed specialized hardware-based solutions. FDR [9]
extends the cache coherence protocol to propagate causality information and
generate an ordering over memory accesses. DeLorean [10] forces processors to
execute instructions in chunks that are only committed if they do not conflict
with other chunks in terms of memory accesses. Hence, the order of memory
accesses can be derived from the order of chunk commits. Though efficient, these
techniques have the drawback of requiring special hardware.

A more recent proposal is to use probabilistic replay techniques that explore
the trade-off between recording overhead reduction through partial execution
tracing and relaxation of replay guarantees. PRES partially traces executions
and performs an offline exploration phase to find an execution that conforms
with the partial trace and with user-defined conditions [11]. ODR uses a formula-
solver and a partial execution trace to find executions that generate the same
output as the original [12]. These techniques show a lot of potential as debugging
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tools, but are unable to put an upper limit on how long it takes for a successful
replay to be performed, though the problem is minimized by fully recording
replay attempts.

LEAP is a relevant Java deterministic replayer that employs static analysis,
to identify memory accesses performed on actual thread-shared variables, hence
reducing the amount of monitored accesses [13]. Because LEAP recording algo-
rithm associates access vectors to fields, it can not distinguish accesses to the
same field of different objects. In workloads where there are many objects of a
single type but they are not shared among threads, this will diminish the concur-
rency of the recording and replaying mechanisms. ORDER [14] is, like Ditto, an
object centric recorder. From a design point of view, ORDER misses support for
online pruning of events and a checkpoint mechanism for faster replay. Regarding
current implementation, the baseline code base (Apache harmony) is now dep-
recated, while Ditto was developed in a research oriented, yet production-like
quality JVM, that is widely supported by the research community.

Deterministic replay can also be used as an efficient means for a fault-tolerant
system to maintain replicas and recover after experiencing a fault [15, 16].

3 Ditto – System Overview

Ditto must record the outcomes of all data races in order to support repro-
duction of any execution on multi-processor machines. Data races arise from
non-synchronized shared memory accesses in which at least one is a write oper-
ation. Thus, to trace outcomes to data races, one must monitor shared memory
accesses. The JVM’s memory model limits the set of instructions that can ma-
nipulate shared memory to three groups: (i) accesses to static fields, (ii) accesses
to object fields, and (iii) accesses to array fields of any type.

In addition to shared memory accesses, it is mandatory that we trace the
order in which synchronization operations are performed. Though these events
have no effect on shared memory, an incorrect ordering can cause the replayer
to deadlock when shared memory accesses are performed inside critical sections.
They need not, however, be ordered with shared memory accesses. In the JVM,
synchronization is supported by synchronized methods, synchronized blocks and
synchronization methods, such as wait and notify. Since all these mechanisms
use monitors as their underlying synchronization primitive, their acquisitions
are the events that Ditto intercepts. For completeness, we also record values and
orderings of external input to threads, such as random numbers and from other
library functions, while assuming the content of input from files is available.

3.1 Base Record and Replay Algorithms

The recording and replaying algorithms of Ditto rely on logical clocks (or Lam-
port clocks) [8], a mechanism designed to capture chronological and causal re-
lationships, consisting of a monotonically increasing software counter. Logical
clocks are associated with threads, objects and object fields to identify the order
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Algorithm 1. Load wrapper

Parameters: f is the field, v is the value loaded
1: method wrapLoad(f ,v)
2: monitorEnter(f)
3: t← getCurrentThread()
4: trace(f.storeClock)
5: f.loadCount← f.loadCount+ 1
6: if f.storeClock > t.clock then
7: t.clock← f.storeClock
8: end if
9: v ← load(f)
10: monitorExit(f)
11: end method

Algorithm 2. Store wrapper

Parameters: f is the field, v is the value stored
1: method wrapStore(f ,v)
2: monitorEnter(f)
3: t← getCurrentThread()
4: trace(f.storeClock, f.loadCount)
5: clock← max(t.clock, f.storeClock) + 1
6: f.storeClock← clock
7: f.loadCount← 0
8: t.clock← clock
9: store(f, v)
10: monitorExit(f)
11: end method

between events of interest. For each such event, the recorder generates an order
constraint that is later used by the replayer to order the event after past events
on which its outcome depends.

Recording: The recorder creates two streams of order constraints per thread –
one orders shared memory accesses, while the other orders monitor acquisitions.
The recording algorithm for shared memory accesses was designed to take ad-
vantage of the semantic differences between load and store memory accesses. To
do so, Ditto requires state to be associated with threads and fields. Threads are
augmented with one logical clock, the thread’s clock, incremented whenever it
performs a store operation. Fields are extended with (a) one logical clock, the
field’s store clock, incremented whenever its value is modified; and (b) a load
counter, incremented when the field’s value is loaded and reset when it is mod-
ified. The manipulation of this state and the load/store operation itself must
be performed atomically. Ditto acquires a monitor associated with the field to
create a critical section and achieve atomicity. It is important that the moni-
tor is not part of the application’s scope, as its usage would interfere with the
application and potentially lead to deadlocks.

When a thread Ti performs a load operation on a field f , it starts by acquiring
f ’s associated monitor. Then, it adds an order constraint to the trace consisting
of f ’s store clock, implying that the current operation is to be ordered after the
store that wrote f ’s current value, but specifying no order in relation to other
loads. Thread and field state are then updated by incrementing f ’s load count,
and the load operation itself performed. Finally, the monitor of f is released. If Ti

instead performs a store operation on f , it still starts by acquiring f ’s monitor,
but follows by tracing an order constraint composed of the field’s store clock and
load count, implying that this store is to be performed after the store that wrote
f ’s current value and all loads that read said value. Thread and field states are
then updated by increasing clocks and resetting f ’s load count. Finally, the store
is performed and the monitor released. Algorithms 1 and 2 list pseudo-code for
these recording processes.

Unlike memory accesses, performed on fields, monitor acquisitions are per-
formed on objects. As such, we associate with each object a logical clock. More-
over, given that synchronization is not serialized with memory accesses, we add
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Algorithm 3. Recording monitor acqui-
sition operations

Parameters: o is the object whose monitor
was acquired

1: method afterMonitorEnter(o)
2: t← getCurrentThread()
3: trace(o.syncClock)
4: clk ←

max(t.syncClock, o.syncClock) + 1
5: o.syncClock← clk
6: t.syncClock← clk
7: end method

Algorithm 4. Replaying load memory ac-
cess operations

Parameters: f is the field whose value is being
loaded into v and is protected by a monitor

1: method wrapLoad(f ,v)
2: t← getCurrentThread()
3: clock← nextLoadConstraint(t)
4: while f.storeClock < clock do
5: wait(f)
6: end while
7: v ← load(f)
8: t← getCurrentThread()
9: if f.storeClock > t.clock then
10: t.clock← f.storeClock
11: end if
12: f.loadCount← f.loadCount+ 1
13: notifyAll(f)
14: end method

a second clock to threads. When a thread Ti acquires the monitor of an object
o, it performs Algorithm 3. Note that we do not require a monitor this time,
as the critical section of o’s monitor already protects the update of thread and
object state.

Consistent Thread Identification: Ditto’s traces are composed of individual
streams for each thread. Thus, it is mandatory that we map record-time threads
to their replay-time counterparts. Threads can race to create child threads, mak-
ing typical Java thread identifiers, attributed in a sequential manner, unfit for
our purposes. To achieve the desired effect, Ditto wraps thread creation in a
critical section and attributes a replay identifier to the child thread. The mon-
itor acquisitions involved are replayed using the same algorithms that handle
application-level synchronization, ensuring that replay identifiers remain consis-
tent across executions.

Replaying: As each thread is created, the replayer uses its assigned replay identi-
fier to pull the corresponding stream of order constraints from the trace file. Before
a thread executes each event of interest, the replayer is responsible for using the
order constraints to guarantee that all events on which its outcome depends have
already been performed. The trace does not contain metadata about the events
from which it was generated, leaving the user with the responsibility of providing
a program that generates the same stream of events of interest as it did at record-
time. Ditto nonetheless allows the original program to be modified while maintain-
ing a constant event stream through the use of Java annotations or command-line
arguments, an important feature for its usage as a debugging tool.

Replaying Shared Memory Accesses: Using the order constraints in a trace file,
the replayer delays load operations until the value read at record-time is avail-
able, while store operations are additionally delayed until that value has been
read as many times as it was during recording, using the field’s load count.

lveiga
Highlight
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This approach allows for maximum replay concurrency, as each memory access
waits solely for those events that it affects and is affected by.

When a thread Ti performs a load operation on a field f , it starts by reading
a load order constraint from its trace, extracting a target store clock from it.
Until f ’s store clock equals this target, the thread waits. Upon being notified and
positively re-evaluating the conditions for advancement, it is free to perform the
actual load operation. After doing so, thread and field states are updated and
waiting threads are notified of the changes. Algorithm 4 lists pseudo-code for this
process. If Ti was performing a store operation, the process would be the same,
but a store order constraint would be loaded instead, from which a target store
clock and a target load count would be extracted. The thread would proceed
with the store once f ’s store clock and load count both equaled the respective
targets. State would be updated according to the rules used in Algorithm 1.
Replaying monitor acquisitions is very similar to replaying load operations, with
two differences: (i) a sync order constraint is read from the trace, from which
a target sync clock is extracted and used as a condition for advancement; and
(ii) thread and object state are updated according to the rules in Algorithm 3.

Notice that during replay there is no longer a need for protecting shared
memory accesses with a monitor, as synchronization between threads is now
performed by Ditto’s wait/notify mechanism. Furthermore, notice that the load
counter enables concurrent loads to be replayed in an arbitrary order, hence in
parallel and faster, rather than being serialized unnecessarily.

3.2 Wait and Notify Mechanism

During execution replay, threads are often forced to wait until the conditions
for advancement related to field or object state hold true. As such, threads
that modify the states are given the responsibility of notifying those waiting for
changes. Having threads wait and notify on the monitor associated with the field
or object they intend to, or have manipulated, as suggested in Algorithms 1-2
and 3, is a simple but sub-optimal approach which notifies threads too often
and causes bottlenecks when they attempt to reacquire the monitor. Ditto uses
a much more refined approach, in which threads are only notified if the state
has reached the conditions for their advancement.

Replay-time states of fields and objects are augmented with a table indexed
by three types of keys: (i) load keys, used by load operations to wait for a specific
store clock; (ii) store keys, used by store operations to wait for a specific com-
bination of store clock and load count; and (iii) synchronization keys, used by
monitor acquisitions to wait for a specific synchronization clock. Let us consider
an example to illustrate how these keys are used. When a thread Ti attempts
to load the value of a field f but finds f ’s store clock lower than its target store
clock (tc), it creates a load key using the latter. Ti then adds a new entry to
f ’s table using the key as both index and value, and waits on the key. When
another thread Tj modifies f ’s store clock to contain the value tc, it uses a load
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key (tc) and a store key (tc, 0) to index the table. As a result of using the load
key, it will retrieve the object on which Ti is waiting and invokes notifyAll on
it. Thus, Ti is notified only once its conditions for proceeding are met.

3.3 Lightweight Checkpointing

For long running applications, and especially those with fine-grained thread in-
teractions, the log can grow to a large size. Furthermore, the replay can only be
necessary to be done from a certain point in time because the fault is known to
occur only at the end of execution. Ditto uses a lightweight checkpointing mech-
anism [17] to offer two new replay services: (i) replay to most recent point before
fault; (ii) replay to any instant M in execution. Checkpoint is done recording
each thread stack and reachable objects. In general, the checkpoint size is closely
related to the size of live objects, plus the overhead of booking metadata neces-
sary for recovery. While the size of live objects can remain consistent over time,
the log size will only grow. Regarding scenario (i), replay starts by recovering
from the last checkpoint and continues with the partial truncated log. So, the
total recording space is sizeof(lastCheckpoint) + sizeof(truncatedLog) which
is still bounded to be smaller than 2 ∗ sizeof(checkpointSize), since we trigger
checkpointing when the log reaches a size close to the total memory used by
objects (90%). In scenario (ii), replay starts with the most recent checkpoint
before instant M (chosen by the user), and the partial log collected after that
instant. In this case, the total recording space is N ∗ sizeof(checkpoint) +N ∗
sizeof(truncatedLog), where N is the number of times a checkpoint is done. In
this case there is a trade-off between overhead in execution time and granularity
in available replay start times [17]. Even so, the total recording space is bounded
to be smaller than 2 ∗N ∗ sizeof(checkpoint).

3.4 Input Related Non-Deterministic Events

Besides access to shared variables, another source of non-determinism is the in-
put some programs use to progress their calculus. This input can come from
information asked to the program’s user or from calling non-deterministic ser-
vices, such as the current time or the random number generator. All such services
are either available through the base class library or calls using the Java Native
Interface. Each time a call is made to a method that is a source of input non-
determinism (e.g. Random.nextInt, System.nanoTime), the result is saved in
association with the current thread. If the load/store is made over a shared
field, the replay mechanism will already ensure the same thread interleaving as
occurred in the recording phase. Regarding non shared fields, the replay of de-
terministic information can occur in a different order than the one of the original
execution. This is not a problem since the values are affiliated with a thread and
are delivered using FIFO order during each thread execution.
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4 Additional Optimizations

4.1 Recording Granularity

Ditto records at the finest possible granularity, distinguishing between differ-
ent fields of individual instances when serializing memory accesses. Previous
deterministic replayers for Java programs had taken sub-optimal approaches:
(i) DejaVu creates a global-order [2]; (ii) LEAP generates a partial-order that dis-
tinguishes between different fields, but not distinct instances [13]; and (iii) JaRec
does the exact opposite of LEAP [4]. The finer recording granularity maximizes
replay-time concurrency and reduces recording overhead due to lower contention
when modifying recorder state. The downside is higher memory consumption as-
sociated with field states. If this becomes a problem, Ditto is capable of operating
with an object-level granularity.

Array indexes are treated like object fields, but with a slight twist. To keep
index state under control for large arrays, a user-defined cap is placed on how
many index states Ditto can keep for each array. Hence, multiple array indexes
may map to a single index state and be treated as one program entity in the
eyes of the recorder and replayer. This is not an optimal solution, but it goes
towards a compromise with the memory requirements of Ditto.

4.2 Pruning Redundant Order Constraints

The base recording algorithm traces an order constraint per event of interest.
Though correct, it can generate unreasonably high amounts of trace data, mostly
due to the fact that shared memory accesses can comprise a very significant
fraction of the instructions executed by a typical application. Fortunately, many
order constraints are redundant, i.e., the order they enforce is already indirectly
enforced by other constraints or program order. Such constraints can be safely
pruned from the trace without compromising correctness. Ditto uses a pruning
algorithm that does so on-the-fly.

Pruning order constraints leaves gaps in the trace which our base replay al-
gorithm is not equipped to deal with. To handle these gaps, we introduce the
concept of free runs, which represent a sequence of one or more events of interest
that can be performed freely. When performing a free run of size n, the replayer
essentially allows n events to occur without concerning itself with the progress
of other threads. Free runs are placed in the trace where the events they replace
would have been.

Program Order Pruning: Consider the recorded execution in Figure 1(a), in
which arrows represent order constraints traced by the base recording algorithm.
Notice how all dashed constraints enforce orderings between events which are
implied by program order. To prune them, Ditto needs additional state to be
associated with fields: the identifier of the last thread to store a value in the field,
and a flag signaling whether that value has been loaded by other threads. Poten-
tial load order constraints are not traced if the thread loading the value is the
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TA
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(a) Order constraints traced by base
recording algorithm.
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6 7 8 9
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(b) Pruning constraints implied by pro-
gram order.

Fig. 1. Example of Ditto’s constraint pruning algorithm

TA

TB

S0(x) L0(x) L1(x) S1(x) L2(x) S2(x)

L3(x) L4(x) L5(x)

S3(x) L6(x) L7(x)
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6 7 8 9
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10

Fig. 2. Pruning constraints implied by pre-
vious constraints

TA
S0(x)

TB

TC

S0(y)

L0(y) S1(y)

L2(y) L0(z) L0(x)

1

3
2

L1(x)

54

S0(z)

Fig. 3. Example of partial transitive re-
duction

one that wrote it. Thus, constraints 1, 2, 4, 10 and 11 in Figure 1(a) are pruned,
but not constraint 6. Similarly, a potential store order constraint is not traced
if it is performed by the thread that wrote the current value and if that value
has not been loaded by other threads. Hence, constraints 3 and 5 are pruned,
while 9 is not, as presented in Figure 1(b). Synchronization order constraints
are handled in the same way as load operations, but state is associated with an
object instead of a field.

Partial Transitive Reduction: Netzer introduced an algorithm to find the optimal
set of constraints to reproduce an execution [18], which was later improved upon
in RTR [19] by introducing artificial constraints that enabled the removal of
multiple real ones. Ditto does not directly employ any of these algorithms for
reasons related to performance degradation and the need for keeping flexibility-
limiting state, such as Netzer’s usage of vector clocks, requiring the number
of threads to be known a priori. Instead, Ditto uses a novel partial transitive
reduction algorithm designed to find a balance between trace file size reduction
and additional overhead.

Transitive reduction prunes order constraints that enforce orderings implicitly
enforced by other constraints. In Figure 1, for example, TB performs three con-
secutive load operations which read the same value of x, written by TA. Given
that the loads are ordered by program order, enforcing the order S2(x) → L3(x)
is enough to guarantee that the following two loads are also subsequent to S2(x).
As such, constraints 7 and 8 are redundant and can be removed, resulting in the
final trace file of Figure 2 with only 2 constrains.
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To perform transitive reduction, we add a table to the state of threads that
tracks the most recent inter-thread interaction with each other thread. Whenever
a thread Ti accesses a field f last written to by thread Tj (with Ti �= Tj), f ’s store
clock is inserted in the interaction table of Ti at index Tj . This allows Ditto to
declare that order constraints whose source is Tj with a clock lower than the one
in the interaction table are redundant, implied by a previous constraint. Figure
3 shows a sample recording that stresses the partial nature of Ditto’s transitive
reduction, since the set of traced constraints is sub-optimal. Constraint 4 is
redundant, as the combination of constraints 1 and 2 would indirectly enforce
the order S0(x) → L0(x). For Ditto to achieve this conclusion, however, the
interaction tables of TB and TC would have to be merged when tracing constraint
2. The merge operation proved to be too detrimental to efficiency, especially given
that the benefit is limited to one order constraint, as the subsequent constraint
5, similar to 4, is pruned. In summary, Ditto is aware of thread interactions that
span a maximum of one traced order constraint.

4.3 Thread Local Objects and Array Escape Analysis

Thread Local Objects (TLO) static analysis provides locality information on
class fields, that is, it determines fields which are not involved in inter-thread
interactions, aiming to save execution time and log space. The output of this
kind of analysis is a classification of either thread-local or thread-shared for
each class field. We developed a stand-alone application that uses the TLO
implementation in the Soot bytecode optimization framework1 to generate a
report file that lists all thread-shared fields of the analyzed application. This
file can be fed as optional input to Ditto, which uses the information to avoid
intercepting accesses to thread-local fields.

TLO analysis provides very useful information about the locality of class
fields, but no information is offered on array fields. Without further measures, we
would be required to conservatively monitor all array fields accesses. Ditto uses,
at runtime, information collected from the just-in-time compiler to do escape
analysis on array references and avoid monitoring accesses to elements of arrays
declared in a method whose reference never escapes that same method. This
analysis, although simple, can still avoid some useless overhead at little cost.
Nonetheless, there is a lot of unexplored potential for this kind of analysis on
array references to reduce recording overhead which we see as future work.

4.4 Trace File

Ditto’s traces are composed of one order constraint stream per record-time
thread. Organizing the trace by thread is advantageous for various reasons. The
first is that it is easy to intercept the creation and termination of threads. Inter-
cepting these events is crucial for the management of trace memory buffers, as

1 http://www.sable.mcgill.ca/soot/
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they must be created when a thread starts and dumped to disk once it termi-
nates. Moreover, it allows us to place an upper limit on how much memory can
be spent on memory buffers, as the number of simultaneously running threads
is limited and usually low. Other trace organizations, such as the field-oriented
one of LEAP [13], do not benefit from this – the lifetime of a field is the lifetime
of the application itself. A stream organized by instance would be even more
problematic, as intercepting object creation and collection is not an easy task.

The trace file is organized as a table that maps thread replay identifiers to the
corresponding order constraint streams. The table and the streams themselves
are organized in a linked list of chunks, as a direct consequence of the need to
dump memory buffers to disk as they become full. Though sequential I/O is
generally more efficient than random I/O, using multiple sequential files (one
per thread) turned out to be less efficient than updating pointers in random file
locations as new chunks were added to it. Hence, Ditto creates a single-file trace.

Given that logical clocks are monotonically increasing counters, they are ex-
pected to grow to very large values during long running executions. For the trace
file, this would mean reserving upwards of 8 bytes to store each clock value. Ditto
uses a simple but effective optimization that stores clock values as increments
in relation to the last one in the stream, instead of as absolute values. Consider-
ing that clocks always move forward and mostly in small increments, the great
majority of clock values can be stored in 1 or 2 bytes.

5 Implementation Details

Ditto is implemented in Jikes RVM, a high performance implementation of the
JVM written almost entirely in a slightly enhanced Java that provides “magic”
methods for low-level operations, such as pointer arithmetic [20]. The RVM is
very modular, as it was designed to be a research platform where novel VM
ideas could be easily implemented and evaluated. This was the main reason we
developed Ditto on it.

The implementation efforts were done in two main sub-systems: threading
and compiler. Regarding the threading system, each Java thread is mapped to a
single native thread. This is relevant to Ditto, as it means scheduling decisions
are offloaded to the OS and cannot be traced or controlled from inside the RVM.
As a consequence, Java monitors are also implemented with resort to OS locking
primitives. Regarding the compiler, Jikes RVM does not interpret bytecode; all
methods are compiled to machine code on-demand. The VM uses an adaptive
compilation system in which methods are first compiled by a fast baseline com-
piler which generates inefficient code. A profiling mechanism detects hot methods
at runtime, which are then recompiled by a slower but much better optimizing
compiler. This compiler manipulates three intermediate representations (IR) on
which different optimizations are performed. The high-level IR (HIR) is very
similar to the bytecode instruction set, but subsequent IRs are closer to actual
processor ISAs.
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Intercepting Events of Interest: Implementing Ditto in Jikes RVM required in-
tercepting the events of interest through hooks in the thread management sub-
system and the addition of instrumentation phases to the compilers. Moreover,
mechanisms were added to manage thread, object and field states. A drawback
of Jikes being written in Java is that it uses the same mechanisms for execut-
ing as the application. As such, when intercepting events, we must ignore those
triggered by the VM. Depending on the event, the VM/application distinction is
done using either static tests that rely on package names, or runtime tests that
inspect the Java stack.

Ditto intercepts thread creation, both before and after the launch of the na-
tive thread, and thread termination, mainly for the purpose of initializing and
dumping trace memory buffers. The thread creation hooks are also used to enter
and exit the critical section protecting replay identifier assignment. If the event
occurs in the context of a synchronized method or block, Ditto simply replaces
the usual method used to implement the monitor enter operation with a wrap-
per method during compilation. Monitor acquisitions performed in the context
of synchronization methods like wait or notify are intercepted by a hook in the
VM’s internal implementation of said methods. To avoid costly runtime tests,
call sites are instrumented to activate a thread-local flag which lets Ditto know
that the next executed synchronization method was invoked by the application.
Events triggered through the JNI interface are also intercepted by a hook inside
the VM, but they require a runtime test to ascertain the source, as we do not
compile native code.

During method compilation, accesses to shared memory are wrapped in two
calls to methods that trace the operation. Instrumentation is performed after
HIR optimizations have been executed on the method, allowing Ditto to take
advantage of those that remove object, array or static field accesses. Such opti-
mizations include common sub-expression elimination and object/array replace-
ment with scalar variables using escape analysis, among others.

Threading and State: Thread state is easily kept in the VM’s own thread objects.
Object and field states are kept in a state instance whose reference is stored in the
object’s header. After modifying the GC to scan these references, this approach
allows us to create states for objects on-demand and keep them only while the
corresponding object stays alive. Ditto requires the trace file to be finalized in
order to replay the corresponding execution. When a deadlock occurs, the JVM
does not shutdown and the trace memory buffers are never dumped, leaving the
trace in an unfinished state. The problem is solved by adding a signal handler to
Jikes which intercepts SIGUSR1 signals and instructs the replay system to finish
the trace. The user is responsible for delivering the signal to Jikes before killing
its process if a deadlock is thought to have been reached.

Trace File: In Section 4 we described the way thread order constraint streams
are located in the trace file using a combination of table and linked list struc-
tures. Structuring the streams themselves is another issue, as Ditto’s recording
algorithm generates three types of values that must be somehow encoded in
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the stream: (i) clock increment values; (ii) free run values; and (iii) load count
values. Furthermore, the clock value optimization, also presented in Section 4,
makes value sizes flexible, requiring the introduction of a way to encode this
information as well.

The three kinds of values are encoded using the two most significant bits of
each value as identification metadata. However, adding two more bits for size
metadata would severely limit the range of values that each entry could represent.
Moreover, it is usual for consecutive values to have equal size, leading to a lot
of redundant information if the size is declared for each individual entry. Taking
these observations in mind, we introduce meta-values to the stream which encode
the size and number of the values that follow them in the stream. The meta-
values take up two bytes, but their number is insignificant in comparison to the
total amount of values stored in the trace. Ditto uses a VM’s internal thread
whose only purpose is to write trace buffers to disk. By giving each thread two
buffers, we allow one buffer to be dumped to disk by the writer thread while the
other is concurrently filled. In most cases, writing to disk is faster than filling a
second buffer, allowing threads to waste no time waiting for I/O operations.

6 Evaluation

We evaluate Ditto by assessing its ability to correctly replay recorded executions
and by measuring its performance in terms of recording overhead, replaying over-
head and trace file size. Performance measurements are compared with those of
previous approaches, which we implemented in Jikes RVM using the same fa-
cilities that support Ditto itself. The implemented replayers are: (a) DejaVu
[2], a global-order replayer; (b) JaRec [4], a partial-order, logical clock-based re-
player; and (c) LEAP [13], a recent partial-order, access vector-based replayer.
We followed their respective publications as closely as possible, introducing mod-
ifications when necessary. For instance, DejaVu and JaRec, originally designed
to record synchronization races, were extended to deal with all data races, while
LEAP’s algorithm was extended to compress consecutive accesses to a field by
the same thread, absent in available codebase. Moreover, our checkpoint for
instant replay is deactivated for fairness.

We start by using a highly non-deterministic microbenchmark and a number
of applications from the IBM Concurrency Testing Repository2 to assess replay
correctness. This is followed by a thorough comparison between Ditto’s runtime
performance characteristics and those of the other implemented replayers. The
results are gathered by performing a microbenchmark and recording executions
of selected applications (because of space constraints) from the Java Grande and
DaCapo benchmark suites. All experiments were conducted on a 8-core 3.40Ghz
Intel i7 machine with 12GB of primary memory and running 64-bit Linux 3.2.0.
Baseline version of the Jikes RVM is 3.1.2. Ditto’s source will be available in the
Jikes RVM research archive.

2 https://qp.research.ibm.com/concurrency testing
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Replay Correctness: In the context of Ditto, an execution replay is said to be
correct if the shared program state goes through the same transitions as it did
during recording, even if thread local state diverges. Other types of determin-
istic replayers may offer more relaxed fidelity guarantees, as is the case of the
probabilistic replayers PRES [11] and ODR [12].

We design a microbenchmark to produce a highly erratic and non-deterministic
output, so that we can confirm the correctness of replay with a high degree of
assurance. This is accomplished by having threads randomly increment multiple
shared counters without any kind of synchronization, and using the final counter
values as the output. After a few iterations, the final counter values are com-
pletely unpredictable due to the non-atomic nature of the increments. Naively
re-executing the benchmark in hopes of getting the same output will prove un-
successful virtually every time. On the contrary, Ditto is able to reproduce the
final counter values every single time, even when stressing the system by using a
high number of threads and iterations. The microbenchmark will also be avail-
able in the Jikes RVM research archive. Regarding the IBM concurrency testing
repository, it contains a number of small applications that exhibit various con-
current bug patterns while performing some practical task. Ditto is capable of
correctly reproducing each and every one of these bugs.

6.1 Performance Results

After confirming Ditto’s capability to correctly replay many kinds of concurrent
bug patterns, we set off to evaluate its performance by measuring recording
overhead, trace file size and replaying overhead. To put experimental results
in perspective, we use the same performance indicators to evaluate the three
implemented state-of-the-art deterministic replay techniques for Java programs:
DejaVu (Global), JaRec, LEAP.

Microbenchmarking: The same microbenchmark used to assess replay correct-
ness is now used to compare Ditto’s performance characteristics with those of the
other replayers regarding recording time, trace size and replaying time, across
multiple target application properties: (i) number of threads, (ii) number of
shared memory accesses per thread, (iii) load to store ratio, (iv) number of fields
per shared object, and (v) number of shared objects, (vi) number of processors.

The results are presented in Figures 4 and 5. Note that graphs related to
execution times use a logarithmic scale due to the order of magnitude-sized
differences between replayers’ performance, and that in all graphs lower is better.

Figure 4 shows the performance results of application properties (i) to (iii).
Record and replay execution times grows linearly with the number of threads,
with Ditto taking the lead in absolute values by one and two orders of magnitude,
respectively. As for trace file sizes, Ditto stays below 200Mb, while no other
replayer comes under 500Mb. The maximum is achieved by LEAP at around
1.5Gb. Concerning the number of memory access operations, the three indicators
increase linearly with the number of memory accesses for all algorithms. We
attribute this result to two factors: (i) none of them keeps state whose complexity
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Fig. 4. Recording time, trace size and replaying time as a function of the number of
threads, accesses per thread (x106) and load:store ratio

increases over time, and (ii) our conscious effort during implementation to keep
memory usage constant. Ditto is nonetheless superior in terms of absolute values.
Finally, regarding the load and store ratio, Ditto is the only evaluated replayer
that takes advantage of the semantic differences between load and store memory
accesses. As such, we expect it to be the only system to positively react in the
presence of a higher load:store ratio. The experimental results are consistent
with this, as we can observe reductions in both overheads and a very significant
reduction of the trace file size.

Figure 5 shows the performance results of application properties (iv) to (vi).
Stressing the system with an increasing number of fields per object, property (iv),
and number of shared objects, property (v), is crucial to measure the impact
of Ditto’s recording granularity. Ditto and LEAP are the only replayers that
improve performance (smaller recording and replaying times) as more shared
fields are present, though Ditto has the lowest absolute values. This result is
due to both replayers distinguishing between different fields when serializing
events. However, LEAP actually increases its trace file size as the number of
fields increases, a result we believe to be caused by their access vector-based
approach to recording.

Regarding the number of shared objects, JaRec is the main competitor of
Ditto as they are the only ones that can distinguish between distinct objects.
LEAP’s offline transformation approach does not allow it to take advantage from
this runtime information. Although JaRec is marginally better than Ditto past
the 64 object mark, it fails to take advantage of the number of shared objects
during the replay phase.
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Fig. 5. Recording time, trace size and replaying time as a function of the number of
fields per object, shared objects and processors

Concerning the number of processors, the experimental results were obtained
by limiting the JikesRVM process to a subset of processors in our 8-core test
machine. Ditto is the only algorithm that lowers its record execution time as the
number of processors increases, promising increased scalability to future deploy-
ments and applications in production environments. Additionally, its trace file
size increases much slower than that of other replayers and the replay execution
time is three orders of magnitude lower than the second best replayer at the 8
processor mark.

Effects of the Pruning Algorithm: To assess the effects of Ditto’s pruning al-
gorithm we modified the microbenchmark to use a more sequential memory
access pattern in which each thread accesses a subset of shared objects that
overlaps with that of two other threads. Figure 6 shows the trace file size reduc-
tion percentage, the recording speedup and the replaying speedup over the base
recording algorithm from applying program order pruning only, and program
order pruning plus partial transitive reduction. The results clearly demonstrate
the potential of the algorithm, reducing the trace by 81.6 to 99.8%. With reduc-
tions of this magnitude, instead of seeing increased execution times, we actually
observe significant drops in overhead due to the avoided tracing efforts.

Looking at the results of all microbenchmark experiments, it is clear that
Ditto is the most well-rounded deterministic replayer. It consistently performs
better than its competitors in all three indicators, while other replayers tend to
overly sacrifice trace file size or the replay execution time in favor of recording
efficiency.
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Fig. 6. Effects of Ditto’s pruning algorithm

6.2 Complete Applications

In this section we use complete applications to compare the execution time
overhead and the log size of Ditto when compared to other state of the art
replayers. Furthermore, the impact of the TLO analysis is also evaluated. All
applications were parametrized to use 8 threads (i.e. the number of cores of
the available hardware). From the the Java Grande benchmark3 we selected
the multi-threaded applications, namely: (a) MolDyn, a molecular dynamics
simulation; (b) MonteCarlo, a monte carlo simulation; and (c) RayTracer, a 3D
ray tracer. Table 1 reports on the results in terms of recording overhead and
trace file size. Considering them, two main remarks can be made: Ditto’s record-
time performance is superior to that of competing replayers, and the trace files
generated by Ditto are insignificantly small. The result suggests that the static
analysis can be further improved to better identify thread-local memory accesses,
which represents a relevant future research topic.

From the DaCapo4 benchmark, we evaluate the record-time performance of
Ditto and the other replayers using the lusearch, xalan and avrora applications
with the large set. The results are shown in Table 1 and highlight an interest-
ing observation: for applications with very coarse-grained sharing, as is the case
of lusearch and xalan, Ditto’s higher complexity is actually detrimental. The
lack of stress allows the other algorithms to perform better in terms of record-
ing overhead, albeit generating larger trace files (with the exception of JaRec).
Nonetheless, Ditto’s recording overhead is still quite low.

7 Conclusions and Future Work

We presented Ditto, a deterministic replay system for the JVM, capable of
correctly replaying executions of imperfectly synchronized applications on multi-
processors. It uses a novel pair of recording and replaying algorithms that com-
bine state-of-the-art and original techniques, including (a) managing differences
between load and store memory accesses, (b) serializing events at instance field

3 http://www.epcc.ed.ac.uk/research/java-grande
4 http://dacapobench.org
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Table 1. Record-time performance results for representative Java workloads

Ditto Global JaRec LEAP
Overhead Trace Overhead Trace Overhead Trace Overhead Trace

MolDyn 2831% 239Kb >181596%* >2Gb* 3887% 188Mb >13956%* >2Gb
MonteCarlo 390% 248Kb 79575% 1273Mb 410% 0.39Kb 10188% 336Mb
RayTracer 4729% 4.72Kb >164877%* >2Gb* 5197% 21Mb >9697%* >2Gb*
lusearch 4.56% 3Kb 1.89% 288 Kb 2.26% 3Kb 0.69% 564Kb
xalan 5.23% 6kb 4.52% 475Kb 2.71% 0.2Kb 2.73% 485Kb
avrora 378% 22Mb 2771% 565Mb 372% 23Mb –* >2Gb*

* Current implementation cannot deal with trace files over 2 GB.

granularity, (c) pruning redundant constraints using program order and partial
transitive reduction, (d) taking advantage of TLO static analysis, escape anal-
ysis and compiler optimizations, and (e) applying a simple but effective trace
file optimization. Ditto was successfully evaluated to ascertain its capability to
reproduce different concurrent bug patterns and highly non-deterministic ex-
ecutions. Performance results show Ditto consistently outperforming previous
Java replayers across multiple application properties, in terms of overhead and
trace size, being the most well-rounded system, multicore scalable and leverag-
ing checkpointing and restore capabilities. Evaluation results suggest that future
efforts to improve deterministic replay should be focused on improving static
analysis to identify thread-local events.
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