
Distributed Peer-to-Peer Simulation

Vasco de Carvalho Fernandes
vasaco.fernandes@ist.utl.pt

Instituto Superior Técnico
Av. Prof. Dr. Aníbal Cavaco Silva

Lisbon, Portugal

Abstract. Peer-to-peer overlays and ap-
plications are very important in current
day-to-day applications. In the future this
seems to be even more relevant. Peer-to-
peer technologies bring benefits regarding
decentralized control, resource optimization
and resilience.

Simulation is an indispensable tool to help
create peer-to-peer application protocols.
Unfortunately current peer-to-peer simula-
tors are flawed and unable to serve their
purpose beyond the limitations in memory
and performance of a single machine.

We proposed DIPS, a distributed imple-
mentation of the Peersim simulator to over-
come these limitations. By utilizing tech-
nologies from parallel systems simulation,
distributed agent simulation and peer-to-
peer overlays themselves we aim at not only
overcoming those limitations, but also in-
crease simulation performance and scalabil-
ity.

Keywords: peer-to-peer, p2p, simulation, Peersim,
DIPS, distributed-simulation

1 Introduction

Peer-to-peer overlays and applications have had his-
torical importance in the development of current net-
work aware applications. In the future, the number of
network connected devices is expected to grow expo-
nentially, making peer-to-peer applications ever-more
relevant. We will show the state of the art of peer-to-
peer simulation, point out its shortcomings and pro-
pose a distributed peer-to-peer simulator, DIPS, to
help developers overcome the challenges in creating
peer-to-peer applications and protocols.

Peer-to-peer systems are distributed computer sys-
tems where network communication is done directly
between endpoints, not requiring a central server as
an intermediary. They oppose common client-server
architecture that composes the large majority of net-
work communicating systems today.

When a developer creates a peer-to-peer protocol,
even if analytically deemed as correct, efficient and
scalable, a test environment must be setup to evaluate
the protocol’s characteristics. Peer-to-peer protocols
are usually designed to connect a very large number
of nodes. In order to convincingly test the protocol, a
simulation environment is necessary. Furthermore, a
reduced scale deployment on real network settings is
also required.

Current peer-to-peer simulation suffers from a peer-
count limitation due to memory limits. When running
a simulation on a single computer this limitation can-
not be overcome. Other approaches, such as a virtual-
ized deployment environment, have proven to be inef-
ficient and unable to surpass the memory limit using
reasonable amounts of resources. Hence the need for
a custom-made solution aware of peer-to-peer simula-
tion implementation characteristics. Only such solu-
tion could surpass the memory limit and still execute
the simulation with acceptable performance.

Simulation environments such as Peersim [1] have a
limit of nodes they can simulate. This limit could be
overcome with a distributed Peersim. A distributed
Peersim would allow the developer to simulate more
nodes in his simulation.

2 Related Work

Peer-to-peer P2P systems are characterized by de-
centralized control, large scale and great dynamism
of their population and operating environment. De-
centralized control is the key aspect of a P2P system.
Although variations on the level of decentralization
exist between different system types, control over in-
teraction between peers is never centralized.

The more relevant examples of peer-to-peer ar-
chitectures include Chord [2], Pastry [3], CAN [4],
Tapestry [5] e Kadmelia [6]. On top of this ones
some applications were created [7,8], publish-
subscribe [9,10]. Outside academia, Napster, Gnu-
itella, Kazaa, e BitTorrent are known examples of
peer-to-peer application for file-sharing.

Applications base themselves on a peer-to-peer ar-
chitecture primarily due to its capacity to cope with

churn and network failure. Such architectures are
usually characterized by their scalability, no single
point of failure and large amount of resources. True
decentralized peer-to-peer systems do not have an
owner or responsible entity, responsibility is instead
shared by all peers. Peer-to-peer architectures also
have the potential to improve and accelerate trans-
actions through their low deployment cost and high
resilience.

2.1 Simulation

Simulation is an important tool to test protocols,
applications and systems in general. Simulation can
be used to provide empirical data about a system,
simplify design and improve productivity, reliability,
avoiding deployment costs. Simulation testbeds offer
different semantics and abstraction levels in their con-
figuration and execution according to the level of ab-
straction desirable for each type of simulation.

Discrete Event Simulation A discrete-event simula-
tion is typically a loop where the simulator will fetch
one event from a queue, execute one step of the sim-
ulation, possibly update the queue and restart. Sim-
ulation is slower than the simulated systems.

Discrete-event system simulations are by their very
nature sequential. Unfortunately this means existing
simulations cannot easily be partitioned for concur-
rent execution as sophisticated synchronization tech-
niques would be required to ensure cause-effect rela-
tionships.

2.2 Peer-to-peer Network Simulation

Peer-to-peer simulation is an abstraction from gen-
eral network simulation. Simulating peer-to-peer pro-
tocols involves the transfer of messages between peers
and the collection of statistics relevant to the simula-
tion.

Current peer-to-peer simulators typically run an
event-driven mode, which is a discrete-event simu-
lation closely related to more general network sim-
ulation and to process simulation. Messages are sent
between simulated peers, they are saved in a queue
and processed in order by the simulation engine.

Another type of simulation is a cycle-based simula-
tion. In cycle-based simulation each simulated compo-
nent (the peer) is run once per cycle, whether or not
it has work to be done. This offers a more simplistic
simulation environment.

Peersim Peersim [1] is a peer-to-peer simulator writ-
ten in Java. It is released under the GPL, which makes
it very attractive for research.

Peersim offers both cycle-based and event-driven
engines. It is the only peer-to-peer simulator discussed
here that offers support for the cycle-based mode.
Peersim authors claim the simulation may reach 106

nodes in this mode.

P2PSim P2PSim [11] is a peer-to-peer simulator that
focus on the underlying network simulation. It is writ-
ten in C++ and like in Peersim, developers may ex-
tend the simulator classes to implement peer-to-peer
protocols.

The network simulation stack makes scalability a
problem in P2PSim. P2PSim developers have been
able to test the simulator with up to 3,000 nodes.

The C++ documentation is poor but existent.
Event scripts can be used to control the simulation.
A minimal statistics gathering mechanism exists built
in to the simulator.

Overlay Weaver Overlay Weaver [12] is a toolkit for
the development and testing of peer-to-peer protocols.
It uses a discrete-event engine or TCP/UDP for real
network testing.

Distributed simulation appears to be possible but
it is not adequately documented. Scalability wise the
documentation claims the simulator may handle up
to 4,000 nodes, the number of nodes is limited by the
operating systems thread limit.

The documentation is appropriate and the API is
simple and intuitive. Overlay Weaver does not model
the underlying network.

PlanetSim PlanetSim [13] is also a discrete-event sim-
ulator written in Java. It uses the Common API given
in [14].

The simulator can scale up to 100,000 nodes. The
API and the design have been extensively docu-
mented. The support for the simulation of the un-
derlying network is limited, however it is possible to
use BRITE [15] information for this purpose.

2.3 Parallel simulation

Parallelization requires the partition of the simulation
into components to be run concurrently. Simulation
of systems embodies this concept directly.

We can model a system as:

– System – A collection of autonomous entities in-
teracting over time.

– Process – An autonomous entity.

– System state – A set of variables describing the
system state.

– Event – An instantaneous occurrence that might
change the state of the system.

Processes are the autonomous components to be
run in parallel. However, the separation of the simu-
lation into multiple components requires concurrent
access to the system state which poses problems of
synchronization.

Parallel discrete-event simulation of systems

In parallel simulation of physical systems, consist-
ing of one or more autonomous processes, interacting
with each other through messages, the synchroniza-
tion problem arises. The system state is represented
through the messages transfered between processes,
these messages are only available to the interacting
processes creating a global desynchronization.

As discrete-event simulation is typically a loop
where the simulator will fetch one event from a queue,
execute one step of the simulation, possibly update
the queue and restart. Simulation becomes slower
than the simulated systems.

In systems where process behavior is uniquely de-
fined by the systems events, the maximum ideal par-
allelization can be calculated as the ratio of the total
time require to process all events, to the length of the
critical path through the execution of the simulation.

2.4 Distributed Simulation

Distributed simulation differs from parallel simulation
on a small number of aspects.

Distributed systems must take into account net-
work issues related to their distributed nature, no-
tably: Latency, Bandwidth, Synchronization.

Simulation of peer-to-peer systems is traditionally
done in a sequential manner, and with the exception
of Oversim no simulator offers the possibility of dis-
tributed execution, and this is more a foreseen possi-
bility than an actual implementation [16].

Distributed simulation of agent-based systems Agent
simulation is an area where distributed simulation en-
vironments are used extensively.

Agent based systems deployment areas include
telecommunications, business process modeling, com-
puter games, control of mobile robots and military
simulations [17]. An agent can be viewed as a self con-
tained thread of control able to communicate with its
environment and other agents through message pass-
ing.

Multi agent systems are usually complex and hard
to formally verify [17]. As a result, design and imple-
mentation remain extremely experimental. However,
no testbed is appropriate for all agents and environ-
ments [18].

The resources required by simulation overcome the
capabilities of a single computer, given the amount of
information each agent must keep track of. As with
any simulation of communicating components, agent
based systems have a high degree of parallelism, and
as with other particular types of simulation distribut-
ing agents over a network of parallel communicating
processes have been proven to yield poor results [19].

3 DIPS Architecture

We propose DIPS, a Distributed Implementation of
the Peersim Simulator. DIPS is a set of Peersim reg-
ular instances that run one global simulation where
the simulated peers have access to each other.

In order for Peersim instances to be able to share
one simulation that spans all of them, we must also
provide the foundations of communication between
instances so that simulation components have access
to each other, and are able communicate with reason-
able performance. We must take that concepts that
are the basis of Peersim, extend them so that they
can adequately be used in a distributed context. Fi-
nally we must guarantee that losses in performance of
the simulation, due to the new distributed character-
istics are minimized, and that challenges created by
the distributed behavior, are met in a way that does
not overburden the simulation creator.

The architecture of DIPS divided into three large
aspects, one for each explained above.

3.1 Network

Network communication is a crucial factor for the per-
formance and viability of DIPS. In a centralized sim-
ulator, communication is not a problem, as the whole
simulation is run by a single process. As soon as more
than one machine is introduced, network communica-
tion becomes inevitable.

Our approach in DIPS was to define a independent
component of the simulator to encapsulate all network
communication.

In a distributed simulator one of the most impor-
tant factors of its design is to minimize the negative
impact on performance that the overhead of network
communication might produce. In the particular case
of DIPS, as it extends the Peersim simulator, favor-
able comparisons can only arise if the impact of net-
work delay can be compensated.

We defined the network communication component
as an actor according to the actor model. This is not
only a semantical isolation. Communication is exe-
cuted through message passing, therefore communica-
tion structures are clearly defined. It is also a physical
isolation, by removing shared memory from the design
we guarantee independence of the simulator from the
network, limiting the impact that network communi-
cation processing can have on the performance of the
simulator.

The network component is the single point of exter-
nal communication in DIPS. Every component that
requires communication with other instances must go
through the network component. The fundamental
role of the network component can be described by
the following actions:

– Given a message and an address, the network
component guarantees delivery of the message at
that address.

– Subscribers receive messages destined to their ad-
dress on message arrival.

– If a message is received to an address with no
subscriber, the network component will hold the
message until the address owner collects it.

There are a few guidelines regarding the design of
the DIPS network: 1) The organization of the net-
work should be simple; 2) Communication should be
efficient; 3) Virtual address lookup must be O(1);
4)Organization should be versatile enough to handle
a large number of instances if necessary.

The small number of instances involved in the pro-
cess permits an approach where every instance knows
of all others. This, well know behavior guarantees sim-
plicity, and allows messages to be broadcasted to the
entire network. As long as the number of broadcasted
messages is kept to a minimum, and only used when
strictly necessary, the performance should not suffer
too much from this approach.

3.2 DIPS Event Based Simulator

The distributed event simulator is the core engine of
DIPS. The distributed event simulator shares much
of the functionality with its centralized counterpart
implemented in Peersim.

A simulation is composed of two main parts, the
initialization and the event processing loop.

The initialization phase creates the network. The
distributed network differs from the traditional Peer-
sim network in that it must differentiate from local
and remote nodes, and disallow local access to remote
nodes. The distributed network extends the Peersim
network and therefore offers all services available in

the Peersim simulator, most importantly random ac-
cess to network nodes.

The provided random access creates a problem. Be-
cause local access to remote nodes is not available it
would be required that all structures accessing the
network know in advance if a node is remote or not.
We believe this would cause an unnecessary burden
on the simulation implementer, as well as create a an
incompatibility layer with code written to the Peer-
sim simulator, that could be avoided. The distributed
network is design to offer a transparent layer to all
components that is unaware of the distributed char-
acteristic of the simulation, these components view
local nodes as the complete network and access them
through original Peersim APIs. Components aware of
the distributed characteristic of the simulation have
access to methods that present the entire network.

Code design for Peersim and naive implementations
may iterate over local nodes, while more complex, net-
work aware components can view the entire dimension
of the network and differentiate between local and re-
mote nodes.

The next step of the initialization is to run network
initialization components. These components are exe-
cuted exactly as in Peersim, their purpose is to initial-
ize values and create links. Initialization components
are particular cases of control components, just like
these, they only have access to the local network. Ac-
cess to nodes outside the local network is not possible,
however being specialized controls, initialization com-
ponents have access to the Control Communication
API.

In Peersim control components are executed
through scheduling, the configuration defines when a
control should be executed in relation to the global
time of the simulation. In DIPS there is no global
time, each instance maintains a local time and there
is no effort to synchronize clocks, instances added in
the middle of a simulation will have completely inco-
herent clocks when compared to the other instances.
The lack of global time was a decisive factor for the
design decision to have control components be local
instead of global. Each control component will run
according to the defined scheduled in relation to the
local clock, this component can only access the state
of the local nodes.

Control components are cannot effectively control
the simulation if they are only able to affect the local
state of the simulation, for this reason we introduce
Distributed Controls that have access to the Control
Communication API. Distributed Controls may reg-
ister a name in order to receive messages, whenever
a message is received, the destination control is exe-
cuted. We have defined a new execution method for

control through message passing, in addition to the
scheduling.

The message processing loop serves as a central-
ized event loop that guarantees sequential processing
of the simulation events. When considering simulation
events we think further than the messages passed be-
tween nodes of the simulation. Simulation events pro-
cessed by the Event Processing Loop include node to
node messages, control to control messages through
the Control Communication API and scheduled con-
trol executions.

Control events, both scheduled and message trig-
gered, take precedence over the node-message pro-
cessing and therefore are processed at the beginning
of each stage of the Event Processing Loop, the ex-
ecution of control events is discussed in the Con-
trol (see Control) and Distributed Control (see Dis-
tributed Control) sections.

Each stage of the message simulation loop corre-
sponds to one clock tick, in each stage the simula-
tor performs three tasks. First all control messages
that have arrived since the last tick are processed
this involves calling the messageReceived method of
the control with the message, the control is then able
to manipulate the simulation at will, e.g. create a
checkpoint of the current simulation stage. After all
control-messages have been processed the second task
is to call the execute method of all control objects
scheduled to be run at this tick. The third and last
task of the loop iteration is to process the first mes-
sage in the queue, this is done by calling the execute

command of the message destination protocol of the
message destination node.

4 Prototype

5 Evaluation

First we compare the DIPS prototype convergence to
Peersim convergence. The intuition behind this test
is, if the DIPS prototype produces the same results
as Peersim, then the DIPS prototype can be deemed
adequate as a peer-to-peer simulator.

We plotted the variance of an Average simulation
of 10000 nodes where the nodes were initialized we
linear values from 0 to 100.

This is an anecdotal example that does not proof
the adequacy of the DIPS simulator, but does open
the possibility for it to be inferred. If one accepts
that the DIPS simulator running on one instance,
is architecturally equivalent to the Peersim simulator
than one can accept that, apart from implementation
faults, simulations that converge in Peersim also con-
verge in the DIPS simulator running on one instance.

If simulations converge on DIPS running on one
instance, the obvious is what does it take for them
to converge when run on more than one instance.
By analyzing the architecture of DIPS it is possi-
ble to see that the message queue on each instance
is key whether or not a simulation will convert. If re-
mote messages (messages originating in a different in-
stance) could be delivered locally instantly then the
simulation would be equivalent to a centralized one
which we have already accepted that converges.

It is the measure of how much delay remote mes-
sages have over local messages that define how well
will a simulation converge on a distributed simula-
tion. We will take measurements of this metric in the
next section.

5.1 Local Clusters

We must test the DIPS prototype in relation to the
creation of local clusters. Intuitively, because mes-
sages to local instance nodes generated locally, can
be processed immediately, while messages destined to
a remote instance must transverse the network, it is
possible that local clusters occur.

A local cluster is a set of nodes, in the same instance
that can send messages to each other with a smaller
delay than to other nodes, therefore at a much faster
pace. If these nodes are created, in a simulation that
does not have a bias against local or remote nodes,
we should be able to see a rise in the number of lo-
cally generated, processed messages in relation with
the usually expected amount.

The Infection simulation is particularly good for
this test as it generates message to local and re-
mote nodes in a predictable way. The Infection sim-
ulation generates N messages per message received,
where N is the configured infection degree. The num-
ber of messages generated for local and remote nodes
is also known. As the nodes neighbors are linearly dis-
tributed from the simulated network population and
messages are sent to a neighbor chosen at random,
the expected number of messages sent to local nodes
is equal to the proportion of nodes in the simulated
network, i.e 1

N
.

For the this test an Infection simulation was run in
a AWS medium instance with a combination of the
following variables:

– Instance Count: 1, 2, 3, 4
– Network Size: 40000, 80000, 160000, 250000,

1000000, 1500000, 2000000
– Infection degree: 1, 3, 5, 8

The simulation was allowed to execute 50000 events
in each instance, after which it was stopped and the

0 500000 1000000 1500000 2000000
Simulated network size

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f l
oc

al
 e

ve
nt

s
pr

oc
es

se
d

(%
)

1 instances
3 instances
2 instances
4 instances

Fig. 1. Infection: percentage of local events with degree=1

0 500000 1000000 1500000 2000000
Simulated network size

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f l
oc

al
 e

ve
nt

s
pr

oc
es

se
d

(%
)

1 instances
3 instances
2 instances
4 instances

Fig. 2. Infection: percentage of local events with degree=3

number of local and remote messages processed in
each instance was saved. The total number of local
and remote events processed in the entire simulation
was then calculated. We can see plotting results in
figures 1 and 2 . Figure 1 shows the number of local
events (to each instance) processed in the entire sim-
ulation per network size for a simulation with degree
1.

The results are the best possible outcome, the num-
ber of local events processed at each instance is equal
to the expected value, in all configurations, a fraction
of the total (1

2
, 1
3
,1
4
).

In figure 2 the same information is plotted but for a
simulation with a degree of 3. This not only confirms
the previous results, it also shows the we were not in
face of a problem of starvation, even when a much
larger number of messages is generated than the ones
processed, we still have a correct balance between lo-
cal and remote messages.

This test shows that the remote messages gener-
ated will eventually be processed, it says nothing of
when the remote messages will be processed. In the
next section we will test whether or not remote mes-
sages are processed with acceptable delay in relation
to local messages.

5.2 Message Latency

The last test performed shows the fitness of the DIPS
simulation, tests local and remote average message la-
tency. In a distributed simulation some messages will
be destined to nodes held in the same instance, which
we call local messages, while others are destined to
nodes held at remote instances, called remote mes-
sages.

The test setup is similar to the one described in the
previous section. The Infection simulation was run on
a varying number of instances, on AWS EC2 small in-
stances. Several configurations were tested, in a com-
bination of different message bundle sizes, simulated
network size and infection degree. All tests were run
at least three times, and the values averaged. The sim-
ulation was allowed to run for 50000 events on each
instance, after which it was stopped.

Whenever a message was created, the creation time
was timestamped. The initial timestamp was then
used to calculate the message delay when the message
was dequeued to be processed. Because remote mes-
sages were timestamped in a different instance from
were they were processed we use a clock synchroniza-
tion, to be able to compare average message delay
between remote and local messages. Testing on the
same hardware indicates the protocol error is close
to 100ms. Each message delay calculated also an up-

dated average message delay for the instance. Sepa-
rate average message delay were calculated for local
and remote messages and were saved at 25000 events
intervals.

The test configuration was created as a combina-
tion of the following parameters:

– Instance Count: 2, 3, 4, 8
– Network Size: 40000, 80000, 160000, 250000,

1000000, 1500000, 2000000
– Message Bundle size: 1, 100, 1000, 10000
– Infection degree: 1, 3, 5, 8

Ideal results would show no change between local and
remote average delay in any simulation configuration.
More realistic expectations would be to have some
configuration type where the difference between local
and remote messages is negligible so that this infor-
mation can be used in the future to tune simulations.

100 101 102 103 104

Message Bundle size

0

200

400

600

800

1000

1200

1400

Av
er

ag
e

m
es

sa
ge

 d
el

ay
 (m

s)

remote
local

Fig. 3. Infection: comparison of local and remote average
message delay in simulation with degree of 1

Results show that some of the variables in the sim-
ulation are orthogonal to the average message delay.
Instance count and network size do make a differ-
ence in the average message delay. Infection degree
and message bundle size, however are responsible for
greater differences in the message delay.

In Figure 3 we plotted the average message delay
in function of the message bundle size for a simula-
tion with a degree of 1. The graph indicates serious
issues in network throughput for a message bundle
size either to small or too large, in later sections we
will confirm this problem. The most interesting result
here is that there is a message bundle size where dif-
ferences between local and remote average message
delay are almost negligible, under the clock error.

100 101 102 103 104

Message Bundle size

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Av
er

ag
e

m
es

sa
ge

 d
el

ay
 (m

s)

remote
local

Fig. 4. Infection: comparison of local and remote average
message delay in simulation with degree of 3

In figure 4 the same variables are plotted but, this
time, for a simulation with degree 3. This graph con-
firms the previous one, and data from simulations
with different degree behave similarly. Unfortunately
we can see a pattern that makes it harder to define
which are the perfect conditions to run the simula-
tion. While on the simulation with degree 1 only a
message bundle with size equal to 100 gave good re-
sults, here both 100 and 1000 are good candidates,
with 1000 doing fairly better. Data indicates that the
best message bundle size depends on the degree of the
simulation, i.e. it depends on the number of messages
in the queue.

5.3 Memory Usage

The last objective of DIPS is to overcome the memory
limitations inherit to centralized simulators. In this
section we will test the memory usage of the DIPS
prototype, both in relation to Peersim and in relation
to itself as the number of instances increase.

In the previous sections we have shown that DIPS
simulation is correct, that it complies with the ex-
pected behavior set by similar simulations in Peersim.
Empirical data shows that under the right configura-
tion DIPS behaves as it would be expected from a
centralized simulation.

We have also shown that the implementation, and
network communication overhead while present, is
manageable and as the simulation size increases, it
is possible to achieve speedups. These features guar-
antee that DIPS correctly simulates peer-to-peer net-
works and its losses in performance do not hinder us-
ability beyond reason.

This section is the culmination of all before it, now
that we have a simulator prototype that is able to
run correct, acceptably fast distributed simulations,
we must test the simulator for its scaling capabilities
which were always the primary goal of this project.

0 20 40 60 80 100
Number of simulated nodes (106)

0

5

10

15

20

M
em

or
y

us
ed

 (i
n

gi
ga

by
te

s)

3 instances
1 instances
2 instances
4 instances

Fig. 5. Memory used by DIPS as a function of the simu-
lated network size, using a 2000 point moving average.

The first step when initializing a simulation is to
create the network, on most simulations this will be
the bulk of the memory space occupied by the simula-
tion. Simulated nodes hold information that must be
stored, the sheer number of nodes in a simulated net-
work can quickly overrun the memory limits available
to the simulator. It is one of a primary goals of DIPS
that any larger simulation can be run by adding the
necessary number of instances to the simulator net-
work.

In this test we show the variation on the JVM mem-
ory usage during the initialization phase of the simu-
lation. Unlike other tests before the simulation chosen
here is not important. In this test the simulation will
be stopped as soon as the the network initialization
phase is over.

To run the simulation we will use AWS EC2 large
instances with the JVM limited to 7GB memory heap.
We will runt the test on a DIPS simulator running on
1, 2, 3 and 4 instances. On each test run, we will try
to initialize a network of 4 million nodes per gigabyte
available to the simulator (further limited to 5GB per
instance, or a total of 20 million nodes per instance).

During the initialization phase, with the initializa-
tion of every 10000 nodes we will save the memory
usage in the current JVM, we will then collect these
values from each instance and plot the memory used
per number of simulated nodes.

We expect that the growth of memory usage by
number of nodes is linear, we also expect that the
memory overhead of the distributed simulator to be
negligible when compared with the size of the simu-
lated network.

The results are displayed in Figure 5. In the figure
we see a moving average of the memory used by the
JVM during each instant of the initialization phase.

It is important to note that the only component of
the simulation that was left out of this test is message
queue. Every other simulator component is included
in this test and we can see that the overhead of a dis-
tributed simulator not only is negligible but appears
to be non existent.

Results are extremely satisfactory, the memory us-
age growth is linear with the growth in network size,
following an expression:

αx+ β

The observable results show that β ≈ 0, indicating
a simulator overhead of 0, and even more interest-
ing α < 1 which indicates that memory usage grows
slightly slower than the network size. Although this
could be attributed to compiler optimizations, we be-
lieve it is JVM runtime that is more liberal with mem-
ory allocation when there is a great amount of free
memory, and becomes more strict when the available
memory is becoming scarce.

6 Conclusion

In this document, we addressed the simulation of
peer-to-peer overlay protocols to assist the design,
development and evaluation of peer-to-peer infras-
tructures and applications. These have had histori-
cal importance in the development of current network
aware applications. In fact, when a developer creates
a peer-to-peer protocol, even if analytically deemed
as correct, efficient and scalable, he needs a test envi-
ronment to evaluate the protocol’s characteristics. As
peer-to-peer protocols are usually designed to connect
a very large number of nodes, a simulation environ-
ment is necessary to convincingly test the protocol. As
it is expected that the number of network connected
devices will grow exponentially, peer-to-peer applica-
tions will become ever-more relevant, and a scalable
and fast simulation even more needed.

During this work, we started by studying the state
of the art of peer-to-peer simulation, in order to point
out its shortcomings. We found that current peer-to-
peer simulation suffers from a peer-count limitation
due to memory usage, that cannot be overcome on
a single computer. Other approaches, such as a vir-
tualized deployment environment, have shown to be

inefficient being unable to execute simulation at an
acceptable speed. To address this, we defended the
need for a custom made solution aware of peer-to-
peer simulation implementation characteristics, able
to remove the memory limit and still execute the sim-
ulation with acceptable performance.

We propose DIPS, a Distributed Implementation
of the Peersim Simulator, which is, as the name in-
dicates is an extension to the Peersim simulator to
take advantage of distributed resources, both mem-
ory and CPU. We took those concepts that are the
basis of Peersim, and extended them so that they can
adequately used in a distributed context. We aimed at
guaranteeing that losses in performance of the simula-
tion, due to the new distributed characteristics were
minimized. The development was carried out using
Java and Scala, and additional mechanisms such as
load balancing, checkpointing, migration were imple-
mented.

We evaluated this work regarding both qualitative
as well as as quantitative aspects. First, we investi-
gated whether the expected properties of simulated
protocols were upheld. Then, we addressed scalabil-
ity and performance regarding the memory barrier
and possible speed-ups. We took into account net-
work churn, and measure the costs and benefits of:
coordination of several instances, message bundling,
bounded divergence. This evaluation aimed at met-
rics such as the number of local events processed at
each instance, deviation in latency regarding local and
remote messages, message bundling, memory occupa-
tion. Results are globally encouraging and this work
is able to circumvent the current major limitation,
memory usage and peer-count in simulations, allow-
ing larger and more realistic simulations of novel peer-
to-peer overlay protocols.

6.1 Future Work

In the future we would like to address some open is-
sues:

– Development of a topology modeling language or
templates that helps the design of protocols and
interoperability between simulators.

– Further benchmarking of DIPS with quantitative
measurements on the measure of compliance with
sequential simulations.

– Evaluation of the speed speed of convergence
of simulated protocols, compared with sequential
simulation.

– Simulation scheduling with resource awareness
dealing with instances running on asymmetric
machines or machines with variable load.

References

1. Montresor, A., Jelasity, M.: Peersim: A scalable
p2p simulator. In: Peer-to-Peer Computing, 2009.
P2P’09. IEEE Ninth International Conference on,
IEEE (2009) 99–100

2. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F.,
Balakrishnan, H.: Chord: A scalable peer-to-peer
lookup service for internet applications. SIGCOMM
Comput. Commun. Rev. 31 (August 2001) 149–160

3. Rowstron, A., Druschel, P.: Pastry: Scalable, dis-
tributed object location and routing for large-scale
peer-to-peer systems (2001)

4. Ratnasamy, S., Francis, P., Handley, M., Karp, R.,
Shenker, S.: A scalable content-addressable net-
work. SIGCOMM Comput. Commun. Rev. 31 (Au-
gust 2001) 161–172

5. Zhao, B.Y., Kubiatowicz, J., Joseph, A.D., Zhao,
B.Y., Kubiatowicz, J., Joseph, A.D.: Tapestry: An in-
frastructure for fault-tolerant wide-area location and
routing. Technical report (2001)

6. Maymounkov, P., Mazières, D.: Kademlia: A peer-
to-peer information system based on the xor metric
(2002)

7. Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski,
S., Eaton, P., Geels, D., Gummadi, R., Rhea, S.,
Weatherspoon, H., Weimer, W., Wells, C., Zhao, B.:
Oceanstore: An architecture for global-scale persis-
tent storage. (2000) 190–201

8. Adya, A., Bolosky, W.J., Castro, M., Cermak, G.,
Chaiken, R., Douceur, J.R., Jon, Howell, J., Lorch,
J.R., Theimer, M., Wattenhofer, R.P.: Farsite: Fed-
erated, available, and reliable storage for an incom-
pletely trusted environment. In: In Proceedings of
the 5th Symposium on Operating Systems Design and
Implementation (OSDI. (2002) 1–14

9. Castro, M., Druschel, P., Kermarrec, A.M., Row-
stron, A.: Scribe: A large-scale and decentralized
application-level multicast infrastructure. IEEE Jour-
nal on Selected Areas in Communications (JSAC 20

(2002) 2002
10. Gupta, A., Sahin, O., Agrawal, D., Abbadi, A.:

Meghdoot: Content-based publish/subscribe over
P2P networks. In: Proceedings of the 5th
ACM/IFIP/USENIX international conference on
Middleware, Springer-Verlag New York, Inc. (2004)
254–273

11. Gil, T., Kaashoek, F., Li, J., Morris, R., Stribling, J.:
p2psim, a simulator for peer-to-peer protocols (2003)

12. Shudo, K., Tanaka, Y., Sekiguchi, S.: Overlay weaver:
An overlay construction toolkit. Computer Commu-
nications 31(2) (2008) 402–412

13. Garcia, P., Pairot, C., Mondéjar, R., Pujol, J., Teje-
dor, H., Rallo, R.: Planetsim: A new overlay net-
work simulation framework. Software Engineering
and Middleware (2005) 123–136

14. Dabek, F., Zhao, B., Druschel, P., Kubiatowicz, J.,
Stoica, I.: Towards a common api for structured peer-
to-peer overlays. (2003)

15. Medina, A., Lakhina, A., Matta, I., Byers, J.: BRITE:
An approach to universal topology generation. In:
Modeling, Analysis and Simulation of Computer
and Telecommunication Systems, 2001. Proceedings.
Ninth International Symposium on, IEEE (2002) 346–
353

16. Naicken, S., Basu, A., Livingston, B., Rodhetbhai, S.:
A survey of peer-to-peer network simulators. In: Pro-
ceedings of The Seventh Annual Postgraduate Sym-
posium, Liverpool, UK, Citeseer (2006)

17. Jennings, N., Wooldridge, M.: Applications of intelli-
gent agents. Agent technology: Foundations, applica-
tions and markets (1998) 3–28

18. Hanks, S., Pollack, M., Cohen, P.: Benchmarks, test
beds, controlled experimentation, and the design of
agent architectures. AI magazine 14(4) (1993) 17

19. Hepplewhite, R., Baxter, J.: Broad agents for intel-
ligent battlefield simulation. In: Proceedings of the
6th Conference on Computer Generated Forces and
Behavioural Representation. (1996)

