
Melange: A Hybrid Approach to Tracing Heterogeneous
Distributed Systems

Gonçalo Garcia

Instituto Superior Técnico

Lisbon, Portugal

goncalotgarcia@tecnico.ulisboa.pt

ABSTRACT
Software systems are becoming increasingly distributed to deal with

the performance and availability requirements of modern users, as

well as an ever-increasing amount of data collected from a global

user base. While distributed systems pose numerous advantages,

they present a challenge for the developers who wish to debug

and analyze their performance. Some works have used distributed

tracing to offset these difficulties by providing a high level view

of the end-to-end execution of single requests, which can be an-

notated with debugging and performance metrics. However, most

of these tools require the modification of the traced components

which is often not viable or even possible. Other works have at-

tempted to trace systems as sets of black-boxes, through statistical

inference based on non-intrusive data-capturing, or by leveraging

expert knowledge of the system’s components. While these systems

require no modification of the traced software, they are often slow,

susceptible to false positives, or require very low-level knowledge

of components which is difficult for users of closed source software.

In this document, we present a survey of the current state-of-the-art

in distributed tracing, and propose an alternative distributed tracing

tool (that operates as a middleware layer) that combines source-

code modification and passive meta-data capturing to implement

distributed tracing in heterogeneous distributed systems contain-

ing black-boxes. We attempt to do this by leveraging commonly

available open-source tools.

KEYWORDS
distributed tracing, distributed systems, monitoring, instrumenta-

tion, performance engineering

1 INTRODUCTION
Modern software systems are growing in scale and, as teams be-

come larger to accommodate the increase in system complexity,

it becomes appealing to develop large-scale software as a set of

smaller decoupled services with independent development and re-

lease cycles. Such architectures are designed with scalability and

productivity in mind, as this separation of concerns no longer re-

quires that developers have a low level understanding of all parts

of the system.

While this approach to software development is beneficial, and

often outright necessary, it adds a significant overhead to the de-

bugging process. Standard halting debuggers are rarely helpful as

they are mostly unable to track execution across process bound-

aries, and in the event that they are, this is usually reserved for

highly homogeneous systems [4]. Even the infamous, but often

useful "printf debugging" is of little help in this situation, as many

times developers are forced to sift through a multitude of log files

spanning across several services and physical machines, in order to

track the origin of a single faulty request. The decoupling of mod-

ules and teams also poses a challenge to debugging as developers

might have to follow bugs into other unknown (to them) modules

[13].

Some works have attempted to solve the distributed debugging

problem by recording a distributed checkpoint of the system state

as the execution reaches breakpoints [22]. This has a similar effect

to a halting debugger, as the developer is able to analyze the global

state of the system at set points, except without interrupting the

execution. Although these methods can be effective, they are quite

expensive, and a lot of the faults associated to distributed systems

are very dependent on timing, hardware and network state, making

them hard to reproduce. In these situations it might be more useful

to collect information about previously occurred faulty (and correct)

requests as they pass through the system, a strategy known as

distributed tracing.

Distributed tracing aims to provide a detailed view of the execu-

tion of any given request across all of the components of a system.

It can be thought of as a centralized log containing causally ordered

[10] entries from all components that took part in a single execu-

tion. This could very easily be expanded to visual tools that help

developers understand and debug their systems. When developing

a tracing enabled application it is possible to monitor services or

components and pinpoint where faults occur.

Major companies like Google (Dapper [18]), Facebook (Canopy

[13]), Etsy [20], JD (JCallGraph [11]) and others have developed

their own custom distributed tracing tools, as their systems grew

beyond what a single person or team could reasonably understand.

However, implementing distributed tracing is, in most cases, not

straightforward, which leads to most companies avoiding the en-

deavor.

1.1 Shortcomings in Distributed Tracing
Tracing platforms like the ones deployed in major technology com-

panies are able to reconstruct the path of a request and causally

associate debugging information to each point in its execution. To

do this, however, developers must instrument their modules to

propagate tracing specific meta-data through requests and thread

synchronization points. This is possible because companies like

Google and Facebook have perfect vertical integration of their stack

of software components, and are able to modify them to fit their

needs.

The instrumentation approach is straightforward and provides

great visibility into the application, which lead to the development

of Open-Source instrumentation frameworks that provide interop-

erability with the most commonly used tracing engines. However,

these frameworks are tailored for RPC-based executions, and sys-

tems based on other paradigms might require extensive change

in order to capture end-to-end traces [13]. Even in suitable pro-

grams, instrumentation may be undesireable to some as it clutters

the source-code with tracing specific clauses adding significant

complexity.

Companies that do not wish, or are unable, to rely on instrumen-

tation may be able to introduce tracing into their platform by using

common frameworks or middleware with support for distributed

tracing (for example, Finagle
1
, gRPC

2
, Spring Framework

3
). The

amount of readily available components that support tracing is ever

increasing, but it is still a small minority, making this approach not

viable for every use-case.

Most companies have systems which may be comprised of sev-

eral black-box components which do not support distributed tracing

and cannot be modified. In these cases teams may rely on tracing the

in-house modules that interface with the black box components as

an attempt to have some sort of observability into the system. This

1
https://github.com/openzipkin/zipkin-finagle

2
https://github.com/grpc-ecosystem/grpc-opentracing

3
http://spring.io/projects/spring-cloud-sleuth

1

is not optimal because faults may be introduced by the black-boxes

and therefore hidden from the trace.

1.2 Proposed Solution and Contributions
The problem we aim to solve in this work - tracing heterogeneous

distributed systems - can be thought of as two distinct sub-problems

with correspondingly different solutions. The first being "sustain-

able" instrumentation of modifiable (white-box) components, and

the second tracing non-modifiable black-boxes.

To tackle the first problem, we propose Melange, a novel instru-

mentation framework that provides a clearer and less verbose API

than current alternatives, while showing comparable functional-

ity and performance. As for the second problem, we take a step

back from the lower-level approaches of the literature and instead

focus on leveraging Aspect-Oriented Programming to instrument

the black-box’s drivers, allowing us to extract uniquely identifying

process-level meta-data that will label the client-side traces col-

lected by Melange, and provide enhanced visibility into black-box

clusters.

2 MELANGE
Melange

4
is comprised of an API and several implementations

which provide different levels of tracing. To simplify development

and to minimize the amount of dependencies placed on the users,

each implementation was developed as a separate module that

can have individual development and release cycles. Following

the Interface Segregation Principle [15], we designed smaller APIs

that can be used independently, or together if the instrumented

application so requires.

In total there are three APIs: the BaseTracing API (used for

single-threaded, single-process applications), the TracingWithId
API (used for single or multi-threaded, single-process applications,

that feature a uniquely identifying event ID.), and finally Trac-
ingWithContext API (Used for single or multi-threaded, single-

process or distributed applications).

2.1 BaseTracing API
The BaseTracing API, described in Listing 1, is the simplest but it is

also the least flexible of all the APIs we have developed. Through

this API, context is passed between tracepoints by storing it in

thread-local variables.

public in te r face T r a c i n g {

<R> R newTrace (S u p p l i e r <R> toTrace , S t r i n g d e s c r i p t i o n) ;

void newTrace (Runnable toTrace , S t r i n g d e s c r i p t i o n) ;

<R> Comple tab l eFu ture <R> newTraceAsync (S u p p l i e r < Comple tab l eFu ture <R>>

↪→ toTraceAsync , S t r i n g d e s c r i p t i o n) ;

<R> Promise <R> newTracePromise (S u p p l i e r <Promise <R>> toTraceAsync , S t r i n g

↪→ d e s c r i p t i o n) ;

<R> R addToTrace (S u p p l i e r <R> toTrace , S t r i n g d e s c r i p t i o n) ;

void addToTrace (Runnable toTrace , S t r i n g d e s c r i p t i o n) ;

<R> Comple tab l eFu ture <R> addToTraceAsync (S u p p l i e r < Comple tab l eFu ture <R>>

↪→ toTraceAsync , S t r i n g d e s c r i p t i o n) ;

<R> Promise <R> addToTracePromise (S u p p l i e r <Promise <R>> toTraceAsync , S t r i n g

↪→ d e s c r i p t i o n) ;

boolean i s A c t i v e () ;

}

Listing 1: BaseTracing API definition

2.1.1 Base Instrumentation Routines.
Ignoring overloads, one can immediately split the API into two

different semantic classes, which we will refer to as newTrace and

addToTrace methods.

The newTrace methods, as the name suggests, signal the begin-

ning of a new trace. These methods must not inherit context from

previous traces in the caller thread. Additionally, the reference to

the generated span must always be available to subsequent spans,

including after it has finished (which might happen if the execution

continues asynchronously).

The addToTrace methods add new spans to a previously started,

overarching trace. In the BaseTracing API, spans created by call-

ing addToTrace become children of the context stored in the caller

4
https://github.com/feedzai/dist-tracing

thread’s local memory, i.e., the span that is active during the be-

ginning of this new span. Unlike their newTrace counterparts, the

reference to these spans will be lost as soon as it finishes, and the

most recent unfinished span (or the root) will become active.

2.1.2 Capturing Asynchronicity.
Melange provides overloads for Java’s CompletableFuture interface,

which is often used to execute long running computation asyn-

chronously. Through our API, capturing the full duration of asyn-

chronous computations running in a CompletableFuture is as simple

as tracing a method returning CompletableFuture with the correct

overload. Despite this simplicity, we are well aware that not all

software systems have evolved to use this feature, and many legacy

projects rely on custom CompletableFuture-like classes. Consequently,

the library features introduced a simple Promise API, that allows

custom classes to benefit from our library’s functionality. These

two features fulfill our of objective of easily tracing asynchronous

behavior.

2.2 TracingWithId API
Commonly, high performance distributed systems have non-linear

execution paths, where one request might be processed by multiple

threads, not as a series of asynchronous jobs, but as a pipeline

where each thread applies a transformation on the output of its

predecessor. Most of the time, these pipelines rely on thread-pools

to minimize the cost of thread creation. In environments such as

this one, it is not possible to rely on thread-local variables to store

a trace’s context, as the same thread may be summoned to handle

different parts of the pipeline, resulting in incorrect traces.

public in te r face Tr ac i ngWi th I d {

<R> R newTrace (S u p p l i e r <R> toTrace , S t r i n g d e s c r i p t i o n , S t r i n g e v e n t I d) ;

void newTrace (Runnable toTrace , S t r i n g d e s c r i p t i o n , S t r i n g e v e n t I d) ;

<R> Comple tab l eFu ture <R> newTraceAsync (S u p p l i e r < Comple tab l eFu ture <R>>

↪→ toTraceAsync , S t r i n g d e s c r i p t i o n , S t r i n g e v e n t I d) ;

<R> Promise <R> newTracePromise (S u p p l i e r <Promise <R>> toTraceAsync , S t r i n g

↪→ d e s c r i p t i o n , S t r i n g e v e n t I d) ;

<R> R newProcess (f ina l S u p p l i e r <R> toTrace , f ina l S t r i n g d e s c r i p t i o n , f ina l
↪→ S t r i n g e v e n t I d) ;

void newProcess (f ina l Runnable toTrace , f ina l S t r i n g d e s c r i p t i o n , f ina l
↪→ S t r i n g e v e n t I d) ;

<R> C o m p l e t a b l e F u t u r e newProces sFu ture (f ina l S u p p l i e r < Comple tab l eFu ture <R>>

↪→ toTrace , f ina l S t r i n g d e s c r i p t i o n , f ina l S t r i n g e v e n t I d) ;

<R> Promise <R> newProcessPromise (f ina l S u p p l i e r <Promise <R>> toTrace , f ina l
↪→ S t r i n g d e s c r i p t i o n , f ina l S t r i n g e v e n t I d) ;

<R> R addToTrace (S u p p l i e r <R> toTrace , S t r i n g d e s c r i p t i o n , S t r i n g e v e n t I d) ;

void addToTrace (Runnable toTrace , S t r i n g d e s c r i p t i o n , S t r i n g e v e n t I d) ;

<R> Comple tab l eFu ture <R> addToTraceAsync (S u p p l i e r < Comple tab l eFu ture <R>>

↪→ toTraceAsync , S t r i n g d e s c r i p t i o n , S t r i n g e v e n t I d) ;

<R> Promise <R> addToTracePromise (S u p p l i e r <Promise <R>> toTraceAsync , S t r i n g

↪→ d e s c r i p t i o n , S t r i n g e v e n t I d) ;

T r a c e C o n t e x t c u r r e n t C o n t e x t f o r I d (f ina l S t r i n g e v e n t I d) ;

boolean t r a c e H a s S t a r t e d (f ina l S t r i n g e v e n t I d) ;

}

Listing 2: TracingWithId API definition
In such situation, the frameworks must provide a way to ex-

plicitly pass context between instrumentation routines, usually by

representing the context as an object. On one hand, this approach

is flexible and easy for developers to understand, as it is no dif-

ferent from passing around data objects in code, but on the other

hand it might require structural source code modification, such as

adding tracing context parameters to method signatures. This is

usually not optimal, as it tightly couples tracing instrumentation

and application code (once again violating our first objective).

To avoid this tight coupling, we introduce the TracingWithId

API, which is able to leverage application-specific event IDs to re-

construct traces that cross thread boundaries, thus reducing the

need for structural source-code modification. Previous works [5]

have also leveraged uniquely identifying event IDs for trace recon-

struction purposes, as this is considered both a common feature,

and an easy change.

The main change between the BaseTracing API and the Trac-

ingWithId API, as Listing 2 shows, is simply the addition of a new

method argument for passing the event ID. This was intentional,

as each API should be able to stand on its own and be used inde-

pendently.

2.2.1 Tracing across Threads.
The naive approach to using event IDs for trace reconstruction

2

would be to make every newly created span a child of the previous

span associated to the event ID. However, this approach is flawed,

and heavily dependent on the timing between operations. Consider

an example where traced method A calls two traced methods B and

C, the first one (method B) being asynchronously, and the second

(method C) synchronously.

Executing this behavior multiple times could lead to three differ-

ent traces:

A → B - A → C This is the correct trace and happens if method

B finishes before method C starts, or vice-versa.

A → B → C Incorrect trace which will occurr if method B

starts before C, but C starts before B has finished.

A → C → B Also incorrect and the opposite of the previous

example, will happen if C starts before B and B

starts before C finishes.

It should be obvious that a deterministic activation relation-

ship between trace points should not result in a non-deterministic

span-tree. For that reason, we cannot simply create a relationship

between the new span and the most recent one.

After careful review of several programs and their expected

traces we could conclude that when a span is created in a new

thread and there is no previous trace-context in that thread (or the

context is unreliable due to thread reuse) its parent must be the

context active in the previous thread. We based our TracingWithID

on the aforementioned approach, making sure that it is clear to

developers that, when tracing a code-fragment, one is able to fetch

the previous thread’s context, instead of relying on the thread-local

context, by passing an event ID as parameter.

Naturally, like most out-of-band solutions to this problem, ours

is not infallible. In some cases where multiple asynchronous com-

putations are started in sequence we will once again be presented

with non-deterministic traces. In such situations the only solution

is to explicitly propagate a context object, which leads us into our

last API.

2.3 TracingWithContext API
The TracingWithContext API, was developed to tackle two situations:

(1) tracing asynchronous executions where causality cannot be

inferred using event IDs, and (2) provide the ability to serialize and

deserialize the tracing state, so that it can be propagated between

processes.

public in te r face Trac ingWithContex t extends T r a c i n g {

<R> R newProcess (f ina l S u p p l i e r <R> toTrace , f ina l S t r i n g d e s c r i p t i o n , f ina l
↪→ T r a c e C o n t e x t c o n t e x t) ;

void newProcess (f ina l Runnable toTrace , f ina l S t r i n g d e s c r i p t i o n , f ina l
↪→ T r a c e C o n t e x t c o n t e x t) ;

<R> Promise <R> newProcessPromise (f ina l S u p p l i e r <Promise <R>> toTrace , f ina l
↪→ S t r i n g d e s c r i p t i o n , f ina l T r a c e C o n t e x t c o n t e x t) ;

<R> Comple tab l eFu ture <R> newProces sFu ture (f ina l S u p p l i e r < Comple tab l eFu ture <R

↪→ >> toTrace , f ina l S t r i n g d e s c r i p t i o n , f ina l T r a c e C o n t e x t c o n t e x t) ;

<R> R addToTrace (S u p p l i e r <R> toTrace , S t r i n g d e s c r i p t i o n , T r a c e C o n t e x t

↪→ c o n t e x t) ;

void addToTrace (Runnable toTrace , S t r i n g d e s c r i p t i o n , T r a c e C o n t e x t c o n t e x t) ;

<R> Comple tab l eFu ture <R> addToTraceAsync (S u p p l i e r < Comple tab l eFu ture <R>>

↪→ toTraceAsync , S t r i n g d e s c r i p t i o n , T r a c e C o n t e x t c o n t e x t) ;

<R> Promise <R> addToTracePromise (S u p p l i e r <Promise <R>> toTraceAsync , S t r i n g

↪→ d e s c r i p t i o n , T r a c e C o n t e x t c o n t e x t) ;

S e r i a l i z a b l e s e r i a l i z e C o n t e x t () ;

T r a c e C o n t e x t d e s e r i a l i z e C o n t e x t (S e r i a l i z a b l e h e a d e r s) ;

T r a c e C o n t e x t c u r r e n t C o n t e x t () ;

T r a c e C o n t e x t c u r r e n t C o n t e x t f o r O b j e c t (f ina l O b j e c t o b j) ;

}

Listing 3: TracingWithContext API

As with TracingWithId this API (shown in Listing 3) is very sim-

ilar to Tracing with the exception of a new TraceContext parameter.

Since the API needed to be completely vendor agnostic, and im-

plementable on top of existing instrumentation frameworks like

OpenTracing or OpenCensus, we created a TraceContext interface

to not only represent the tracing context in our API, but to wrap

the context representations of underlying implementations (e.g.

OpenTracing’s span).

2.4 Open API Extension
As we have shown, all of Melange’s tracing APIs feature similar

semantics for tracing code blocks, as in all cases the developer must

be able to wrap the whole computation in an anonymous function.

Often times this is not possible, and the clear start and end points

of the computation occur in different methods. Examples of this

behavior are visible when objects are queued during processing, or

in callback-based asynchronous programming.

As stated previously, our work includes an extension to each

tracing API that introduces explicit start and finish semantics. It

works by internally associating the span to an object required for

the computation, so that it can be retrieved later when it is time to

finish the span. This is a very small incremental change that simply

adds an Object parameter to each method representing the object

to which we will associate the span.

Associating the span to a specific object reference allows Melange

to retrieve this association in the future, even if the execution spans

multiple threads. This feature can also be used to follow the full

ramification of individual events, even if they are processed long

after the call.

In our experience, this enqueue → dequeue → store context →
finish span → continue with previous context instrumentation pat-

tern proved useful in connecting the previously almost independent

event arrival, preprocessing, storing and event processing loops.

2.5 Black Box instrumentation
In systems that are reliant on black-box components in their critical

path, it is not unreasonable to assume that the external components

could be the source of a slow or incorrect request. In many cases it

is not possible to debug or inspect at the source-code of the black-

box, and teams often have to resort to monitoring tools to get some

insight on what is affecting their performance. If each black-box is,

in itself, a distributed system, this might quickly become an exercise

in futility, as it is unclear which node or replica was part of the

execution of any given request.

In an attempt to ease this process we instrument the black box’s

client or driver, through the use of Aspect Oriented programming,

in order to obtain process-level meta-data that can be used filter

the monitoring results. We have found that the most useful piece of

data is usually the IP address of the node responsible for executing

the traced request, or any other uniquely identifying piece of infor-

mation. Using AOP allows us to limit the overhead of upgrading

black-box versions. Developers are weary of relying on forked ver-

sions of their open-source dependencies as the smallest upgrade in

the original product could break the modified code, which results

in one of two possible outcomes: (1) slow adoption of new features

due to the added effort of fixing conflicts, or (2) upgrade avoid-

ance and loss of new features, or worse, important security patches.

However, in most projects, the probability of an upgrade breaking

low-impact instrumentation code is small, therefore the upgrade

burden is mostly related to the effort of merging the two code bases

for even the smallest upgrade. With AOP the developers need not

be concerned with the instrumentation code, as it is already self-

contained in the form of an Aspect, making the upgrade process

as simple as updating the version in the dependency manager’s

configuration and recompiling.

For the purposes of this project we have instrumented two black-

box systems: Cassandra and RabbitMQ.

3 IMPLEMENTATION
In this section we will describe each implementation of the instru-

mentation framework’s APIs

The module-based hierarchy of the tracing library is described

in Figure 1. Since the BaseTracing API is simply an adaptation

of the OpenTracing functionality to match our API semantics, in

the following sections we will instead focus on the modules that

contain Melange-specific functionality.

3

Figure 1: Module-based decomposition of our tracing li-
brary.

3.1 TracingWithId API Implementation
As stated in the API description, through the TracingWithId API,

each new tracepoint will become a child of the tracing context

stored, for the same eventID, in the previous thread.

To achieve these semantics, four questions needed to be an-

swered:

(i) How to know which trace represents the current eventID?

(ii) How to know if the thread has changed?

(iii) How to obtain the previous thread’s context?

To answer the first question, Melange makes use of two maps

traceIdMappings and spanIdMapping. The first maps the application-

specific eventID to its corresponding traceID. The latter maps a

traceID to a stack of spans, where each entry represents the active

span for each context switch the request went through. When a new

trace is started (by calling newTrace), the span’s traceID is parsed and

the eventID is mapped to it. Afterwards, an empty stack is created

and associated to the same traceID and the newly created root span

is pushed on top of it. This span will never leave the stack so that

orphan spans associated to the same eventID can bind to it.

To detect if there was a context switch, Melange relies on

an OpenTracing feature called Baggage. Baggage, much like an

annotation, is a key-value pair stored within the span, however,

unlike annotations, baggage items can be retrieved through the

instrumentation API. When a new span is created, the current

thread’s ID is attached to it as a baggage item. Every time a new

span is created through this API, the threadID of the span at the

top of this trace’s stack is compared to the caller thread’s ID. If it

matches, the span is created as usual, otherwise the new span is

pushed onto the stack. Later, when the span is finished, it is popped

from the stack.

The answer to question (iii) follows naturally from the struc-

tures created to answer questions (i) and (ii), as one can assume

that when calling addToTrace, the new span’s parent is almost always

the span that is at the top of the current trace’s stack (barring the

edge-cases described in the previous section).

The reader might be wondering how these mappings affect the

memory usage and Garbage Collection (GC) of a long-running pro-

gram. This is extremely important, as large GC pauses can severely

impact the performance of latency-sensitive applications such as

the ones developed by Feedzai. To counter the increased memory

usage, we made use of Google’s Guava Caches for our mappings,

allowing us to set a maximum number of concurrent mappings and

a time-based eviction policy, both easily configurable. Through this

configuration users can establish an upper bound for the amount

of tracing data stored in memory, and properly manage its lifetime.

The object lifetime management is essential for performance, as

modern GC algorithms can collect short-lived objects efficiently

but collecting older generations still has a noticeable impact on

performance.

3.2 TracingWithContext API Implementation
Similarly to the TracingAPI implementation, OpenTracing already

supports propagating the tracing context as an object, was well as

its serialization and deserialization. Therefore, this implementation

is mainly a usability improvement.

3.2.1 Interoperability with Instrumentation Frameworks.
As stated in the previous chapter, Melange provides a TraceContext

interface that abstracts the underlying tracing framework’s span

implementation. This allows developers to implement the API on

top of several instrumentation frameworks, allowing them to com-

pare and chose whichever framework better fits their problem set.

This interface should be parametrized with the span implementa-

tion used by the framework used as back-end. For OpenTracing

Melange provides a custom SpanTracingContext class out of the

box.

3.2.2 Serializing and deserializing context.
Unlike other instrumentation frameworks Melange does not dis-

tinguish between propagation format, and the context is serialized

as plain-text. This change frees the programmer from having to

implement multiple interfaces for each propagation method. After

experimenting with OpenTracing, we felt that the advantage of

having different primitives for TextMap and HTTPHeaders was minimal.

3.3 Tracing-Util
The tracing-util module, like the name says, contains utilities de-

signed to help introduce tracing into complex systems.

3.3.1 Trace-Util Singleton.
As we have previously stated, in most systems it is not easy to

propagate context objects through multiple levels of indirection.

Our library attempts to ease that process by providing alternative

means to perform the same tasks. However, to execute any action,

the developers still need access to the tracer object wherever a tra-

cepoint is needed. To simplify this access, we introduced a singleton

object that accepts an implementation of our API, allowing it to be

accessed anywhere.

3.3.2 Configuration Reloading Tracer.
More often than not, developers wish to customize the the level or

granularity of the tracing infrastructure, much like they would with

a logging engine. Existing tools like OpenTracing allow developers

to specify a sampling rate that can be adjusted on the fly, thus

managing the relationship between observability and overhead. We

decided to expand upon that, and provide the ability to, not only

adjust the sampling rate, but to update the tracing-configuration at

runtime, allowing developers to switch their tracer as they wish.

4 EVALUATION
In the previous chapter we introduced Melange and explained how

it integrates with commonly used distributed tracing engines. We

will now present and discuss the experimental results obtained in a

plethora of tests designed to evaluate its performance and usability.

5 QUALITATIVE EVALUATION
Melange improves upon the current standards for tracing instru-

mentation in three main categories: code simplicity, tracing asyn-
chronicity and tracing black-boxes.

5.1 Simplifying Instrumentation Code
OpenTracing is the most widely used framework for tracing instru-

mentation. It provides an API that, while powerful, is quite complex

and verbose. To address the first issue, Melange explicitly labels

instrumentation routines as starting, or continuing a trace. To

better understand this, consider Listing 4 and Listing 5 where we

describe the semantics for starting a new trace in OpenTracing and

Melange, respectively.

The key difference in both examples, besides the reduced code

footprint, is that in the OpenTracing example users must know

4

try (Scope s = t r a c e r . b u i l d S p a n (" Entry ␣ P o i n t ") . i g n o r e A c t i v e S p a n ()

. s t a r t A c t i v e (true) {

longRunningThing () ;

}

Listing 4: Starting a trace with OpenTracing

t r a c e r . newTrace (() −> longRunningThing () , " Ent ry ␣ P o i n t ") ;

Listing 5: Starting a trace with Melange

that newly created active spans automatically become children of

the previous active span unless ignoreActiveSpan() is called. In our

experience, this is far from clear, and caused a lot of confusion

during our early OpenTracing experiments.

5.2 Tracing Asynchronous Executions
In the previous section we detailed the clarity and simplicity of our

instrumentation middleware when compared to OpenTracing in

single-threaded programs. The same can be said for inter-thread

traces, where we are able to leverage the TracingWithId API. As

shown in Listing 6 and Listing 7, not only does our library require

less lines of code to trace the same execution, the OpenTracing

version forces the developer to add a tracing-related parameter to

the traced method, violating our separation-of-concerns design

goal.

public void do (S t r i n g event ID) {

try (Scope s = t r a c e r . b u i l d S p a n (" Do ") . s t a r t A c t i v e (true) {

Span c o n t e x t = t r a c e r . a c t i v e S p a n () ;

doAsync (event ID , c o n t e x t) ;

}

}

@Async

public void doAsync (S t r i n g event ID , Span c o n t e x t) {

try (Scope s = t r a c e r . b u i l d S p a n (" Do ␣ Async ") . a s C h i l d O f (c o n t e x t) .

↪→ s t a r t A c t i v e (true) {

longRunningThing () ;

}

}

Listing 6: Continuing an asynchronous trace with
OpenTracing

public void do (S t r i n g event ID) {

t r a c e r . newTrace (() −> doAsync (event ID) , " Do " , event ID) ;

}

@Async

public void doAsync (S t r i n g event ID) {

t r a c e r . addToTrace (() −> longRunningThing () , " Do ␣ Async " ,

↪→ event ID) ;

}

Listing 7: Continuing an asynchronous trace with the
Melange

Additionally, Melange is able to follow requests across load bal-

ancing strategies like queuing. This is made possible by the Open

extension discussed in the previous chapter. In Listing 8 we show

an example of this behavior.

public void enqueueEvent (Event eve n t) {

t r a c e r . addToTrace (() −> queue . enqueue (e ven t) , event , " Event ␣

↪→ w a i t i n g ␣ i n ␣ queue ") ;

}

public void p r o c e s s E v e n t () {

T r a c e C o n t e x t c t x = t r a c e r . c u r r e n t C o n t e x t () ;

Event e ven t = queue . dequeue () ;

t r a c e r . c loseOpen (even t) ;

t r a c e r . addToTrace (() −> d o P r o c e s s i n g (e ven t) , " Do ␣ P r o c e s s i n g " ,

↪→ c t x) ;

}

Listing 8: Open extension for Tracing API
To capture this behavior through OpenTracing one would have

to modify the application’s source code to propagate an object

representing the tracing context, much like the example in List-

ing 6. Modifying methods or classes with tracing parameters tightly

couples the application and instrumentation code, making future

changes more complicated. Furthermore, exposing OpenTracing

related constructs like span or Scope prevents users from changing

instrumentation frameworks easily, even if all frameworks follow

the span-based model. As stated in the previous section, Melange is

mostly self-contained, allowing developers to implement it on top

of whatever instrumentation framework or engine they are familiar

with.

5.3 Leveraging Black-Box Data
As discussed the previous chapter, our work includes aspects to

instrument the Java drivers of RabbitMQ and Cassandra which

augment the spans resulting from Melange. To do this, one must

simply use the AspectJ compiler for their project, loading our as-

pects, or set up a project that instruments the drivers separately

and subsequently load them into the application.

To better understand how this can be useful in practice regard

the following example. Consider a system that stores data in a

Cassandra cluster that is currently under heavy load making one

of the nodes experience degraded performance. As requests are

being sent to this system, most requests complete successfully and

within the expected latency range, but a few are either failing, or

slow. Obviously we would be able to monitor the resource usage

of each node, but if all nodes are working equally it might be hard

to find the culprit. The only way to detect the root cause of this

problem, without simply increasing the capacity of the machines,

would be to infer the node that is resulting in failures by matching

logs or manually calculating the hash key of the failing requests

and comparing it with the cluster’s current data distribution.

A job like the one described above might take hours in a produc-

tion environment, resulting in outages or poor performance, both

of which can incur financial penalties for the company. Even if the

system supported distributed tracing through OpenTracing, the re-

sulting traces would not of be much help, as we would only be able

to confirm that the spans representing database access are longer in

certain requests. On the other hand, if the system was instrumented

using Melange, and made use of the instrumentation aspects for

the Cassandra driver, we would immediately know which node was

being targeted by the failing requests, as the spans representing

this computation would be enriched with the node’s IP address.

Our AOP based approach is very resilient to upgrades when

compared to a manual modification approach. We have tested all

previous versions of the Datastax Cassandra driver for Java and

our aspects were able to advise every version released in the past

four years, failing for the first time with version 2.1.5 released in

March of 2015 (the current version, 4.0.0, was released in May of

2019). The RabbitMQ driver showed even better results, failing only

on version 2.3.1 released in February of 2011 after being tested on

every version since the most recent 5.7.3 released in July of 2019.

5.4 Quantitative evaluation
In this section we will analyze how Melange fares in a sleuth of

tests that will focus on performance, and code modification metrics.

The main test-cases for this evaluation are the products involved

in a normal Feedzai deployment. However, as this is a very specific

use-case, we have also instrumented two reference-applications for

microservices development: Spring’s Sockshop
5

and Micronaut’s

Petstore
6
. The benefit of this approach is that Melange has been

tested in applications following two different and widespread ar-

chitectures for distributed systems, reinforcing its versatility. Since

the results were very similar for the two micro-services projects, in

this paper we will focus on Petstore.

5
https://microservices-demo.github.io/

6
https://github.com/micronaut-projects/micronaut-examples/tree/master/petstore

5

5.5 Feedzai’s Use Case
Feedzai uses machine-learning to detect fraudulent credit-card

transactions. To do this its software must analyze each of its client’s

transactions. Naturally, this means clients will not confirm a trans-

action unless it has first been been approved by Feedzai’s product

which, in plain terms, means Feedzai’s software runs on the criti-

cal path of payment processing systems that require it to process

billions of dollars per day, with extremely strict SLAs.

Although distributed tracing provides numerous benefits, as de-

scribed in Section 1, a system with the above requirements cannot

afford its monitoring tools to add significant overhead. In the fol-

lowing sections we will show that the performance of applications

instrumented with our middleware is comparable to the applica-

tion’s performance when traced with alternative instrumentation

frameworks, and that, in the future, it could be deployed in produc-

tion environments due to its ability to be enabled dynamically and

the potential to further reduce its performance impact via sampling.

Furthermore, a regular deployment of Feedzai’s system is com-

prised of several products, each containing hundreds of thousands

of lines of code. This creates a need for a tracing instrumentation

framework that does not require structural code modification result-

ing in code breaking changes. Below we will show that our tracing

framework requires less lines of code and structural modifications

per-tracepoint than current alternatives.

5.6 Code Evaluation
As source-code instrumentation is the main focus of this thesis we

have also performed a thorough analysis of Melange’s impact on

the code-base it will instrument.

Evaluating how much a program was modified is not as clear

cut as evaluating its performance. Therefore, we settled on metrics

that are measurable and easily verified. After much consideration

we decided to monitor the number of lines-of-code, method signa-

tures and APIs modified, as well as the number of lines-of-code and

classes added. Although we experimented with tools to automati-

cally compute the differences in instrumentation between Melange

and OpenTracing, the final results were manually calculated, as

none of these tools provided the granularity we required. Since the

metrics enumerated above can vary significantly with code-style

changes, we enforced two rules: (i) K&R style brackets (i.e., opening

bracket is on the same line as the method signature) as this is the

style used by most Java books, and (ii) one statement per line, with

no line wrapping.

5.6.1 Code evaluation results and analysis.
Petstore When analyzing the results in Table 1, it becomes clear

that Melange requires more line modifications than OpenTracing to

achieve the same purpose. This was expected, as our library traces

code that is passed to it as a lambda, surrounding and modifying

the original method call. However, this design decision results in

much fewer lines added, when compared to the code instrumented

with OpenTracing.

Library Lines Modified Lines Added

Melange 94 76 (68*)

OpenTracing 83 171 (86*)

Table 1: Impact of Tracing at the line-of-code level on the
Petstore project. The * symbol stands for lines added for import

statements.

The difference can be easily understood by reviewing the code

constructs for tracing of single method calls. While OpenTracing

requires that the code is enclosed in a try-with-resources block,

which uses two additional lines (the try initialization, and the clos-

ing bracket) and an additional language construct, our library wraps

the traced line of code. Even if we ignore the closing bracket in our

calculation, the OpenTracing implementation requires that devel-

opers add another level of indentation to their code, specifically for

tracing. As we have stated throughout this document, we believe

that this leads to less readable code, as the level of indentations

increases with the granularity of the trace.

Surprisingly, we see that the number of lines modified is not too

dissimilar, with Melange modifying ninety-four lines when com-

pared to OpenTracing’s eighty-three. Strange though it may seem,

it is easily explained by viewing the traced code. Since Micronaut’s

(the framework used) pattern for including custom HTTP headers

in the request is to add another parameter to the declarative client’s

method signatures, each traced call will require a modification, re-

gardless of whether we use OpenTracing or our library. Melange

shines in this situation, as the cost of our instrumentation is amor-

tized by the fact that the line would have to be modified anyway.

In summary, for every line changed by Melange to trace a REST

call, OpenTracing requires one line modification, two additional

lines added and one extra level of indentation.

Library Sig. Changes APIs Broken Classes Added

Melange 0 17 0

OpenTracing 0 17 1

Table 2: Impact of Tracing at the structural level on the Pet-
store project

Table 2 shows that some modification of the project’s APIs and

method signatures were necessary to propagate context between

services. It must be said that this was only necessary due to the

way Micronaut handles the addition of request headers. As we

have said before, in Micronaut, when using the declarative REST

Clients, headers are added to a request by passing an additional

parameter to the client API. Finally, a new class was also added

by the OpenTracing instrumentation to encapsulate the code for

serializing and deserializing the tracing context.

Feedzai’s Streaming Engine Due to the scale of Feedzai’s code-

bases it is unfeasible to instrument every product with OpenTracing

just for a simple comparison, hence we focused our efforts on in-

strumented the streaming engine, which is the most complex and

prominent component of Feedzai’s stack. Similarly to the Petstore

and Sock-Shop, Table 3 shows an increase in modified lines of code

when comparing Melange to Opentracing, but a vast decrease in

the number of lines added. The magnitude of this decrease is caused

by Feedzai’s very asynchronous code, with a heavy emphasis for

chained CompletableFuture objects, requiring a lot more OpenTrac-

ing code, as our library was designed for this type of environment.

Library Lines Modified Lines Added

Melange 20 31 (16*)

OpenTracing 16 114 (32*)

Table 3: Impact of Tracing at the line-of-code level on
Feedzai’s Streaming Engine. The * symbol stands for lines added

for import statements.

In Feedzai’s streaming engine, a request is represented by a Mes-

sage class that is propagated throughout the execution. This proved

valuable in reducing the amount of structural changes required

by the OpenTracing instrumentation, as we could piggyback the

tracing context on this Message, but certain situations still required

method signature changes, especially for methods that are simply

side-effects of the critical path and therefore do not require access to

the Message object. However, this Message is an API which means

that modifying it requires modifying all implementations, which

we see as a reasonable trade-off.

Library Sig. Changes APIs broken Classes Added

Melange 0 0 0

OpenTracing 5 1 1

Table 4: Impact of Tracing at the structural level on Feedzai’s
Streaming Engine.

6

Concluding, it is clear that, as proposed, our middleware requires

less structural source-code changes, as well as fewer line additions

with a comparable number of modifications. Additionally Melange

provides additional features while maintaining the instrumentation

advantages described above.

5.7 Performance
To analyze the performance of our instrumentation framework

we will focus on request latency and throughput as well as CPU,

Memory, Disk and Bandwidth usage. These metrics allow us to

understand how the instrumentation affects the system’s ability to

respond to requests adequately, and without unreasonable resource

requirements.

5.7.1 Performance Evaluation Methodology.
To create a set of realistic benchmarks, we stress-test the projects by

generating load in a way that simulates a real and highly demanding

environment, as opposed to a purely synthetic micro-benchmark.

To benchmark Feedzai’s products, we simulate a real environ-

ment by sending a fixed rate of 300 transaction authorization re-

quests per second. For both micro-services projects we used Locust
7

to generate HTTP requests simulating active users on the website.

We configured Locust with 200 clients, spawning at a rate of 5

clients per second. Each client awakes every second to execute 3

requests in sequence, on a round-robin basis.

There were a few differences in the environment between Feedzai’s

benchmarks and Petstore. This is because Feedzai’s system, being

comprised of real-world products, is more resource-intensive than

simple micro-service reference projects, and thus requires more

hardware.

Feedzai. To benchmark Feedzai’s products we used two ma-

chines with the following specifications: Intel Xeon CPU E5-2680

v3 CPU (32 cores @ 2.50GHz), 120GB RAM and a 500GB 7200RPM

HDD, running CentOS 7 (7-4.1708.el7). The containers were split

across the two machines using Docker Swarm, leaving the orches-

tration to the tool, with no additional configuration. It is important

to mention that this was a system implemented specifically for the

purposes of this work, with the goal of representing the structure

of a typical Feedzai deployment, but at a much smaller scale and

with reduced hardware requirements. The environment was also

not tuned or configured by experienced Feedzai engineers, meaning

that the results shown in this document should only be used to

compare the different tracing frameworks and are not indicative of

the performance of Feedzai’s software in the real world.

Petstore To benchmark PetStore, each service was deployed

as a Docker container on a single, powerful machine that has the

following specifications: Intel Xeon CPU E5-2680 v3 CPU (16 cores

@ 2.50GHz), 64GB RAM and a 500GB 7200RPM HDD, running

CentOS 7 (7-4.1708.el7)

To monitor the resource usage per-container, we also ran a dock-

erized monitoring infrastructure based on Prometheus
8
, Cadvisor

9
,

Grafana
10

and Node Exporter
11

.

5.7.2 Performance evaluation results and analysis.
Petstore The performance test results indicated that the change in

request latency when instrumenting Petstore with either Melange

or OpenTracing was very small.

This not to say that there was no increase, in fact, Figure 5 shows

that the median request was 0.4% slower with Melange and 15%

faster with OpenTracing, while the 99th percentile data reveals the

opposite, with Melange adding a 0.24% overhead and OpenTracing

showing a 29.6% increase in latency. It is clear that our work cannot

consistently outperform OpenTracing (as Melange is built on top

of it), and that it is impossible for either framework to outperform

7
https://locust.io/

8
https://prometheus.io/

9
https://github.com/google/cadvisor

10
Grafana

11
https://github.com/prometheus/node_exporter

Percentile None Melange Op’Tracing

50.000 372.1 372.5 365.5

99.000 663.5 665.0 693.8

99.900 759.5 1191.6 1277.7

99.990 1315.6 1353.7 1379.2

99.999 1398.0 1459.4 1448.8

Table 5: Latency distribution of Petstore

Metric None Melange Op’Tracing

Tput (t/s) 557.0 557.7 555.6

Max (ms) 1538.1 1619.3 1522.7

Disk (GB) – 5.6 5.4

Table 6: Additional metrics for Petstore

Figure 2: CPU Usage of Petstore

Figure 3: Memory Usage of Petstore

Figure 4: Net Input of Petstore

Figure 5: Net Output of Petstore

tracing-less executions. This indicates that the results displayed

were affected by experimental noise. While we are not discarding

the clear overhead introduced by either tracing framework starting

at the 99.9th percentile, it becomes difficult to differentiate between

true overhead and noise. Running the same benchmark multiple

times returned different, but equally inconsistent results, with nei-

ther framework coming out on top, which is indicative of limited

overhead as there is not a consistent gap in performance between

7

Melange, OpenTracing or neither. It is also worth mentioning that

both tracers were configured to sample every request, which adds to

the overhead but would rarely happen in production environments.

The monitoring data, unlike the performance metrics, shows

a clear overhead when tracing with Melange, compared to Open-

Tracing. Figure 2 shows an 11% increase in CPU Usage, which we

attribute to the additional span processing performed by our frame-

work (detailed in the previous chapter). Melange uses 20% more

memory than OpenTracing (shown in Figure 3) as our framework

holds data in memory for cross-thread trace reconstruction. While

this number may seem high, Melange’s in-memory cache configu-

ration was very conservative, and we hypothesize that the memory

usage could be decreased with a more aggressive maximum size

and expiration policy.

Feedzai Streaming Engine. In a latency sensitive application

like Feedzai’s Streaming Engine (FSE), slight differences in perfor-

mance between instrumented and not instrumented runs will result

in more noticeable overhead.

Unlike the previous projects, Table 7 shows that there is a clear

overhead when tracing with Melange, as the median increases by

22% when sampling every request. While high, this overhead is

consistent with the data collected in Google’s Dapper evaluation

[18]. Reducing the sampling rate to 50% decreases the latency, but

unlike Dapper it does not decrease linearly. However, while there

is a large percentual increase, the absolute overhead is simply 1

millisecond, which makes little difference in practice, as it would

not be noticeable by the users.

Percentile None Melange Mel. (50%) OT Noop

50.000 6.8 8.3 8.1 7.6

99.000 9.8 18.1 16.7 12.1

99.900 17,5 62.8 58.3 23.6

99.990 61.5 87.2 85.1 58.2

99.999 116.7 130.2 135.8 89.5

Table 7: Latency distribution of FSE

Metric None Melange Mel. (50%)

Tput (t/s) 297.3 295.2 295.8

Max (ms) 116.7 144.4 176.7

Disk (GB) – 11 6.3

Table 8: Additional metrics for FSE
The largest overhead is found in the 99.9th percentile, as Melange

shows latencies 3.8 times higher when sampling all requests and 3.4

times higher with a 50% sample rate. On the other hand, the over-

head in the 99.999th percentile, as well as the increase in maximum

request latency are quite comparable to the median, being only

12% and 24% higher, respectively. From this data we can extract

two conclusions. First, while the overhead is large in the 99.9th

percentile, the fact that the median and 99.999th percentiles show

comparable increases indicates that the impact of our framework is

constant, making the impact less noticeable in slower workloads.

Secondly, it shows that Melange’s performance is not affected

by load spikes, making it suitable for production workloads where

establishing a hard maximum request latency is more important

than low latencies across the whole percentile spectrum, or in

performance engineering efforts.

Based on the above results we conjectured that the performance

impact could be caused by either increased GC activity, or coarse-

grained synchronization in Melange’s caches. To test the first hy-

pothesis, we first tested the system after setting the sampling rate to

0 to understand what is OpenTracing’s contribution to GC activity

and afterwards we experimented with more aggressive expiration

policies for Melange’s internal caches. To properly evaluate how

the in-memory caches were affecting performance, we devised two

additional tests. The first took advantage of a configuration prop-

erty of the Guava Cache that allows the user to set the expected

number of threads accessing the cache concurrently, which we

set to 32 (the number of cores in the test machine). The second

test involved replacing the caches by a HashMap with absolutely

no thread synchronization (clearing the Hashmap when its size is

larger than 50 entries).

Although setting Melange’s sampling rate to 0 reduced the num-

ber of GC pauses that occurred during the test to a number closer

to a tracing-less execution, none of the tests had any meaningful

effect on the latencies in the most affected percentiles. Once the

impact of GC and thread synchronization was disregarded, it be-

came obvious that the overhead was being caused by the additional

instrumentation code introduced by Melange and OpenTracing.

While this is a straightforward conclusion, our experience with the

two micro-services projects, as well as our analysis of the source-

code for Jaeger’s OpenTracing implementation pointed towards

different sources, as the overhead seemed too large to be caused

by the additional instrumentation. To confirm this we executed

yet another test, in which we replace Jaeger’s OpenTracing imple-

mentation by a no-op implementation of the API. After this test

we were finally able to clarify whether the bulk of the impact was

being caused by Melange or OpenTracing.

Replacing the OpenTracing code with a No-Op implementation

showed significant latency changes in the 99.9th percentile, reduc-

ing the overhead from 270% to 30%. Obviously this is not useful

in practice as it means that the system is not collecting any traces,

but it shows that Melange has minimal effect on OpenTracing’s

performance, confirming what was theorized while discussing the

Petstore and Sock-Shop tests. After further investigation we dis-

covered that the sampling rate in Jaeger’s OpenTracing implemen-

tation has little impact on the system’s performance as sampling a

request simply means that it is not propagated to the agent but the

instrumentation code is executed regardless.

Finally, when analyzing the monitoring data, we see that the

Streaming Engine shows 20% increase in CPU Usage when using

Melange, even when sampling only 50% of the requests, as shown

in Figure 6. This increase was expected as it is the combined impact

of Melange’s trace-reconstruction functionality, and OpenTracing’s

span generation and forwarding. Like in the two micro-service

projects, the memory usage (depicted in Figure 7) is also larger,

due to Melange’s in-memory caches used for cross-thread tracing.

Interestingly, when plotting the monitoring data for a single con-

tainer, the Network Output graph in Figure 8 clearly shows the

periodic propagation of batched spans, sent from the instrumen-

tation code to the Jaeger Agent. As expected the Network Input

remains the same due to each test having the same workload, as

shown in Figure 8.

5.8 Final Remarks
After analyzing the evaluation data it becomes clear that Melange

outperforms OpenTracing in both functionality and code modifi-

cation metrics. The execution performance of both frameworks

is also comparable, with neither showing a clear advantage over

the other. However, without further performance improvement,

Jaeger’s OpenTracing implementation (and consequently Melange)

is currently not suited for latency-sensitive systems in production

environments that require extremely low latencies across the board.

This result could, however, be improved by adding a more thor-

ough sampler to Melange instead of relying on the one provided

by OpenTracing.

Both frameworks can, on the other hand, be used to trace systems

where consistent and spike-tolerant performance is more important

than extremely low latencies in the lower percentiles. Additionaly,

each framework can also be used for performance engineering, and

in this regard Melange is superior as its small source-code footprint

makes it advantageous for non production-critical uses.

8

Figure 6: CPU Usage of FSE

Figure 7: Memory Usage of FSE

Figure 8: Net Input of FSE

Figure 9: Net Output of FSE

6 MELANGE IN PRACTICE
As we benchmarked Feedzai’s products the first objective was to

establish a tracing-less baseline that could validate future perfor-

mance results. This seemed simple at first, but the initial results

quickly showed otherwise, as we were struck with latencies in the

order of several seconds for the 99.9th percentile and an extremely

low throughput. Naturally, these results were not expected, and af-

ter multiple tests with similar outcomes we enabled tracing through

Melange’s LazyConfigurationTracer. Analyzing the traces uncovered

several issues that were impacting performance and had to be fixed

in order to obtain the results presented in the previous section.

Below we will present some examples.

6.1 Garbage Collection in Alert Monitor
When a request is processed by the Streaming Engine it is sent to a

RabbitMQ queue that eventually leads to the Alert Monitor (AM)

where analysts can manually approve transactions. At the time, the

queue was quickly becoming full as the Alert Monitor was not able

to deplete the queue at a fast enough rate, which in turn increased

the backpressure when FSE was inserting.

Figure 10: Requests queued in AM

The traces revealed that the requests that had been pulled from

the queue spent most of their time in an unbounded in-memory

queue in AM, as illustrated in Figure 10. After reviewing the config-

uration we realized that the process was being initiated with only

2GB of memory, which is extremely low. The constant GC pauses

were preventing AM from draining the in-memory queue, which

consequently increased the amount of memory even further.

Increasing the amount of memory available solved the problem

and raised the overall throughput of the system.

6.2 Unnecessary Database Fetches
After studying the monitoring data, we were surprised by the

amount of CPU being used by one of the databases – even more

than the Streaming Engine. Auditing the streaming pipeline showed

nothing that could cause an increase of such magnitude. After in-

vestigating multiple traces we noticed that every execution of the

input service (the module tasked with input validation and request-

ing tokenization) was lasting as much time as the entire streaming

pipeline (depicted in Figure 11).

Figure 11: Long spans in FSE

After reviewing the configurations, we discovered that the bench-

marking environment was configured to execute multiple data-

fetches that were not needed, as the type of request used for the

tests did not require the fetched data.

By disabling the unnecessary database accesses we were able

to reduce the request latency even further and vastly diminish the

CPU usage of the database.

7 CONCLUSION
This document introduced Melange, a new distributed tracing in-

strumentation framework that builds upon the current standard –

OpenTracing. Melange was designed to maintain the same func-

tionality as OpenTracing, under a much more concise API, and in-

troduce new instrumentation techniques that allow it to efficiently

trace highly asynchronous and heterogeneous systems. In parallel,

we described the use of Aspect-Oriented Programming to instru-

ment black-box drivers improving Melange’s black-box tracing

capabilities, by combining client-side traces with monitoring data.

Melange was tested and evaluated in three different systems: two

reference micro-service applications, and one real-world highly-

performant and latency-sensitive system at Feedzai. It showed great

results in source-code modification metrics when compared to

9

OpenTracing, as well as similar performance. The tests proved

that Melange is perfectly suited for instrumenting production-level

micro-services based systems. Our work also showed promising

yet lacking results in Feedzai’s tests, requiring further work be-

fore being deployed in most latency-sensitive production environ-

ments. At the same time, performance engineering and root-cause

analysis becomes much simpler in tracing-enabled systems and

while Melange is at too early a stage to make this impact visible in

Feedzai’s production environments, reviewing the execution logs

of previous benchmarking and performance engineering efforts for

Feedzai’s clients, uncovered several instances of exploratory tests

(analyzing the performance impact of enabling/disabling certain

parts of the streaming pipeline, etc.) that would not be necessary if

the application were tracing-enabled.

8 FUTUREWORK
While our work is a good first step into the combination of moni-

toring and tracing data in heterogeneous distributed systems, there

is still a clear distinction between the monitoring and tracing work-

flows. The end-goal of this effort is to provide a unified tracing

and monitoring view that can show, in the same window, the re-

sources used to execute the portion of code represented by any

given span. On a more immediate note, Melange requires additional

performance engineering efforts to reduce its overhead to a level

that could be confortably accepted by Feedzai, and other projects

with similar latency requirements. Possible solutions to offset this

overhead could be to implement a request sampler that does not

rely on Jaeger’s OpenTracing implementation, or to experiment

with other tracing backends such as Zipkin that could have a more

performant implementation of the OpenTracing standard. The AOP

based approach imposes some requirements on the products that

could be instrumented, mainly that the information that developers

want to collect needs to be accessible in the caller thread as the

meta-data could not be associated to a specific span if there are con-

text switches. During the development of Melange, we discussed

the possibility of solving this uncertainty problem by introducing

a supervised machine-learning algorithm, that could analyze pre-

existing correct traces and suggest the trace that corresponds to an

"orphan" piece of meta-data extracted from a black-box.

9 RELATEDWORK
Most of the works in the distributed tracing literature can be de-

scribed by the design choices made to implement each of the fol-

lowing four layers:

Data Extraction Layer
Concerned with the techniques used to extract tracing data

from running systems. Some works use Static Instrumen-
tation [9, 13, 18] by modifying their code to extract or prop-

agate tracing meta-data. Others are able to specify new trace-

points during runtime throughDynamic Instrumentation
[8, 14]. Other works choose Passive Data Collection tech-

niques like message capturing [1, 2] or log processing [5] so

as to not modify the traced systems.

Model Layer
This layer describes models used to aggregate the output

of multiple discrete tracepoints into higher level constructs

that structure and simplify the analysis of full traces. Tracing

systems mostly describe their traces as span trees [18] (sim-

pler but less expressive) or event-based directed acyclic
graphs [9, 13] (expressive but harder to implement and ana-

lyze).

Trace Collection Layer
Encompasses techniques for data collection and propagation,

and strategies to minimize the performance impact of each.

Existing works propagate tracing meta-data either in-band
[12, 14] (less disk usage, but greater toll on the network)

or out-of-band [3, 4, 9, 13, 18] (little network impact, but

I/O intensive). To improve performance in-band propagation

systems mostly use immediate aggregation [12, 14] to re-

duce the size of the messages, while out-of-band systems

choose sampling [9, 11, 13, 18] to limit the I/O impact.

Analysis Layer
After traces are collected it is important to have strong anal-

ysis tools to extract knowledge from the information. Some

works implement manual techniques like query engines
[6, 14] or visualization tools [7, 17] to help the user under-

stand the traces, while others leverage the user’s existing

knowledge for automated tools to perform fault detec-
tion[3, 4] and root cause analysis[16, 19, 21].

REFERENCES
[1] Aguilera, M. K., Mogul, J. C., Wiener, J. L., Reynolds, P., and Muthi-

tacharoen, A. Performance Debugging for Distributed Systems of Black Boxes.

In Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles
(Bolton Landing, NY, USA, 2003), SOSP ’03, ACM, pp. 74–89.

[2] Barham, P., Donnelly, A., Isaacs, R., and Mortier, R. Using Magpie for

Request Extraction and Workload Modelling. In Proceedings of the 6th Conference
on Symposium on Opearting Systems Design & Implementation - Volume 6 (San

Francisco, CA, 2004), OSDI’04, USENIX Association, pp. 18–18.

[3] Chen, M., Kiciman, E., Fratkin, E., Fox, A., and Brewer, E. Pinpoint: problem

determination in large, dynamic Internet services. In Proceedings International
Conference on Dependable Systems and Networks (Washington, DC, USA, 2002),

IEEE Comput. Soc, pp. 595–604.

[4] Chen, M. Y., Accardi, A., Kiciman, E., Lloyd, J., Patterson, D., Fox, A., and

Brewer, E. Path-based Faliure and Evolution Management. In Proceedings of the
1st Conference on Symposium on Networked Systems Design and Implementation -
Volume 1 (San Francisco, California, 2004), NSDI’04, USENIX Association, pp. 23–

23. bibtex[numpages=1;acmid=1251198].

[5] Chow, M., Meisner, D., Flinn, J., Peek, D., and Wenisch, T. F. The Mystery

Machine: End-to-end Performance Analysis of Large-scale Internet Services. In

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI
14) (Broomfield, CO, 2014), USENIX Association, pp. 217–231.

[6] Chun, B.-G., Chen, K., Lee, G., Katz, R. H., and Shenker, S. D3: Declarative

Distributed Debugging. Tech. rep., University of California at Berkeley.

[7] Consens, M. P., and Mendelzon, A. O. Hy+: A Hygraph-based Query and

Visualization System. In SIGMOD Conference (1993).

[8] Erlingsson, Ã., Peinado, M., Peter, S., Budiu, M., and Mainar-Ruiz, G. Fay:

Extensible Distributed Tracing from Kernels to Clusters. ACM Transactions on
Computer Systems 30, 4 (Nov. 2012), 1–35.

[9] Fonseca, R., Porter, G., Katz, R. H., and Shenker, S. X-Trace: A Pervasive

Network Tracing Framework. In 4th USENIX Symposium on Networked Systems
Design & Implementation (NSDI 07) (Cambridge, MA, 2007), USENIX Association.

[10] Lamport, L. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM 21, 7 (July 1978), 558–565.

[11] Liu, H., Zhang, J., Shan, H., Li, M., Chen, Y., He, X., and Li, X. JCallGraph: Trac-

ing Microservices in Very Large Scale Container Cloud Platforms. In Cloud Com-
puting âĂŞ CLOUD 2019, D. Da Silva, Q. Wang, and L.-J. Zhang, Eds., vol. 11513.

Springer International Publishing, Cham, 2019, pp. 287–302.

[12] Mace, J., Bodik, P., Fonseca, R., and Musuvathi, M. Retro: Targeted Resource

Management in Multi-tenant Distributed Systems. In 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15) (Oakland, CA, 2015),

USENIX Association, pp. 589–603.

[13] Mace, J., and Kaldor, J. Canopy: An End-to-End Performance Tracing And

Analysis System.

[14] Mace, J., Roelke, R., and Fonseca, R. Pivot Tracing: Dynamic Causal Monitoring

for Distributed Systems. In 2016 USENIX Annual Technical Conference (USENIX
ATC 16) (Denver, CO, 2016), USENIX Association.

[15] Martin, R. C. Design Principles and Design Patterns. 16.

[16] Mirgorodskiy, A. V., and Miller, B. P. Diagnosing Distributed Systems with

Self-propelled Instrumentation. In Middleware 2008, V. Issarny and R. Schantz,

Eds., vol. 5346. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 82–103.

[17] Reynolds, P., Edwin Killian, C., L. Wiener, J., Mogul, J., A. Shah, M., and

Vahdat, A. Pip: Detecting the Unexpected in Distributed Systems. Symposium

on Networked Systems Design and Implementation.

[18] Sigelman, B. H., Barroso, L. A., Burrows, M., Stephenson, P., Plakal, M.,

Beaver, D., Jaspan, S., and Shanbhag, C. Dapper, a Large-Scale Distributed

Systems Tracing Infrastructure.

[19] Whittaker, M., Teodoropol, C., Alvaro, P., and Hellerstein, J. M. Debugging

Distributed Systems with Why-Across-Time Provenance. In Proceedings of the
ACM Symposium on Cloud Computing - SoCC ’18 (Carlsbad, CA, USA, 2018), ACM

Press, pp. 333–346.

[20] Wright, P. What Etsy Learned Building a Distributed Tracing System. In Surge:
The Scalability & Performance Conference (2014).

[21] Yuan, C., Lao, N., Wen, J.-R., Li, J., Zhang, Z., Wang, Y.-M., and Ma, W.-Y.

Automated known problem diagnosis with event traces. ACM SIGOPS Operating
Systems Review 40, 4 (Oct. 2006), 375.

[22] Zhonghua Yang, and Marsland, T. Global snapshots for distributed debug-

ging. In Proceedings ICCI ‘92: Fourth International Conference on Computing and
Information (Toronto, Ont., Canada, 1992), IEEE Comput. Soc. Press, pp. 436–440.

10

	Abstract
	1 Introduction
	1.1 Shortcomings in Distributed Tracing
	1.2 Proposed Solution and Contributions

	2 Melange
	2.1 BaseTracing API
	2.2 TracingWithId API
	2.3 TracingWithContext API
	2.4 Open API Extension
	2.5 Black Box instrumentation

	3 Implementation
	3.1 TracingWithId API Implementation
	3.2 TracingWithContext API Implementation
	3.3 Tracing-Util

	4 Evaluation
	5 Qualitative Evaluation
	5.1 Simplifying Instrumentation Code
	5.2 Tracing Asynchronous Executions
	5.3 Leveraging Black-Box Data
	5.4 Quantitative evaluation
	5.5 Feedzai's Use Case
	5.6 Code Evaluation
	5.7 Performance
	5.8 Final Remarks

	6 Melange in Practice
	6.1 Garbage Collection in Alert Monitor
	6.2 Unnecessary Database Fetches

	7 Conclusion
	8 Future Work
	9 Related Work
	References

