
Social Networks for Cycle-Sharing
Nuno Apolónia
INESC-ID / IST

Rua Alves Redol No 9, 1000-029 Lisboa, Portugal
nuno.apolonia@ist.utl.pt

Supervisor: Prof. Luı́s Veiga Co-supervisor: Prof. Paulo Ferreira

Abstract—The growth of the Internet, and consequently the
number of interconnected computers is the basis for the global
distributed computing and public-resource sharing. Meaning
that, these resources have been used for computation intensive
projects that could not be completed in a short time frame,
sometimes not even in supercomputers which are not widely
available.

Furthermore, the Internet is overwhelmed by social connec-
tivity. Internet users make use of Social networks to interact and
share information, knowledge and services with each other.

This paper presents an overview of Peer-to-Peer networks
and Grids, to understand their advantages and problems. So
that, we can grasp the fundamental ideas that sprout the global
distributed computing and the problem of locating resources and
services efficiently.

We also analyze Social networks and social interactions to
understand how they can be explored for other uses rather than
what they were initially created for.

In the last sections we explain the development and resulting
evaluation of a web-enabled platform, called Social Networks for
Cycle-Sharing (SNCS), that uses Social networks as a starting
point for resource and service discovery and integrating it with
the Ginger Middleware for distributed computing of tasks.

Also, to conclude that using a Social network for public-
resource sharing can give common users the possibility of
releasing resources for other programs usage.

Index Terms—Social networks, resource discovery, distributed
systems, Peer-to-Peer, Grids, public-resource sharing, global dis-
tributed computing.

I. INTRODUCTION

The computing power has significantly increased in the past
few years (more or less like Moore’s Law [18]), but there
are still many computational problems that need an enormous
amount of computing resources, e.g. applications for scientific
research, financial risk analysis or multimedia video or image
rendering and encoding. These resources are composed by
computing elements like CPU, memory or data storage and
all of them can be found on every house hold or in offices
and even in our daily devices, such as notebooks or mobile
phones.

With the Internet, the available resources for projects such
as Seti@Home [4], Folding@Home1, Distributed.net2 were
extended, by gathering the gigantic potential of using millions

This paper is an extended version of N. Apolónia, P. Ferreira and L. Veiga.
Social Networks for Cycle-Sharing. Proceedings of 10th Conferência sobre
Redes de Computadores, Braga, Portugal, 11 e 12 de Novembro de 2010.

1Folding@Home Website: http://folding.stanford.edu on 05/01/2010
2Distributed.net Web site: http://www.distributed.net on 05/01/2010

of desktop computers from as many house holds as possible
(also known as global distributed computing), allowing them
to process their data much quicker than in traditional super-
computers.

The Internet also enabled information and content shar-
ing by using Peer-to-Peer (P2P) networks. Which can be
categorized in terms of their topology as being structured
or unstructured. Unstructured systems are characterized by
having a underlying topology unrelated with the placement
of the contents, as opposed to Structured systems where
it is attempted to place the contents in specific locations.
Furthermore, Hybrid systems are optimizations to leverage the
performance for locating contents and networks’ scalability (in
terms of traffic load). They highlight two types of users, the
users that have more bandwidth are called super-peers and
those with low bandwidths are called peers and the last ones
are connected to the super-peers [21].

These networks have some challenges, such as efficient
resource discovery. That is, when a peer needs a resource it
will have to ask other peers for it. Some approaches try to
minimize the message traffic that can be generated, either by
contacting fewer peers (when information is spread to others)
or by creating central nodes that have all or partial information
for locating the exact content.

Moreover, the Internet has made it possible to exchange
information more rapidly on a global scale. One of the natural
steps was the creation of Social networks where anyone in the
world can share their experiences and information using only
their Internet enabled personal computer or mobile device3.
Under this scope there are many Social networks such as
Facebook4, Orkut5 or Youtube6 each one exporting their own
APIs to interact with their users and groups databases, e.g.
Facebook API7 and OpenSocial.8 Moreover, these networks
have great potential for financial benefits, such as Advertising.

Studies done on these networks show that they follow some
properties like the Small-World property, meaning that there
is a small group of users with high connectivity to others
and a much larger group with low connectivity. Besides that,
even the highly connected users only interact (on a daily

3Facebook Mobile: http://www.facebook.com/mobile on 19/08/2010
4Facebook Website: http://www.facebook.com on 05/01/2010
5Orkut Website: http://www.orkut.com on 05/01/2010
6Youtube Website: http://www.youtube.com on 05/01/2010
7Facebook Developers:http://developers.facebook.com on 05/01/2010
8OpenSocial: http://code.google.com/apis/opensocial on 05/01/2010



basis) with a restrict group of users [24]. Considering that
these networks could be regarded as enabling peer-to-peer
information sharing (albeit mediated by a centrally controlled
infrastructure), employing them for cycle-sharing should be
a great improvement for global distributed computing, by
allowing public-resource sharing among trusted users and
within communities.

The Ginger project [23] serves as a middleware for de-
ploying distributed processing using a P2P network for work
dissemination (Gridlets) within its peers. The main idea behind
the Ginger project is that any user may need processing time
for common applications to be executed.

This paper explains the development and resulting evalu-
ation of a web-enabled platform, called Social Networks for
Cycle-Sharing (SNCS), that interacts with a Social network
(Facebook), for resource and service discovery and Gridlet
dissemination, while using the Ginger Middleware for Gridlet
creation and aggregation.

The rest of this paper is organized as follows. In the next
section we will present some relevant related work. Section 3
is dedicated to present the architecture of the SNCS client. In
Section 4, we will address some of the implementation issues.
Section 5 presents the results obtained in the evaluation, and
finish the paper with conclusions and future work.

II. RELATED WORK

A. Peer-to-Peer networks and Grids
Peer-to-Peer (P2P) networks and Grids are the most com-

mon types of sharing systems, yet they evolved from different
communities to serve different purposes [21].

Grid systems interconnect clusters of (super)computers and
storage systems. Also, they can be dynamic and may vary in
time. Grids were created by the scientific community to run
computation intensive applications that would take too much
time in normal desktops (without being distributed), or on a
single cluster, e.g. large scale simulations or data analysis.

P2P networks are typically made from house hold desktop
computers or common mobile devices, being extremely dy-
namic in terms of resource types and whose membership can
also vary in time with more volatility than in Grids. These
networks are normally used for sharing files, although there
are a number of projects using those kinds of networks for
other purposes, such as sharing information and streaming
(e.g. distributing tasks as Seti@Home [4], data streaming for
watching TV).9

These two distributed systems have different resources,
which may indicate a different level of computing power of the
nodes comprising each one. However, it is easier to leverage
more desktop computers than to have large supercomputers
at our disposal. This can make P2P systems aggregate more
computing power than the Grid systems.

Resource discovery in P2P networks: The term resource
is used to include hardware, software, licenses, Grid services,
and others alike [10].

9PPStream: http://www.ppstream.com/ on 05/01/2010

Distributed computing raises the problem of finding re-
sources for given tasks, and P2P file sharing systems have
always been dealing with such problems [13]. Since there is
a lack of a central administration in P2P networks, the search
for files may have to include all its peers and has to be redone
every time any node requests a resource. This happens because
those resources might be different among peers and may not
be available indefinitely or always in the same location.

Flooding [16] is one of the earliest techniques used re-
garding resource discovery and to overcome problems of
excessive traffic, alternatives include other blind methods such
as Random walks and multiple random walks [22], hybrid
methods that combine flooding with random walks such as
direct searches [11] and forwarding indices [8].

With Structured P2P systems, the attempt to always control
where the contents should be, lead to explore the alternative
of using DHTs [12]. However, this approach can only operate
when the resources are well known. Some other approaches
to resource discovery have contemplated the solutions of
integrating the idea of using a Social network within a Grid
[9], to better guide the queries to the right resources.

B. Distributed Computing Projects
The subject of distributed computing has been previously

addressed by several projects. And the first relevant were
distributed.net10 and GIMPS.11

Distributed.net uses computers from all around the world to
do brute-force decryption of RSA keys, and attempt to solve
other large scale problems.

The GIMPS project uses the same concept of distributed
computing to search for Mersenne prime numbers, these num-
bers are of the form 2P − 1 where P is a prime. Both projects
use their own Client and Server applications, following the
same idea as the BOINC projects [3].

There are many other projects for distributed computing.12

Although all of them have only one research topic (for each
project), meaning that each system does not have the flexibility
of changing its own topic of research. This has been addressed
in nuBoinc [20].

SETI@Home System: Some work in the area of global
distributed computing (the use of home and office computers
for distributed computing) has been already addressed. As we
can see in projects like SETI@Home [4], where they use these
kind of resources to analyze radio wave signals that come
from outer space. For this project, having more computing
power means they could cover a greater range of frequencies
to process.

The wave signals were divided in small units of fixed sized,
to be able to distribute among the BOINC clients (that would
be located in all the users’ computers), then the client would
compute the results in their idle time and send it to the central
server asking for more work to do. In this system the clients

10Distributed.Net: http://www.distributed.net on 05/01/2010
11GIMPS: http://www.mersenne.org on 05/01/2010
12List of Distributed Computing Projects: http://en.wikipedia.org/wiki/List

of distributed computing projects on 05/01/2010



would only need to be able to communicate with the server
when they finished the computations (or for asking more data).

Moreover, users had a ranking system to compete against
other users, to motivate them to use this system. Thus, adding
that the most important lesson of SETI@Home project was
that to attract and keep users, such projects should explain
and justify their goals, research subject and its impact.

Grid Infrastructure for Non-Grid Environments (Gin-
ger) middleware: The main concept of the Ginger project
[17], [19], [23] is that any home user may take advantage of
idle cycles from other computers, much like SETI@Home.
Donating idle cycles to other users to speedup other users’
applications and by doing so, they would also take advantage
of idle cycles from other computers, to speedup the execution
for their own applications. To leverage the process of sharing,
Ginger introduces a novel application and programming model
that is based on the Gridlet concept.

Gridlets are work units containing chunks of data and the
operations to be performed on that data. Moreover, every
Gridlet has an estimated cost (CPU and bandwidth) so that
they can try to be fair for every user that executes these
Gridlets. By these means, the resources globally would always
be occupied taking advantage of all idle resources, and giving
home users the opportunity of executing their own tasks with
acceptable performance.

C. Analysis on Social networks
Studies of Social networks such as [1], [14], [24] focus their

attention into how users and groups interact with each other
in the course of time and to quantify it so we can learn how
these networks evolve in time.

These studies have reinforced the idea that those networks
follow a power-law graph and that there are more users with
few links than users with many (Small-world property). A
user having many links (to other users), which can be in
the thousands, does not mean that he/she will interact with
everyone most of the time, these interactions are confined to
a small group of users from all of those that the user is linked
to. It is also assumed that users tend to have more links to
others, rather than the ones they frequently interact with.

Small-world networks can be categorized by the possibility
of connecting any two vertices in the network through just a
few links [2]. Furthermore, growing networks can be hindered
by two factors: Aging of the vertices and Cost of adding links
to the vertices or the limited capacity of a vertex.

Many Social networks also have ways of connecting users,
without being linked as friends, these connections are called
groups, where knowledge is exchanged within a specific topic
of interest. The creation for such groups and their evolution
over time is inherent by people’s tendencies of coming to-
gether to share knowledge of a particular theme [6].

Facebook and OpenSocial: There are many Social net-
works in the Internet.13 The focus on Facebook and OpenSo-
cial based networks is explained by having access to the

13List of Social Networks: http://en.wikipedia.org/wiki/List of social
networking websites on 05/01/2010

databases, by means of the APIs they export. Moreover,
Facebook claims to have 500.000.000 (as of July 21 of 2010)
users and MySpace claiming to have more than 130.000.000
registered users. Which makes them well known within the
common users. Also, the potential of these networks for global
distributed computing is untapped compared to other networks.

Furthermore, the Facebook API14 and OpenSocial API15

enables Web applications to interact with the server using
a REST-like interface16 or in case of Facebook a Graph
interface.17 This means that the calls from the applications
are made over the Internet by sending HTTP GET and POST
requests and using XML or JSON messages.

An example of a Facebook application is Progress Thru
Processors,18 where the application shares the users’ contribu-
tions to a BOINC system, with their friends through Facebook.

Social Cloud: Cloud computing [5] derives from
resource-sharing environments, and work with the intent of
bringing those environments to Internet users. Also, it was
created a relation between the resources given and received,
meaning that in order to acquire resources a user can buy, sell
or exchange them in “marketplaces”, which provide lists of
resources to be used (according to a virtual transaction) by
any user.

Social Cloud [7] is introduced as being a model that
integrates social networking, cloud computing and “volunteer
computing”.

They also refer that it is a scalable computing model, where
users’ resources are dynamically provisioned amongst a group
of friends. Also, adding that the model is similar to a Volunteer
computing approach, where friends share resources amongst
each other for little to no gain.

Their idea is that users can gather resources from their
friends (either by virtual compensation, payment, or with
a reciprocal credit model [15]), which makes this model
approaching the public-resource sharing objectives.

Furthermore, they state that there are a number of advan-
tages gained by leveraging Social networking platforms, such
as gaining access to a huge user community, and rely on pre-
established trust formed through user relationships. However,
the trusting relationship of friends, may not be always the case
in Social networks such as Facebook.

III. ARCHITECTURE

This work proposes to use Facebook, to be able to locate
resources for the execution of Jobs (which are composed of
Gridlets) submitted by the users. Also, to discover computers’
informations and users’ profiles, such as the groups which they
belong to and their friends.

14Facebook dev. Wiki: http://wiki.developers.facebook.com/index.php/
Main Page on 05/01/2010

15OpenSocial Specs: http://www.opensocial.org/specs on 05/01/2010
16ReST: http://www.ics.uci.edu/∼fielding/pubs/dissertation/rest arch style.

htm on 05/01/2010
17OpenGraph Protocol: http://opengraphprotocol.org on 23/08/2010
18Progress Thru Processors: http://www.facebook.com/

progressthruprocessors on 05/01/2010



Fig. 1. SNCS architectural view

The SNCS platform is able to interact with the Social
network server, meaning that it intercepts/sends messages
from/to other users or groups, while also discovering users’
computer profiles by contacting the Graph server.19 It also
gives the user the ability to initiate a Job, by using the client
application’ user interface.

To actually locate resources through the Social network,
SNCS has the ability of searching the local resources, such
as processors status, memory available, number of processors,
processors frequency. And such information is sent to other
users upon request, or it can also be sent to the users’ Wall,
in order for everyone (that has the ability to see the Wall) to
retrieve it. Also, this information may contain the programs
that can be executed by the computer to process the Gridlets,
it is a configuration parameter that the user can deal with.

SNCS advertises users’ availability to others, sending mes-
sages and scheduling tasks (i.e. search for informations, Gri-
dlet acceptance) on other users (Friends, Friends of Friends,
Groups) in order to execute the tasks when users can spare
their idle cycles.

SNCS starts listening for requests that can appear on the
users’ Wall, friends’ Wall or Registration post on the Appli-
cations’ Wall. As Facebook does not allow people to interact
with each other without being friends, the latter option was
added to circumvent this inability, making it possible to gather
resources from people outside the friends’ domain.

SNCS Architecture: The SNCS architecture (depicted in
Fig.1) relies on a number of SNCS components running locally
in each user’s machine that interacts with the Social network
through its API (Graph or REST protocols) for the purpose
of searching and successfully executing Jobs; with the Ginger
Middleware for Gridlet creation; and also the user’s operating
system to acquire the informations and hardware states, that
are needed.

Jobs are considered to be tasks initiated by the users,
and containing Gridlets to be processed in someone else’s

19Facebook API: http://developers.facebook.com/docs/api on 25/08/2010

computer, all Jobs should state what they require to execute
them, in order for SNCS to discover specific users or groups.

The Gridlets should contain the data file(s) to be transfered
to another user and the arguments to be given to the executable
program. The process of creating and reassembling the Gri-
dlets is managed by Ginger Middleware and is outside the
scope of this work [23].

The architecture is comprised of modules, depicted in Fig.
1. Each module has its own function as follows.

SNCS (GUI) is the main module to interact with the users,
containing the graphic interface. It is responsible for estab-
lishing the connection to Facebook, by starting the Facebook
Connect module. It also loads all the necessary information
onto SNCS, such as the configuration of priorities. Also, the
user can start a new Job submission by using the interface
presented.

Facebook Connect (Embedded browser) is the module
that serves to authenticate the user to Facebook, it displays the
web page given by Facebook for that purpose, by means of
the JDIC library.20 Afterwards, it extracts the necessary access
token for consequent access to the Facebook server. This token
is given by Facebook to everyone that accepts this Facebook
application, and has to be renewed within a determined time
frame.

Messaging is the main module for interacting with the
Social network. It makes use of the RestFb library,21 that
creates the JSON22 or XML objects, which are required to
access Facebook Graph/REST functions. This module also
contains the options necessary to read and write to the
users/groups/Application Wall Posts or Comments and remov-
ing them as well. Furthermore, some Facebook restrictions
may apply to it, such as limiting the size of the messages. This
module also contains the Schemas applied to the messages sent
and retrieved, to specify what actions should be taken.

Jobs Manager is the module that runs a continuous “check-
ing” cycle, which verifies submitted Jobs that the user has in
progress; checks for new Jobs from the users’ Wall, groups’
Wall or Registration Post that can be processed on the users’
machine; verifies Gridlets that have been sent to the user
after accepting a Job; checks for submitted Jobs or Gridlet
completion; checks for messages that SNCS needs to redirect
to its friends; checks for messages that have been redirected to
the user, so that it can answer them on the Registration Post.
Moreover, this module hands the acquired Gridlets over to the
scheduler module for later execution.

Discovery this module serves as an addition to the previous.
Meaning that it searches for friends and groups, in order to
reach as many people as possible, to complete a Job. It sends
messages to friends in order for them to redirect those to their
own friends (FoF method), while also sending messages to
groups of interest for that specific Job. It is also responsible
for registering the user in the Applications’ Wall.

20JDIC: https://jdic.dev.java.net/ on 13/09/2010
21RestFb: http://restfb.com on 13/09/2010
22JSON: http://www.json.org on 13/09/2010



Fig. 2. Scenario 6 View

User/HW States this module takes in consideration the
processors’ idle times, the Internet connectivity and the users
Facebook state, to yield all the modules until a later time,
when the processor has idle cycles to spare. Also, it sends the
state of the user’s machine (Online, Offline, Idle) to the Social
network, which can be retrieved by other users. This module
uses a submodule, that is comprised of the SIGAR library,23

that reports the system information needed to determine the
availability of the resources.

Scheduler this module is an addition to the Gridlet pro-
cessing, making use of the priority lists, while also stopping
the process when the computer does not have idle cycles. The
priority lists consists of friends and other people added by
the user, in order for SNCS to use the idle cycles on Gridlets
belonging to the people with the highest priorities. The module
starts a submodule that is responsible for processing the
Gridlet, it transfers the necessary data file(s) between the client
applications, and upon completion it informs the originator the
Gridlet state.

Discovery Mechanism: The discovery mechanism
searches for people that have the capability to do the work, by
either retrieving their computers’ information or by requesting
it, via messaging on top of Facebook. Furthermore, it verifies
if there are any users capable of accepting a Job on the
users’ Group list in the same manner. To cover as much work
as possible, SNCS also searches among its friends’ Walls
if they have any Jobs that can be fulfilled. The information
gathered contains a list of resources and properties of the
users’ computers, such as number of processors, processors
clock speed, total memory, list of user defined programs.

SNCS attempts to match the needs of a Job to the in-
formation gathered, although it is out of the scope of this
work, the matching of the information should not constrain
the execution or acceptance of a Job, meaning that a semantics
should be taken into account in order to approximately match
these properties to what is required [19].

User Interface: SNCS was designed to provide a simple
Graphical User Interface (GUI), in order for any user to utilize
it without much burden. In order for SNCS to function cor-
rectly, a user needs to have an account on Facebook, and Log
in into it via the client application. While on the background

23Sigar Library: http://www.hyperic.com/products/sigar on 13/09/2010

Fig. 3. Scenario 7 View

it gets the access token needed for future communications.
SNCS is also able to configure some of the aspects needed to
better suite the users, such as prioritize the incoming Gridlets.

After the Log in process, users have access to the main
interface, where options like creating a new Job, sending their
computers’ informations to the Social network, or even making
the client application Offline are available. For example, the
new Job interface allows a user to easily start a Job, by
inserting all the required information in the fields presented.

IV. IMPLEMENTATION DETAILS

SNCS was implemented in Java for its portability purposes,
it uses Facebook as its Social network for interactions between
users’ client applications. This Social network was chosen
because it provides access to many features, and it is well-
known within the common users.

For the purpose of interacting with the Graph and REST
servers, SNCS messaging module makes use of the RestFb
library, that gives a simple and flexible way of connecting to
the Facebook servers and conceal the use of JSON objects. The
Facebook Graph protocol gives the possibility to access any
public object, such as users, feeds (or Walls), comments, either
using their unique identifiers or by their names. However,
Facebook is still developing this technology and for that
purpose the use of the REST server is still an option.

For the communication between the SNCS clients, we use
our own message schemas (see appendix), much because
Facebook does not allow some types of message, such as plain
XML. These schemas are very simple and human readable, in
order for Facebook to allow them on their web site, and not
consider as any type of blocked messages.

SNCS Constraints: The decision of using Facebook as
the Social network, has brought some constraints due to the
limitations that it imposes, either with the Use Terms24 or their
API. In order to interact between users SNCS normally sends
messages between them by posting on their Walls, which can
not be guaranteed between users that are not friends. As such,
we use the method of redirecting messages, by sending it to
a friends’ Wall, so that they can direct the messages to the
proper Wall, meaning their friends (FoF method).

Facebook has also limited the size of the messages that
can be sent by outside applications, and the method used to

24Facebook Use Terms: http://www.facebook.com/terms.php



Fig. 4. Total time for 7 Tests in scenario 6

circumvent it was to split messages in smaller ones, making
SNCS search for all the parts of those messages.

As it has been said before the Graph protocol is still under
development, and as such reading and writing of Comments
on groups’ Walls is dealt with the REST protocol and also
their removals.

The most important constraint is that Facebook also limits
the number of requests that can be sent by the client ap-
plication each day per user. This limit can be changed by
Facebook, and is based on the affinity users show for the
Facebook application’s use of Facebook Platform through their
interactions, also “values will change over time depending
on how users interact with your application”.25 However,
we cannot consider that every Social network has the same
limits, and therefore a specialized limitation would have to be
reviewed for each case.

V. EVALUATION

The evaluation of SNCS addresses its performance, stability
and viability to the usage of a Social network. Our focus is to
know the achievement of resource and service discovery, by
recruiting as many computers as possible to execute Gridlets.
While also, integrating with the normal usage of the Social
network, meaning the amount of information sent to the
Social network should be kept minimal. Finally, SNCS should
leverage idle cycles to be used.

Our evaluation included several scenarios, where the envi-
ronment for each changes as follows. First we have only one
Gridlet between two friends, and the Gridlet processing time
is 1 or 5 mins. The consequent scenarios encompass more
than one friend, a friend of friend (FoF) and a group with
other people. The scenario 6, as depicted in Fig. 2, that we
consider in this paper is comprised of 2 friends, 2 FoF and
a group with 3 people, where one of them is a FoF, with 7
Gridlets that are processed in 5 mins each.

25Facebook Allocations: http://www.facebook.com/insights/?sk=ao
123798840981469#!/business/insights/app.php?id=123798840981469&tab=
allocations on 27/08/2010 (can only be accessed by Facebook applications’
Administrators)

Fig. 5. Total times for Scenario 7

Scenario 7, as depicted in Fig. 3, is an attempt to test
SNCS in a more realistic environment, having a more complex
network of users. Thus, we have two users who start a Job
(User 1 and 6), where User 1 has three Friends (User 2, 7
and 15), User 6 has two Friends (User 8 and 15). User 2 and
15 have each a FoF not connected to anyone else. Also, we
created a group with six people (User 1, 2, 4, 5, 6 and 7).
The layout of this network is made in a attempt to maximize
the diversity of the users’ roles, making it possible for a Job
request to reach any of the users.

In this scenario, User 1 and 6 start a Job each, that contain
8 and 7 Gridlets respectively, making a total of 15 Gridlets to
be processed by any of the users in this network. Furthermore,
the client application does not restrain itself to gather only one
Gridlet for each Job, however it only accepts a Job request per
user for each “channel” (Group, Wall, Applications’ Wall) that
the Job request appears in, i.e. User 7 can accept Jobs from
the Group it is connected to, from its friend (User 1), and
its friend (User 8), where the latter connection is of FoF to
User 6, meaning that (in this network) it could acquire four
Gridlets.

For all scenarios, we assume that the number of Gridlets
are suitable to complete the Jobs and that they would take
exactly the time spent (1 or 5 mins); that all users would
have their client application running prior to the start of the
Job; that every user can only process 1 Gridlet at a time; and
that all computers would have the capabilities of processing
the Gridlets at that time. For the purpose of simulating the
processing time, we used a timed count down program for
each of the Gridlets, that each processing client application
would have to download from a web site.

Scenario 8 was made in order to evaluate the performance
with a real program that renders images. In this scenario we
have one friend, one FoF and two users in a group (not
counting with the starter) where one of them is the friend.
The goal of this scenario is to know if SNCS can function
with a real processing program, such as Pov-Ray,26 which is
used in the tests. For each test the number of Gridlets to be

26Pov-Ray: http://www.povray.org accessed on 15/10/2010



Fig. 6. Rendering Test Times for Scenario 8

completed is four and their consuming times in the processing
computers are defined by each data file used.

Moreover, in the first test (in scenario 8) we used a
small data file, which would render a medium quality image
(1280x720 of size, with anti-aliasing at 0,3). In the second test
we used a larger data file, and with the same quality as the
previous test. In the third test, we used the previous data file,
but with properties that would render an high quality image
(3921x2767 of size, maximum anti-aliasing and quality).

The resulting times from scenario 6, as depicted in Fig.
4, gives insight to how SNCS behaves in Facebook. Meaning
that, in each test the times to complete a Job were in the order
of 11 mins. Although, in Test 1 the FoF2 did not received the
last Gridlet as it was supposed to, and in Test 4 the FoF2
crashed and recovered the last Gridlet in time to complete it.
These situations proved that the total times, can be hindered by
the fact that people are not always in a Online state and also
by giving more than one Gridlet to the same user the Job will
have higher total times. Furthermore, when comparing with
traditional processing, SNCS decreased the total processing
time by approximately 68% in time w.r.t. what it would have
consumed in the users’ computer.

In Fig. 7 is explained in detail how much time each task
takes in relation with the starting point, i.e. it can take less
than 1 min for users’ client applications to find and accept
new Jobs, and that the higher spikes are caused by the fact
that the client application only found the Gridlet some minutes
later due to its Offline state.

The results for scenario 7, as depicted in Fig. 5, brings
us closer to understand how SNCS performs in a realistic
environment. In this scenario we can see that the total times
can vary depending on factors such as number of Gridlets,
users states (Offline versus Online), number of users/groups
involved, Social network latency and use of concurrent Gri-
dlets (or Gridlet queue).

The times on this scenario are around 16 minutes to
complete both Jobs, however we can see that in Test 1 and 5
the Job initiated by User 6 was completed 5 minutes earlier
than in the other tests, this is due to the fact that the Gridlets

Fig. 7. Times of each action for each test

were evenly distributed through the available users.
The results for scenario 8 confirmed that SNCS can gain

speedups against local execution, as depicted in Fig. 6. Where
we have the total times in Test 1 around 6 minutes, Test 2
around 14 minutes and Test 3 with 81 minutes. Furthermore,
in all the tests the friend user processes 2 Gridlets, meaning
that it queues one to be processed when it has idle cycles to
spare.

Test 3 demonstrates that with longer running Gridlets the
variables that hinder the overall performance, can be amortized
by the difference that it would take to process all the data in
the user’s computer.

We can conclude that the overhead which SNCS gives to
the overall process can be minimal compared to the time it
takes to process a Gridlet. However, times can be hindered by
the fact that searching for resources may not return positive
results or that the total resources available are less than the
number of Gridlets to be processed, or even that latency of
Facebook servers may vary with their global traffic load.

We can also conclude that the number of messages will
vary with the number of users (friends, FoF and groups) that
comes in contact with the Job while varying with the number
of Gridlets comprising the Job. Meaning that in this scenario
the number of messages in total were 41, considering that
between friends and groups there are 5 messages for each user
that accepts a Job, and that for FoFs there are 8 messages for
each.

We can state that the number of messages sent to Facebook
are proportionally increased by the number of users in the
network, meaning that a Job may receive as many accepts
and denies messages as users in the network. Although, the
user may not be aware of this in the long run, because those
messages are erased when they are not needed, making a clean
environment in Facebook, meaning that we can accomplish
our goal of making SNCS viable to use Facebook without
hindering the usage of the Social network.

With functionality and quantitative evaluation, we can con-
clude that the results are encouraging, despite the overheads
introduced by the variable Facebook latency, and the inter-
mediate messaging among FoFs. In fact, with SNCS, Jobs
are completed faster than in the user’s computer, releasing it



for other tasks. The performance gains would increase with
longer running Gridlets (more realistically about 1 hour) by
amortizing overheads attributable to Facebook.

VI. CONCLUSIONS

In this paper, we presented a new method of resource and
service discovery through the usage of a Social network. It
is also considered that by making use of a Social network
already established, we can involve more people donating their
computers’ idle cycles.

We also describe a platform (SNCS) designed to use Face-
book, to search for potential resources available on this Social
network, that can execute Gridlets.

We evaluated SNCS with scenarios that resulted in lever-
aging idle cycles and faster execution. Also, the total time of
a Job can vary depending on the availability of the resources
on the Social network. Furthermore, we can state that longer
running Gridlets would amortize the variables which hindered
the SNCS performance. Moreover, we demonstrate that it is
possible to make use of a Social network to perform generic
distributed computing, and not only for a single problem.

In the future, we plan to further SNCS addressing the issues
of having a realistic environment and complementing with the
results of real peoples’ usage. While also, making use of other
known programs to process Gridlets (such as image/video
generation). Furthermore, we believe adding a Jobs topics’
ontologies would increase the chance to direct the Gridlets to
people that can be more appropriate to process them.

REFERENCES

[1] Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong. Analysis of
topological characteristics of huge online social networking services. In
Proceedings of the 16th international conference on World Wide Web,
page 844. ACM, 2007.

[2] L. Amaral, A. Scala, M. Barthelemy, and H. Stanley. Classes of small-
world networks. Proceedings of the National Academy of Sciences of
the United States of America, 97(21):11149, 2000.

[3] D. Anderson. BOINC: A system for public-resource computing and
storage. In proceedings of the 5th IEEE/ACM International Workshop
on Grid Computing, page 10. IEEE Computer Society, 2004.

[4] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer.
SETI@ home: an experiment in public-resource computing. Communi-
cations of the ACM, 45(11):61, 2002.

[5] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al. Above the clouds: A
berkeley view of cloud computing. 2009.

[6] L. Backstrom. Group formation in large social networks: membership,
growth, and evolution. In In KDD 06: Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data
mining, pages 44–54. ACM Press, 2006.

[7] K. Chard, S. Caton, O. Rana, and K. Bubendorfer. Social Cloud:
Cloud Computing in Social Networks. In 2010 IEEE 3rd International
Conference on Cloud Computing, pages 99–106. IEEE, 2010.

[8] A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer
systems. In International Conference on Distributed Computing Systems,
volume 22, pages 23–34. IEEE Computer Society; 1999, 2002.

[9] L. Gao, Y. Ding, and H. Ying. An adaptive social network-inspired ap-
proach to resource discovery for the complex grid systems. International
Journal of General Systems, 35(3):347–360, 2006.

[10] F. Heine, M. Hovestadt, and O. Kao. Towards ontology-driven P2P grid
resource discovery. In Proceedings of the 5th IEEE/ACM International
Workshop on Grid Computing, pages 76–83. IEEE Computer Society
Washington, DC, USA, 2004.

[11] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication
in unstructured peer-to-peer networks. In Proceedings of the 16th
international conference on Supercomputing, pages 84–95. ACM New
York, NY, USA, 2002.

[12] G. Manku. Routing networks for distributed hash tables. In Proceedings
of the twenty-second annual symposium on Principles of distributed
computing, pages 133–142. ACM New York, NY, USA, 2003.

[13] E. Meshkova, J. Riihijrvi, M. Petrova, and P. Mhnen. A survey
on resource discovery mechanisms, peer-to-peer and service discovery
frameworks. Computer Networks, 52(11):2097–2128, 2008.

[14] A. Mislove, M. Marcon, K. Gummadi, P. Druschel, and B. Bhattacharjee.
Measurement and analysis of online social networks. In Proceedings of
the 7th ACM SIGCOMM conference on Internet measurement, page 42.
ACM, 2007.

[15] M. Mowbray, F. Brasileiro, N. Andrade, and J. Santana. A reciprocation-
based economy for multiple services in peer-to-peer grids. In Peer-to-
Peer Computing, 2006. P2P 2006. Sixth IEEE International Conference
on, pages 193–202. IEEE, 2006.

[16] C. Papadakis, P. Fragopoulou, E. Athanasopoulos, M. Dikaiakos,
A. Labrinidis, and E. Markatos. A feedback-based approach to reduce
duplicate messages in unstructured Peer-to-Peer networks. In Integrated
Workshop on Grid Research. Springer, 2005.

[17] P. Rodrigues, C. Ribeiro, and L. Veiga. Incentive mechanisms in peer-
to-peer networks. In Parallel & Distributed Processing, Workshops and
Phd Forum (IPDPSW), 2010 IEEE International Symposium on, pages
1–8. IEEE, 2010.

[18] R. Schaller. Moore’s law: past, present and future. IEEE spectrum,
34(6):52–59, 1997.

[19] J. Silva, P. Ferreira, and L. Veiga. Service and resource discovery
in cycle-sharing environments with a utility algebra. In Parallel &
Distributed Processing (IPDPS), 2010 IEEE International Symposium
on, pages 1–11. IEEE, 2010.

[20] J. N. Silva, L. Veiga, and P. Ferreira. nuboinc: Boinc extensions for
community cycle sharing. In SASO Workshops, pages 248–253. IEEE
Computer Society, 2008.

[21] P. Trunfio, D. Talia, H. Papadakis, P. Fragopoulou, M. Mordacchini,
M. Pennanen, K. Popov, V. Vlassov, and S. Haridi. Peer-to-Peer resource
discovery in Grids: Models and systems. Future Generation Computer
Systems, 23(7):864–878, 2007.

[22] D. Tsoumakos and N. Roussopoulos. A comparison of peer-to-peer
search methods. In Proceedings of the Sixth International Workshop on
the Web and Databases. Citeseer, 2003.

[23] L. Veiga, R. Rodrigues, and P. Ferreira. GiGi: An Ocean of Gridlets
on a ”Grid-for-the-Masses”. In Proceedings of the Seventh IEEE
International Symposium on Cluster Computing and the Grid, pages
783–788. IEEE Computer Society, 2007.

[24] C. Wilson, B. Boe, A. Sala, K. Puttaswamy, and B. Zhao. User
interactions in social networks and their implications. In Proceedings
of the 4th ACM European conference on Computer systems, pages 205–
218. ACM, 2009.



APPENDIX
Schemas used in the messages on Facebook
//Schema for Searching People to do a job
SNCS;Job;MyId;<hardware/software required>;

//Schema to answer to a job / JobGridlet
SNCS;<Job/JobGridlet>;MyId;<Accepted/Denied/Completed>;<JobId>
//Special versions: only on comments (App Wall Post) adds a JobId

//Schema to give a GridletJob to someone
SNCS;JobGridlet;JobId;GridletNumberX;MyId;YourId;<Program>;<File>;<Commands
needed to execute>;<Other comments needed>;
//The file should be the place where the client application can download it,
//MyId and YourId should be here so that if someone else reads this
//they should skip it if its not for them, and security reasons

//Schema for GridletJob Status Update (completed example)
SNCS;JobGridlet;MyId;Completed;<JobId>;<GridletNumber>;<where to download>;

//Schema for Redirect Messages
SNCS;Redir;<PersonId to redirect to>;<PostId>;<Type>;<rest of the message>;

//Schema for Redirect Request
SNCS;Redir;Request;<RedirToID>;<Type>;<UserId that started the redirection>;
//the last is optional

//Schema for Splitted messages
SNCS;PartX-Y;UserID;<Rest of the message>
//X is the number of the part, Y is the total number of parts, UserID must be
//placed because Facebook sometimes forgets from whom the message belongs

Times for each action for the tests in scenario 6 (larger figure):


