
MOBI-COLLAB: Collaborative Applications for Mobile
Devices

João Sousa
IST

Technical University of Lisbon
joao.f.sousa@ist.utl.pt

ABSTRACT
Today, mobile devices are becoming more powerful, and the
ever increasing connectivity of this type of devices motivates
us to look into what can be achievable by mobile technolo-
gies.

The groupware research topic has a long history in the devel-
opment of frameworks which supported collaborative group
work, through fixed infrastructures. New collaborative group-
ware solutions must take advantage of the capability for any-
time, anywhere, information access provided by mobile en-
vironments.

PT Inovação is developing PUC (Plataforma Unificada de
Colaboração) - a collaboration platform, in an effort of pro-
viding an unified service architecture which may be used by
external client applications, who want to provide collabora-
tive functionality to the end-user, without worrying about
the lower-level issues.

The Mobi-Collab project is also part of this initiative as
it follows the same principle and is tightly integrated with
PUC itself, but, with the focus of addressing the issues of
mobile groupware.

We survey topics related with groupware functionality, mo-
bility issues and middleware, and propose a system architec-
ture that comprises a Gateway that integrates with the PUC
Platform and mediates the communication of accessing mo-
bile terminals to the platform’s services, and a middleware
layer to be executed in targeted mobile operating systems,
that integrates with supporting technologies and provides a
set of APIs for developers to easily develop cross-platform
collaborative applications.

Our implementation takes a Web development approach,
capitalising on the ubiquity of Web technologies (AJAX,
Javascript, JSON) in both the software components and net-
work transport mechanisms in order to achieve a high level

of system portability.

We feel that we have obtained very encouraging results, both
performance-wise and qualitatively, and succeeded in deliv-
ering a cross-platform solution that satisfies both users and
developers of mobile groupware applications that result in
a small overhead for client applications and a portable so-
lution that offers almost full compatibility without changes
for most of the targeted mobile operating systems.

Keywords
Collaboration; Groupware; Mobility; Middleware; Portabil-
ity; Widgets

1. INTRODUCTION
Today, to find someone who does not own and use a mo-
bile device (from cellphones, to PDA’s and laptops), in a
daily usage basis is a rare occurrence. The inherent mobil-
ity of this type of devices make us detach from fixed and
constrained working environments, making these devices a
kind of extension to ourselves.

Recent developments in mobile technologies, motivate us to
look into what can be achievable by mobile technologies.

Considering these factors, the concept of ubiquitous comput-
ing, described by Mark Weiser [16], in his early research,is
today, more of a reality as it was years ago.

People commonly collaborate with each other, in their work
life or simple daily social routines. Collaborative software
aims to support this kind of interaction. Collaboration itself
implies group interaction. Which is commonly addressed
by groupware applications.

Fixed groupware solutions constrain us to fixed work envi-
ronments. Which by itself, is a hindrance to our everyday
work and social life. New collaborative groupware solutions
must take advantage of the theoretical capability for any-
time, anywhere, information access of mobile environments,
to provide long distance on-the-move teamwork.

PT Inovação is developing PUC (Plataforma Unificada de
Colaboração). It is a collaboration platform that aims to
provide an unified service architecture which may be used
by external client applications, who want to provide collab-
orative functionality to the end-user.

Mobi-Collab is also part of this initiative, but it distinguishes
itself by focusing on the delivery of a common framework
for the development of collaborative applications in mobile
devices, using PUC as a supporting platform.

1.1 Objectives
Current mobile groupware solutions have been developed in
specific programming languages which are tightly integrated
with the native APIs of the targeted operating systems [2,
6, 14, 13, 8, 15]. This results in the development of solutions
that offer low portability levels. This limitation is addressed
in our solution by exploring the Mobile Web Development
approach and a Web services based communication between
the underlying system components.

In this paper, we propose the accomplishment of the follow-
ing objectives:

• Development of a server-side component (Gateway)
that integrates with the PUC Platform and mediates
the communication of accessing mobile terminals to
the platform’s services. Additional features which are
essential for mobile clients, must be supported, includ-
ing data conversion for a lightweight data model and
delivery of collaborative resources according to the ac-
cessing device capabilities.

• Development of a middleware layer to be executed
in targeted mobile operating systems, that integrates
with supporting technologies and provides a set of APIs
for developers to easily develop cross-platform collab-
orative applications.

• Development of a prototype application, that validates
the above mentioned server-side and middleware com-
ponents, and that must also be easily extended and
re-usable for future implementations.

We hope that our solution contributes to a standardisation
in the development of multiple collaborative applications, in-
side or outside PT Inovação’s context and that the research
and development during the course of this work, results in
a valuable contribution to future implementations that exe-
cute in different devices and environments.

2. RELATED WORK
Collaboration has its foundations in the concept of Com-
puter Supported Cooperative Work (CSCW) [5], which intro-
duced shared work stations; shared file systems and confer-
encing tools. Groupware [4] evolved this concept by formally
introducing the notion of a group of people that engage in
a common task (or goal) through an interface in a shared
environment.

2.1 Groupware Support
Due to the sharing and dissemination of information in its
applications, groupware research has been overlapped with
many disciplines. Support for groupware applications must
take into account many concepts from different perspectives,
including: distributed systems; network communications;
Human-computer interaction and social theory.

This has led to the development of groupware solutions that
generally follow a time space taxonomy, that distinguishes
groupware interactions from the locality of the interactions
(local or distributed) and time (synchronous or asynchronous).

Concerning the architectural of groupware systems, two ap-
proaches are generally followed [10]:

• Centralised approach: the client-server model is
followed. All system components responsible for coop-
eration management and resource sharing run as server
processes on dedicated server machines. Local termi-
nals, then communicate with the central components
to perform each one of their tasks.

• Distributed approach: the peer-to-peer model is fol-
lowed. All system components run in local terminals,
with each one, having the same functionality as the
other. Here consistency issues arise, given that, each
agent has a local replica of the application’s data and
there is not a centralised server which holds the master
replica.

The development of Groupware also comprises several chal-
lenging issues, that include access control; awareness; co-
ordination; concurrency control; session management and
tailorability.

2.2 Mobile Groupware Support
The greater unpredictability and heterogeneity in the con-
text of mobile work introduces requirements for an unmatched
level of flexibility and adaptability not seen in classical
groupware that is dependable on fixed infrastructures.

The concept of micro-mobility [7] shows us that small ar-
tifacts, like a piece of paper, for example, can be read and
written in a myriad of spaces and in the most extreme con-
ditions. Today, mobile devices are small, connectible and
powerful in such levels that accommodate with this kind of
micro-mobility.

This as led to the development of groupware solutions that
explore the theoretical ideal of access, anytime, anywhere, by
focusing in the delivery of these type of solutions to mobile
devices.

Achieving a groupware experience in mobile devices compa-
rable with the desktop counterpart is not easy. Mobile envi-
ronments introduce new challenges, such as communication
issues; data distribution and consistency and user interface
issues [3, 11, 12].

In order to overcome these challenges and provide a faster
service development and deployment, service and ap-
plication frameworks and platforms have been developed
adopting the definition of middleware [9, 1].

2.3 Middleware in Mobile Groupware
Among the requirements that middleware for mobile group-
ware application need to address we can find: the provision

of an Execution support layer; persistence support; adapt-
ability; provision of a distributed information base; extensi-
bility and portability.

Several solutions have been developed in this area.

For example, YCab [2], is a decentralised groupware frame-
work that provides a Java based API for developers to quickly
create collaborative applications with a minimal learning
curve. Certain service features, such as service optimisa-
tions or state recovery can be enabled or disabled without
the need to redesign the services. A developer can take
a modular approach in development, creating customisable
modules that can be plugged into any application.

Su et al. [14] concentrated their research in adaptive content
generation and delivery justifying that most of the collab-
orative systems in existence focus on the implementation
of the collaborative logic engine, that is, content representa-
tion in a heterogeneous environment is not clearly addressed.
An interesting aspect of this work is that to accomplish the
goal mentioned above, a single and unified format for data
representation had to be developed. As such, an Unified
Media Description Language (UMDL) based on XML was
presented, embedding multimedia information into a single
unified file format.

MoCA [13], interestingly provides proxies that act as medi-
ators in all communication between the application servers
and the clients, their tasks include: data compression; proto-
col conversion; encryption; user authentication; context pro-
cessing; service discovery; handover management and others.
In this way, it is possible to develop client and server appli-
cations while not concerning about portability and content
adaptability issues, leaving that for the proxy to handle.

As one solution that closely resembles our own, we have Vi-
moware [15]. It relies on a SOAP based Web Services model
in the deployment and use of its services. Thus, exploit-
ing the interoperability, flexibility,and re-usability of Web
services based software.

3. ARCHITECTURE
3.1 Mobi-Collab Overview
Mobi-Collab’s architecture takes a semi-centralised approach
with each mobile terminal having its own information base
and local interfaces.

Five different entities are involved in the communication pro-
cess:

• PUC Platform (in-house developed): a set of col-
laboration service enablers, exposed by a Public API
that gives support for our groupware functionality.

• Mobile Terminal: the mobile device itself. All ap-
plication code is locally deployed in the device, as are,
our middleware components. All are independent of
the provided operating system’s execution runtime.

• PUC Gateway: acts as a proxy server for the mobile
terminal, mediating access to the provided core group-
ware functionality exposed by the PUC’s application

server. Allows support of multiple client-server com-
munication protocols for the terminal side with the
collaboration core, while preserving the implementa-
tion of the latter. Another purpose is to accomplish
the adaptability requirement, by providing resources
according the client device’s capabilities.

• Bayeux Event Broker: listens for events launched
by PUC and forwards them to the mobile terminal in
the form of asynchronous messages over HTTP. Clients
can listen to events in specific channels which they sub-
scribe to, or publish their own events to a channel they
wish, which are then processed by the event broker and
forwarded to the platform.

• Resource Engine Servers: these are the actual servers
which host resources that can be accessed by our group-
ware applications.

3.2 Communication
Communication of the mobile terminal with the PUC Gate-
way is made through AJAX HTTP Requests invoked by the
in-device deployed JavaScript, through the XMLHttpRe-
quest Javascript API. The HTTP Servlets on the application
gateway side process these requests and generate specific
HTTP responses (see Fig.1).

Figure 1: JSON-RPC Communication Example

HTTP POST requests and responses follow the JSON-RPC1

over HTTP protocol. It is basically, a lightweight remote
procedure call protocol that uses the JSON message format.
Returned JSON strings in HTTP responses are then un-
marshalled on the client-side JavaScript code to create data
objects of the returned information.

The Communication with the Event Broker follows the Bayeux
message transportation protocol.2 In order to minimise la-
tency in server-client message delivery, we opted to use Bayeux’s
long-polling transport variant (see Fig.2). The server imple-
mentation attempts to hold open each request until there
are events to deliver; the goal is to always have a pending
request available to use for delivering events as they occur,
thereby minimising the latency in message delivery.

1JSON-RPC Specification - http://json-
rpc.org/wiki/specification
2Bayeux Protocol - http://svn.cometd.com/trunk/bayeux.html

Figure 2: Standard Polling versus Long Polling
Transportation

Communication between the PUC gateway and PUC’s Pub-
lic API is accomplished through Enterprise Java Beans3 re-
mote method invocations to exposed remote interfaces.

3.3 PUC Gateway
The PUC Gateway has a 3-tier architecture:

Figure 3: View of PUC Gateway’s Architecture

• JSON-RPC HTTP Java Servlet: responsible for
handling all remote invocations made by the mobile
terminal via JSON-RPC.

• JSON-RPC Bridge: establishes an interface between
the HTTP Java Servlet and the application server’s
hosted Java objects. Any Java Object can be regis-
tered on the bridge, rendering the exposure of Java
Objects to Web browser clients possible.

• Server User Agent Layer: composed by PUC API
Mapper objects, which are a direct mapping of PUC’s
own Public API with it’s data model adapted to the

3Enterprise Java Beans -
http://java.sun.com/products/ejb/

constraints of mobile devices; a device manager com-
ponent that loads predefined device profiles and de-
livers resources according to the client supported fea-
tures; and a JSON Mapper/Parser that maps Java
objects to JSON strings for the client to handle, and
parses JSON strings to Java objects to be manipulated
by the platform.

PUC Gateway also has its own data model, designed with
the objective of providing a simpler data model for resource
constrained devices.

3.4 Mobile Terminal
The architecture of the mobile terminal has also a layered
design with the upper layers (Application + Core User Agent
Layer) which are closer to the application side, being devel-
oped by us. The underlying layers correspond to third-party
components that give support to our own core libraries.

Figure 4: View of Mobile Terminal’s Architecture

The above design comprises:

• Application Layer: the developed groupware client
application (local HTML/CSS/Javascript files) that
uses our middleware solution.

• Core User Agent Layer: our own set of Javascript
libraries, providing an abstraction level to the applica-
tion developers, who want to create groupware applica-
tions. It consists of a gateway user agent which is a set
of libraries that support groupware functionality and
abstracts the JSON-RPC based communication with
PUC Gateway to the end-developer. A data user agent
which provides synchronisation functionality with the
back-end database and local persistence functions, al-
lowing for a disconnected operation mode. This layer
also provides a broker user agent which abstracts the
communication with the Event Broker, allowing easy
registration of event listener routines and event pub-
lishing for the end developer.

• Phonegap JavaScript Libraries (Third party) :
provides the interface with the mobile operating sys-
tem native functions through JavaScript functions ac-
cessible from the application.

• Support Libraries (Third party) : The JSON
and JSON-RPC support libraries help with the cre-
ation and parsing of JSON messages and implement
the JSON-RPC protocol, respectively. The bayeux client
libraries abstract the Bayeux message transportation
protocol and the local storage wrapper provides em-
bedded database manipulation functions to the upper
layer.

• OS Native Web Engine (Third party) : provides
the Web browser execution runtime, where all the code
from the upper layers is interpreted. Implementation
is dependent on the application’s target operating sys-
tem.

• Phonegap/Widget Engine Bridge (Third party)
: it is the framework that makes an interface between
the Web code and the underlying native functionality.

• Operating System (Third party) : provides the
execution runtime and the device’s native functional-
ity.

4. IMPLEMENTATION
We have managed to leverage several technologies that sup-
port our own components whether we are talking about the
server side or the client side implementations (see Table.1).

Server Side Implementation Client Side Implementation
Java EE X

JBOSS AS X
Jabsorb X X

JSON Tools X X
CometD X X

GWT X
Phonegap X
Lawnchair X

Table 1: Technology Usage Map

4.1 Implementing the PUC Gateway
PUC Gateway’s main implementation challenges lied in how
to leverage available technology in order to minimise the
development time of the Web hosting and initialisation of
its application components.

In order to turn our Gateway functions accessible to appli-
cations executing in Web browser based clients, we deployed
the JSON-RPC servlet provided by the Jabsorb framework.
We just needed to deploy the servlet in our JBoss applica-
tion server and add the respective servlet configuration and
mapping in our XML application descriptor file.

Clients are then allowed to make JSON-RPC calls to the
gateway, as long as they send their requests to the configured
url.

In order for client requests to be routed for the corresponding
Java objects, a JSON-RPC Bridge is needed. For that we
used the JSON-RPC servlet that is provided by the Jabsorb
Framework.

To implement object migration between PUC Gateway and
the mobile terminal we used the provided conversion tools
by the JSON Tools framework.

We have managed to design a Server User Agent component
that accomplishes the delivery of resources according to the
accessing device’s capabilities.

The information regarding a device’s capabilities and sup-
ported collaborative features is saved in the form of object
instances of the Gateway’s User Agent Data Model . This
information is generated from two manually edited XML
documents, in conformation with a specific XML schema
and loaded on the Gateway’s application start up.

In this way, a client only downloads resources that are tech-
nically compatible with his/her mobile device model, thus
minimising transmitted data and avoiding erratic client ap-
plication behaviour. An application developer is relieved
from implementing this behaviour on the client side, which
would be impractical, considering that the mobile device
market is always being flooded by new devices with new
capabilities.

4.2 Prototype Application Widgets
In order to validate our terminal middleware layer we devel-
oped a groupware application prototype that makes use of
both our middleware and PUC Gateway components.

As it was developed using Google Web Toolkit4 our applica-
tion is totally Java based. Our application components are
divided in single and independent widgets which are eas-
ily extendable with new in-widget components by using the
Java inheritance mechanism or even by adding new widgets,
which all are managed by our own developed Widget Con-
troller component. In this way, we managed to always follow
an object-oriented design in order to comply with our exten-
sibility requirement (see Fig.5).

5. EVALUATION
All of our developed components were subject of assessment
through pre-established qualitative criteria and quantita-
tive metrics.

4GWT Overview - http://code.google.com/intl/pt-
PT/webtoolkit/overview.html

Figure 5: Generic Widget Java Object Structure

We have developed the Gateway component with intent of
causing minimal overhead over PUC’s performance, which
is, considering that it is still on a development phase, lacking
optimisation.

In our client-side implementation (terminal middleware
and application prototype) our conception and development
phase aimed ultimately for the construction of a common
framework that would be mainly oriented for the develop-
ment of collaborative applications in mobile devices. Here,
performance evaluation is not our only concern because we
need to satisfy both users, and application developers.

5.1 Server-side Implementation Assessment
Our Server-Side implementation evaluation was mainly fo-
cused on our PUC Gateway and its integration with PUC
Platform’s API.

The Gateway acts only as mediator component, it’s execu-
tion is purely memory-driven with no data persistence at
all. Tasks include object conversions, device profile loading
and request forwarding. Therefore we need to know much
of an overhead the Gateway to PUC’s sole execution times
and if memory consumption scales adequately in order for
the system not to crash due to lack of available memory in
the Java Heap Space.

5.1.1 Testing Environment
Both the PUC Platform and PUC Gateway were deployed
on a single test machine. The PUC Gateway component is
binded to an address which belongs to a publicly accessible
wireless network in order to provide access to mobile clients
over a wireless infrastructure. PUC itself, is then binded to a
private address which belongs to PT Inovação’s Intranet and
directly communicates through JDBC, with a PostgreSQL
server which resides on the same network.

In order to simulate multiple and concurrent mobile client
accesses, we developed a Java based application that cre-
ates a set of client threads that concurrently execute specific
requests using our Gateway’s public JSON-RPC interfaces
through HTTP. Each thread executes sets of functions which
are grouped by specific functionality.

5.1.2 Test Setups
We prepared variable test setups that are defined by the
number of client threads in simultaneous execution
and the quantity of aggregated data per request.

Concerning the number of clients, we have established bound-
ary values that go from 1, to 10 and 100 clients.

Function execution order is different for each thread. Only
the data load for each request by each thread gets main-
tained over an execution that is only over when all threads
finish their work. This helps us to see how the variation in
object size and number instantiations, impacts the overall
performance of the requests.

Therefore, we have defined three variations in data load:
Low, Medium and High.

All clients execute simultaneously, specific function groups
with the corresponding data loads, as depicted in Table.5.1.2.

5.1.3 Execution Time Tests

Figure 6: PUC Gateway-Only Execution Time Re-
sults (on Average) for Session Participation Loading
Operations

All of the measured times are an average of all individual
request times by each client. Immediately, we observe the
higher impact in execution time of higher data loads versus
the number of accessing clients. The only functional set that
less suffers from the increase in data load is the Participation
Loading Set. That is because these operations have the least
object conversion logic, being ultimately unaffected by the
increase in object sizes. In contrast, Conversation Loading
and Group Creation operations suffer more, because they are
heavy in object conversion logic and as we can observe by the
Group Creation, object conversion tends to take too much
time when the number of accessing clients increase, specially
in High data loads, reaching an average of 8 seconds.

First thing to note is that, the execution times under PUC
utterly surpass the Gateway times. PUC accesses a cen-
tralised database. Obviously, as the number of clients gets
higher, the concurrent accesses to the database largely im-
pact PUC’s overall performance. With 100 clients and high
Data Load, a single conversation load takes 140 seconds,
which is not acceptable in order to provide a good user ex-
perience. We have also obtained an abnormal result in the
Participation Loading Set for 10 clients in Low Data Load
that may be justified by an unexpected and intensive com-

Low Data Load Medium Data Load High Data Load
Account Creation * 1 account * 3 accounts * 5 accounts

* 4 to 8 CommAddresses per user * 6 to 10 CommAddresses per user * 8 to 12 CommAddresses per user
* strings with 8 chars * strings with 12 chars * strings with 15 chars

External User Creation * 4 users * 8 users * 16 users
* 2 to 4 CommAddresses per user * 6 to 12 CommAddresses per user * 12 to 24 CommAddresses per user

* strings with 8 chars * strings with 12 chars * strings with 15 chars
Group Creation * 2 groups with all users each * 3 groups with all users each * 4 groups with all users each

* strings with 10 chars * strings with 15 char * strings with 20 char
Conversation Creation * 2 conversations per group *3 conversations per group *4 conversations per group

* strings with 10 chars * strings with 15 char * strings with 20 char
Session Creation & Setup * 1 session per conversation group * 1 session per conversation group * 2 sessions per conversation group

Device Participation Loading * 2 session loadings * 3 session loadings * 8 session loadings

Table 2: Data Load Variations for Client Thread Executions

Figure 7: PUC Gateway-Only Execution Time Re-
sults (on Average) for Group Creation Operations

putation on the machine that hosts the Gateway during the
execution of the respective test, considering that, all the
other results are in conformity to what was generally ob-
tained.

Figure 8: Cumulative Execution Time Results (on
Average) for Group Creation Operations (individual
execution times in seconds)

The introduced overhead by the Gateway in PUC’s execu-
tion times, is for Conversation and Participation Loading,
almost insignificant, hardly reaching 5% of PUC’s execution
time even in High Data Load. However, in Group Creation
it reached much higher values (arround 30% with 10 clients
in all Data Loads) (Fig.8). Group Creation are also the
operations that take most time and considering it’s execu-
tion distribution purely based in two-sided object conver-
sion, we can then conclude that JSON marshalling and un-
marshalling of heavily sized objects, do make an impact in
the system’s overall performance. Nevertheless, the Gate-
way execution times never surpass PUC’s execution times
(they do not even generally reach a 50% overhead).

The Gateway’s execution times are excellent in operations
which are light in object conversion logic. But, tend to in-
crease significantly in operations heavily based in object con-

version, which is basically the majority of PUC Gateway’s
operations. Although values get high (3 to 8 seconds) with
multiple clients and higher data loads, values remain in an
acceptable range for asynchronous operations. The intro-
duced overhead is also acceptable and complies with our
objective in not making the Gateway a significant overhead
in the system’s performance.

5.1.4 Memory Consumption Tests
Our main objective with the definition of the UA Data
Model, was to create a simpler data model that would be
bearable for mobile devices. Evidently, allocated UA Data
objects must occupy lesser memory.

Figure 9: Allocated Size (in bytes) per object in the
Java Heap Space for both Full and UA Data Models
(Group classes)

As the results show, the objective of creating a smaller data
model was successfully achieved. But, excluding the Con-
versations object classes, which achieved 25% reduction on
average and Group classes which achieved 32,5% reduction
(see Fig.9), other classes, such as User and Resource classes
have only achieved reduction values around 11% (Fig.10).

It is entirely possible to reduce object sizes of User and Re-
source object types. However, we would loose functionality,
and to keep it, we would need make the client application
request the respective information when needed, instead of
downloading all the information when the object gets passed
to the client in its first access. Object allocation would be
more dynamic, however this would increase the creation of
new user requests and the introduced overhead by new re-
quests would not be compensatory for smaller objects. We
opted to not reduce the object size that much and give the
user all the information on its first access in order to avoid

Figure 10: Allocated Size (in bytes) per object in
the Java Heap Space for both Full and UA Data
Models (User classes)

later spawning of multiple requests to obtain that same in-
formation.

The utilised tools permitted a detailed analysis over the Java
Heap Space during test execution. This allowed us to ob-
serve how many Garbage Collection Cycles an object sur-
vives during test execution and the total allocated memory
per object type.

By observing the obtained results, we conclude that the Java
default Garbage Collection Mechanism does a good job of
removing objects that get the most instantiations. During
test execution, 523 Garbage Collection Cycles have passed
with 10 clients, and 1156 with 100 clients. Every object
age is well below these values. Customer objects get to be
older ones, and in average, they lived 30 GCCs with 100
clients. As such, our test setup was insufficient in order
to find the limit at which the Gateway would fail by lack of
available Java Heap Space. The way how objects are rapidly
removed shows that the Gateway execution is purely mem-
ory driven, where instantiations correspond in majority, to
auxiliary variables that are used in object conversion logic.

5.2 Client-Side Implementation Assessment
In contrast with PUC Gateway, which is a server-side com-
ponent only that gets properly deployed just once and han-
dles all requests that arrive automatically, the client-side
components aim to be ultimately used by users and devel-
opers of collaborative applications. A quantitative based
only approach in the evaluation is simply not enough. We
need to also evaluate the components qualitatively.

5.2.1 Testing Environment
The testing environment for the assessment of the client-side
implementation follows the same network topology that was
described in the previous section, except for the substitution
of the laptop that runs Java client threads by a real mobile
device running one instance of the Mobi-Collab Prototype
Application in the Android operating system over a Wi-Fi
connection.

5.2.2 Portability Evaluation
In order to assert our promise of delivering a framework with
the maximum level of portability, we developed additional

builds of our app. One for each target operating system:
Android; iPhoneOS; Symbian S60 5th Edition; Blackberry
OS 5.0 and Windows Mobile 6.5.

On a first basis, we maintained the same Web code for
each build and properly switched the native bridging code
(Phonegap Libraries/Widget Engines) in order for the Web
code to get properly compiled in the target operating system
native languages and executed in the respective emulators
of each SDK. Once incompatibilities were being found over
the application’s execution on each platform, we registered
them, and if they could be solved, we would solve them and
would register the respective changes in the Web code. For
those issues that required drastic changes, we made an esti-
mate of the necessary changes and their impact concerning
the difficulty in developing new code.

With WebKit based platforms we achieved a very high level
of portability, which resulted in changes of 9 lines of code
in the iPhone OS and 13 lines of code in Symbian S60 5th
edition. Better yet, the changes targeted application compo-
nents only, and with very low impact in development as they
were originated by minor CSS issues and minor differences
in the PhoneGap Contacts API.

Apart from the failed execution of Flash content due to in-
compatibility in both targeted systems, and lack of Local
Storage support in Symbian S60, all the other functions that
had been developed in the original Android version, were
executed flawlessly with just minor differences in the user
interface presentation.

We managed to get a BlackBerry port up and running until
the Session Widget where the real collaborative functional-
ity takes place, but we failed in getting this latter widget
to work properly in due time. This was due to a myriad
of issues caused by the technical limitations of the plat-
form’s browser engine. The engine was incompatible with
the CometD support library rendering the build incapable
of supporting events, and even, the Wave Chat widget. Even
the JSON-RPC third party library needed changes in order
to work properly. We managed to make it work but it re-
sulted in changes over 30 code lines, and as the code was
not developed by us, it ultimately resulted in an entire day
of test and debug work.

In the Windows Mobile platform the experience was ex-
tremely worse. Here, the Mobi-Collab prototype app failed
to even initialise. The IE6 Mobile engine revealed itself in-
compatible with GWT and as result none of our applica-
tion’s widgets even worked. Nevertheless, we successfully
tested our Core User Agent library, and JSON-RPC calls to
the Gateway services are still possible.

5.2.3 Quantitative Evaluation
Performance
The test setup for these performance analysis comprise a
server-side database in a steady-state and the individual ex-
ecution of each application’s function in a real mobile device.

Fig.11 shows the completion times for each application func-
tion. The graph distinguishes the time taken in the Core
JavaScript libraries and the time taken until the user sees

Operating System Portability Level Code Line Changes Problems Faced
Android 2.0, 2.1, 2.2 Full none (original version) none
Android 1.5, 1.6 Very High none Local Storage is technically not supported
iPhoneOs 3.2, 4.0 Very High 9 (application and CSS changes) minor differences in Phonegap API; no Flash
Symbian S60 (5th Edition) Very High 13 (application and CSS changes) Local Storage is not supported
BlackBerry OS 5.0 Partial 84 (application); 8 (core); 30 (suport libraries); Many UI Issues; incompatibility with CometD
Windows Mobile 6.5 Extremely Reduced needs a totally redesigned application not GWT based only JSON-RPC works

Table 3: Overview of The Portability of Our Implementation Across The Targeted Operating Systems

that the function has been successfully executed in the ap-
plication, in order to evaluate the introduced overhead by
the application.

Figure 11: Measured Average Completion Times of
Specific Functions in The Client-Side Implementa-
tion Executing in a Real Mobile Device

Although the obtained times in the core JavaScript are bear-
able for the asynchronous operations that they correspond
to, they need some optimisation. If we want to engage in a
conversation with another user urgently, we will have to wait
around 30 seconds for that to happen, if we sum up times
taken in contact synchronisation, conversation creation and
session setup.

Considering the application’s overhead, the function that re-
ally needs optimisation is the contact synchronisation. The
lower performance is due to the great amount of user inter-
face elements that get rendered on the screen.

Figure 12: Measured Average Response Times To
Specific Events in The Client-Side Implementation
Executing in a Real Mobile Device

The CometD Broker User Agent does a remarkable job in
delivering events with little to no delay, almost in real-time,
as we can assert by observing the obtained response times in
the Core JavaScript. However, the user is only informed of
the event when the application notifies it and the downside is
that, in comparison, the application introduces a large over-
head. Events in the application take 1 to 2 seconds in being
notified, which are still good values, considering that most
Web applications that base event notification in standard
poling techniques, set 5 seconds as the polling interval.

Such a large overhead that is introduced by the application

is mostly due to the multiple software layers present even in
the application layer itself, which is not a native application
nor a Web application in raw JavaScript/HTML code, but,
a GWT Web application. As GWT is not yet optimised for
being executed in constrained mobile devices, applications
run much slower, when compared with their desktop coun-
terparts, even in mobile devices with respectable CPUs.

5.2.4 Battery Consumption
We took our implementation to the test in order to observe
how it’s battery usage would be according to three different
usage profiles. A profile for a Casual User, a Power User
and finally a Hardcore User. Our tests comprised a total
execution time of 1 hour and 25 minutes on all user profiles.

Evidently, user profiles with an higher operation frequency
detained more CPU Time. This is naturally reflected in
the battery usage percentages, albeit, the percentage being
relatively small even in most intense usage pattern (19% in
the Hardcore Profile in comparison with the battery usage
of the device’s display at 75%).

Although battery usage percentages are small, the battery
consumption percentages after test execution are significant.
Taking into account, the execution time of 1 hour and 25
minutes, we can estimate the approximate usage time of our
application for each user profile with a fully charged battery
(see Table.5.2.4).

User Profile Approximate App Usage Time
Casual 7 hours
Power 5 hours and a half

Hardcore 3 hours and a half

Table 4: Estimate of Application Usage Time in
Each User Profile Until Battery Gets Drained

The results are encouraging. Even in the hardcore user pro-
file, the battery can last a considerable amount of time, con-
sidering that the usage of a mobile device to collaborate is
only expected on-the move, mainly in restrict environments
or emergency situations when a given user will unlikely use
it for more than a hour.

5.2.5 Data Usage over Mobile Networks
The mobile network usage results are also encouraging. As-
suming a very limited 3G dataplan that gives an hardcore
user 15MB per day, he could still use the application for at
least 2 hours which is more than enough for any collabora-
tive context in a mobile device.

The obtained results show that our User Agent Data Model
and the JSON message format really succeed in delivering
lightweight objects for constrained devices that communi-
cate through limited mobile networks.

Figure 13: Amount of Transmitted Data By The
Mobi-Collab Prototype App Over a Mobile Network
on Each User Profile

6. CONCLUSIONS
All of the undertaken work definitely paid off, as the evalua-
tion phase, revealed very promising results, both performance-
wise and qualitatively.

In the end, we feel that the proposed limitations, which com-
prise the portability, re-usability and extensibility of mobile
groupware applications; and the contribution of delivering a
cross-platform solution that satisfies both users and devel-
opers of mobile groupware applications, have been properly
addressed.

For the operating systems where the porting process has re-
vealed more difficult, we hope that future Web browser en-
gine implementations of the respective systems continue to
improve, because, our portability evaluation shows that the
portability of our solution is directly influenced by the ren-
dering capabilities and Web standards compatibility of the
underlying operating systems. This shows that, although
our solution provides excellent portability levels compared
to natively developed solutions, it depends more in third-
party implementations, having the risk of not working prop-
erly if the underlying third-party implementations change
overtime.

Future Work
• Network Security Mechanisms in The PUC Gate-

way: the current JSON-RPC implementation of the
Jabsorb framework, does not yet support JSON mes-
sage cyphering and user authentication mechanisms.
We need to guarantee the confidentiality, integrity and
authentication of exchanged messages in order to build
collaborative applications that implement the minimal
security features that are currently available.

• Data Consistency During Offline Work: Although
our solution supports cross-platform data persistence,
it does not offer any sort of data consistency mecha-
nisms. It would be interesting to implement this fea-
ture in both the middleware layer and the PUC plat-
form.

• Additional Features for The Application Pro-
totype: some of the functional requirements that we
proposed in the beginning were not possible to imple-
ment in due time. Therefore we would like to add ad-
ditional features to our mobile groupware application

prototype, such as: management of user roles and poli-
cies over session management; enriched user profiles
and presence information and contact synchronisation
with external Web services.

7. REFERENCES
[1] P. Bellavista and A. Corradi. The handbook of mobile

middleware. CRC Press, 2006.

[2] D. Buszko, W.-H. D. Lee, and A. S. Helal. Decentralized ad-hoc
groupware api and framework for mobile collaboration. In
GROUP ’01: Proceedings of the 2001 International ACM
SIGGROUP Conference on Supporting Group Work, pages
5–14, New York, NY, USA, 2001. ACM.

[3] S. Dustdar and H. Gall. Architectural concerns in distributed
and mobile collaborative systems. Journal of Systems
Architecture, 49(10-11):457 – 473, 2003. Evolutions in parallel
distributed and network-based processing.

[4] C. A. Ellis, S. J. Gibbs, and G. Rein. Groupware: some issues
and experiences. Commun. ACM, 34(1):39–58, 1991.

[5] D. C. Engelbart and W. K. English. A research center for
augmenting human intellect. In AFIPS ’68 (Fall, part I):
Proceedings of the December 9-11, 1968, fall joint computer
conference, part I, pages 395–410, New York, NY, USA, 1968.
ACM.

[6] E. Kirda, P. Fenkam, G. Reif, and H. Gall. A service
architecture for mobile teamwork. In SEKE ’02: Proceedings
of the 14th international conference on Software engineering
and knowledge engineering, pages 513–518, New York, NY,
USA, 2002. ACM.

[7] P. Luff and C. Heath. Mobility in collaboration. In CSCW ’98:
Proceedings of the 1998 ACM conference on Computer
supported cooperative work, pages 305–314, New York, NY,
USA, 1998. ACM.

[8] S. K. Prasad, V. Madisetti, S. B. Navathe, R. Sunderraman,
E. Dogdu, A. Bourgeois, M. Weeks, B. Liu, J. Balasooriya,
A. Hariharan, W. Xie, P. Madiraju, S. Malladi, R. Sivakumar,
A. Zelikovsky, Y. Zhang, Y. Pan, and S. Belkasim. Syd: a
middleware testbed for collaborative applications over small
heterogeneous devices and data stores. In Middleware ’04:
Proceedings of the 5th ACM/IFIP/USENIX international
conference on Middleware, pages 352–371, New York, NY,
USA, 2004. Springer-Verlag New York, Inc.

[9] K. Raatikainen, H. B. Christensen, and T. Nakajima.
Application requirements for middleware for mobile and
pervasive systems. SIGMOBILE Mob. Comput. Commun.
Rev., 6(4):16–24, 2002.

[10] W. Reinhard, J. Schweitzer, G. Völksen, and M. Weber. Cscw
tools: Concepts and architectures. Computer, 27(5):28–36,
1994.

[11] J. Roth. Seven challenges for developers of mobile groupware.
Technical report, University of Hagen, Department for
Computer Science, Hagen, Germany, 2004.

[12] J. Roth. The resource framework for mobile applications. In
Enterprise Information Systems V, pages 300–307. Springer
Netherlands, 2005.

[13] V. Sacramento, M. Endler, H. Rubinsztejn, L. Lima,
K. Goncalves, F. Nascimento, and G. Bueno. Moca: A
middleware for developing collaborative applications for mobile
users. Distributed Systems Online, IEEE, 5(10):2–2, Oct. 2004.

[14] X. Su, B. Prabhu, C.-C. Chu, and R. Gadh. Middleware for
multimedia mobile collaborative system. In Wireless
Telecommunications Symposium, 2004, pages 112–119, May
2004.

[15] H.-L. Truong, L. Juszczyk, S. Bashir, A. Manzoor, and
S. Dustdar. Vimoware - a toolkit for mobile web services and
collaborative computing. In Software Engineering and
Advanced Applications, 2008. SEAA ’08. 34th Euromicro
Conference, pages 366–373, Sept. 2008.

[16] M. Weiser. Some computer science issues in ubiquitous
computing. Commun. ACM, 36(7):75–84, 1993.

