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Abstract
Alongside the rise of multi-processor machines, concurrent
programming models have grown to near ubiquity. Pro-
grams built on these models are prone to bugs with rare pre-
conditions, arising from unanticipated interactions between
parallel tasks. Moreover, conventional debugging method-
ologies are not well suited to deal with non-deterministic
faults, leading to inefficient debugging efforts in which most
resources are consumed in reproduction attempts. Deter-
ministic replay tackles this problem by recording faulty ex-
ecutions and using the traces to generate equivalent ones.
Replayers can be efficient on uni-processor machines, but
struggle with unreasonable overhead on multi-processors.

We present Ditto, a deterministic replayer for concurrent
JVM applications executed on multi-processor machines. By
integrating state-of-the-art and novel techniques it manages
to consistently out-perform previous deterministic replayers
targeted at Java programs, in terms of recording overhead,
replaying overhead and trace file size. The main contribu-
tion of Ditto is a novel pair of recording and replaying al-
gorithms that (a) leverage the semantic differences between
load and store memory accesses, (b) serialize memory ac-
cesses at the instance field level, (c) employ partial transitive
reduction and program-order pruning on-the-fly, and (d) take
advantage of TLO static analysis, escape analysis and JVM
compiler optimizations to identify thread-local accesses.

1. Introduction
For most of computer science’s short history, developers
have enjoyed significant performance improvements with
each new generation of processors, which translated directly
to increased software efficiency. As a roadblock on proces-
sor speed was reached in the past decade, CPU manufactur-
ers transitioned to improving performance through proces-
sor replication, leading to the proliferation of multi-core and
multi-processor machines. The performance derived from
replication does not, however, immediately increase soft-
ware efficiency. Indeed, developers must take the effort to
identify opportunities for parallelism and rebuild their pro-
grams to take advantage of them. This task has been facili-
tated by the development of concurrent programming mod-

els that have become as ubiquitous as the multi-processor
machines themselves.

The transition to the new concurrent paradigm of pro-
gramming has not been the easiest, as developers struggle
to visualize all possible interleavings of parallel tasks that
interact through shared memory. Concurrent programs are
harder to build than their sequential counterparts, but they
are arguably even more challenging to debug. The diffi-
culty in anticipating all possible interactions between par-
allel threads makes these programs especially prone to the
appearance of bugs triggered by rare pre-conditions, capable
of avoiding detection for long periods. Moreover, the debug-
ging methodologies developed over the years for sequential
programs fall short when applied to concurrent ones. Cyclic
debugging, arguably the most common methodology, de-
pends on repeated bug reproduction to find its cause, requir-
ing the fault to be deterministic given the same input. The
inherent memory non-determinism of concurrent programs
breaks this assumption of fault-determinism, rendering cy-
cling debugging inefficient, as most time and resources are
taken up by bug reproduction attempts [8]. Furthermore, any
trace statements added to the program in an effort to learn
more about the problem can contribute to the fault’s evasive-
ness. Hence, cyclic debugging becomes even less efficient in
the best case, and ineffective in the worst.

Most solutions that tackle the problem of debugging con-
current programs are based upon the idea of eliminating non-
deterministic behavior to re-enable conventional debugging
methodologies as efficient and effective tools. Deterministic
replay has long been suggested as one such solution, based
on the idea of recording non-deterministic events during a
faulty execution and using the resulting trace to force other
executions of the same program to experience equal out-
comes of the same events, hence reproducing the fault. A
fitting metaphor is that of a time machine, allowing debug-
gers to inspect past states of a particular execution [6].

Memory non-determinism, inherent to concurrent pro-
grams, results from the occurrence of data races, i.e., un-
synchronized accesses to the same shared memory location
in which at least one is a write operation. The outcomes
of these races must be reproduced in order to perform a



correct execution replay. In uni-processors, these outcomes
can be derived from the outcomes of a much smaller subset
of races, the synchronization races, used in synchronization
primitives to allow threads to compete for access to shared
resources. Efficient deterministic replayers have been devel-
oped taking advantage of this observation, as in the case of
DejaVu [2], RecPlay [12] and JaRec [4].

1.1 The challenge of multi-processors
Replaying executions on multi-processors is much more
challenging, because the outcomes to synchronization races
are no longer enough to derive the outcomes to all data
races. The reason is that while parallelism in uniprocessors
is an abstraction provided by the task scheduler, in multi-
processor machines it has a physical significance. In fact,
knowing the task scheduling decisions does not allow us to
resolve races between threads concurrently executing in dif-
ferent processors. Deterministic replayers have difficulties
with unreasonable overhead when applied in this context,
as the instructions that can lead to data races make up a
significant amount of the instructions executed by a typical
application. Currently there are four distinct approaches to
deal with this open research problem, discussed in Section
2.

1.2 Ditto, a deterministic replayer for the JVM
In this paper, we present Ditto, our deterministic replayer for
unmodified user-level applications executed by the JVM on
multi-processor machines. It integrates state-of-the-art and
novel techniques to improve upon previous work. The main
contributions of Ditto are:

• A novel pair of logical clock-based [7] recording and
replaying algorithms that:

Leverage the semantic differences between load and
store memory accesses to reduce trace data and max-
imize replay-time concurrency;

Serialize memory accesses at the finest possible gran-
ularity, distinguishing between distinct static, instance
and array fields;

Employ a modified version of Netzer’s transitive re-
duction [10] to reduce the amount of trace data on-
the-fly;

Takes advantage of thread-local objects static analy-
sis, escape analysis and JVM compiler optimizations
to reduce the set of monitored memory accesses;

• A trace file optimization that highly reduce the size of
logical clock-based traces.

We implemented Ditto on top of the open-source JVM
implementation Jikes RVM (Research Virtual Machine).
Ditto is evaluated to assess its replay correctness, bug repro-
duction capabilities and performance. Experimental results
show that Ditto consistently out-performs previous state-of-

the-art deterministic replayers targeted at Java programs in
terms of record-time overhead, trace file size and replay-
time overhead. It does so across multiple axes of application
properties, namely number of threads, number of processors,
load to store ratio, number of memory accesses, number of
fields per shared object, and number of shared objects.

1.3 Document Roadmap
The rest of the paper is organized as follows: Section 2
describes some instances of related work; Section 3 explains
the design and algorithms of Ditto; Section 4 presents and
discusses evaluation results; and Section 5 concludes the
paper and presents our thoughts on the direction of future
work.

2. Related Work
Deterministic replayers for multi-processor executions can
be divided into four categories in terms of the approach taken
to tackle the problem of excessive overhead.

Some systems replay solely synchronization races, thus
guaranteeing a correct replay up until the occurrence of a
data race. RecPlay [12] and JaRec [4] are two similar sys-
tems that use logical clock-based recording algorithms to
trace a partial ordering over all synchronization operations.
RecPlay is capable of detecting data races during replay.
Nonetheless, we believe the assumption that programs are
perfectly synchronized severely limits the effectiveness of
these solutions as debugging tools in multi-processor envi-
ronments.

Some researchers have developed specialized hardware-
based solutions. FDR [14] extends the cache coherence pro-
tocol to propagate causality information and generate an or-
dering over memory accesses. DeLorean [9] forces proces-
sors to execute instructions in chunks that are only com-
mitted if they do not conflict with other chunks in terms of
memory accesses. Hence, the order of memory accesses can
be derived from the order of chunk commits. Though effi-
cient, these techniques have the drawback of requiring spe-
cial hardware.

A very recent proposal is to use probabilistic replay tech-
niques that explore the trade-off between recording overhead
reduction through partial execution tracing and relaxation of
replay guarantees. PRES partially traces executions and per-
forms an offline exploration phase to find an execution that
conforms with the partial trace and with user-defined condi-
tions [11]. ODR uses a formula-solver and a partial execu-
tion trace to find executions that generate the same output as
the original [1]. These techniques show a lot of potential as
debugging tools, but are unable to put an upper limit on how
long it takes for a successful replay to be performed, though
the problem is minimized by fully recording replay attempts.

LEAP is a recent Java deterministic replayer that employs
static analysis to identify memory accesses performed on
actual thread-shared variables, hence reducing the amount



of monitored accesses [5]. This is a promising technique,
but LEAP’s recording algorithm associates access vectors to
fields, which has significant drawbacks.

Only the first and fourth of these approaches have been
employed in the context of Java programs.

3. Ditto
3.1 Events of interest
Ditto must record the outcomes of all data races in order
to support reproduction of any execution on multi-processor
machines. Data races arise from non-synchronized shared
memory accesses in which at least one is a write operation.
Thus, to trace outcomes to data races, one must monitor
shared memory accesses. The JVM’s memory model limits
the set of instructions that can manipulate shared memory
to three groups: (i) accesses to static fields, (ii) accesses to
object fields, and (iii) accesses to array fields of any type.

In addition to shared memory accesses, it is mandatory
that we trace the order in which synchronization operations
are performed. Though these events have no effect on shared
memory, an incorrect ordering can cause the replayer to
deadlock when shared memory accesses are performed in-
side a critical section. They need not, however, be ordered
with shared memory accesses. In the JVM, synchronization
is supported by synchronized methods, synchronized blocks
and synchronization methods, such as wait and notify.
Since all these mechanisms use monitors as their underlying
synchronization primitive, their acquisitions are the events
that Ditto intercepts.

3.2 Base record and replay algorithms
The recording and replaying algorithms of Ditto rely on logi-
cal clocks (or Lamport clocks) [7], a mechanism designed to
capture chronological and causal relationships, consisting of
a monotonically increasing software counter. Logical clocks
are associated with threads, objects and object fields to iden-
tify the order between events of interest. For each such event,
the recorder generates an order constraint that is later used
by the replayer to order the event after past events on which
its outcome depends.

3.2.1 Recording
The recorder creates two streams of order constraints per
thread – one orders shared memory accesses, while the other
orders monitor acquisitions.

Recording shared memory accesses The recording algo-
rithm for shared memory accesses was designed to take ad-
vantage of the semantic differences between load and store
memory accesses. To do so, Ditto requires state to be associ-
ated with threads and fields. Threads are augmented with one
logical clock, the thread’s clock, incremented whenever it
performs a store operation. Fields are extended with (a) one
logical clock, the field’s store clock, incremented whenever
its value is written; and (b) a load counter, incremented when

Algorithm 1 Recording memory accesses
Parameters: f is the field, v is the value loaded or stored

method WRAPLOAD(f ,v)
MONITORENTER(f)
t← GETCURRENTTHREAD()
TRACE(f.storeClock)
f.loadCount← f.loadCount+ 1
if f.storeClock > t.clock then

t.clock ← f.storeClock
end if
v ← LOAD(f)
MONITOREXIT(f)

end method
method WRAPSTORE(f ,v)

MONITORENTER(f)
t← GETCURRENTTHREAD()
TRACE(f.storeClock, f.loadCount)
newClock ← MAX(t.clock, f.storeClock) + 1
f.storeClock ← newClock
f.loadCount← 0
t.clock ← newClock
STORE(f, v)
MONITOREXIT(f)

end method

the field’s value is loaded and reset if it is modified. The ma-
nipulation of this state and the load or store operation itself
must be performed atomically. Ditto acquires a monitor as-
sociated with the field to create a critical section and achieve
atomicity. It is important that the monitor is not part of the
application’s scope, as its usage would interfere with the ap-
plication and potentially lead to deadlocks.

When a thread Ti performs a load operation on a field
f , it starts by acquiring f ’s associated monitor. Then, it
adds an order constraint to the trace consisting of f ’s store
clock, implying that the current operation is to be ordered
after the store that wrote f ’s current value, but specifying
no order in relation to other loads. Thread and field state
are then updated by incrementing f ’s load count, and the
load operation itself performed. Finally, the monitor of f is
released. If Ti instead performs a store operation on f , it
still starts by acquiring f ’s monitor, but follows by tracing
an order constraint composed of the field’s store clock and
load count, implying that this store is to be performed after
the store that wrote f ’s current value and all loads that
read said value. Thread and field states are then updated by
increasing clocks and resetting f ’s load count. Finally, the
store is performed and the monitor released. Algorithm 1
lists pseudo-code for these recording processes.

Recording synchronization Unlike memory accesses, which
are performed on fields, monitor acquisitions are performed
on objects. As such, we associate with each object a logical
clock. Moreover, given that synchronization is not serialized
with memory accesses, we add a second clock to threads.
When a thread Ti acquires the monitor of an object o, it



Algorithm 2 Recording monitor acquisition operations
Parameters: o is the object whose monitor was acquired

method AFTERMONITORENTER(o)
t← GETCURRENTTHREAD()
TRACE(o.syncClock)
newClock ← MAX(t.syncClock, o.syncClock) + 1
o.syncClock ← newClock
t.syncClock ← newClock

end method

performs Algorithm 2. Note that we do not require a mon-
itor this time, as the critical section of o’s monitor already
protects the update of thread and object state.

3.2.2 Consistent Thread Identification
Ditto’s traces are composed of individual streams for each
thread. Thus, it is mandatory that we map record-time
threads to their replay-time counterparts. Threads can race to
create child threads, making typical Java thread identifiers,
attributed in a sequential manner, unfit for our purposes.
To achieve the desired effect, Ditto wraps thread creation
in a critical section and attributes a new identifier to the
child thread, its replay identifier. The monitor acquisitions
involved are replayed using the same algorithms that han-
dle application-level synchronization, ensuring that replay
identifiers remain consistent across executions.

3.2.3 Replaying
As each thread is created, the replayer uses its assigned
replay identifier to pull the corresponding stream of order
constraints from the trace file. Before a thread executes each
event of interest, the replayer is responsible for using the
order constraints to guarantee that all events on which its
outcome depends have already been performed. The trace
does not contain metadata about the events from which it
was generated, leaving the user with the responsibility of
providing a program (and input) that generates the same
stream of events of interest as it did at record-time. Ditto
nonetheless allows the original program to be modified while
maintaining a constant event stream, through the use of
Java annotations or command-line arguments. This is an
important feature for its usage as a debugging tool.

Replaying shared memory accesses Using the order con-
straints in a trace file, the replayer delays load operations
until the value read at record-time is available, while store
operations are additionally delayed until that value has been
read as many times as it was during recording. This approach
allows for maximum replay concurrency, as each memory
access waits solely for those events that it affects and is af-
fected by.

When a thread Ti performs a load operation on a field
f , it starts by reading a load order constraint from its trace,
extracting a target store clock from it. Until f ’s store clock
equals this target, the thread waits. Upon being notified and

Algorithm 3 Replaying load memory access operations
Parameters: f is the field whose value is being loaded into v

method WRAPLOAD(f ,v)
t← GETCURRENTTHREAD()
targetStoreClock ← GETNEXTLOADCONSTRAINT(t)
while f.storeClock < targetStoreClock do

WAIT(f)
end while
v ← LOAD(f)
t← GETCURRENTTHREAD()
if f.storeClock > t.clock then

t.clock ← f.storeClock
end if
f.loadCount← f.loadCount+ 1
NOTIFYALL(f)

end method

positively re-evaluating the conditions for advancement, it
is free to perform the actual load operation. After doing
so, thread and field states are updated and waiting threads
are notified of the changes. Algorithm 3 lists pseudo-code
for this process. If Ti was performing a store operation,
the process would be the same, but a store order constraint
would be loaded instead, from which a target store clock and
a target load count would be extracted. The thread would
proceed with the store once f ’s store clock and load count
both equalled the respective targets. State would be updated
according to the rules used in Algorithm 1.

Notice that during replay there is no longer a need for
protecting shared memory accesses with a monitor, as syn-
chronization between threads is now performed by Ditto’s
wait/notify mechanism. Furthermore, notice how Ditto al-
lows load operations that read the same value to happen con-
currently.

Replaying synchronization Replaying monitor acquisi-
tions is very similar to replaying load operations, with two
differences: (i) a sync order constraint is read from the trace,
from which a target sync clock is extracted and used as a
condition for advancement; and (ii) thread and object state
are updated according to the rules in Algorithm 2.

3.3 Recording granularity
Ditto records at the finest possible granularity, distinguish-
ing between different fields of individual instances when se-
rializing memory accesses. Previous deterministic replay-
ers for Java programs had taken sub-optimal approaches:
(i) DejaVu creates a global-order [2]; (ii) LEAP generates
a partial-order that distinguishes between different fields,
but not distinct instances [5]; and (iii) JaRec does the ex-
act opposite of LEAP [4]. The finer recording granularity
maximizes replay-time concurrency and reduces recording
overhead due to lower contention when modifying recorder
state. The downside is higher memory consumption associ-
ated with field states. However, when this becomes a prob-
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(b) Pruning constraints implied by previous constraints.

Figure 1. Example usage of Ditto’s constraint pruning al-
gorithm.

lem, Ditto is capable of operating with an object-level gran-
ularity.

Array fields are treated like object fields, but with a slight
twist. To keep field state under control for large arrays, a
user-defined cap is placed on how many field states an array
can have. Hence, multiple array fields may map to a single
field state and be treated as one program entity in the eyes of
the recorder and replayer. This is not an optimal solution, but
it goes towards a compromise with the memory requirements
of Ditto.

3.4 Pruning redundant order constraints
The base recording algorithm traces an order constraint per
event of interest. Though correct, it can generate unreason-
ably high amounts of trace data, mostly due to the fact that
shared memory accesses can comprise a very significant
fraction of the instructions executed by a typical application.
Fortunately, many order constraints are redundant, i.e., the
order they enforce is already indirectly enforced by other
constraints or program order. Such constraints can be safely
pruned from the trace without compromising correctness.
Ditto uses a pruning algorithm that does so on-the-fly.

Pruning order constraints leaves gaps in the trace which
our base replay algorithm is not equipped to deal with. To
handle these gaps, we introduce the concept of free runs,
which represent a sequence of one or more events of interest
that can be performed freely. When performing a free run
of size n, the replayer essentially allows n events to occur
without concerning itself with the progress of other threads.
Free runs are placed in the trace where the events they
replace would have been.

3.4.1 Program order pruning
Consider the recorded execution in Figure 1, in which ar-
rows represent order constraints traced by the base recording
algorithm. Notice how all dashed constraints enforce order-
ings between events which are implied by program order.
To prune them, Ditto needs additional state to be associ-
ated with fields: the identifier of the last thread to store a
value in the field, and a flag signaling whether that value
has been loaded by other threads. Potential load order con-
straints are not traced if the thread loading the value is the
one that wrote it. Thus, constraints 1, 2, 4, 10 and 11 in Fig-
ure 1(a) are pruned, but not constraint 6. Similarly, a poten-
tial store order constraint is not traced if it is performed by
the thread that wrote the current value and if that value has
not been loaded by other threads. Hence, constraints 3 and 5
are pruned, while 9 is not. Synchronization order constraints
are handled in the same way as load operations, but state is
associated with an object instead of a field.

3.4.2 Partial transitive reduction
Netzer introduced an algorithm to find the optimal set of
constraints to reproduce an execution [10]. Ditto does not
directly employ the algorithm, for reasons related to per-
formance degradation and the need for keeping flexibility-
limiting state, such as the usage of vector clocks, requiring
the number of threads to be known a priori. We do, however,
use it as inspiration for a novel partial transitive reduction
algorithm designed to find a balance between trace file size
reduction and additional overhead.

Transitive reduction prunes order constraints that enforce
orderings implicitly enforced by other constraints. In Figure
1, for example, TB performs three consecutive load opera-
tions which read the same value of x, written by TA. Given
that the loads are ordered by program order, enforcing the
order S2(x) → L3(x) is enough to guarantee that the fol-
lowing two loads are also subsequent to S2(x). As such,
constraints 7 and 8 are redundant and can be removed, re-
sulting in the final trace file of Figure 1(b).

To perform transitive reduction, we add a table to the state
of threads that tracks the most recent inter-thread interac-
tion with each other thread. Whenever a thread Ti accesses
a field f last written to by thread Tj (with Ti 6= Tj), f ’s
store clock is inserted in the interaction table of Ti at index
Tj . This allows Ditto to declare that order constraints whose
source is Tj with a clock lower than the one in the interac-
tion table are redundant, implied by a previous constraint.
Figure 2 shows a sample recording that stresses the partial
nature of Ditto’s transitive reduction, since the set of traced
constraints is sub-optimal. Constraint 4 is redundant, as the
combination of constraints 1 and 2 would indirectly enforce
the order S0(x) → L0(x). For Ditto to achieve this conclu-
sion, however, the interaction tables of TB and TC would
have to be merged when tracing constraint 2. The merge op-
eration proved to be too detrimental to efficiency, especially
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Figure 2. Example of partial transitive reduction.

given that the benefit is limited to one order constraint, as the
subsequent constraint 5, similar to 4, is pruned. In essence,
Ditto is only aware of thread interactions that span a maxi-
mum of one traced order constraint.

3.5 Thread Local Objects Static Analysis
The JVM’s memory model provides some guarantees with
regards to the locality of variables, namely that method-local
variables cannot be shared. Ditto can easily avoid tracing
accesses to these variables, as they are accessed by a spe-
cific family of bytecodes. There remain, however, a lot of
accesses to static and instance fields which are not involved
in inter-thread interactions, but about which there is no local-
ity information, forcing us to conservatively consider them a
source of non-determinism and trace their outcome.

Thread Local Objects (TLO) static analysis provides lo-
cality information on class fields. Its usage in deterministic
replay was pioneered by the authors of LEAP [5]. The out-
put of the analysis is a classification of either thread-local
or thread-shared for each class field. A stand-alone applica-
tion uses the TLO implementation in the Soot bytecode op-
timization framework1 to generate a report file that lists all
thread-shared fields of the analyzed application. This file can
be fed as optional input to Ditto, which uses the information
to avoid intercepting accesses to thread-local fields.

3.6 Array escape analysis
TLO analysis provides very useful information about the lo-
cality of class fields, but no information is offered on array
fields. Without further measures, we would be required to
conservatively monitor all array field accesses. Ditto uses
compile-time escape analysis on array references to avoid
monitoring accesses to fields of arrays declared in a method
whose reference never escapes that same method. The analy-
sis is very simplistic, but it can still avoid some useless over-
head at little cost. Nonetheless, there is a lot of unexplored
potential for this kind of analysis on array references to re-
duce recording overhead.

1 http://www.sable.mcgill.ca/soot/

3.7 Trace file
Ditto’s traces are composed of one order constraint stream
per record-time thread. Organizing the trace by thread is ad-
vantageous for various reasons. The first is that it is easy to
intercept the creation and termination of threads. Intercept-
ing these events is crucial for the management of trace mem-
ory buffers, as they must be created when a thread starts and
dumped to disk once it terminates. Moreover, it allows us to
place an upper limit on how much memory can be spent on
memory buffers, as the number of simultaneously running
threads is limited and usually low. Other trace organizations,
such as the field-oriented one of LEAP [5], do not benefit
from this – the lifetime of a field is the lifetime of the appli-
cation itself. A thread organized by instance would be even
more problematic, as intercepting object creation and collec-
tion is not an easy task.

3.7.1 Trace file format
The trace file is organized as a table that maps thread replay
identifiers to the corresponding order constraint streams.
The table and the streams themselves are organized in a
linked list of chunks, as a direct consequence of the need to
dump memory buffers to disk as they become full. Though
sequential I/O is generally more efficient than random I/O,
using multiple sequential files (one per stream) turned out
to be less efficient than updating pointers in random file
locations as new chunks were added to it. Hence, Ditto
creates a single-file trace.

3.7.2 Logical clock value optimization
Given that logical clocks are monotonically increasing coun-
ters, they are expected to grow to very large values during
long running executions. For the trace file, this would mean
reserving upwards of 8 bytes to store each clock value. Ditto
uses a simple but effective optimization that stores clock val-
ues as increments in relation to the last one in the stream, in-
stead of as absolute values. Considering that clocks always
move forward and mostly in small increments, the great ma-
jority of clock values can be stored in 1 or 2 bytes.

4. Evaluation
We evaluate Ditto by assessing its ability to correctly replay
recorded executions and by measuring its performance in
terms of recording overhead, replaying overhead and trace
file size. Performance measurements are compared with
those of previous approaches, which we implemented in
JikesRVM using the same facilities used by Ditto itself,
namely (a) DejaVu [2], a global-order replayer; (b) JaRec
[4], a partial-order, logical clock-based replayer; and (c) LEAP
[5], a recent partial-order, access vector-based replayer. We
followed their respective publications as closely as possi-
ble, introducing modifications when necessary. For instance,
DejaVu and JaRec, originally designed to record solely syn-
chronization races, were extended to deal with all data races.



Moreover, all replayers are allowed to benefit from the same
static and compile-time analysis used by Ditto to reduce the
amount of intercepted events.

We start by using a highly non-deterministic microbench-
mark and a number of applications from the IBM Concur-
rency Testing Repository2 to assess replay correctness. This
is followed by a through comparison between Ditto’s run-
time performance characteristics and those of the other im-
plemented replayers. The results are gathered by perform-
ing a microbenchmark and recording execution of selected
applications from the Java Grande and DaCapo benchmark
suites. All experiments were conducted on a 8-core 3.40Ghz
Intel i7 machine with 12GB of primary memory and running
64-bit Linux 3.2.0.

4.1 Replay correctness
In the context of Ditto, an execution replay is said to be
correct if the shared program state goes through the same
transitions as it did during recording, even if thread local
state diverges. Other types of deterministic replayers may
offer more relaxed fidelity guarantees, as is the case of the
probabilistic replayers PRES [11] and ODR [1].

Microbenchmark The microbenchmark was designed to
produce a highly erratic and non-deterministic output, so
that we can confirm the correctness of replay with a high
degree of assurance. This is accomplished by having threads
randomly increment multiple shared counters without any
kind of synchronization, and using the final counter values as
the output. After a few iterations, the final counter values are
completely unpredictable due to the non-atomic nature of the
increments. Naively re-executing the benchmark in hopes
of getting the same output will prove unsuccessful virtually
every time. On the contrary, Ditto is able to reproduce the
final counter values every single time, even when stressing
the system by using a high number of threads and iterations.
The microbenchmark is available online3.

IBM concurrency testing repository The repository con-
tains a number of small applications that exhibit various con-
current bug patterns while performing some practical task.
Table 1 lists the evaluated applications along with the con-
current bug patterns they exhibit [3]. Ditto is capable of cor-
rectly reproducing each and every one of these bugs. Al-
though these applications do not constitute the whole bench-
mark suite, they do amount to the subset of it which does
not rely on input non-determinism, as input reproduction is
outside Ditto’s scope and a solved research problem [13].

4.2 Performance results
After confirming Ditto’s capability to correctly replay many
kinds of concurrent bug patterns, we set off to evaluate its
performance by measuring recording overhead, trace file

2 https://qp.research.ibm.com/concurrency testing
3 https://github.com/gdeOo/ditto

Application Bug Pattern

Account Wrong Lock or No Lock
Airline Tickets Non-atomic Operation
Booking Non-atomic Operation
Bounded Buffer notify instead of notifyAll,

Deadlock
Bubble Sort Non-atomic Operation,

Orphaned Thread
Linked List Non-atomic Operation
Liveness Dormancy, Lost notify
Loader sleep Interleaving
Lottery Non-atomic Operation,

Wrong Lock or No Lock
Manager Non-atomic Operation
Merge Sort Non-atomic Operation
Pingpong Wrong Lock or No Lock
Piper Condition for wait, Deadlock
Prod. Consumer Orphaned Thread
Shop sleep Interleaving,

Double-checked Locking

Table 1. Summary of evaluated applications from the IBM
Concurrency Testing Repository

size and replaying overhead. To put the experimental results
in perspective, we use the same performance indicators to
evaluate the three implemented state-of-the-art determinis-
tic replay techniques for Java programs - DejaVu (Global),
JaRec and LEAP.

4.2.1 Microbechmark
The same microbenchmark used to assess replay correctness
is now used to compare Ditto’s performance characteristics
with those of the other replayers, across multiple target ap-
plication properties: (i) number of threads, (ii) number of
shared memory accesses per thread, (iii) load to store ratio,
(iv) number of fields per shared object, and (v) number of
shared objects. The results are presented in Figures 3 and 4.
Note that graphs related to execution times use a logarith-
mic scale due to the order of magnitude-sized differences
between replayers’ performance.

Effect of the number of threads Record and replay execu-
tion times grow linearly with the number of threads, with
Ditto taking the lead in absolute values by one and two
orders of magnitude, respectively. As for trace file sizes,
Ditto stays below 200Mb, while no other replayer comes un-
der 500Mb, with the maximum being achieved by LEAP at
around 1.5Gb.

Effect of the number of memory access operations The
three indicators increase linearly with the number of mem-
ory accesses for all algorithms. We attribute this result to
two factors: (i) none of them keeps state whose complex-
ity increases over time, and (ii) our conscious effort dur-
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Figure 3. Microbenchmark’s results as a function of the number of threads, accesses per thread and load:store ratio.

ing implementation to keep memory usage constant. Ditto
is nonetheless superior in terms of absolute values.

Effect of the load to store ratio Ditto is the only evaluated
replayer that takes advantage of the semantic differences be-
tween load and store memory accesses. As such, we expect it
to be the only replayer to positively react in the presence of a
higher load:store ratio. The experimental results are consis-
tent with this expectation, as we can observe reductions in
both overheads and a very significant reduction of the trace
file size.

Effect of the number of fields per shared object Given
that only Ditto and LEAP can distinguish between different
fields, we expect them to be the only replayers that improve
performance as more shared fields are present, reducing con-
tention. This is indeed what happens in terms of recording
and replaying execution times. However, LEAP actually in-
creases its trace file size as the number of fields increases, a
result we believe to be caused by their access vector-based
approach to recording.

Effect of the number of shared objects Our expectations
are similar to those of the previous experiment, but with
JaRec in place of LEAP, as it is the only replayer besides
Ditto that distinguishes between distinct instances. This is
the only axis along which Ditto is overtaken by a competitor,
with JaRec taking the lead in recording execution time and

trace file size past the 64 object mark. However, JaRec fails
to take advantage of the number of shared objects during
replay.

Effect of the number of processors The experimental re-
sults were obtained by limiting the JikesRVM process to a
subset of processors in our 8-core test machine. Ditto is the
only algorithm that lowers its record execution time as the
number of processors increases, promising increased scala-
bility to future deployments and applications in production
environments. Additionally, its trace file size increases much
slower than that of other replayers and the replay execution
time is three orders of magnitude lower than the second best
replayer at the 8 processor mark.

Trace file compression Trace files generated by Ditto can
greatly benefit from compression algorithms. Compressing
the trace files generated during the microbenchmark exper-
iments with gzip4 yielded an average compression rate of
41.8% with a standard deviation of 7.0%.

Overall observations Looking at the results of all mi-
crobenchmark experiments, it is clear that Ditto is the most
well-rounded deterministic replayer. It consistently performs
better than its competitors in all three indicators, while other

4 http://www.gzip.org
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Figure 4. Microbenchmark’s results as a function of the number of fields per object, shared objects and processors.

replayers tend to overly sacrifice trace file size or the replay
execution time in favor of recording efficiency.

4.2.2 Java Grande benchmark
The Java Grande benchmark suite5 contains ”Grande” ap-
plications, with large requirements in either memory, band-
width or processing power. The multi-threaded version of
the suite contains three applications: (a) MolDyn, a molecu-
lar dynamics simulation; (b) MonteCarlo, a monte carlo sim-
ulation; and (c) RayTracer, a 3D ray tracer. Table 2 reports
on the results in terms of recording overhead and trace file
size. Considering them, two main remarks can be made. To
start with, even though Ditto’s record-time performance is
superior to that of competing replayers, its recorder is still
unreasonably inefficient for production environments. The
second is that the trace files generated by Ditto are insignif-
icantly small. Considering the high recording overhead, this
can only mean that most monitored memory accesses were
not involved in inter-thread interactions, a fact which is not
visible in the trace files of other replayers, with the exception
of JaRec’s recording of MonteCarlo. The result suggests that
the static analysis performed on the application did not do a
satisfying job in identifying thread-local memory accesses.

5 http://www.epcc.ed.ac.uk/research/java-grande

4.2.3 DaCapo benchmark
The DaCapo benchmark suite6 consists of a set of real world
applications, many of which are concurrent, exhibiting dif-
ferent levels of inter-thread interaction granularity. We eval-
uate the record-time performance of Ditto and the other re-
players using the lusearch, xalan and avrora applications
from the 9.12-bach version of DaCapo, with their default
parameters. The results are shown in Table 2 and highlight
an interesting observation: for applications with very coarse-
grained sharing, as is the case of lusearch and xalan, Ditto’s
higher complexity is actually detrimental. The lack of stress
allows the other algorithms to perform better in terms of
recording overhead, albeit generating larger trace files (with
the exception of JaRec). Nonetheless, Ditto’s recording over-
head is still quite low.

5. Conclusions and Future Work
We presented Ditto, a deterministic replay system for the
JVM, capable of correctly replaying executions of imper-
fectly synchronized applications on multi-processors. It
uses a novel pair recording and replaying algorithms that
combine state-of-the-art and original techniques, including
(a) managing differences between load and store memory
accesses, (b) serializing events at instance field granular-

6 http://dacapobench.org



Ditto Global JaRec LEAP
Overhead Trace Overhead Trace Overhead Trace Overhead Trace

MolDyn 2831% 239Kb >181596%* >2Gb* 3887% 188Mb >13956%* >2Gb
MonteCarlo 390% 248Kb 79575% 1273Mb 410% 0.39Kb 10188% 336Mb
RayTracer 4729% 4.72Kb >164877%* >2Gb* 5197% 21Mb >9697%* >2Gb*
lusearch 4.56% 3Kb 1.89% 288 Kb 2.26% 3Kb 0.69% 564Kb
xalan 5.23% 6kb 4.52% 475Kb 2.71% 0.2Kb 2.73% 485Kb
avrora 378% 22Mb 2771% 565Mb 372% 23Mb –* >2Gb*

* Current implementation cannot deal with trace files over 2 GB.

Table 2. Record-time performance results for the MolDyn benchmark of the Java Grande suite.

ity, (c) pruning redundant constraints using program or-
der and partial transitive reduction, (d) taking advantage
of TLO static analyses, escape analysis and compiler op-
timizations, and (e) applying a simple but effective trace file
optimization. Ditto was successfully evaluated to ascertain
its capability to reproduce different concurrent bug patterns
and highly non-deterministic executions. Performance re-
sults show that Ditto consistently outperforms previous Java
replayers across multiple application properties, in terms
of overhead and trace size, being the most well-rounded
system. Nonetheless, Ditto’s recording overhead is still too
high for production environments when targeting applica-
tions with fine-grained inter-thread interactions. Evaluation
results suggest that future efforts to improve deterministic
replay should be focused on improving static analysis to
identify thread-local events.
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