
SmartPubSub@IPFS - Extended Abstract

Pedro Agostinho
Instituto Superior Técnico

Lisbon,Portugal
pedro.eduardo@tecnico.ulisboa.pt

Abstract

The InterPlanetary File System (IPFS) is a hyper-
media distribution protocol addressed by content
and identities. IPFS enables the creation of com-
pletely distributed applications. One of the most ef-
ficient and effective ways to distribute information
is through the use of notifications or other meth-
ods, which involve a producer of content (publisher)
that shares content with other interested parts (sub-
scribers). Currently, IPFS has some working imple-
mentation of topic-based pub-sub systems under an
experimental flag. The goal of this work is to develop
a content-based pub-sub system (with subscriptions
based on predicates about event content) to dissem-
inate information on top of IPFS in an efficient and
decentralized way, by exploring its current infrastruc-
ture. We design two protocols: ScoutSubs protocol
that is completely decentralized; FastDelivery proto-
col that is centered in the publisher. With these two
approaches, we pretend to show the different advan-
tages of having each of these protocols simultaneously
by comparing ScoutSubs’ complete decentralization
and FastDelivery’s centralization at the data source.

1 Introduction

Today’s Web is managed by a few big players
(Google, Amazon, Microsoft) that, throughout the
years, added their mark to the Web and started in-
corporating smaller adversary companies to maintain
their relevance. These major tech corporate giants
make the current Web format highly centralized in a
few data-centers own by them, making information
easily censorable and allowing the use and control of
their users’ private data.

The InterPlanetary File System was born to help
create a decentralized Web, where users play a cen-
tral role in the distribution and storage of information
without the direct intervention of big corporate orga-
nizations. We can draw a parallel between what IPFS
is trying to achieve and what web broadcast services

like YouTube and others have done to diversify the
current media, taking the market’s control from the
mainstream media companies and placing it on the
content producers.

Currently, IPFS is a file-sharing system operating
over a peer-to-peer network, and it has, under an ex-
perimental flag, some topic-based pub-sub systems.
This project’s goal is to provide the best possible
content-based pub-sub alternative to work over IPFS.
To do so, we investigated relevant Publish-Subscribe
and peer-to-peer content distribution systems.

1.1 Pub-Sub over IPFS

This project can be considered a ”marriage” between
pub-sub and p2p as they complement themselves. On
one side, we have Publish-Subscribe systems, that
implement a communication paradigm that allows a
total decoupling between the event source and the
interested parties of that event. On the other, we
have peer-to-peer systems, which are the most scal-
able and fault-tolerant networks. We may conclude
that a pub-sub system over p2p networks would al-
low data dissemination over an environment like the
internet, which requires a highly scalable and fault-
tolerant system [1].

A smart pub-sub Currently, IPFS content-
addressing system works with Kademlia’s DHT and
the Bitswap protocol [2]. This mechanism is a static
one meaning it needs a search effort to trigger a data
object retrieval. Another important detail about this
static content-addressing is that the content is or-
ganized based on its physical properties,meaning its
raw bits and data type. In the IPFS community,
some topic-based systems were created (e.g., Pul-
sarcast [3]), being GossipSub [4] the main one be-
ing tested/improved. The nonexistence of a content-
based pub-sub in IPFS and the Web opens space for
our work to build a content-based approach for it.

So the goal of this work is to provide a dy-
namic semantic-addressing layer (meaning content-
addressing a human can understand) where the in-

1



formation is routed through the network depending
on the users’ interests. A pub-sub system is what
allows dynamic addressing, meaning users expresses
to the network their interests, and information of in-
terest to them upon production is forwarded towards
them. Both layers can work together, as in the ex-
ample ilustrated by Figure 1.

Figure 1: Peers interacting with the current static
IPFS layer and a dynamic pub-sub layer

2 Related Work

In this section we present this work’s research areas.
We present the role and characteristics of Publish-
Subscribe systems, and the different characteristics
of peer-to-peer systems, in special content distri-
bution ones.

2.1 Publish-Subscribe

Publish-Subscribe is a message paradigm that pro-
vides complete decouplement between data con-
sumers and data producers both in time, space and
synchronization. This message paradigm main actors
are the publisher (producer of events), the subscriber
(consumer of specific events), and the information
bus. This last one is the medium where subscrip-
tions made and published events are forwarded and
the medium finds a way to notify the interested sub-
scribers of the published events.

Variants There are three types of pub-sub systems
regarding the granularity of the subscriptions and

events identifiers/predicates:

• Topic-based: In a topic approach the events
and subscriptions are addressed with a topic.
This approach is the simplest and easiest to im-
plement, being a topic a keyword that identifies
the event or subscriber interest. An examples of
topic-based pub-sub architectures is Rappel [5].

• Content-based: Sometimes a topic does not
describe the interest of a subscriber, resulting in
receiving several unwanted events. A content-
based alternative will prove more precise and
might even be more efficient regarding band-
width consumption. In this approach, subscrip-
tions are represented by predicates that not only
represent topics and subtopics but also range
queries. Examples of content-based pub-sub ar-
chitectures are Hermes [6], Wormhole [7] and
PopSub [8].

• Type-based: With a type-based approach, an
event is strictly characterized by a scheme that
associates it with its type, enabling a closer in-
tegration of the language and the middleware
code. Moreover, type safety can be ensured at
compile-time by parameterizing the resulting ab-
straction interface with the type of the corre-
sponding events. One example of a type-based
pub-sub system is FlexPath [9].

Architectural Details Today several types of
pub-sub systems have been designed and imple-
mented, being one of the main characteristics the
centralization degree. Pub-Subs may be implemented
using a central server, distributed servers or a com-
pletely decentralized approach where nodes have the
same role. The more centralized the approach the
less efficient is the routing and the structure is less
tolerant to failures, but on the other hand, reliability
and persistence of the events is easier guaranteed and
the algorithms are lighter and easily implemented

The other main characteristics is the strategies
used by the pub-sub to forward the events and sub-
scription, which can belong to these main groups:

• Rendezvous: in this approach, some nodes on
the network will provide a point of contact be-
tween publishers and subscribers. Rendezvous

2



can be assigned for each type of event by hash-
ing an event header or content to a network’s
addressable space or by checking a predefined
list of rendezvous nodes.

• Filtering: this approach can be used in differ-
ent scenarios, but its goal is to transform a sub-
scription into a filter. This way, once a node
receives a filter, it may attempt to merge it with
previous ones, reducing the number of filters it
needs to check. This approach needs to imple-
ment a mechanism of distribution of the filters,
redirecting the filters to a rendezvous or event’s
publishers.

• Gossip: one alternative approach is to dif-
fuse events via gossiping. Here subscribers are
grouped by interest, and publishers somehow for-
ward their events to some of the interested sub-
scribers. These subscribers then guarantee the
event’s forwarding between the remaining inter-
ested ones, relying on the ability of the sub-
scriber to find the best neighboring peers based
on its interests.

• Flooding: the last approach is the flooding of
events or subscriptions around an entire net-
work, requiring a cache to prevent duplication
of events. This approach is the easiest to imple-
ment but wastes bandwidth by forwarding un-
wanted events and does not scale well.

2.2 Peer-to-Peer

What characterizes a p2p system is commonly seen as
its decentralized sharing of computational resources
on a particular network, maintaining it a properly
functioning even in the presence of node failures, con-
nectivity problems, and churn.

P2P networks are highly scalable and fault toler-
ante because every node acts as both a server and
client, and so, the number of servers grows linearly
with the number of clients, preventing server bottle-
necks.

There are several p2p application types, but we
are mainly interested in content distribution sys-
tems, which is the category that incorporates IPFS.
These are designed for the sharing of digital media
and other data between users. This systems range

from simple direct file-sharing applications to more
sophisticated systems that create a distributed stor-
age medium for securely and efficiently publishing,
organizing, indexing, searching, updating, and re-
trieving data.

During our research we came with two main char-
acteristics of this content distribution systems, being
the first the level of decentralization of these con-
tent distribution overlays:

• Purely Decentralized: all nodes in the net-
work perform the same tasks, acting both as
servers and clients, and there is no central co-
ordination of their activities. Some architecture
examples are Kademlia [10], and CAN [11].

• Partially Centralized: is similar to purely de-
centralized systems, although some nodes as-
sume a more important roles, like acting as
local indexes for files shared by neighboring
peers. Since these super-nodes are dynamically
assigned by the overlay and they are not single
points of failure. One example of this is Kazaa
[12].

• Hybrid Decentralized: in these systems,
there is a central server facilitating the interac-
tion between peers by maintaining directories of
metadata or describing the shared files stored
by the peer nodes. Although the end-to-end in-
teractions take place directly between two peer
nodes, the central servers facilitate these interac-
tions by performing lookups and identifying the
nodes storing the files. One example of this is
Publius [13].

The second is a Structure criteria referring how
the overlay organizes. In more structured approaches
content is placed in specific locations of the overlay,
making data fetching faster, more efficient, and scal-
able. On the other hand, the placement of content is
unrelated to the overlay’s topology in unstructured
approaches, making this approach better in environ-
ments with transient node population.

3 Architecture

From the start, we tried to design one optimal solu-
tion using the existing IPFS routing overlay (Kadem-

3



lia DHT). Because Kademlia [10] is a structured ap-
proach, we saw two options: build a structured ap-
proach over it or only using it as a bootstrapping
mechanism to enter a gossip approach. After sketch-
ing up some architectures, we decided to go with a
more structured solution.

But there is a particularity with Kademlia peer Id
distribution. In a network with Kademlia as its rout-
ing overlay, peers are assigned an Id and establish
connections with other based only on Id distancing
between them. That makes IPFS peer connection
not geographically oriented, increasing the network’s
resilience, but reducing performance by allowing re-
dundant hops like US-CHINA-US-CHINA.

• Decentralized Protocol - ScoutSubs: This
protocol will provide a pub-sub system using the
existing IPFS routing tables and adding a filter-
ing structure inspired by the Hermes system [6]
to disseminate events from pub to sub based on
their content and the content of the subscribers’
subscriptions. ScoutSubs allows its users to pos-
sess a global semantic-based knowledge of their
network.

• Publisher Centered Protocol - FastDeliv-
ery: This protocol’s focus is to deliver events
as fast as possible. We provide an application-
level multicast, geographically oriented, to pro-
vide low latency event delivery. The publisher
coordinates its pub-sub service and may request
its subscribers to disseminate its events making
the IPFS’ overlay used only for advertising. This
protocol becomes interesting when subscribers
are interested in a source of information instead
of a global notion of content.

Our system’s network stack is comprised of three
main layers illustrated in Figure 2. At the bottom we
have the libp2p host, which represents a node at IPFS
and includes all its properties and information. For
our pub-sub we will use a node’s Id and its address.

Representing IPFS content routing we have an in-
stance of its Kademlia DHT, in which we will use its
routing table to reach every key (rendezvous) closest
peer in the network in a logarithmic number of steps.

Our pub-sub layer will have both our protocols that
will use the ones below to provide an user or external

Figure 2: Pub-Sub Protocol Stack

application the possibility of publishing or subscrib-
ing to events in a content/meaningful way.

3.1 Expressing Content

In both protocols, the way a subscriber expresses its
interest and the publisher expresses the content of its
event is by assigning it a predicate.

A predicate is an expression assigned to a piece of
data (event/message/file) that attributes a semantic
meaning to it, allowing human comprehension of its
content. This expression is composed by attributes
that add specific meaning to a predicate.

For our project, we only use two types of attributes:

• Topic: should be single word key phrases ca-
pable of capturing the essence of the described
data. Common examples can be names of coun-
tries, companies, bands, clubs or sports.

• Range Queries: are attributes with numeri-
cal meaning, composed by a characteristic and
its numerical interval/value. Common examples
of these numerical characteristics can be price,
temperature, height or dates. We cannot forget
that for this to work, all predicates need to use
the same units (e.g. use dollars for prices and
Celsius for temperature).

Predicates need to be assigned to events published
on the system and to the subscriptions, so that our

4



pub-sub may understand who is interested in what.
To simplify, predicates are assigned to events by their
publishers and to subscriptions by the subscribers.

3.2 ScoutSubs Protocol

As mentioned before, the ScoutSubs protocol pro-
vides a pub-sub middleware over IPFS’ content rout-
ing overlay. The base design of this system was in-
spired by Hermes [6], for it shares a topic and a fil-
tering layer over it that provides a content-based ap-
proach.

Rendezvous The topic-based layer is created by
the rendezvous nodes. There are as many rendezvous
nodes as attributes, being the one representing the at-
tribute football the closest peer to the key generated
by its string.

The purpose of these nodes is to provide a point
of reference for the subscription forwarding. So, if
we have the subscription (football, Tom Brady), we
first see which of these attributes has the closest Id to
ours, and then we forward the subscription towards
it, minimizing the number of hops. On the other
hand, the publisher needs to send its events towards
all the rendezvous nodes of its event attributes. Fig-
ure 3 illustrates that.

Figure 3: Subscription Forwarding

Filtering To provide a content-based approach,
we implemented a filtering mechanism over the ren-
dezvous nodes. Before a subscription is sent towards
the rendezvous node, it leaves its filter (subscription)
at each intermediate node. This way, when a pub-
lisher forwards the event to the rendezvous node, once
it arrives at it, it will follow the reverse path of the

subscriptions back to the interested subscribers, as
Figure 4 shows.

All the filtering information is kept at a filtertable
which initially is a replica of the kademlia routing
table [10]. Upon receiving subscriptions from those
nodes, it adds filters to those node’s entries. When
receiving a subscription from a new node, it needs
to create a new entry at the table and register the
filter. Filters upon received can be merged or ignored
if the result is the same in the forwarding process, to
minimize the size of the filtertables.

Figure 4: Event Forwarding

3.2.1 Redirect Mechanism

To optimize event forwarding, we decided to add a
mechanism that would allow an event to jump as
many hops as possible without compromising its de-
livery to all interested subscribers. To make this hap-
pen, when a node receives a filter from one peer to-
wards a rendezvous node, it will always forward up-
stream the option to provide a redirect (jump over
itself), if there were no filters forwarded from other
peers to that same rendezvous, as shown in Figure 5.
We need then to keep track of how many filters were
forwarded to each rendezvous. If the number of fil-
ters is below two, we may provide a shortcut option,
but if the number gets bigger or equal to two, we
must warn the node upstream that the shortcut is no
longer valid.

The first immediate advantage is that we reduce
the number of hops on the network, saving band-
width and reducing event delivery time. The other
important point is that the peers that are jumped
over no longer have to check their filtertables, saving
their precious CPU cycles. This fact is even more in-
teresting because shortcuts are used more frequently

5



Figure 5: Forwarding using shortcut

on unpopular events, meaning that searching a filter
table with lots of filters to then have only one hit
avoids wasting CPU unnecessarily.

3.2.2 Fault Tolerance

To tolerate the failure of any nodes along the dissem-
ination path (rendezvous to subscribers), the filtering
information must be backed up somehow. To achieve
this, we decided that every node will have f back-
ups and that these are the peers closer to the node
in question by Id. This backing up mechanism al-
lows our system to tolerate f failures of consecutive
nodes by Id, meaning that in a large network where
node failures occur independently of a peer’s Id, our
system can withstand several node failures.

The information relevant to each node are the fil-
ters it contains in its filtertable, being then essential
to back up the filtertable to those peer’s backups.
The exception to the rule is the filtering information
arriving at the rendezvous since it needs to be backed
up to the closest nodes to the rendezvous attribute
key, instead of the closest ones to its Id. Another
important detail is that the node upstream (closer to
the rendezvous) also needs to know the backup nodes
of the peers it receives the filters. Having this neces-
sity means that each entry of the filtertable, besides
having Id, endpoint address, and filters, also needs to
have that node’s backups endpoints.

With all of this, once an event arrives at a node,
it first checks his filtertable to know which ones are
interested in a particular event and then tries to for-
ward it to them. If one node is not responding,
it will send the event to the first working backup
of that node. Once the backup receives the event
with a backup flag activated, it will check the copied

Figure 6: Forwarding event using backup

filtertable of the failed node and forward the event
downstream. We can see the backup chain working
in Figure 6.

Rendezvous management The role of the ren-
dezvous node has one particularity because even if it
is properly functioning, it also needs to be a long-lived
node, meaning it needs to be working for an entire
refreshing cycle. This working time requirement is
necessary since a new node entering the network and
closer to the key than its previous rendezvous node
will become the new rendezvous node for that at-
tribute. But the new rendezvous node will be missing
most of the filtering data, so until it has not worked
for a complete refreshing cycle, besides sending to the
ones he already knows, it needs to redirect the events
to an old rendezvous or one of its old backups.

Backups of intermediate nodes do not need to be
long-lived nodes because these are fixed and refreshed
upon change.

Building upon underlying Kademlia’s module
The path between the subscribers and rendezvous
nodes needs to be backed up, but all other functions
and properties are inherited from Kademlia. The
pathway from the publisher to the rendezvous node
only uses information from the Kademlia’s module,
not needing any backup mechanism besides the fault
tolerance already present at Kademlia’s operations.

3.2.3 Achieving Reliability

When a peer crashes mid forwarding process, the sub-
scribers downstream may not receive the event. To
ensure this does not happen, we need to implement a
tracking mechanism resembling an acknowledgement

6



chain. The trickiest part is that implementing it in a
completely decentralized network is a bit inefficient,
but still, we pretended to build a fully reliable version
of our system.

Between the publisher and the rendezvous node,
the publisher will keep forwarding the event towards
the rendezvous node until it receives and sends an
acknowledgment back at him. Before acknowledging
the reception and process of the event to the pub-
lisher, the rendezvous node will track the event and
send tracking requests to all its backups. Tracking
means that the rendezvous will check its filtertable
and create a map with all interested peers of that
event. This way, once it receives an acknowledgment
from every peer, the event will be considered suc-
cessfully delivered. In the worst-case scenario, it will
resend the event to the peers that have not confirmed
yet.

Part of this mechanism is repeated at the peers
downstream, where they keep a map with the inter-
ested peers, and upon receiving all acknowledgments,
they forward their acks upstream. This structure also
allows resending each event only to those who have
not received it yet. The intermediate nodes have a
passive role, being the rendezvous node, the manager
of the resending process, the one that forwards the
events back if their were not confirmed at all peers
before a timeout.

3.2.4 Protocol Maintenance

To maintaining the protocol working over time, there
needs to be management of the filtering information.
Because ScoutSubs does not allow unsubscribing op-
erations due to a subscription being a filter that can
be merged or omitted, we need to establish a refresh-
ing routine.

To ensure that all subscriptions on the system are
still relevant, we force the subscriber to resubscribe to
the predicates it is still interested in every period of
time t. Every 2t time, every peer on the system will
replace its main filtertable with a secondary one that
was being compiled. A new secondary filter table is
then created to receive new and resubscribed filters.
Besides providing an option to abandon a previous
subscription and avoiding unbounded growth use of
storage usage, it also allows the system to regenerate
completely its fault tolerance capacity back to its f

maximum every 2t time.

3.3 FastDelivery Protocol

As previously mentioned, FastDelivery’s main objec-
tive is to disseminate events as fast as possible. To
do so, we need to escape IPFS’ overlay structure and
in part centralize the event dissemination at the pub-
lisher. The publisher could still provide events to the
subscribers via ScoutSubs but would have to manage
a group of premium subs, to which it sends events
directly or in 2 geographically oriented hops (over-
lay hops). Premium subscribers need to provide the
publisher their endpoint, location (Region/Country),
and resources (network and CPU-wise).

Motivation The reason of designing this protocol
alongside ScoutSubs was to reflect when a more cen-
tralized approach to disseminate information is the
best option. In this case, when a subscriber is not
searching for a topic/content of a publication but
a particular publisher with a certain reputation or
popularity, this alternative becomes a better option.
Because the goal of this project is to design a decen-
tralized content-based pub-sub over p2p, we decided
to develop a really simple protocol for reflecting the
mentioned point.

3.3.1 Design

In this protocol, we decided that a publisher man-
ages multicast groups. A multicast group is a struc-
ture a publisher manages containing its interested
subscribers and their subscriptions predicates. Each
multicast group is represented by its publisher Id and
the group’s predicate (apple/france/price[0,1]).

To manage the multicast group’s subscribers and
recruit them if the publisher needs assistance, we de-
cided to group subscribers into regions, ordered by
capacity so that once one gets too many subscribers,
the most powerful one gets recruited to help the pub-
lisher.

For organizing the subscribers’ predicates, we
saved their subscriptions in a simple list in the case
of all predicate’s attributes being of the topic type.
If there are any range type attributes, we will use a
binary tree to organize the subscription. If the mul-
ticast group’s predicate has several range attributes,

7



he would need the same number of range trees and
intercept their query results.

For the sake of keeping the protocol simple, capac-
ity is the number of subs a subscriber can help the
publisher manage. After agreeing to help the pub-
lisher, the helper will only support the structure that
manages the subscriptions’ predicates to forward the
publisher’s events to the interested subs. The support
structure is a list or range trees with the subscribers
delegated by the publisher.

In terms of advertising a publisher’s multicast
group, we use advertisement boards at the ren-
dezvous nodes of the attributes of the group’s predi-
cate. A publisher may also prefer to keep its endpoint
address private.

4 Implementation

We implemented our pub-sub in golang, and kept
several variants with and without the tracking and
redirect mechanisms [14]. We developed a testing
environment using testground [15] and implemented
several several testing scenarios to test our pubsub
[16].

5 Evaluation

The following results were achieved using an Ubuntu
VM with 126GB of RAM and a 16-core CPU. Besides
the graphics and data presented here, more detailed
data of this and other experiences can be found on
our results page [17].

5.1 Variant’s testing

Here we will present the results of each variant tested
through different scenarios. The goal is to analyze
if the redirect and reliable mechanisms are working
and are not inefficient. This test battery allowed us
to analyze and correct some bugs our system had in
the development phase. Each test run in this section
had a 60 node network.

Correctness To know how correct our pub-sub is,
we compared the duplicated and missing events by
each variant at each scenario. In all variants and sce-
narios, our pub-sub performed with 100% reliability

and produced in all variants some duplicated events.
The FastDelivery approach had perfect results for it
manages its subscribers directly, resource consump-
tion was slightly lower than the other variants. Be-
cause our experience used a 60 node network, and
each node had around 30-40 peers, communication
is mostly direct (2-4 hops) and redundant paths are
common.

Event Latency The results from a normal scenario
were an average event latency for the used network
composition and configuration of 200-250 ms. In a
scenario subscription being made at the time of pub-
lishing, the results of the average event latency were
of 200-250 ms. In a scenario with 10 times more
events being published than normally, the average
event latency was of 1780-2500 ms. In a scenario
with 2 failing peers, the average event latency was of
200-270 ms. These results reflect the higher the event
production is, the higher the event latency will be.

Resource Consumption Looking at the memory
and CPU consumption of our pub-sub during our test
runs, an higher memory usage is followed by a higher
CPU time usage. Each scenario has different periods,
as in the event burst scenario, where its testing period
is around 12 seconds, and the normal one is less than
half that.

When looking to the Table 1, we can see that the
reliable variants, especially in the event burst sce-
nario, have a substantially higher CPU and memory
usage. The reasons for this are the extra relation
between tracker and rendezvous node and the man-
agement of the acknowledge chains. The impact of
the redirect mechanism is not palpable with a small
network, and so we cannot comment on its perfor-
mance.

5.2 Replication Performance

After analyzing each variant of our pub-sub, we de-
cided to test with our Redirect-Reliable variant how
its performance changes if we increase the faulttoler-
ancefactor. We also took the chance to analyze how
the system performs with an increase in the number
of subscriptions each subscriber does. We vary the
pub-sub’s replication from 1, 2, ,3 and 5 in a 75 node
network.

8



Variant Normal Sub
Burst

Event
Burst

Fault

Base-
Unreliable

57.3
MB
4.01 s

36.0
MB
2.36 s

173
MB
11.45 s

19.5
MB
1.94 s

Redirect-
Unreliable

116.9
MB
8.13 s

26.7
MB
3.82 s

179
MB
14.62 s

5.10
MB
2.15 s

Base-
Reliable

99.2
MB
6.54 s

62.0
MB
3.88 s

310
MB
20.21 s

22.5
MB
3.46 s

Redirect-
Reliable

108.3
MB
8.31 s

37.0
MB
3.61 s

268
MB
21.38 s

21.5
MB
3.84 s

Table 1: Average Memory and CPU user-time used
per node

Event and Subscription latency We can start
looking at the Figures 7 and 8 to analyze the results
regarding the event and subscription latency, respec-
tively.

The results of our pub-sub subscription latency are
as predicted since the bigger the replicated factor, the
longer it takes to subscribe. The same can be said
of the number of subscriptions per sub since each
subscribing operation needs to check all the filters of a
filtertable entry. Filter checking is necessary to merge
a subscription filter with others or ignore it (because
one of those in the entry already encompasses it).

When looking at the event latency, we see that the
correlation is not as strong as in subscriptions. A
subscription needs to be sent to a node’s backups,
and they need to add and summarize the subscrip-
tion filters. In an event forwarding, the only interac-
tion between the main path and the backups is at the
rendezvous between the different trackers. The inde-
pendence between fault-tolerance and event forward-
ing mechanisms in a non-failure scenario was built to
achieve a faster event forwarding to the detriment of
the subscription operation. Event latency is depen-
dent more on the order of the filters in the at each
filtertable entry, because if the first filter matches the
events, that node will not have to check the other
ones.

Figure 7: Average Event Latency per replica factor
at each stage

CPU and memory usage Memory and CPU con-
sumption is straightforward since it increases with
the replication factor and remains constant with the
increase of the number of subscriptions since their
size is small, and the extra CPU work is almost none.

Regarding the scalability of our system, when ana-
lyzing our system’s performance with the increase of
subscriptions per user, we can confirm that in terms
of resource usage, the system is scalable. When look-
ing at the memory and CPU usage, we can see that
they do not increase with the increase in subscrip-
tions as the graphic tends to a linear regression (being
an accumulative graphic, it means that resource con-
sumption is approximately the same at each stage).
In terms of performance, we can see a slight change,
although far from affecting the user perception of the
event speed delivery.

6 Conclusions

We conclude after this work that decentralizing web
infrastructure can have more benefits, but it is not
a perfect solution. With that in mind, we presented
FastDelivery to showcase where some centralization
can be advantageous. We know that decentralizing
a system leads to an increase in the system’s algo-
rithmic complexity, and security-wise although that
is out of this work’s scope. So we produced, to the
best of our knowledge, a pub-sub that provides a

9



Figure 8: Average Subscription Latency per replica
factor at each stage

global content/semantic-addressing layer over IPFS
and showcased a simple publisher-centered approach.
This one, even being simpler than ScoutSubs, is more
efficient and useful for IPFS users when they are in-
terested in both the source and content of the events.

Nevertheless, it is relevant having a global system
that is not only physically content-based oriented (as
in IPFS static-content-addressed system), but one
system that provides a semantic-content-based ap-
proach. A system where information is not merely
organized by physical content but forwarded through
the web depending on its semantic content and users
interested in it.

References
[1] Anne-Marie Kermarrec and Peter Triantafillou. Xl peer-to-

peer pub/sub systems. ACM Computing Surveys (CSUR),
46(2):1–45, 2013.

[2] Alfonso De la Rocha, David Dias, and Yiannis Psaras. Ac-
celerating content routing with bitswap: A multi-path file
transfer protocol in ipfs and filecoin. 2021.

[3] João Antunes, David Dias, and Lúıs Veiga. Pulsarcast: Scal-
able, reliable pub-sub over P2P nets. In Zheng Yan, Gareth
Tyson, and Dimitrios Koutsonikolas, editors, IFIP Network-
ing Conference, IFIP Networking 2021, Espoo and Helsinki,
Finland, June 21-24, 2021, pages 1–6. IEEE, 2021.

[4] Dimitris Vyzovitis, Yusef Napora, Dirk McCormick, David
Dias, and Yiannis Psaras. Gossipsub: Attack-resilient mes-
sage propagation in the filecoin and eth2. 0 networks. arXiv
preprint arXiv:2007.02754, 2020.

[5] Jay A Patel, Étienne Rivière, Indranil Gupta, and Anne-
Marie Kermarrec. Rappel: Exploiting interest and net-
work locality to improve fairness in publish-subscribe sys-
tems. Computer Networks, 53(13):2304–2320, 2009.

[6] Peter R Pietzuch and Jean M Bacon. Hermes: A distributed
event-based middleware architecture. In Proceedings 22nd
International Conference on Distributed Computing Sys-
tems Workshops, pages 611–618. IEEE, 2002.

[7] Yogeshwer Sharma, Philippe Ajoux, Petchean Ang, David
Callies, Abhishek Choudhary, Laurent Demailly, Thomas Fer-
sch, Liat Atsmon Guz, Andrzej Kotulski, Sachin Kulkarni,
et al. Wormhole: Reliable pub-sub to support geo-replicated
internet services. In 12th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI} 15),
pages 351–366, 2015.

[8] Pooya Salehi, Kaiwen Zhang, and Hans-Arno Jacobsen. Pop-
sub: Improving resource utilization in distributed content-
based publish/subscribe systems. In Proceedings of the 11th
ACM International Conference on Distributed and Event-
based Systems, pages 88–99, 2017.

[9] Jai Dayal, Drew Bratcher, Greg Eisenhauer, Karsten Schwan,
Matthew Wolf, Xuechen Zhang, Hasan Abbasi, Scott Klasky,
and Norbert Podhorszki. Flexpath: Type-based pub-
lish/subscribe system for large-scale science analytics. In
2014 14th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing, pages 246–255. IEEE, 2014.

[10] Petar Maymounkov and David Mazieres. Kademlia: A peer-
to-peer information system based on the xor metric. In Inter-
national Workshop on Peer-to-Peer Systems, pages 53–65.
Springer, 2002.

[11] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard
Karp, and Scott Shenker. A scalable content-addressable
network. In Proceedings of the 2001 conference on Appli-
cations, technologies, architectures, and protocols for com-
puter communications, pages 161–172, 2001.

[12] Jian Liang, Rakesh Kumar, and Keith W Ross. Understand-
ing kazaa, 2004.

[13] Marc Waldman, Aviel D Rubin, and Lorrie Faith Cranor.
Publius: A robust, tamper-evident censorship-resistant web
publishing system. In 9th USENIX Security Symposium,
pages 59–72, 2000.

[14] Pedro Agostinho. A golang implementation of a content-
based pubsub middleware over ipfs content routing.
https://github.com/pedroaston/contentpubsub, Oct 2021.

[15] Testground. https://docs.testground.ai/, Aug 2021.

[16] Pedro Agostinho. Testground’s plan for testing my
content-based pub-sub middleware over ipfs’ dht.
https://github.com/pedroaston/contentps-test, Oct 2021.

[17] Pedro Agostinho. A content-based pub-
sub middleware over ipfs content routing.
https://github.com/pedroaston/smartpubsub-ipfs, Oct
2021.

10


