
Smart Briefcases

Tiago Ferreira Nogueira Leite

ABSTRACT
In recent years computational devices have become afford-
able to the point where is common for a user to own mobile
phones, PDAs, Laptops and Desktops. He may use these de-
vices both for entertaining purposes or in order to perform
his work anywhere.

Due to this fact it is expected that a user stores different
versions of the same files throughout his devices. This rises
the challenge of maintaining the different versions of files up
to date and reconciling concurrently modified data.

This dissertation describes Smart Briefcases, a file synchro-
nizer transparent to applications, that is based on optimistic
approaches. The goal of Smart Briefcases is to help a sin-
gle user who owns several computational devices maintain
all replicated files consistent by applying mechanisms that
detect conflicts and help the user resolve said conflicts.

When Smart Briefcases detects conflicts, the system must
provide all the relevant information to help the user to manu-
ally resolve the conflicts. In order to achieve this, the system
uses the semantic properties of files and monitors the user
behavior while he is modifying files.

Keywords
Synchronization, optimistic replication, consistency, conflict
resolution

1. INTRODUCTION
Nowadays, more and more people use several computational
devices in their daily life, either for entertaining purposes or
in order to perform their work. They own mobile phones,
PDAs, Laptops and Desktops so that they can keep working
continuously, even while disconnected from a network. Due
to this fact, it is expected that in some situations the same
files will be copied between these devices.

For example, when a user is writing a report and must leave
his office for a long period of time. He may be interested
in taking on his laptop all the files needed in order to keep
working on the ongoing task elsewhere. So, when he finally
comes back to the office he can send the finished document
to his desktop.

Nevertheless, problems begin to arise when the user, for
whatever reason, modifies a file on two different devices, e.g.
both on his laptop and on his desktop. This means that dif-
ferent versions of the same file will exist in both devices
creating a consistency problem. The user will then have
to manually check each file for changes and decide which
modifications he wants to keep or he risks losing data by
overwriting some of his work.

Obviously, a better solution would be to have a tool which
would synchronize the files on different devices, informing
the user of what files had been modified, their changes and
respective location. Ideally, such a tool would even solve all
these issues automatically so that the user wouldn’t even be
aware that a conflict existed between files in the first place.

1.1 Objectives
Smart Briefcases is a system that focuses on assisting a sin-
gle user who owns several computational devices and wants
to have the same files replicated throughout those devices.
The main goal of Smart Briefcases is to help the user in
maintaining all the files consistent throughout his devices
by applying mechanisms that identify and resolve conflicts
and propagate updates between devices. Also, Smart Brief-
cases informs the user about which files have been changed
when the computational devices get synchronized.

In some cases the merging of modified replicas is not sim-
ple. Sometimes an automatic solution is impossible to find.
If a user modifies the same file in both replicas, it will be
impossible to automatically decide (without feedback from
the user) which of the files should be kept or if a better so-
lution exists. In this case the only option the system has is
to inform the user that a conflict exists and provide all the
relevant information so that the user can solve the conflict
manually. This information must be relevant and easily un-
derstandable, as it is easy to overwhelm the user with too
much data, or display information that is not required.

Another goal of Smart Briefcases is that no application in the
user’s device should be modified in order to use the system.

A user should be able to operate the unmodified applications
he already uses. Also, Smart Briefcases should support all
operations performed to directories inside monitored folders,
such as creations, renames and deletions. There should be
no difference between accessing a folder monitored by Smart
Briefcases and a normal Windows folder. This fact makes
the system much easier to use as the user does not have to
learn new interfaces or tools.

Smart Briefcases should be supported by the Windows Op-
erating System. Moreover, Smart Briefcases should allow
a user to modify any file in any computer anytime. This
should not be affected by not being connected to the Inter-
net or not being connected to other replicas. Disconnected
operations must be supported. Also, when synchronizing
replicas, Smart Briefcases should not require a connection
to the Internet or any type of central service. This is partic-
ularly important for reasons of cost, availability and security.

It is also important to note that Smart Briefcases must be an
efficient and a user-friendly system. If conflicts do not occur
a user does not even realize that the system exists, as the
system does not slow down or interrupts the user without
need. Also, when a conflict occurs, the system helps the user
in a fast and effective way, by providing him with easily
understandable information and not confusing the user so
that he can continue his work as soon as possible.

In summary, the goals of this work are the following: i)
help a user maintain files replicated and consistent between
different devices, ii) allow a user to modify his replicated
files in any computer, iii) do not require a connection to
the Internet or a central service to perform synchronization,
iv) in case of conflicts, provide all the relevant information
to help the user to manually resolve the conflicts, v) the
system must run without any modifications to the user’s
applications and vi) the system must be efficient and user-
friendly.

1.2 Challenges
The creation of a system like Smart Briefcases involves cer-
tain challenges; Some of them are common to applications
that deal with synchronization and conflict resolution:

1) Smart Briefcases must monitor a user’s behavior when he
is accessing the files that will need to be synchronized
in the future. The system must collect all kinds of
relevant data so that, if needed, it can inform the user
of what has been changed and how he can solve the
conflicts. This must be achieved in a way that does
not slow down the system or creates log files with a
large size.

2) The information collected from the user behavior comes
from various sources. The user may be interested in
replicating several different types of files, such as, text
documents, spreadsheets, presentations, images, or other
unknown file formats. Smart Briefcases must be able
to collect data from the applications that deal with
these distinct files and be able to abstract the infor-
mation presented to the user as, for example, lines in
a document, or slides in a presentation.

3) The system must be able to detect conflicts if they occur.
When this happens the system must find out, using the
collected information, if the conflict can be resolved
automatically. Otherwise, the user must be presented
with all the relevant information that will help him
solve the conflicts manually.

4) It is also important that the propagation of modifica-
tions between devices is efficient. This means that the
amount of data shared needed to synchronize and re-
solve conflicts must be kept to a minimum.

1.3 Shortcomings of Current Solutions
This paper presents Smart Briefcases, a tool aimed at help-
ing a single user to synchronize files between his multiple
computers by offering them assistance when conflicts occur.
There are several commercially distributed file synchroniz-
ers that already allow a user to synchronize files between
different devices. Some popular examples are:

1) Dropbox [1] and Live Mesh [2] are online file synchroniz-
ers that use cloud computing to enable users to store
and share files and folders between computers using
the Internet.

2) Active Sync [3] and its successor Windows Mobile De-
vice Center 1 enable the synchronization of files and
other data between a computer and a mobile device
i.e. PDAS and smart phones.

3) Microsoft’s Briefcase technology [4] and SyncToy [5, 6]
are offline file synchronizers.

Dropbox and Live Mesh and most online file synchronizers
support only single-master data updates. This means that
reconciliation between replicas is done in a single replica to
which the user does not have access to. To synchronize files
or submit an update a user must be connected to the In-
ternet which is not always possible. Also, complete copies
of the user’s files and folders are stored in a repository else-
where which can raise some privacy issues as some users are
not comfortable with this.

Microsoft’s Briefcase technology is probably the system that
most resembles Smart Briefcases, as it is able to synchronize
files between two devices with a Windows Operating System
installed. The problem with Briefcase is that it does not offer
a sophisticated and intelligent file synchronization. When a
conflict occurs the user is only presented with a window
showing that both versions of the files have been modified.
Briefcase does not inform the user of what has been modified
in the files and how he should proceed in order to solve the
conflicts. In fact, if the user wants to resolve the conflicts,
he has to open both versions of a file and compare them
manually.

This is also true, in some way, for all the presented technolo-
gies, as none of them, employ an intelligent and automatic
way of resolving conflicts or provide a user with the infor-
mation to help him do so himself.

1http://www.microsoft.com/windowsmobile/en-
us/downloads/microsoft/device-center-download.mspx

These are the main factors that differentiate Smart Brief-
cases from the solutions already available.

1.4 Paper Structure
This paper is organized as follows: In section 2 the architec-
ture of Smart Briefcases is presented. In section 3 the actual
implementation of the solution is detailed. The obtained re-
sults of the evaluations performed, to the implemented so-
lution, are presented throughout section 4. Finally, section
5 describes the related work while section 6 presents the
conclusion of the developed work.

2. ARCHITECTURE
This section presents an overview of the architectural ap-
proach used in Smart Briefcases and explains how the system
works. The chosen solution was designed having in mind all
the goals presented in the previous section. The solution em-
ployed, as explained in the following sections, allows a fine
grain control that helps minimize conflicts and gives more
control over the data being modified by a user.

The system architecture of Smart Briefcases is portrayed in
Figure 1.

File System/Operating System

Applications
Word

PowerPoint

Text Editor

File System
Monitor

Resolver

Meta-data Manager

Diff Engine Modules

Diff Engine

Data Structures

C
o

m
m

u
n

ic
at

io
n

 M
o

d
u

le

Updates

Drive
Monitor

GUI

Drive
Detector

Figure 1: Smart Briefcases Architecture.

2.1 Overview of Smart Briefcases
Smart Briefcases is an application that allows a user to keep
data replicated and consistent throughout all the computers
he owns. To accomplish this, the application is built on top
of a middleware that observes the user actions and maintains
relevant data to be used during the synchronization process.

With Smart Briefcases, a user can create virtual directories
that are similar in interface and usage to the ones offered
by the user’s currently used file system. These directories,
called briefcase folders, manage the files stored within them
and allow the applications to transparently access and mod-
ify them. This is achieved by monitoring the user’s action
and intercepting each application request to the file system.
This allows Smart Briefcases to know when a file or folder
is modified, renamed, created or deleted. The information
regarding these modifications is kept as metadata. When
convenient, the user can ask the system to synchronize the

modified files and folders with older versions stored in an-
other computer.

To allow the user to independently modify each isolated
replica, an optimistic replication approach is employed. Us-
ing the collected metadata, Smart Briefcases, is able to de-
tect modifications between two different replicas and per-
form the required operations to synchronize them. In the
end both replicas are left in the same state. However, if
conflicts occur, Smart Briefcases informs the user and pro-
vides relevant information to help him resolve the conflicts
and achieve a consistent state.

2.2 Monitoring Briefcase Folders and Storing
Metadata

A briefcase folder is the name of any folder created through
Smart Briefcases’ user interface. From the moment a user
creates one of these folders, the application instantiates a
File System Monitor, a module that is responsible for mon-
itoring changes performed inside a briefcase folder. Every
time a file or folder, inside the briefcase is created, modified,
deleted or renamed an event is triggered inside the brief-
case’s File System Monitor. When this happens, the File
System Monitor collects all the relevant information regard-
ing the modification performed.

The Metadata Manager is the module that contains the
structures where data concerning each briefcase is stored.
When a user creates a new briefcase, a tree-like structure is
created in order to store information regarding each file and
folder created within said briefcase. When, for example, a
user creates a file inside the briefcase, an event is triggered
inside the File System Monitor. The module then sends the
collected information to the Metadata Manager. Sent Infor-
mation consists of the name and path of the file modified,
the date and time at which the modification occurred and
the type of the modification performed. With this informa-
tion the Metadata Manager creates a node inside the Tree
structure to represent the newly created file.

Also, when a file or folder has been renamed or deleted, the
node that represents that file or folder is updated with that
information. The representation of one of the nodes that
represent a folder inside a briefcase folder can be seen in
Figure 2.

In the end, by storing information that represents each file
and folder created inside the briefcase, the Tree Structure
becomes a faithful representation of the directory tree con-
stituted by those same files and folders. This information is
invaluable to correctly perform the synchronization process
and detect possible conflicts that might occur. An example
of a representation of a Directory Tree is shown in Figure 3

2.3 Detecting the creation of Synchronization
Pairs and Communication between Repli-
cas

After creating a briefcase, the user must copy that briefcase
to another location in order to create a synchronization pair.
After establishing a synchronization pair each briefcase be-
comes an independent replica that can be modified by the

Figure 2: The image represents the FolderStruct
and the FileStructs stored within. The FolderStruct
is a structure that contains important information
concerning a certain folder. A FileStruct on the
other hand contains information concerning a file.
This information is used by the Resolver during the
synchronization process.

user anytime. When possible, the user may request Smart
Briefcases to synchronize the two folders.

A synchronization pair is established every time Smart Brief-
cases detects that an already existing briefcase is copied to
another location. A synchronization pair can be classified
as ”Local” if the user copied the briefcase to a different loca-
tion inside the same computer or ”Remote” if a user copies a
briefcase to another computer using a USB flash drive, prop-
agates it through a local network or sends it by email. From
the moment a synchronization pair is successfully formed,
modifications performed to each briefcase can be propagated
to one another.

When Smart Briefcases is started by the user, it instantiates
a Drive Monitor for each drive detected in the user’s ma-
chine, including USB flash drives. The Drive Monitor mon-
itors modifications performed to folders inside each drive.
This is performed in order to detect when a certain briefcase
has been created inside a drive. Every time this happens an
event is triggered inside the Drive Monitor.

However, the Drive Monitor also receives events when regu-
lar folders are created. In order to differentiate the creation
of regular folders and briefcases, each briefcase contains a
hidden file inside, called Settings.ini. This file contains in-
formation detailing the path of the briefcase folder, the IP
and port used by the running instance of Improved Briefcase
and a global unique identifier that is composed by the IP,
port and number of the briefcase folder.

When a drive monitor detects that a folder has been created
inside the drive it is monitoring, it checks if the Setting.ini
file exists inside the folder. In case it does not exist the cre-
ated folder is ignored by the Drive Monitor as it is identified
as a regular folder. In case the Settings.ini file exists, the
Drive Monitor checks if it is a new briefcase being created or
if it is a pair being formed. If the briefcase has been copied

Figure 3: The conceptual representation of a Direc-
toryTree stored by the Metadata Manager for each
Briefcase. In this image the Root folder represents
a Briefcase. The Root’s FolderStruct has a list that
contains three other FolderStructs, each for a differ-
ent of its sub-folders (Images, Videos and Music).
Similarly, each of these sub-folders also contains a
list that stores FolderStructs representing its sub-
folders.

from another device it communicates with the other machine
in order to establish the synchronization pair using the IP
and port provided by the Settings.ini file. Communication
between two devices is only possible if they are located in
the same local network.

If communication between replicas is successful the instances
of Smart Briefcases running on each machine share the de-
tails of each briefcase and store in structures the information
required to perform future communications. When this pro-
cess finishes the two briefcase folders are considered a pair
but will only communicate again when the user requests
Smart Briefcases to perform synchronization between these
briefcases. The devices are able to communicate between
them using the information collected previously from the
Settings.ini file.

A Drive Monitor also intercepts events every time a file or
folder is deleted or renamed in the drive it is monitoring.
This is used to allow a user to rename briefcases as he sees
fit or to delete briefcases that are no longer required.

If a briefcase folder is renamed, the Drive Monitor receives
the event and updates all necessary structures with the new
name. If the renamed briefcase is part of a remote synchro-
nization pair, Smart Briefcases sends a request through the
network in order to inform other replicas of the modification.

In case a Briefcase is deleted, the Drive Monitor is responsi-
ble for eliminating all the information regarding the briefcase
and breaks the synchronization pair if the briefcase was part
of one. If the deleted briefcase was part of a remote synchro-
nization pair, Smart Briefcases sends a request through the
network in order to inform other replicas that they should
also delete all information regarding the deleted replica.

This allows users to have total control over the created brief-
cases. They are able to create new briefcases, rename them
and delete them with no limitation whatsoever.

2.4 The Synchronization Process
The Synchronization Process is initialized by the user’s re-
quest simply by pressing the Synchronization button located
in the Smart Briefcases tray icon’s menu. The user can select
which pair of briefcases he wants to synchronize or synchro-
nize all of the existing pairs at once. The replica where the
synchronization process was initialized is where all the com-
parisons between briefcases, conflict detection and conflict
resolution are performed. All the information that is needed
to perform the process are the two DirectoryTrees, which
contain all the information of modifications performed to
each briefcase in each replica. This is the main reason why
only one replica is required to perform all the computational
work.

Therefore, when synchronizing all pairs at once, the replica
where the process was initiated iterates through each of the
existing pairs of unsynchronized briefcase folders, gets the
DirectoryTrees from each of the folders of each pair and
performs all the required actions to synchronize them. The
replica where the process was initiated requests the Direc-
toryTree of the briefcase located in the remote replica. The
remote replica propagates the DirectoryTree and from this
moment on, the DirectoryTrees from the synchronization
pair can start being compared and synchronized.

The fact that the processing work is only performed by one
replica is important to minimize the number of communica-
tions between the replicas. One replica makes all the work
and discovers what actions are needed so that each briefcase
reaches an identical state. The only information sent to the
other replica are requests to perform actions like creating,
renaming or deleting a file or folder or to modify the Tree
structure of a Briefcase.

In the end if there are no conflicts and the synchronization
process was successful the pair of folders and their respective
DirectoryTrees will be in an identical state.

The synchronization process is divided into two different
phases. In the first phase only modifications performed to
folders are synchronized. In the second phase only modifi-
cations performed to files are synchronized.

It was chosen to divide the process in these two phases for
three reasons. The first reason was simply to ease the im-
plementation of the Resolver as it was easier to differentiate
the synchronization of folders from files.

The second reason was to handle the case in which files have
been modified inside folders which have been renamed. By
synchronizing folders first, by the time the Resolver starts
synchronizing the file modifications, all the folders have al-
ready been renamed. If this was not the case, when resolving
files, the resolver had to check if the renamed folders had al-
ready been renamed. It also had to keep the previous name
of the renamed folder to allow the synchronization. The
problem would become even more complex if all the fold-
ers that compose the path where the file is stored had been
renamed. The additional mechanisms that had to be imple-
mented to handle these scenarios would bring unnecessary
complexity to the process.

Finally the third reason is the fact that conflicts are also
divided into two different types: folder conflicts and file con-
flicts. Only when folder conflicts have been completely re-
solved can the resolver start resolving file conflicts. This was
the only solution found in order to allow the user to perform
concurrent renames to folders and files in different replicas.

These are the reasons why the synchronization was divided
into two phases. As explained before, in the first phase,
the resolver handles the synchronization of folder deletions,
folder renames and folder creations by that specific order.
Then, if there were conflicts detected, they are displayed to
the user who must give his input in order to resolve them.
Only if all conflicts are resolved will the resolver start re-
solving file’s modifications.

In the second phase the resolver proceeds through similar ac-
tions than in the previous phase. It resolves file’s deletions,
renames, creation and modifications by this specific order
and in the end displays all conflicts that were found. If the
user has resolved all conflicts, all folders and files structures
stored inside the Directory Trees are marked as synchro-
nized.

This concludes the description of the synchronization pro-
cess as a whole. In the end, each briefcase folder in each
replica and their respective DirectoryTrees are identical.

2.5 Conflict Resolution
Every time a conflict is detected during the Synchroniza-
tion Process, an object of the type Conflict is created. This
object’s goal is to store all the information that will allow
the user to make an informed decision when resolving the
conflict later.

An object of the type conflict stores: the structures of both
the files or folders in conflict, a description of what was mod-
ified in each file/folder, the time at which the modification
took place, the type of conflict that occurred and the choice
of the user, which represents the modification he wants to
keep.

2.5.1 Types of Conflicts
There are several types of conflicts that can occur:

1) Renamed: Both replicas of the same file or folder have
been renamed in each machine. To resolve this conflict
the user decides which name he wants to keep.

2) Delete-Renamed: A replica of a file or folder has been
deleted in one replica while the replica of the same file
or folder has been renamed in the other machine.

3) Creation: A replica of a file has been created in one
replica while in the other machine a file has been cre-
ated with the same name. When two folders are cre-
ated with the same name it is not considered a conflict
since the two folders can be merged by copying the
files inside each one of them to the other. However a
file creation conflict occurs if files with the same name
have been created inside these folders in each replica.

4) Modification: Both replicas of the same file have been
modified in each machine. This conflict only occurs
with files since modifications performed to folders are
ignored by the File System Monitor.

5) Delete-Modification: A replica of a file has been deleted
in one replica while the replica of the same file has been
modified in the other machine.

2.5.2 User’s Choices
The user choice field is important to store the user’s deci-
sion regarding on how he wants to resolve a specific conflict.
When conflicts occur a Windows form is displayed to the
user presenting all the collected information. The user must
decide which folder/file he wants to keep by selecting the
corresponding option presented in the interface. There are
three options presented to the user:

1) LeftChoice: The user decides to maintain the modifica-
tion performed to the folder/file displayed on the left
side of the form.

2) RightChoice: The user decides to maintain the mod-
ification performed to the folder/file displayed on the
right side of the form.

3) None: By default the user’s choice field is marked as
none. It represents the fact that no choice was made by
the user regarding which modification to keep. When a
user chooses this option, he wants to ignore the conflict
and solve it at a later time. All the other conflicts in
which the user chose to keep the left or right file/folder
are resolved and the conflicts marked with none are
ignored.

If at the end of the folders’ conflict resolution there
are conflicts marked as none the synchronization pro-
cess ends without resolving the remaining modifica-
tions. The next time the user tries to synchronize this
pair of replicas again he will be shown the same con-
flict form displaying all the conflicts previously marked
as none. When he finally resolves them the synchro-
nization process can continue and, if no more conflicts
are found, terminate.

4) Synchronized: This value means that there is no need
for the user to decide which file/folder he wants to
keep. The files/folders are already identical and no
action is needed. Normally, this state is achieved when
a difference engine is used to resolve a modification
conflict.

2.5.3 The Conflict Form shown to the user
After the deletions, renames, and creations of folders have
been resolved, the Resolver verifies if conflicts were detected.
If this is the case, a Windows form is loaded using all the
information collected during the previous phases of the syn-
chronization process. This form displays a brief description
of the conflict along with its cause and all the information
the user needs to decide on how to resolve it. The same
happens after the deletions, renames, creations and modifi-
cations have been resolved.

Unfortunately, the tools included in the 2.0 .NET framework
are unnecessarily difficult to use and do not provide enough

functionality to display the collected information, regarding
conflicts, to users in an efficient and attractive way. In order
to create the Windows form displaying conflicts a component
named ObjectListView [7] was used. ObjectListView is a
C# wrapper around a .NET ListView component.

When shown the conflict’s form the user must decide, based
on the information displayed, which replica he wants to keep.
For example, in the form presented in Figure 4, the user is
shown a delete-rename conflict. He must choose if he wants
to delete the renamed folder or if he wants to recreate the
renamed folder in the replica where the folder was deleted.
Likewise, in the rename-rename conflict shown the user must
decide which of the names he wants to keep.

Figure 4: The form shown to the user when conflicts
related to folders are detected. The figure displays a
renamed-renamed conflict and a delete-rename con-
flict.

To do this the user may simply press the right mouse button
on each conflict and choose to keep the right folder, the left
folder or none of them. However, a conflict marked with
none as the user’s choice will not be resolved. Until the
user decides on an option to resolve each folder conflict the
resolver will not start the file resolution phase.

The user also has the option of keeping all the oldest modi-
fications or the newest modifications. When the user selects
one of these options the resolver automatically makes the
decisions based on the timestamp kept for each modifica-
tion.

After the user makes all decisions and presses the ”Resolve
Conflicts” button the resolver iterates through the list of
conflicts and depending on the type of conflict and the option
chosen by the user, performs a different action that creates
a consistent state.

In case conflicts are detected when resolving files a similar
form is displayed to the user. The main difference between
the folders’ conflict form and this one is the information
displayed for each conflict. Also, an icon is displayed that
shows the type of the folder in conflict. For example, in
figure 5 the conflicts form shows three conflicts. One conflict
happened between two replicas of a plain text file, other was
between the replicas of a Microsoft Word File and the last
was between the replicas of a Microsoft Power Point file.

However, this feature is currently only available for file types
that are supported by Smart Briefcases’ difference engines.

Extending this functionality for other file types is very easy.

Figure 5: The figure shows a conflict resolution win-
dow. It is displayed to the user when conflicts are
detected during the synchronization. In this specific
image three conflicts were detected where both ver-
sions of each file were modified in both replicas. To
help the user the files’ icons change depending on
the file type of the conflicting files. Information is
also displayed describing what has changed in each
file.

2.6 Difference Engines
When a conflict is detected between two files, to help the
user decide which file he wants to keep, he has the option to
view the content of each file side by side. When this option
is selected a window opens displaying each of the files next
to each other. Colors highlight the differences between the
lines where the files differ.

To detect the differences between files, a difference engine
is used. This engine compares two text files and returns an
ArrayList containing all the differences between them. This
information can be used to display the modifications to a
user and help him resolve them faster.

The difference engine was downloaded from the Code Project
website [8]. This algorithm was used for several reasons: It
is written in C#, which helps the integration with Smart
Briefcases, it is generic and reusable, it gives correct results
even for large data sets and it has lower memory require-
ments compared to other existing solutions.

This engine works very well for plain text files. However,
one of the goals of Smart Briefcases is that it should be able
to provide this kind of information to users for several file
types, namely office documents and presentations. Also, it
should be extensible so that it is relatively simple to add
other engines to compare new file types.

The form that displays the differences between two plain
text files to a user is shown in figure 6.

Files that are not composed by plain text cannot be simply
read in order to be compared and display the differences
to the user. In order to accomplish this, two things are
required: the use of an API that is able to read content
from the file and a difference engine that is able to compare
the files. Also, inside some binary files there can be images,
videos, tables and other content that is not easily interpreted
by difference engines.

Figure 6: The difference form shows the comparison
between two plain text Files. The colors show that
line 5, line 12 and line 14 are different in each replica.

In Smart Briefcases the diff process was implemented for
Microsoft Word and Power Point files. However, only the
text is compared. Although it would be possible to com-
pare the formatting of the files, or other objects inside, it
would require a lot of time in order to implement an efficient
difference engine that would always return correct results.

In order to perform a diff visualization for Microsoft Word
and Power Point files, Smart Briefcases fetches the text from
files and sends it to the difference engine. Next, the engine
marks the differences between the replicas. Finally, Smart
Briefcases creates the form in which the differences between
the files are shown.

2.6.1 External Differencing Tools
Besides the difference engine present in Improved Briefcase,
it is possible to integrate other applications that compare
files from different replicas. This option is provided though
Smart Briefcases in order to better help the user resolve con-
flicts by providing more functionality found in more mature
applications. One example of functionality that, currently,
is only offered by using an external tool is the possibility to
merge files. This allows a user to achieve identical versions
of a file without losing any information.

Currently, the only application that can be called through
Smart Briefcases’ interface is WinMerge. WinMerge, is an
Open Source differencing and merging tool for Windows. It
is able to compare files, presenting differences in a visual
text format that is easy to understand and handle. Also, it
can be used to merge files and achieve an identical version.
Unfortunately, WinMerge only works for plain text files.

Several other programs were considered as possible options
to be integrated with Smart Briefcases. However, no other
programs were found that were free, could be instantiated
with arguments through the command line and provided
comparisons between files that were not plain text files.
However, if an application with this requirements is found,
it can be easily added to Smart Briefcases by adding the op-
tion to the conflict resolution interface and by implementing
a method that executes the application.

3. IMPLEMENTATION
Smart Briefcases was implemented using Microsoft Visual
Studio 2005, C# 2.0 and the 2.0 .Net Framework. The sub-

mitted solution was tested under Windows XP, Windows
Vista and Windows 7.

The File System Monitor and the Drive Monitor modules
use a .Net control named File System Watcher. This mod-
ule is capable of monitoring a certain folder and triggering
events whenever a modification is performed in said folder.
Using this functionality, Smart Briefcases is able to store
information regarding modifications performed in briefcase
folders.

The main difference between the File System Monitor and
the Drive Monitor is that in the former the File System
Watcher has the responsibility of watching a certain brief-
case folder. On the other hand, the file system watcher in-
side each Drive Monitor, observes modifications performed
on each drive currently mounted in the user’s machine.

The drive monitor module uses native code that was down-
loaded from the Code Project website 2. This code receives
signals from the windows operating system that concern the
mounting and unmounting processes of USB flash drives.
When one of these signals is received an event is triggered
which allows Improved Briefcase to start or stop monitoring
a USB flash drive, for example.

The graphical user interface was implemented using Win-
dows Form controls. The exception is the conflict resolution
form which uses a custom control called ObjectListView.
This control is a C# wrapper around a .NET ListView.
The ObjectListView was chosen since it is much easier to
use than any control found inside the .Net framework. Ad-
ditionally, it gives much more options of customization, more
functionality and allows the conflict information to be dis-
played in an easy to understand way. For example, when a
certain file is in conflict an icon is displayed to help the user
identify the type of the file. By using a simple List view, im-
plementing this functionality would take a lot of time and
work.

The Communication Module was implemented using .Net
Remoting, which provides several mechanisms of remote method
invocation found in the .Net Framework. This module al-
lows the transfer of files or updates between remote replicas.

To implement the modules that fetch the text from .docx
and .pptx files the Open XML SDK for Microsoft Office was
used. This SDK provides an API that allows a developer
to create and edit Microsoft Office files programmatically.
With this functionality Smart Briefcases is able to get the
text from Office files and display a comparison between two
distinct files to the user.

4. EVALUATION
Smart Briefcases was subjected to several tests with the pur-
pose of obtaining an accurate estimate of its effectiveness
and efficiency when used in scenarios that are close to real
world usage and user expectations.

The obtained results show that the memory footprint of
Smart Briefcases, even when storing 4096 folders and 16384

2http://www.codeproject.com/KB/system/DriveDetector.aspx

files inside a briefcase, is within very reasonable values (Win-
dows Vista - 36,10 MBs / Windows 7 - 27,7MBs). This is
especially true for machines with Windows 7 installed where
the values measured in some cases were more than 10MBs
lower than the values measured in the same conditions in
machines with Windows Vista. The collected results are
shown in figure 7.

0

5

10

15

20

25

30

35

40

0 / 0 64 / 256 128 / 512 256 / 1024 512 / 2048 1024 /
4096

2048 /
8192

4096 /
16384

M
e

m
o

ry
 u

sa
ge

 (
M

B
s)

Number of Folders / Number of files stored in briefcase

Machine 1 -
Measured by
Process Explorer

Machine 2 -
Measured by
Process Explorer

Figure 7: The graphic shows the relation between
the increase in memory used by the application and
the number of files and folders stored within a brief-
case folder.

The time it takes to complete the synchronization process
was also deemed to be within reasonable values. The syn-
chronization of newly created files, where the file’s contents
need to be propagated through the network, takes about the
same time as transferring the same files through the network
using Windows (figure 8). The propagation of deletions and
renames throughout replicas takes no more than some sec-
onds (see figures 9 and 10). Even in the tested situation in
which 1000 folders and 2000 files were renamed in one of the
replicas, the propagation of these modifications took only
16,281 seconds. This result is considered to be very fast and
within user’s expectations.

00:00:00

00:07:12

00:14:24

00:21:36

00:28:48

00:36:00

00:43:12

00:50:24

00:57:36

01:04:48

174Mb file 349Mb file 1,09Gb file 50 / 100
(≈50MBs)

100 / 200
(≈100MBs)

500 / 1000
(≈200MBs)

1000 /
2000

(≈400MBs)

2500 /
5000

(≈800MBs)

5000 /
10000

(≈1,60GBs)

Ti
m

e
 it

 t
ak

e
s

to
 p

ro
p

ag
at

e
 f

ile
s

(h
h

/m
m

/s
s)

Size of Files transferred between replicas

Using Smart
Briefcases

Using
Windows

Figure 8: The graph shows the comparison between
the time it takes to transfer files through the net-
work using Windows and using Smart Briefcases.

The exception is the propagation of files that were modified.
No matter how small the modification performed is, the file
is still propagated in its entirety. This can be improved by
adding an algorithm that identifies the particular bits of a

0

2

4

6

8

10

12

14

50 100 200 400 600 800 1000

A
ve

ra
ge

 S
yn

ch
ro

n
iz

at
io

n
 T

im
e

(s

ec
o

n
d

s)

DELETION - Number of deleted folders

Figure 9: The graphic shows the time it takes to
synchronize two briefcase folders stored in two dif-
ferent machines. In this case an increasing number
of folders with files stored within were deleted. The
two replicas were then synchronized.

0,000

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

50 / 100 100 / 200 200 /400 400 / 800 600 / 1200 800 / 1600 1000 / 2000

A
ve

ra
ge

 S
yn

ch
ro

n
iz

at
io

n
 T

im
e

(s
ec

o
n

d
s)

Number of Renamed Folders / Files

Figure 10: The graphic shows the time it takes to
synchronize two briefcase folders stored in two dif-
ferent machines. In this case an increasing number
of folders and files were renamed. The two replicas
were then synchronized.

file that were modified and propagates only these bits. This
feature is currently marked as future work.

The values measured when evaluating the bandwidth re-
quired to synchronize two replicas are also considered to be
within reasonable values. When propagating created files
there is a noticeable overhead of data propagated but this is
also found when transferring files through the network using
Windows (see figure 11).

-

200.000

400.000

600.000

800.000

1.000.000

1.200.000

50 / 100 100 / 200 200 / 400 400 / 800 600 / 1200 800 / 1600

D
at

a
Se

n
t

th
ro

u
gh

 t
h

e
 n

et
w

o
rk

(k

ilo
b

yt
e

s)

Number of created folders / files propagated

Figure 11: The graphic shows the size of the content
sent when propagating files and folders that were
created in one of the replicas since the last synchro-
nization.

5. RELATED WORK
The issue of replicating content throughout several devices
is already addressed by several solutions, most of which are
available online.

However, most solutions either do not possess mechanisms
to detect conflicts or if conflicts can be detected they are
not capable of presenting information that helps the user
understand what caused the conflict and how he could to
resolve it. Some of these solutions are addressed in this
section.

Semantic Chunks [9] is an adaptive middleware that uses
documents’ semantic regions relevant to applications as a
way to gather the appropriate information and enforce con-
sistency. It was designed with cooperative work in mind.
It establishes a middle-ground between update-based and
operational-based approaches. By doing this it increases
concurrency, it is transparent w.r.t. applications and re-
duces the number of conflicts. Also, it employs some mech-
anisms that reduce network and memory usage and allows
for a fine-grain control over updates to files.

IceCube [10] is a reconciliation middleware platform that
can be used by arbitrary (synchronization-aware) applica-
tion programs. It is operation-based and uses logs to store
the update information. It uses the collected information to
simulate several possible resolutions to conflicts in order to
achieve the best consistent state.

Microsoft’s Briefcase [4] was created as part of Windows
95 and is still distributed with recent versions of Windows

[11]. It is a simple file synchronizer that works similarly
to Smart Briefcases. However, the application has several
limitations: it prevents the synchronization of renamed or
moved files and when conflicts occur it does not provide any
information that helps the user make an informed decision
on how to reach a consistent state.

SyncToy [5, 6], is a file synchronizer built by Microsoft for
Windows XP and Vista. Its goal is to synchronize large vol-
umes of files and folders even when some of them have been
renamed or deleted. Synctoy takes snapshots from shared
folders. These snapshots provide enough information to de-
tect what changes have been performed and correctly handle
renames, deletions and modifications of files. Even in cases
of conflict. A similar approach is used in Smart Briefcases to
correctly detect delete-rename, rename-rename and delete-
modification conflicts.

ActiveSync [3] is a data synchronization tool developed by
Microsoft. It is available for Windows and uses Infrared 3

accessed in 06/01/2010, Bluetooth [12] or USB 4 accessed
in 06/01/2010 to connect devices. It is mainly used to syn-
chronize or backup content from mobile devices with devices
with Windows installed.

Dropbox [1] and Live Mesh [2] are online storage utilities
that allow a user to backup and access his files from any-
where where a computer with an Internet connection is avail-
able. Files are also automatically synchronized whenever a
user is connected to the Internet. Unfortunately, as with
most studied solutions, neither Dropbox or Live Mesh are
able to inform the user in case of conflicts and neither solu-
tion provides the mechanisms to automatically resolve said
conflicts.

6. CONCLUSION
This paper presents the architecture, implementation and
evaluation of Smart Briefcases, a file synchronizer built with
the objective of helping a user, who owns several computa-
tional devices, maintain all his replicated content consistent.

The proposed solution is designed in a way that monitors
the user’s behavior while he is accessing the shared content
without slowing down the system or halting the user’s work.
By observing the user the system is able to collect infor-
mation that is crucial to detect differences between replicas
and identify conflicts if they exist. In this case the system
informs the user of what caused the conflict while provid-
ing relevant information that allows the user to quickly re-
solve the conflict and achieve a consistent state. All this
is achieved without modifying applications already used by
the user.

Experimental values obtained from tests that evaluate Smart
Briefcases’ performance in scenarios of real world usage show
that the proposed solution is able to synchronize two repli-
cas relatively fast while maintaining a memory footprint and
bandwidth usage that do not deviate from reasonable values.

As future work it is intended to extend Smart Briefcases to

3http://science.hq.nasa.gov/kids/imagers/ems/infrared.html
4http://www.usb.org/home

be able to perform several pairwise synchronization between
more than two machines. Moreover, it is intended to opti-
mize the propagation of modified files, add more difference
engines and perform some improvements to the application’s
graphical user interface.

7. REFERENCES
[1] Dropbox: Secure backup, sync and sharing made easy

https://www.dropbox.com/.

[2] Microsoft: Live Mesh https://www.mesh.com accessed
on 25/11/2009.

[3] Microsoft: Synching your mobile phone and pc using
activesync
http://www.microsoft.com/windowsmobile/en-
us/downloads/microsoft/activesync-download.mspx
accessed on 24/11/2009.

[4] Microsoft: How To Use the Briefcase Feature in
Windows XP
http://support.microsoft.com/kb/307885 accessed on
22/11/2009.

[5] Microsoft: SyncToy 2.1
http://www.microsoft.com/DownLoads/details.aspx?
familyid=C26EFA36-98E0-4EE9-A7C5-
98D0592D8C52& displaylang=en accessed on
21/11/2009.

[6] Microsoft: Synchronizing Images and Files in
Windows Using Microsoft SyncToy (Whitepaper)
(2008) Downloaded from http://www.microsoft.com
/downloads/details.aspx?FamilyID=50fa5932-
0685-4fe3-9605-536f39bd6c86&DisplayLang= en
accessed in 23/11/2009.

[7] Piper, P.: Objectlistview - how i learned to stop
worrying and love .net listview
http://objectlistview.sourceforge.net/cs/index.html.

[8] Potter, M.: A generic, reusable diff algorithm in c#
http://www.codeproject.com/KB/recipes/diffengine.aspx.

[9] Veiga, L., Ferreira, P.: Semantic-Chunks a middleware
for ubiquitous cooperative work. In: Proceedings of
the 4th workshop on Reflective and adaptive
middleware systems, ACM (2005) 6

[10] Kermarrec, A.M., Rowstron, A., Shapiro, M.,
Druschel, P.: The icecube approach to the
reconciliation of divergent replicas. In: PODC ’01:
Proceedings of the twentieth annual ACM symposium
on Principles of distributed computing, New York,
NY, USA, ACM (2001) 210–218

[11] Microsoft: When would I use Briefcase instead of Sync
Center? http://windows.microsoft.com/en-
US/windows-vista/When-would-I-use-Briefcase-
instead-of-Sync-Center accessed on
25/11/2009.

[12] Haartsen, J.: Bluetooth-The universal radio interface
for ad hoc, wireless connectivity. Ericsson review 3(1)
(1998) 110–117

