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ABSTRACT
The partitioning of a long running task into smaller tasks
that are executed parallely in several machines can speed up
the execution of a computationally expensive task. This has
been explored in Clusters, in Grids and lately in Peer-to-peer
systems. However, transposing these ideas from controlled
environments (e.g., Clusters and Grids) to public environ-
ments (e.g., Peer-to-peer) raises some reliability challenges:
will a peer ever return the result of the task that was sub-
mitted to it or will it crash? and even if a result is returned,
will it be the accurate result of the task or just some ran-
dom bytes? These challenges demand the introduction of
result verification and checkpoint/restart mechanisms to im-
prove the reliability of high performance computing systems
in public environments. In this paper we propose and anal-
yse a twofold approach: i) two checkpoint/restart mecha-
nisms to mitigate the volatile nature of the participants; and
ii) various flavours of replication schemes for reliable result
verification.
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1. INTRODUCTION
The execution of long running applications has always

been a challenge. Even with the latest developments of
faster hardware, the execution of these is still infeasible by
common computers, for it would take months or even years.
Even though super-computers could speed up these execu-
tions to days or weeks, almost no one can afford them. The
idea of executing these in several common machines paral-
lely was firstly explored in controlled environments [16, 3, 8,
4] and was later transposed to public environments [2, 10].
Although they are based on the same principles, new chal-
lenges arise from the characteristics of public environments.

Clusters [16, 3] and Grids [8, 4, 11] have been very suc-
cessful in accelerating computationally intensive tasks. The
major difference between these is that while clusters use ded-
icated machines in a local network, grids consider the oppor-
tunistic use of workstations owned by institutions around

the Globe. Both systems are composed by well managed
hardware, trusted software and a near 24 hour per day up-
time. Public computing [2, 10, 1, 5, 9, 13] stems from the
fact that the World’s computing power and disk space is no
longer exclusively owned by institutions. Instead, it is dis-
tributed in the hundreds of millions of personal computers
and game consoles belonging to the general public. These
systems face new challenges inherent to their characteristics:
less reliable hardware, untrusted software and unpredictable
uptime.

One of the several public computing projects is GINGER
(Grid Infrastructure for Non Grid EnviRonments), in the
context of which the work of this paper has been developed.
GINGER [17] proposes an approach based on a network of
favours where every peer is able to submit his work-units to
be executed on other peers and execute work-units submit-
ted by other peers as well. A specific goal of GINGER is that
in order to be able to run an interesting variety of applica-
tions without modifying them, GINGER proposes the con-
cept of Gridlet, a semantics-aware unit of workload division
and computation off-load (basically the data, an estimate
of the cost, and the code or a reference to it). Therefore,
GINGER is expected to run applications such as audio and
video compression, signal processing related to multimedia
content (e.g., photo, video and audio enhancement, motion
tracking), content adaptation (e.g., transcoding), and inten-
sive calculus for content generation (e.g., ray-tracing, fractal
generation).

The highly transient nature of the participants in the sys-
tem may origin a constant loss of already performed work
when a peer fails/leaves or even the never ending of a task,
if no peer is ever enough time available to accomplish it.
To mitigate this, checkpointing/restart mechanisms shall be
able to save the state of a running application to safe storage
during the execution. Allowing it to be resumed in another
peer from the point when it was saved if necessary.

The participants of the system are not trusted, so are
the results they return. Results may be invalid (e.g., ei-
ther corrupted data or format non-compliance), or otherwise
valid but in disagreement with input data (e.g., repeated
results from previous executions with different input, espe-
cially one computationally lighter). Therefore, result verifi-
cation mechanisms shall be able to check the correctness of



the results.
In the next Section, we address the relevant related work

to ours. In Section 3, we propose result verification tech-
niques and checkpoint/restart mechanisms. In Section 4 we
provide a description of our implementation. In Section 5,
we evaluate the proposed techniques. Section 6 concludes.

2. RELATED WORK
In Section 2.1 we analyse the techniques that are mainly

used to verify the correctness of the results; in Section 2.2
we review the main approaches to provide an application
with checkpoint/restart capabilities;

2.1 Result Verification
The results returned by the participants may be wrong

due either to failures or malicious behaviour. Failures occa-
sionally produce erroneous results that must be identified.
Malicious participants create bad results that are intention-
ally harder to detect. Their motivation is to discredit the
system, or to grow a reputation for work they have not exe-
cuted (i.e., to cheat the public computing system and exploit
other participants’ resources).

2.1.1 Replication
One of the most effective methods to identify bad results

is through redundant execution and comparison between re-
sults. In these schemes the same job is performed by N
different participants (N being the replication factor). The
results are compared using voting quorums, and if there is
a majority the corresponding result is accepted.

Since, it is virtually impossible for a fault or a byzan-
tine behaviour to produce the same bad result more than
once, this technique easily identifies and discards the bad
ones. However, if a group of participants colludes it may
be impossible to detect a bad result. Another disadvantage
of redundant execution is the overhead it generates, since
every job is executed at the very least three times.

Most of the public computing projects use replication to
verify their results, it is a high price they are willing to pay
to ensure their results are reliable. Seti@Home [2] and Fold-
ing@Home [10] use redundant execution and voting quorums
to verify their results.

Replication consumes at the very least three times more
resources than the ones that are actually needed to perform
the execution in order to produce more believable results.
When there is no collusion, it is virtually capable of identi-
fying all the bad results with 100% certainty.

2.1.2 Hash-trees
This technique is able to defeat cheating participants by

forcing them to calculate a binary hash-tree from their re-
sults, and return it with them [6]. The submitting peer only
has to execute a small portion of a job and calculate its hash.
Then, when receiving results, the submitting peer compares
the hashes and verifies the integrity of the hash-tree.

Figure 3 shows a hash-tree where the leafs are partitioned
sequential results or the data we want to check. The hash is
calculated using two consecutive parts of the result concate-
nated, starting by the leafs. Once the tree is complete, the
submitting peer executes at random a small portion of the
whole work (the selected sample) that corresponds to a leaf.
Then this result is compared to the returned result and the
hashes of the whole tree are checked.

Figure 1: Example of an hash tree.

This dissuades cheating participants because finding the
correct hash-tree requires more computation than actually
performing the required computation and producing the cor-
rect results.

Hash-trees make cheating unworthy. They have a relative
low overhead: a small portion of the work has to be executed
locally and the hash tree must be checked. However, they do
not dissuade malicious participants that are willing to forge
their results at any cost.

2.1.3 Quizzes
This technique consists in assigning jobs whose result is

known by the submitter a priori. Therefore, these jobs can
test the honesty of a participant. Cluster Computing On
the Fly [13] proposed two types of quizzes: stand-alone and
embedded quizzes.

Stand-alone quizzes are quizzes disguised as normal jobs.
They can test if the executing node executed the job. These
quizzes are only useful when associated with a reputation
system that manages the trust levels of the executing peers.
Though, the use of the same quiz more than once can en-
able malicious peers to identify the quizzes and to fool the
reputation mechanisms. The generation of infinite quizzes
with known results incurs considerable overhead.

Embedded quizzes are smaller quizzes that are placed hid-
den into a job, the job result is accepted if the results of the
embedded-quizzes match the previously known ones. Em-
bedded quizzes can be used with or without a reputation
system. Though, their implementation tends to be complex
in most cases. Developing a generic quiz embedder is a soft-
ware engineering problem that has not been solved so far.

2.2 Checkpoint/Restart
Checkpoint/restart is a primordial fault-tolerance tech-

nique. Long running applications usually implement check-
point/restart mechanisms to minimize the loss of already
performed work when a fault occurs [14, 7].

Checkpoint consists in saving a program’s state to stable
storage during fault-free execution. Restart is the ability to
resume a program that was previously checkpointed.

To provide an application with these capabilities, various
approaches have been proposed: Application-level [2, 10] ,
Library-level [15, 12] and System-level [18].

2.2.1 Application-level Checkpoint/Restart Systems
These systems are built within the application code re-



quiring a big programming effort. If the applications are
not developed from scratch to support checkpointing mech-
anisms, it may be impossible to provide them with check-
point/restart capabilities later. Since the programmer knows
exactly what needs be safely stored to enable the appli-
cation to restart in case of failure, application-level check-
point/restart are usually more efficient. They achieve a bet-
ter performance, and lower checkpoint data size. Applica-
tions may either checkpoint in time intervals, or constantly
persist the important data. Since these systems do not use
any operating system support, they are portable1.

Thus, this approach has some drawbacks: it requires ma-
jor modifications to application’s source code (its implemen-
tation is not transparent to the application); the application
will take checkpoints by itself and there is no way to order
the application to checkpoint if needed; it may be hard, if
not impossible, to restart an application that was not ini-
tially designed to support checkpointing; and it is a very
exhaustive task to the programmer. This programming ef-
fort can be minimized using pre-processors that add check-
pointing code to the application’s code, though they usually
required the programmer to state what needs to be saved
(e.g., through flagged/annotated code).

2.2.2 Library-level Checkpoint/Restart Systems
These consist in linking a library with the application,

creating a layer between the application and the operating
system that provides checkpoint/restart capabilities. The
major advantage is that it is possible to create generic check-
pointing mechanism that is able to checkpoint a vast range
of applications without having to modify them, while main-
taining portability.

Thus, the so far developed libraries require a few modifi-
cations to the applications source code, access to the source
code may be a problem. Plus, the existing implementations
are not able to checkpoint a vast range of applications, the
major challenge is that these systems cannot access kernel’s
data structures (e.g., file descriptors), so this layer has to
emulate operating system calls. This layer has no semantic
knowledge of the application and checkpoints may be taken
in the least appropriate moments generating considerable
sized checkpoints. This layer may also be responsible for a
slow down in the performance of the application.

2.2.3 System-level Checkpoint/Restart Systems
These systems are built as an extension of the operat-

ing system’s kernel. They are more powerful, since they
can access kernel’s data structures (e.g., file descriptors).
Checkpointing can consist in flushing all the process’s data
and control structures to stable storage (i.e., to a file on
the local disk). Since these mechanisms are external to the
application they do not require specific knowledge of the ap-
plication, and they require none or minimal changes to the
application, so they are transparent to the application.

These approach has the disadvantage of not being portable.
The non-knowledge of the application may lead to least effi-
cient checkpoint data when compared with checkpoint data
generated by applications that checkpoint themselves (i.e.,
application-level). Plus, developing a kernel module that
enables the checkpointing of any application is complex and

1Portability is the ability of moving the checkpoint system
from one platform to another

the implementations so far are only able to checkpoint some
applications.

3. ARCHITECTURE
In section 3.1 we discuss result verification techniques that

we implemented in GINGER, we consider various flavours
of replication, a straightforward sampling technique and an
approach that combines both techniques. In section 3.2 we
propose two checkpoint/restart approaches that enable GIN-
GER to checkpoint and restart any application;

3.1 Result Verification Mechanisms
In order to verify the results returned by the participants

we propose replication with a number of flavours that enable
us to take better advantage of redundant execution.

3.1.1 Incremental Replication
The insight of assigning the work iteratively according to

some rules, instead of putting the whole job to execution at
once can provide some benefits with only minor drawbacks.

As an example of a rule, we can assign only the the re-
quired redundant work for the voting quorums to be able to
accept it. The major benefit stems from the fact that lots
of redundant execution is not even taken into consideration
when the correct result is being chosen by the voting quo-
rums. For example, for replication factor 5, if 3 out of the
5 results are equal the system will not even mind looking
at the other 2 results. Then, those could and should have
never been executed. And if so, the overall execution power
of the system would have been optimized by avoiding useless
repeated work.

This technique can have a negative impact in terms of
time to complete the whole work: in one hand, the incre-
mental assignment and wait for the retrieval of results will
lower the performance when the system is not overloaded;
on the other hand, if the number of available participants
is low it can actually perform faster than putting the whole
work to execution at once. Therefore, the correct definition
of an overloaded environment having into consideration var-
ious factors (e.g., the number of available participants, the
maximum number of gridlets, etc.) makes possible for the
system to decide whether to use this technique or not, en-
abling it to take the best advantage of the current resources.

3.1.2 Replication using Overlapped Partitionings
Using overlapped partitioning the tasks are never exactly

equal, even though each individual piece of data is still repli-
cated with the predetermined factor. Therefore, it becomes
more complex for the colluders to identify the common part
of the task, plus they have to execute part of the task. Fig-
ure 2 depicts the same work divided in in two different over-
lapped partitionings.

Figure 2: The same work divided differently creating
an overlapped partitioning.

Overlapped partitioning could be implemented in a re-



laxed flavour, where only some parts of the job are executed
redundantly. This lowers the overhead, but also lowers the
reliability of the results. However, it can be useful if the
system has low computational power available. If the over-
lapped parts are considered correct, the non redundantly
executed portions of the same task are accepted as well.
Figure 3 shows a relaxed overlapped partitioning.

Figure 3: Overlapped tasks for relaxed replication.

3.1.3 Replication using Meshed Partitionings
Some applications can have their work divided in more

than one dimension. Figure 4 depicts the partitioning of
the work for a ray-tracer. This partitionings provide lots of
points of comparison. This information feeds an algorithm
that is able to choose correct results according to the repu-
tation of a result, instead of using voting quorums.

Figure 4: Meshed partitioning using replication fac-
tor 2.

The algorithm for calculating the reputation of a result
is based on the comparison points result (i.e., equal or not
equal). Since the majority of the participants is expected
to be honest equal adds positive reputation and not equal
adds negative reputation. Equal task results are accepted
on the fly (if at least one of the tasks has a positive reputa-
tion), different task results are disambiguated according to
the reputation of those results. We choose the result with
higher reputation if its reputation is positive, otherwise the
corresponding portion of execution is rescheduled. If the
reputation is drawn, the portion of execution of the corre-
sponding result must be re-executed for voting quorum like
disambiguation.

Figure 5 depicts the comparison point results of a two-
dimensional work partitioned in four independent tasks twice
(replication factor 2) creating eight tasks (H1, H2, H3, H4,
V1, V2, V3 and V4). Using the comparison point indexes
of Figure 4: results 1, 2, 3, 5, 6, 7, 13,14 and 15 would be
accepted on the fly for being equal; in position 9 the chosen
result is the one returned in task V1 since it has reputation
2 against reputation -4 of task H3 (positions 10, 11, 4, 8
and 16 would be disambiguated in the same way); position
12 would require re-execution, since both tasks H3 and V4
have equal negative reputation -4.

This algorithm can enable the use of low, possibly even,
replication factors. Requiring minimal portions of extra ex-
ecution for disambiguation. Nonetheless, in a system where

Figure 5: Meshed partitioning: results of the com-
parison points (1 means equal, 0 means not equal).

the majority of the participants is honest, the extra work is
minimal and rare.

3.1.4 Sampling
Replication bases all its result verification decisions in

results/info provided by third parties, i.e., the participant
workers. In an unreliable environment this may not be
enough. Therefore, local sampling can have an important
place in the verification of results. Sampling considers the
local execution of a fragment, as small as possible, of each
task to be compared with the returned result. In essence,
sampling points act as hidden embedded quizzes, without
generation nor identification issues. Figure 6 depicts the
sampling of an image where a sample is a pixel.

Figure 6: Sampling for an image.

3.1.5 Samplication
Replication and random sampling can be used sequentially

to achieve higher reliability of the results: the winning result
of the voting quorums is considered correct if it matches a
random sample that was executed in the submitter.

Nonetheless, these techniques can be combined in a more
elegant manner that provides additional benefits without
adding extra overhead.

The algorithm we propose is very simple, the next piece
of pseudo code describes how it works:

1. Schedule redundant work, put the results in a bag;
2. IF(the bag is empty)
3. GOTO 1;
4. IF(all results in the bag are equal)
5. IF(random sample matches)
6. ACCEPT RESULT;
7. ELSE
8. remove all results from the bag;
9. GOTO 1;
10. ELSE
11. choose a sample within the mismatch area;
12. compare with all results;
13. remove results that mismatch the sample from the bag;
14. GOTO 2;

This algorithm provides a number of desirable properties:



• It only discards wrong results: if at least one of the re-
sults of the redundant work is correct this approach en-
sures that the mentioned result is the chosen one, and
that the honest participant will always receive credit
for it. Whereas, using voting quorums, if the correct
result is not within a majority it is discarded, the hon-
est participant does not receive credit and might even
be punished by the reputation mechanisms.

• It enables the identification of fault-prone participants
and colluders: results that mismatch samples are wrong,
if more than one results are equal and wrong it is very
likely that they were returned by colluders;

• It enables the use of even replication factors (since it
does not use voting quorums);

• The number of samples per task is low: if all results
are correct, it only requires one sample per task; the
maximum number of samples used when there is no
rescheduling is R (R being the replication factor);

• Rescheduling only occurs if all the received results were
wrong, which makes rescheduling the desirable option.

3.2 Checkpoint/Restart Mechanisms
In GINGER we want to provide a wide range of appli-

cations with checkpoint/restart capabilities, while keeping
them portable to be executed on cycle-sharing participant
nodes, and without having to modify them. Library-level is
the only approach in the related work that would fit. How-
ever, an approach simply stating these goals is still far from
being able to checkpoint/restart any application. Therefore,
we propose two alternative approaches that will enable us
to checkpoint/restart any application.

3.2.1 Checkpoint/Restart through a Virtual Machine
An application can be checkpointed if we run it on top of

virtual machine with checkpoint/restart capabilities (e.g.,
qemu), being the application state saved within the virtual
machine state. This also provides some extra security to the
clients, since they can be executing untrusted code.

The major drawback of this approach is the size of the
checkpoint data, incurring considerable transmission over-
head. To attenuate this: 1) we assume that one base-generic
running checkpoint image is accessible to all the peers; 2)
the applications start their execution on top of this image
once it is locally resumed; and 3) at checkpoint time we only
transmit the differences between the current image and the
base-image.

The checkpoint data size can be further reduced using
various techniques: optimized operating systems (e.g., just
enough operating system or JeOS); differencing not only the
disk but also the volatile state; and applying compression to
the data.

This approach does not have semantic knowledge of the
applications, it cannot preview results. However we may be
able to show some statistical data related to the execution
and highlight where changes have occurred.

3.2.2 Checkpoint/Restart through the Result Files
This technique will only fit some applications and de-

mands the implementation of specific enabling mechanisms
for those, the application remains unmodified though. The
idea behind this technique is that the applications produce

final results incrementally during their execution. Therefore,
if we are able to capture the partial results during execution
and resume it from them later, such result files can actu-
ally serve as checkpoint data. This creates a very efficient
checkpointing mechanism.

This technique can be implemented using two different
approaches: by monitoring the result file that is being pro-
duced by the application; or by dividing the gridlet work
into subtasks in the executing peer.

Since this approach has semantic knowledge of the appli-
cation result it can checkpoint whenever it is more conve-
nient (e.g., every 10 lines in an image written by a ray-
tracer); rather than on a predefined time interval. This
awareness of the application’s semantics also enables the
monitoring of the execution and the previewing of the re-
sults in the submitter.

. We have proposed two checkpoint/restart enabling tech-
niques. Our checkpoint/restart through a virtual machine’s
running image technique enables us to checkpoint any ap-
plication and resume it later, the overhead it incurs derives
mainly from the size of the checkpoint data. Nevertheless,
for some applications our checkpoint/restart through the re-
sult files technique will enable the system to checkpoint and
resume an application with no noticeable overhead, the re-
sults are transmitted incrementally, rather than at the end
of the execution.

For a reliable result verification we have proposed vari-
ous flavours of replication that make colluding increasingly
more difficult to achieve and easier to detect. Sampling is
able to test the received untrusted results against one result
sample that is known to be correct. Samplication combines
replication and sampling in an elegant manner without using
voting quorums.

4. IMPLEMENTATION
Our implementation is developed in two different deploy-

ments: i) a simulator that enables us to test result veri-
fication approaches with large populations; and ii) a real
deployment that proves that our result verification and the
checkpoint/restart approaches are feasible.

4.1 Simulator
The simulator is a Java application that simulates a sce-

nario where an n-dimensional job is broken into work-units
that are randomly assigned. Among the participants there is
a group of colluders that attempt to return the same bad re-
sult (based on complete or imperfect knowledge, depending
on the partition overlapping), in order to fool the replication
based verification mechanisms.

The simulator receives several parameters: number of par-
ticipants; number of colluders; worksize as an array of in-
tegers (n-dimensional representation), the size as defined in
terms of atoms of execution (i.e., an indivisible portion of
execution); number of gridlets; replication factor; and par-
titioning mode (standard or overlapped).

The simulator returns several results, being the most im-
portant one the percentage of wrong results that were ac-
cepted by the system.

4.2 Real Deployment
The major concern in implementing the checkpoint/restart

and result verification techniques that have been described



in Section 3 was to keep the checkpoint/restart and result
verification policies separated from the application specific
adaptors.

For being able to support a new application, we have to
develop application specific adaptors, which consists in spe-
cializing three classes: an Application Manager, a Gridlet
and an Atomic Result.

4.2.1 Application Manager
The Application Manager is responsible for dividing a long

running execution into several executable gridlets and re-
unite their results. For some applications it may also enable
the user to preview the results as it receives them (e.g., an
image being incrementally produced by a ray-tracer). Using
our checkpoint/restart through the result files approach it
is possible not only to preview the tasks that already com-
pleted their execution, but also the ones that are currently
being executed.

It must extend the abstract class ApplicationManager and
implement a constructor and three other methods. The next
excerpt of code is the POV-Ray’s application manager spe-
cialized class.

class PovRayManager
extends ApplicationManager {

PovRayManager(String command)
throws ApplicationManagerException { (...) }

int calculateWorksize() { (...) }

Gridlet createGridlet(int offset, int worksize) { (...) }

void submitResults(int offset, AtomicResult[] res) { (...) }

}

The constructor receives a string as argument, this string
is the command that invokes the application (this is a sim-
plification of the GINGER application invocation used for
this work only).

For the generic application management to be able to par-
tition any task it must have access to the total size of the
long running task, this can only be calculated by the spe-
cific application adaptors. Therefore, it must implement the
method calculateWorksize that retrieves the total size of the
long running task, in terms of atoms of execution.

The createGridlet method receives the offset and the size
of the task and returns a gridlet that matches the corre-
sponding portion of execution. Gridlets are created with a
size defined by generic application adaptors rather than the
specific ones. This creation of gridlets on demand enables:

• the implementation of application independent parti-
tioning policies, manipulating the offset and worksize
parameters;

• the creation of samples to be locally executed, a sample
is a gridlet whose work consists in an atom of execu-
tion;

• the creation of recovery gridlets, for both checkpoint/restart
and result verification purposes;

The submitResults receives an offset and a variable num-
ber of ordered results in an array. This method reassembles
the results, and since it receives the updated results during
the execution it can display a preview of the already received
results.

4.2.2 Gridlet
The gridlets are created on demand by invoking the create-

Gridlet method on a specific application manager, gridlets
are self-aware of their execution, and they perform it upon
the invocation of the method execute. The following is an
excerpt of the Pov Ray’s gridlet class.

class PovRayGridlet
extends Gridlet
implements Serializable, Runnable {

AtomicResult[] execute(int offset, int worksize) { (...) }

}

The specialized Gridlet class must implement the Serializ-
able and Runnable interfaces, this enables transportation by
the Java RMI and allows it to perform a threaded execution
in its destination. Implementing the Runnable interface re-
quires the implementation of the run method, this method is
implemented in the super class. The run method invokes the
execute method manipulating its arguments, which enables
the capture of partial results (making sequential invocations
of the application). Those are used as checkpoint data in our
checkpoint/restart through the result files based approach.

The execute method receives as argument the portion of
execution to be executed (this is defined through the off-
set and worksize parameters), this is contained within the
boundaries with which the gridlet was firstly created.

4.2.3 Atomic Result
The atomic result is just a container of result data (e.g.,

a pixel for image generation, a frame for video enhancing).
The atomic result class must specialize a method that en-
ables the comparison with another result. The following
piece of code is an excerpt of the PovRay’s Atomic Result.

class PovRayAtomicResult
extends AtomicResult
implements Serializable {

boolean isEqual(Object obj) { (...) }

}

The isEqual must be able to compare atomic results. For
result verification purposes, the comparison of results in
replication schemes using standard partitionings can be done
byte wise over raw data. However, this does not work for the
other types of partitionings that we described in the archi-
tecture, nor for the comparison of samples. Therefore, the
implementation of this simple method enables all the result
verification techniques studied in our work, while keeping
their policies transparent to the application specific adap-
tors.

Specializations of the Result class must implement the
Serializable interface, for the Java RMI mechanisms being
able to transmit these atomic results back to the submitter.

5. EVALUATION
This Section presents a highlight of our evaluation. Sec-

tion 5.1 presents the evaluation of result verification strate-
gies proposed earlier. Section 5.2 evaluates the proposed
checkpoint/restart enabling techniques.



5.1 Result Verification Mechanisms
Result verification mechanisms introduces overhead, this

overhead is the price these systems are willing to pay to en-
sure their results are reliable. In this section we analyse and
evaluate the result verification techniques proposer earlier in
this paper.

5.1.1 Replication using Overlapped Partitionings
Overlapped partitioning influences the way that the col-

luders introduce their bad results: it produces more points
where collusion may happen and also may be detected; the
size of each bad result is smaller, though. This happens
because one task is replicated into more tasks than using
standard partitioning; therefore there is a higher probabil-
ity of redundant work being assigned to colluders; however
they can only collude part of the task instead of the whole
task as using standard partitioning.

Figure 7: Replication w/ Standard Partitioning Vs.
Replication w/ Overlapped Partitioning, using repli-
cation factor 3.

The graphic in Figure 7 depicts that overlapped partition-
ing is as good as standard partitioning, in a scenario where
the colluders are fully able to identify the common part (in
theory possible, but in practice harder to achieve as this
may require global knowledge and impose heavier coordina-
tion and matching of information among the colluders) and
collude it, while executing the non common part. This is
the worst case scenario, therefore overlapped partitionings
can improve the reliability of the results depending on how
smart the colluders are.

5.1.2 Replication using Meshed Partitionings
The insight of partitioning the task in more than one di-

mensions provides lots of points of comparison, information
that is used to calculate the reputation of a result. This
reputation disambiguates mismatching results of the same
task.

The graphic in Figure 8 depicts that the percentage of
wrong results accepted is very low, a small number of re-
sults must be rescheduled for disambiguation, though. The
work that has to be rescheduled is mostly composed by the
portions where wrong results overlap. Therefore, those re-
sults cannot be accepted, rescheduling is the only solution.
This technique proves to be very efficient as we are only
using twice the base amount of work.

Figure 8: Replication using meshed partitionings:
percentages of results using bi-dimensional before
rescheduling, in a scenario where colluders return
results 100% forged.

5.1.3 Samplication
Samplication is a technique that combines sampling and

replication without using voting quorums. Plus, this tech-
nique works with even replication factors as well. It uses
information from replication to decide where to choose sam-
ples, rather than selecting samples randomly. It chooses the
samples within a replication mismatch area and discards the
results that mismatch the chosen sample. If there is no mis-
match in replication it uses random sampling.

Figure 9: Result Verification - Samplication: per-
centage of wrong results accepted in a scenario
where return results 50% corrupted.

As seen in Figure 9, this technique is quite effective, it
keeps the percentage of wrong results accepted very low,
even for medium groups of colluders. Improving the stand-
alone replication effectiveness through comparison with lo-
cal samples. It incurs local overhead (the execution of the



samples).

5.2 Checkpoint/Restart Mechanisms
In this Section we evaluate our checkpoint/restart ap-

proaches having into consideration the overhead incurred by
those techniques during fault-free execution.

5.2.1 Checkpoint/Restart through a Virtual Machine
The major issue of our checkpoint/restart through a vir-

tual machine’s running image is the size of the checkpoint
data, because this has to be transmitted over the network.
In order to reduce the size of the checkpoint data, we use
differential disk images and compression.

Figure 10: Checkpoint data size using VirtualBox
and Ubuntu Desktop 9.10.

The table in Figure 10 depicts the reduction of the sizes of
the checkpoints using differential disk images. Checkpoint
A reduces the size about 17 times, checkpoint B about 14
times. This difference is mainly justified by the different
amounts of data written by the applications. Therefore, the
checkpoint size will always depend on the application being
checkpointed.

Figure 11: Checkpoint data size reduced using 7zip
compression.

The table in Figure 11 shows the effect of using compres-
sion over the checkpoint data. Reductions are up to 50%
of the original size using light compression techniques, the
use of heavier compression techniques would be able to re-
duce the checkpoint size more effectively. However, it would
increase the amount of time necessary to take a checkpoint.

Other techniques like differencing the volatile state can
improve the checkpoint data size, their implementation is
very complex, though. We believe 50MB to 100MB check-
points are transmittable within an affordable number of check-
points taken during execution.

5.2.2 Checkpoint/Restart through the Result Files
The major overhead of this approach is the sequential

launch of the application. The checkpoint data is the re-
sult files, whose would have to be transmitted anyway.

The table in Figure 12 reflects the overhead incurred dur-
ing fault-free execution of 4 different examples. We conclude
that the number of checkpoints taken must be controlled
having into account the duration/complexity of the task:
taking 10 checkpoints in task 4 is almost negligible whereas
taking 100 checkpoints in task 1 is an overkill.

Figure 12: Checkpoint/restart through the result
files: the overhead of sequential launch.

Figure 13: Checkpoint/restart through the result
files: overhead pay-off in faulty scenarios.

The table in Figure 13 shows the pay-off of checkpoint
overhead in scenarios with faults occurring at different mo-
ments of a task’s execution. As it show 10 checkpoints pays-
off in all faulty scenarios, except for task 1 with a fault oc-
curring at 25%. In some scenarios 100 checkpoints pays-off
more than 10

The number of checkpoints incurs a constant overhead
during fault free execution, though in faulty scenarios it can
make it up. A compromise between the number of check-
points and the probability of a fault occurring must be es-
tablished to take the best advantage of checkpoint/restart
mechanisms.

Figure 14: Checkpoint/restart through the result
files: the previewing of a ray-tracer.

This technique enables the previewing of the results. This
is a very pleasant functionality to users, as they can see that
the work they submitted is being executed. despite it seems



like an extra functionality, it can have a very positive impact
on the acceptance of these systems by the public.

Figure 14 depicts the previewing of 6 independent POV-
Ray tasks executing.

6. CONCLUSIONS
In this paper, we proposed and analysed a number of re-

sult verification schemes and checkpoint/restart mechanisms
to improve fault-tolerance and reliability in cycle-sharing in-
frastructures such as those in Peer-to-peer networks.

Result verification techniques ensure their results are cor-
rect with a given probability, this probability grows along
with the overhead the technique incurs. Techniques that
maximize the probability of results being correct or lower
the overhead, are steps towards a more effective and effi-
cient result verification.

Our result verification schemes vary in their complexity
and overhead. Replication with overlapped partitionings
makes collusion harder to achieve, while ensuring that the
reliability of the results is the same as using standard parti-
tionings. Replication with meshed partitionings enables the
use of even replication factors (because it avoids the use vot-
ing quorums) and improves the reliability of the results using
its stateless result reputation algorithm, it only fits applica-
tions that can have their work partitioned in more that one
dimension, though. Samplication combines replication and
sampling in an elegant manner, ensuring it takes the best
advantage of redundant execution through the comparison
with local samples rather than using voting quorums (which
also enables the use of even replication factors).

Checkpoint/restart enabling mechanism incur overhead
during fault-free execution. This overhead is compensated
when faults occur. The overhead incurred is the extra-time
necessary to take checkpoints and the size of the checkpoints.

Our checkpoint/restart through a virtual machine has as
major obstacle the checkpoint data size, using differential
disk images and compression we were able to minimize the
checkpoint size about 30 times, which is a transmittable
amount of data. Our checkpoint through the result files ap-
proach is very efficient because checkpoint data is composed
only by results that would have to be transmitted anyway,
the time required to take checkpoints can be tightly con-
trolled by the number of checkpoints per task, plus, this
technique enables the previewing of the results.
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