
VFC-RTS: Vector-Field Consistency para Real-Time-Strategy
Multiplayer Games

Manuel Eduardo Costa Cajada

INESC-ID/Instituto Superior Técnico
Distributed Systems Group

cajadas@gmail.com

Adviser: Professor Lúıs Manuel Antunes Veiga, (DEI/IST)
Co-adviser: Professor Paulo Jorge Pires Ferreira, (DEI/IST)

Abstract

Although massive multiplayer online games have been
gaining most popularity over the years, real-time
strategy (RTS) has not been considerate a strong can-
didate for using this model because of the limited
number of players supported, large number of game
entities and strong consistency requirements.

To deal with this situation, concepts such as
continuous consistency and location-awareness have
proven to be extremely useful in order to confine ar-
eas with consistency requirements. The combination
between these two concepts results on a powerful tech-
nique in which the player’s location and divergence
boundaries are directly linked, providing the player
the most accurate information about objects inside
his area-of-interest.

The VFC model achieves a balance between
the notions of continuous consistency and location-
awareness by defining multiple zones of consistency
around the player’s location (pivot) with different di-
vergence boundaries.

In this work we propose VFC-RTS, an adaptation
of the VFC model, characterized for establishing con-
sistency degrees, to the RTS scenario. We describe
how the concepts of the original VFC model were
adapt to the RTS paradigm and propose an archi-
tecture for a generic middleware. Later, we apply our
solution to an open source, multi-platform RTS game
with full consistency requirements and evaluate the
results to define the success of this work.

1 Introduction

With the increase of the internet services capabili-
ties over the years there has also been a growth in

the new types of real-time applications. One that has
been gaining most popularity are massive multiplayer
online games (MMOG).

The category most played and with the greatest
popularity are the role-playing games (MMORPG),
however, there are other real-time network game cat-
egories which have been less discussed for using the
MMOGs model, among them the real-time strategy
games (RTS)[7].

Multiplayer solutions for RTS games typically al-
low a limited number of participants to be playing
simultaneously[5] due to the lack of scalability of the
traditionally used network architecture, the Client-
Server (CS) model. This architecture is characterized
by the use of a centralized server that is responsible
for maintaining the game state by collecting updates
from all clients, resolving inconsistencies and propa-
gating the most current game state.

When playing over the internet, users are sub-
jected to internet service conditions that may not
always satisfy the game’s QoS (Quality of Service)
specification. Latency is often the greatest network
related issue because it affects the usability of the
games, compromising users QoE (Quality of Expe-
rience). However, for a RTS, the latency can achieve
high values without affecting the game.

Maintaining game state consistency on a RTS
game is a complex task. To reduce the amount of data
on a state update process and still provide the user
with the relevant state information, MMOGs employ
interest management (IM) techniques[4,12]. This con-
cept restricts the amount of data exchanged during
the update process by limiting the area of interest
(AoI) of a player. Thus, the player only receives the
game state data necessary, mostly corresponding to

1



the area where avatars and events relevant to him are
located and take place.

This work proposes the adaptation of a continuous
consistency model to the needs of the RTS games. To
achieve it, we start by identifying the consistency re-
quirements of real-time strategy and how the contin-
uous consistency model can meet them without com-
promising the dynamic of the game. Later, we analyze
how the concept of area-of-interest can be combined
with the continuous consistency model.

2 Related Work

In the field of Distributed Systems, high availability
and performance are two major requirements assured
by the use of data replication. As there are multi-
ple replicas there is also the possibility of information
disparity between them, leading to inconsistency. In
the next sections we will present two distinct classes
of replication techniques: pessimistic replication and
optimistic replication, followed by the study of three
systems that seek a balance between them. Next, we
explore the topic of interest management and some
adopted solutions.

2.1 Pessimistic Replication

Pessimistic replication techniques aim at maintain-
ing single-copy consistency, usually by usage of lock-
ing mechanisms[8]. These provide strong consistency
by preventing conflicts between updates since data
changes are isolated and propagated to all the other
replicas, becoming available for all the following read
operations. Despite being widely used in commercial
systems[6] due to performing well in local-area net-
works, this solution is not suited for the Internet, since
it cannot provide good performance and availability.

2.2 Optimistic Replication

Optimistic replication algorithms[9] are based on the
assumption that conflicts between updates occur only
rarely and can be easily fixed when they happen. As
a result, optimistic algorithms allow replica data ac-
cesses without previous synchronization between all
replicas. These approach introduces the concept of
eventual consistency which states that even though
the state of replicas may diverge, the continuous prop-
agation of updates in background will eventually lead

to the full consistency of the system. Since optimistic
replication can support partially inconsistent data it
is unsuitable for systems with strict consistency re-
quirements that cannot tolerate occasional conflicts.

2.3 Case study Systems

Next we present a review on three divergence bound-
ing systems, representing the evolution of the op-
timistic replication scenario and how it is possi-
ble to achieve a balance between data consistency
and availability: The TACT framework[13], the VFC
model[10,11], and finally, Data-aware Connectivity[2].

(a) The TACT framework is a continuous con-
sistency model that enables the designer to bound
the consistency requirements of the application us-
ing conits, i.e. units of consistency. Thus, it allows
the designer to define the maximum semantic dis-
tance between replicas and even different consistency
boundaries per-replica. When the operation meets
the pre-established requirements it proceeds locally,
otherwise it blocks the operation until synchroniz-
ing with other replicas as specified by the system’s
consistency requirements. TACT contributed to the
consistency scenario by presenting a solution where
different consistency levels can be assigned to different
replicas, taking advantage of this property to increase
the performance of the system by routing clients to
replicas that meet their consistency requirements.

(b) The Vector-Field Consistency model is, as the
TACT framework, a continuous consistency solution
that allows a per-replica consistency level specifica-
tion using a 3-dimensional consistency vector spec-
ifying: the maximum time a replica can be without
the last update values; the maximum number of lost
updates supported; and the maximum divergence be-
tween replicas or against a constant. Moreover, VFC
applies the concept of locality-awareness, establishing
pivot points from which is calculated the distance to
the surrounding objects. A pivot point represents the
position around which there are strong consistency re-
quirements, weakening as the distance from the pivot
increases. In order to define the consistency bounds,
delimitating the authorized divergence degree, with
the pivot as the center, there are drawn ring-shaped,
concentric areas presenting increasing radius and di-
vergence degree, called consistency zones. VFC proves
to be an very flexible solution as it allows explicit and

2



Fig. 1. Aura-nimbus IM Fig. 2. Region-based IM Fig. 3. Visibility-based IM

dynamic definition of consistency degrees, suitable for
a wide variety of systems.

(c) Intended for the mobile environment, Data-
aware Connectivity[2] rests on the principle of en-
suring acceptable quality of a replicated object at
minimal connectivity resources cost. To reach this
goal, the system implements a continuous consistency
model that enforces data consistency bounds of lo-
cal replicas, along with a connectivity monitor that,
using knowledge about the existing communication
supports, calculates the less expensive connection to
obtain the desired quality levels. While the previously
presented consistency models, ensure replica quality
by forbidding access to replicas once they exceed the
allowed divergence degree and until they are obeyed
again, in this system, when replica quality is below
the bounds defined, it probes available connectivity
in order to reestablish consistency levels, forbidding
replica access only if no connection is possible.

2.4 Interest Management

In order to provide a shared sense of space among
players, each player must maintain a copy of the
relevant game state on his computer. The simplest
approach requires every player broadcasting updates
to all other players so that each player can maintain a
full copy of the game state. However, this solution is
proved to scale poorly. IM techniques[1,4] reduce the
number of updates to be transferred to other players
by utilizing filtering mechanisms such as application
specific and/or network attribute specific. In this sec-
tion we focus on application specific IM politics and
classify a number of IM algorithms according to them.
Interest Management schemes are usually classified,
according to the range of action, as based in: aura-
nimbus, range or visibility (Fig. 1, 2 and 3).

To obtain the finest-grained update filtering, many
systems opt to apply more than one IM model. One
example of this is the already referred RING system.
Designed to support a large number of players in a
shared environment, the RING system applies both a
range-based model, limiting the AoI of every object
to the region they are positioned, and a visibility-
range model, further restricting the interest zone to
the area the player’s visibility can reach.

A3[3], an algorithm intended for the MMOGs envi-
ronment, combines the aura-nimbus and the visibility-
based models in order to limit the AoI of the player
to an area of 180 degrees in front of the avatar, ig-
noring objects localized in the back. This algorithm
also considers a second aura of smaller dimensions,
retrieving information about only the closest objects
behind the avatar.

VFC[10,11] applies multiple concentric aura each
with different radius. This design complements the
VFC consistency model, limiting consistency zones
as rings around a pivot point (Fig. 4). This way ob-
jects situated in rings closer to the pivot point present
greater consistency requirements which decline as the
rings go wider. Moreover, the VFC interest manage-
ment technique is also supported in a 3-dimensional
environment (Fig. 5). This can be accomplished by
porting the shape of the AoI to the 3D spectrum
(concentric spheres). In the solution, objects situated
within consistency zones on top of the pivot point
present the same consistency requirements any other
object in the same zone.

2.5 Global Analysis

One of the aims of MMOGs is to provide an environ-
ment where realistic interaction among players can oc-
cur. For that, every participant should be unaware of
any data inconsistency regarding entities of the game.

3



Fig. 4. 2-dimensional VFC Fig. 5. 3-dimensional VFC

In order to provide a shared sense of space among
players, each player must maintain a copy of the rel-
evant game state on his computer. The simplest ap-
proach requires every player broadcasting updates to
all other players so that each player can maintain a
full copy of the game state. However, this solution is
proved to scale poorly.

After exploring the state-of-the-art in the fields
of consistency management and interest managing, it
is possible to conclude that consistency maintenance
is achievable at low bandwidth costs by dynamically
identifying the different consistency requirements ob-
jects present at runtime.

This way, a model like VFC, which combines IM
techniques with continuous consistency management,
is a suitable choice for reducing bandwidth require-
ments and server CPU load by distributing it through
the clients.

3 Architecture

In this section we start by examining the VFC model
and how it can be adapted to the RTS environment,
we present the architecture of the VFC-RTS middle-
ware and how it can be applied to a RTS game. Fi-
nally, we explain in detail the consistency enforcement
on the VFC-RTS middleware.

3.1 Applying VFC to Real-Time Strategy
games

VFC is a continuous consistency model that employs
locality-awareness techniques in order to maintain the
consistency requirements of each client’s local replica,
without propagating the full game state.

The VFC model represents the virtual world as
a N-dimensional space populated by game objects

which can be player’s units or structures, bonus items
or computer controlled entities. The state of the vir-
tual world is defined as the aggregation of the states
of all active game objects. Each player keeps a local
replica of the game state, however, only the server
holds the most accurate global state. Responsible for
update reception and conflict resolution, the server
is the key enforcer of the VFC model, sending object
states according to the consistency requirements es-
tablished on a player by player basis.

On VFC, the user’s AoI is defined using the con-
cepts of pivot and consistency zone. A pivot point
represents the position around which the local replica
presents strong consistency requirements, weakening
as the distance to the pivot increases. One possible
adaptation of this concept for RTS is establishing a
pivot on each object controlled by the player. How-
ever, this solution does not fill all the consistency
requirements of real-time strategy since the player
may not be aware of events taking place on the area
captured by the camera if there are no player units
present. Also, this solution may require excessive cal-
culations as we will describe further on this document.

To enforce the boundaries between consistency
levels, the VFC model introduces the concept of con-
sistency zones. In practical terms, the consistency
zones are used to quantify an object’s importance.
This way, objects positioned in zones closer to the
pivot present more relevance and as such are re-
freshed more often than objects further apart from
the pivot point. Since this work targets RTS games,
which nowadays are most commonly 3-dimensional,
we opted to carry over the original consistency zones
design to 3D, describing consistency zones as concen-

4



Fig. 6. Adaptation of player’s AoI to his camera view

tric spheres.

The proposed adaptation of the VFC model is
composed of two parts: adaptation of the player’s
area-of-interest to the map area captured by the cam-
era and aggregation of entities into units according to
the distance among them.

In Fig. 6 we present an illustration of the proposed
solution. By assigning the pivot point to the center
of the player’s camera view, we guarantee that every
object within the player’s area of visibility presents an
acceptable divergence degree for the correct execution
of the game. We believe this pivot point attribution
best serves the consistency requirements of real-time
strategy since the majority of strategy commands and
decisive battle events concerning the player take place
inside his camera spectrum. Although the presented
adaptation of VFC covers most of the player’s area-
of-interest, there can also be events affecting the user
not followed by the camera. To cover this situation, we
propose next an additional feature to the VFC-RTS
solution - the concept of entity aggregation into units.

A unit is a group of entities controlled by the same
player performing the same set of actions within a lim-
ited time period. If the system detects entities within
a fixed distance threshold going on the same direction,
it establishes a pivot point in the center of the unit
formation and consistency zones. Not only this pro-
cess allows following entities outside the camera span
without compromising the consistency of the system,
it also reduces the processing and communication load
since update messages regarding entities of the group
can be aggregated.

3.2 Middleware Architecture

Next we will present in detail how a system using
VFC-RTS manages game state consistency by ex-
plaining the message exchange protocols and the dif-
ferent components involved in game state updating.

Following the architecture adopted by the origi-
nal VFC model, the VFC-RTS distributed framework
is composed of two types of network nodes: client
nodes and a single server node. Running an instance
of the game, clients are accountable for any changes
to the game state and submission of local replica
modifications to the server node. The server node is
responsible for game state update reception, apply-
ing newly received updates to the global game state,
solving possible conflicts between concurrent client
updates and propagation of the most recent game
state according to each player’s consistency require-
ments.

Although a client-server topology is a less scal-
able solution when compared to a totally distributed
architecture, it provides several advantages, from cen-
tralized game state control and conflict resolution,
to a simplified middleware integration since the all
VFC reasoning is confined to the server. Addition-
ally, the client-server topology is the easiest and most
intuitive architecture to implement, granting the ad-
ditional bonus of always having a node presenting the
full game state, beneficial for system monitor pur-
poses, security control and cheating avoidance.

Client The Client node corresponds to the adapted
game application run by the user. Asynchronously

5



Fig. 7. Client-Server Message Flow

modifying its local replica, the client is given the il-
lusion of interacting directly with the full game state.
Whenever the client modifies the local game state,
an update is sent to the server node. The client-
side VFC-RTS Middleware presents a key component
called Consistency Zone Monitor, responsible for
the detection of changes to the consistency zones con-
figurations and forwarding them to the server. Hence,
whenever the player changes his camera view position
(above the configured threshold value), or changes the
location of a group or its configuration (i.e. number of
entities in the group, max consistency radius), a new
consistency zone message is dispatched to the server.

Server The Server is the central node in the system.
Every message exchanged in the network is either
sent or received by this node. It accumulates client
management and update propagation responsibilities.
Although the server immediately applies client’s game
state updates according to the arrival order, in a VFC
powered system, it is up to the server to reason when
to send object state updates in accordance to each
user’s AoI. To do this, the server makes use of two
key components: the Consistency Zone Manager,
holding all the information regarding every player’s
consistency zones; and the VFC Manager, respon-
sible by enforcing the VFC algorithm in conformity
with each client’s consistency requirements. In addi-
tion to this task, the VFC Manager is also responsible
for tagging which objects have been subject to up-
dates and, if that is the case, to which clients have
the new object state been sent.

In Fig. 7 we illustrate the message flow between
the clients and the server. In this representation we

can easily identify the three update processes that
characterize our VFC architecture: Client Updates,
Consistency Zone Updates and State Updates.

In a client update, the client asynchronously sends
to the server the information regarding modifications
to the local replica so they may be applied to the
primary game state and, consequently, to the remain-
ing client’s game states. This updates have to be sent
immediately after the replica update to maintain the
server’s game simulation complete consistency. When
arriving to the server, the update is interpreted by the
VFC Manager in order to determine which objects
are targeted for modification and then applied to the
primary game state.

Triggered whenever a client changes the configura-
tion of a consistency zone, Consistency Zone Updates
provide the server all modifications regarding the
player’s AoI. Once in the server, this information is
stored in the Consistency Zone Manager so it can be
looked up during the VFC reasoning process.

Considering object o and client c, whenever the
VFC Manager detects that o is tagged as dirty and
does not respect the consistency boundaries set for c,
the server sends c a State Update Message, contain-
ing the o’s most consistent state (the primary state).
Furthermore, the server flags a state update regarding
o was sent to c, preventing the server from repeatedly
sending clients an object’s state before it is once again
modified.

6



Fig. 8. Message dispatch ratio before and after VFC

3.3 VFC Enforcement

The server node is accountable for enforcing the VFC
model. This particular task is assigned to the VFC
Manager module. As soon as an object reaches a
client’s stablished VFC limits, the state of that ob-
ject is immediately propagated.

To formalize the consistency degree of a zone,
VFC employes a 3-dimensional consistency vector:

Time (θ): The maximum time (in seconds) a lo-
cal object can stay without being refreshed with its
primary replica’s latest value. With this metric, VFC
guarantees that an object within a consistency zone
has to be refreshed within intervals of θ seconds. In the
practical sense, this dimension expresses the ”fresh-
ness” of an object.

Sequence (σ): The maximum number of updates
to the primary object state not applied to the local ob-
ject (missing updates). With this metric, VFC guar-
antees that an object within a consistency zone has
to be refreshed within intervals of σ lost updates.

Value (ν): The maximum divergence between
the contents an object’s local state and its primary
state. Value is an application-dependent metric and
by that reason must be calculated using a function
implemented by the application developers.

For the purposes of our system, ν represents
the maximum distance between an object’s primary
replica position and local replica position, i.e., a mea-
sure of the error associated with the perceived loca-
tion of an object (in the local replica) and its actual
location (in the primary replica). We understand that,
the bigger the consistency requirements, the smaller
must the distance threshold be for replica synchro-
nization. This feature will also guarantee the model’s

correct behavior in a case where an object o, present-
ing a great distance from any of a player p’s pivots,
takes a move command that will put o inside p’s AoI.

4 Evaluation

Next, we present the experimental results of our eval-
uation of VFC-RTS. We start by presenting a quanti-
tative evaluation consisting on a study on the use of
both computational and network resources, followed
by a qualitative evaluation, in which we investigate
the impact of the solution to a player’s perception of
the game.

4.1 Quantitative Evaluation

In this section we show the results of a study con-
ducted to the system with the objective of determin-
ing the savings in the use of network resources as well
as the impact on computational performance.

Number of Messages We start our analysis by
studying how applying the VFC algorithm affected
server-client update propagation. Our tests were con-
duceted on two, three, and four players game sessions,
varying for each case the size of the scenario (small,
medium and large maps with a maximum capacity for
two, four and eight players, respectively). The results
are summarized in Fig. 8.

Analyzing to the graphic, we are able to see an
overall reductions in the number of exchanged mes-
sages between 50% and 60%. Such gains are not ac-
complished on a two players game in the small map
(for only two players) since both bases are located

7



Fig. 9. CPU consumption before VFC Fig. 10. CPU consumption after VFC

Fig. 11. Frame rate before VFC Fig. 12. Frame rate after VFC

too close to each other, resulting on an highly proba-
ble overlap between the player’s areas-of-consistency.
The tests also exposed how the size of the scenario
has a direct impact on the update exchange rate.
This factor can be explained by the increasing gap
between player’s headquarters as the scenario gets
wider. Hence, the bigger the scenario, the more ex-
tensive is the distance between the player’s AoI.

CPU Performance Next, we present the study the
effects of our solution on CPU consumption. Since
the majority of computational workload takes place
on the server, we focus our study on this component.

In spite of being realized under the same variables
as the previous test, to further examine the impact of
our solution, we introduce a stress case consisting on
a game session taking place on larger map where the
players were enabled to make use of a game cheat that
multiplies ten times the number of units controlled by
him. With this test, we intend to make an assessment
on how the system reacts considering a large number
of game entities.

In the results (Fig. 9 and 10), we see there is an
increase on the server CPU consumption in between
10 and 20 percent. This can be seen as a consequence
of the additional workload required for enforcing the
VFC algorithm. Despite this fact, such an increase

on the server’s computational requirements has little
expression since CPU usage rarely surpasses 80%. Al-
though our solution presents additional CPU usage
compared to the version without VFC, the consump-
tion rate is consistent during the entire game session,
even in the stress case.

Frame Rate We proceed the quantitative analysis
of our solution by monitoring the frame rate. Al-
though this factor may sustain a direct influence on
the player’s game perspective, therefore also belong-
ing in the qualitative evaluation, in this section we
will solely make an analysis on how the frame fre-
quency was affected in the system.

By looking at Figs. 11 and 12 the charts it is easily
perceptible the version after shows a slight downward
trend, reaching a minimal value of 37 FPS, while
before VFC it presents a minimal of 44 frames per
second. We believe these may come as a consequence
of changes made to the update message structure in
order to enforce the VFC algorithm. While, in the
version before VFC, a message would simply propa-
gate the object’s latest orders, which would produce
the same game state on all clients, since the system
supports total consistency, the new update message
structure also propagates the object’s position when
the order was given, so that the object may synchro-
nize it’s position with its primary replica and then

8



proceed with the order, thus requiring additional ren-
dering.

Although a minimal value of 37 frames per second
was reached during a single stress situation, when ana-
lyzing remaining tests, we can see that the most com-
mon minimal value its about 40 frames per second,
very close to the minimal frame rate before applying
VFC.

4.2 Qualitative Evaluation

The main objective of this qualitative study is to
assess if the introduction to the VFC model had a
significant impact on user experience.

To evaluate the quality impact of our solution, we
have developed a questionnaire (consult Attachments
at the bottom of this document) to which every player
was subjected by the end of a Warzone 2100 game ses-
sion. On the questionnaire we introduce the concept
of sudden object movement. Consisting on an object’s
translation between two points without describing the
path in between, sudden object movements are the
visual manifestation of one of two situations: lag over
the client-server communication channel or a game
state correction due to momentarily unfulfillment of
the consistency requirements over the player’s AoI.

The tests were conducted on two, three, four and
seven players game sessions. The two, three and four
players session were performed over a fixed network
while the seven players games over a wireless network,
which were the only game sessions where lag was ex-
perienced.

Upon the completion of the qualitative evaluation
of VFC-RTS we could verify that:

(a) Although the latency verified during the seven
players sessions may have tampered the result of
this study by causing additional sudden object move-
ments, these events caused little impact on the players
strategy, hence on the outcome of the game.

(b) The game sessions conducted over a fixed
network also present sudden object movements, how-
ever, the frequency of these occurrences is lower than
on the game sessions over a wireless network, and
presented no impact to the player’s strategy or the

game’s outcome.

(c) VFC-RTS holds little to none overall impact
to the player’s game experience, however, this value
is subject to the latency of the system.

5 Conclusions

In this paper we have presented a continuous con-
sistency model which results from the adaptation of
the VFC model to the RTS multiplayer environment.
Besides providing a continuum between strong and
weak consistency, the VFC model makes use of the
notion of locality-awareness to define multiple zones
of consistency with different consistency degrees. By
doing so, the VFC model enables selective updating
in accordance to a user’s area-of-interest.

To start this work, we provide an overview upon
the state of the art on the fields on: consistency main-
tenance in distributed systems and interest manage-
ment techniques.

Next, we present the architecture for a system
powered with the adaptation of the VFC model, de-
scribing the adjustments that, in our opinion, are
required in order to best adjust the VFC model to
the real-time strategy paradigm. In this adaptation,
we defined the portion of the scenario captured by the
player’s camera as being his primary area-of-interest,
therefore, the zone of consistency with the most strict
consistency requirements, describing a pivot point at
its center. Moreover, to guarantee that the player is
presented at all times with the most accurate informa-
tion about events regarding his troops, even if located
outside the area covered by the camera, we introduce
the concept of unit, a group of entities presenting a
pivot point at its geometric center. An unit allows
following entities outside the camera span without
compromising the consistency of the system.

The defined architecture was implemented on top
of Warzone 2100, an open-source RTS game with
total consistency requirements. After the implemen-
tation, using a number of criteria, we analyzed the
success of this work. Other than showing the correct-
ness of the adaptation and the little impact caused
to the player’s game experience, the results showed
the great potential of the VFC model. In comparison
to the network resources usage on a total consistency

9



system, we were able to achieve reduction by the order
of fifty percent. This way, a VFC powered RTS game
can maintain strict, locality based, consistency levels
without compromising the player’s perception of the
game, an advantageous featured to games with a large
number of simultaneous gamers such as MMOGs.

In this work we have established the grounds for
wide variety of future works, including extensions and
improvements to the current design and implemen-
tation. In this subsection we enumerate some of the
lines of investigation we intend to pursue:

(a) Extend the currently centralized architecture
of VFC-RTS to support a distributed server infras-
tructure. Since the current solution relies on a single
server node, a possible improvement to the solution
would be dividing the scenario into smaller areas and
assigning each one to a different server. This way,
we would achieve greater load balancing and also in-
crease the scalability of the system.

(b) Enhance the consistency zones monitoring
system. Currently, the VFC-RTS solution solely mon-
itors changes to the position of the player’s camera,
however, modern 3-dimensional RTS games enable
additional camera operations such as zoom and rota-
tion, which we intend to take into consideration on
future work.

(c) Explore the application of the VFC-RTS to a
world wide global positioning system. As total con-
sistency is impossible to accomplish on a global scale,
a location aware solution such as VFC-RTS would
prove to be a viable candidate.

(d) Expand the use of the VFC-RTS architecture
to other online multiplayer game types that present
a top-down camera perspective such as race car driv-
ing.

References

1. D. T. Ahmed and S. Shirmohammadi. A dynamic
area of interest management and collaboration model
for p2p mmogs. In Proceedings of the 2008 12th
IEEE/ACM International Symposium on Distributed
Simulation and Real-Time Applications, DS-RT ’08,
pages 27–34, Washington, DC, USA, 2008. IEEE
Computer Society.

2. J. a. Barreto, J. a. Garcia, L. Veiga, and P. Fer-
reira. Data-aware connectivity in mobile replicated

systems. In Proceedings of the Eighth ACM Inter-
national Workshop on Data Engineering for Wire-
less and Mobile Access, MobiDE ’09, pages 9–16, New
York, NY, USA, 2009. ACM.

3. C. E. Bezerra, F. R. Cecin, and C. F. R. Geyer. A3: A
novel interest management algorithm for distributed
simulations of mmogs. In Proceedings of the 2008
12th IEEE/ACM International Symposium on Dis-
tributed Simulation and Real-Time Applications, DS-
RT ’08, pages 35–42, Washington, DC, USA, 2008.
IEEE Computer Society.

4. J.-S. Boulanger, J. Kienzle, and C. Verbrugge. Com-
paring interest management algorithms for massively
multiplayer games. In Proceedings of 5th ACM SIG-
COMM workshop on Network and system support for
games, NetGames ’06, New York, NY, USA, 2006.
ACM.

5. M. Claypool. The effect of latency on user perfor-
mance in real-time strategy games. Computer Net-
works, 49(1):52 – 70, 2005. Networking Issue in En-
tertainment Computing.

6. N. Krishnakumar and A. J. Bernstein. Bounded ig-
norance: a technique for increasing concurrency in
a replicated system. ACM Trans. Database Syst.,
19:586–625, December 1994.

7. J. Müller and S. GORLATCH. Rokkatan: scaling an
rts game design to the massively multiplayer realm.
Comput. Entertain., 4, July 2006.

8. J. Munson and P. Dewan. A concurrency control
framework for collaborative systems. In Proceedings of
the 1996 ACM conference on Computer supported co-
operative work, CSCW ’96, pages 278–287, New York,
NY, USA, 1996. ACM.

9. Y. Saito and M. Shapiro. Optimistic replication. ACM
Comput. Surv., 37:42–81, March 2005.

10. N. Santos, L. Veiga, and P. Ferreira. Vector-field
consistency for ad-hoc gaming. In R. Cerqueira and
R. Campbell, editors, Middleware 2007, volume 4834
of Lecture Notes in Computer Science, pages 80–100.
Springer Berlin / Heidelberg, 2007.

11. L. Veiga, A. Negro, N. Santos, and P. Ferreira. Uni-
fying divergence bounding and locality awareness in-
replicated systems with vector-field consistency. Jour-
nal of Internet Services and Applications, 1:95–115,
2010. 10.1007/s13174-010-0011-x.

12. A. P. Yu and S. T. Vuong. Mopar: a mobile peer-to-
peer overlay architecture for interest management of
massively multiplayer online games. In Proceedings of
the international workshop on Network and operating
systems support for digital audio and video, NOSS-
DAV ’05, pages 99–104, New York, NY, USA, 2005.
ACM.

13. H. Yu and A. Vahdat. Design and evaluation of a
continuous consistency model for replicated services.
ACM Trans. Comput. Syst., 20:239–282, August 2002.

10


