
VFC4FPS - Vector-Field Consistency for a First Person
Shooter Game

Bruno Loureiro
bruno.loureiro@ist.utl.pt

ABSTRACT
Multiplayer online games are increasingly more popular. Keep-
ing the game state updated and consistent among all play-
ers in soft real-time is critical. Sending the complete game
state to all players does not scale with the number of players.
One way to increase the game scalability is by reducing it’s
network traffic, and one way to reduce network traffic is by
exploiting the player’s sensory limits. However, current solu-
tions typically use an all or nothing filtering, where a player
only receives updates of objects inside his sensory zone. In
this work we use the Vector-Field Consistency. VFC offers
a progressive consistency reduction. They do this by using
multiple zones, each with a set of consistency requirements,
which are reduced with the increasing distance. We intend
to obtain a network traffic reduction of at least half of the
original traffic of an online game. To that effect we use
the Cube 2: Sauerbraten, a First Person Shooter game. In
this kind of game, players have a limited view of the virtual
world. With that in mind we added the concept of Field
of View to VFC in order to improve performance. Results
show that is possible to significantly reduce network traffic
without harming consistency and playability.

Keywords
Multiplayer Online Games, Optimistic Consistency, Interest
Management, Spatial locality

1. INTRODUCTION
In recent years, the popularity of online multiplayer games

has been growing rapidly. Among the reasons for the growth
is the increasing penetration of broadband internet. A type
of game that emerged with these new possibilities was the
massively online multiplayer game (MMOG). MMOGs are
characterized by high numbers of simultaneous players shar-
ing a huge persistent virtual world.
A popular category of online games that do not fit in

the size of MMOGs are the First Person Shooters (FPS).

.

FPS have fast paced interactivity with emphasis on dex-
terity and reaction times of players. Compared with the
hundreds or thousands of simultaneous players that partici-
pate in a MMOG, the number of players in a FPS is around
the dozens (typically between 16 and 32). FPS differ from
MMOGs by allowing servers to be hosted by players on their
personal computers. However, the number of players sup-
ported by these servers is mainly limited by the available
bandwidth. Game servers can also be housed on more pow-
erful servers (machines) with more bandwidth, normally pro-
vided by communities of players.

In order to provide good performance, each player has
local copies (replicas) of the game state of other players
(player’s positions, shots, etc.). Maintaining these replicas
consistent in soft real time to ensure good gameplay without
using too much bandwidth is the main difficulty in imple-
menting an online game. Associated with the maintenance
of game consistency is scalability, since lower communication
efficiency means support for less players.

One solution for dealing with scalability is the used archi-
tecture. There are two main types of architecture: Client-
Server and Peer-to-Peer (P2P)[5]. In Client-server architec-
tures there is a central server that receives state updates
from clients and that propagates these updates to other
clients. In P2P architectures there is no central server, the
server functions are divided among all the clients involved,
which communicate directly with each other. Both architec-
tures have hybrid variations.

In the case of consistency management, there is a tech-
nique called Interest Management(IM)[3][15]. IM allows for
a reduction of the amount of state updates required. This re-
duction is possible through exploration of the sensory limits
of the players. Each player has an area of interest (AoI) and
is only interested in the state updates from objects within
that area. The AoI can be based on regions, auras or line of
sight visibility. This way a player is only interested, respec-
tively, in state updates of objects within the same region,
that lie within a surrounding area or who they can see.

Another technique, that reduces the frequency of mes-
sages, is Dead Reckoning[15]. This technique reduces the
frequency of player’s position update messages through mo-
tion prediction, taking into account past movements. It
works well for reduced intervals between messages[12].

Finally, at the communication layer, we have a set of tech-
niques used by the games directly or through libraries[5][15][6].
These techniques focus on compression, aggregation and mul-
ticast of packets in order to make communication as efficient
as possible.



This work aims to adapt an existing IM technique and
apply it to a real game. The main objective is to increase
the scalability by reducing the network traffic, maintaining
the playability and consistency. For this purpose we will use
the Vector-Field Consistency (VFC)[14] as a basis of our
solution. VFC, in contrast to other IM techniques does not
apply an all or nothing filter. VFC allows the consistency to
be reduced gradually as the distance increases. A secondary
objective is the development of our solution in the form of
a library. Thus being able to separate game logic from the
details of consistency management.
A key challenge for implementing the solution with a real

game lies in the need for the game to have the source code
available, i.e., the game has to be open source or a commer-
cial game for which the source code was made available. We
chose a First Person Shooter (FPS) because there are a lot
of games of this kind with these conditions. The FPS chosen
was the Cube 2: Sauerbraten1.
Another key challenge of this work is linked to the na-

ture of the FPS. They offer mainly maps (virtual worlds) of
small size while providing a wide range of vision. In order
to increase the impact of the solution, the FPS character-
istics will be taken into account. This is reflected with the
inclusion of the field of view concept in VFC. Thus allowing
to define different consistency requirements for objects, as
they are inside or outside the field of view of the player.
This document is organized as follows. In section 2 we

describe the related word, focusing on the various existing
solutions to reduce bandwidth usage. Section 3 describe
our system’s architecture and section 4 has the implemen-
tation details. In section 5 we describe the evaluation and
the obtained results. We finalize with section 6, where we
summarize this work and present ideas for future work.

2. RELATED WORK

2.1 First Person Shooters
In a FPS, players compete in a virtual world through the

internet. Each player controls an avatar (a digital repre-
sentation of the player). Avatars normally compete against
each other.
Each avatar has an associated state, characterized by at-

tributes such as position, health level, weapons, ammunition
and armour. This state is changed through interaction with
other avatars, objects and through his own movement.
Since the local state of each player consists of many re-

mote objects, a naive solution to keep them updated would
be asking all players for their updated status in each frame.
This solution is impractical because the communication la-
tency is higher than the frame processing time (typically 16
ms for 60 frames per second).
In practice, games keep replicas of each client’s remote

objects. Games then use the local state of replicas for pro-
cessing frames. Replicas may not reflect the actual state
and are updated periodically based on a consistency model.
Due to the fast paced nature of FPS games, players tolerate
latencies up to 100ms[11].

2.2 Architectures
Architecture refers to the way nodes communicate. Nodes

are divided into clients and servers. There are two main ar-

1Cube 2: Sauerbraten, http://sauerbraten.org/

chitectures. The most common and simplest is the Client-
Server (figure 1). In this architecture clients communicate
only with the servers. A Client-Server architecture can have
multiple servers to balance the load[4]. Peer-to-Peer is an-
other architecture (figure 2), where nodes are called peers
and have client and server functionality. The game process-
ing is divided between all nodes and communication is done
directly between them.

2.3 Consistency
The replication of information keeps copies (replicas) of

information on several computers. Performance is obtained
due to local access of information being faster than accessing
the same information remotely. However, in order to keep
local replicas consistent, replication mechanisms are needed.
The main difficulty is managing changes to the same replica
by different clients at the same time, and how quickly that
consistency is maintained in order to guarantee game playa-
bility.

Replication can be managed in two ways: pessimistic and
optimistic replication[13]. Pessimistic replication locks ac-
cess to the replicas during an update. This keeps all repli-
cas consistent between each other. Optimistic replication,
on the other hand, lets replicas diverge between clients. But
in order to guarantee game playability it has to have a way
to limit how much the replicas are allowed to diverge. Di-
vergence can be limited by a maximum time limit[1]. In
TACT[17], besides limiting the divergence through time lim-
its, we can use the number of local updates to decide when
to propagate the updates.

2.4 Interest Management
A player does not perceive the overall state of the game

at once, Interest management (IM) uses these sensory limits
to reduce communication. This way, objects relevant to the
player are update more frequently than other objects. Inter-
est management can be region based, aura based or visibility
based.

In region based IM (used mainly in P2P architectures),
players only receive updates of objects in the same region[7][16][9]
(figure 3).

In aura based IM, players only receive updates of objects
inside an area around the player[3] (figure 4).

In visibility based IM, players only receive updates for
objects they can effectively see[3][10] (figure 5).

2.5 Dead Reckoning
Another approach to reduce the bandwidth is to send up-

dates less often. However, it is necessary that the rate re-
duction is not detrimental to gameplay. Dead Reckoning[12]
is used to predict the movement of players until there is a
new packet. This prediction is based on previous packets.

Figure 1: Example of a Client-Server architecture.



Figure 2: Example of a P2P architecture.

Figure 3: Example of a region based IM.

Figure 4: Example of a aura based IM.

Figure 5: Example of a line of sight visibility IM.

2.6 Network Layer Techniques
There are a group of techniques that can be used at the

network layer to reduce bandwidth. A server sends pack-
ets to each of it’s clients. In many cases these packets are
the same differing only in the destination. Using multicast[5]
can greatly reduce the bandwidth by sending only one packet
by multicast and still reach every client. Another way to re-
duce bandwidth is by optimally use each packet. Instead
of sending many small packets one could aggregate[6][15]
small packets in one bigger packet in order to reduce header
overheads. Reducing the number of bits needed to repre-
sent information is another technique that can be used. An-
other technique, that can be applied to string based informa-
tion consists in indexing frequent substring by use of codes.
The last technique is lossless compression[5]. This can be
achieved by algorithms such as Huffman or by sending only
deltas (modifications) of the information.

2.7 Donnybrook
Doonybrook[10] was thought for low bandwidth environ-

ments. It uses a P2P architecture. Doonybrook aggressively
explores the limited perception of the virtual world by an
avatar. Each player has a bandwidth limit which is dis-
tributed between the objects in which the avatar has more
attention.

2.8 RING
RING[8] uses precomputed visibility between rooms to de-

cide which avatars are visible for each player and exchanges
updates only between visible avatars. This system is good
for environments with high occlusion.

2.9 A3

A3[2] is an algorithm that combines a circular aura with a
field of view. They do this to avoid inconsistencies when an
avatar turns around abruptly. The frequency with which an
avatar receives updates from others is reduced linearly with
an increasing distance.

2.10 Vector-Field Consistency
Vector-Field Consistency[14] introduces the concept of mul-

tiple concentric circular zones with decreasingly consistency
requirements (figure 6). The VFC is an optimistic consis-
tency model that allows replicated objects to diverge in a
limited way.

The levels of consistency associated with an avatar are
specified by three-dimensional vectors. Each vector κ is con-
nected to one consistency zone. Zones are defined around a

Figure 6: Example of VFC’s consistency zones.



pivot. A pivot can be an avatar or other object. Objects
within the same zone are subjected to the same consistency
level defined by the vector κ. This vectors specify the limits
of which a replica is allowed to diverge. The three dimen-
sions of the vector are time, sequence and value.

• Time: defines the maximum time (in seconds) that a
replica is allowed to diverge.

• Sequence: defines the maximum number of updates
that a replica can ignore.

• Value: defines the maximum difference between the
content of an object and is measured in percentage.

When one of this dimensions is exceeded means that the
replica needs a new update.

3. ARCHITECTURE

3.1 Overview
We decided to use Vector-Field Consistency as the basis of

our work. We chose VFC for their flexibility and progressive
consistency reduction.
However, we believe that VFC can be improved to better

support FPS. VFC consistency zones have the same consis-
tency level for the 360o surrounding the avatar. However,
the visibility of an avatar is limited to a field of view that is
only part of the 360o.
The introduction of the field of view helps strengthen the

consistency level in the avatar’s field of view, while simulta-
neously decreases de consistency level for objects ”behind”
the avatar. Due to this adaptation of the VFC to the con-
text of FPS, we named our system VFC4FPS (Vector-Field
Consistency for First Person Shooters).
The game to which the VFC4FPS was applied to was the

Cube 2: Sauerbraten. The reasons behind this choice were
being open source, implemented in C++, popular, having
large maps and an in-game map editor.

3.2 VFC Architecture
VFC was designed to be used as a library. Thus reliev-

ing the game programmer from the communication details.
Through the API provided by the library, the programmer
can parametrize the consistency requirements. VFC uses a
Client-server architecture (figure 7).
Clients keep replicas of all shared objects (secondary ob-

ject pool). The server keep the main replicas (main object
pool). A client is free to read the replicas, but when a up-
date is made to a replica it must be propagated to the server.

Figure 7: VFC architecture.

This propagation is not immediate. Both the client and the
server send replica updates in a periodic fashion (rounds).

The server contains a consistency management block, which
is responsible for deciding which updates are sent to each
player at each round. This is done by a VFC function named
round-triggered. Using each client view (set of consistency
parameters), it decides if an object should be sent to the
client.

In order to support the round-triggered function, VFC
uses data structures to store the number of updates that
each object has received since the last send to the player. It
also stores the last time de object was sent and the value
that the object had. This data is necessary to see if any of
the three parameters of the κ vector was exceeded. In which
case an update is needed.

3.3 VFC4FPS
VFC4FPS introduces the field of view as a new parame-

ter on a player view. It does this by adding an array that
contains the values for the angles that constitute the fields
of view. The array that contained the κ vectors gains a new
dimension, and is now indexed by zone and FoV in order to
obtain the κ vector. This means that a zone can have, for
each zone, one κ vector for each FoV.

Another modification made by the VFC4FPS was to change
the units of the time dimension from seconds to milliseconds
due to the high frequency with which updates are sent.

In the table 1 we can see an example of a view with three
zones, three FoVs and the respective κ vectors.

3.3.1 VFC4FPS Architecture
VFC4FPS maintains the basic architecture of VFC (figure

8). One of the changes was in the round-triggered function.
This function was altered to use the orientation of the pivot
to determine in which FoV an object was located. This was
done in addition to the zone determination. With these two
determinations was then possible to obtain the κ vector with
which the consistency state of an object was then compared.

Another change was the introduction of an compression
module after the serialization stage in order to reduce the
size of the updates.

3.3.2 Cube 2 Communication Model
Cube 2: Sauerbraten has two types of communication:

object updates and events. Object updates are periodic and
contains the avatar’s state. Events are immediate and con-
sists of messages that change the global state of the game.

In Cube 2: Sauerbraten all shared objects are avatars.
Guns, ammo, armour and health are controlled by events.
Object updates contains all the state and can be mapped to
the VFC4FPS.

Events, however, can’t. This is because events don’t con-
tain state, they cause changes in the global state. This fact

PPPPPPPFoV
Zone

150 250 ∞

90o [30, 1, 5%] [60, 2, 10%] [90, 3, 15%]
150o [45, 2, 10%] [75, 3, 15%] [105, 4, 20%]
360o [90, 3, 15%] [120, 4, 20%] [200, 5, 25%]

Table 1: Example of a view.



Figure 8: VFC4FPS architecture.

impedes the mapping of events to VFC4FPS. This is because
events can’t have it’s frequency reduced, at most they can
be filtered. But then, there would be clients whose global
state differed from the other clients.

3.3.3 Client Join
When a client connects to a server, it does so like in the

original game. Simultaneous, a connection is made between
the VFC4FPS client and the VFC4FPS server.
The game client then registers it’s avatar’s object with the

VFC4FPS client and it’s view. These are then sent to the
VFC4FPS server.

3.3.4 Client Update
A client processes frames many times per second (typically

60). In each frame the player’s avatar state is altered due to
interaction with the virtual world.
It’s the VFC4FPS client’s job to periodically send updates

of his local replicas to the server. Objects are only sent to the
server if there are changes after the last send. This avoids
sending redundant information if there are no changes.

3.3.5 Server Update
The main function of the VFC4FPS server is to process

the received updates from the clients and decide, using the
round-triggered function, which updates to send to each
client.
As reported earlier, events are not managed by the VFC4FPS.

However, some events can be filtered. This is the case of
events for shot effects and sound triggers. These events have
spacial locality and are only relevant for a subset of players.
When one of these events are received by the original Cube

2 server, it calls the VFC4FPS server in order to obtain
the clients to which these events are relevant, filtering these
events for those who are not.

3.3.6 View Changes
VFC4FPS offers the possibility to change any parameter

of a view. This is particularly useful in the use of zoom by a
player. When a player zooms in, the field of view is reduced.
This can be matched in the view. Due to the higher range of
vision in this situation, the radius of the zones is duplicated
to maintain gameplay. When a view is changed it is send
immediately to the VFC4FPS server, so it can accurately
manage the player’s consistency.

4. IMPLEMENTATION

4.1 Development Environment
VFC4FPS was developed in a library form. The library

was implemented in C# in the .Net platform fromMicrosoft2.
Cube 2: Sauerbraten is implemented in C++. The use of
the VFC4FPS functionality is done via the library’s API. In
order to simplify the implementation and leverage the inter-
operability offered by the .Net platform, the game’s C++
code was compiled as managed C++. Thus allowing to di-
rectly interface the game and library.

4.2 Interfaces for Shared Objects
Not all the objects in a game have the same characteris-

tics. For this reason VFC4FPS offers a hierarchy of inter-
faces that objects can implement (figure 9).

First we have the ISharedObject interface. This interface
is useful for objects without spatial locality, i.e., objects that
represent the overall state of the game. A ISharedObject
contains a field that identifies the object (Id) and methods
that allow cloning an instance of the object (clone) and de-
termine whether two instances are equal (Equals).

Next in the hierarchy we have the IPositionableObject in-
terface. This interface applies to objects that have spatial
locality. This interface contains three fields for specifying
the position X, Y and Z in the virtual world. It also con-
tains a method to calculate the distance between two ob-
jects (DistanceBetween) and another to compare the varia-
tion of the parameter value (CompareNu) specified by the
vectors kappa. The implementation of the method Com-
pareNu specifies how the value is calculated.

Finally, we have the IOrientableObject interface. This
interface adds the fields that define the orientation of the
object (OrientationX, OrientationY, OrientationZ). The ori-
entation must be in the form of a normalized vector. This
interface is applicable to objects that have a limited view of
the virtual world.

4.3 VFC4FPS Client API

AddObject Adds a new object to the secondary object
pool. The object is immediately sent to the server
main object pool. The object must be an instance of
a derived class from one of the interfaces specified in
section 4.2.

ConnectToServer Establishes a connection between the
VFC4FPS client and server. In the case of a successful
connection, returns a client identifier.

DelObject Removes an object that is owned by the client.
It sends an immediate request for the server to remove

2http://www.microsoft.com/net/

Figure 9: Interface hierarchy for shared objects.



the object from the main object pool.

DisconnectFromServer Disconnects the VFC4FPS client
from the VFC4FPS server.

GetObjectRef Returns a reference to an object that matches
the identifier provided. Changes to the object are
made directly to the secondary object pool.

GetPhi Returns the client’s view for manipulation.

GetUpdatedIDs Returns the identifiers for the objects
that were updated from the server since the last call
of this function. Avoids unnecessary processing by the
client.

SetClientID Optional function that can change the client’s
identifier.

SetPhi Adds or updates a client’s view and immediately
sends it to the VFC4FPS server.

IsConnected Returns the state of the connection between
the VFC4FPS client and server.

4.4 VFC4FPS Server API

Init Initializes the server in a specific port.

ClientIDsAffectedByPositionableEvent It is through this
function that the game server carries out the filtering
of events. It has two implementations, one that takes
a position vector of a punctual event and a maximum
radius in which this event is valid. Another that takes
two position vectors, useful to represent line segments,
and the highest index of the consistency zone in which
this event is valid. It then returns the clients to which
the event is relevant.

GetObject Returns a copy of the desired object. Any
change to it’s status is not propagated to the main
object pool.

4.5 Data Structures

4.5.1 ObjectPool
This class corresponds to the implementation of the main

and secondary object pool. It consists of two dictionaries.
One dictionary stores instances of ISharedObject. The other
stores the client who owns each ISharedObject. Both dic-
tionaries are indexed by the identifier of the objects.

4.5.2 ClientStateData
This class is responsible for storing the current state of

the consistency of each ISharedObject of each client. It
stores this information using dictionaries. The information
contained in these dictionaries is the last temporal instance
that an object was sent to a client, the number of updates
received since it’s last send and a copy of the instance of the
last sent object (for later comparison to the value parameter
of the vector κ.

4.5.3 CubeOriObj
This class corresponds to the implementation of the IOr-

ientableObject interface of the object that represents the
avatar’s state. In addition to the fields required by the in-
terface, it contains the yaw and pitch of the avatar, falling
speed in the three axes (fallingx, fallingy, fallingz), move-
ment velocity in the three axes (velx, vely, velz), physical
state (physstate), flags and selected gun (gunselect).

4.5.4 KVec
This class corresponds to the implementation of the vec-

tors κ. It consists of two integers to represent time (theta)
and sequence (sigma), and a float to represent the value (nu).
To represent an infinite value to any of the parameters, the
value (−1) is used.

4.5.5 Phi
This class corresponds to the implementation of views.

It consists of two arrays of integers, one for specifying the
dimensions of the zones and one for the viewing angles. It
also contains a bi-dimensional array of KVec instances. This
array is indexed by zone and field of view. This class also
contains a list of integers to represent the pivots of the view.
Each integer corresponds to an object identifier.

4.6 Communication
The communication between VFC4FPS client and server

(figure 10) is done through .Net remoting. Events are man-
aged by the original Cube 2 system. Object updates are
managed by the VFC4FPS. Object are serialized in binary
form and sent using the UDP protocol. This is because the
.Net remoting protocol generates too much network traffic.
However, a serialized object is considerably bigger than the
game’s original objects. For that reason it was used two
methods of compression to reduce the object size.

4.7 Serialization and Compression
A serialized object contains meta-data which takes up

much space. However, only a subset of bytes, those of the
fields, are the only ones that change. In order do eliminate
the redundant information we used a delta compression sys-
tem.

After that we still had objects bigger than the original
game. We then implemented a bitmap based compression
to further reduce the object’s size.

Figure 10: Communication architecture.



4.7.1 Delta Compression
In the figure 11 we can see an instance of the CubeOriObj

class in it’s serialized form. Highlighted in grey is the re-
gion of bytes that corresponds to the size of the fields of the
class. Using introspection we can determine de total size of
the fields. Using this size we can calculate the offset where
these bytes start. These bytes constitutes the delta of the
class. This method was devised from empiric observation,
and can have unexpected results when applied to other cir-
cumstances. One limitation is the use of variable fields, like
strings and arrays. But in the context of the VFC4FPS and
Cube 2 it works.

4.7.2 Bitmap Compression
The bitmap compression has the goal of eliminating use-

less bytes, in this case, null bytes. This method of com-
pressing an array of bytes is to use a bitmap to mark if the
position in the array has a null value or not. Since each bit
corresponds to a position in the array, a byte can index eight
positions in the array.
In short (figure 12) this algorithm creates a bitmap of

the array, and marks each bit with zero or one depending
on the byte value. This produces a bitmap and an array
without null bytes. these two are concatenated and a byte
is added with the total size of the bitmap, necessary for
decompression.

4.8 Bots
To make assessments of network traffic it would take a

great many number of players and infrastructure. Instead,
our assessments were made through the use of avatars con-
trolled by the artificial intelligence (bots) of Cube 2: Sauer-
braten.
However, in order to run multiple bots per computer it was

needed to disable the graphical processing. Due to depen-
dences with the game logic, was not possible to completely
disable de graphical output. Instead we disabled textures,
sounds, light maps and some models. This way we obtained
a lightweight bot controlled client.

5. EVALUATION

5.1 Views
The performance of VFC4FPS is mostly associated to the

views specified. Measurements were made using three differ-
ent views: normal view, zoom view and view with only one
FoV (VFC view). The normal view (table 2) contains the
appropriate parameters to the normal view of the avatar.

Figure 11: CubeOriObj serialized.

Figure 12: Bitmap compression.

PPPPPPPFoV
Zone

300 600 ∞

100o [30, ∞, 0] [60, ∞, 3%] [90, ∞, 5%]
140o [60, ∞, 6%] [90, ∞, 9%] [130, ∞, 13%]
360o [90, ∞, 9%] [200, ∞, 20%] [300, ∞, 30%]

Table 2: Normal view.

In the case of Cube 2: Sauerbraten, an avatar has a 100o

field of view. Besides the 100o, in this view we see a field
of view of 140o, this is to avoid momentary inconsistencies
when doing a quick spin. These 140o represent 20o either
side of the normal field of view.

The zoom view (table 3) contains the parameters used in
the case where the avatar has the zoom activated. When
an avatar has zoom, the field of view is reduced from 100o

to 35o. The zones’s radius were doubled in relation to the
normal view. Again, the field of view has 20o to each side,
which results in the 75o. The kappa vectors remain the
same as the normal view.

The VFC view (table 4) is equal to the normal view, but
contains only one field of view that covers all 360o around
the avatar. This view was used to provide a comparison
between the VFC4FPS and the VFC, and prove that the
inclusion of FoVs allows greater performance.

5.2 Quantitative Evaluation

5.2.1 Server Network Traffic Reduction
To measure the reduction of traffic generated we resorted

to the use of 48 bots on different maps. The choice of the
number of bots is linked to the normal number of players
normally seen in online servers. This number is at around
24 players. Since the aim is to reduce traffic by half, it was
decided to double the number of ”players” (bots) to deter-
mine if the gains were close to the traffic generated by 24
players.

All measurements were made in game mode ffa (free for
all, with various types of weapons) in order to have more
events of shooting and better demonstrate the impact of
the event filter. Measurements were recorded only from the

PPPPPPPFoV
Zone

600 1200 ∞

35o [30, ∞, 0] [60, ∞, 3%] [90, ∞, 5%]
75o [60, ∞, 6%] [90, ∞, 9%] [130, ∞, 13%]
360o [90, ∞, 9%] [200, ∞, 20%] [300, ∞, 30%]

Table 3: Zoom view.



PPPPPPPFoV
Zone

300 600 ∞

360o [30, ∞, 0] [60, ∞, 3%] [90, ∞, 5%]

Table 4: VFC view.

time when all 48 bots were connected to the server. The
duration of each measurement was 10 minutes. This value
was chosen to obtain stable average values and for being the
normal time length of a map.
A server has inbound and outbound traffic. The inbound

traffic is low and constant. The highest traffic is outbound.
On those grounds we only present measurements of the server’s
outgoing traffic.
Figure 13 presents the results using the normal view. These

graphs show the rate of outgoing traffic in bytes per second
for the two communications channels for the two solutions
(Original and VFC4FPS). As can be seen, the traffic rates
are stable over time. We can observe a reduction of more
than half the network traffic for object updates. Something
else we can observe is the low traffic generated by events.
The small difference between the original events and the
”VFC4FPS” events is due to the filtering applied.
Figure 14 presents similar results to the previous para-

graph, but this time with the zoom view. The use of this
view lies in the fact that the zoom in this game is a visual
feature that bots do not use. Therefore, in order to confirm
that the use of zoom does not affect the reduction of traffic,
it was considered the worst case, where all the bots have the
zoom activated. As expected, increasing the radius of the
zones along with the reduction of field of view did not impair
the performance of VFC4FPS compared to the normal view.
The main difference with the results of the normal view is
the smaller difference between the traffic events. This is due
to the fact that the zones are wider, which reduces filtering.
We end with the same measurements, but this time with

the VFC view (figure 15). We can clearly see that the use
of the field of view in VFC4FPS was justified.
Table 5 presents the average values for the ratio between

the original game network traffic and the VFC4FPS traffic
for different views and maps. There is a trend for the ra-
tio to increase with the size of the maps. This is justified
by the possibility of avatars to be more dispersed than in
small maps. Numerically, we can conclude that the reduc-
tion achieved through the normal view and the zoom view
is equal. We can also conclude that without the inclusion of

Figure 13: Server outbound traffic during 10 min-
utes in the flagstone map using the normal view.

Figure 14: Server outbound traffic during 10 min-
utes in the flagstone map using the zoom view.

Figure 15: Server outbound traffic during 10 min-
utes in the flagstone map using the VFC view.

Map Views
Name Dimension Normal Zoom VFC
aard3c 250x250 1,7
academy 250x250 1,5
aqueducts 875x750 1,7
arabic 875x750 2
akroseum 1000x1000 2,2
dust2 1000x1000 2,5
campo 1000x1000 1,7
venice 1000x1000 2,5
wdcd 1000x1000 2,6 2,6 1,6
redemption 1250x500 2,3
core transfer 1250x750 2,7
face-capture 1500x250 2,5
damnation 1500x500 2,1
shipwreck 1500x1250 3
flagstone 1500x1500 3 3 1,8
hallo 1500x1500 2,7
ph-capture 1500x1500 2,7
river c 1500x1500 2,9
mach2 1750x750 2,9
urban c 2250x1750 2,8 2,7 1,7

Table 5: Average ratios after 10 minutes.



field of view, the reduction is lower.

5.2.2 Client Network Traffic Reduction
Unlike the server, in a client, the inbound traffic is the

greatest. Therefore, this section presents the reduction achieved
in the client due to the reduction done on the server. The
simulation conditions were the same as for the server: 48
bots, 10 minutes, ffa mode and using the normal view.
Using figure 16 and table 6 as basis, we can observe the

reduction achieved in a client. On average, regardless of the
map, a client has a traffic reduction of more than two times
compared to the original traffic. There is some variation
in VFC4FPS traffic compared to the original traffic. This is
because the reception of updates from the original server had
a constant frequency, while in VFC4FPS, avatar movement
and position strongly influences the frequency with which a
client receives updates for the different objects.

5.3 Qualitative Evaluation
In order to evaluate if our use of VFC4FPS didn’t harm

the game playability, we conducted a test with real players.
Each player would play two versions of the game. One was
the original game, and the other the game using VFC4FPS.
This test was done in a blind fashion, where players didn’t
knew which version was which.
Tests were made one player of a time, against 48 bots.

Tests were conducted in the urban c map in the instagib
mode (where one shot kills). Each player started by playing
5 minutes in one version to practice. After that he would
play for 10 minutes in the same version, after which it was
asked for him to switch versions and play for another 10 min-
utes. The starting version (the practice one) was alternated
between players. When the player ended playing both ver-
sions, it was asked for him to answer a short questionnaire.
The main question was if he noticed differences between the
two versions, mainly related to the opponent’s movement.

5.3.1 Results
Tests were conducted with 16 volunteers. Their average

age was 25 years. Only 3 of the volunteers answered that
they encountered differences between the two versions. One
of which favoured the VFC4FPS version. This means 88%
favourable answers towards VFC4FPS.
We can see how the players experience with FPS games

related to their response in the figure 17. Most players had
some experience and didn’t saw any differences.
Again, most players used the zoom function, and, despite

the higher vision range, that didn’t affect their perception

Figure 16: Client inbound traffic during 10 minutes
in the flagstone map using a normal view.

wdcd flagstone urban c
Average ratio 2,5 2,9 2,9

Table 6: Average ratios for one client inbound traf-
fic.

Figure 17: FPS experience distribution.

between the two versions (figure 18).

6. CONCLUSIONS
First Person Shooters have a fast paced action where the

precision of the opponents movements is very important.
When played online, communication is required to be very
frequent to keep the players updated. This translates into a
large network traffic, especially outbound traffic in the server
in a Client-Server architecture. The high use of bandwidth
is the main limiter of the number of players supported.

In this paper we presented several ways to reduce the
use of bandwidth in multi-player online games. We cov-
ered the topics of architectures, consistency management,
interest management, Dead Reckoning and techniques at the
network level. And also some academic work.

We suggested VFC4FPS, a library to manage the consis-
tency of FPS. The VFC4FPS is based on VFC, which allows
a progressive and controlled reduction of consistency. Our
system exploits the context of the limited view of the avatars
in a FPS and adds to the VFC the concept of fields of view.

VFC4FPS was applied to the open source game Cube 2:
Sauerbraten with the aim of reducing, at least by half, the
use of bandwidth on the server. And thus offer support a
greater number of players. We evaluated the performance
of Cube 2: Sauerbraten with VFC4FPS in several maps,
and the results show that the objective of reducing by half
the traffic has been reached and in many cases exceeded.
This, without harming the gameplay compared to the orig-
inal Cube 2: Sauerbraten.

Figure 18: Zoom usage by players.



6.1 Future Work
The good results of this work open the door to some im-

provements:

• Currently, the implementation of VFC4FPS was very
focused on the Cube 2: Sauerbraten characteristics,
and some of the features were not complete. As future
work, an implementation of VFC4FPS in the form of
a completely generic library, without the limitations of
the .Net platform would allow integration with a high
number of FPS.

• We kept the Client-Server architecture, used by both
Cube 2: Sauerbraten and VFC. Something that can
be tried is the modification of the VFC4FPS to a P2P
architecture.

• Investigate the possibility of including an efficient and
generic geometric representation of the virtual world
to enable greater gains by using the visibility of each
client.

7. REFERENCES
[1] R. Alonso, D. Barbara, and H. Garcia-Molina. Data

caching issues in an information retrieval system.
ACM Trans. Database Syst., 15(3):359–384, 1990.

[2] C. E. Bezerra, F. R. Cecin, and C. F. R. Geyer. A3: A
novel interest management algorithm for distributed
simulations of mmogs. In DS-RT ’08: Proceedings of
the 2008 12th IEEE/ACM International Symposium
on Distributed Simulation and Real-Time
Applications, pages 35–42, Washington, DC, USA,
2008. IEEE Computer Society.

[3] J.-S. Boulanger, J. Kienzle, and C. Verbrugge.
Comparing interest management algorithms for
massively multiplayer games. In NetGames ’06:
Proceedings of 5th ACM SIGCOMM workshop on
Network and system support for games, page 6, New
York, NY, USA, 2006. ACM.

[4] E. Cronin, B. Filstrup, A. R. Kurc, and S. Jamin. An
efficient synchronization mechanism for mirrored game
architectures. In NetGames ’02: Proceedings of the 1st
workshop on Network and system support for games,
pages 67–73, New York, NY, USA, 2002. ACM.

[5] J. Dyck. A survey of application-layer networking
techniques for real-time distributed groupware.
Technical report.

[6] J. Dyck, C. Gutwin, T. C. N. Graham, and D. Pinelle.
Beyond the lan: techniques from network games for
improving groupware performance. In GROUP ’07:
Proceedings of the 2007 international ACM conference
on Supporting group work, pages 291–300, New York,
NY, USA, 2007. ACM.

[7] S. Fiedler, M. Wallner, and M. Weber. A
communication architecture for massive multiplayer
games. In NetGames ’02: Proceedings of the 1st
workshop on Network and system support for games,
pages 14–22, New York, NY, USA, 2002. ACM.

[8] T. A. Funkhouser. Ring: a client-server system for
multi-user virtual environments. In SI3D ’95:
Proceedings of the 1995 symposium on Interactive 3D
graphics, pages 85–ff., New York, NY, USA, 1995.
ACM.

[9] R. Krishna Balan, M. Ebling, P. Castro, and A. Misra.
Matrix: adaptive middleware for distributed
multiplayer games. In Middleware ’05: Proceedings of
the ACM/IFIP/USENIX 2005 International
Conference on Middleware, pages 390–400, New York,
NY, USA, 2005. Springer-Verlag New York, Inc.

[10] J. Pang. Scaling peer-to-peer games in low-bandwidth
environments. In In Proc. 6th Intl. Workshop on
Peer-to-Peer Systems IPTPS, 2007.

[11] L. Pantel and L. C. Wolf. On the impact of delay on
real-time multiplayer games. In NOSSDAV ’02:
Proceedings of the 12th international workshop on
Network and operating systems support for digital
audio and video, pages 23–29, New York, NY, USA,
2002. ACM.

[12] L. Pantel and L. C. Wolf. On the suitability of dead
reckoning schemes for games. In NetGames ’02:
Proceedings of the 1st workshop on Network and
system support for games, pages 79–84, New York,
NY, USA, 2002. ACM.

[13] Y. Saito and M. Shapiro. Optimistic replication. ACM
Comput. Surv., 37(1):42–81, 2005.

[14] N. Santos, L. Veiga, and P. Ferreira. Vector-field
consistency for ad-hoc gaming. In Middleware ’07:
Proceedings of the ACM/IFIP/USENIX 2007
International Conference on Middleware, pages
80–100, New York, NY, USA, 2007. Springer-Verlag
New York, Inc.

[15] J. Smed, T. Kaukoranta, and H. Hakonen. A review
on networking and multiplayer computer games. In
Multiplayer Computer Games, Proc. Int. Conf. on
Application and Development of Computer Games in
the 21st century, pages 1–5, 2002.

[16] S. Xiang-bin, W. Yue, L. Qiang, D. Ling, and L. Fang.
An interest management mechanism based on n-tree.
In Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing,
2008. SNPD ’08. Ninth ACIS International
Conference on, pages 917–922, Aug. 2008.

[17] H. Yu and A. Vahdat. Design and evaluation of a
conit-based continuous consistency model for
replicated services. ACM Trans. Comput. Syst.,
20(3):239–282, 2002.


