
A Personal Platform for Parallel Computing in
the Cloud

Bruno Macedo
bruno.macedo@ist.utl.pt

Instituto Superior Técnico
Universidade Técnica de Lisboa

Av. Prof. Dr. Anbal Cavaco Silva
2744-016 Porto Salvo, Portugal

www.ist.utl.pt

Abstract. There is an increasingly number of users with demanding
computational requirements. A lot of jobs require the processing of large
amounts of data. Processing this jobs in users personal computers is
practically impossible due to the time it would take to complete. There
are job managers applications, like Condor or Apache Hadoop that can
be used to create infrastructures that give users the possibility of remote
and parallel execution of such jobs. However users have to gain access
to those infrastructures in order to execute their jobs. Also, in these in-
frastructure, users may not have the execution environments needed to
execute their jobs, i.e. the software needed to run their programs. Users
are limited to the execution software that exist on those environments.
In this work, it is shown a system, called Virtual Machine Manager that
provides the ability to deploy a number of virtual machines across a pool
of hosts. Besides the creation of virtual machines it has the automatic
installation of software packages in those machines and an optimization
mechanism that allows a faster provision of virtual machines. The de-
veloped system proved to be a good solution to remove some limitations
on the execution environments that can prevent user to execute their
jobs. The deployment of the virtual machines revealed to be a fast pro-
cess that can inclusive allow the usage of other resources that arent an
option without virtualization technology.

Keywords: virtualization, parallel execution, job managers, computing
infrastructures, execution environments

1 Introduction

The advancement of science and technology makes the computational require-
ments much higher since users have more data to be processed and the number
of users processing data is much bigger. Processing large amounts of data is now
common in professional and domestic jobs. Rendering images, making digital
models or photo enhancements are being made on everyday bases whether for



2

work or leisure. With this, the range of users with remote and parallel execu-
tion of jobs has expanded and their computational requirements are constantly
increasing. However, together with this new user requirements, hardware technol-
ogy is also advancing and computers are also more powerful and thus increasing
the computational power available.
With the increase need of processing power and the spread to a wider group of
users, the long execution time of these jobs became a problem. There are a few
ways to improve the performance of such jobs and match users demands, be-
ing one of them the use of infrastructures like super-computers or institutional
clusters. However access to these resources is restricted and thus limited to a
set of users that have some relationship with the organization that owns the
infrastructures.
Another possibility is to use tools that allow the execution of parallel jobs on
remote computers. For example, Bag-of-Tasks problems are made by a set of
independent tasks with no need for communication between tasks, each node
only needs to execute its task and return the results. So, to compute such jobs is
necessary to spilt them into multiple tasks. A set of independent tasks may be
obtained by using systems such SPADE [12] or HTCondor [13]. The first splits
jobs that fit in the Bag-of-Tasks problems into independent tasks and the former
allows parallelization of compute-intensive jobs. Such systems together with an
environment with the necessary requirements (operating system and software)
can easily execute independent tasks efficiently.
Depending on the infrastructure, to get the necessary environment, mechanisms
to supply on-demand creation and execution of virtual machines can be used.
After the set up, with the required environment, each virtual machine can con-
tribute too the problem by providing computation cycles.
These solutions can indeed provide more options to get enough processing power
to solve jobs in optimal time, however they do not take advantage of all execution
environments and are to complex for some users. Solutions developed for these
intensive jobs don’t usually include execution in multiple environments like the
use of clusters, personal computers and cloud infrastructures, so users can not
use the resources they have available. As for the systems that include execution
in some environments they require more knowledge than of the normal user.
A large number of users are left without viable options to execute this kind of
jobs. Or they lack the knowledge to use parallel computation systems or they
lack the access to all available resources (from personal computers to dedicated
infrastructures).
There are some details in the existing systems for parallel execution that need
to be addressed in order to bring more and different type users to parallel com-
puting.
One of the issues is the availability of infrastructures. Users may not have access
to the existing infrastructures that they need to execute their jobs. When they
do most of them have complex configurations that must be done in order to
run the jobs or create the necessary environments for its executions. As for the
execution environment, the software needed to execute the jobs is not always



3

available and depending on the type of infrastructure/environment, users may
not have the permissions to install the needed software. Even if they do, they
have to manual install it which is a very time consuming task.
The proposed solution is based on the fact that users don’t always have the
execution environments needed to execute their jobs. The solutions consists on
a system to provides an easy creation of virtual machines and the automated
installation of software in those machines to allow the parallel execution of jobs.
The use of virtualization, will allow users to use resources that weren’t possible
without virtualization. For example, if the user wants to execute jobs that re-
quire Linux operating system but their personal computers only have windows
installed they probably would not use them. Even if they do, they need to change
operating system or use dual-booting techniques and both options are lengthy
tasks.
The on-demand installation of the software will give users the necessary tools to
execute their jobs. When users are using some type of cluster infrastructure they
are limited to the existing software on the cluster. Even if they aren’t, they must
ask for its installation to the cluster owners or if they own the cluster or have
permissions to do it, they must install it on nodes. In both cases the software
needed will not be available immediately. The solution will allow for users to
ask the installation of software on-demand when they are submitting their jobs,
removing the issue of the software availability.
Since users can ask for software installations to create their execution environ-
ment, the solution also includes the optimization in the creation of such environ-
ments. In a large environment there are a lot of users in need of the same type
of software to run their jobs. When using the on-demand installation of software
there will be multiple requests for the same or similar sets of software by the
users. This solution will use the users requests to create templates pre-installed
with software that will allow a faster response to future users requests contain-
ing that software packages. These templates are created based on users requests
and these requests will be made to the existing nodes on a infrastructure, which
means that different templates will exist in different nodes. The system should
allow, if possible, users to use nodes that already have templates containing their
desired software.

2 Related Work

In order to develop the proposed solution it is necessary to know where and how
users can run their jobs in a parallel execution and what can we use to improve
that execution. In the past, environments with processing power to execute data
processing or simulations were only available in dedicated infrastructure found
in data centers. These type of physical infrastructures were not within reach
of everyone due to its high cost. Nowadays, due to technology evolution, we
can create or obtain an environment with a high computational power with a
much lower cost. In addition to these infrastructures there are services providing
computation cycles to an almost unlimited scale of course these services have



4

the associated cost, in which more processing power means a greater cost. How-
ever we can obtain processing power in other sources like local clusters or even
personal computers that are available to all users. If merged, these multiple en-
vironments make a large pool of resources to execute remote jobs in a efficient
and cost-effective manner. Some of the main execution environments are:

– High Performance Computing Infrastructures or Institutional Clusters
– Personal Clusters
– Cloud Computing
– Personal Computers in the Internet
– Multiprocessors

Job managers allow users to do a parallel execution of their jobs across a pool
of resources. Theses resources can be from a HPCI to a personal computer. In
most cases, users have to write a launching mechanism and job managers select
the best available hosts to execute the tasks, manage their execution and return
the results.

2.1 Condor

HTCondor[3] is made by the Center for High Throughput Computing in the De-
partment of Computer Sciences at the University of Wisconsin-Madison (UW-
Madison) and is a workload management system for compute-intensive jobs.
Condor provides job queueing mechanism, scheduling policy, priority scheme,
resource monitoring, and resource management.
The job submission is made through the condor submit command that takes as
argument a description file. This file, as showned in Figure ??, has the basic
information that Condor needs about to execute the job, the name of executable
to run, the initial working directory or command-line arguments. Users submit
their serial or parallel jobs that is placed into a queue and then system chooses
when and where to run them based on a policy always monitoring their progress
and then informing the user when its finished.
Condor runs in Grid-style computing environments and allows to harness wasted
CPU power from idle desktop workstations and when the machines leaves the
idle state the job is migrated to a new machine as the owner of that machine
has priority over its use. Users don’t need to change their source code neither to
make their data files available to the remote nodes or have any kind of authen-
tication on them.

2.2 SPADE

SPADE is a middleware system that allows the multiple remote execution of
computing tasks such as Bag-of-Tasks tasks that are usually run on a single
computer. One of the main focus of this system is to provide remote execution



5

of jobs to all users, including those less knowledgeable.
To do that, SPADE hides the usual complex configurations of clusters. Selection
of the job execution location is made by the system and its hidden from user,
configuration of the available applications is easy since users only need to give
the locations and identifier of the application, creation of the available pool of
resources is transparent as the system is able to discover nodes.

2.3 Apache Hadoop

Apache Hadoop is an Apache software Foundation open source project that can
provide fast and reliable analysis of both structured data and unstructured data.
Given its capabilities to handle large data sets.
The Apache Hadoop software library is essentially a framework that allows for
the distributed processing of large datasets across clusters of computers using a
simple programming model. Hadoop can scale up from single servers to thou-
sands of machines, each offering local computation and storage. Two of the
main characteristics of Apache Hadoop are Hadoop MapReduce and Hadoop
Distributed File System (HDFS) modules.

3 Architecture

The main objective of this work is to allow users to execute their jobs in a par-
allel computing environment. To do a parallel execution of jobs, users need to
have access to certain infrastructures,tools and resources. Or they have access
to a parallel computing environment or they must, when have the means, create
one.
The creation of a parallel computing infrastructure requires know-how and may
not be to the reach of all users. Users have to install and configure a job manager
like Condor, Apache Hadoop what is not a trivial action. Even when users have
the know-how, it is there is an additional ”problem”. For every different type of
job they have to configure the execution environments.
When using some existing infrastructure, usually associated to some institution
or enterprise, users are limited to provided execution environment existing in
that infrastructure.
The Virtual Machine Manager (VMM) that provides an automated way to cre-
ate and deploy virtual machines, that will allow an easy and fast set up of the
required environments to the parallel execution of jobs. Depending on the job
being executed the software used to compute it changes. Therefore, the envi-
ronment in each job that is going to be computed has to meet these changes.
However the preparation or modification of these environments can be very time
consuming. With the virtual machine manager the virtual machines will be pre-
pared on-demand with the needed software.
VMM can act together with a job manager software, like HTCondor or SPADE,



6

to produce an automated environment that not only allows the distributed exe-
cution of jobs but also manages (creates and deploys) the environments needed
for these executions. The general view of VMM architecture is shown in figure 1.

VM’s with SW

VM Manager Daemon

Host

VM Manager Client

Client

Job Manager

Fig. 1. Architecture

On the client side, the user or job manager software tells the virtual machine
manager how many machines are needed and which software has to be installed.
The virtual machine manager will be responsible for the creation and deploy of
those virtual machines in the available hosts. Virtual Machine Manager consists
in two programs, the client, referred as VMMC, and the VMM daemon, referred
as VMMD. As presented in figure 1, the VMM client runs on the user’s computer
or on the job manager machine and the VMMD on the hosts (resources) that
will run the virtual machines.
From an external point of view, i.e. from a user or job manager application
perspective, Virtual Machine Manager allows them for:

– Deployment of a given number of virtual machines across the available re-
sources.

– Automatic installation of the named software packages into the virtual ma-
chines.

– Installation of a custom software or package into the virtual machines.
– Shutdown of virtual machines.

The input received by the Virtual Machine Manager client can be divided into
two actions. Shutdown of virtual machines or deployment of a virtual environ-
ment. From the VMMC it is possible to order the shutdown of running virtual
machines. This allows for a job manager application to shutdown the virtual
machines after the jobs are completed.
For the deployment of a virtual environment, the VMMC program receives as
input the desired environment to be created, i.e., the number of virtual ma-
chines to create, the software packages needed or the path to a custom software
package. It will be passed to the virtual machines the software packages to be



7

installed or uploaded a custom software.
From an internal view, VMM will have one more important task: the virtual
machine migration. This process is not supposed to be visible to the user or
job manager. When someone manually closes a running virtual machine on the
host, VMM will migrate that virtual machine to another host. From the point
of view of the user/job manager nothing happens, except the fact that the job
being executed is going to take more time to be completed due to the migration
process time.
The number of virtual machines allowed to run in each host, depends on their
hardware specifications, mainly their processing power, memory and storage ca-
pabilities. The Virtual Machine Manager will take this into account through the
VMMD, when creating the virtual machines. Besides the hardware limitations
of the hosts, the Virtual Machine Manager will also take into account the opti-
mization on the virtual machines creation.
Hosts will save previously virtual machines installations as templates. It’s com-

Client

VMMC

Host 1

VMMD VM

VM

Host N

VMMD VM

Fig. 2. Virtual machine deployment

mon for the same set software packages to be requested multiple times and
having a template pre-installed with that software packages will allow a faster
virtual machine creation. So when the Virtual Machine Manager has to create a
virtual machine, it must take into account the existing templates in each host.
For each job, VMM can launch multiple virtual machine in different computa-



8

tional resources (hosts), and if necessary a user or job manager can order the
shutdown of all virtual machines associated with that job without the need to
know where these virtual machines are. The virtual environments created from
Virtual Machine Manager will allow users to execute their jobs without being
limited to a particular software environment.
The communication to the hosts will be made through the virtual machine man-
ager daemon, VMMD, that be installed in the hosts.
The VMMD is a daemon running on the hosts that is waiting for requests from
the VMMC. This daemon is responsible for creating the virtual machines and
installing the software packages as well to manage the allowed number of running
virtual machines.
Hosts have a limited number of running virtual machines based on their re-
sources, namely, cpu cores, memory and storage. VMMD will, based on current
number of existing virtual machines, decide if this host can create or run more
virtual machines and replies to the VMM program accordingly. This reply is
based on the maximum number of virtual machines disks allowed (defined by
the available storage) and the maximum allowed number of running virtual ma-
chines (limited by the number of cpu cores and host memory).

4 Conclusion

There are a lot of options for users to do a parallel execution of jobs, however
users have to gain access to an infrastructure that allows parallel execution of
jobs. In these infrastructure, users don’t always have the execution environments
needed to execute their jobs. They must use the execution environments avail-
able in those infrastructure and even if they are using their own infrastructure it
is necessary to manually prepare the environment in each computational node.
The use of virtualization technology in these infrastructures increases flexibility
in the creation of execution environments. This work had as objective to use the
benefits from the virtualization technology to allow an on-demand creation of a
execution environment for jobs.
Providing an easy creation of virtual machines and the automated installation
of software packages in those machines, users aren’t limited to the existing ex-
ecution environment in a infrastructure. It also enables the use of resource to
execute certain jobs that weren’t possible to execute before. For example, using
virtual machines, a node can execute Linux dependent jobs independently of
their operating system.
It was developed a system, called Virtual Machine Manager, that provides the
ability to create a number of virtual machines across a pool of hosts. The ap-
plication consists in two programs, the client and a daemon that must be run-
ning on the host computers. Besides the creation of virtual machines it has two
other main features: the automatic installation of software packages in those
machines and an optimization mechanism that allows a faster provision of vir-
tual machines. When creating virtual machines, VMM receives a list of software



9

packages that will be automatic downloaded and installed on those machines.
In order to optimize this process, Virtual Machine Manager, saves as templates
the past requests of virtual machines environments to in future similar request
provide a faster deployment. If there is a template with the same software that
was requested, the Virtual Machine Manager will use it to the provisioning of
the virtual machine saving the downloading and installation time.
Although Virtual Machine Manager can be used as a standalone application to
provide an automated deployment of virtual machines, it was develop with the
objective of being integrate on a distributed execution of jobs environment. This
environments are manager by a job manager like Condor, SPADE or Hadoop,
due to its simple command line interface, VMM can be easly integrated into an
external system. It was proposed a possible solution for a Condor+VMM solu-
tion that working together both system provide a better user experience in the
remote execution of jobs.
When evaluating the Virtual Machine Manager it is necessary to take into ac-
count that the obtained results greatly depend on the performance of the virtu-
alization software used, in this case VirtualBox. If it was used another virtual-
ization software, the results could be very different.
One of the main concerns about the performance of this work was the cloning
process of the virtual machines disks. This process is critical in the creation of
virtual machines whether we are creating a virtual machine from the default disk
or from a temple there is always the process of cloning a disk image file. Despite
the considerable size of these files the process proved to be extremely fast. Using
existing template we can save more than 50% of total time of provision and
software installation of a virtual machine with the requested software.
The virtual machine migration proved to be a good solution to in some situations
however it may not always pay off to execute this process and with the integra-
tion with a job manager that already migrates jobs it is necessary to analyse
which method is better.
The obtained results allowed to observe that a tool such this can improve the
users experience when executing jobs remotely. It should allow the usage of more
resources and remove some environment limitations that may existing in current
systems.

References

[1] David P Anderson. Boinc: A system for public-resource computing and stor-
age. In Grid Computing, 2004. Proceedings. Fifth IEEE/ACM International
Workshop on, pages 4–10. IEEE, 2004.

[2] M. Baker and R. Buyya. Cluster computing: the commodity supercomputer.
Software-Practice and Experience, 29(6):551–76, 1999.

[3] Center for High Throughput Computing at the Uni-
versity of Wisconsin-Madison. Htcondor manual.
http://research.cs.wisc.edu/htcondor/manual/v7.8/index.html, 2013.

[4] I Foster. What is the grid? a three point checklist, gridtoday, vol. 1, no. 6,
2002.



10

[5] Ian Foster and Carl Kesselman. The Grid 2: Blueprint for a new computing
infrastructure. Access Online via Elsevier, 2003.

[6] A. Fox, R. Griffith, et al. Above the clouds: A berkeley view of cloud
computing. Dept. Electrical Eng. and Comput. Sciences, University of Cal-
ifornia, Berkeley, Tech. Rep. UCB/EECS, 28, 2009.

[7] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. kvm:
the linux virtual machine monitor. In Proceedings of the Linux Symposium,
volume 1, pages 225–230, 2007.

[8] Mersenne Research, Inc. Great Internet Mersenne Prime Search - GIMPS.
http://www.mersenne.org/, 2013.

[9] Gerald J Popek and Robert P Goldberg. Formal requirements for vir-
tualizable third generation architectures. Communications of the ACM,
17(7):412–421, 1974.

[10] Rusty Russell. virtio: towards a de-facto standard for virtual i/o devices.
ACM SIGOPS Operating Systems Review, 42(5):95–103, 2008.

[11] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.
The hadoop distributed file system. In Mass Storage Systems and Tech-
nologies (MSST), 2010 IEEE 26th Symposium on, pages 1–10. IEEE, 2010.

[12] J.N Silva. New Environments for Parallel Execution and Simulations. PhD
thesis, Universidade Tecnica de Lisboa - Instituto Superior Tecnico, 2011.

[13] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in prac-
tice: The condor experience. Concurrency and Computation: Practice and
Experience, 17(2-4):323–356, 2005.

[14] TOP500 project. TOP500 project. http://www.top500.org, 2013.
[15] PC Zikopoulos, Chris Eaton, Dirk DeRoos, Thomas Deutsch, and G Lapis.

Understanding big data. New York et al: McGraw-Hill, 2012.


