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Abstract

dbTRACE is used to store city road map information, user tracking information and provide tracked
data for analysis. This platform is designed to address the prevalent issues of the TRACE initiative.
The idea of TRACE was to reinforce the importance of a more active lifestyle to improve health
and city environments. dbTRACE uses TitanDB, a graph database engine that uses Cassandra as a
storage back-end and communicates with an ElasticSearch cluster as a geospatial index to distribute
data across a cluster of machines in order to provide highly scalable storage and traversal performance.
User trajectories are processed using Barefoot, a Map-matching solution that matches points to a road
network obtained from OpenStreetMap. Barefoot can be scaled out using the Spark framework for
distributed processing. The trajectories are then inserted into TitanDB which can then be quickly
traversed and queried for statistical analysis and reward validation.
Keywords: Graph Database, Map-matching, Distributed, Tracking, Trajectory

1. Introduction

Advancements in sensor technology have made it
possible to generate large amounts of geospatial
data. In turn, this new reality has made large-
scale tracking initiatives more interesting. Physi-
cal inactivity has become an import public health
issue. There is a growing interest in influencing bet-
ter physical activity behaviors. As a consequence,
this leads to less pollution, less traffic, better envi-
ronment and quality of life improvements. One of
the initiatives that has originated from these goals
is called TRACE. The TRACE initiative is an Eu-
ropean project being managed by INESC-ID with
the goal of getting more people walking and cycling.
Participants are incentivized by the use of rewards,
such as prizes and discounts.

These large amounts of data need a storage
database capable of storing and querying this kind
of information efficiently. Storage database tech-
nology has, since the 1970’s [13, pp. 5–8], had one
de facto solution, the relational database. However,
relational databases have a few problems which pre-
vent them from scaling well. The first is the require-
ment of fixed table schema, which leads to inefficient
use of space when you have similar objects with one
or two different attributes, leading to several null
values, or additional tables which store the differ-
ences, leading to additional table join operations.

Furthermore, as the amount of data increases and
the limits of a single machine is reached, there is a
need to distribute the service between several ma-

chines. In this environment, the use of Atomicity,
Consistency, Isolation, Durability (ACID) transac-
tions becomes a bottle-neck, requiring expensive
two-phase commit protocols. In addition, join op-
erations become very expensive when the tables are
partitioned between several machines.

Ten years ago, Google and Amazon [3, 5]
started the (noSQL) movement of simpler, scalable
databases designed for very big amounts of data (i.e.
Big Data). This movement has originated many
different solutions, based on different data models.
Popular taxonomy introduced by Rick Cattell [2]
distinguishes the different databases into Key-value,
Document, Extensible-Record and Graph. Graphs,
in particular, provide a natural approach to model
relationships between objects. The use of a graph-
based data model makes it possible to store and
query data in a way that semantically represents
its own structure. Just as it can naturally repre-
sent networks of friends or links between web pages,
it can also naturally represent networks of roads,
points of interest, shops, hotels, cyclists and their
trajectories. Furthermore, graph theory is a well
studied field in both Computer Science and Math-
ematics, with many efficient and optimized algo-
rithms already developed.

2. Related Work

2.1. Property graph

A graph is a mathematical structure used to model
relations between objects. A graph is made up of a
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set of objects where some pairs of objects are con-
nected by links. These objects are called vertices,
while the links that connect these vertices are called
edges.

The most common graph implementation present
in most graph databases (TitanDB included), is
the Property graph. The Property graph allows
the representation of labeled vertices, labeled edges,
and attribute data (or: properties) for both vertices
and edges.

Figure 1: An example of a property graph (Groovy-
Mag 2013)

A simple example can be seen in Fig.1, with three
vertices representing people and edges representing
the relationship between them. All vertices have
three properties, a name property and an age prop-
erty, as well as a unique id property which is not
shown. The edges have two properties, a label with
the semantic meaning of the edge and its unique id,
as well as a type property describing the relation-
ship between people.

2.2. Geospatial Information
Geospatial information is information about a phys-
ical object that can be represented by numerical val-
ues in a geographic coordinate system. More specif-
ically, it represents the location, size and shape of
an object on a planet, such as a mountain, a build-
ing, a road or a town.

Transportation and mobility networks, such as
roads, aqueducts and railways, are conceptually
represented by spatial networks. Spatial networks
are graphs whose vertices and edges are located in a
space equipped with a metric, such as the Euclidean
distance1 [1].

An urban spatial network can be modeled with
the vertices representing intersections and junc-
tions, while the edges represent streets and roads
the individuals can take between locations [7].

2.3. Map Matching
Map matching is the process of converting a se-
quence of latitude/longitude points into a sequence
of road segments.

Data received from sensors often has errors that
need to be corrected. The size of a trajectory can

1The Euclidean distance or Euclidean metric is the
straight-line distance between two points in space.

often be a problem due to high sampling rate of de-
vices, leading to overuse of storage space and pro-
cessing time. Furthermore, it may be difficult to
distinguish which road certain sequences of points
belong to, due to overpasses and crossings.

Map-matching is a well-researched problem, with
many implementations already available. Ex-
amples of open-source implementations include
OSRM (http://project-osrm.org/), GraphHop-
per (https://graphhopper.com/) and Barefoot
(https://github.com/bmwcarit/barefoot/) [11].

GraphHopper uses a variant of Marchal’s algo-
rithm [10], while both OSRM and Barefoot use the
HMM model [12], which is the current state-of-the
art. OSRM is used by MapBox, while Barefoot is
used by BMW. Both use OSM data for building
an in-memory map graph. Out of the box, OSRM
provides pre-made configurations for different pro-
files, such as pedestrian, bicycle and car. Barefoot
only offers a profile for cars, but is capable of using
Apache Spark for distributed map matching com-
putation.

We opted for Barefoot because we can fix its lim-
itation by creating our own pedestrian and bicycle
profile and a few configuration adjustments.

2.4. Stay-Point Detection
Stay points are points that denote locations where
the user has stayed for a while, such as shopping
malls and tourist attractions. There are two types
of stay points. The first is the single point stay-
point, where the individual remains stationary for
over a time threshold. This tends to occur when
the individual enters a building and loses the satel-
lite signal until returning to the outdoors. The sec-
ond is the most common, where users walk around
within a small spatial region for over a time thresh-
old. This tends to occur when the individual wan-
ders around some places, like a park or a campus
[15].

These stay points can turn a trajectory as a se-
ries of time-stamped spatial points to a series of
meaningful places. This in turn, is used for a va-
riety of applications such as travel recommenda-
tion, taxi recommendation, destination prediction
and method of transport used.

2.5. TitanDB
TitanDB is an open-source graph database devel-
oped in Java and licensed under Apache 2. It was
developed by Aurelius and first released in 2011,
recently being acquired by DataStax in 2015.

As can be seen in Fig. 2 An interesting charac-
teristic of Titan is its need to plugin with different
technologies, including storage back-ends such as
Cassandra (http://cassandra.apache.org/) and
HBase (https://hbase.apache.org/), search en-
gines such as Lucene (https://lucene.apache.
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Figure 2: A high-level Titan architecture view (Ti-
tanDB 2013)

org/) and ElasticSearch (https://www.elastic.
co/) for speeding up complex queries, and even pro-
vide OLAP2 operations with Hadoop and Spark3.

TitanDB’s distribution capabilities will depend
on the chosen storage back-end. HBase is a CP
model, giving preference to consistency at the ex-
pense of availability. Cassandra falls in the AP
model, giving preference to availability at the ex-
pense of consistency (the completeness of the an-
swer to the query), Cassandra has a master-less
ring architecture, where scalability in both read and
write form grows with the number of nodes.
Geospatial capabilities can be obtained with the use
of ElasticSearch. This open-source search and an-
alytics engine provides two spatial indexes, a Geo-
hash and a Quadtree. Spatial data type support
includes points and a general shape type, which
can define lines and polygons. As for topological
function support, it supports the Within and In-
tersects functions. It also provides support for the
Distance, Range and BoundingBox spatial distance
functions.

3. Architecture
3.1. dbTRACE

Figure 3: Global view of dbTRACE and the inter-
actions between its main components.

dbTRACE handles the storage information of

2OLAP stands for OnLine Analytical Processing. It con-
sists of multidimensional analysis of business data, providing
the capability for complex calculations, trend analysis, and
data modeling.

3Spark is similar to Hadoop, but allows for data to persist
across nodes for repeated querying and data mining opera-
tions, http://spark.apache.org/

three different types of users. Local businesses
(Checkpoints) are interested in attracting new
clients who arrive by bicycle or on foot (Users),
which in turn, are interested in obtaining discounts
and rewards. Furthermore, cities are interested in
using the obtained tracking information to improve
urban planning (Urban planners/Analysts).

An overview of dbTRACE can be seen in Figure
3. The storage component is divided into two parts,
the Domain Data Module and the Map Data
Module. The Domain Data Module stores user
information and trajectory identifiers, as well as
checkpoint information. The Map Data Mod-
ule stores the road network of the city, as well as
the processed trajectories as a sequence of roads.
The road network information is also periodically
updated through an external map repository to ob-
tain changes about new or closed roads.

Applications and services communicate and ac-
cess the stored data through an API which defines
the operations each one is allowed.

There is also a Pre-processing component that
takes new trajectories sent by the users and pro-
cesses them in order to correct and compress the
data, extract new semantic value, as well as ap-
plying fraud countermeasures. More concretely,
there are 2 processes involved. First, there is the
Stay-point detection process to extract semantic
value, namely, the places where the user stopped
and stayed for a while, which is useful for determin-
ing which Checkpoints the user might have visited.
The second is the Map-matching process which
corrects and inserts the trajectory into the Map
Data module, determining the roads and streets in
the user’s itinerary.

Finally, there is a Challenge service devel-
oped by colleague Antnio Pinto as part of his mas-
ter’s dissertation, called Promoting urban bicycle
use through next-generation cycle track-and-score
systems [4]. Its role is to store and process chal-
lenges, which are a custom list of criteria that the
users need to meet to earn a reward. This criteria
can range from a specific time period, geographic
area, number of visits or luck. After processing a
challenge, this service queries the storage module
to determine eligible users. To support this service,
we implemented the Reward queries, described
further in Section 4.2.

3.2. Domain Data
The Domain Data module stores the users move-
ments, their personal details, as well as checkpoint
information and reward points obtained. These re-
ward points are earned when a user walks by a
checkpoint. Figure 4 shows a logical graph model
representing all of the TRACE entities and their
relationships.

Checkpoints represent the shops or local busi-
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Figure 4: Logical Domain Data Model in Graph
format.

nesses. They are uniquely identified by a name.
They also have a geographic location, represented
as a longitude and latitude pair.

Users represent the customers who run or cy-
cle to shops. They are the moving entities of the
database. They have a unique ID that is used for
referring to a User inside and outside the database
(they can be viewed by Checkpoints for delivering
rewards). Private information such as e-mail
for being contacted automatically when a prize is
earned, or the fiscal number for cash-prize eligi-
bility. This information is facultative. A list of
trajectories. Each trajectory here is simply rep-
resented by a unique identifier to the trajectory
stored in the Map Data Module. They are pre-
served for one month or until being verified for
reward-eligibility challenges. This is done in order
to minimize exposure to data that can be used to
trace back to the identity of the user. And finally,
a reward point tally (shown as ”Tally” in Fig-
ure 4) for each different checkpoint. Each time a
user passes a checkpoint, an event is stored, record-
ing the time it happened. Reward events are kept
for Path Inference operations (for fraud detection),
as well as to allow shop owners to reward users,
that, for instance, showed up on a particular day,
or to users that showed up over 80% of the days of
the month. Lifetime points are kept so that store
owners can reward loyal users that attend over a
certain milestone-number of times for example. Af-
terwards the points are added to the lifetime points
tally.

3.3. Map Data
The model representing the road network and user
trajectories can be seen in Fig. 5.

Nodes represent the intersections and junctions
between streets. Each node is uniquely identified by
the map provider’s identifier. They must also have a
position property, representing a single point con-
sisting of a latitude and a longitude pair.

Edges connecting the two nodes represent the
streets between those nodes. Each edge is also
uniquely identified by the map provider’s identifier.
In addition, each edge has 3 properties. The name
of the street to which it belongs to, the length
of the street segment as well as the type of street.

Figure 5: A graph representation of a road net-
work with a processed trajectory example. The
blue nodes show geographical points in the road
network, representing intersections and junctions.
The orange node represents a user trajectory. The
edges with full lines represent different road seg-
ments, while the edges with dotted lines represent
the orange trajectory’s travel sequence.

The type property can have the following values:
motorway, road and residential.4 A motorway is a
path where only motorized vehicles may use. A road
is a path where both motorized vehicles and non-
motorized vehicles, as well as pedestrians may use.
While a residential way is a path where only pedes-
trians and non-motorized vehicles may use. Op-
tionally, it may have an inclination property (this
property is often missing from map providers).

User trajectories are stored within the road net-
work. A trajectory starts with a node, called the
trajectory node (seen as orange in Fig. 5), which
contains 2 properties. It has a unique identifier
and the total length of the trajectory. The trajec-
tory node has a start edge, which has the start
time of the trajectory and points to the first node
in the road network. The trajectory path is repre-
sented as edges between nodes in the road network,
which we call path edges. Each path edge carries
the trajectory’s unique identifier, the start time of
the user entering the road segment5, as well as the
transportation mode used. Finally, the trajectory
ends with an end edge connecting the last road
network node to the respective trajectory node.

3.4. Stay-Point Detection

Before a trajectory is inserted into the Map graph,
we start by trying to identify the Stay-Points.
This is done in order to determine where the user
stopped for some time, which is useful for identi-
fying which stores (checkpoints) the user may have
entered.

To determine stay-points, we use the algorithm

4Our classification is a simplified version of the Open
Street Map road tag system, http://wiki.openstreetmap.
org/wiki/Key:highway

5The length of stay between points can be calculated by
subtracting the start time of the subsequent path edge and
the current edge
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Figure 6: Stay point 1 shows a case when the user
remains stationary for a time period exceeding a
threshold. In stay-point 2 the user wanders around
within a certain spatial region for a period.

proposed by Li et al.[8]. Their algorithm starts by
first considering a point, looking at its successor
and seeing if it is within a space and time distance
threshold. If it is, then it calculates the mean of
those points and uses that as the reference point.
Then, it tries to add the next point and do the
same check. This continues until no more points
are within the space and time thresholds, obtain-
ing a set of points that belong to the same ”stay
point”. This process then repeats for the rest of
the trajectory.

3.5. Map-matching
After removing the trajectory’s stay-points, we use
a Map-matching algorithm to convert the trajec-
tory’s points into a series of matching road seg-
ments. To do this, we use the algorithm introduced
by Newson and Krumm [12] which works well in
noisy and low sampling settings and is implemented
by many routing services today [9, 11].

In their model, the states of the HMM are the
road segments and the state measurements are the
tracked location measurements. Road segments
nearer to the point are assigned a higher probability.
Then, the algorithm computes the transition proba-
bility for every pair of adjacent hidden states in the
chain such that the probability of the next state
is dependent only on the previous. When the last
point is processed, it finds the maximum likelihood
path over the Markov chain that has the highest
joint emission and transmission probabilities.

The Map-matching algorithm takes a trajectory
z with points z1, z2, ..., zn. For each point zt, the
algorithm fetches the set of most likely candidates
St from the map, based on the euclidean distance
between zt and st (called filter probability). For
each iteration where t > 0, the most likely sequence
between st−1 and st is calculated based on the rout-
ing distance between them (called sequence proba-
bility).

4. Implementation

Figure 8 shows the different interacting components
of the dbTRACE implementation. There are three
essential components to the system. Applications
and services communicate with the system through

Figure 7: On each matching iteration, the algo-
rithm fetches candidate set St − 1, calculates for
each candidate st filter and sequence probability
and its most likely predecessor in St − 1.

Figure 8: A high-level view of the interaction be-
tween the different components in the dbTRACE
system.

the Web Server (using Grizzly), which provides
an HTTP REST API to the system. These API
calls are then transformed into calls to the internal
components of dbTRACE.

To store, retrieve and manage user information
and trajectory data, we use a Database Server/-
Cluster that uses TitanDB, Cassandra and Elas-
ticSearch.

Before storing new trajectories, the information
is sent to the Pre-processing Server (Barefoot)
/ Cluster (Barefoot and Spark) that does Map-
matching and Stay-point detection. Upon finishing
the pre-processing steps, the stay-points are used to
find the nearby checkpoint and add to their reward
tally, and the map-matched trajectory is inserted
into the database.

4.1. Database

The Database component uses the TitanDB graph
engine for graph-based data modeling and query
language support. Scaling-out is accomplished us-
ing the Cassandra storage back-end, as well as the
ElasticSearch index back-end to enable distributed
geospatial query support. Figure 9 shows how these
components interact.

4.2. Database Queries

Queries to TitanDB are made using Gremlin.
Gremlin is a graph-traversal extension that is in-
corporated into existing languages.

Queries to dbTRACE can be divided into two
categories, the Reward queries and the Analy-
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Figure 9: A high-level view of the distributed ar-
chitecture using Cassandra as a persistent data
storage, ElasticSearch as an index for speeding up
geospatial queries, and Titan as a transaction and
data manager.

sis queries. The Reward queries are requested by
Checkpoint owners that wish to obtain the list of
users that are eligible for receiving a reward. They
involve determining the distance a user traveled in
total, in a specific area or in a specific route. The
Analysis queries are issued by entities interested in
statistics of the data set, such as urban planners.
They include calculating how many users used a
given road, how many users traveled between two
different regions, or the average distance between
users that traveled between two regions.

Below, we describe the Total Distance traveled in
a specific route query and the Average Trip Dis-
tance between origin-destination query.

Total distance traveled in a specific route

The goal of this query is to calculate the total dis-
tance traveled by a particular user, represented by
the sessions identifiers, over a defined route.

This query is split into two functions. The
first function (distanceInRoute()) first searches the
graph for the beginning vertex of each trajectory.
Then it traverses each trajectory, obtains the list
of traversed vertexes and calls the compareRoute()
(map() step) function for each, returning true if it
is a match or false otherwise.

The function (compareRoute()) compares the
user trajectory to a given route. Comparing differ-
ent trajectories is a well-studied problem [14], with
research that tries to tackle the inherent impreci-
sion of the tracking devices. In our case however,
we have dealt with these imprecisions during the
pre-processing stage. This means that we have re-
duced the problem from comparing two sequences
of geospatial points to the more general problem
of comparing two sequences. As a consequence, we
can use a sequence comparison technique such as
the the Levenshtein’s distance or the Longest Com-
mon Subsequence (LCS).

In our route comparison function (com-
pareRoute()), we say there is a match if the
user route and target route have a subsequence

Listing 1: Total distance traveled in specific route
query

distanceInRoute = { def sessions, route −>
userSessions = g.withSack(””).V()

.has(’sessionID’, within(sessions)).outE(’session’).outV();
listComparisons = userSessions

.sack{m,v −> v.value(’sessionID’)}

.repeat(outE().filter(filterEdgeBySession).inV())

.until(hasLabel(’session’)).path()

.by(”location”).by(constant(’edge’))

.map({compareRoute(it, route)});
return listComparisons;
}

compareRoute = { def userRoute, def route −>
trajectory = userRoute.get().objects().grep{it != ”edge”};
MIN MATCH = route.size() ∗ 0.75;
start = −1; end = −1;
/∗ is user doing the route in the inverse direction? ∗/
def startNode = route[0];
def endNode = route[route.size()−1];
for(i = 0; i < pointList.size(); i++) {

if(trajectory[i].equals( startNode ) && start == −1)
start = i;

if(trajectory[i].equals( endNode ) && end == −1)
end = i;

};
def result = false;
if(end < start && end != −1 && start != −1) {

match = lcs length(trajectory, route.reverse());
result = (match > MIN MATCH)? false : true;
}
else {

match = lcs length(trajectory, route);
result = (match > MIN MATCH)? false : true;
if(result == false) {

match = lcs length(trajectory, route.reverse());
result = (match > MIN MATCH)? false : true;
}
}
return result;
};

with at least 75% of the size of the target route (to
provide some lee-way to the user). To compare two
trajectories (the route and the user trajectory), we
use the LCS algorithm developed by Hirschberg [6].
This algorithm has asymptotic time complexity
O(mn) and space O(min(n,m)) where m and n
are the sizes of each sequence.

Before applying the LCS algorithm, we need to
take into account the cases where the user travels
the route in the opposite direction. To do this, first,
we check if the target route’s start and end points
are present in the user route and what their order
is, i.e., if start comes after end or vice-versa. If so,
we reverse the route before applying the LCS algo-
rithm. If either the route’s start and end nodes do
not appear in the user route, we cannot tell which
direction the user is going. In this case, we start by
applying the LCS algorithm and verify the result.
If there was not a match, we test for the reverse
direction.

Average trip distance between origin-
destination
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This query gets all the trajectories between area
originArea and destnArea and calculates the av-
erage distance.

Listing 2: Average trip distance query

avgTripDist = { def originAr, destnAr −>
filteredSessions = g.withSack(””).V()

.has(’location’, geoWithin(originAr))

.inE(’session’).has(’type’, ’start’).outV()

.inE(’session’).has(’type’, ’finish’).outV()

.has(’location’, geoWithin(destnAr)).outE(’session’)

.has(’type’, ’finish’).inV();
return filteredSessions.sack{m,v −> v.value(’sessionID’)}

.repeat(outE().filter(filterEdgeBySession).inV())

.until(hasLabel(’session’)).path()

.by(’location’).by(constant(’edge’))

.map(calculateTripDist).map({it.get().get()}).mean();
}

calculateTripDist = { def points −>
def a = Optional.empty();

/∗removes path history from the initial filter phase∗/
def pointList = points.get().objects().drop(6);
def sessV = pointList.first();
for(def b in pointList.grep{it != ”edge” && it != sessV}){

if (a.isPresent()) {
def (d, p) = a.get();
d += p.getPoint().distance(b.getPoint()); /∗km∗/
a = Optional.of([d, b]);

} else a = Optional.of([0, b]);
};

return a.isPresent() ? Optional.of(a.get()[0]∗1000): a;
}

Determining the average distance is divided into
two phases. First, we have the filter phase which
corresponds to the filteredSessions attribution
in function avgTripTime(). To calculate this, we do
a series of filter operations. First, we do a spatial
index look-up to get all the points that are in the
originAr. Then we check if they are the first point
in the trajectory (by walking back and see if there
is a session node). Then, walk backwards again to
get the last point in the trajectory (edges in Titan
are bi-directional, creating a loop), to apply a final
spatial contains query to check if it is in destnAr.

Now that we found the list of matching trajecto-
ries, the algorithm traverses each of them from start
point to end point (repeat.(...).until(...)) and stores
the path history (path()). We then modify the path
output to show the location property of the vertices
(by(’location’)) and pass it (map()) to our function
calculateTripTime() to calculate the distance of the
trajectory.

4.3. Map-matching
Map-matching is done using Barefoot, an Open-
source Java library and a map server that provides
access to street map data from OpenStreetMap us-
ing a state-of-the-art Hidden Markov Model algo-
rithm. By default, Barefoot provides map-matching
only to motorized vehicles. To adapt it to map-
match pedestrian and cycling we need to mod-
ify two files. The first is the configuration file

(bfmap/road-types.json) which identifies which
road tags (motorway, trunk, primary, ...) are im-
ported from OSM. Here we add roads which are
typically prohibited to cars and bikes such as res-
idential, footway and cycleway. Next, we remove
one-way and turn restrictions which pedestrians
often do not take into account. We modify the
com.bmwcarit.barefoot.road.BaseRoad class to
always ignore those attributes (setting the flags to
false).

Next, we adjusted the HMM matching algorithm
parameters in file config/server.properties, as
shown in Listing 3.

Listing 3: Map matching server configuration set-
tings

matcherSigma=15 #Urban GPS error radius
matcherMaxDistance=1500 #Max road distance between pts
matcherMaxRadius=35 #Distance to consider candidate roads
matcherMinInterval=5000 #Skip high−rate measurements
matcherMinDistance=10 #Skip close−by points

5. Results
5.1. Database Query Analysis

This Section measures the run-time of the different
implemented queries and analyzes their operations
to determine their respective bottlenecks. We per-
formed this test on a machine using an Intel Core
i5-4200U 1.9 GHz processor with 4GB of RAM and
128 GB SSD storage.

We used BerkeleyDB for the storage database
with a dataset of 180 000 vertices (approximate
number of vertices in Lisbon). There were 100 tra-
jectories (expected average number of filtered tra-
jectories measured in a query), with an average size
of 547 edges (expected average size of 30 minute
trajectory run).

The run-time was measured using the
profile().cap(TraversalMetrics.METRICS_

KEY) operation. This allows us to see each traver-
sal step run-time, at the expense of overhead on
the final run-time (5 to 10 times greater).

Figure 10: A comparison of the response time in
milliseconds (y axis) between the different Urban
Planner queries (x axis).
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Fig. 10 shows how the response time varies with
query complexity. Calculating the number of users
that passed through a certain road is very quick,
as expected. About 60% of the run-time is a graph
traversal from the beginning to the end of the road,
while 30% is used on the deduplication of repeat
users and the final 10% is for the count-step.

Counting the number of users that started a trip
in origin area and ended the trip in destination

area, there is a sharp increase in response time.
There is first a spatial filter operation (ES index
look-up) that accounts for 5% of run-time. Each
node has one edge traversal and a filter operation
(10%). For each filtered node, there is one spa-
tial filter ES look-up, representing 85% of the run-
time, which increases further as the filtering area
increases and more nodes need ES look-ups. This
can likely be improved if we only do two spacial
look-ups for finding the origin and destiny sessions,
and then finding the common elements in both sets
using an algorithm such as the merge part of the
merge-sort algorithm.

Calculating the average distance of trips that
start in origin area and end in destination

area is a good example of an expensive OLAP
query, composed of a mix of the previous queries.
First it has a spatial filter operation to obtain the
list of matching trajectories and then it has a traver-
sal loop for each of these trajectories (each will
traverse 547 edges on average). For this data-set,
the spatial index look-up occupied about 30% of
the run-time, while the traversal about 70%. This
query can be easily optimized by adding the tra-
jectory distance to the session node as a property.
This would eliminate the traversal operation of the
query, requiring just the index look-up.

5.2. Distributed Database Performance
Titan has been shown to serve thousands of OLTP
requests per second.6 However, many of the queries
we use are OLAP-style analysis queries.

To test the performance of the database when
used in a distributed fashion, we tested the system
response time to OLAP queries as a function of the
number of nodes, as well as a function of the number
of concurrent queries. We used Amazon Web Ser-
vices (AWS) (http://aws.amazon.com/) to deploy
a small Elastic Compute Cloud (EC2)7 cluster.

For the instance type, we chose m4.large in-
stances. These instances have 2 vCPUs with
2.4 GHz Intel Xeon E5-2676 processor and 8 GB
memory. We ran Cassandra and Gremlin-server
on each of these machines that came bundled
with Titan 1.0. Each machine was also running

6Titan scaling, https://dzone.com/articles/titan-

provides-real-time-big
7EC2 is the AWS service that allows launching virtual

machines in one of Amazon’s data-centers.

an ElasticSearch (v1.5.2) node. Furthermore, we
kept Cassandra’s consistency level at one and the
replication-factor for both Cassandra and ES equal
to the number of nodes until 3. Further nodes kept
the replication-factor of 3.

The dataset was composed of 200 000 points
(Lisbon has about 180 000 vertices) and 100 tra-
jectories, each with a length of 1000 edges (ex-
pected average trajectory size for a 1 hour run).
All results were measured using the profile().

cap(TraversalMetrics.METRICS_KEY) step oper-
ation.

Figure 11: Response time in milliseconds as a func-
tion of the number of nodes in the cluster. The
Default line shows the results of the test on the
Average Trip distance query over a result set of
100 trajectories. The Parallel line shows a modi-
fied client that distributes the requested trajectories
evenly between the nodes.

Figure 11 shows the relative performance of the
system as it goes from a single machine to an in-
creasingly distributed cluster of machines. The De-
fault line shows that the performance of the query
does not improve significantly as more nodes are
added to the system (the improvement likely comes
from the added ElasticSearch nodes concurrently
doing spatial searches). This means that TitanDB
by default runs all deep search traversals (each tra-
jectory) in the same node. By modifying the query
to explicitly send each piece of the query process-
ing load to a different node in the cluster (Paral-
lel line), we see a logarithmic improvement in run-
time. Increasing the cluster from 1 node to 2 im-
proves the response time by 26%, while adding the
4th and 5th node improve only by 8%. We suspect
that the added data partitioning and communica-
tion overhead place a hard limit on scalability on
these (OLAP) types of queries.

The greatest benefit of adding more nodes comes
in system throughput. Figure 12 shows the effect of
the number of nodes as the number of concurrent
users (using the distribution-aware client) on the
system increases.

As more users are added to the system, the
greater the improvement of the distributed setting,
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Figure 12: The number of concurrent clients (1,
8 and 32) as a function of the number of nodes in
the cluster, using the parallel Average Trip Distance
query. For both the 8 and 32 series, the queries were
sent at the same time and the time was measured
when all results were returned.

likely compounded by the caching mechanisms used
by both Titan and ES. We can see that with 8
clients, we get gains of, on average, 17% per added
node. In an environment with 32 clients, we see
gains of on average 24% per added node.

5.3. Map-matching

These tests evaluate the performance of the Map
matching module in terms of: accuracy, running
time and distributed running time. The configura-
tions of were described in Section 4.3. Map data
was for a region of Portugal encompassing Lisbon,
Sintra and Cascais, consisting of 236 961 ways.

Accuracy

Table 1 shows the accuracy of the Barefoot Map-
matching implementation for 3 different trajecto-
ries. The first is a bicycle trip with 3081 points.
The second and third trajectories are pedestrian
trips taken in Lisbon. There is a running trip, with
1976 points, as well as a walking trip, with a total
of 2205 points.

Measuring the accuracy of a map matching algo-
rithm requires comparing the resulting track with
the calibrated track. The calibrated track refers to
the optimal result we expected to see from the map
matching procedure. To obtain this data, we ap-
plied the map matching algorithm to the measured
track and displayed the result graphically (using
ArcGIS Editor) so we could hand-match the cases
where the algorithm has made an error. To measure
the error between the resulting track and the cal-
ibrated track, we calculate the length of segments
that were incorrect. That is, we sum the length
of incorrect segments that were added or removed,
divided by the total length of the calibrated track.

In our tests, we got an average (on our small sam-
ple size) of 90% map-matching accuracy rate. Map-
matching performed better on the bicycle route
than the other routes. We attribute this to the
tendency of pedestrians to take more shortcuts,

Table 1: Comparing the accuracy for the three dif-
ferent tested routes. For each case, we indicate the
length of the calibrated trajectory, followed by the
length of the incorrect segments of the resulting
track and the overall accuracy percentage accord-
ing to the formula mentioned above.

Calibrated
trajectory

Incorrect
segments

Correct
match

Bicycle
route

40462 m 1561 m 97 %

Running
route

19326 m 3958 m 83 %

Walking
route

22763 m 2529 m 90 %

through which there is no corresponding road in the
map network. Another factor to consider is that the
tracks taken were a few years old. The state of the
OSM map data is more likely to be out-of-date in a
city environment that changes frequently, compared
to the rural environment of Sintra.
Performance

We tested the performance of the Barefoot algo-
rithm, running on an Intel Core i3 CPU @ 3.07GHz
and 4 GB of memory with Ubuntu 14.04. Barefoot
was configured in a Docker container8 backed by a
PostgreSQL/PostGIS database.

Figure 13: This represents the map-matching run-
ning time in milliseconds as a function of the num-
ber of points in the trajectory. The blue area shows
the running time when there is no cached data. The
red area shows the running time when Postgres has
already cached the search area.

Figure 13 shows the performance of the algorithm
as a function of the size of the trajectory. This rela-
tionship is strongly linear. The maximum value we
obtain, for a trajectory with 3000 points, is a run-
ning time of approximately 11 seconds. This run-
ning time is improved by the caching mechanism
used by PostgreSQL, cutting the run-time in half.

8Docker is an Operating-system-level virtualization soft-
ware. Programs in virtual partitions (typically called con-
tainers) use the operating system’s normal system call in-
terface and resources instead of being emulated by an inter-
mediate virtual machine. Like VM images, container images
are a snapshot of a system state that can be later started
and run. Website, https://www.docker.com
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In a synchronous system, this run-time of several
seconds for one request makes it difficult to scale to
thousands of users. For our use case, which does not
require map-matching in real time, it is a good solu-
tion. However, Barefoot also supports a distributed
configuration using Spark, which we can use to try
to improve these results.
Distributed Performance

We tested the performance of the distributed
Barefoot environment using a small AWS EC2 clus-
ter, with a m2.medium instance type, which has 2
vCPUS and 4 RAM backed by an SSD storage. The
tested track was the Sintra bicycle route.

Figure 14: This chart provides a relative compari-
son of the running time in seconds in different com-
putation set-ups. The first bar on the left serves
as a reference point, running the usual barefoot ap-
plication on one machine. The following bars are
running our Spark application, with the number
reference indicating how many machines are in the
cluster.

The performance gains for each added node de-
crease with the number of nodes added. From the
base setup running a single barefoot server, we see a
31.9149% improvement in running time when going
to a 2 machine setup with Spark, a 16.(6)% drop
from 2 to 3, 14.6341% from 3 to 4, and then it sta-
bilizes, showing no significant gains. At 4 machines
there is a 49.1429% improvement over the original
(non-Spark) case.

This shows that using the distributed Spark con-
figuration reduces run-time up-to half, and is thus
better for synchronous systems where response time
is prioritized. However, it is less efficient than
the single-server set-up from a system through-
put standpoint. Consider four different trajecto-
ries with the same size as the Sintra track and four
machines running a separate Barefoot server. The
4 tracks will finish in 11 seconds. The distributed
setting will finish each track in 5.7 seconds for a
total of 22.8 seconds.

6. Conclusion

There is a scarcity of platforms for large-scale man-
aging and storing of user tracking data. This docu-
ment presents dbTRACE, a scalable system com-

posed of a distributed graph database using Ti-
tanDB for storing and querying large amounts of
user trajectories, and a pre-processing cluster us-
ing Barefoot and Spark for stay-point detection and
map-matching.

In the future, it would be interesting to imple-
ment the map-matching algorithm using Gremlin
and running it in Titan instead of relying on Bare-
foot (which uses a relational database to store map
data).
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