
vfcBOX: Multi-User Consistent File Sharing

Jean-Pierre Ramos
INESC-ID / Instituto Superior Técnico / Technical University of Lisbon

jean-pierre.ramos@ist.utl.pt

ABSTRACT
The emerging of cloud file sharing systems has been moti-
vated by real user needs for data sharing. There are many
solutions providing such sharing support all having the com-
mon goal of being widely scalable while providing users with
consistent shared data. However, offering consistent data is
at odds with scalability as it requires many messages and
available network bandwith for file transfer.

Network bandwidth can be minimized using several tech-
niques such as compression, deduplication[10], delta encod-
ing[9], etc. However, these approaches do not take into ac-
count that not all files must be fully consistent at all times
for all users.

In this paper we further increase the scalability of a cloud
file sharing system, called vfcBOX, by taking into account
the notion of users interest. This means that vfcBOX consid-
ers users’ consistency needs regarding shared files, to avoid
sending useless (or unnecessary) data through the network.
As a matter of fact, some files do not need to be constantly
propagated to all users, because some of them do not require
such immediacy given the particular semantics of the shared
data.

vfcBOX uses not only deduplication techniques to mini-
mize network usage but also a consistency model that takes
into account the users’ interests. The result is a scalable and
efficient cloud file sharing system that fulfills users needs re-
garding data sharing.

Keywords: File Sharing, Data Deduplication, Adapt-
ability, Interest Management.

1. INTRODUCTION
Cloud file sharing systems are becoming an emergent so-

lution to the problem of sharing/updating data among mul-
tiple users[1]. These systems require new methods to syn-
chronize data in a more efficient way, specially with respect
to bandwidth, which is still a scarce resource and is deci-
sioning for scalability. The goal of this work is to design
and build a system called vfcBOX that efficiently manages
the consistent sharing of data. For scalability, the system is
required to be efficient specially in terms of network band-

This article has been published in
MGC’2011, December 12th, 2011, Lisbon, Portugal.
Copyright 2011 ACM 978-1-4503-1068-0/11/12.

width usage.
To attemp such goal, vfcBOX has to deal with the fol-

lowing challenges: i) minimize the amount of data to be
transfered through compact forms of representing data; ii)
allow concurrent access to files, while preserving replica con-
sistency; iii) ensure correct data synchronization, while min-
imizing the use of network resources; iv) deal with conflicts,
supporting ways of detecting and resolving them through
the merge of concurrent data updates; v) support discon-
nected work.

Current solutions to minimize network bandwidth (or data
stored) in distributed systems, such as Semantic-chunks[16],
LBFS[11], Rsync[15], redFS[4], SVN1, Dropbox2 and many
others, take advantage of some form of either compression
or data redundancy.

In particular, deduplication[10] techniques take advantage
of the similarity between portions of data. Efficient syn-
chronization may be achieved by not sending data that is
found as redundant between two sites. Other solutions are
based in Optimistic Replication[14], which enables the
bounded divergence of data consistency. More specifically,
systems such as Semantic-chunks[16] use the notion of in-
terest management[8](or locality-awareness) of a user to
avoid propagating (useless) updates. These solutions try to
reason about the importance of each update, performing an
intelligent management of updates and performing a selec-
tive scheduling based on this importance.

vfcBOX combines deduplication with an interest-based
optimistic replication that adapts consistency guarantees to
users needs. In other words, the system is able to identify
the user’s interest over each data set. Thus, updates regard-
ing more relevant data (i.e. requiring strong consistency) are
rapidly propagated to users; other updates, regarding data
not required to be consistent, are delayed and batched, in
order to prioritize file and data transfer according to users’
interests. This is specially important when synchronizing
“dropboxes” with large number of files, number of updates,
and file sizes.

Additionally, deduplication techniques allow the system
to minimize the redundant data transfered between sites.

This paper is organized as follows. Section 2 presents the
vfcBOX’s architecture. Section 3 describes some implemen-
tation details of the vfcBOX system. Section 4 presents the
obtained results of the evaluation procedure performed to
the implemented solution. Finally, Section 5 describes the

1http://subversion.tigris.org/
2http:www.dropbox.com

http://subversion.tigris.org/
http:www.dropbox.com


related work.

2. ARCHITECTURE
vfcBOX provides file storage and synchronization among

multiple users and it appears to users as a synchronized
folder where files/folders may be dropped and updated with-
out having to explicitly synchronize them. It uses dedupli-
cation to minimize storage space and network bandwidth on
client-server communication. Additionally, vfcBOX defines
a relaxed consistency model that takes into account the in-
terests of users over certain files or certain parts of a file,
in order to create multiple consistency levels, and use this
to prioritize and schedule (delay, batch, reorder, omit) data
transfers. These two aspects minimize network bandwidth
while ensuring that users consistency needs are fulfilled.

2.1 Baseline Architecture
vfcBOX is based on a client-server architecture. Figure

1 is a simplified illustration of the system in which clients
submit their updates and consistency needs (i.e. data inter-
ests) to the server (for simplicity of the presentation, with
no lack of generality, we consider just one server, that could
reside inside a data center, or cloud infrastructure). For
a user, such interests specify files or parts of files which
are most relevant to him, thus requiring strong consistency.
Taking these interests into account, the vfcBOX server is
then able to enforce multiple consistency guarantees over
multiple data subsets. In particular, it does not propagate
useless or unneeded updates (i.e. those regarding data which
is not relevant for a user, or that can be subsumed by a later
update sent).

Figure 1: vfcBOX’s global overview.

Briefly, Client nodes are composed by the following mod-
ules:

• File System Monitor: detects new file updates;

• Synchronizer: manages the versioning information;

• Deduplication: avoids the transfer to the server of al-
ready transferred data parts;

• Compression: compresses the transfered data;

• User Interests Uploader: uploads to the server the user
interests.

The Server node is mainly composed by the following
modules:

• Deduplication: avoids the storage/transfer of already
stored/transferred data parts;

• Synchronizer: manages the versioning information;

• VFC: according to users’ interests, it ensures critical
updates to be immediately propagated to clients and
less critical to be postponed.

The vfcBOX consistency model is based on three main
concepts: Pivots, Consistency Rings, and Consistency De-
grees.

Pivots are special entities within a document which repre-
sent the focal point of interest of a particular user. A pivot
is used by the vfcBOX to calculate the distances between
a user’s interest focal point within a file/folder and other
entities (e.g. sections, chapters) in that file or in other files.

Consistency rings are formed around pivots. The number
of rings may be set by the user. For example, to calculate
the distance between a pivot and a file section we just check
on which ring the section is on.

Each consistency ring has a consistency degree associated.
Consistency degrees vary with the distance so that rings
closer to a pivot have a stronger consistency degree; con-
versely, rings that are far away from a pivot provide weaker
consistency degrees.

A consistency degree is directly associated to the number
(and rate/frequency) of messages that will be exchanged.
If sections/chapters/etc. in a file become closer to a user’s
pivot, the number of messages sent to the user increases and,
vice versa, as file entities become farthest from the pivot, the
rate of updates sent will be reduced.

2.2 Consistency Requirements
vfcBOX consistency model supports two granules for users

interests specification: i) whole file, and ii) file parts inter-
ests. The first type is related to the interests that a certain
user may have over certain files within a folder. The consis-
tency guarantees are thus applied over the whole file. The
second type is related to the interests that a certain user
may have over parts (which we call semantic zones) of a cer-
tain file. Consistency guarantees are stronger when closer to
the selected pivot zone, which is manually selected by users.

To accomplish the above mentioned, a file is divided in
parts (which are in fact, semantic zones). These parts may
be seen as natural parts of a document, for instance, chap-
ters and sections of a Latex document. Given that, each
semantic zone is composed by data that is deduplicated; a
file is seen as a list of semantic zones in which each zone is
composed by a list of references (chunks pointers) to data
chunks. The data chunks are stored in a chunk repository.

In order to apply different consistency guarantees over
multiple semantic zones of a file, we consider each semantic
zone an independent object.



Zone Sequence
(σ)

Time (θ)

Very Important 1 update 0 min.
Important 5 updates 5 min.
Not Important 10 updates 10 min.

Table 1: vfcBOX model: semantic zone limits.

Client nodes contain version vectors with two entries, one
entry to its own version and one entry to the server version.
Server nodes contain version vectors with N+1 entries, one
entry to its version and N entries to N clients (only the
clients that share the file are included). Each file has one
version vector for the structure of the file (Structure VV) and
one for each zone (Zone VV). This allows the identification
of modifications on the file structure (e.g. insertion of one
zone) or on the content of each semantic zone.

By representing parts of a file as independent objects,
vfcBOX is not only capable of enforcing multiple consis-
tency degrees but also of avoiding conflicts, since it enforces
the versioning information independently for each semantic
zone. As such, modifications to different parts of a file are
viewed as updates to different objects and thus not consid-
ered as a (false-sharing) conflict.

2.3 Consistency Levels
Each semantic zone update is assigned to a consistency

degree, i.e. a set of divergence bounds/limits and a set of
clients to whom this update may concern. We define three
different consistency degrees (note that the system is pre-
pared to be configured to have more consistency degrees):
i) very important data zones; ii) important data zones; iii)
not important data zones.

Based on user defined consistency needs, the vfcBOX as-
signs a consistency degree to each semantic zone; each se-
mantic zone is then inserted in a list of semantic zones. Pe-
riodically, the server iterates each list in order to propagate
to clients only those updates that are effectively needed so
that consistency requirements are fulfilled.

2.4 Consistency Bounding
To bound consistency divergence, a set of limits are im-

posed. Ensuring the respect of such limits is the task of
the vfcBOX server by propagating updates to clients when
needed. There are two divergence criterias: Sequence (σ)
and Time (θ). These two criteria form a consistency vector.

The Sequence criteria indicates the number of updates
that have already been performed over a certain file (each
file save is considered to be as an update). Thus, the Se-
quence limit is defined as the maximum number of unseen
updates from a certain semantic zone. The Sequence limits
are checked in consequence of either the arrival of an up-
date, or a change in the user pivot. This limit is checked
simply by comparing the number of undelivered updates in
a certain semantic zone with the maximum sequence limit
defined with the sequence divergence limit.

To create these sequence events, we associate a function
to a counter signal in the server. This function counts the
number of updates that have been performed over a semantic
zone and checks, for every consistency zone, if the sequence
limit has been exceeded, as follows.

Figure 2: Latex document example.

#Updates[Semantic Zone] >
Sequence[distance(Semantic Zone;Pivot)]

The Time limit of a vfcBOX consistency vector defines
the maximum time during which no updates are applied to
a semantic zone (or its staleness). To enforce the time lim-
its, the vfcBOX server uses a timeout mechanism for each
consistency zone.

To create these timeout events, we associate a function to
a clock signal in the server, with a period equal to the min-
imum unit of measurement, i.e. one second. This function
counts the elapsed time and checks, for every consistency
zone, if the time limit has been exceeded, as follows.

Elapsed Time[Semantic Zone] >
Time[distance(Semantic Zone;Pivot)]

Table 1 presents the vfcBOX default limits of divergence
values (obviously, these can be configured). These limits are
enforced over each semantic zone. According to a certain
level, each zone has assigned some divergence bounds. For
instance, a semantic zone that is considered very important,
has associated a sequence bound of 1 update and a time
bound of 0 minutes. This means that an update to that
semantic zone is immediately propagated to the concerning
client(s). On the contrary, a semantic zone considered as
important, has associated a sequence bound of 5 updates
and a time bound of 5 minutes. This means that only after
5 updates or only after a delay of 5 minutes, the semantic
zone content is transferred to the concerning client(s).

Figure 2 shows an example of a Latex file, for which
several semantic zones have been defined. A darker color
shows a zone that is more relevant for the user thus requir-
ing stronger consistency than other (lighter gray) zones. A
similar interface is provided for the user to express (and vi-
sualize) which files within a folder are more/less relevant
and thus require stronger/weaker consistency. In this case,
the consistency granule is the whole file.

2.5 Deduplication Process



Figure 3: Example of deduplication process.

In this section we describe the deduplication process used
to reduce the redundant data transferred over the network.
The deduplication process explores the redundant data ei-
ther from the client to the server side or from the server to
the client side. Through comparison of variable-size hashes
we explore both cross-file and cross-version redundancy.

In short, the deduplication process is composed by three
main steps (see Figure 3): I) Data partitioning; II) Hash
Calculation; III) Chunk Lookup in chunk repository
and references table.

The first step regards the process of partitioning data that
is found to be written. This partitioning is accomplished by
using Rabin Fingerprints[13] to calculate the chunk bound-
aries according to data’s contents. It is based on the ex-
amination of every 48-byte regions of the file and respective
calculation of a rolling hash. The rolling hash is then com-
pared with a pre-defined value. When a match occurs the
current region is marked as a chunk boundary.

The second step of the process constitutes the hash cal-
culation (using SHA-1[6]) of each chunk provided by step 1.

The third and last step regards the process of writing data
in a compact form. The compact form is constituted by a
list of references to chunks. For this, it is required a lookup
over the chunks repository and over the references table in
order to detect redundant chunks. If the chunk already ex-
ists, only a reference is added to the chunk contained by the
repository. Otherwise, the new chunk has to be added to
the repository, creating for it a new entry that is identified
by its hash-value.

The chunk repository stores chunks and provide the pos-
sibility of performing lookups, in order to detect already
existing chunks. Each entry of the repository contains a
unique hash-value of a chunk and a reference to the actual
chunk.

The references tables consists on the set of hash values
that each site knows to be found at a given site. The refer-
ences table stores references to chunks that have been sent
to a certain site. These references are associated with the
synchronizing site identification. This provides the possi-
bility of performing lookups, in order to detect if a certain
chunk has already been sent to a certain site.

3. IMPLEMENTATION
vfcBOX has two main modules: upload and download

pipelines.

3.1 Upload Pipeline

Figure 4: vfcBOX’s data upload pipeline. The figure illustrates
the modules of the baseline architecture that are involved in the
data upload.

The upload pipeline (Figure 4) detects new updates and
uploads them from the client to the server. There are eight
steps as follows.

• 1) File System Monitoring : The process of upload-
ing a file update starts with an update event, triggered
by the file system monitor (when a file saving occurs).

• 2) File Translation to the Intermediate Format :
After the identification of a new update, the update is
translated to an Intermediate Format (IF). This allows
using the same format and same semantic zone defini-
tion for any type of files, since all files are translated
to the IF.

• 3) Client Synchronization : In this phase the new
update is synchronized with the server. This step is
responsible for managing all the versioning information
of updates.

• 4) Client Deduplication : Before transferring the new
update’s data to the server, the process of deduplicat-
ing redundant data (described in Section 2.5) is trig-
gered, resulting in a hash value for each chunk. Then,
the hash value is searched in the client’s chunk repos-
itory and in the client’s references table in order to
detect if the concerning chunk has already been sent
to the server in previous uploads.

The chunks repository is responsible for storing each
data chunk. The references table is responsible for
maintaining information about the data chunks that
have already been sent to the server. If the concerning
chunk has already been sent to the server, the chunk
is replaced by a single reference containing the chunk’s
hash value. Additionally, the client adds to the refer-
ences table a reference to each chunk that is sent to
the server, in order to find in the future if that chunk
has already been synchronized.

• 5) Data Compression : After the deduplication, the
remaining literal chunks (chunks with their associated



Figure 5: vfcBOX’s data download pipeline. The figure illustrates
the modules of the baseline architecture that are involved in the
data download.

contents) are compressed using the BZip23 compres-
sion algorithm.

• 6) Data Transfer : The upload process then contin-
ues with the data transfer of the new update.

• 7) Server Deduplication : On the server side and for
each chunk the server receives, it searches the chunks
repository in order to avoid the storage of already ex-
isting chunks (e.g., one since transferred by another
client). Additionally, the server adds to the references
table a reference to the received chunk, indicating that
the uploading client contains a copy of it.

• 8) Server Synchronization : Finally, the server up-
dates the versioning information of the incoming up-
date, determining if there were any conflicts. For each
received semantic zone and for each client, a consis-
tency level is assigned in accordance to client’s inter-
ests. This phase allows further synchronization of in-
coming updates with the rest of the clients.

3.2 Download Pipeline
The download pipeline supports the download of new

files and new file updates from the server to each of the
clients. The download of a file update is initiated on the
server side. Thus, this pipeline periodically checks if there
are updates to be sent from the server to clients. This syn-
chronization is done according to the consistency require-
ments of each client; thus, it determines if a certain up-
date will be delayed or immediately propagated to a certain
client. Some updates may be dropped altogether as they
have been made obsolete by subsequent updates to the same
file (or to same chunk), and need neither be further stored
nor sent.

The download process (Figure 5) is composed by eight
steps as follows.

• 1) vfcBOX Limits Checking : The download of a file
update starts when the divergence bounds associated
to a certain file or file semantic zone are exceeded.

3http://www.bzip.org

• 2) Server Synchronization : The set of updates that
are found to be synchronized with a client are passed
to the synchronization module that is responsible for
updating the versioning information.

• 3) Server Deduplication : Before transferring the
contents of each update to the concerning client, the
server performs the deduplication process. To accom-
plish this, the server searches its references table in
order to find if the current client already contains a
certain chunk of data. If a reference of a chunk is
found, the chunk is replaced by a reference containing
the chunk’s hash value.

• 4) Data Transfer : The download process then con-
tinues with the data transfer of the current update.

• 5) Client Deduplication : When the client receives a
literal chunk, it stores the chunk in the chunk reposi-
tory and adds a reference to it in the references table.
When the client receives a non literal chunk, it adds a
reference to it in its references table and searches for
the chunk’s content in the chunk repository.

• 6) Data Decompression : After the deduplication
process, the compressed data chunks are decompressed.

• 7) Client Synchronization : The new update is syn-
chronized with the client, updating the versioning in-
formation.

• 8) File Translation to the File Format : The client
translates the synchronized update to the actual file
format.

4. EVALUATION
In this section we evaluate vfcBOX by comparing it to

other systems (Dropbox, SVN and LBFS).
We simulate a user performing modifications to shared

data. These modifications are propagated to the server,
which is then in charge of synchronizing, if required by
the consistency zones specified, the new updates with other
users.

We use the consistency divergence limits already described
in Table 1.

4.1 Workload Description
For the evaluation, the set of files used are MSc the-

sis samples composed by 10 different Latex files, represent-
ing the content of some MSc dissertations of students from
IST/Technical University of Lisbon. These samples were
composed by the regular chapters of a dissertation, namely
Introduction, Related Work, Architecture, Implementation,
Evaluation and Conclusion, and several sections in most
chapters. The medium size of each Latex file is 200KB.
Thus, this workload has a total size of 2000KB.

4.2 Bandwidth Usage Analysis: Real Work-
load Stress Test

The goal of this test is to measure the effects on band-
width usage of both vfcBOX consistency model and dedu-
plication. We used thesis samples (described in Section 4.1)
and requested real users to perform some minor changes to
these file samples, in order to simulate typical editing of the
documents. To accomplish this, each user shared his MSc

http://www.bzip.org


Figure 6: Bandwidth usage (in KB) sum of the stress test illustrated in Figure 7.

thesis with a user that was downloading new updates. This
user assigned a special interest over the Architecture chap-
ter of each file sample. Then, each user performed small
changes (insertion of 1 byte) on each chapter of the sharing
file.

Figure 7 illustrates the results of the used bandwidth (in
KB) to download each file update. Dropbox, SVN and LBFS
make use of more or less the same bandwidth to download
each file update, given that for each update the multiple
modifications to the content of the file are transmitted.

Analyzing the results of vfcBOX, we may find a huge dif-
ference between the 10th update and the others. This hap-
pens because the current user has assigned a special interest
over the Architecture chapter of each file. Thus, only this
chapter and its sections are considered as important zones
to vfcBOX server. Therefore, on each update, only the mod-
ifications to this specific chapter are transferred, avoiding to
transfer updates over the rest of the chapters. In the 10th
update, the consistency limits (sequence limits) of all chap-
ters/sections are exceeded and all modifications are trans-
ferred to the concerning client.

Bandwidth is saved because delayed updates may be ren-
dered unnecessary to be transferred, for being subsumed by
more recent ones when these are effectively transferred at a
later time.

In comparison to the other three solutions, vfcBOX is ca-
pable of reducing the total amount of used bandwidth up to
82% on each update. The exception is in the 10th update,
where all solutions propagate all the modifications.

Figure 6 illustrates the sum of the used bandwidth of the
above mentioned results (Figure 7). In comparison to the
three systems, the vfcBOX results show a total saving from
70% to 74% in bandwidth resources after 10 updates to 10
files.

5. RELATED WORK
There are several types of services that may be provided

Figure 7: Bandwidth usage (in KB) for downloading 10 file up-
dates of a set of 10 different thesis files.

by cloud computing. Regarding vfcBOX, we focus on cloud
computing as a system to provide large-scale storage (Cloud
Storage). Many systems such as Dropbox4, SkyDrive5, Spi-
derOak6, Box.net7, SOS Online Backup8 and SugarSync9

use cloud systems in order to provide high available and
reliable storage.

Such a service is offered by software running on a col-
lection of servers, with data from client machines stored at
the hard disks of multiple server nodes. Typically, a cloud
storage process on a client node transfers (part of) the data
available in local storage back and forth to an entry point
of the cloud storage service. This entry point makes sure
that the data from the client is distributed over other server

4https://www.dropbox.com
5http://skydrive.live.com/
6https://spideroak.com/
7http://box.net
8http://www.sosonlinebackup.com
9https://www.sugarsync.com/

https://www.dropbox.com
http://skydrive.live.com/
https://spideroak.com/
http://box.net
http://www.sosonlinebackup.com
https://www.sugarsync.com/


nodes. The cloud storage process keeps local data synchro-
nized with data stored at the cloud storage service: new
data generated locally by the user is uploaded to the cloud,
data is retrieved from the cloud when local data is lost.

5.1 Amazon S3
Amazon S3 Simple Storage Service[12] is an Amazon’s sys-

tem based on cloud computing to provide storage for the
Internet. It provides a simple web services interface that
can be used to store and retrieve any amount of data, at
any time, from anywhere on the web. Through Amazon
S3, developers may achieve highly scalable, reliable, secure,
fast and inexpensive infrastructures to store data, without
having to be concerned about any internal issues. Ama-
zon S3 is supported by a large number of data centers in
the United States and Europe and is expected to offer low
data access latency, infinite data durability and 99.99% of
availability[12]. Data stored in Amazon S3 is organized in
a two level namespace: buckets and object names. Buck-
ets are similar to folders and allow users to organize their
data. Object names correspond to objects that are stored
into buckets. Regarding the data access protocols, Ama-
zon S3 supports 3 main protocols: SOAP10, REST11 and
BitTorrent12.

5.2 DropBox
Dropbox is a commercial backup and file synchronizer[2]

system that enables users to share data with others across
the Internet. It is designed to achieve high performance re-
garding the transfer of data between clients and servers. To
provide and support storage to large-scale networks, Drop-
box actually uses Amazon S3 internally to store files. Each
Dropbox client has in his computer a ”Dropbox Folder”where
he can modify and upload new files/folders. This folder is
managed by a background process that is responsible for
the correct synchronization of the folder between clients and
servers. This application can also be used by several users
as a collaboration tool as a user can allow others to access
specific folders inside his ”Dropbox folder”. To accomplish
the high performance with respect to data transfer, Drop-
box uses delta-enconding techniques to produce a binary diff
between new and previous versions of a file. As such, it en-
ables an efficient syncing, only uploading changes made to
a file. It also enables a file versioning allowing clients to
fetch previous versions. To detect the existence of modi-
fied data, Dropbox also uses Compare-by-Hash[11, 15, 5, 3]
techniques over folders to find out which folders have been
modified. For this, the system exchanges folder hashes in or-
der to find if the contents of a given folder have been mod-
ified. With delta-encoding Dropbox is able to reduce the
use of bandwidth, by only uploading the changes performed
over a file. However, it does not perform deduplication to
reduce the amount of stored data. Also, it does not use
any kind of technology to specify multiple consistency lev-
els, which could improve even more the efficiency in data
transfer. Moreover, Dropbox does not provide any kind of
tools to resolve updating conflicts, delegating to clients this
task when any concurrent operations to the same files have
been performed.

10http://www.w3.org/TR/soap/
11http://www.ics.uci.edu/ field-
ing/pubs/dissertation/rest arch style.htm

12http://www.bittorrent.com

5.3 Microsoft Live SkyDrive
SkyDrive13 is a file hosting service that allows users to

upload files to a cloud storage and then access them from
a Web browser. It is based on cloud storage services that
allow users to store and share data. It does not provide
synchronization functionality between devices, and the pri-
mary interface is web browser based. A number of tools
exist, however, that make uploading and syncing of local
data more convenient. SkyDrive does not support version-
ing of objects. Individual items can be shared with others
through the web.

5.4 LBFS
LBFS[11] is a network file system designed to perform in

low-bandwidth networks. The main goal of this system is to
avoid the transmission of data that may already be found
at the receiver’s site. To accomplish this, this system makes
use of compare-by-hash techniques in order to improve the
bandwidth usage. To deal with the problem of shifting file
offsets and overlapping chunks, this system uses Variable-
size Block Hashing[11, 5], basing chunk boundaries on file
contents.

To make the chunk comparison possible both client and
server store chunks in a database indexed by chunks hashes.
When reading a file from the server, the client makes a re-
quest to the server in order to retrieve the hashes of the
chunks to be read. Further, the client compares the received
hashes with the already detained, labeling the chunks that
were not found as missing. After this, the client requests the
missing chunks to the server, receiving by this the missing
data. As these operations are all pipelined, downloading a
file only incurs in two network round-trips plus the cost of
downloading the data.

Summing up, LBFS is a system that efficiently synchro-
nize data, saving resources regarding the use of network
bandwidth. Although it is clear the improvement in the
transfer protocol, this system has to exchange sets of hash
values between client and server, which in case of low re-
dundancy may not compensate the gains and introduce a
substantial overhead. Moreover, it does not explore data
redundancy to efficiently store data. This system could use
the same deduplication techniques to explore this last is-
sue, making this a system that could efficiently transfer and
store data. Additionally, LBFS also does not have into ac-
count multiple consistency guarantees, which could guar-
antee a multi-level consistency according to the bandwidth
constraints and user needs. This could even improve more
the efficiency with respect to data transmission.

5.5 Subversion (SVN)
Subversion (SVN)[7] is a revision control system typically

used to synchronize and store multiple versions of source
code files. SVN is based on a client-server architecture.
It supports disconnected operations and provides to clients
tools for handling conflicting updates, since normally there
are multiple clients making concurrent changes to the same
files.

In order to achieve higher performances with respect to
data transfer protocol, SVN tries to reduce the use of net-
work resources through the use of delta-encoding techniques.
Through this technique it compares file versions with their

13http://skydrive.live.com/

http://www.w3.org/TR/soap/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.bittorrent.com
http://skydrive.live.com/


previous versions, detecting cross-version redundancy. This
redundancy exploitation is not only used to reduce the use
of network bandwidth, but also to achieve better perfor-
mance with respect to data storage. As specified, the delta-
encoding technique needs one new version and one old ver-
sion to encode data, which forces the client to use extra
space to store old versions. Furthermore, this method also
imposes the limitation that each file is encoded only against
one other file, which makes SVN unable to exploit cross-file
redundancy.

In short, SVN is able to perform efficient data transfer,
improving concurrency and providing tools to reconcile con-
flicting updates.

6. CONCLUSION
The vfcBOX system efficiency comes from the use of both

deduplication techniques and the vfcBOX consistency model.
Through deduplication, the vfcBOX is able of detecting re-
dundant data between multiple versions of the same file or
even between multiple files. With this redundant data detec-
tion, network bandwidth may be saved since the redundant
data has no longer to be transferred.

vfcBOX also performs a selective scheduling of updates
based on its importance, determined through user specifi-
cation. Therefore, multiple consistency degrees are applied
over multiple data sets (files or file parts), which gives the
system the ability of postponing certain updates, and even
avoiding sending some altogether.

In conclusion, vfcBOX is an efficient file sharing system
that uses low bandwidth to synchronize file updates by using
several techniques such as data deduplication, data compres-
sion and a relaxed consistency model that makes an intelli-
gent schedule of updates according to its importance to each
user.

7. REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, and R. Katz. A

view of cloud computing. In Magazine Communications of the
ACM, Volume 53 Issue 4:50–58, 2010.

[2] S. Balasubramaniam and B. Pierce. What is a file synchronizer.
In MobiCom ’98: Proceedings of the 4th annual ACM/IEEE
international conference on Mobile computing and
networking, 1998.

[3] J. Barreto and P. Ferreira. A replicated file system for resource
constrained mobile devices. In Proceedings of IADIS
International Conference on Applied Computing, 2004.

[4] J. Barreto and P. Ferreira. Efficient locally trackable
deduplication in replicated systems. In Middleware’09:
Proceedings of the ACM/IFIP/USENIX 10th international
conference on Middleware, 2009.

[5] L. Cox, C. Murray, and B. Noble. Pastiche: Making backup
cheap and easy. In OSDI ’02: Proceedings of the 5th
symposium on Operating systems design and implementation,
pages 285–298, 2002.

[6] D.E. Eastlake and P.E. Jones. Us secure hash algorithm 1
(sha1). http://www.ietf.org/rfc/rfc3174.txt?number=3174,
2001.

[7] Collins-Sussman et al. Version control with subversion.
O’Reilly, 2004.

[8] K. Morse et al. Interest management in large-scale distributed
simulations. Information and Computer Science, University
of California, Irvine, 1996.

[9] J. J. Hunt, K.-P. Vo, and W. F. Tichy. An empirical study of
delta algorithms. In ICSE ’96: Proceedings of the SCM-6
Workshop on System Configuration Management, pages
49–66, 1996.

[10] N. Mandagere, P. Zhou, M. Smith, and S. Uttamchandani.
Demystifying data deduplication. In Companion ’08:
Proceedings of the ACM/IFIP/USENIX Middleware ’08
Conference Companion, 2008.

[11] A. Muthitacharoen, B. Chen, and D. Mazières. A
low-bandwidth network file system. In SOSP ’01: Proceedings
of the eighteenth ACM symposium on Operating systems
principles, Volume 35 Issue 4:174–187, 2001.

[12] M. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel.
Amazon s3 for science grids: a viable solution? In DADC ’08:
Proceedings of the 2008 international workshop on
Data-aware distributed computing, 2008.

[13] M. Rabin. Fingerprinting by random polynomials. Technical
Report TR-15-81, Center for Research in Computing
Technology, Harvard University, 1981.

[14] Y. Saito and M. Shapiro. Optimistic replication. In Journal
ACM Computing Surveys (CSUR), Volume 37 Issue
1(1):42–81, 2005.

[15] A. Tridgell and P. Mackerras. The rsync algorithm. Australian
National University, 1998.

[16] L. Veiga and P. Ferreira. Semantic-chunks: A middleware for
ubiquitous cooperative work. In ARM ’05 Proceedings of the
4th workshop on Reflective and Adaptive Middleware
Systems, 2005.


	Introduction
	Architecture
	Baseline Architecture
	Consistency Requirements
	Consistency Levels
	Consistency Bounding
	Deduplication Process

	Implementation
	Upload Pipeline
	Download Pipeline

	Evaluation
	Workload Description
	Bandwidth Usage Analysis: Real Workload Stress Test

	Related work
	Amazon S3
	DropBox
	Microsoft Live SkyDrive
	LBFS
	Subversion (SVN)

	Conclusion
	References

