
Vector-Field Consistency for Collaborative Software Development
(extended abstract of the MSc dissertation)

Miguel Mateus
Departamento de Engenharia Informática

Instituto Superior Técnico

Advisor: Professor Luı́s Veiga
Co-Advisor: Professor Paulo Ferreira

Abstract—Software development is, mostly, a collaborative
process where teams of developers work together in order to
produce quality code. Collaboration is, generally, not an issue,
as teams work together in the same office or building. However,
larger projects may require more people, who might be spread
through-out different floors, buildings and different companies.

Several systems have been developed in order to provide
better means of communication and awareness over the ac-
tions of others. Still, most of them rely on an all-or-nothing
approach: where the user is either immediately notified of all
modifications occurring in a shared project, or is completely
oblivious to all external changes.

We propose a new solution based on the adaptation of the
Vector-Field Consistency algorithm which relies on two distinct
concepts: locality-awareness and continuous consistency model.
Where the former represents the ability of system to make
choices based on the proximity of remote changes in relation
to a particular user’s position. While the later corresponds to a
consistency model between strong and weak consistency, which
is able to control and impose a limit over how much two replicas
can diverge. With the correct parametrization this model can
establish a great balance between consistency and availability.

In this work we explain how the VFC algorithm, originally
planned for distributed ad-hoc gaming, was adapted into
the context collaborative software development; thus allowing
programmers to have a higher degree of awareness over remote
changes which might directly affect their work, and as the
impact of changes decreases, so will the level awareness. And
later we describe in detail how our architecture was applied
to the Eclipse IDE1, under the form of a plug-in, to provide a
new level of distributed collaboration to software developers,
and how it was evaluated.

I. INTRODUCTION

Being today’s software development mostly a collabo-
rative process, where individuals work together in order
to develop a product of higher quality, communication
and coordination become fundamental concerns. Although
it might seem an easy task, ensuring such high level of
communication and feedback over others’ actions when
dealing with a small group of elements (usually working
in the same open-space), as projects grow larger and more
complex, proximity between developers cannot always be
assured; and thus, as physical distance between elements

1Eclipse.org: http://www.eclipse.org/platform

or teams increases, instant communication will gradually
become harder to maintain.

Coordinating the efforts of multiple teams working in
parallel on a module is a non-trivial task. A considerable
fraction of the effort in software development is still wasted
resolving conflicts, which are only detected when the work
of the separate teams or elements is merged. Having a tool
able to provide nearly real-time awareness would greatly
ease the management of these conflicts, and could even
reduce the occurrence of some by allowing the developers
to anticipate them.

Distributed collaborative tools are a great way of pro-
viding support for interaction among developers and, thus,
mitigate the communication deficit originated from physical
distance. However, whenever dealing with distributed sys-
tems it is necessary to deal with the issue of consistency, as
all elements associated with the development of the project
must have the same view of the source code. Enforcing
consistency requires additional communication; consequen-
tially it is impossible to provide each individual with the
modifications performed by all others users in real-time.

Several distributed systems provide optimistic consistency
(see Section II-A), relaxing it and assuming that replicas will
eventually converge. Yet, it might not be desirable in certain
systems to postpone information based on such vague as-
sumption, and thus, some applications have means of defin-
ing how much two replicas are allowed to diverge. However,
more than providing up-to-date information among replicas
it is necessary to understand the nature of such information
and the impact it has on each participant, in order to know
how to deal with it. And even though some applications
already provide some sense of context, assigning different
weights to operations [1], they prove insufficient in the
scope of collaborative software development, as they do not
provide locality-awareness.

This way, an individual would surely be willing to de-
lay the retrieval of less relevant (and thus more distant)
changes to the code, if he could guarantee that the closer
the modifications were to its code, the sooner they would
be delivered to him. Conversely, changes having a critical
impact to its work would be retrieved almost instantaneously.
This differentiated degree of update notification offers better

1



communication while keeping network usage low; as savings
can be achieved by the merging of overlapping changes.

This work proposes the adaptation of the VFC (Vector-
Field Consistency) model, previously used in multi-player
games, to the distributed collaborative development of soft-
ware. VFC uniqueness comes from its capability to dynam-
ically change the degree of consistency associated to data
elements, based on locality-awareness techniques applied for
each user. The consistency degree is parametrized through
the definition of ’observation-points’. These points indicate
the position of the user, around which consistency is strong;
growing weaker as the distance increases.

To adapt the VFC model to collaborative software de-
velopment, we need to adapt it to our new definition of
locality. In our new scope, position refers to the section of
code a developer is working on, and the distance from other
developers’ changes is measured based on the relationship
among language constructs (class and interface hierarchies,
among others), thus allowing a user to have more frequent
feedback of changes to the code that might affect and
possibly conflict with his work. The user can benefit from
this level of information, avoiding conflicts that otherwise
would inevitably occur.

In Section II, we first refer to the concept of Software
Configuration Management, then we study several existing
systems that introduce different collaborative features into
software development, and finally we survey the state of
the art over consistency models. In Section III, we describe
our architecture, showing the most relevant aspects of the
adaptation of the VFC algorithm. Later in Section IV we
specifying the main details of the implementation. Section V
presents the evaluation of the Eclipse plug-in developed. And
finally, Section VI concludes the dissertation and addresses
future work analysis.

II. RELATED WORK

A. Collaborative Software Development

Work can be shared in two distinct ways: by submitting
changes to a shared repository [2]; and by allowing others
to see the changes performed by a given developer as they
occur [3], [4].

The distinction between private and public work, more
than desirable, is a necessary property in order to provide a
stable working environment, controlling and moderating the
impact of non-local changes to one’s work. However, the
transition between these two aspects needs to be carefully
executed, as systems require knowing when to share private
work of a given developer to others; as well as what to share.
Some empirical issues associated with an ill-management
of transition between private and public workspaces are
covered in [5]. Total isolation might lead to a larger num-
ber of conflicts, and can even make an individual’s work
obsolete when faced with changes from others. However,
developers do not want their work progress to always be
visible to others, as this would cause an overload of public
information that would not be ’relevant’ to the current

context or activity of the other programmers. Finally, it
might not be desirable to make partial changes visible to
others, because intermediate states might be inconsistent.

1) Awareness: Awareness consists in the understanding
of one’s surroundings, and in this case, the understanding
of what others are doing, and how their actions will affect
the rest of the participants. The complexity and interdepen-
dency of software systems [5] makes awareness essential
for collaborative software development. Several approaches
[3], [4], [6], [7] attempt to grant awareness to developers,
by implicitly providing information to others based on one’s
actions. They differ from one another in the type of isolation
supplied.

2) Impact: More than providing up-to-date information
between developers it is necessary to understand the nature
of such information and the impact it has on each participant.

In [8] several techniques to measure the impact of remote
modifications to the code are presented. One example is the
dependency graph approach, which tries to determine the
impact of a given change in the code by defining a set of
dependences associated with the logic of the target-program.
Also, it can be found in [9] a collection of new object-
oriented techniques for determining the effects of a set of
source code changes, assuming classes, methods, fields and
their interrelationships as the atomic units of change.

Hence, collaborative efforts, especially those with several
complex interdependencies, could greatly benefit from such
approaches. These techniques, unfortunately, are compu-
tationally expensive and very time-consuming, not being
recommended for massive collaborative development.

3) Existing Systems: Several systems have been devel-
oped in order to provide means of non-collocated col-
laboration in software development. For instance, Palantı́r
[4] detects users who will be affected by a given set of
modifications, based on a dependency graph; State Treemap
[6] helps users to be aware of the divergence at regular
intervals of time, controlling it; JAZZ [10] uses the con-
cept of teams to limit awareness to a group of potentially
interested individuals. The first two work as auxiliary tools,
additional to any development platform; while the latter was
developed as a plug-in for an IDE (Eclipse), benefiting from
the properties of contextual collaboration [11], supporting
more sophisticated interruption management schemes and
thus reduced friction.

These systems provide awareness, avoiding and resolving
conflicts early and thus, having the potential to save a
significant amount of time and effort that would otherwise be
spent in resolving the conflict at a later stage. However, they
are all based on an all-or-nothing approach, being unable to
provide a gradual decrease in awareness as the impact of
changes diminishes.

B. Continuous Consistency Models
Optimistic replication systems usually promise higher

availability, performance and concurrency by letting replicas
temporarily diverge assuming the existence of eventual con-
sistency. The eventual consistency model states that, when

2



no updates occur for a long period of time, eventually all
updates will be propagated through the system and all the
replicas will be consistent. Such policies might, however,
be considered too vague for certain applications. Hence,
definition of a middle-ground between a pessimist and an
optimist approach can bring numerous benefits to a large
variety of systems. This technique of allowing eventual
consistency to a certain degree, called bounded divergence
[12], is usually achieved by blocking accesses to a replica
when certain consistency conditions are not met.

1) TACT Model: TACT [1] is a middleware layer that
accepts the parametrization of consistency requirements.
This new approach, tries to explore the continuum between
the two extremes of the consistency spectrum by letting
applications decide the maximum degree of inconsistency
among replicas. If correctly parametrized, this degree might
lead to a significant improvement in performance and avail-
ability [13].

The latter degree of consistency is based on three metrics:
Numerical error, which limits the total weight of writes
that can be applied throughout all replicas before being
propagated to a given replica; Order error, which limits the
number of tentative writes, subject to reordering, allowed by
a replica. Staleness, which places a time limit over the delay
of update propagation among replicas.

This model can be adapted to the particular needs of a
given application by allowing defining its semantic consis-
tency, using conits. ”A conit is a physical or logical unit
of consistency, defined by the application”. The level of
divergence is measured between conits, based on a three-
dimensional vector containing the three metrics previously
described. The interesting property concerning TACT comes
from the fact that instead of forcing the whole system to a
single uniform consistency level, it allows each replica to
define its own independent consistency level.

2) Vector-Field Consistency Model: Despite its high
adaptability, TACT lacks a notion of locality-awareness. It
does not provide spatial relation between neither data objects
nor users. Therefore, it will not be the perfect solution for ap-
plications in which the places where modifications and reads
occur is used as leverage, defining the updates that should be
sent immediately or lazily and to whom. Thus, demanding a
continuous change in the consistency requirements between
replicas. VFC (Vector-Field Consistency) [14] presents itself
as a new consistency model which unifies several forms of
consistency enforcement and multi-dimensional criteria to
limit replica divergence, with techniques based on locality-
awareness.

As such, based on awareness, VFC is able to manage the
changing degree of needed consistency between replicas.
Although considering locality as an accountable factor to
manage consistency have already been tried before [15],
most previous work adopt an all-or-nothing approach, in
which objects within a given ranged are considered critical
and outside of that range are all discarded. Given a replica,
VFC answers this problem by creating several degrees of
consistency based on observation points, referred to as

pivots, around which the consistency is required to be
strong. The consistency requirements gradually weaken as
distance from the pivot increases, defining consistency zones.
Knowing that pivots change with time, so do the objects’
consistency needs during the life of an application.
The definition of each consistency zone is handled in a
fashion similar to TACT, using a three-dimensional vector.

Summarily, VFC combines and extends more elaborate
models (like TACT) to bring a more flexible and grad-
ual consistency based on locality-awareness. This solution
presents a complete set of advantages, either concerning its
flexibility, easiness of use, and transparency related to user’s
perception of the new model. Also, by selecting critical
updates and postponing less critical ones, VFC succeeds in
reducing the network stress.
The algorithm was originally conceived having in view
multi-player games, where spatial position of the player
in the world would define its consistency requirements
concerning other players and objects, and it’s now taking
its first steps towards collaborative work.

C. Operation Commutativity
In order to identify concurrency in the collaborative edi-

tion of documents, some information must be kept regarding
already applied operations. One option is to rely on a history
of previous operations, a common solution in operational
transformation algorithms [16]. However, in [17] this ap-
proach is criticized, stating that such solution may require
comparing each incoming operation with many previous
operations unnecessarily, which might affect performance
and also generate unnecessary ambiguities. Instead, they
suggest that operations can be associated with the target-
object. This way, conflicts will only occur in operations
applied over the same or adjacent objects.

The Commutative Replicated Data Type (CRDT) [18]
approach, considers that documents are composed by a
sequence of atoms, which are univocally described through
means of an identifier that remains unchanged through
the entire document life span. The atoms constituting the
document can be any time of non-editable element, such as
a character. The total order of the atoms must represent the
order by which they appear on the actual document. The
purposed implementation for this concept is mentioned in
the same article, and is entitled TreeDoc [18]. The TreeDoc
represents a document as a structure of atoms organized
in a binary tree, where the left branch of a given atom
corresponds to document positions prior to that atom, and
the right branch to positions after that atom. The total order
of each element of the tree can be obtained by traversing
the tree in infix order.

III. ARCHITECTURE

The main goal of this work is to enrich an existing
Integrated Development Environment with a new distributed
collaborative concept, based on the adaptation of the VFC
[14] algorithm. This new concept provides a higher level
of awareness over the overall state of a distributed project

3



while, at the same time, trying to ensure the lowest degree
of intrusion possible to the programmer’s work; as well
as reducing the bandwidth usage and network latency. The
balance between awareness and intrusion can be achieved by
notifying the programmer, as soon as possible, of external
changes that might directly affect his work and gradually
postponing or filtering information that is not relevant to
the current scope of the programmer’s task. By doing
so, the programmer can be informed in near real-time of
actions from other users that are conflicting with its work,
simplifying the resolution of conflicts that would otherwise
only be discovered at checkout-time.

A. VFC for Collaborative Software Development

The VFC algorithm is based on several key entities, that
must be adapted to the new context. Namely, replicated
objects, pivots, consistency zones and distance.

Probably the adaptation with greater impact is based on
the fact that the distance (and therefore consistency zones)
can no longer be measured by the distance between two
coordinates, as spacial distance no longer makes sense in
the scope of a Java project. The new relation between the
objects will be given by their semantic distance.

The concept of pivot is also subject to significant changes.
Every Java element is now a replicated object an can at any
point be assigned to a pivot. Additionally, a single user might
have more than one pivot assigned at the same time.

In previous applications of VFC, changes were silently
applied to the local replica in a way that was completely
transparent to the user. However, simply updating the state of
the project on the background might not only be insufficient
as it might have a high negative impact on the programmer’s
work. In such cases, it might be desirable by the programmer
to have some sort of mechanism that, without being exceed-
ingly distracting, could provide him with a significant level
of awareness regarding where the changes are happening in
the project.

In the VFC approach, a consistency zone has three type
of constraints associated to it, when any of this constraints
are violated, all operations stored in that zone are sent to
the user. These are: Time(θ), defining the maximum amount
of time a user can stay without being informed of the
changes; Sequence(σ), limiting the maximum number of
unseen updates; and Value(ν), limiting to how much a client
can diverge from the server replica.

B. System Architecture

The architecture supporting the adaptation of the VFC
algorithm, which we call VFC-IDE, is based on a client-
server architecture. For each project, one of the many
programmers holding a replica of the project can initiate
a VFC session (acting as the server-replica). This server-
replica is the one in charge of enforcing the VFC consistency
algorithm among the multiple replicas of a project; receiving
the submitted changes from all clients and managing update
propagation based on a star topology.

1) Server: The server is the user instance in charge of
receiving and managing requests from all other replicas of a
given project, as well as assuring inter-replica consistency.
It is the server’s job alone to: hold information regarding
the multiple pivots of all the session users, conducting
update propagations and VFC enforcement, and maintaining
a continuously up-to-date representation of the dependencies
among project artefacts.

As operations arrive, their impact over the work of each
user of the current session is measured. The incoming
operation is immediately applied and then stored, without
any kind of transformation, until consistency constraints
demand it should be sent to a specific replica. Ergo, the
server keeps, at all times, a view of the overall state of a
project, composed by the changes applied in every user’s
local replica.

The two main components of the Server instance are the
Dependency Manager and the Consistency Manager (see
Figure 1). The former translates the various Java elements
composing a project into special artefacts that related to each
other, creating a dependency structure. It is responsible for
detecting artefacts that were changed, created or deleted, and
updates the dependency structure. The latter, is in charge
of, for each user, translating dependency relations between
pairs of changed artefacts into levels of impact. This impact
is then used to determine to which of the user’s consistency
zones the operation belongs to. The consistency manager
possesses all the knowledge over where each participant of
the session is currently located, as well as what observation
points they have explicitly declared.

2) Client: A client is any user who successfully enters a
VFC session. These instances are responsible for dispatching
local operations to the serve, as soon as they occur. To
feed the location-aware mechanism, a client must inform
the server of his points of interest (pivots). This can be per-
formed implicitly, as the server can infer the edition position
from document updates; or explicitly, through means of a
message designed for that special purpose.

Every time the server detects that a given remote change
might have a significant impact on another user’s work, a
notification message is sent to both users. The Notification
Manager (see Figure 1) is the client-side component in
charge of translating this message into some event that the
final user is able to understand. Aiming not to distract the
programmer from its work unless it is strictly necessary, the
notification messages will be transformed into increasingly
intrusive alerts as the level of impact grows.

In both the server and client, for each (textual) document
of the project that has changed since the beginning of the
session, an instance of a Document Manager is created.
This component is used to make the architecture completely
independent of the structure used to manage a collaborative
document edition. Each instance of this component has two
versions of the document associated to it: one being the
current state of the distributed document, and the other a
stable workspace version of the document. However, in the
server’s side the stable version corresponds to the last com-

4



Figure 1. VFC-IDE Architecture

pilable state of the document; while on the client’s side it is
the current state of the local replicated document, containing
only changes performed locally or remote changes that were
approved by the user. This ensures that the users can produce
and test code without worrying about unstable versions of
the project, caused by continuous remote changes.

3) Document Structure: In order to ensure that external
operations applied locally preserve their original intention
[19], a document structure encapsulating concurrency con-
trol over each replicated document had to be created. We
avoid the use of complex concurrency control, while at the
same time providing freedom of edition, through the use
of a Commutative Replicated Data Type structure known as
TreeDoc (see Section II-C).

Sequential Operations: Optimizations can be applied
to the TreeDoc operations, in order to reduce the number of
messages passing through the network, as well as providing
some level of balancing to the tree-structure.

Whenever a user pastes a group of characters (as a single
action) the normal procedure would be to, for each character
inserted, identifying its docpath and adding a node to the
TreeDoc. This would, however, lead to unnecessary CPU
usage, and would also generate a series of nodes with only
one right branch. As an optimization we allow the insertion
of a sequence of characters to be translated into a subtree
with its root on the position of the original insertion. Also,
when a inserting or deleting a section of text, we may detect
a group of nodes that correspond to sequence of consecutive
right children and pack them into a single operation; these
composed operations have a single docpath pointing to the
node with lower depth.

Precluding need for Causality Support: To be able
to ensure that the intention of all operations is preserved
regardless of causality constraints, a new type of TreeDoc
node had to be created. A Ghost Node represents a node that
was not yet inserted in the TreeDoc, but which existence
was already inferred by the insertion or removal of other
nodes. For instance, if a user ’A’ individually inserts three
characters in a document (see figure 2), and for some reason
the insertion of the last character is the first operation to
arrive to user ’B’. The two nodes that make part of the path
to the third node are created in the form of ghost nodes.
A ghost node will turn into a live node when the delayed

operation finally arrives. Consequentially, this will also allow
for remove operations to be executed even before its causal
insert arrives the replica. For example, if the same user ’A’,
in the meantime, deletes the second character (Y), and this
operation arrives to user ’B’ before the actual insertion of Y
does; in this case the ghost node will turn into a dead node.
An insert operation over a dead node is always ignored.

TreeDoc Unbalanced: As a result of not being possible
to safely remove a dead node from the structure, the TreeDoc
will continuously grow in size throughout the edition of a
document. Also, due to the sequential nature of document
edition, the TreeDoc tends to become highly populated
with nodes that have only a right child, thus significantly
increasing the depth of the structure.

To solve these problems a couple of operations (flatten and
explode [20]) capable of rebalancing the tree and removing
dead nodes already exist. We have, however, taken a dif-
ferent approach. Instead of re-balancing the tree when the
document reaches a period of inactivity, we simply remove
the TreeDoc. This way, when a server-replica detects that a
document has not been changed, by any of the clients, for
a long interval, it destroys the TreeDoc associated with the
document, and informs all replicas to proceed accordingly.
If, somewhere in the future, a client restarts editing the
document, the balanced TreeDoc is immediately generated.

4) Resource Structure: We propose a solution based on
the concept of version-vectors managed on the client-side
to handle concurrency between operations over resource
(files or folders). Each replica manages a map containing
the project relative paths of every resource contained in a
project. Associated with each path there is a version-vector
which contains, not only the current version of the resource,
but also the id of the user which originated that specific
version. Hence, every time a local resource operation is
performed over a given path, its correspondent version is
incremented and the version id set to the one of the local
user. This vector is sent to the server-replica as part of the
operation over the resource.

When an external resource operation arrives to a replica,
the version-vector must be extracted and compared with
its local equivalent: If the remote version is greater then
the local one, the operation can be safely applied and the
incoming version-vector becomes associated with the path

5



Figure 2. Ghost node Example - User ’B’ receives character Z first

of the targeted resource; If the remote version is lower then
the local one, the operation can simply be discarded, and
the local version-vector remains untouched; If the remote
version equals the local one, the version id (correspondent
to the replica which originated the operation) is used as a
disambiguator; where the version with the lowest id prevails.
If no local version exists, the operation is always applied and
the incoming version-vector is added to the map of resource
paths.

5) VFC Enforcement: The Consistency Manager at the
server-side of each VFC session is the sole component
in charge of enforcing Vector-Field Consistency to all the
active clients. As soon as a consistency constraint assigned
to a given user is exceed, the consistency manager must
immediately send all the pending operations, associated to
the activated zone, to that particular user. Either triggered
by the creation of new classes and methods, or simply
by instantiating new types or invoking methods inside a
class; nearly every single line of code can generate new
dependencies and levels of impact between project arte-
facts. Hence, we periodically identify dirty files (files which
have been edited since the last check), and recalculate
the dependencies for the changed artefacts. This, however,
might cause some operations to be assigned to consistency
zones based on dependencies that are not completely up-
to-date. Hence, we can only assure that the consistency
constraints are consistent with dependencies identified on
the last dependency-update.

IV. IMPLEMENTATION

Having in mind factors like, portability, extensibility and
community activity (and having preference for an open-
source tool), our prototype was implemented on the Eclipse
IDE. In this section, we specify the most relevant implemen-
tation details of our solution.

A. Lazy-Loaded Documents

Depending on its nature, in time a Java project might
grow to have a great amount of Java files associated to it.
This way, it would be a very heavy procedure to create a
TreeDoc structure for every single file at the beginning of
a VFC session; also, having these structures running at the
same time would demand high memory requirements. This
problem affects the server as much as any client joining a
session. In our solution, we developed a Lazy-Load approach

where all documents start with no structure associated. As
text operations arrive, if the targeted document does not yet
have a correspondent TreeDoc, it is immediately created.

B. Real-Time vs User-Time

In the context of software development the constant
integration of external changes in a local workspace would
probably prevent a programmer from ever having a stable
version of the project, thus restraining him from the capacity
of testing his own code at will. It becomes obvious that
external changes must not be immediately applied to the
programmer’s workspace. Instead, changes that arrive to the
programmer’s replica of the project must be temporarily
kept on hold, and be applied only when it is detected that
they will contribute for a new stable version. We provide
two distinct modes of edition: Real-time, in which external
changes arriving the replica are immediately applied to the
user’s workspace; and User-choice, allowing the user to
work with some degree of isolation. In the latter, each file
being edited has two TreeDocs, one containing only local
changes performed by the user, and the other containing
local changes and all pending changes received from the
server. These pending changes can latter be applied to the
workspace when the user has confirmation that they will lead
to a compilable state.

C. Compilable States

The notion of stability (or inter-object coherence) is
completely missing in the original VFC algorithm. For the
user to know when it is safe to include pending external
changes to his workspace, we developed a compilable-states’
detection mechanism residing on the server-side, Hence, the
server periodically checks if the Eclipse project has any
compilation errors. If the project has changed since its last
stable version, and there are no errors, than a new compilable
version of the project exists. In these cases, an update
message is broadcast to all clients. An update message
contains only the total number (managed by the server) of
the last operation which made the project compilable. This
way, when a client accepts the new compilable version, we
must check the operation number of all pending operations,
and apply to the workspace only the changes that have a
number equal or lower to the number contained in the last
update message.

6



D. Conflict Detection
We assume that a conflict occurred, every time a given

user performs changes in a line where another user’s pivot
is currently set. Optionally we can also consider a conflict
when two different users are editing the same method, as this
operation has a high probability of placing that method in
a permanent non-compilable state. Regardless of the reason,
each time a conflict is detected by the server, and sent to the
conflicting users, a dialog window fades-in at the lower right
corner of the screen, alerting the user. To provide the user
with a general overview of all conflicting files, a new view
was created: Conflict View. This view presents all the files
with unresolved conflicts that exist in the project, allowing
users to be aware of possible conflicting actions in near
real-time, thus preventing continuous conflicting actions to
be performed and only detected in a later stage of the project.

E. Notifications
Conflicts are but one of the types of dialog notifications

available in our solution. Every time the server detects that
an incoming change has a considerable impact over one
user’s work, it sends a notification operation to that specific
user, with information about the Java Element affected and
the associated impact. When the notification arrives the
client’s side it can be translated into three forms of pop-
up dialogs: Information Dialog, informing the user of events
such as: the remote creation or deletion of file or folder. This
pop-up has a neutral colour (blue), fades-in at the lower right
corner of the screen and fades out after a certain period of
time; Warning Dialog, alerting the user of changes with great
probability of affecting the user’s work, for example: when
someone changes the interface class of a class where the
user is working. This is a yellow dialog, and although also
temporary it remains visible for a larger amount of time;
Conflict Dialog, appearing whenever conflicts are detected.
Its colour is red and only fades-out after the user clicks on
the dialog.

F. Pivot in the IDE
To aid the users in the creation and destruction of explicit

pivots, we developed an additional context menu. Using our
plugin, when a user right-clicks in any position of an opened
document, one of the available options is the addition of a
new pivot. When a new pivot is added, the position in the
document is translated into a Docpath of the TreeDoc and
a pivot operation is sent to the server. In the server that
Docpath is mapped into the Java artefact that exists on that
position.

V. EVALUATION

The VFC-IDE prototype was evaluated in a threefold
perspective: qualitative (Section V-A), quantitative (Section
V-B) and comparative (Section V-C). In the first section
we discuss the level of success of the adaptation of the
VFC algorithm to the context of collaborative software
development; The second section we present statistics over
the usage of network resources as well as server resources; In

the third and last section we perform a comparison between
the results obtained for the VFC algorithm and a solution
using Maximum Consistency (MC).

A. Qualitative Evaluation
The goal of this work was to enhance the Eclipse Platform

by providing a VFC-based collaborative development in the
least intrusive way possible. In this section we overview the
actual benefits of the continuous consistency model based on
the impact of remote changes to the work of a programmer.

1) Constraint Enforcements: The adaptation of the VFC
algorithm, to the scope of collaborative software develop-
ment, was the main focus of our work. And indeed, in
practice, we observed the effects of the VFC constraints
allowing for certain regions of the project to diverge more
than others, based on the point of edition of the user. This
gives the user a near-real-time awareness over changes that
are likely to affect him. Additionally, there were no lost of
performance perceived by the users.

2) Conflict Detection: We proved that by using the VFC-
IDE plugin, the users can benefited from a higher degree
of awareness, based on the selective scheduling of updates,
which enables them to immediately detect conflicting oper-
ations. Additionally, the features provided by our solution
allow for a quicker identification, and resolution, of occur-
ring conflicts.

B. Quantitative Evaluation
The Eclipse plugin was tested in two distinct scopes.

In the first, we perfomed 30 minutes sessions using a
bot developed specifically for this purpose (IntelliBot), and
which was designed to simulate the behaviour of a real soft-
ware programmer; thus being capable of performing valid
semantic changes to a Java project such as: create resources,
extend classes and interfaces, add and use methods, delete
methods and manage attributes of a class. The second set
of tests were executed by four real programmers, using one
Macintosh running a Helios version of Eclipse, and three
PCs, each one with a different version of Eclipse (Galileu,
Helios and Indigo). Note that even though the IntelliBot tries
to mimic the programmer’s behaviour, in order to increase
the level of stress on the server’s side, its degree of activity
(measured in operations per second) is far greater than that
of a normal programmer. With these tests we evaluated the
savings in number of exchanged messages, used bandwidth
and effectiveness of the operations compression.

1) Propagated Operations: By measuring the different
number of messages emitted from the server, using VFC and
MC approaches, we are able to observe a significant number
of messages saved by compression. Throughout multiple ses-
sions (with an increasing number of clients) we were able to
detect an average compression of 50% of the messages sent
by the server (see Figure 3). Even though the compression
rate is fairly significant, it seems to be almost completely
unaffected by the number of participants of a session. Also,
the average compression rate seems to vary very little in
time, neither having an increasing nor decreasing pattern as

7



Figure 3. Total propagated operations per session. Figure 4. Op. compression per region.

Figure 5. Total messages sent per session. Figure 6. Frequency of compilable states detection.

time advances. We can then infer, by cross-checking actual
statistics with the behaviour of the compression algorithm,
that the level of compression is mainly dependent on the
programming style of the participants.

Regarding consistency zones, we can notice that. First,
as we move to regions with looser consistency levels the
compression rate increases; with a major compression im-
provement in the region with the lowest consistency con-
straints (see Figure 4); and second, we can see that the
Time constraint is the predominant constraint triggered in the
regions of lowest consistency. With these two premisses, we
can predict that constraints triggered by Time are associated
with a greater level of compression. Consequentially, we are
able to deduce that the longer a set of operations is delayed
its propagation, the higher the compression rate expected.

2) Bandwidth Usage: Concerning bandwidth usage, by
keeping track of the number and size of the messages being
dispatched by the server, we were able to conclude that the
gains in bandwidth stress are proportional to the reduction in
the number of messages studied in the previous section. As
it can be seen in Figure 5, the bandwidth savings achieved
by using the VFC algorithm correspond to an average of
60% when in comparison to the MC algorithm.

As it was mentioned in Section III-B3, as operations are
performed in the same document, the associated TreeDoc
grows in depth. In turn, this leads to an increase in the size

of the DocPath of each operation, thus gradually increasing
the average size of each message throughout a VFC session.
Throughout our tests we identified that, the average size
of propagated messages increases by approximately 1KB
during an interval of 30 minutes of intensive usage.

It is, however, interesting to notice that the evolution of
the average message size, in a session with four real users,
is visibly less accentuated. This can be caused either by the
lesser frequency of the operations performed by real users,
or due to the distribution of the operations among a greater
number of files, which would inhibit the increasing length
of DocPaths.

3) Compilable States: We can conclude that the fre-
quency with which compilable states are detected is satis-
factory, even in sessions with a significant number of users
(see Figure 6); as the lowest frequency values happen in
the session with real users, and corresponds to an average
distance of 50 seconds between each state (with a maximum
of 4 minutes between states). However, it is important to
notice that the server is only capable of detecting compilable
states if they, indeed, exist. For instance, if a user starts
editing a different region of code after leaving the artefact he
was currently editing in an un-compilable state, the project
will remain un-compilable until the erroneous artefact is
fixed. Notice that, as external changes are only added to
the programmer’s workspace after his explicit approval, each

8



programmer can ensure their own local compilable state at
all times.

4) System Resources: Using yet another Eclipse plugin,
we were able to monitor the evolution of CPU and memory
usage of our solution. In this particular session we divided
the duration of the IntelliBot’s activity into two groups: the
first group, of three clients, ran the bot for the entire duration
of the 30 minutes session; the second group, containing 5
clients, ran the bot only for the first 20 minutes. As expected,
this led to an increasing level of stress at the server’s side
for the first 20 minutes, followed by a gradual decrease of
activity.

In the client there were very little significant changes to
the memory usage, only slightly exceeding the average 100
Mbytes used by an instance without VFC. At the server
side we can observe a greater memory overhead, sometimes
nearly reaching 400 Mbytes. The accentuated memory us-
age can be easily explained by the queuing of incoming
operations originated from the many different participants,
which can only be safely removed from memory once they
have been sent to all other users. As in a session the 8
participants using IntelliBot the rate by which operations
are performed tend to exceed the rate by which they are
dispatched through constraint violations, the messages will
gradually accumulate until the activity decreases.

C. Comparative Evaluation
Through the observation of the carious tests performed,

we are able to conclude that the VFC approach provides
significant benefits in terms of the usage of network re-
sources, when in comparison to the Maximum Consistency
(MC) alternative. More over, we are able to conclude that
the gains increase even more significantly as we impose a
greater delay between receiving and sending the updates at
the server side. Consequentially, if the bandwidth usage is
reduced, we can conclude that, with the VFC approach, we
are able to better scale the number of participant in a session.
And also, we are capable of running a VFC session in an
environment with high bandwidth constrictions.

VI. CONCLUSIONS

This dissertation addressed the adaptation of a continuous
consistency algorithm (Vector-Field Consistency), initially
designed for multi-player gaming, to the new scope of
distributed collaborative software development. The adapted
consistency model was then complemented with a locality-
awareness algorithm capable of determining and assessing
the impact of remote changes to the work of a given
programmer; thus determining if remote changes should
be immediately sent to the programmer, or postponed. By
postponing operations that did not directly affect a pro-
grammer’s work, we were able to compress the log of
pending operations and reduce the total number of messages
travelling the network; which produced significant gains in
terms of bandwidth usage. On the other hand, by detecting
and immediately sending remote changes that had a high
probability of affecting the work of a given programmer,

we were able to increase the level of awareness of each
programmer over the actions of the remaining participants
of a collaborative project.

Our architecture, and according implementation, was de-
signed to adapt the existing concepts of the original VFC
algorithm to the scope of collaborative edition of Java
projects in the Eclipse IDE platform. Hence, we revised
the notion of the user’s location (pivots), along with the
concept of distance between pivots and consistency zones.
This was achieved through the implementation of a dynamic
dependency-graph, capable of re-adjusting the relationship
between the artefacts of a Java project as the project
was being edited. Additionally, and to fit the purposes of
concurrent document edition, we changed the update logic
from state-transfer to operation-transfer. To achieve this, we
implemented a CRDT structure, known as TreeDoc, capable
of handling concurrency and ensuring compliance to and
fulfilment of intention; and we extended it in a way that
made it capable of precluding the need for causality support.

In conclusion, we verified three key aspects. Firstly, we
were able to develop a solution for concurrent document
edition with no loss of information or user intention; all
through means of a plugin (compatible between different
Eclipse versions), and without changing the application’s
core. Secondly, we observed that higher compression ratios
of the messages sent by the server are usually associated
with zones with looser consistency constraints, and that they
are mostly dependent on the behaviour of the programmers;
being almost completely independent of the number of
participants in a collaborative session. Hence, we can benefit
from adjusting the consistency constraints of each region to
better fit the characteristics of a project, or group of program-
mers; thus achieving better compression levels. And finally,
we determined that the Vector-Field Consistency algorithm
holds great potential in terms of bandwidth savings when in
comparison to the Maximum Consistency alternative, as it
is able to intelligently forfeit consistency in order to reduce
the number of exchange messages in the network.

Regarding future work, we envision the adaptation of
out current update approach (operation-transfer) to a “hy-
brid” solution’ approach capable of choosing between state-
transfer and operation-transfer, according to the context.
Also, we behold the advantages of adapting the VFC-
IDE solution to a fully distributed model, where every
participant would be able to enforce the imposed consistency
constraints, on a subset of the artefacts, over the remaining
participants. Additionally, we intend to study multiple in-
terface enhancements, suggested by those who tested our
solution, having in view an application with the lowest
degree of intrusion possible.

REFERENCES

[1] H. Yu and A. Vahdat, “Design and evaluation of a continuous
consistency model for replicated services,” in OSDI’00: Pro-
ceedings of the 4th conference on Symposium on Operating
System Design & Implementation. Berkeley, CA, USA:
USENIX Association, 2000, pp. 21–21.

9



[2] P. Cederqvist, “Version management with cvs,” Sweden,
1993.

[3] C. O’Reilly, P. Morrow, and D. Bustard, “Improving conflict
detection in optimistic concurrency control models,” in
Software Configuration Management, ser. Lecture Notes
in Computer Science, B. Westfechtel and A. van der
Hoek, Eds. Springer Berlin / Heidelberg, 2003, vol. 2649,
pp. 61–69, 10.1007/3-540-39195-9 14. [Online]. Available:
http://dx.doi.org/10.1007/3-540-39195-9 14

[4] A. Sarma, Z. Noroozi, and A. van der Hoek, “Palantir: Raising
awareness among configuration management workspaces,”
Software Engineering, International Conference on, vol. 0,
p. 444, 2003.

[5] C. R. B. de Souza, D. Redmiles, and P. Dourish, “”breaking
the code”, moving between private and public work in
collaborative software development,” in Proceedings of
the 2003 international ACM SIGGROUP conference on
Supporting group work, ser. GROUP ’03. New York,
NY, USA: ACM, 2003, pp. 105–114. [Online]. Available:
http://doi.acm.org/10.1145/958160.958177

[6] P. Molli, H. Skaf-molli, and C. Bouthier, “State treemap:
an awareness widget for multi-synchronous groupware,” in
INTERNATIONAL WORKSHOP ON GROUPWARE, 2001,
pp. 106–114.

[7] D. Čubranić and M. A. D. Storey, “Collaboration
support for novice team programming,” in Proceedings
of the 2005 international ACM SIGGROUP conference on
Supporting group work, ser. GROUP ’05. New York,
NY, USA: ACM, 2005, pp. 136–139. [Online]. Available:
http://doi.acm.org/10.1145/1099203.1099229

[8] R. S. Arnold and S. A. Bohner, “Impact analysis - towards a
framework for comparison,” in Proceedings of the Conference
on Software Maintenance, ser. ICSM ’93. Washington, DC,
USA: IEEE Computer Society, 1993, pp. 292–301. [Online].
Available: http://dl.acm.org/citation.cfm?id=645542.658171

[9] B. G. Ryder and F. Tip, “Change impact analysis for
object-oriented programs,” in Proceedings of the 2001 ACM
SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering, ser. PASTE ’01. New York,
NY, USA: ACM, 2001, pp. 46–53. [Online]. Available:
http://doi.acm.org/10.1145/379605.379661

[10] L.-T. Cheng, S. Hupfer, S. Ross, and J. Patterson,
“Jazzing up eclipse with collaborative tools,” in
Proceedings of the 2003 OOPSLA workshop on eclipse
technology eXchange, ser. eclipse ’03. New York,
NY, USA: ACM, 2003, pp. 45–49. [Online]. Available:
http://doi.acm.org/10.1145/965660.965670

[11] S. Hupfer, L.-T. Cheng, S. Ross, and J. Patterson,
“Introducing collaboration into an application development
environment,” in Proceedings of the 2004 ACM conference
on Computer supported cooperative work, ser. CSCW ’04.
New York, NY, USA: ACM, 2004, pp. 21–24. [Online].
Available: http://doi.acm.org/10.1145/1031607.1031611

[12] D. Agrawal, A. El Abbadi, and A. K. Singh,
“Consistency and orderability: semantics-based correctness
criteria for databases,” ACM Trans. Database Syst.,
vol. 18, pp. 460–486, September 1993. [Online]. Available:
http://doi.acm.org/10.1145/155271.155276

[13] H. Yu and A. Vahdat, “The costs and limits of availability
for replicated services,” ACM Trans. Comput. Syst., vol. 24,
no. 1, pp. 70–113, 2006.

[14] N. Santos, L. Veiga, and P. Ferreira, “Vector-field consistency
for ad-hoc gaming,” in Middleware ’07: Proceedings of
the ACM/IFIP/USENIX 2007 International Conference on
Middleware. New York, NY, USA: Springer-Verlag New
York, Inc., 2007, pp. 80–100.

[15] K. L. Morse, “Interest management in large-scale distributed
simulations,” 1996.

[16] D. Li and R. Li, “Preserving operation effects relation in
group editors,” in Proceedings of the 2004 ACM conference
on Computer supported cooperative work, ser. CSCW ’04.
New York, NY, USA: ACM, 2004, pp. 457–466. [Online].
Available: http://doi.acm.org/10.1145/1031607.1031683

[17] H.-G. Roh, J. Kim, and J. Lee, “How to design optimistic
operations for peer-to-peer replication,” in JCIS, 2006.

[18] N. Preguica, J. M. Marques, M. Shapiro, and M. Letia, “A
commutative replicated data type for cooperative editing,” in
ICDCS ’09: Proceedings of the 2009 29th IEEE International
Conference on Distributed Computing Systems. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 395–403.

[19] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen, “Achieving
convergence, causality preservation, and intention preserva-
tion in real-time cooperative editing systems,” ACM Trans.
Comput., vol. 1, no. 5, pp. 63–108, 1998.

[20] M. Shapiro and N. Preguia, “Designing a commutative repli-
cated data type,” Computer Science Dept: University of
Copenhagen, Tech. Rep., 2007.

10


