
Distributed Prolog Reasoning in the Cloud for
Machine-2-Machine Interaction Inference

Radovan Zvoncek1,2

1 Instituto Superior Tecnico, Lisbon, Portugal
2 Royal Institute of Technology, Stockholm, Sweden

Abstract. Application layer interconnection of vast amounts of devices
is not a trivial task due to numerous protocols and semantics devices
use. Designing translating protocols and proxies mitigated the problem
but did not provide a complete solution. Ontology-based middlewares
have the potential to complement the gap. In this paper we propose
an implementation of an ontology-based middleware aiming for massive-
scale deployment. Our design extends a conventional Prolog engine by
sharding its database using a DHT and consequently by migrating the
goal evaluation context among different engine instances. Experiments
performed with our implementation show that overhead introduced by
managing a distributed system is compensated once the system load is
sufficiently high.

1 Introduction

The vision of enabling Internet connectivity to every device that can potentially
benefit from being connected has been almost fulfilled. The number of devices
connected to the Internet has reached 10 billion and is expected to grow [1].
However, providing connectivity of devices without applications that can utilise
it is not sufficient to unlock the full potential of connected infrastructure.

While many of the obstacles in connecting the devices have been successfully
solved, facilitating the actual communication keeps facing several obstacles. De-
vices are manufactured by different vendors and therefore use vendor-specific,
non-standardized protocols and semantics. Consequently, devices using the same
protocol families become integrated in vertical domains, thus effectively disabling
any generic interconnection initiative. As a result, the devices literally do not
understand each other.

Although there has been significant work done regarding designing new pro-
tocols and implementing translating proxies aiming to bridge the gaps between
different vertical domains, there is at least one more complementary approach.
Giving the applications an ability to reason, learn and interpret observed be-
haviours in their environment based on contextual knowledge would facilitate
horizontal communication without the need of detailed manual integration of
disjoint vertical domains.

Previous work done by Ericsson Research resulted in creating the concept
of a platform attempting to meet the aforementioned objective. Figure 1 illus-
trates the envisioned 3-layer architecture. In its core, the platform contains the



Fig. 1. Illustration of a platform offering reasoning functionality.

knowledge base gathering all data available in the system (e.g. sensor readings),
as well as additional information about how to utilise the data (e.g. rules and
theories). The second layer is the Prolog core facilitating the actual reasoning
about the available knowledge. The outer layer consists of adapters to domain
specific languages for other components present in the system (e.g. applications,
machine learning).

This work presents an implementation of the described platform. We in-
troduce a distributed system providing fault-tolerant persistent storage of the
knowledge base expressed as Prolog terms while maintaining full Prolog func-
tionality, i.e. term manipulation and goal solving. The system was designed to
meet the requirements of having the ability to store very large knowledge bases
and to handle high number of incoming requests.

The remainder of this paper is organised as follows. Section 2 contains brief
overview of the related work. Sections 3 and 4 describe the design and implemen-
tation of the presented system. Section 5 provides evaluation of the implemented
system and section 6 summarises this work and briefly introduces future work.

2 Related Work

Our work can be placed in the category of semantic and ontology-based middle-
wares. Examples of semantic middlewares can be found in [2] and [3]. Ontology-
based middlewares [4] extend the functionality of semantic middlewares by in-
troducing the ability to reason about the semantics of the available data. In [5],
the authors use Web Ontology Language (OWL) to represent context of the en-
vironment devices operate in and reason about its changes so that the devices
can adapt accordingly. In [6], the authors propose similar system, but built on
combination of OWL and first order probabilistic logic. Both of the investigated
systems are reported to be facing scalability issues.

The system proposed in this paper is designed using principles similar to [7].
However, we do not aim for multiple ontologies and RDF model, but consider
monolithic ontology and Prolog computational model.



The novel contribution of this work lies in designing a system that can func-
tion as a middleware for massive amounts of clients while maintaining the ca-
pacity to handle large volumes of data. In addition, we support the proposed
design with sound and thorough evaluation of the implementation of the pro-
posed system.

3 System Architecture

In this section we explain the proposed architecture. We will first provide general
overview of the system and then follow steps and decisions made while designing
the system.

The core design idea lies in selecting an attribute of any Prolog term that can
be used as an input for the distributed hash table (DHT) hashing function in
order to achieve uniform and therefore efficient distribution of terms across the
nodes in the system and constant algorithmic complexity of term lookup. The
motivation for this decision is to limit the data movement which can potentially
produce significant overhead. Instead, comparably smaller context capturing the
state of Prolog goal solving will be migrating among the nodes, thus effectively
bringing computation to the data.

3.1 Sharding Prolog Database

We propose to use the concatenation of name and arity of any Prolog term
as an input for the hashing function. For example, for the given Prolog term
termA(atom2,atom3) :- termA(atom1,atom2). the input for the hashing function
would be ”termA/2”.

This would effectively lead to grouping terms of same name and arity at the
same node, what is highly desirable feature due to the Prolog computational
model always accessing all terms of given name and arity at the same time.
Moreover, maintaining the grouping of terms facilitates manipulation with larger
chunks of terms. Another expected benefit of building the storage solution atop
a DHT is the seamless horizontal scalability this choice would allow because the
system would not feature any centralised components that could possibly induce
performance bottlenecks.

3.2 Migrating the Computation

Second fundamental design idea is the notion of migrating computation. Since
the expected amount of data present in the system is envisioned to be very
large compared to small amount of data associated with the context of Prolog
computation, moving the computation can potentially be more efficient.

Therefore we introduced a concept of migrating computation. Figure 2 illus-
trates the process of solving a Prolog goal. The process goes as follows:

1. A device issues Prolog query asking if goal termB(b, a) is true.



KB

KB

KB

KB

termB(b).
termB(a).

termA(b).
termA(a).

termA(a,b).
termA(b,c).

termB(a,b).
termB(b,a):-

termA(b).

R

R

R

R

1.
termB(b,a)?

2.
owner(termB/2) = Node3
ask(termB(b,a),Node3)

3.
termB(b,a)->yes

owner(termA/1) = Node2

4.
ask(termA(b),Node2)

5.
termA(b)->yes

termB(b,a)->yes

6.
reply(Client)

7.
reply(Device)

KB
R Knowledge BaseReasoner

Client Device

Fig. 2. Migrating computation of solution for a given Prolog goal.

2. A client receives the requests and examines the query. It reads the name and
arity of the term being queried (termB/2) and determines a back-end node
responsible for the term (Node3 ). The client then forwards the query to the
corresponding node.

3. The reasoner at Node3 receives the query and instantiates a new Prolog
engine to handle the query. If the library containing terms termB/2 is not
loaded, the reasoner at Node3 loads the library with the assistance of the
storage daemon and then initiates the goal solving and finds out termB(b, a)
is present in the knowledge base. Then it continues with the next goal,
termA(b). However, Node3 is not the owner of terms termA/1.

4. The computation has to be sent to Node2 which is responsible for terms
termA/1.

5. Node2 receives the computation, instantiates a new Prolog engine and loads
it with the context related to previous computation. It successfully solves
goal termA(b). and discovers this concludes the whole solution process based
on the information present in the computation context received from Node3.

6. Node2 can therefore provide a final answer to the client.
7. Finally, the client can forward the received answer to the device.

The concept of migrating computation also facilitates effective workload shar-
ing. Once a node does its part of computation and sends the computation further,
it does not wait for any further replies. Therefore, the free resources can be used
to serve other ongoing computations passing by.



3.3 Facing the CAP Theorem

The concept of migrating computation introduced a potential issue into the
system. The terms involved in a solution of a goal can be modified before the
solution is finalised. Such situation is a manifestation of the CAP [8] theorem
as achieving consistent results of goal solving is not possible while maintaining
the whole system available and partition-tolerant. Therefore we assessed the
priorities of each of the attributes and obtained following outcomes.

– Partition tolerance has the highest priority because knowledge base must be
monolithic.

– Consistency has the second highest priority because the system must guar-
antee the answer is correct.

– Availability has the lowest priority because clients can wait for the answer
for a reasonable amount of time.

To implement the explained priority of attributes, we introduced phase-based
operation into the system. All nodes in the system will synchronously alternate
between read and write phases and therefore ensuring consistent results of the
goal solving.

4 Implementation

In this section we describe how we implemented some of the described design
solutions.

We have chosen Cassandra [9] as an implementation of the underlying DHT
due to out-of-the-shelf persistency, fault-tolerance and uniform load distribution
(provided we used Cassandras RandomPartitioner). In addition, open-source
distribution of Cassandra gave us easy access to its hashing function from the
used Prolog engine.

We used the tuProlog [10] as the basis for our reasoning engine. We have
extended tuProlog with the functionality of checking the solved terms being
locally resolvable and conditionally migrating the solution context to the node
responsible for the next goal.

The introduction of phase-based operation required node synchronisation.
For this purpose we implemented a leader election algorithm based on the Paxos
algorithm [11] using the Zookeeper [12] coordination service.

The reasoners themselves are implemented as multi-threaded processes with
separate threads handling each connection, thus allowing re-using one established
connections to transmit multiple messages.

5 Evaluation

The evaluation was conducted on a private cluster of 5 machines, each ofering 4-
core Intel Core2 Q9400 CPU operating at 2.66 GHz and 8GB of RAM. We used
one of these nodes for the one-node instalation, as well as 2 to 5 machines for



0 18 36 54 72 90 10
8

12
6

14
4

16
2

18
0

19
8

21
6

23
4

25
2

27
0

28
8

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

Distribution of Read Phase Durations and Synchronisation Overhead

1 Node

2 Nodes

3 Nodes

4 Nodes

5 Nodes

Synchronisation

Duration [ms]

F
ra

ct
io

n
[%

]

F
ra

ct
io

n
[%

]

(a) Distribution of read phase durations.

0 6012 24 36 48 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

20
4

21
6

22
8

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

Write Phase Durations

1 Node

2 Nodes

3 Nodes

4 Nodes

5 Nodes

Duration [ms]

F
ra

ct
io

n
 [%

]

(b) Distribution of write phase durations.

Fig. 3. Comparison of centralised and distributed instalations.

multi-node instalations. We generated two datasets containing 400k and 1,5M
Prolog terms respectively and then observed durations of read and write phases
manipulating with the terms at different intensity for different number of nodes
participating in the system.

We have compared the multi-node installations of our system with a one-
node installation obtained by taking the distributed system and striping it from
all the overhead originating form the distributed mode of operation.

Figure 3(a) shows the distribution of read phase durations for different node
setups together with the observer synchronisation overhead. It can be seen that
the distributed installations are approximately 20 to 80 ms slower than the 1-
node installation. However, the slowdown is almost exclusively caused by the
synchronization overhead. The remaining slowdown is caused by the computa-
tion migration. It is possible to conclude the slowdown is present but tolerable.

Figure 3(b) shows the distribution of write phase durations. It can be seen
that from 3-node onwards the phase durations are comparable with 1-node in-
stallation, but more widely distributed in the interval of 0 to 120 ms. This can
be explained by multi-node setups splitting the work needed to assert incoming
clauses.



Figure 4(a) shows how 1-node system behaves when facing increased work-
load. It is visible how the system begins to experience longer phases as it ap-
proaches the limit of 400k loaded terms and eventually crashes, even after lower-
ing the number of loaded terms thanks to unloading least recently used libraries.
In contrast, Figure 4(b) shows how 5-node system manages to handle the same
amount of terms, but with the increased inbound rate of 9k operations per sec-
ond.

0

50

100

150

200

250

300

350

400

450

500

0

5000

10000

15000

20000

25000

30000

35000

Buffer Utilisation Phase Duration

Loaded terms [#]

P
ha

se
 D

ur
a

tio
n 

[m
s]

B
uf

fe
r 

ut
ili

sa
tio

ns
 [#

]

(a) 1-node system under heavy load.

0

50

100

150

200

250

300

350

400

450

500

0

5000

10000

15000

20000

25000

30000

35000

Buffer Utilisation Phase Duration

Loaded Terms [#]

P
ha

se
 D

ur
a

tio
n 

[m
s]

B
uf

fe
r 

U
til

is
a

tio
n 

[#
]

(b) 5-node system under heavy load.

Fig. 4. Experiments with hight work load.

6 Conclusion and Future Work

This paper presented a design and implementation of an ontology-based mid-
dleware aiming to support application-level interoperability of large number of
heterogeneous devices. We have described the design process and motivation



behind every design decision. The evaluation has shown that even though the
proposed system is burdened by the synchronisation overhead, this overhead is
compensated once the workload becomes sufficiently high.

The possible directions to continue development of this system can focus on
mitigating the synchronisation overhead, or implementing additional features
such as fault-tolerant query execution, query result caching or automated scal-
ability.

References

1. Ericsson: More than 50 billion connected devices. Online (February 2011) Whitepa-
per.

2. Song, Z., Cárdenas, A.A., Masuoka, R.: Semantic middleware for the internet of
things. In: Internet of Things (IOT), 2010, IEEE (2010) 1–8

3. Gómez-Goiri, A., López-De-Ipiña, D.: A triple space-based semantic distributed
middleware for internet of things. In: Proceedings of the 10th international confer-
ence on Current trends in web engineering. ICWE’10, Berlin, Heidelberg, Springer-
Verlag (2010) 447–458

4. Kiryakov, A., Simov, K.I., Ognyanov, D.: Ontology middleware: Analysis and
design. On-To-Knowledge (IST-1999-10132) Deliverable 38 (2002)

5. Gu, T., Wang, X.H., Pung, H.K., Zhang, D.Q.: An ontology-based context model
in intelligent environments. In: Proceedings of communication networks and dis-
tributed systems modeling and simulation conference. Volume 2004. (2004) 270–275

6. Qin, W., Shi, Y., Suo, Y.: Ontology-based context-aware middleware for smart
spaces. Tsinghua Science & Technology 12(6) (2007) 707–713

7. Anadiotis, G., Kotoulas, S., Siebes, R.: An architecture for peer-to-peer reasoning.
In: Proc. of the First Int. Workshop” New forms of reasoning for the Semantic
Web: scalable, tolerant and dynamic”, co-located with ISWC 2007 and ASWC
2007. Volume 291. (2007)

8. Gilbert, S., Lynch, N.: Perspectives on the cap theorem. Computer 45(2) (2012)
30–36

9. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
ACM SIGOPS Operating Systems Review 44(2) (2010) 35–40

10. Piancastelli, G., Benini, A., Omicini, A., Ricci, A.: The architecture and design
of a malleable object-oriented Prolog engine. In Wainwright, R.L., Haddad, H.M.,
Menezes, R., Viroli, M., eds.: 23rd ACM Symposium on Applied Computing (SAC
2008). Volume 1., Fortaleza, Ceará, Brazil, ACM (16–20 March 2008) 191–197
Special Track on Programming Languages.

11. Lamport, L.: Paxos made simple. ACM SIGACT News 32(4) (2001) 18–25
12. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: Zookeeper: wait-free coordination

for internet-scale systems. In: Proceedings of the 2010 USENIX conference on
USENIX annual technical conference. Volume 8. (2010) 11–11


