
Cloudbox

Private, Reliable and Distributed Storage

Rafael Cortês
rafael.cortes@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

October 2015

Abstract

This work describes a solution for cooperative storage of files. Since it is intended to store data remotely in
non-trusted nodes, it is necessary to take steps to protect the users privacy. It is shown how to build a system,
Cloudbox, capable of storing files in a distributed network, respecting the inherent privacy issues. The Cloudbox
system is also capable of supporting groups: sets of files whose access is restricted to a set of users. The resulting
system allows a user to store their data in the cloud, ensuring that the contents of his files are safe. It takes
into account the transitional nature of distributed networks and presence of possible attackers. This dissertation
quantifies the impact of several techniques used on the performance of a possible implementation, taking into
account various parameterizations.

Keywords: Peer-to-peer, Secure storage, Distributed, Community Cloud, Cooperative

1 Introduction

In recent years, public cloud storage has been popu-
larized by providers that offer free services. The com-
modity of having content synchronized across devices
and safe from local hardware failure seems to have been
enough for users to overlook the privacy implications
of using such a service.

The concept of Community Cloud, where a group
of interested parties contribute with computational re-
sources towards a common system, from which they
all benefit, is an alternative storage paradigm that can
yield the same benefits as the public cloud approach,
and, furthermore, it can be extended to solve its weak-
nesses.

The existing cloud storage systems either have weak
security, require trusting confidential data to third-
parties or, are unable to efficiently deal with dynamic
content, or have none to poor collaboration function-
alities. There are a lot of solutions available but none
simultaneously solves the mentioned problems.

1.1 Motivation

The emergence of these cloud storage systems is ex-
plained by a need developed throughout the last decade
due to the appearance of new consumer devices, like
phones, digital cameras and other multimedia devices,
that generate new forms of media. Each year new ver-
sions of such devices increase their quality resulting in
an increase of disk space required to store their arti-

facts. Storing this media online enables us to share
them with others and gives us peace of mind knowing
that it is safe from local hardware failure.

Finding new ways to provide scalable storage system
is thus a critical problem if we intend to keep the inno-
vation rate of multimedia peripherals and sharing our
personal creations online.

1.2 Goals

The goal of this work is to develop a decentralized ar-
chitecture for secure file storage. The solution will have
the ability to easily share files among groups, a feature
that popularized cloud file storage. Also, all files man-
aged by the solution should be unintelligible as soon
as they leave a users’ machine. The distributed setting
of the architecture will rely on a peer-to-peer topology
in order to have built-in replication as well as improve
the systems’ scalability.

2 Related Work

For this work we surveyed the state of the art for Peer-
to-peer (P2P) [10] [3] in order to understand how their
organization and structure would affect the solution’s
performance.

We have also analyzed different optimization tech-
niques such as Geo-replication [4], Data deduplica-
tion [7], Erasure-coding[6] and delta enconding[12], to

1



evaluate how they could help in building an efficient
solution.

In the cryptography area we surveyed secure storage
mechanism [5] [13] to have an understanding of the
requirements for secure storage system and their orga-
nization, so that we could develop our solution in the
most appropriate way.

Finally, as for existing systems, Dropbox[2] is the
most popular cloud storage service. It distinguishes it-
self from its competitors by offering easy to use sharing
features. Other reviewed systems, such as Cubby[9],
BitTorrent Sync [8] and [1] are the major existing so-
lutions in this area. There are countless more services
for online storage, but they do not differ in the tech-
nologies used from those already mentioned. Table 1
briefly compares the key technologies that these ser-
vices are known to use. We say that a key is lent if the
secret key is kept by the provider of the service, even
if ciphered, and is, at some point, transferred from or
to the client machine.

These systems have problems that prevent them
from being a truly secure storage service. The following
list addresses those problems and proposes how they
can be solved in the scope of this project.

• Cloud-based infrastructure Most storage
providers presented previously rely on cloud in-
frastructure to build their services. A better ap-
proach is to use a peer-to-peer network to host the
service. Not only will the infrastructure scale by
itself as the number of users grows, as it is also
much more cost-effective to maintain for the ser-
vice provider.

• Server-side encryption Services that use server-
side encryption can not be labelled as secure. Pri-
vacy is an important requirement of a system that
claims to be secure. Giving the entity responsible
for the service plain-text access to the user files
can not be considered a secure practice. Thus, the
only way to assure that the user content is private
is by making sure it is never comprehensible in an
unauthorized device. For that reason, client-side
encryption must be used.

• No perfect forward secrecy The solutions of-
fering client-side encryption require a user to cre-
ate an account online and then install a client.
During the account creating process a key to ci-
pher the files’ content is generated. When the user
installs the client, that key is transferred from the
cloud servers to the user local device. This violates
the principle of forward secrecy by potentially ex-
posing a long-term secret, the most important of
all in those systems. To prevent these secrets from
being exposed, the solution must avoid the trans-
fer of keys, mostly the long-term ones, recurring to
key agreement protocols for generation of shared
keys.

3 Solution

Like previously mentioned, it is intended for the solu-
tion to feature: encrypted and replicated storage, and
the ability to create and manage groups that share files
among them. It will allow a user to backup his files and
share them with others. There are two use cases for the
solution: first, a single user using the system for backup
and multiple device synchronisation; second, a group of
users sharing a set of files between them, and with the
ability to add and remove users from the group, having
access to the files only those who belong to the group
at a given moment. The solution can be described as
three layers where each one sets the foundation for the
operations defined in the layer above. These layers are
File operations, Group operations and Orchestration.
Starting from the bottom one, this section exhibits the
algorithms and decisions used in each layer.

3.1 File-level Operations

Before detailing the intent of each of these operations
it is necessary to explain the concepts and techniques
incorporated in them.

Epoch

Given the delta encoding system, the solution will be
able to achieve efficient updates. Once a file is added
to a shared folder a copy will be created as the first
version of the file. Consecutive updates to the original
file cause the system to calculate the difference and
record it as the following version. In order for a user
to retrieve a file at its latest version, the system needs
to fetch the N versions of the original file.

A sequence of versions, from version 1 to version N
of a file is dubbed as an epoch. Nevertheless, this does
not mean that a file has a single epoch. Any file can
have many epochs. A given file can start a new epoch
at any moment, meaning that all it’s current versions
will be merged into a new version 1. From now on, the
process of reseting the versions and a file contents will
be referred as consolidating.

Criptography

In order to securely store every file, let’s assume the
existence of a file key mapped to a file for a given epoch.
This key will serve two purposes:

On the one hand, it will be used to cipher the content
of each partial version that is physically stored, for the
duration of a single epoch. Besides being a mechanism
that allows for key rotation, it will also be crucial to
enforce membership restrictions.

On the other hand, a file key can be used to gener-
ate secure identifiers for storing the files. To guarantee
the anonymity of the content stored, the file identifier
is itself ciphered with the owner’s key, in a way that

2



Paradigm Encryption Encryption algorithm Key size Lends key
BitTorrent Sync P2P Client-side AES 128 bits No
Cubby Cloud + P2P Client-side AES 256 bits Yes
Dropbox Cloud Server-side AES 256 bits Yes
SpaceMonkey P2P Client-side AES N/A Yes

Table 1: Technologies employed by the described solutions

only users that know the file key will know its loca-
tion. The proposed file identifier for file version vi is
hash({filename + vi}KF

) where KF is the file key.

Operations

Having established the previous concepts, it is
now possible to formalize the core file operations:
create, update and delete. The auxiliary opera-
tions V ersionIdentifier and KeyIdentifier are
used to obtain the file versions and their keys
identifiers respectively. The V ersionIdentifier
corresponds to hash({filename + vi}KF

); the
KeyIdentifier is defined later in this chapter. The
PutToDHT (key, value) operation corresponds to
propagating a given value identified by a determined
key in the underlying P2P overlay.

Create The create operation inside the system is
very similar to its counterpart in the actual file sys-
tem: simply consider the whole file as the first version.

Algorithm 1 Add file operation

1: procedure AddFile(FN )
2: KF ← GenerateKey
3: PutToDHT(KeyIdentifier(KF ), KF )
4: CreateVersion(FN , KF )
5: end procedure
6: procedure CreateVersion(content, KF )
7: cipheredContent← Cipher(content, KF )
8: PutToDHT(VersionIdentifier(KF ), ciphered-

Content)
9: end procedure

Update The update operation involves the most
concepts and it is thus the most complicated one. Be-
sides having to create a new version as the AddFile op-
eration, in addition, it has to calculate the differences
between the updated file and the current version.

Delete The delete operation causes a file to no longer
be tracked by the system. It causes the file to be
deleted (i.e. disapear) from the node where the event
is triggered.

Algorithm 2 Update file operation

1: procedure UpdateFile(FN )
2: oldContent← Decipher(FN−1, KF )
3: newVersionContent← Diff(oldContent, FN )
4: CreateVersion(newVersionContent, KF )
5: end procedure

Consolidate Finally, the consolidate operation, at
file level, is a combination of the create and update op-
erations. It can be defined as presented in algorithm 3.

Algorithm 3 Consolidate file operation

1: procedure Consolidate(F , KF )
2: versions← ListVersions(F )
3: decipheredContent← {}
4: for version in versions
5: versionDecipheredContent ←

Decipher(version, KF )
6: decipheredContent ←

Merge(decipheredContent, versionDecipheredContent)
7: KF+1 ← GenerateKey
8: PutToDHT(KeyIdentifier(KF+1), KF+1)
9: CreateVersion(decipheredContent, KF+1)

10: end procedure

3.2 Group-level Operations

Having established the basic operations to manipulate
files, it is now possible to describe the operations to
manage groups. A group can be described as a set of
files who are shared between any number of users. The
main objective of the group operations is to control the
members access to those files, which results in two core
operations: the add/join and remove/leave operations.
Once again, these are supported by an epoch concept
and some cryptography rules.

Epoch

In the context of a group, an epoch is again defined
by a key, in this case a group key. The change of key
and therefore epoch, is determined by a change in the
group members: adding or removing a member to a
group terminates the current epoch and starts a new
one.

3



Criptography

The existence of a group key per epoch—KG—which
is shared by all members, is what enables the groups’
privacy.

Unlike file keys, group keys are not meant to be used
to cipher file contents, but rather, to cipher metadata
concerning a group and its files. Given the distributed
nature of the underlaying network and non existence
of a central repository, the metadata is stored in
the system as regular files. In order for them to be
private, their identity is derived from the group’s key:
FileMetadataIdentifier = hash({filename +
v0}KG

); GroupMetadataIdentifier =
hash({groupname}KG

).

Operations

Having separate keys, KG and KF , allows to reduce
the burden of re-ciphering the files when there are
changes to the group membership. There are two possi-
ble modes of operation according to the policy selected
for group history. The first mode of operation leaks the
history of a file to members that join the group later,
however, it only stores each version once. The second
mode, showcased in fig. 1, hides the history of a file for
new members at the cost of consolidating the file when
a new member joins the group, which means the total
size of a file in the system is a function of the file size
times the number of member additions to the group.

Figure 1: File versioning evolution without history

Add User/Join Group Independently of the key
exchange/negotiation protocol, the process of extend-
ing a groups’ membership to include a new member,
always requires action from both parties, whether they
already belong or are the one joining. alg:group-add-
no-history detail the add operation, in the mode that
does nit expose any previous group history. For that,
we consolidate all the files in the group. From the
new member perspective he is joining a new group, as
the consolidate operation reseted all files history. In
the mode that preserves history, no action needs to be
taken other than distribute the current group key to
the new member.

Algorithm 4 Add user to group operation preserving
history

1: procedure AddUser(G)
2: Distribute(KG)
3: end procedure

Algorithm 5 Add user to group operation without
preserving history

1: procedure AddUser(G)
2: KGN+1

← GenerateKey
3: files← ListFiles(GroupMetadata(G), KGN

)
4: for file in files
5: KFN+1

← GenerateKey
6: PutToDHT(KeyIdentifier(KFN+1

), KFN+1
)

7: Consolidate(file, KFN+1
)

8: cipheredFileMetadata ←
Cipher(FileMetadata(file), KGN+1

)
9: PutToDHT(FileMetadataIdentifier(KGN+1

),
cipheredFileMetadata)

10: cipheredGroupMetadata ←
Cipher(GroupMetadata(G), KGN+1

)
11: PutToDHT(GroupMetadataIdentifier(KGN+1

),
cipheredGroupMetadata)

12: end procedure

Remove User/Leave Group The remove opera-
tion is equivalent whether operating in a history pre-
serving mode or not. Since a member is leaving there
is no need to rewrite history, because all members in
the groups already had access to the current versions.
Instead, generating a new group key and reciphering
the metadata is sufficient so that the evicted member
can’t detect that new versions are available, and gen-
erating new file keys so that new versions are ciphered
with a different key not available to the member that
left, in a way that he will not be able to access the file
versions by guessing their identifiers.

Algorithm 6 Remove user from group operation

1: procedure RemoveUser(G)
2: Generate KGN+1

3: Generate KFN+1

4: files← ListFiles(GroupMetadata(G), KGN
)

5: for file in files
6: cipheredFileMetadata ←

Cipher(FileMetadata(file), KGN+1
)

7: PutToDHT(FileMetadataIdentifier(KGN+1
),

cipheredFileMetadata)
8: cipheredGroupMetadata ←

Cipher(GroupMetadata(G), KGN+1
)

9: PutToDHT(GroupMetadataIdentifier(KGN+1
),

cipheredGroupMetadata)
10: end procedure

4



3.3 Orchestration

The solution will be a single client running on every
user machine. This client is composed of different com-
ponents that can be grouped in three categories: Net-
work, cryptography, and storage, as shown is fig. 2.

Figure 2: Client architecture components

Group Management and Policy Enforcement
This component defines the high-level algorithms re-
sponsible for managing the essential functionalities
of the solution, like handling group events, counting
epochs, recognizing user actions, including the previ-
ously described algorithms in this section. Essentially,
it orchestrate the remaining components in order to
offer the sum of the expected functionalities of the so-
lution. It is also comprised of a policy engine that al-
lows to enforce on validate certain conditions concern-
ing running operations of the solution. Such conditions
can be used to limit storage capacity for a given user,
the replication factor, or even whether or not to use
secure storage at all.

HTTP Server Every client will have a network
server which will be the foundation of all communi-
cation, whether it be for the peer-to-peer protocol or
for the application itself that will work over a public
Application Programming Interface (API).

Peer-to-peer Overlay Manager This component
will contain the logic responsible for joining a node
to the existing overlay and update the data structures
required to maintain the overlay. Note that the P2P
implementation is completely orthogonal to the solu-
tion.

Key Manager This module will manage the lifecy-
cle of the keys, the creation of new keys and the revo-
cation of old keys. It will also be responsible for map-
ping those keys to to the respective files, individuals or
groups.

Secure Storage This component is depicted as sep-
arate from the file system because, even though it is
implemented on top of the native file system, it will be
an encrypted storage ciphered by the client application.

File System Adapter A component that will con-
nect to the operating system and register the native
file system events so that it can detect creation and
modification of files.

Storage Manager This component is the one that
has the ability to calculate the file modification deltas
and reconstruct the file from the various chunks the file
is split in.

4 Implementation

This section presents the relevant details about the im-
plementation of the Cloudbox system. The applica-
tion itself can be described as two different modules: a
client daemon, that encapsulates all the functionality
described in section 3; and a User Interface (UI) that
enables the end-users experience. For testing purposes,
the implementation features a mocked direct peer com-
munication protocol, as opposed to a full featured P2P
overlay.

4.1 Client

The client daemon is responsible for monitoring the file
system for changes and synchronizing remote changes.
It is written in Scala, a language that mixes object-
oriented with functional programming. Since Scala is
a JVM language and is interoperable with Java, it is
very easy to use the operating system abstractions de-
fined by the Java API, as well as the existing cryp-
tography libraries. Scala is meant to develop highly
concurrent and distributed applications — hence the
name, Scalable Language —, which is a nice fit for the
requirements of Cloudbox.

The initialization process of the client makes a good
use of Scala concurrency mechanism, as three parallel
execution contexts are launched: an HTTP server, a
file system monitor and a performance observer, that
introspects the remaining modules for evaluation pur-
poses.

Also during the initialization, the client creates a
Cloudbox folder in the user home folder, including a
default group to which only the current user belongs,
ready to start tracking files. Having a default group,
comes at a cost of just the generation of its key. Rather
than paying this performance cost when the user ac-
tually takes the action to create a group, doing it be-
forehand also simplifies the structure of the .cloudbox
shadow folder for files that would not otherwise belong
to any group.

5



After this initial sequential execution the client is
fully event-driven and is listening to the file system,
the network and user input.

The decision to have a folder that automatically de-
tects the changes applied to to the file system, rather
than a mechanism, like a Command Line Interface
(CLI), that would require the user to explicit indicate
which files should be tracked, is based on which would
be most user-friendly, given that both require complex
implementations. Even though that the first option is
slightly more complex, given that it potentially intro-
duces a code portability issue, the usability use case
greatly out weights any disadvantage.

4.1.1 Metadata

In early versions of the Cloudbox prototype, given the
multitude of executing threads, the metadata would
sometimes get corrupted, due to the concurrent writes
operations being made. Before implementing a sim-
plistic lock system to regulate concurrent access to
the metadata, investigating other alternatives revealed
that using SQLite would be a better approach. SQLite
is a transactional SQL engine that stores a consolidated
state of the data model into a single file. Defining a
data model for the metadata allowed for complete ab-
straction of the metadata implementation that besides
solving the concurrency problems made it much easier
to use.

Using an Object-relational mapping (ORM) library,
makes it possible to access the metadata as a native
Scala collection, instead of having to write SQL for
reading from and writing to the metadata. It also al-
lows to modify the structure of objects themselves. An
interesting modification worth mentioning, is the addi-
tion of a special converter, that by annotating certain
fields those can be stored ciphered in the metadata it-
self rather than in plaintext. All the client generated
keys are stored this way. Each client is bundled with a
unique symmetric key that is only used to be able to
cipher those fields.

4.1.2 File System Monitor

Another relevant implementation detail is the choice
for the file system monitoring. Since its version 7,
that the Java language natively supports attaching to
files and be notified of changes to them. Abiding by
the concept of File System Adapter defined in sec-
tion 3, the implementation, as fig. 3 shows, consists
of a Publish-Subscribe (PubSub) system. In this sys-
tem, the Java API emits events every time that a file
is created, modified or deleted in the Cloudbox folder.
The FileSystemNotifier class that corresponds to the
channel in the PubSub schema, dispatches the events
to subscribers that are registered. The FileRules class
is registered upon the client initialization.

Figure 3: FileSystemAdapter Publish-Subscribe

The ReverseF ileRules class also implements the
IF ileSystemAdapter contract, in order to provide the
same functionality when the events are generated from
the network rather than from the file system. The op-
eration implemented are the same, just slightly differ-
ent, given that the input data and workflow state is
different depending where the event is generated.

4.1.3 Networking

In place of the full featured P2P network, there is in-
stead a direct communication protocol. This protocol
is used as stub to provide an easier testing environ-
ment. Its interface is, nonetheless, very similar that
of a complete P2P implementation and thus integra-
tion a full-fledged implementation should be relatively
simple. The protocol is divided in two moments:

• Bootstrap mode An initial moment, when a
joining node still is not connected to the network.
In this case, the protocol dictates a bootstrap op-
eration: The joining node searched for a well-
known seed node, in order to obtain a manifest
containing the identifier of the peers already in
the network. If the seed node is not present, the
protocol is aborted. Having found the seed node
and obtained the address of the remaining con-
nected nodes, the protocol switches to its opera-
tional mode.

• Operational mode The operational mode is re-
sponsible for maintaining the network structure
up to date. In a repetitive interval, of ten sec-
onds, each node pings every other node in its know
node list. If any one fails to reply to its heartbeat
it is removed from the other nodes list. The node
remains in this mode for the rest of its execution.

After having the network set up and being constantly
maintained, the stub DHT put and get operations are
easy to implement: the put operation is a broadcast
to all nodes currently in the network; the get opera-
tion simply fetches from the local cache of the node,
given that all nodes contain all the data. As a result,
in this case, we obtain a replication factor of N , be-
ing N the number of nodes, which is pretty inefficient
from a storage space perspective. But this is just a
stub implementation and it is not its objective to be
efficient.

6



For this implementation, the keys exchange protocol
is offline, and so, the join operation requires an invita-
tion that includes the group key.

4.1.4 Standards

Some functionalities, as the diff algorithm, encryption
algorithms or key generation were not reimplemented,
but instead used available libraries, as there are already
available handfuls of highly performant and tested li-
braries for these matters. Nevertheless, it is important
to specify the algorithms that they use and configu-
ration parameters that might be meaningful for the
performance of the solution and its evaluation.

• The diff algorithm used is the Meyers algorithm
[11], which belong to the insert/delete class.

• The group keys default settings generate a RSA
asymmetric key pair of 1024 bits.

• File keys are 128 bits symmetric keys used in the
AES encryption algorithm.

• The default chunk size in which file versions are
split is 4MB.

4.2 User Interface

The UI module is an HTML and JavaScript application
that in addition to being a way to visualize the internal
state of Cloudbox, also triggers, via user command,
core group operations like creating a group, or fetching
the latest version of a group files.

Figure 4: Group detail view

Figure 4 shows the detail view of a group files. It
essentially corresponds to the usual file system listing
with the addition of being able to view the decompo-
sition in versions.

Still, this is not the ultimate purpose of the UI, which
is to allow for group operation: fig. 5 shows the possible
operation for a given group: Create a new group; join
an existing one; or leave the current one.

Figure 5: Group list view

5 Evaluation

This section describes the detailed evaluation of our
implementation of the Cloudbox system.

Section 5.1 aims at demonstrating the viability of
the Cloudbox system as a secure storage platform. The
metrics evaluated metrics are meant to be relevant to
the overall performance and scalability of the system.

All the tests were ran on a 2,4 GHz Intel Core i5
with 2GB 1600 MHz of RAM; using the Java(TM)
SE Runtime Environment (build 1.8.0 11-b12), Java
HotSpot(TM) 64-Bit Server VM (build 25.11-b03,
mixed mode) and Scala code runner version 2.11.7.

5.1 Operations Overhead

The data for this section is the result of micro-
benchmarking the systems operations and collecting
execution metrics, such as CPU, time and space.

Figure 6: AddFile time overhead

Figure 6 is the result of the experimental data gather
to analyze the impact of adding a group of files to the
Cloudbox system. It condenses information from nine
test cases, designed to evaluate the performance of the
AddFile operation under two variables: file size and file
key size. Each test case consists of adding 10 files, si-
multaneously, to the Cloudbox system, under different
operating conditions: encryption turned off, file keys
with 128, 192 and 256 bits. The key size 192 is omit-
ted in this graph as it revealed to show little difference
from the 128 bits key.

7



Starting with the 1KB file group, we observe that
the amount of data is insufficient to have an impact
in the time taken by the ciphering operations, with all
sets clocking in at about approximately 70ms, the same
time as not having to cipher.

Going over the numbers of the 1MB file group, we
observe that the file size starts to make a difference.
For the 128 bits keys there is roughly a 37% increase
and 47% increase with 256 bits keys.

Finally, the data from the test cases with large files—
10MB—reveals a much more noticeable impact of the
cipher operations, presenting a slowdown of 90% and
92% for 128 bits and 256 bits, respectively. The unex-
pected result is how close both ciphers with different
key sizes perform. Doubling the key size takes little ef-
fect on the overall operation time. If we correlate this
information with fig. 7, we understand that Cloudbox
is able to maintain the ciphering time, regardless of the
key size, at the cost of CPU usage. The test case for
256 bits key was able to perform in roughly the same
average time, due to a more intense CPU activity.

Figure 7: AddFile CPU utilization

The results of the test cases for the UpdateFile oper-
ation, are presented in two perspectives: one assuming
the files are binary or multimedia files and another as-
suming that they are text based files. These test cases
result of initial groups of files of 1KB, 1MB and 10MB,
subjected to 10 updates of 1KB.

Considering first the binary files, in section 5.1, for
small sizes the implementation is able to handle the
updates properly. Still, Increasing the file sizes causes
great difficulties for Cloudbox to generate new versions.
The time complexity is exponential. It is even unable
to continue after the third version of the 10MB group
due to insufficient memory, having that last one taken
10 seconds to generate. The problem is the compo-
sition of the diff algorithm with the ciphering. For
binary files, the diff algorithm is unable to generate
the version efficiently, considering that the whole file
was changed, in such a way that each version can dou-
ble the size of the previous one. With versions getting
exponentially large the cipher algorithm struggles to

cipher the versions and thus its bad performance.
Considering text based files, of section 5.1, the re-

sults are very different. Since the diff algorithm is able
to generate efficient version files and the size of partial
versions to be ciphered is reduced, the time overhead
is constant with the evolution of the files.

Figure 8: UpdateFile time overhead for binary files

Figure 9: UpdateFile time overhead for text files

Figure 10: Consolidate time overhead

The consolidate operation consists in consolidation
of the groups of files generated by the previous test

8



cases: groups of files with 1KB, 1MB and 10MB with
10 updates each of 1KB. Figure 10 shows the time over-
head of the consolidate operation. Similarly to the add
operation, for groups of small files the overhead is low.
As expected it grows with the size of the files, about
49% and 75% for 1MB and 10MB files. The consolidate
operation is the first to surpass the one second thresh-
old, after which the delay is noticeable to humans, but
still, we must consider that the operation is being ap-
plied to all files in the group and its occurrence is very
punctual in the lifecycle of a group.

5.2 Storage and Metadata

A critical measure to evaluate the Cloudbox system is
its storage space requirements. The following results
were extracted from the previous described file update
experiment. The same groups of files—1KB, 1MB and
10MB—, and with set of binary and text based files.

Figure 11: Storage space used for binary files - 1KB
file

Figure 12: Storage space used for text files - 1KB file

Figure 11 and fig. 12 display the evolution of space
used for a file of 1KB, through 10 updates. At its ini-
tial version a 1KB uses about 6KB of space on the
local system. Subsequent version updates of 1KB add
roughly 3KB to the used space total. The expansion is,

obviously caused by the stored cipher-text. Like pre-
viously mentioned, the diff algorithm used is unable to
produce efficient differences of the binary changes and
fig. 11 shows the exponential growth in used space. The
results for the 1MB and 10MB groups lead to the same
conclusions, omitted here for the sake of the charts
scale. We can grasp the efficiency of using file version-
ing, as updates to large files have almost no impact in
the amount of space used.

The last result of the metadata evaluation shows
how it evolves. Section 5.2 demonstrates that changes
to any file are innocuous to the metadata size. Since
metadata is only affected by the number of files or, to
a lesser degree, by group changes, it was expected that
changes to the files would not affect it. Actually, the
factor by which metadata grows with is the number
of files tracked by the system or changes to the group
membership.

Figure 13: Metadata storage space usage over file evo-
lution

6 Conclusion

Cloud services will play a very important role in the
technological future. Its ubiquity is very exciting and
is evermore enabling greater productivity and usabil-
ity for its users. Still, cooperative cloud services are
scarce, not that they are worse in any way, but simply
because by being a more complex approach and harder
to control, rather than the traditional centralized sys-
tem, they dissuade cloud services providers.

In this report, we proposed a solution that combines
pre-existing techniques to create a secure storage so-
lution with the ability to share directories with other
users. Our solution shows that security does not need
to be a tradeoff for collaboration, as existing systems
lead to believe. Both are attainable, even in a scenario
where the network infrastructure is not trustworthy.

9



6.1 Concluding Remarks

This report presented a study of the state-of-the-art of
peer-to-peer topologies and cryptography. The analy-
sis of these topics allowed us to critically analyze the
existing systems and identify aspects that can be im-
proved in order to provide a better level of security:
centralized infrastructure; server-side encryption and
no forward secrecy.

Once identified the shortcomings, we proposed a so-
lution that considers the files and the groups them-
selves in epochs, in order to achieve efficient group
membership, and using versioning to efficiently sup-
port file ciphering operations.

In our evaluation, the results showed marginal over-
head on the critical operations, good scalability when
dealing with text-based files, and all of that in sub-
second time for almost all scenarios.

6.2 Future Work

There is much work that can be done to improve our
solution. By conducting research and further experi-
ments on specific topics of the solution we can get great
optimizations. We can also find ways to make the solu-
tion easier to use by adding new functionalities. Here
are some examples:

• Ahead of time consolidate Consolidating
ahead of time can save a lot of time and network
traffic depending on when it is executed. How-
ever, when to consolidate is a decision that would
require large usage datasets analysis, in order to
be sure of the appropriate moment. For that rea-
son, we think that finding that sweet spot is worth
a research of its own.

• Adaptative diff algorithm From our evalua-
tion, we have observed that the diff algorithm used
in the implementation results in subpar perfor-
mance for binary files. It would be nice to have a
mechanism that would scan the files when they are
added to a group and detect the most appropriate
diff algorithm to apply to each file, and store that
information in the metadata. This way, all kind
of files would have efficient versioning.

• Conflict resolution Solving concurrent updates
was always out of the scope of this work, but it is
a very interesting, and well studied, problem to be
addressed. Specially considering that when a con-
flict occurs, both updates are the calculated differ-
ences from the same source file. There are already
many version control systems that can solve this
problem without the need for human intervention.
It would be interesting to see how their techniques
can be applied and integrated in Cloudbox.

References
[1] When are my files safe? http://support.

spacemonkey.com/customer/portal/articles/

1384011-when-are-my-files-safe-, accessed: 2014-
11-30

[2] Your stuff is safe with dropbox. https://www.dropbox.com/
security#protection, accessed: 2014-11-30

[3] Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-
to-peer content distribution technologies. ACM Computing
Surveys (CSUR) 36(4), 335–371 (2004)

[4] Church, K., Greenberg, A.G., Hamilton, J.R.: On deliver-
ing embarrassingly distributed cloud services. In: HotNets.
pp. 55–60. Citeseer (2008)

[5] Diesburg, S.M., Wang, A.I.A.: A survey of confidential data
storage and deletion methods. ACM Computing Surveys
(CSUR) 43(1), 2 (2010)

[6] Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S.,
Eaton, P., Geels, D., Gummadi, R., Rhea, S., Weather-
spoon, H., Weimer, W., et al.: Oceanstore: An architec-
ture for global-scale persistent storage. ACM Sigplan No-
tices 35(11), 190–201 (2000)

[7] Kulkarni, P., Douglis, F., LaVoie, J.D., Tracey, J.M.: Re-
dundancy elimination within large collections of files. In:
USENIX Annual Technical Conference, General Track. pp.
59–72 (2004)

[8] Lissounov, K.: Bittorrent sync: Security is our highest pri-
ority (2014), http://forum.bittorrent.com/topic/32592/

[9] LogMeIn, I.: Cubby: A secure solution (2014),
https://www.cubby.com/welcome/common/resources/

Cubby_Security_Whitepaper.pdf

[10] Lua, E.K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.,
et al.: A survey and comparison of peer-to-peer overlay
network schemes. IEEE Communications Surveys and Tu-
torials 7(1-4), 72–93 (2005)

[11] Myers, E.W.: Ano (nd) difference algorithm and its varia-
tions. Algorithmica 1(1-4), 251–266 (1986)

[12] Suel, T., Memon, N.: Algorithms for delta compression and
remote file synchronization (2002)

[13] Wright, C.P., Dave, J., Zadok, E.: Cryptographic file sys-
tems performance: What you don’t know can hurt you. In:
Security in Storage Workshop, 2003. SISW’03. Proceedings
of the Second IEEE International. pp. 47–47. IEEE (2003)

10


