
Pulsarcast - Scalable and reliable pub-sub over P2P
networks
João Antunes
INESC-ID Lisboa

ULisboa / Instituto Superior Técnico
j.goncalo.antunes@tecnico.ulisboa.pt

Abstract
The publish-subscribe paradigm is a wildly popular form of
communication in complex distributed systems. The properties
offered by it make it an ideal solution for a multitude of appli-
cations, ranging from social media to content streaming and
stock exchange platforms. Consequently, a lot of research ex-
ists around it, with solutions ranging from centralised message
brokers, to fully decentralised scenarios (peer to peer).

Within the pub-sub realm not every solution is the same of
course and trade-offs are commonly made between the ability
to distribute content as fast as possible or having the assurance
that all the members of the network will receive the content
they have subscribed to. Delivery guarantees is something quite
common within the area of centralised pub-sub solutions, there
is, however, a clear lack of decentralised systems accounting for
this. Specifically, a reliable system with the ability to provide
message delivery guarantees and, more importantly, persis-
tence guarantees. To this end, we present Pulsarcast, a decen-
tralised, highly scalable, pub-sub, topic based system seeking
to give guarantees that are traditionally associated with a cen-
tralised architecture such as persistence and eventual delivery
guarantees.
The aim of Pulsarcast is to take advantage of the network

infrastructure and protocols already in place. Relying on a
structured overlay and a graph based data structure, we build
a set of dissemination trees through which our events will be
distributed. Our work also encompasses a software module that
implements Pulsarcast, with our experimental results showing
that is a viable and quite promising solution within the pub-sub
and peer to peer ecosystem.

1 Introduction
The publish-subscribe (pub-sub) interaction paradigm is an
approach that has received an increasing amount of attention
throughout the century [13] [11]. This is mainly due to its
unique properties, that allow for full decoupling of time, space
and synchronisation of all the communicating parties. In this
interaction paradigm, subscribers (or consumers) sign up for
events, or classes of events, from publishers (or producers) that
are subsequently asynchronously delivered. Taking a closer
look at this definition one can see that this comes hand in hand
with the way information is consumed nowadays, with the
exponential growth of social networks like Twitter and the
usage of feeds such as RSS.
Due to the properties described above, maney applications

rely on the publish-subscribe paradigm and much work has
been done by companies like Twitter 1, Spotify [18] and LinkedIn

1https://www.infoq.com/presentations/Twitter-Timeline-Scalability

into making these systems capable of scaling to a large number
of participants. With the creation of tools like Kafka 2, which
aim at guaranteeing low latency and high event throughput.
Other examples are the multiple message queue systems like
Apache Active MQ 3, RabbitMQ 4, Redis 5, etc. Most of these
solutions are, of course, centralised and as such suffer from all
the common issues that affect centralised solutions: it is quite
hard to maintain and scale these systems to a large number of
clients. Peer to peer (P2P) networks, on the other hand, have
proven numerous times, that this is where they shine, with
examples such as Gnutella, Skype and most recently ipfs 6. All
of these systems are living proof of the high scalability P2P can
offer, with pub-sub systems over P2P networks being an active
research topic with much attention.

As we are going to cover in the next sections, lots of different
solutions exist. However, most of them either rely on a cen-
tralised or hierarchic network to have a reliable system, with
stronger delivery and persistence guarantees or end up sacri-
ficing these same properties in order to have a decentralised
system with the potential to scale to a much larger network.
There is also, to the best of our knowledge, a lack of pub-sub
systems with a strong focus on persistence.
We intend to address this in Pulsarcast by focusing on the

following properties:

• Eventual delivery guarantees;
• Data persistence;
• Ability to scale to a vast number of users;
• Take advantage of the network infrastructure and net-
work protocols we have in place today;
• Strong focus on reliability;

Besides the specification and architectural model of our sys-
tem, we also provide a concrete implementation of it. So, in
order to validate the solution we purpose, we have created the
following:

• A Javascript implementation module of Pulsarcast with a
clearly defined API (Application Programming Interface)
through which applications can integrate with;
• A distributed test runner capable of running large scale
test scenarios and simulate abnormal network conditions;
• An easy to automate test-suite based on a real-world
application;

2http://kafka.apache.org/documentation/#design
3http://activemq.apache.org
4https://www.rabbitmq.com/
5https://redis.io/topics/pubsub
6https://ipfs.io/

https://www.infoq.com/presentations/Twitter-Timeline-Scalability
http://kafka.apache.org/documentation/#design
http://activemq.apache.org
https://www.rabbitmq.com/
https://redis.io/topics/pubsub
https://ipfs.io/

João Antunes

This document is structured as follows: Section 2 presents
and analyses our related work. Section 3 introduces and de-
scribes Pulsarcast, its architecture, data structures and algo-
rithms. Section 4 covers the implementation of our solution,
with a more thorough overview of our Javascript module. Next,
Section 5 explains our evaluation methodology and presents
those results. Finally, Section 6 provides a set of closing re-
marks.

2 Related Work
When considering pub-sub systems, there is a set of different
options that will lay the ground for the behaviour of the whole
system. We call these options, design dimensions. Specifically,
in our case, one of the biggest decisions when designing a
pub-sub system is what kind of subscription model to use. The
subscription model determines how subscribers will define
which events they are interested in. There are three major
approaches covered by relevant literature [13] [11] and that
implementations usually follow:
• Topic-based subscriptions - Clients subscribe to classes of
events, usually identified by keywords.[6][26][3][2][19]
• Content-based subscriptions - Clients subscribe to events
based on specific values (or ranges of values) on the
properties of the events.[21][7][5][12][4][23]
• Type-based subscriptions[10] - Bring the notion of a type
scheme to a topic-based subscription model.[15]

The subscription models are tied to the expressiveness of the
system as a whole. Case in point, a content-based subscription
model allows for a lot more expressiveness in subscription
definition. However, it makes it a lot harder to implement a
scalable way of filtering messages.

Another critical design dimension, primarily when covering
P2P pub-sub systems, is how peers choose to organise andmain-
tain their view of the underlying network (commonly referred
to as network overlays). These overlays can usually be divided
into structured overlays, using structures as Distributed Hash
Tables (DHT) [14] [20] for example, and unstructured overlays
that rely on other approaches such as gossip communication
protocols [22] [25].
The systems we will cover next have chosen different ap-

proaches for the design dimensions described above; however,
all of them have played a seminal role for our proposed solution.

Gryphon [21] is a content-based pub-sub system built on
top of a centralised broker hierarchy topology, successfully
deployed over the Internet for real-time sports score distri-
bution at the Grand Slam Tennis events, Ryder Cup, and for
monitoring and statistics reporting at the Sydney Olympics 7.
Developed at IBM, Gryphon uses an interesting approach to
match events with subscriptions [1], relying on a distributed
broker based network to build a tree structure representing the
subscription schema.

Siena [5] is a content-based pub-sub system built on top
of a centralised broker mesh topology. Siena does not make
any assumptions on how the communication between servers
and client-server works, as this is not vital for the system to
work. Instead, for server to server communication, it provides

7https://www.research.ibm.com/distributedmessaging/gryphon.html

a set of options ranging from P2P communication to a more
hierarchical structure, each with its respective advantages and
shortcomings. Still on the subject of broker based network
solutions, HyperPubSub [27] is a recent example of such an
approach but focused on bringing verifiability and other forms
of decentralised validation to pub-sub operations.
Scribe [6] is a topic-based pub-sub system built on top of a

fully decentralised network (P2P). In order to do this, it relies
on the Pastry DHT [17] as its overlay structure. This allows it
to leverage the robustness, self-organisation, locality and relia-
bility properties of Pastry to build a set of per-topic multicast
trees used to disseminate events.
Meghdoot [12] is a content-based pub-sub system. It is built

on top of a P2P network, specifically CAN DHT [16]. Meghdoot
leverages the multidimensional space provided by the CAN
DHT in order to create an expressive content-based system.
Poldercast [19] is a recent pub-sub system with a strong

focus on scalability, robustness, efficiency and fault tolerance.
It follows a topic-based model and follows a fully decentralised
architecture. The key detail about this system is that it tries to
blend deterministic propagation over a structured overlay, with
probabilistic dissemination through gossip-based unstructured
overlays. In order to do this, Poldercast uses three different
overlays.[24][22] Similar to systems like VCube-PS [8], only
nodes subscribed to a topic will receive events published to
that topic. In other words, no relay nodes are used. It also fo-
cuses on handling churn through the use of a mixture of gossip
mechanisms, ensuring a highly resilient network. Finally, it
seeks to reduce message duplication factor (i.e. nodes receiving
the same message more than once).
Architecturally speaking, one can see the similarities be-

tween Poldercast and SELECT [2], as it too relies on a set of
three different overlays, working together to fulfil subscrip-
tions. However, SELECT brings a different set of properties to
the table, as it maps the social connection graph of the peers to
the actual overlays operating underneath. This way, the system
can exploit both the social graph and the online activity of each
social user (each peer) to establish connections and dissemi-
nate messages accordingly and avoid an unnecessary number
of hops.

The aim of our work is also to take advantage of the network
infrastructure and technologies already in place. One of the
best ways of doing so is by leveraging what the Web platform
has to offer. One cannot think of modern web development
without speaking of Javascript 8. Javascript is a lightweight,
interpreted, programming language, known as the scripting
language for the web. Initially created to allow the creation of
simple interactions and animations inweb pages it is now one of
the main programming languages for the web 9, with runtimes
in browsers and servers thanks to projects such asNodeJS 10. In
the application realm,many P2P apps have leveraged these tech-
nologies. Such examples are browserCloud.js[9], a solution
seeking to bring cloud computing to the Web platform, taking
advantage of technologies such as WebRTC 11 and Javascript

8https://www.ecma-international.org/publications/standards/Ecma-262.htm
9https://insights.stackoverflow.com/survey/2017
10https://nodejs.org
11https://www.w3.org/TR/webrtc/

https://www.research.ibm.com/distributedmessaging/gryphon.html
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://insights.stackoverflow.com/survey/2017
https://nodejs.org
https://www.w3.org/TR/webrtc/

Pulsarcast

and IPFS 12, a P2P hypermedia protocol designed to create a per-
sistent, content-addressable network on top of the distributed
web.

At the core of IPFS is what they refer to as the Merkle
DAG 13. The Merkle DAG is a graph structure used to store
and represent data, where each node can be linked to based on
the hash of its content. Each node can have links (Merkle links)
to other nodes, creating a persistent, chain-like structure that
is immutable as documented in figure 1

Figure 1. Graph visualisation of a Merkle DAG and its respec-
tive hash function dependencies

Having implementations in both Go and Javascript, IPFS
leverages the modularity mantra in a fascinating way, focusing
on creating standard interfaces that allow for different pieces of
the architecture to be changed and selected according to one’s
needs. These small modules that constitute IPFS have recently
been brought together under the same umbrella, as libp2p 14,
a set of packages that seek to solve everyday challenges in P2P
applications. Interestingly enough, a recent addition to libp2p,
and consequently IPFS, was a pub-sub module, with a naive
implementation using a simple network flooding technique,
named Floodsub. Even though libp2p was created with the
initial purpose of serving as the foundation of IPFS, it is now
possible to use libp2p as a standalone module for peer to peer
apps, with the possibility to handpick the functionalities we
intend to use.

3 Pulsarcast
Pulsarcast is a peer to peer, pub-sub, topic-based system fo-
cused on reliability, eventual delivery guarantees, and data
persistence. Properties usually associated with centralised pub-
sub solutions.

We opted for the more straightforward topic-based subscrip-
tion model given that, in our view, a well structured and imple-
mented topic-based model is more than enough for a significant
percentage of our use cases. In the end, we compromise a bit
of the expressiveness of the system in order to avoid bringing
more complexity in, something we believe will pay off.
Pulsarcast is a fully decentralised solution, which means

that each node plays a crucial part in fulfilling the system’s
purpose, delivering events and ensuring their dissemination.
Conceptually speaking, Pulsarcast provides four methods for
clients and applications to interact with the system, create a
topic, subscribe to a topic, unsubscribe from a topic and publish
an event in a topic. From a broader perspective, Pulsarcast relies
on two overlays to fulfil its needs. Kadmelia DHT, used for peer
discovery, content discovery and to bootstrap our other overlay,
12https://ipfs.io
13https://github.com/ipld/specs/blob/95df205ca5fdb961ec2c2265a169989fef595db1/
FOUNDATIONS.md
14https://libp2p.io

our per-topic dissemination trees. These trees are critical for us
to disseminate information across our decentralised network.
When a peer publishes an event or creates a new topic a

set of the overlays previously described is used accordingly.
For Pulsarcast, both of these actions, happen to take a similar
course. That is because the system views these pieces of infor-
mation (or descriptors as we call it) as fairly similar, given their
importance.

Every topic and event is stored in the Kadmelia DHT before
being forwarded through the topic dissemination trees. This
ensures the data is persisted by a set of nodes (that might
even be extraneous to the topic at hand) and anyone is later
able to fetch the data using only the DHT if they want to.
Once persisted, we forward the data through the appropriate
dissemination trees previously built. On the other hand, when
someone wants to fetch a piece of data (a topic or an event)
it starts by performing a local search in the system, it might
have been something that the node has run through when
forwarding events across their dissemination trees. If this fails,
though, a query to the DHT is in order.
Pulsarcast has a set of two fundamental data structures

to which we refer to as event and topic descriptors. All of
our data structures are immutable, content addressable and
linked together to form a Directed Acyclic Graph (Merkle DAG).
Events link both to their respective topic descriptor and a past
event in that topic. Topics, on the other hand, link to their
sub-topics (if any) and a previous version of themselves. Fig-
ure 2 provides a broader picture of how it all fits together.
Immutability and content-addressability give us verifiability.
Consequently, the assurance that the state of our distributed
system is the same no matter where we are accessing it from or
who is viewing it. It also allows us to build a notion of history
which plays nicely into a pub-sub scenario. Through these links
and the mechanisms described so far, users and applications
are free to rebuild their topic and event history to any point
they wish. Be that because they were not part of the network
at the time or because they missed out due to some system or
network failure, acting as a NACK (not acknowledged) for rele-
vant events. This is the core of Pulsarcast’s eventual delivery
guarantees.

Given we are discussing addressability and linking between
content, the representation used for our identifiers is an im-
portant part of our system specification. That was one of the
main reasons for us to borrow inspiration from systems like
IPFS and decided to use CIDs (Content Identifiers) 15. A CID is
a self-describing content-addressed identifier. It uses crypto-
graphic hashes to achieve content addressing and is powered
by multihash 16. Multihash is a convention for representing
the output of many different cryptographic hash functions in
a compact, deterministic encoding that is accommodating of
future change. This is because multihash encodes the type of
hash function used to produce the output. All of the relevant
identifiers in our system are CIDs. This includes node identi-
fiers as well as the identifiers for both event descriptors and
topic descriptors themselves (given they are the hash of its
content). The descriptors contain a set of relevant metadata as

15https://github.com/multiformats/cid
16https://github.com/multiformats/multihash

https://ipfs.io
https://github.com/ipld/specs/blob/95df205ca5fdb961ec2c2265a169989fef595db1/FOUNDATIONS.md
https://github.com/ipld/specs/blob/95df205ca5fdb961ec2c2265a169989fef595db1/FOUNDATIONS.md
https://libp2p.io
https://github.com/multiformats/cid
https://github.com/multiformats/multihash

João Antunes� �
1 {
2 "name": <string >,
3 "author": <peer -id>,
4 "parent": { //The parent link for this topic
5 "/": <topic -id>
6 },
7 "#": { //Sub topic links
8 "meta": { //Meta topic
9 "/": "zdpuAkx9dPaPve3H9ezrtSipCSUhBCGt53EENDv8PrfZNmRnk"

10 },
11 <topic -name >: {
12 "/": <topic -id>
13 },
14 ...
15 },
16 "metadata": {
17 "created": <date -iso -8601>,
18 "protocolVersion": <string >, // Pulsarcast protocol version
19 "allowedPublishers": { //If enabled , whitelist of allowed

publishers
20 "enabled": <boolean >,
21 "peers": [<peer -id>]
22 },
23 "requestToPublish": { // Enable request to publish
24 "enabled": <boolean >,
25 "peers": [<peer -id>] // Optional whitelist able to

request
26 },
27 "eventLinking": <string >, //One of: LAST_SEEN , CUSTOM
28 }
29 }� �

Listing 1. Topic descriptor schema in a JSON based format

well as the actual information that they refer to. The following
JSON like Listings 1 and 2 provide an accurate description of
the schema and format of our data structures. We will cover
some of the properties.
Parent links in the event descriptor serve as a reference to

previous events in the topic tree. A Pulsarcast node that has
just received an event can, through its parent link, know a
previous event of this same topic and act on it accordingly
(fetch it or not). Depending on the type of topic we have at
hand (something we will cover further in this document) this
parent link can have different meanings and relevance.
The parent links in the topic descriptor acts as a reference

to a previous version of this same topic. Keep in mind that
data in Pulsarcast is immutable. As such, one cannot update
content that has already been published and disseminated. We
can, however, create a new reference of it and link to what we

Figure 2. Representation of the Pulsarcast DAG

� �
1 {
2 "name": <string >,
3 "publisher": <peer -id>, //Peer who published the event
4 "author": <peer -id>, // Author of the event
5 "parent": { //The parent link for this event
6 "/": <topic -id>
7 },
8 "topic": {
9 "/": <topic -id>

10 },
11 "payload": <binary -data >
12 "metadata": {
13 "created": <date -iso -8601>,
14 "protocolVersion": <string >, // Pulsarcast protocol version
15 }
16 }� �

Listing 2. Event descriptor schema in a JSON based format

consider to be a previous version. This is the exact use case
for the parent links in the topic descriptor, to act as a link to
previous versions of this same topic. Possible changes to the
topic descriptor can encompass changes to the topic metadata
for example or additions of new sub-topics.

In topic descriptors, sub-topic links are indexed under a # key.
Commonly, these are indexed by name, but it is not mandatory,
it is actually up to the topic and consequently its owner to
choose accordingly. There is no limit to how many sub-topics a
topic can have. One significant note though is that every topic
comes with a default meta topic as a sub-topic. The idea is
for this meta topic to be used to disseminate changes for the
original topic descriptor.

Both descriptors have an author field that is self-descriptive,
essentially meaning the peer responsible for creating and, in
the case of the topic, maintaining this descriptor. The topic
descriptor, however, has an extra field which is the publisher
field. This is because the producer of the content (author) and
the peer responsible for actually pushing this into the Pulsarcast
dissemination trees (publisher) might not be the same peer.

Before we can speak about a new subscription, a topic must
already exist. In order for this to happen a node starts by creat-
ing the meta topic descriptor. This meta topic descriptor is to be
used to disseminate any changes relative to the topic descriptor
at hand and is linked as a sub-topic of it. Procedure wise, the
meta topic is created just like any other topic, with the same
properties (except for its own meta topic of course). Only after
it has been created and stored in the Kadmelia DHT does the
node proceed to create the actual topic descriptor (with the
meta topic linked as a sub-topic), which is then also persisted
in the DHT. When any change to the original topic descriptor
is in order, the node creates a new topic descriptor (remember
the immutability of our data structures) but with the original
topic descriptor linked as a parent and with the same meta
topic linked as sub-topic. When these changes happen, the
node publishes the new topic as an event in the meta topic.
Algorithm 1 provides an overview of the procedure to create a
new topic.
With the topic descriptor stored and available to the whole

network, its creator will act as the root node in this newly
created topic dissemination tree. When a node wants to sub-
scribe to this topic, it starts by fetching its descriptor from the
Kademlia DHT. After some sanity checks, such as checking if
the node is already part of the dissemination tree, we use the
Kadmelia DHT to find the closest known peer to the author

Pulsarcast

Algorithm 1: Create a new topic
1 Function CreateTopic(newTopic)

Input: newTopic = data for new topic creation
2 begin
3 parent ← newTopic .parent ;
4 if parent == null then
5 metaTopic ← CreateMetaTopic(newTopic);
6 StoreInDHT (metaTopic);
7 else
8 metaTopic ← parent .subTopics .meta;
9 end

10 topicData ←

CreateTopic(newTopic,metaTopic);
11 Subscribe(metaTopic);
12 Subscribe(topicData);
13 StoreInDHT (topicData);
14 Publish(metaTopic, topicData)

15 end

of the topic. Keep in mind that we are not hitting the network
and performing a Kadmelia lookup operation, we are resorting
to information previously stored locally by the DHT in its K
buckets. The node stores the closest known peer as its parent
in this topic dissemination tree. The join request is then for-
warded to it where the sender peer ID is extracted and used as
its child in this topic dissemination tree, followed by repeating
the whole process. This recursive operation, across multiple
nodes in the network, ends when the join request hits a node
that is either already part of the dissemination tree for this
topic or, the actual author of the topic. Algorithm 2 provides a
more detailed generic procedure to be used at every node when
receiving or sending a subscription request (or a join request as
we call it). In order to maintain the dissemination trees, every
node must keep some state of its neighbours for every topic. If
by some chance a node is unable to connect to a neighbour, a
retry mechanism is in place for a limited amount of retries (a
configurable parameter). If the node is still unable to connect,
then it goes through the subscription procedure again.
Considering the topic creation and subscription manage-

ment previously discussed we can see that event dissemination
becomes easier to handle, almost as a consequence of the way
the subscription management is built, and dissemination trees
again play their key part here. Pulsarcast, however, allows for
some additional customisation and configuration at the topic
level focused on providing a lot more flexibility to our system.
When a node is creating a topic, it can configure:
• Which nodes are allowed to publish
• If and which nodes can request to publish
• How events are linked together (through the parent link)

These options are requestToPublish, allowedPublishers and
eventLinking, all kept under the meta property of the topic
descriptor.

When a node wants to publish an event in a topic, it starts by
fetching the topic descriptor, first locally and then, if it is not
present, from the Kadmelia DHT. The node then checks if it is

Algorithm 2: Join request handler for each node
1 Function ReceivedJoin(fromNodeId, topicId)

Data: nodeId = node id of this node
Input: topicId = topic id
Input: f romNodeId = sender node id

2 begin
3 topicData ← GetTopicData(topicId);
4 if f romNodeId , nodeId then
5 AddToChildren(t, f romNodeId);
6 if topicData.author == nodeId then
7 return
8 end
9 if GetParents(topicId) , null then
10 return
11 end
12 else
13 if topicData.author == nodeId then
14 return
15 end
16 end
17 peer ← ClosestLocalPeer (topicData.author);
18 AddToParents(topicData.id,peer);
19 SendRPC(topicData.id,peer);
20 end

allowed to publish through the topic configuration whitelist
mechanism. This option, allowedPublishers, can either be en-
abled and, if so, a list of nodes is provided that is checked before
publishing, or it can be disabled, and in that scenario, every
node can publish a message. If the node cannot publish the
message, it will check if it can submit a request to publish. This
request to publish is another option set in the topic descrip-
tor, through the requestToPublish field, that, if enabled, allows
every node in the network to submit these special requests.
Optionally, it can also be a whitelist of nodes allowed to submit
these. When a node forwards a request to publish across the
network, it propagates across the dissemination tree (from chil-
dren nodes to parents) until it eventually finds a node which is
allowed to publish this event. This will dictate the difference in
the publisher (node who actually publishes the content) and
the author (node responsible for creating the content in the
first place).
Upon receiving a publish event request, whether if it was

initiated at this node or through a remote request to publish,
the node starts by appropriately linking the new event to a
parent event. This is where the eventLinking option in our
topic descriptor comes into play. Right now this option can
either be CUSTOM or LAST_SEEN. When the topic allows for
custom linking, the client application can set a custom parent
event, as long as it exists. With the last seen option, however,
the Pulsarcast node takes care of linking the given event to the
event last seen by it. After the linking is done, the node can
safely store the event descriptor in the Kademlia DHT, followed
by disseminating it through its children and parent nodes in this
topic dissemination tree. From this point forward, nodes along
the dissemination tree will forward the event across branches

João Antunes

of the tree where this has not gone through. All of the logic we
have covered around event dissemination is better detailed in
the Algorithms 3 and 4.

Algorithm 3: Event handler for each node
1 Function ReceivedEvent(fromNodeId, eventData)

Data: nodeId = node id of this node
Input: f romNodeId = sender node id
Input: eventData = event descriptor

2 begin
3 topicData ← TopicData(eventData.topicId);
4 if AllowedToPublish(nodeId, topicData) then
5 SendEvent(f romNodeId, eventData);
6 else
7 if

AllowedToRequestToPublish(nodeId, topicData
then

8 SendRequestToPublish(eventData);
9 end

10 end
11 end

Algorithm 4: Event forwarding function
1 Function SendEvent(eventData)

Data: nodeId = node id of this node
Input: f romNodeId = sender node id
Input: eventData = event descriptor

2 begin
3 topicData ← TopicData(eventData.topicId);
4 if IsNewEvent(eventData) then
5 linkedEvent ← LinkEvent(eventData);
6 StoreInDHT (linkedEvent);
7 end
8 if IsSubscribed(eventData.topicId) then
9 EmitEvent(eventData.topicId, eventData);

10 end
11 for peer ← Children(eventData.topicId) AND

peer ← Parents(eventData.topicId) do
12 if f romNodeId , peer then
13 SendRPC(eventData,peer);
14 end
15 end
16 end

We will now highlight some of the properties these configu-
ration options allow. The simplest example would be a scenario
where only the author of a topic is allowed to publish, event
linking is based on the last seen event and request to publish is
allowed. In this example, despite every node being allowed to
create content, we can achieve order guarantee, with a single
stream of events all linked together. Another example would be
a scenario where we have a whitelist of allowed publishers, no
request to publish allowed and last seen event linking taking
place. With this, we get a simple producer/consumer scenario,

with a list of a few selected and vouched for producers that
every node is aware of (that could even be expanded later on
by the topic author). Finally, on the other end of the spectrum,
we have a scenario where everyone is allowed to publish, and
custom event linking is allowed. Here, we are essentially giving
the ability for clients and applications to use event trees to
represent data in however they see fit given that, with custom
event linking, applications can shape the event trees however
they like. Links can go as far as to imply event causality if
applications are programmed and configured as such.

4 Implementation
For our Pulsarcast implementation, we decided to take advan-
tage of the libp2p ecosystem as it solves a lot of the underlying
issues of building a peer to peer system, not specific to our
pub-sub scenario. This includes dealing with connection multi-
plexing, NAT traversal, discovery mechanisms and others. We
can also take advantage of the utility modules it has and the
advantage of having an already working implementation of
the Kadmelia DHT. Our focus is then to build a module, imple-
menting the Pulsarcast specification that clients and apps can
take advantage of.

We chose to implement our Pulsarcast module in Javascript.
As we covered in our related work, Javascript is ubiquitous,
running in browsers, servers and many different kinds of de-
vices and architectures. Through it, we can run our Pulscarcast
nodes in a multitude of systems and most importantly, direct
its usage for the World Wide Web. Plus, libp2p has a Javascript
implementation focused on cross-compatibility between server
and browser. It is worth noting that, much like the work we
built on top of, this module is open source 17.
Figure 3 gives us an overview of how our module fits in

the libp2p ecosystem. libp2p defines interfaces responsible for
routing content (peer routing), discovering other peers in the
network (peer discovery), network transports and leveraging
multiple network connections (switch). These all come bundled
in the libp2p javascript module 18 which we use in Pulsarcast.
Besides the main libp2p module we also use some other utility
modules such as the CID module 19 and the Peer-id module 20,
both designed to reason with content identifiers (peer identi-
fiers are also content identifiers).

Figure 3. Our Pulsarcast module in the libp2p ecosystem

17https://github.com/JGAntunes/js-pulsarcast
18https://github.com/libp2p/js-libp2
19https://github.com/multiformats/js-cid
20https://github.com/libp2p/js-peer-id

https://github.com/JGAntunes/js-pulsarcast
https://github.com/libp2p/js-libp2
https://github.com/multiformats/js-cid
https://github.com/libp2p/js-peer-id

Pulsarcast

Pulsarcast has five classes 21. These are:
• Pulsarcast - Our main class, responsible for holding the
state of our node, managing peer lists and connections.
It extends the built-in EventEmitter class 22, making
our class capable of reproducing the event emitter pat-
tern 23, the mechanism we use to bubble up new Pulsar-
cast events to the application level.
• Peer - An abstraction for the state of each peer, includ-
ing connections, identifiers, adresses and dissemination
trees.
• TopicNode - Abstracts the Topic descriptor for ourMerkle
DAG.
• EventNode - Just as above, abstracts the Event descriptor
for our Merkle DAG.
• EventTree - Manages the state of the event tree for each
topic.

5 Evaluation
Our whole setup consisted of a custom testbed 24 25, with a
total of 5 VMs 26 acting as Kubernetes Worker nodes, each
with two vCPUs, 16 GiB of RAM and 32 GiB of storage. In our
cluster, besides other operational bits, we ran 3 Elasticsearch
instances, 1 Logstash instance, 1 Kibana and a total of 100 IPFS
Testbed deployments (as described aboe). Because we wanted
to avoid resource starvation and to better take advantage of the
Kubernetes scheduler, our testbed deployments allocate 440
MiB of memory per deployment, each burstable to a maximum
of 500 MiB. During our whole test execution, periodic HTTP
health checks (part of the Kubernetes platform) make sure our
deployments are working accordingly.
To test our system accordingly, we wanted a dataset that

could simulate a real-life scenario as much as possible. We
chose to use a dataset of Reddit’s 27 comments from 2007 28 29

consisting of a sample of approximately 25000 comments in a
total of 23 topics (known as subreddits in the platform) 30.

The following graphs give us a distribution analysis of events
published per topic (Figure 4) and subscriptions per topic (Fig-
ure 5). Given our dataset choice, we aimed for a non-uniform
subscription distribution per topic and, as it would be expected
in a real-world scenario, the distribution of events follows a
power law based on their popularity.

For each execution, we look to extract two key groups of data:
resource usage data and QoS data. The following list describes
these in more detail:
• Resource usage as a total in the whole cluster, and per-
node (95/99 percentile and average)

21The full documented API for our module - https://github.com/JGAntunes/js-
pulsarcast/blob/547ff33527f0df8c751d5fcd73d559fce59cdb77/docs/api.md
22https://nodejs.org/api/events.html
23https://nodejs.dev/the-nodejs-event-emitter
24https://github.com/JGAntunes/ipfs-testbed
25https://github.com/JGAntunes/ipfs-testbed-cli
26Special thanks to Microsoft and the Azure team for supporting our efforts
and offering us free credits
27https://www.reddit.com/
28http://academictorrents.com/details/7690f71ea949b868080401c749e878f98de34d3d
29https://www.reddit.com/r/datasets/comments/3bxlg7/i_have_every_
publicly_available_reddit_comment/
30https://github.com/JGAntunes/pulsarcast-test-harness

Figure 4. Event distribution per topic with log scale

Figure 5. Subscription distribution per topic

– CPU Usage (CPU number)
– Memory Usage (GiB)
– Network Usage (MiB transmitted)
• QoS
– Events published by topic and in total
– Events received by topic and in total
– Percentage of subscriptions fulfilled based on the num-
ber of events successfully published

– Percentage of subscriptions fulfilled based on the total
number of events injected in the system

– Number of RPC messages sent per topic and in total
– Average, standard deviation and percentiles (99/95) of
the number of RPC messages received and sent by each
node

We measure the subscription coverage (number of subscrip-
tions fulfilled) through two distinct metrics. The percentage of
fulfillment having the number of events effectively published
as a reference and the percentage of fulfillment having the
total number of events injected into the system as reference.
Given Pulsarcast’s nature, when an event is injected into the
system, depending on the topic configuration, it may need to
be propagated through the dissemination trees before being
effectively published (request to publish). It also needs to be
persisted in the DHT. Having two different metrics allows us
to better analyse and distinguish the different behaviours of
the system.
Some of the metrics under the QoS group only make sense

in Pulsarcast test runs, hence will be ignored when running
the baseline Floodsub solution.
We ran 3 different scenarios under 2 different sets of net-

work conditions to an effective total of 6 different executions.
For each of the 3 different scenarios we executed one under
normal/undisturbed network conditions and another using
Toxiproxy’s features, adding a latency of 500 milliseconds and
300 milliseconds of jitter to every incoming TCP packet. The
scenarios we ran were the following:

https://github.com/JGAntunes/js-pulsarcast/blob/547ff33527f0df8c751d5fcd73d559fce59cdb77/docs/api.md
https://github.com/JGAntunes/js-pulsarcast/blob/547ff33527f0df8c751d5fcd73d559fce59cdb77/docs/api.md
https://nodejs.org/api/events.html
https://nodejs.dev/the-nodejs-event-emitter
https://github.com/JGAntunes/ipfs-testbed
https://github.com/JGAntunes/ipfs-testbed-cli
https://www.reddit.com/
http://academictorrents.com/details/7690f71ea949b868080401c749e878f98de34d3d
https://www.reddit.com/r/datasets/comments/3bxlg7/i_have_every_publicly_available_reddit_comment/
https://www.reddit.com/r/datasets/comments/3bxlg7/i_have_every_publicly_available_reddit_comment/
https://github.com/JGAntunes/pulsarcast-test-harness

João Antunes

• Pulsarcast without order guarantee (basic usage, every
node can publish to any topic)
• Floodsub (IPFS’ pub-sub implementation)
• Pulsarcast with order guarantees (only one node per topic
is allowed to publish and all nodes can request to publish)

For Pulsarcast without order guarantee our fultilment results
were the following:
• Under normal network conditions
– 99% of subscription coverage, having all the events
injected into the system as reference

– 99% of subscription coverage, having the events effec-
tively published as reference

• Under abnormal network conditions
– 51% of subscription coverage, having all the events
injected into the system as reference

– 86% of subscription coverage, having the events effec-
tively published as reference

Figures 6 and 7 show us a comparison of event fulfilment
rates across topics. A couple of factors contributed to the dis-
crepancy between the values of the first and the second execu-
tions. The first one is an implementation detail in our Javascript
Pulsarcast module, where on each command it receives, it waits
on the initial DHT persistence and propagation of events/topics
before returning control to the caller (and consequently reply-
ing to the clients of our HTTP API). This creates a natural
back pressuring system that ended up dragging the second
execution for 13h versus the 85 minutes that took for the first
execution. The long execution ended up putting a lot of pres-
sure in our testbed which terminated two Pulsarcast nodes due
to resource limitations. Nevertheless, our fulfilment rates are
almost perfect for the first execution and still considerably high
under abnormal network conditions. As for resource usage our
first execution had a maximum memory consumption of 31.924
GiB across the cluster, with an average of 0.319 GiB per node
and a P99 of 0.378 GiB. For the second execution our memory
footprint was fairly higher (responsible for the node termina-
tions), with a total consumption of 35.8 GiB, average of 0.36
per node and a P99 of 0.43 GiB. As expected, given our systems
were mostly idle, CPU usage was much lower in the second
execution, between 3.5 and 3.8 vCPUs in the first test run and
0.6 and 1.25 in the second one.

Figure 6. Pulsarcast without order guarantee - Comparison of
events fulfilled by topic in a log scale

For Pulsarcast with order guarantee our fultilment results
were the following:

Figure 7. Pulsarcast without order guarantee - Comparison of
percentage of events fulfilled by topic

• Under normal network conditions
– 37% of subscription coverage, having all the events
injected into the system as reference

– 80% of subscription coverage, having the events effec-
tively published as reference

• Under abnormal network conditions
– 32% of subscription coverage, having all the events
injected into the system as reference

– 62% of subscription coverage, having the events effec-
tively published as reference

Figures 8 and 9 show us a comparison of event fulfilment
rates across topics. Both executions saw 2 nodes being ter-
minated due to limitations on the resources available to the
testbed, specifically CPU. These executions put a lot of stress
into the root nodes of the most popular topics. Consequently,
this affected our fulfilment rates. However, we are aiming at a
total different level of QoS in this scenario, so it is important to
put these numbers into perspective, as it is unfair to compare
them directly with any of the other results in this document.
It is interesting to see though that, despite the added network
latency in the second execution, our QoS did not suffer a clear
impact. As for resource usage our first execution had a max-
imum memory consumption of 17.84 GiB across the cluster,
with an average of 0.178 GiB per node and a P99 of 0.207 GiB.
For the second execution our memory footprint was quite sim-
ilar, with a total consumption of 19.99 GiB, average of 0.2 per
node and a P99 of 0.35 GiB. As expected, given our systems
were mostly idle, CPU usage was much lower in the second
execution, between 3 and 4.5 vCPUs in the first test run and
0.93 and 4.33 in the second one.

Finally our Floodsub scenario executions gave us the follow-
ing results 31:
• 41% of subscription coverage under normal network con-
ditions
• 31% of subscription coverage, under abnormal network
conditions

Figures 10 and 11 show us a comparison of event fulfilment
rates across topics. For both experiments, the network as a
whole was unable to cope with the load of our execution and

31For Floodsub there is no distinction between an event injected into the system
and an event published, given there is no acknowledgement for it

Pulsarcast

Figure 8. Pulsarcast with order guarantee - Comparison of
events fulfilled by topic in a log scale

Figure 9. Pulsarcast with order guarantee - Comparison of
percentage of events fulfilled by topic

shortly after starting, some nodes became unresponsive and
were terminated, going as low as only 15 node running at a
given time. It took about 50 minutes for the network to fully
recover to 100 nodes again. This is a clear indicator of Flood-
sub’s inability to handle the same workload Pulsarcast did in
the previous scenarios. Which is expected, as the way Floodsub
operates is by forwarding messages to all of its peers, creating a
huge strain in the network (both CPU wise and in network data
transmission). In terms of resource usage, memory consump-
tion has been lower than the Pulsarcast experiments,hitting a
maximum of 21.15 GiB for the first experiment and 15.95 for
the second one. However, CPU has been way higher, picking at
5.53 vCPUs across the cluster. Network wise, Floodsub experi-
ments have transmitted much more data for a lower QoS level,
specifically 6552 MiB and 6474 MiB for both experiments across
the cluster, three times as much for the respective Pulsarcast
experiments.

6 Conclusion
In this work, we introduced Pulsarcast, a decentralised, topic-
based, pub-sub solution that seeks to bring reliability and even-
tual delivery guarantees (commonly associated with centralised
solutions) to the P2P realm. We analysed how Pulsarcast pro-
vides a feature rich API on top of a system that leverages a
Kadmelia structured overlay to build immutable and content-
addressable data structures (Merkle DAG) representing both
topics and events. These structures power Pulsarcast’s eventual
delivery guarantees.

Figure 10. Floodsub - Comparison of percentage of events
fulfilled by topic

Figure 11. Floodsub with latency - Comparison of percentage
of events fulfilled by topic

We observed that Pulsarcast surpassed IPS’s current imple-
mentation (Floodsub) in every aspect, providing a better QoS
with a smaller resource footprint. The only exception being
the order guarantee scenarios, however we are looking at total
different levels of QoS. Resource wise, Floodsub is far more
network-intensive than Pulsarcast (with six times more usage
in some cases) and generally requires more CPU power. It is
also essential to consider Pulsarcast’s high publish rates, given
that for each event published we store it in the DHT. This is
the cornerstone of its eventual delivery guarantees, giving ap-
plications the ability to fetch missing events from their event
tree.
We concluded that our system provides a good alternative

to applications that seek a better QoS level as well as a feature-
rich topology setting, that allows to restrict publishers and
configure topics to one’s needs. Despite being heavily reliant
on a structured overlay, Pulsarcast did not underperform under
adverse network conditions, making it suitable for multiple
scenarios.

References
[1] Marcos K. Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley,

and Tushar D. Chandra. Matching events in a content-based subscription
system. Proceedings of the eighteenth annual ACM symposium on Principles
of distributed computing - PODC ’99, pages 53–61, 1999.

João Antunes

[2] Nuno Apolonia, Stefanos Antaris, Sarunas Girdzijauskas, George Pallis,
and Marios Dikaiakos. SELECT: A distributed publish/subscribe notifi-
cation system for online social networks. Proceedings - 2018 IEEE 32nd
International Parallel and Distributed Processing Symposium, IPDPS 2018,
pages 970–979, 2018.

[3] Roberto Baldoni, Roberto Beraldi, Vivien Quema, Leonardo Querzoni,
and Sara Tucci-Piergiovanni. TERA. In Proceedings of the 2007 inaugural
international conference on Distributed event-based systems - DEBS ’07,
page 2, New York, New York, USA, 2007. ACM Press.

[4] Ar Bharambe, Sanjay Rao, and Srinivasan Seshan. Mercury: a scalable
publish-subscribe system for internet games. 1st Workshop on Network
and Systems Support for Games (NetGames ’02), pages 3–9, 2002.

[5] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design
and evaluation of a wide-area event notification service. Foundations of
Intrusion Tolerant Systems, OASIS 2003, 19(3):283–334, 2003.

[6] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony Row-
stron. Scribe:A large-scale and decentralized application-level multicast
infrastructure. IEEE Journal on Selected Areas in Communication, 20, 2002.

[7] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-based infrastruc-
ture and its application to the development of the OPSS WFMS. IEEE
Transactions on Software Engineering, 27(9):827–850, 2001.

[8] João Paulo De Araujo, Luciana Arantes, Elias P. Duarte, Luiz A. Rodrigues,
and Pierre Sens. A Publish/Subscribe System Using Causal Broadcast
over Dynamically Built Spanning Trees. Proceedings - 29th International
Symposium on Computer Architecture and High Performance Computing,
SBAC-PAD 2017, pages 161–168, 2017.

[9] David Dias and Luís Veiga. BrowserCloud.js: A distributed computing
fabric powered by a P2P overlay network on top of the web platform.
Proceedings of the ACM Symposium on Applied Computing, pages 2175–
2184, 2018.

[10] Patrick Eugster, Rachid Guerraoui, Joe Sventek, and Agilent Laboratories
Scotland. Type-Based Publish/Subscribe. Technical report, Swiss Federal
Institute of Technology, Lausanne, 2000.

[11] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. Themany faces of publish/subscribe. ACMComputing Surveys,
35(2):114–131, 2003.

[12] Abhishek Gupta, Ozgur D Sahin, Divyakant Agrawal, and Amr El Abbadi.
Meghdoot: Content-Based Publish/Subscribe over P2P Networks. Springer
LNCS, 3231/2004(Middleware 2004):254–273, 2004.

[13] Anne-Marie Kermarrec and Peter Triantafillou. XL peer-to-peer pub/sub
systems. ACM Computing Surveys, 46(2):1–45, 2013.

[14] Petar Maymounkov and David Mazières. Kademlia: A Peer-to-Peer In-
formation System Based on the XOR Metric. In Peter Druschel, Frans
Kaashoek, and Antony Rowstron, editors, Peer-to-Peer Systems, volume
2429, pages 53–65, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[15] P. R. Pietzuch and J. M. Bacon. Hermes: A distributed event-based middle-
ware architecture. Proceedings - International Conference on Distributed
Computing Systems, 2002-Janua:611–618, 2002.

[16] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Schenker. A scalable content-addressable network. ACM SIGCOMM
Computer Communication Review, 31(4):161–172, 2001.

[17] Antony Rowstron and Peter Druschel. Pastry: Scalable, Decentralized
Object Location, and Routing for Large-Scale Peer-to-Peer Systems. In
Rachid Guerraoui, editor,Middleware 2001, number November 2001, pages
329–350. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[18] Vinay Setty, Gunnar Kreitz, Roman Vitenberg, Maarten van Steen, Guido
Urdaneta, and Staffan Gimåker. The hidden pub/sub of spotify. In Proceed-
ings of the 7th ACM international conference on Distributed event-based
systems - DEBS ’13, page 231, New York, New York, USA, 2013. ACM Press.

[19] Vinay Setty and Maarten Van Steen. Poldercast: Fast, robust, and scalable
architecture for P2P topic-based pub/sub. Proceedings of the 13th . . . , pages
271–291, 2012.

[20] I Stoica, R Morris, D Karger, M F Kaashoek, and H Balakrishnan. Chord: A
Scalable Peer-to-peer Pookup Service for Internet Applications. Sigcomm,
pages 1–14, 2001.

[21] Robert Strom, Guruduth Banavar, Tushar Chandra, Marc Kaplan, Kevan
Miller, Bodhi Mukherjee, Daniel Sturman, and Michael Ward. Gryphon:
An Information Flow Based Approach to Message Brokering. Arxiv
preprint cs9810019, cs.DC/9810:1–2, 1998.

[22] Spyros Voulgaris, Daniela Gavidia, and Maarten Van Steen. CYCLON:
Inexpensive membership management for unstructured P2P overlays.
Journal of Network and Systems Management, 13(2):197–216, 2005.

[23] Spyros Voulgaris, Etienne Riviere, Anne-marie Kermarrec, Maarten Van
Steen, Others, Etienne Rivière, Anne-marie Kermarrec, and Maarten Van
Steen. Sub-2-Sub: Self-Organizing Content-Based Publish and Subscribe
for Dynamic and Large Scale Collaborative Networks. Technical report,
INRIA, 2005.

[24] Spyros Voulgaris and Maarten Van Steen. VICINITY: A pinch of random-
ness brings out the structure. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), 8275 LNCS:21–40, 2013.

[25] Huanyang Zheng and Jie Wu. NSFA: Nested Scale-Free Architecture for
scalable publish/subscribe over P2P networks. Proceedings - International
Conference on Network Protocols, ICNP, 2016-Decem:1–10, 2016.

[26] Shelley Q Zhuang, Ben Y Zhao, Anthony D Joseph, Randy H Katz, and
John D Kubiatowicz. Bayeux: An Architecture for Scalable and Fault-
Tolerant Wide-Area Data Dissemination. In Proceedings of the 11th Inter-
national Workshop on Network and Operating Systems Support for Digital
Audio and Video, number June in NOSSDAV ’01, pages 11–20, New York,
NY, USA, 2001. Association for Computing Machinery.

[27] Nejc Zupan, Kaiwen Zhang, and Hans Arno Jacobsen. Demo: Hyper-
PubSub: a decentralized, permissioned, publish/subscribe service using
blockchains. Middleware 2017 - Proceedings of the 2017 Middleware Posters
and Demos 2017: Proceedings of the Posters and Demos Session of the 18th
International Middleware Conference, pages 15–16, 2017.

	Abstract
	1 Introduction
	2 Related Work
	3 Pulsarcast
	4 Implementation
	5 Evaluation
	6 Conclusion
	References

