Mobility Support in OBIWAN*

Luis Veiga

Paulo Ferreira

{luis.veiga,paulo.ferreira } @inesc.pt
INESC/IST, Rua Alves Redol N° 9, Lisboa, Portugal

http://www.gsd.inesc.pt

Abstract

The need for sharing is well known in a large number
of distributed collaborative applications in a mobile en-
vironment. For this purpose, we have been developing
a platform called OBIWAN! that: i) allows the appli-
cation programmer to decide the mechanism by which
objects should be invoked, remote method invocation or
invocation on a local replica, ii) allows incremental (on-
demand) replication of large object graphs, iii) provides
hooks for the application programmer to implement a
set of application specific properties such as transac-
tional support or updates dissemination, iv) supports
the migration of execution flows allowing the implemen-
tation of mobile agents, and v) supports the concept of
a computing dynamic horizon in which resources in a
broader sense (memory, disks, printers, internet access,
data and even code) can be found in other neighbor de-
vices and used accordingly.

1 Introduction

There is a clear need for data sharing and collaboration
support in a large number of applications in different
domains. In OBIWAN, we focus on applications in the
area of co-operative work within virtual organizations;
for example, a virtual enterprise grouping several com-
panies from different countries, a virtual marketplace,
a widely distributed software development team, a dis-
tributed game involving people anywhere in the world,
etc.

This need for information sharing is increasing along
two main axis: wide area (i.e., across the Internet) and
mobility (i.e., portable computers, webpads, personal
digital assistants, smart cellular phones, etc.). As a
matter of fact, besides the growing number of desktop
computers connected to the Internet, there are other
devices, generally called information appliances (info-
appliances, for short) that are gaining enormous popu-

*This work was supported by Microsoft Research.
LOBIWAN stands for Object Broker Infrastructure for Wide
Area Networks.

phone: 351 21 3100292

larity; personal digital assistants (PDAs) are just one of
them.

The role of these info-appliances, currently handling
agendas, calendars, etc. will certainly grow as more
computing power and communications capability can be
included [17, 18]. In particular, the foreseen increase of
bandwidth in wireless communication makes the con-
nection of these info-appliances to the Internet a reality
[15].

We envisage a general scenario in which a user wants
to access data using a PC in his office, using a laptop
while in the airport or in the hotel, using a PDA in a
taxi, etc. The user wants to live in this “data ubiquitous
world” with no other concern besides doing his own work
and, as much as possible, to keep on working in spite
of any system problem that may occur (e.g. network
partitions).

So, there is a constant need to access shared data no
matter where you are and the info-appliance you use,
and users want the same degree of responsiveness and
performance as in a fully high-bandwidth low-latency
wired connected environment. Sometimes these require-
ments may be impossible to fulfill but the system should
be able to minimize the number of such occurrences.

As a matter of fact, mobile computing is character-
ized by significant and rapid changes in its supporting
infrastructure and, in particular, in the quality of service
available from the underlying communication channels;
wireless links provide lower bandwidth, possibly higher
error rates than wired networks, and periods of discon-
nection and intermittent or variable connectivity may
occur.

For example, if accessing data on some remote ma-
chine is not possible for some reason, the application
should not stop working; instead, it should, at least,
automatically propose the user an alternative access to
such data from another machine, even if such data is
not up to date.

Another example is related to network partitions.
While these are rare in stationary local area networks,
they occur in greater number in wide area mobile net-
works. Most applications consider them to be failures

et
hard disk

ran. manag| Site F - PaimPiot
internet
\ printer
hard disk
te€-DeskopPc| | internet
scanner

rinter

i
ran. manag.|

internet

emet herd disk
| Site C-Mobile Wap | | Site D- Portabie PC. | intenet
wjﬁ \

tran. manag.
A0
—_ Provider o
/ IDemandero:
A0 / A0 180
IProvider O IProvidero—
Demandero— IDemandero—,
O arendee 1ProviderRemote O IC
BproxyOut)—o8 iBo—8 IProvide
Demandero—\

Interface IDemander
void setProvider(IProvider);
void updateMember(Object replica,
Object member);

Interface IProvider
Object get(mode)
void put(Object)

terface ProviderRemote) /interface IDemandee
Object get(mode) void setProvider(IProvider);
void put(Object) void setDemander(IDemander);
Object demand();

Figure 1: Main structures of OBIWAN.

that are exposed to users. In the mobile environment,
applications will face frequent, lengthy network parti-
tions. Some of these partitions will be involuntary (e.g.,
due to a lack of network coverage) while others will be
voluntary (e.g., due to a high dollar cost). Mobile ap-
plications should handle such partitions gracefully and
as transparently as possible. In addition, users should
be able, as far as possible, to continue working as if the
network was still available. In particular, users should
be able to modify local copies of global data.

The rest of the paper is organized as follows. In the
next section we describe the most important aspects of
the OBIWAN platform: its architecture, replication and
migration support. In Section 3 we describe the main
steps for programming applications running on top of
OBIWAN. Then, in Sections 4 and 5 we present the im-
plementation and some performance results. Sections 6,
7 and 8 describe some related work, future OBIWAN
improvements and conlusions, respectively.

2 OBIWAN

The overall objective of the OBIWAN project is to de-
sign and implement a system that: (i) is well suited
to support distributed applications with strong sharing
needs in a mobile environment, and (ii) facilitates ap-

plication development by releasing programmers from
the need to handle complex system issues such as fault-
tolerance, memory management, etc., while providing
the right level of abstraction and functionality to deal
with unexpected situations.

We believe that the notion of a generic object broker
infrastructure provides the means to the kind of sharing
described above. Intuitively, to describe our object bro-
ker infrastructure, we can say that OBIWAN supports
applications that manipulate an ocean of objects; these
objects are scattered over a variety of locations and info-
appliances, can flow among such appliances, and contain
innumerable references connecting them.

OBIWAN provides support for the following: i) al-
lows the application programmer to decide the mech-
anism by which objects should be invoked, remote
method invocation or invocation on a local replica, ii) al-
lows incremental (on-demand) replication of large object
graphs, iii) provides hooks for the application program-
mer to implement a set of application specific properties
such as transactional support or updates dissemination,
iv) supports the migration of execution flows allowing
the implementation of mobile agents, and v) supports
the concept of a computing dynamic horizon in which
resources in a broader sense (memory, disks, printers,
internet access, data and even code) can be found in
other neighbor devices and used accordingly.

We believe that all this functionality allows the ap-
plication programmer to deal with situations that fre-
quently occur in a (mobile) wide-area network, such as
disconnections and slow links.

2.1 Architecture

Figure 1 illustrates the architecture of OBIWAN. It
shows six sites (A....F) with arrows among them mean-
ing that, at some instant, they know each other. Thus,
they can exchange information and, for example, use
the resources of each other. We present with more de-
tail the objects (and the references among them) for
sites C and D. Close to each site we also present infor-
mation describing the site resources such as hard disk,
transaction manager, wired connection to the internet,
etc.

Stubs and skeletons are created by the underlying
virtual machine. (Currently, both .Net and Java are
supported). Objects A, B and C are created by the
programmer; their replicas, A’, B’, and C’ are created
upon the programmer’s request. All other objects, i.e.
proxies-in and proxies-out, are part of the OBIWAN
platform and are transparent to the programmer. Fig-
ure 1 also shows, for each object and proxy, the inter-
faces implemented:

e TA IB and IC: these are the remote interfaces of

objects A, B and C, respectively, designed by the
programmer; they define the methods that can be
remotely invoked on these objects.

e IProvider: interface with methods that support the
creation and update of replicas; method get results
in the creation of a replica and method put is in-
voked when a replica is sent back to the process
where it came from in order to update its master
replica.

e IDemander and IDemandee: methods that support
the incremental replication of an object’s graph; in
other words, the implementation of these interfaces
allow OBIWAN to detect an object fault and to
service it accordingly.

e IProviderRemote: remote interface that inherits
from IProvider so that its methods can be invoked
remotely.

2.2 Replication

OBIWAN provides support for objects in the sense that
they can be invoked either remotely, via remote method
invocation (RMI) [1, 21], or locally via local method
invocation (LMI) based on a replication mechanism that
brings objects to the info-appliance where an application
is running [10].

This replication mechanism is incremental in the
sense that only those objects that are really needed are
effectively replicated (not the whole graph which can
be very large); the application does not have to wait
for the replication of every object it needs, as this is
done in parallel in the background (with a pre-fetching
approach).

The flexibility of the invocation mechanism allows the
application programmer to develop his application so
that it resists to network failures, and allows the user to
work disconnected from the network (either voluntary
or not). As a matter of fact, as long as those objects
needed by an application (or an agent) are locally acces-
sible, there is no need to be connected to the network.
In addition, by replicating objects in the info-appliance
where an application using them is running, the over-
all performance can be improved w.r.t. an approach in
which objects are always invoked via RMI.

Finally, note that the programmer can easily replace,
in run-time, remote by local invocations on replicas,
thus improving the performance of his application and
its adaptability.

2.3 Incremental Replication

We now explain in detail the steps involved in the incre-
mental replication of the graph presented in Figure 1.

Consider the initial situation in which there is no replica
of the graph A-B-C in site C. Then, the application run-
ning in site C requests A’ by invoking method AProx-
yIn.get; this method simply invokes A.get. Then, this
method executes the following:

1. create A’ in site D;

2. for each reference A holds (only to B in this case)
create the corresponding ProxyIn objects (only
BProxylIn in this case) in site Dj; in the constructor
of BProxylIn, set an internal reference pointing to
B;

3. create a ProxyOut object for each ProxyIn created
in the previous step (only BProxyOut in this case)
in site D;

4. set the internal reference of A’ (of type IB) so that
it points to BProxyOut;

5. invoke BProxyOut.setProvider(BProxyIn) so that
BProxyOut points to BProxyln;

6. invoke BProxyOut.setDemander(A’) so that
BProxyOut also points to A’; return A’ to site C.

Thus, AProxyIn.get terminates simply by returning A’.
As aresult, A’ and BProxyOut are automatically serial-
ized by the underlying virtual machine and sent to site
C. Thus, in site C, object A’ points to BproxyOut (that
stands for B’).

Later, the code in A’ may invoke any method that
is part of the interface IB, exported by B, on BProx-
yOut (that A’ sees as being B’). For transparency,
this requires the system to support a kind of “object
fault” mechanism as described now. All IB methods in
BProxyOut simply invoke its demand method BProxy-
Out.demand that runs as follows:

1. invokes method BProxylIn.get (BProxyIn is BProx-
yOut’s provider);

2. BProxyln.get invokes B.get that will proceed in a
similar way as explained previously for A.get: cre-
ates B’, CProxyOut, CProxyln and sets the refer-
ences between them; once this method terminates,
B’, BProxyOut and CProxyOut are all in site C,
CProxyln is in site D, and BProxyOut points to
B’; note that A’ and BProxyOut still point to each
other;

3. BProxyOut invokes B’.setProvider(this.provider)
so that B’ also points to BProxylIn; this is needed
because the application can decide to update the
master replica B, by invoking method B’.put that in
turn will invoke BProxyIn.put, or to refresh replica
B’ (method BProxyIn.get);

4. BProxyOut invokes A’.updateMember(B’,this) so
that A’ replaces its reference to BProxyOut with
a reference to B’;

5. finally, BProxyOut invokes the same method on B’
that was invoked initially by A’ (that triggered this
whole process) and returns accordingly to the ap-
plication code;

6. from this moment on, BProxyOut is no longer
reachable in site C and will be reclaimed by the
garbage collector of the underlying virtual machine.

It’s important to note that, once A’ and B’ are in
site C, further invocations from A’ on B’ will be normal
direct invocations with no indirection at all. Obviously,
later, if and when B’ invokes a method on CProxyOut
(standing in for C’ that is not yet replicated in site C)
an object fault occurs and will be solved with a set of
steps similar to those previously described.

The replication mechanism just described is very flex-
ible in the sense that allows each object to be individ-
ually replicated. However, this has a cost that results
from the creation and transference of the associated data
structures (i.e., proxies). To minimize this cost OBI-
WAN allows an application to replicate a set of objects,
i.e. a cluster.

A cluster is a set of objects that are part of a reacha-
bility graph. For example, if an application holds a list
of 1000 objects, it is possible to replicate a part of the
list so that only 100 objects are replicated and a sin-
gle pair of proxy-in/proxy-out is effectively created and
transferred between sites. Thus, the amount of objects
in the cluster is determined in run-time by the applica-
tion. The application specifies the depth of the partial
reachability graph that it wants to replicate as a whole.
So, these clusters are highly dynamic. This is an in-
termediate solution between: i) having the possibility
of incrementally replicate each object, or ii) replicating
the whole graph.

2.4 Migration

In addition to replication, OBIWAN also supports the
migration of execution flows making possible the im-
plementation of mobile agents. However, since threads’
stacks are not first class objects (both in .Net and Java)
the programmer must provide synchronization points in
which the agent execution can be freezed, its state se-
rialized and transferred for ulterior reactivation upon
arrival on another machine.

Agents activities should be monitored for twofold se-
curity reasons. Some machines may not allow certain
actions to some agents based on their origin and migra-
tion path. On the other side, agents should be able to
choose among several available paths from one machine
to another.

interface java.rmi.Remote

g “interface 1A

interface IProvider

_extends Serializable .’ n
s S ;
N . [interface IRestartable| |
“\extends Runnable J /
N » ! [interface IDemander _
i IProviderRemote

4

;/ [(interface IDemandee

‘

class A .
implements IA\
IDemander,
IProvider,

IRestartable /",

.-*Giass AProxyOut.
. implements)
'\.Jj}, IDemandee .-

interface IARemote T
extends IA, IProviderRemote v

[part of Java language
(D part of OBIWAN platform
generated by OBIWAN compiler

o coded in part by the programmer wmemmmTTTIIIIIIIII R ERLU, A
--=""Class AProxyin Tl
extends java.rmi.server.UnicastRemoteObjec
“*-...implements IARemote

Figure 2: Interfaces and classes of OBIWAN. Inheritance is
represented with a solid line; implementation is represented
with a dashed line.

3 Application Development

The programming of a distributed application with
OBIWAN, when compared to a standard approach
based on RMI, is simpler and provides more function-
ality. As a matter of fact, the programmer only has to
write:

e an interface specifying the methods that an object
will service (e.g. interface TA), and

e a class implementing the just mentioned interface
(e.g. class A).

All the rest, i.e. the code handling the invocations
either via RMI or LMI (after the creation of a local
replica), incremental replication, object-fault detection
and serving, and migration of execution flow is auto-
matically generated. This generation is done with a tool
called obicomp.

Note that even the above mentioned interface (e.g.
TA) can be derived from the corresponding class (e.g.
A). This is important because it allows us to automa-
tize the porting of legacy non-distributed applications
to OBIWAN.

Finally, the implementation of interfaces IProvider
and IDemander on objects written by the programmer
(e.g. A) is automatically generated through source code
insertion done by obicomp .

4 Implementation

The OBIWAN system runs both on top of the Java vir-
tual machine and on top of .Net. Both environments
are simple to use, and support the basic functionality
required, i.e. RMI, dynamic code loading and reflec-
tion. In this section we describe the classes, interfaces
and tools that constitute OBIWAN.

Suppose we want to build a distributed application
with an object that can be either locally replicated or
invoked via RMI. Additionally, we wanted objects to
be replicated incrementally, i.e., as and only when they
are needed. All the interfaces and classes involved in
this example are illustrated in Figure 2. The “rectan-
gular” interfaces and classes are part of the underlying
system (Java or .Net). The “rounded rectangles” repre-
sent OBIWAN platform interfaces that are constant and
therefore pre-compiled. The “dashed ellipses” represent
classes and interfaces automatically generated by the
obicomp compiler. Finally, the solid “ellipse” represents
the class that the programmer must write. The pro-
grammer only has to worry with the so-called “business-
logic”. The implementation of interfaces IDemander,
IProvider and, if so desired, interface IRestartable is au-
tomatic through source code augmentation of the class
the programmer has written.

The programmer only has to write class A, the cor-
responding interface TA can be derived from it, and,
obviously, the code of the client that invokes an in-
stance of A. Note that the interfaces IProvider and
IProviderRemote are constant, thus they do not have
to be generated each time an application is written.
The interface IARemote, and classes AProxyQOut and
AProxyIn are generated automatically.

To summarize, when a new application is developed
the programmer does the following steps:

e write the interface IA;
e write the class A;
e run the obicomp tool.

The last step is to automatically generate the other in-
terfaces and classes needed, and to extend class A im-
plementing interfaces IProvider and IDemander.
Currently, obicomp uses a mix of: i) reflection mecha-
nism to analyze classes and generate the corresponding
proxies, and ii) source code insertion to augment the
classes written by the programmer with the methods
that implement interfaces IDemander and IProvider.
Finally, the support for the migration of execution
flow is achieved simply by having class A to implement
the interface IRestartable (provided by OBIWAN that
derives from Runnable); OBIWAN generates automati-
cally the code that implements IRestartable except the

64 byte objects with clustering

300 750
25
250 100
250
200 500

—25
—100

I
s0 A 200

jr" — 750

time (ms)
g

invocations

1024 byte objects with clustering

400 500 190

25
350
300

750 et

time (ms)

#invocations

16K objects with clustering
3000

250
100

25

2500

2000

1500

time (ms)

1000

160 200 300 400 500 600 700 800 960 1000
#invocations

Figure 3: Incremental replication of clusters of objects.

method run and the special implementation of interface
IProvider that, besides creating and updating replicas,
makes use of IRestartable methods to freeze and restart
the object, prior to departure from, and after arrival to
any machine; this method, run, must be written by the
programmer.

5 Experimental Results

In this section we study the performance of incremental
replication with object clustering. These results were
obtained in a 100 Mb/sec local area network, connecting
Pentium IT and Pentium III PCs with 128 Mb of main
memory each, running JDK 1.3. We already have a
protoype running on .Net; preliminary results indicate a
much better performance than with Java. We will have
full results of the .Net implementation for the workshop.

We use several lists, each made of 1000 objects with
the same size. Different lists have objects with differente
sizes: 64 bytes, 1024 bytes and 16 Kbytes. The list
are created in site D. This list is then replicated into
another site C, in several steps, each step replicating
25, 100, 250, 500, or 750 objects. Then, the application

running in site C invokes a method on each object of the
list. When the object being invoked is not yet replicated
the system automatically replicates the next 25, 100,
250, 500, or 750 objects. So, objects are replicated in
groups, i.e. clusters with several sizes. This means that,
for each of these clusters, all objects are replicated as a
whole, thus there is only one proxy-in/proxy-out pair
being created. Consequently, each object can not be
individually updated.

The results are presented in Figure 3. Note that,
in each case, the time values include the creation and
transference of all the replicas along with the single cor-
responding proxy-out/proxy-in pairs. We can conclude
that:

e for larger objects, there is a bigger gain on having
small clusters;

e for any number of invocations, smaller clusters are
normally better.

Finnally, it’s worthy to note that the experiments
done, if performed using just standard serialization
mechanisms (in which all the graph is replicated at once)
on computers with limited memory (e.g. PDAs), would
not be feasible as the memory would be completely con-
sumed before the graph being totaly replicated.

6 Related Work

The OBIWAN platform is related to several other sys-
tems that support distributed invocation, replication,
automatic detection and resolution of object-faults. An
important difference is that all these systems do not
provide an integrated platform supporting all the mech-
anisms as OBIWAN does. This integration is an advan-
tage to the programmer as he may decide what func-
tionality is best adapted to his application scenario.

Javanaise [3, 11] is a platform that aims at provid-
ing support for cooperative distributed applications on
the internet. In this system the application program-
mer develops his application as if it were for a central-
ized environment, i.e. with no concern about distribu-
tion. Then, the programmer configures the application
to a distributed setting; this may imply minor source
code modifications; a proxy generator is then used to
generate indirection objects and a few system classes
supporting a consistency protocol. Javanaise does not
provide support for incremental replication. Javanaise
clusters are defined by the programmer and are less dy-
namic than in OBIWAN. In other words, the frontier of
the clusters in OBIWAN are defined in run-time by the
application in order to improve its performance and to
allow disconnected work.

There has been some effort in the context of CORBA
to provide support for replicated objects [9]. There has
been also similar efforts in the context of the World
Wide Web [3]. However, most of this work addresses
other specific issues such as group communication, repli-
cation for fault-tolerance, protocols evolution, etc. None
seems to address the issue of distributed application de-
velopment for networks of info-appliances with mobility
in mind. OBIWAN attempts to minimize bandwidth
and connection time to address this issue. With OBI-
WAN, the programmer has the means to make his ap-
plication to decide, in run-time, if an object should be
invoked via RMI or if a local replica should be created.
We believe that this is a very important aspect when
developing distributed applications for info-appliances
given the significant and rapid changes in the quality of
service of the underlying network.

The issue of object caching has been addressed by
many systems. This is different from what we pro-
pose, replication: in OBIWAN objects can be replicated
freely among sites. However, there are some common
aspects between caching and replication. An impor-
tant distributed system with object and page caching is
Thor [14]. This system provides a hybrid and adaptive
caching mechanism handling both pages and objects.
In addition, Thor provides its own programming lan-
guage. Most object-oriented databases (OODBs) [22],
for example such as O [7], GemStone [2], do have some
kind of caching. However, they are very heavyweight,
and often come with their own specialized programming
language. There has been some work on object caching
in CORBA as well. For example, Chockler [8] proposes
an hierarchical cache system in which servers cache ob-
jects that clients will then ask for. When compared to
OBIWAN; it is clear that we do allow objects to be repli-
cated in the client and there is no hierarchical caching
system.

Much work has been done regarding object-fault han-
dling [13, 20]. However, most of it has been centered on
persistent programming languages or related to adding
transparent, orthogonal persistence to existing program-
ming languages. Nevertheless, it is useful, since it intro-
duces well-known and widely accepted designations for
relevant existing techniques and/or concepts, e.g. swiz-
zling. Our object-fault handling is done without mod-
ifying the underlying virtual machine. This makes our
solution more portable.

7 Future Improvements

We provide, in OBIWAN, a series of hooks through
which, a number of mostly orthogonal facilities can be
provided to applications/agents. These include memory

management, policies for coherence of replicas, security
and privacy, interaction with other objects outside OBI-
WAN.

Memory is at premium in mobile environments. Al-
though memory capacity of mobile devices increases
steadily, it will always be relatively limited compared
to portable and desktop computers. With this premiss
in mind, some old axioms must fall or at the very least,
be relaxed. Due to severe memory limitations, even live
data should be reclaimed in order to provide free mem-
ory so that applications/agents can continue to function.
This data, however, should not be simply discarded but
instead swapped-out whenever possible, e.g. saved else-
where in some more capable, portable or desktop com-
puter. Naturally, this raises some old issues, like trash-
ing, but in a new environment. Efficient policies should
be developed based on a mix of adaptable behavior and
application programmer’s hints.

In a replicated environment with possibly long dis-
connected periods, coherence of replicas poses some dif-
ficulties. Pessimistic and synchronous models should
be provided to maintain old applications semantic but
with the unavoidable performance penalties. These
should not be encouraged in the next generation ap-
plications/agents. They should be based in optimistic,
mostly asynchronous models that allow computation to
proceed, even in the presence of old data, and per-
form ulterior conciliation of data at merging time. This
should be achieved in an automatic fashion for common
data manipulations, with application specific treatment
or even with user intervention. Several transactional
models should be provided and could be combined in
the same application/agent to access data with differ-
ent freshness and exclusiveness requirements.

In such a complex new environment, security can no
longer consist in a series of simple access control and au-
thentication permissions for hardware, data, programs
and communication media. Information flows through
different, possibly scattered machines. Security related
information must obviously be secured, as well. More
so, security concepts should be enlarged to bear obliga-
tion policies, i.e., permissions are no longer just a func-
tion of application/agent identity and desired resources
but also of past execution. Previous actions should be
denied and their results relegated if they are not fol-
lowed by other demanded actions. This can be achieved
by using transaction rollbacks. However, this security
information must travel untouched through a series of
machines. In order to accomplish this, security data and
application/agent logs should be successively encrypted
with several machines private keys. Any machine could
consult these logs to uphold security obligation policies
but none of them, and more importantly the applica-
tion/agent, could tamper with the information produced

by others.

To leverage existing applications and document for-
mats, some form of interaction with other objects out-
side OBIWAN should be provided. This can easily be in-
corporated in ProxyIn and ProxyOut objects that have
automation code to load, save, manipulate and convert
most document types, e.g. Word, Excel and PowerPoint
documents [12].

7.1 Resource Discovery and Usage

Traditionally, applications’ resources have always been
seen as the set of hardware resources used by the ap-
plication/agent from those available in the running ma-
chine or from a well-known set of neighbor machines
as those in a LAN. The latter usually include printers
and hard disk storage, sometimes internet access, sel-
dom memory and processing power and rarely code.

We purpose the adaptation of the concept of known
horizon to computing. Thus, we think that the re-
sources available to an application/agent should not
be restricted to those installed in the running device
(computer, PDA, etc.). They should include all that
are accessible within acceptable time frames (the hori-
zon) from all devices the application/agent is aware of.
Proximity-triggered notification should be used to fre-
quently update current horizon definition in each device.

Furthermore, resources should be considered in a
broader sense and include as much computation ele-
ments as possible. They should include CPU power,
specific code in the from of services, extended memory,
communication media, etc.

Whenever required hardware becomes available,
logged application/agent requests to it should be ac-
tivated. Additionally, every time fresh data or more
recent and sophisticated code comes near, they should
be transparently acquired for improved results and func-
tionality.

This relaying-based access to resources and propaga-
tion of computation results raises new issues, namely
security ones, that we want to pursue our research
on. Applications/agents and the runtime should be
able to monitor possible vulnerabilities as malicious re-
sources usage, un-trusted code location, data relay paths
through machines without the desired trust level.

8 Conclusions

In wide area networks, distributed applications must
be capable of dealing with variable quality of service
and disconnections. The mechanism of object replica-
tion supported in OBIWAN allows the programmer to
deal with such situations; applications may decide, at

run-time, what is the best way to invoke an object: via
remote method invocation (RMI), or locally via local
method invocation (LMI) based on a replication mecha-
nism that brings objects to the info-appliance where an
application is running.

The flexibility of the invocation mechanism allows
the application programmer to develop his application
in such a way that the user can continue to work dis-
connected from the network (either voluntary or not).
As long as the objects needed by an application (or an
agent) are locally accessible, there is no need to be con-
nected to the network. In addition, by replicating ob-
jects in the info-appliance where an application using
them is running, the overall performance can be im-
proved w.r.t. an approach in which objects are always
invoked via RMI.

We showed how incremental replication and object
faulting resolution can be done without modifying the
underlying (Java or .Net) virtual machine.

The number of objects being replicated can be
changed in run-time by the application. This allows
the application to balance latency, bandwidth, invoca-
tion performance and memory used. All these aspects
are of utmost importance in a mobile wide-area network
of info-appliances. The performance results of our pro-
totypes, even with no special optimizations, are very
encouraging.

We plan to test our prototype on several info-
appliances under different network conditions (wide-
area and wireless). We will study how the performance
numbers presented in Section 5 depend on the relative
speed of the processors involved, for example, between
a hand-held PC such as Compaq iPAQ, and a desktop
PC.

References

[1] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward
Wobber. Network objects. Software Practice and Ezperi-
ence, S4(25):87-130, December 1995.

[2] P. Butterwoth, A. Otis, and J. Stein. The GemStone object
database management system. Communications of the ACM,
34(10):64-77, October 1991.

[3] Steve J. Caughey, Daniel Hagimont, and David B. Ingham.
Deploying distributed objects on the internet. Recent Ad-
vances in Dist. Systems, Springer Verlag LNCS, Eds. S.
Krakowiak and S.K. Shrivastava, 1752, February 2000.

[4] S. Chiba. Javassist — a reflection-based programming wiz-
ard for java. In Proc. of OOPSLA’98 W’shop on Reflective
Programming in C++ and Java, October 1998.

[5] Geoff Cohen, Jeff Chase, and David Kaminsky. Automatic
program transformation with joie. In Proc. of the 1998
USENIX Annual Technical Symposium, 1998.

[6] M. Dahm. Byte code engineering with the javaclass api.
Technical report b-98-17, Freie Universitdt Berlin, Institut
fiir Informatik, 1998.

[7]
(8]

[9]

(10]

(1]

(12]

(13]

(14]

15]
(16]

(17]

(18]

(19]

[20]

(21]

(22]

O. Deux et al. The O system. Communications of the ACM,
34(10):34-48, October 1991.

G. Chockler el al. Implementing caching service for dist.
corba objects. In Proc. of the IFIP/ACM Int. Conf. on
Dist. Systems Platforms and Open Dist. Processing (Mid-
dleware’2000) - Springer Verlag, Heidelberg, April 2000.

Pascal Felber, Rachid Guerraoui, and André Schiper. Repli-
cation of corba objects. Recent Advances in Dist. Systems,
Springer Verlag LNCS, Eds. S. Krakowiak and S.K. Shri-
vastava, 1752, February 2000.

Paulo Ferreira, Marc Shapiro, Xavier Blondel, Olivier Fam-
bon, Jo ao Garcia, Sytse Kloosterman, Nicolas Richer,
Marcus Robert, Fadi Sandakly, George Coulouris, Jean
Dollimore, Paulo Guedes, Daniel Hagimont, and Sacha
Krakowiak. PerDiS: design, implementation, and use of a
PERsistent DIstributed Store. Recent Advances in Dist. Sys-
tems, Springer Verlag LNCS, Eds. S. Krakowiak and S.K.
Shrivastava, 1752, February 2000.

Daniel Hagimont and F. Boyer. A configurable rmi mecha-
nism for sharing dist. java objects. IEEE Internet Comput-
ing, 5, January 2001.

Christopher K. Hess, Francisco Ballesteros, Roy Capmbell,
and M. Dennis Mickunas. An adaptive data object ser-
vice for pervasive computng environments. In Proceedings of
the Sizth USENIX Conference on Object-Oriented Technolo-
gies and Systems (COOTS’01), San Antonio (USA), January
2001.

Anthony L. Hosking and J. Elliot B. Moss. object fault han-
dling for persistent programming languages: a performance
evaluation. In ACM Conf. on Object-Oriented PRogramming
Systems, Languages and Applications, 288-303, September
1993.

Barbara Liskov, Mark Day, and Liuba Shrira. Distributed
object management in Thor. In Proc. Int. Workshop on
Distributed Object Management, pages 1-15, Edmonton
(Canada), August 1992.

Malcom W. Oliphant. The mobile phone meets the internet.
Software Practice and Ezperience, 36(8):20-28, August 1999.

David S. Platt. Introducing Microsoft . Net. Microsoft Press,
2001. ISBN: 0-7356-1377-X.

John Muray Reuter. Inside Windows CE. Microsoft Pro-
gramming Series. Microsoft Press, 1998. ISBN 1-57231-854-
6.

Bill Venners. Inside the Java Virtual Machine. Java Masters
Series. McGraw-Hill, 1997. ISBN 0079132480.

Tan Welch and Robert J. Stroud. Kava using byte code
rewriting to add behavioural reflection to java. In Proc. of the
Sizth USENIX Conf. on Object-Oriented Technologies and
Systems (COOTS’01), San Antonio (USA), January 2001.

Seth J. White and David J. Dewitt. A performance study of
alternative object faulting and pointer swizzling strategies.
In 18th VLDB Conf. Vancouver, British Columbia, Canada,
1992.

Ann Wollrath, Roger Riggs, and Jim Waldo. A dist. ob-
ject model for the java system. In Conf. on Object-Oriented
Technologies, Toronto Ontario (Canada), 1996. Usenix.

S. Zdonik and D. Maier. Readings in Object-Oriented

Database Systems. Morgan-Kaufman, San Mateo, Califor-
nia (USA), 1990.

