
nuBOINC: BOINC Extensions for Community Cycle Sharing

João Nuno Silva, Luı́s Veiga, Paulo Ferreira
INESC-ID / Technical University of Lisbon

Distributed Systems Group
Rua Alves Redol, 9

1000-029 Lisboa, Portugal
{joao.n.silva, luis.veiga, paulo.ferreira}@inesc-id.pt

Abstract

Currently, cycle sharing over the Internet is a one-way
deal. Computer owners only have one role in the process:
to donate their computers’ idle time. This is due to the
fact that it is difficult for an ordinary user to install the re-
quired infrastructure, develop the processing applications
and gather enough computer cycle donors.

In this paper we describe a set of BOINC extensions that
allow any user to create and submit jobs that can take ad-
vantage of remote idle cycles. These jobs are processed by
commonly available software (e.g. programming language
interpreters or virtual machines, statistical software) that is
installed in the remote donating computers.

In order to submit their jobs, users only have to provide
the input files, select the processing application and de-
fine the command line to provide to that application. Later,
users of the same software packages will contact the server,
receive a set of jobs, and process them using the already in-
stalled commodity application. These users can later take
advantage of other people’s computer cycles.

This system allows an expressive definition of jobs pro-
viding considerable speed gains, while leveraging a cycle-
sharing platform and widely available commodity applica-
tions. Furthermore, it is a good stating point for the devel-
opment of a truly global communal computer cycle market.

1. Introduction

BOINC [3] is a successful platform for distribution of
parallel jobs to be executed on remote computers. Re-
searchers create and publicize projects that require solving
a complex problem, by installing a BOINC server, devel-
oping the data processing applications and creating the data
sets to be processed. Later, users willing to donate their per-
sonal computers’ idle cycles register themselves and start

processing data with the applications downloaded from the
server and developed explicitly for such projects.

This kind of operation greatly limits the scope of users
that can create projects to be remotely executed. Projects
must have a large visibility in order to attract enough cycle
donors and be composed of hundreds of individual tasks or
workunits. Furthermore, project creators must have a large
knowledge on C++ or Fortran programming.

Projects from users that do not satisfy the previous char-
acteristics can not take advantage of available remote cy-
cles. Even if the user has enough programming knowledge
to create a project, if the project is short lengthened or not
capable of attracting enough donors, the gains will be low.

There are some computer user communities that can take
advantage of remote idle cycles to speed their jobs, but do
not have the skills to efficiently use BOINC. These users
range from hobbyists or designers, that use ray tracing soft-
ware to render movies or complex images, to researchers
that user statistical software packages to process very large
data sets. Researches who develop data processing applica-
tions on Java or Python can also take advantage of remote
cycles to speed their jobs.

To include these new users as job creators in a cycle-
sharing system, two key requirements are still to be met:
i) the users should be allowed to use the applications or
programming languages they are literate on, and ii) there
should be enough cycle donors to speed even small jobs.

The use of commodity software as job execution en-
vironment reduces the data processing code development
cost, as users need not learn a new programming language
(C, or Java), being allowed to use the most efficient tool for
the task. It would be infeasible to install these commod-
ity applications remotely, but allowing the use of widely
available software would increase the potential number of
users that already had them installed. Furthermore, the use
of previously installed software, creates a sense of commu-
nity among users, as each user is willing to donate his com-
puter’s idle cycles to solve a job similar to the ones he will



later submit.
This sense of usefulness, that comes from the use of the

same software as other users may increase the participation
on such projects. After donating cycles to other users, a
computer owner will also take advantage of remote cycles
to speed his jobs. This way, users are compelled to provide
more and more cycles to others. This usage pattern can be
promoted if, instead of just sharing (i.e. donate) them, users
can actually lend them and expect to employ them later in
return. When needed, the credits received by letting the
execution of tasks from others, will be exchanged by pro-
cessing time on remote computers. This new relationship
within the system will increase the number of users and the
amount of time each user is able to share with remote users.

In this paper we present extensions to BOINC that allow
efficient execution of user submitted jobs, while allowing
any user to have two complementary roles: owner of the
jobs that are executed on remote computes and owner of
the computers where jobs will be executed. Any user that
lends his idle cycles to the execution of other users’ jobs will
also be able to take advantage of their remote computing
resources. In order to accomplish this, we modified both the
BOINC client and server software, and developed a custom
BOINC application. The data processing code used by these
jobs comprises commodity applications that are installed in
the remote computers, only after their owners allow their
use.




































Figure 1. Extended BOINC usage

As shown in Figure 1 there are two different roles
while interacting with our extended BOINC server: BOINC
clients that execute the jobs and users that submit them. To
submit and create new jobs, users must: i) select the com-
modity application that should be used to process the data,
ii) provide the input files (data or code), and iii) define the
number of jobs to create, the name of the output files and
the arguments that should be used to invoke the commodity
application. After creating and storing the information for
each job, the server waits for BOINC clients work requests
to distribute each job’s information.

When contacting the server, the extended BOINC client
sends the identifiers of the commodity applications the
client owner has already installed. The server then selects
the jobs to send according to this information. After receiv-
ing each job information (input files and arguments), the
BOINC client invokes the correct commodity application
to process the input files. After each job completion, the

BOINC client submits the putput to the BOINC server. All
data storage and communication is handled by the BOINC
infrastructure.

From preliminary experiments we can conclude that the
extensions to BOINC allow the definition and execution of a
myriad of jobs that can take advantage of remote idle cycles.
We managed to execute a batch of image rendering, neces-
sary to create an animation video, as well as to process a
batch of data input files within the R environment. Further-
more, several instances of a Java application were executed
on remote computers. The speedups accomplished are sat-
isfactory but not close to optimal. This is due to the fact that
BOINC scheduling policies were designed for projects with
thousands of jobs and when there is a continuous source of
jobs. Furthermore current BOINC scheduling policies do
not take into account the owners of the BOINC client and
the submitted jobs, not guaranteeing fairness on the order
of the execution of user submitted jobs .

In the next section we present existing cycle-sharing
platforms and how they relate to our proposed solutions.
In the following sections, we present the extensions made
to BOINC and the evaluation done. Finally, we present the
conclusions and future enhancements necessary to optimize
the execution of user defined jobs.

2. Related work

BOINC is the best known platform for the creation and
execution of distributed computing projects. BOINC pro-
vides all the data storage, communication and client man-
agement infrastructure. The project manager has to pro-
gram a C++ or Fortran application that will be executed
on the client computers to processes data. Even though it
is easy to install project hosting infrastructures, two issues
arise: it is necessary knowledge on C++ or Fortran to pro-
gram the applications and, in order to have some speedup
gains, it is necessary to publicize the project in order to at-
tract clients.

BOINC wrappers [10] allows the use of legacy applica-
tions as processing code in a BOINC project. Project devel-
opers develop a simple wrapper and define the configuration
file where it is stated how the legacy aplication will be ex-
ecuted. Before execution of jobs, both the wrapper and the
legacy application are downloaded by the client. The wrap-
per is executed and, instead of processing the data, it in-
vokes the legacy application. Even with this solution, short
length projects or without capacity to raise cycle donors can
not take advantage of BOINC.

XtremWeb [7] and Leiden Classical [11] are distributed
computing projects that allow registered users to submit
their jobs, as opposed to plain BOINC installations where
only the system administrator creates jobs. In Leiden Clas-
sical there is only one data processing application and users

2



only submit input files to be processed by that application.
XtremWeb is more versatile as it hosts several installed ap-
plications. In XtremWeb users provide the input files and
define the command line arguments used to invoke the ap-
plication. XtremWeb allows the use of a broader set of ap-
plications, but still requires the system administrator to in-
stall them. A user is not allowed to install a new data pro-
cessing application to solve his problems.

P2P cycle sharing infrastructures may seem to allow job
submission by users, but at the moment this is not the case.
JXTA-JNGI [13] provides an API for the development of
distributed cycle sharing systems. The development of a
proprietary cycle sharing system, where the owner defines
all the code and data communication, is possible but to
make it efficient over the Internet it is necessary to publi-
cize and gather cycle donors. Marcin Cieslak [5] describes
how JXTA-JNGI can be used to cope with the scalability
problems that rise from the existence of one server. A P2P
architecture is proposed but nothing is done in order to fa-
cilitate jobs creation.

Other generic infrastructures (such as POPCORN [9] or
P2P-G2 [8]) exist but still require the explicit programming
of the code to be remotely used. These solutions free the
user from programming the distribution and communication
protocols, but still require the coding (in Java or C#) of the
remotely executed code. A project developed with any of
these solutions would still require a lot of publicity to get
enough cycle donors.

The use of commodity data processing applications as a
remote processing environment has also been proposed in
NetSolve [12]. The major difference lies in the fact that
in order to use NetSolve the commodity application (e.g.
Mathematica, MATLAB, Octave) should be extended with
an API to allow the distribution of the work. Furthermore,
users should also adapt their scripts or applications to dis-
tribute lengthy functions.

Our proposed job definition user interface is closer to
Nimrod [1] in the way data distribution is defined: the
user defines the input files, the type of parameters and how
they vary. Nimrod then generates all parameter combina-
tions and assigns each parameter combination to task. Even
though Nimrod helps on the combination of all parameters,
the user must still have some programming knowledge, be-
cause the processing application must be coded and the data
type of each parameter must be defined.

3. Usage

The extensions to BOINC we present in this paper allow
user submitted jobs to be executed on remote hosts, using
commodity applications.

In order to share his computer idle processing cycles, a
user only has to download a modified BOINC client (the

nuBOINC client) and the commodity application registrar.
In this initial version these are different applications, but the
application registrar can be easily integrated to the graphi-
cal version of the BOINC client.

The first steps are similar to the donation of cycles to any
regular BOINC project: the user creates an account on our
modified BOINC server and registers his nuBOINC client
on our project (ComBOINC project).

Figure 2. Application Registrar user interface

Before executing the modified BOINC client it is neces-
sary to define which commodity applications can be used.
This registrations is made in the application registrar; its
user interface is shown in Figure 2. In this application the
user locates the executables he allows to be used as process-
ing environment for jobs. This application fetches from the
modified BOINC server the list of applications already reg-
istered by other users. Now, the user can either assign any
local executable to an already registered application (such
as POVray in Figure 2), or he can register a new application
using the New Application form.

After registering the commodity applications, when ex-
ecuting the BOINC client, some of the jobs will use those
applications. The BOINC client will handle all data com-
munication and invocation of the required applications.

Figure 3. User project submission interface

A user that has a batch of jobs to be executed on re-

3



 

























  



L





M



A)

































































 





B)

Figure 4. Client and server architecture: A) Detailed server view, B) Detailed client view

mote computers may use the provided web interface (Fig-
ure 3) to submit them. In this page the user uploads
the input files and selects the application that should be
used to process them. The user should also define the
command line arguments that should be used when in-
voking the commodity application. In the example, the
user wants to process a file (anim.pov) with the POVray
ray tracer and generate a movie with 100 frames. For
each frame (corresponding to one time instant), one dif-
ferent image will be generated. One hundred jobs will
be created and, on each one, the POVray executable
will be invoked with the +w1024 +h768 anim.pov
+k0.%(ID)02d command line; anim.pov is the input
file and %(ID)02d will be replaced with the job identifier
(00, 01, . . . , 98, 99).

4. BOINC Extensions

The architecture of the developed infrastructure (pre-
sented in Figure 4) closely match the one of a regular
BOINC installation [4]. THis figure also shows the or-
dered interactions between the different components (cir-
cled numbers). The Application registrar and RPC Inter-
face components do not exist on regular BOINC installa-
tions, while all others maintain the same functionality.

In order to allow the execution of user submitted jobs
a few changes to BOINC (server and client) were coded.
To register the application allowed to be executed remotely
, an auxiliary application (Application Registrar) was de-
veloped. The interaction between the Application Registrar
and the BOINC server is made by XML-RPC calls.

The original BOINC web interface was modified in order
to allow the job submissions and the results retrieval. The
modules responsible for job creation and deletion (Work
generator, File Deleter and DB Purger) are now invoked
by the users by means of the web interface.

The modules that verify the validity and correction of a
job execution (Validator) and that replicate or change a job
state in case of a erroneous or successful execution (Transi-
tioner and validator) were not modified.

The feeder and scheduler modules (responsible for de-
livering work to clients) were modified, so that the required

commodity applications and the installed commodity appli-
cation on the remote computer match.

With respect to job information organization within the
BOINC server, only one modification was made. In regu-
lar BOINC installations, work is grouped in projects and
all jobs from the same project are executed by the same
application. With our extension, all user submitted jobs
are processed within the same BOINC project (ComBOINC
project) but belong to different user projects: sets of jobs,
submitted by one user, that are to be processed by one com-
modity application. All other internal data organization re-
mains. For each job there is one workunit (input files and
execution parameters) and several replicas of each worku-
nit, called results. As in any BOINC installation, results are
sent to remote clients to be processed; after the processing
of all results associated to a workunit, the valid or erroneous
execution outcome and output is stored in the corresponding
workunit.

On the client side some modifications were also made as
shown in Figure 4. Besides the inclusion of the Applica-
tion Registrar, the processing of the data received from the
server is not performed by the Project Application, but by a
previously installed Commodity Application.

Some of the interactions between the client computers
and the BOINC server are also different. The server must
be informed by all Application registrars about all regis-
tered applications, each job information is submitted by the
client and, when requesting work, every BOINC client has
to inform the server about the available commodity applica-
tions it provides.

4.1. Application registrar

After signing in at the BOINC server, the user must de-
fine what applications he allows to be used by remote users.
The user must execute the supplied application registrar
tool (interface presented in Figure 2). Only after registering
a commodity application through the application registrar,
such application is made available to other users.

After inserting the ComBOINC project and user infor-
mation, this tool presents a list of applications (name and
version), that other users made available, fetched from the
BOINC server. If any of the presented applications is the

4



one the user wants to register, he only has to insert the corre-
sponding executable disk location (screen shot not shown).
If the user wants to register a new application, he must fill
the New Application form. The user will supply the path
of the executable and the name and version of the applica-
tion. This information will later be presented to other users
wishing to register their applications.

In order to interact with the server database (step 1 in
figure 4), a XML-RPC interface was developed. The ex-
ported methods allow the query of the registered applica-
tions (name, version and number of instances) and the man-
agement of each user applications.

The information about the path of the executable is
stored locally on each client (step 2 in Figure 4) on the local
Registered Application DB. This information will later be
necessary when fetching and executing the jobs.

4.2. User interface for job submission

The submission of the jobs to be executed on remote
computers is also made in a straightforward way. A web
browser is used to supply the input files and to define
each job parameters. After logging in (at the ComBOINC
project), a web page is supplied with a user interface simi-
lar to the one presented in Figure 3.

Here the user must define the total number of jobs, the
name of the output file and the command line to supply to
each job. There are also means to supply the input files. The
user can upload files that will be accessed by every job or
provide an URL pointing to a directory containing several
files. Each one of the files present in that URL will be fed
to a different job.

The information submitted by the browser (step 3 in Fig-
ure 4) is handled by a PHP script: for each defined job a
workunit is created, containing the information about in-
put files, output files, commodity application to be used and
command line parameters. After the input files have been
uploaded to the server and the workunit templates created,
the Work generator is invoked in order to store relevant in-
formation in the database.

This version of the job submission interface, limits the
type of jobs possible to batches of files (all processed with
the same parameters) or to jobs with one variable param-
eter. The development of a more complex user interface
(currently under development) will allow the definition of
jobs, where the variable parameters are more complex, for
instance multidimensional partitions, parameter combina-
tions or based on more complex criteria (predicates, rules
or regular expressions).

4.3. Database Tables

In order to accommodate the new information related
to the registered applications and user submitted jobs it
was necessary to add some tables to the original BOINC
database. The relational model of the new information to
be stored is presented in Figure 5. Shaded entities sets were
already present in the original data model.

 

 









 



 





Figure 5. BOINC database new information

The Commodity Application entity set and the Register
relationship were added to accommodate the names and ver-
sions of the commodity applications available on remote
hosts. In order to restrict user access to workunits, results
and their execution information, it was necessary to store
the ownership information on the database (User Project
entity set and Has and Own relationships). It was also nec-
essary to store which commodity applications should be
used to process the user generated jobs (Use relationship).

4.4. nuBOINC Client

Besides all the information regular BOINC clients send
to the server, our modified client (nuBOINC client) also
sends the identification of the commodity applications al-
lowed to be used. This information is required for the se-
lection of the suitable jobs to be executed on that client.

Before sending any request to any BOINC server the
nuBOINC client tries to find information about the pre-
viously registered commodity applications (step 4 in Fig-
ure 4), stored by the application registrar on the local Reg-
istered Applications DB. If the information regarding reg-
istered commodity applications is found, a list of those ap-
plications is sent to the server along with a regular work
request. The answer to this request contains the input files
to be processed (step 5).

Besides the commodity applications list attachment to
work requests, the interaction between our client and the
BOINC servers is unchanged. After receiving a workunit
to be processed (step 5) the client verifies if the required
BOINC application exists. If this BOINC application is not
present on the client computer, it is downloaded from the
server (step 6). The BOINC application is executed (step 7)
and processes its input files (step 9). After completion of
the workunit processing, the output is sent to the server.

5



With the exception of the work request (that include a
list of commodity applications) all other steps are com-
mon to any other BOINC client. The similarities between
our modified client and a regular one make it compatible
with any regular server. This way our nuBOINC client can
process work from the comBOINC project or from regular
BOINC projects. In this version of the client, the time slic-
ing between regular jobs and user jobs follows the original
BOINC scheduling rules.

4.5. Scheduler and Feeder

When contacted by an extended nuBOINC client, the
comBOINC server should be able to return a workunit suit-
able to any of the commodity applications installed on the
client. In order to accomplish this the scheduler and feeder
modules had to be modified.

When requesting more jobs, the client can include the
identification of the installed commodity applications. In
this case, the scheduler has selects results that can be han-
dled by any one of those applications. This way work is sent
only to hosts that can handle it.

As shown in Figure 4, the scheduler does not interact
with the database, it only accesses a shared memory seg-
ment. This shared memory segment is populated with the
not yet processed results. The feeder module had to be
adapted to handle the changes in the database and to com-
municate to the scheduler the possible commodity applica-
tion associated with the results.

If the extended BOINC server hosts several projects, all
other ordinary requests are handled in the same manner as
in a regular server, guaranteeing the compatibility with all
clients.

4.6. comBOINC Project application

If the downloaded workunit belongs to the comBOINC
project, and consequently requiring our Project Applica-
tion, the processing of the input files is different from the
regular cases. In a regular BOINC project, its project ap-
plication has all the code to process the data, while in
a comBOINC project, its project application only handles
the invocation of the correct commodity application that is
needed to process the input files.

The parameters of our project application invocation
(step 7) include the identifier of the commodity application,
the names of the input files and the parameters to be used
when invoking the commodity application.

Our project application first starts by finding the location
of the required commodity application (step 8). Then cre-
ates a temporary directory, copies the input file there (step
9) and invokes the commodity application.

Upon commodity application completion, the output files
are copied from the temporary directory. Then, the client
returns them to the server in the normal way.

4.7. Commodity applications

Currently, the kind of projects we allow to be solved
fit either in the parameter sweep category or in batch file
processing, whose execution applications are already in-
stalled in the remote personal computers. These applica-
tions should either be parameterized through the command
line or receive a script or configuration files as input. They
should also easily generate output files and print error to the
standard output.

The usable applications include a large set of applica-
tions: ray tracing software (POVray, YafRay), image or
video processing (convert package, ffmpeg, . . . ), computer
algebra (Maxima, Sage, . . . ), statistical software and data
analysis (S-PLUS or R) or more general numerical com-
putation applications (Matcad or Octave). Any other inter-
preted language execution environment (Java, python, Lisp)
can also be used.

All these packages are used by a large community and
are available on the largest families of operating systems:
Windows and Unix and its derivative (Linux, Mac OS X).

Some of these commodity applications (specifically the
programming languages interpreters) may be used to attack
and abuse the cycles donor remote computer. To reduce
those risks, our modified BOINC client and the commod-
ity applications should be executed on a restricted environ-
ment. A virtual appliance, with a minimal operating system
and the necessary applications, running inside VMware or
other virtualization platform can be used.

4.8. Execution output management

After the processing of a workunit, its output files should
be made available to the user who created it. This is accom-
plished by means of a few PHP scripts, incorporated in the
BOINC Web Interface. After logging in, these scripts al-
low each user to inspect every workunit state (waiting to
be processed, valid, erroneous) and to download completed
results. Furthermore, after a user has downloaded all his
output files, he can delete them, the input files files and his
workunits information. This maintenance is performed by
the File deleter and DB Purger modules.

5. Evaluation

In order to evaluate the usability and performance gains,
we deployed our BOINC modified server and allowed some
clients to use it; all the presented experiments were made
on our local network. At the moment we are working on the

6



deployment over a larger scale allowing any user to register.

0

20

40

60

80

100

120

Seri
al

1 P
C

2 P
C

3 P
C

4 P
C

5 P
C

6 P
C

7 P
C

8 P
C

9 P
C

10
 PC

11
 PC

12
 PC

Ti
m

e 
(m

)

Optimal
Measured

Figure 6. Movie rendering times
The first experiment performed consisted on using a ray

tracer to generate an animation with 100 frames. On a Pen-
tium 4 running at 3.2GHz with Linux, each frame took be-
tween 3 and 100 seconds, giving a total rendering time of
about 127 minutes. The times for the execution of these
jobs on several computers, shown in Figure 6, were mea-
sured with identical computers connected by a 100 Mbit/s
local network. We present the time to execute the jobs se-
rially on one computer (both locally and by means of the
BOINC infrastructure) and on several computers.

As expected, the speedups are in line with the number
of cycle donor hosts. The overhead incurred by using our
job distribution platform is minimal, only 2 minutes. This is
caused by the job submission and nuBOINC client startup.
With the participation of another host, even during a small
period, this overhead is not noticeable. On an wide area
network, or with larger input files, this overhead is larger,
but is easily surpassed with the contribution of another user.

With high number of participant computers, the differ-
ence between the optimal and the measured times varies.
This can be explained with the help of Figure 7.

0

1

2

3

4

5

6

0 5 10 15 20 25
Timeline (m)

Ho
st

 ID

Job Finishing Instant

Figure 7. Jobs finishing instants

In this example we present every job finishing instant,
for the rendering of 100 images on 6 computers. We can
observer that from minute 22 on, only 3 hosts continue pro-
cessing results, this being due to the fact that results are

distributed in batches. As these batches maintain the same
size during all execution, close to the finish one computer
receives a batch whose jobs could be distributed equally to
other clients, leading to a unbalanced job distribution. This
inefficiency is added to the overhead incurred from using
BOINC. With some numbers of participant computers (2
and 9 PCs in our example) the distribution of tasks between
clients is closer to optimal.

In a system such as ours, gains from the use of remote
computers are also dependent on the amount of time a re-
mote computer is available and the frequency these comput-
ers contact the server to get new work. Between requests,
BOINC clients introduces a delay (backoff ) that is exponen-
tially increased whenever a request is not fulfilled by the
server (no more results to process, network failure, . . . ). In

0

5

10

15

20

25

30

0 5 10 15 30 60
Client launch / job creation difference (m)

Ti
m

e 
(m

)

First result fetch delay

Figure 8. Computations start delay times

Figure 8 we can observer the influence of those delays. For
each experiment we delayed the job creation with relation
to the clients starting and measured how long it took for the
first results to be sent to the clients. We can conclude that
the clients, after an high idle time, will have a large back-
off and may be idle even when some newly created projects
have results to be processed. If the projects are short termed
or the backoffs large, these projects may not take advantage
of these clients.

We also experimented the deployment of jobs that used
different applications: Java virtual machine and R statistical
software. As long as the applications (the java application
or R script) read some arguments from the command line
its deployment is trivial using the developed job submis-
sion user interface. From these experiments we concluded
that, along with the use of the task identifier, assigning a
different input file (from a batch of files) to each job is also
convenient, but a more expressive mechanism to define the
parameters can be developed.

6. Conclusions

With the minimal modifications made to the original
BOINC infrastructure we managed to extend it into a sys-

7



tem that allows the efficient execution of user submitted
jobs. These jobs must fit in the parameter-sweep or bag-
of-tasks categories.

We managed to integrate a job submission user interface
to BOINC, allowing the definition of each job input files
and parameters without any programming knowledge. Us-
ing this user interface, users don’t have to develop any ap-
plication to create the workunits information.

Furthermore, by allowing the execution of commodity
applications as the data processing tools, users don’t have
to develop the BOINC applications to be executed on re-
mote computers. Users only have to define the parameters
or configuration files to the applications required to execute
the jobs. These commodity applications are well known to
the users and are already installed in remote computers.

As these applications have a large user base, it is very
likely to get high gains from the execution of some jobs on
remote computers, as lots of remote users will be able to do-
nate their CPU cycles. Organized applications user groups
can deploy a task distribution infrastructure to be used ef-
fortlessly by its members, independently of their computer
expertize.

This preliminary evaluation shows that there is a wide
range of problems that can be solved in parallel by com-
modity applications on remote computers and, that with a
minimum of participation, good speedups can be obtained.

Furthermore, this system provides a fully functional plat-
form for the development of a ”cycle market” were any user
can trade remote processing cycles.

6.1. Future Work

As the owner of a client may have jobs to be executed,
the scheduling of jobs should be adapted so that a client
process his jobs first. The way local [2] (on the client)
and server[4] scheduling is performed should be modified.
A client that still has uncompleted jobs should be able to
execute them: the client scheduler should select the com-
BOINC project (ignoring other projects that should have its
time slice) and the server should deliver to this client those
tasks that are owned by him. Furthermore tasks belong-
ing to users that have donated more time to the community
should be executed earlier. This will add a sense of fairness
and will motivate users to donate processing cycles.

Output integrity is partly handled by the original BOINC
infrastructure. Workunits may have redundant results, that
are processed in different hosts and later verified. A repu-
tation system should be implemented so that users that pro-
cess results incorrectly can be identified by the community.
A proper scheduling mechanism, that can take into account
reputation information, should be able to handle free riders
or malicious users.

Even though BOINC is capable of achieving a high task

delivery rate [4], it is necessary to study how a centralized
BOINC server handles bursts of project creations. It may
be necessary to replicate the server or use some other data
distribution mechanisms [6].

References

[1] D. Abramson, R. Sosic, J. Giddy, and B. Hall. Nimrod:
A tool for performing parametised simulations using dis-
tributed workstations. In The 4th IEEE Symposium on High
Performance Distributed Computing, August 1995.

[2] D. P. Anderson. Local scheduling for volunteer comput-
ing. Parallel and Distributed Processing Symposium, 2007.
IPDPS 2007. IEEE International, 26-30 March 2007.

[3] D. P. Anderson and G. Fedak. The computational and stor-
age potential of volunteer computing. In IEEE/ACM Inter-
national Symposium on Cluster Computing and the Grid,
May 2006.

[4] D. P. Anderson, E. Korpela, and R. Walton. High-
performance task distribution for volunteer computing. In E-
SCIENCE ’05: Proceedings of the First International Con-
ference on e-Science and Grid Computing. IEEE Computer
Society, 2005.

[5] M. Cieslak. Boinc on jxta (thesis from Technical University
of Wroclaw, Poland). http://boinc.berkeley.edu/cieslak.pdf,
June 2007.

[6] F. Costa, L. Silva, G. Fedak, and I. Kelley. Optimizing the
data distribution layer of boinc with bittorrent. Technical
report, CoreGRID Technical Report TR-0139, June 2008.

[7] C. Germain, V. Néri, G. Fedak, and F. Cappello. Xtremweb:
Building an experimental platform for global computing. In
GRID ’00: Proceedings of the First IEEE/ACM Interna-
tional Workshop on Grid Computing. Springer-Verlag, 2000.

[8] R. Mason and W. Kelly. G2-p2p: a fully decentralised
fault-tolerant cycle-stealing framework. In ACSW Frontiers
’05: Proceedings of the 2005 Australasian workshop on
Grid computing and e-research. Australian Computer So-
ciety, Inc., 2005.

[9] N. Nisan, S. London, O. Regev, and N. Camiel. Globally dis-
tributed computation over the internet - the popcorn project.
In ICDCS ’98: Proceedings of the The 18th International
Conference on Distributed Computing Systems. IEEE Com-
puter Society, 1998.

[10] U. of California. BOINC WarapperApp – legacy ap-
plications. http://boinc.berkeley.edu/trac/wiki/WrapperApp,
2007.

[11] U. of Leiden. Leiden classical. http://boinc.gorlaeus.net/.
[12] K. Seymour, A. YarKhan, S. Agrawal, and J. Dongarra. Net-

solve: Grid enabling scientific computing environments. In
Grid Computing and New Frontiers of High Performance
Processing. Elsevier, 2005.

[13] J. Verbeke, N. Nadgir, G. Ruetsch, and I. Sharapov. Frame-
work for peer-to-peer distributed computing in a heteroge-
neous, decentralized environment. In GRID ’02: Proceed-
ings of the Third International Workshop on Grid Comput-
ing. Springer-Verlag, 2002.

8


