
GiGi: An Ocean of Gridlets on a “Grid-for-the-Masses”

Lúıs Veiga Rodrigo Rodrigues Paulo Ferreira
INESC-ID/IST

Rua Alves Redol No 9, 1000-029 Lisboa, Portugal
{luis.veiga,rodrigo.rodrigues,paulo.ferreira}@inesc-id.pt

Abstract

There have been a few proposals aiming at bridging
the gap between institutional grid infrastructures (e.g.,
Globus-based), popular cycle-sharing applications (e.g.,
SETI@home), and massively used decentralized P2P file-
sharing applications. Nonetheless, no such infrastructure
was ever successful in allowing, in a large-scale, home
users to run popular desktop applications faster, by us-
ing spare cycles in other users’ machines and, in return,
donate their spare cycles to run other users’ applications.

We present a novel application and programming
model that was designed to overcome some of the bar-
riers to the deployment of a generic peer-to-peer grid in-
frastructure. In particular, we want to enable a trivial de-
ployment in such infrastructures of existing applications
that are in widespread use but do not currently exploit
parallelism for improved performance.

The model presented in this paper revolves around the
concept of a Gridlet, a semantics-aware unit of workload
division and computation off-load. A gridlet is a chunk
of data associated with the operations to be performed on
the data, and in many cases these operations consist of
unmodified application binaries. Moreover, the concept
of gridlet is also employed for resource management, and
accounting of peer contribution.

We believe this new concept, absent in other proposals,
will significantly lower the barriers for exploiting paral-
lel execution in popular applications, thus improving the
chances of the gridlet model being widely adopted.

1 Introduction

The most visible use for Grid computing today is
to enable the speedup of applications that require mas-
sive amounts of computation, e.g., applications for sci-
entific research, drug discovery, or financial risk analy-
sis. These applications run on a Grid infrastructure that
usually consists of the interconnection of clusters of well-
managed machines, dedicated to implementing the Grid
infra-structure. In such a virtual organization, the ma-
chines in each cluster are under the same administrative
control, and access to machines across different clusters
must be negotiated in advance.

For approximately a decade now, distributed cycle-
sharing has been in widespread use. This has begun with
the introduction of applications such as SETI@home [4],
and has been followed by large number of recent others,
dedicated to climate prediction [2], protein folding [12]

for drug research, detection of gravitational waves, detec-
tion of prime numbers, celestial bodies, etc. These ap-
plications traditionally follow a rigid client-server model,
with a centralized server. Clients, normally run as screen
savers in user machines, fetching blocks of data from
the central server, to perform CPU-intensive calculations
while the user machine is otherwise idle. Once the blocks
are processed, results are returned to the central server.
This way, users are able to donate their spare cycles to a
cause that many people regard as legitimate.

In a different community, we have witnessed the re-
cent emergence of a class of peer-to-peer applications that
have achieved widespread deployment among common
Internet users (e.g., BitTorrent’s peer-to-peer content dis-
tribution network represented 35% of Internet’s traffic
two years ago [1]). Relevant research work in the are of
peer-to-peer networks, namely to build robust distributed
hash-tables, includes projects such as Chord [17], and
Pastry [16].

Shortcomings of Current Solutions: Despite its po-
tential and success stories, the Grid revolution has failed
to reach the common Internet user. A user outside the
domain of the corporate or scientific communities, that
currently use the Grid, has to overcome several barriers
before it can deploy its own application on the Grid.

For that matter, the user has to either negotiate the
access to existing Grid infrastructures, or set up its own
infrastructure. The former option is perceived as difficult,
and, if the managers of existing Grid infrastructures were
to allow unlimited access to their computing resources,
this might easily lead to the collapse of that infrastruc-
ture. The latter option may not be feasible for every user
if he does not have access to the needed resources.

In the case of popular distributed cycle sharing efforts
such as SETI@home, people are fundamentally motivated
to contribute to a noble collective cause, and with equal
concern, in improving their ranking within the users com-
munity [4]. Nevertheless, in the kind of peer-to-peer in-
frastructure we project, home users can also help them-
selves, while helping others do the same. In some sense,
the desiderata of selflessness and altruism are replaced by
actual mutualism, since users must be allowed to execute
applications for themselves, instead of just for collective
causes.

Decentralized P2P research projects and file-sharing
applications, although successful in providing high avail-
ability and attracting users (and public controversy), are
very limited because they do not leverage the computing

1

power available in participating nodes.

Peer-to-peer architectures and grid computing have
been combined in several projects (e.g., Integrade [11],
OurGrid [5]). However, they only aim at dynamically
federating (e.g., for scheduling) grid infrastructures (e.g.,
clusters) that are already deployed, and therefore share
the same drawbacks of institutional grids.

The combination of decentralized peer-to-peer archi-
tectures and distributed cycle sharing has also been ad-
dressed, as in the case of CCOF [13]. However, such
an infrastructure was never successfully deployed by vast
numbers of home users. We argue that part of this was
due to the inability to provide home users with a variety
of interesting use cases.

Contribution and Roadmap: Our goal is to achieve
a synthesis of the three approaches (institutional grid
infrastructures, distributed cycle-sharing, and decentral-
ized P2P architectures) by building the substrate for a
peer-to-peer Grid infrastructure called GINGER (Grid
Infrastructure for Non-Grid EnviRonments), or simply
GiGi, that can enable the widespread use of Grid tech-
nologies by home users.

To address the issue of providing users with a vari-
ety of interesting applications that can be run on this
infrastructure, we present a novel application and pro-
gramming model that revolves around the concept of a
Gridlet, a semantics-aware unit of workload division and
computation off-load. Moreover, the concept of gridlet
can also be employed to drive resource management, and
accounting of peer contribution.

A gridlet is a chunk of data associated with the oper-
ations to be performed on the data. We envision that, in
most cases, such operations can consist of unmodified ap-
plication binaries. This will enable a trivial adoption of
this model, and provide improved performance of popu-
lar applications executed regularly by many users, if they
are allowed to use idle computing power in other nodes.

Examples of popular applications that can use this
model are audio and video compression, signal process-
ing related to multimedia content (e.g., photo, video and
audio enhancement, motion tracking), content adapta-
tion (e.g., transcoding), and intensive calculus for content
generation (e.g., ray-tracing, fractal generation).

GiGi brings the Grid to home-users, by transforming
the present examples of ”grid-that-matters” (e.g., for cli-
mate prediction), into a ”grid-for-the-masses” (e.g., to
achieve faster video compression).

The rest of this paper is organized as follows. In the
next section we provide a system overview of GiGi. Sec-
tion 3 is dedicated to the Gridlet application and pro-
gramming model. Section 4 addresses resource manage-
ment, i.e., namely gridlet accounting. Section 5 covers
the main implementation issues. We discuss relevant re-
lated work in Section 6, and finish the paper with some
conclusions and future work.

P2P
overlay

network

P2P
overlay

network

gridlets

submitted

gridlets

served

gridlets

received

gridlets

returned

Communication

Services

Overlay

Management

Gridlet

Management

Application
Adaptation Layer

Operating System /

Virtual Machine

Unmodified

Desktop Applications

Communication

Services

Overlay

Management

Gridlet

Management

Application
Adaptation Layer

Operating System /

Virtual Machine

Unmodified

Desktop Applications

Communication

Services

Overlay

Management

Gridlet

Management

Application
Adaptation Layer

Operating System /

Virtual Machine

Unmodified

Desktop Applications

Figure 1. GiGi: An Ocean of Gridlets

2 System Overview: Ocean of Gridlets

Figure 1 depicts a global view of the GiGi architecture.
The basic unit of work which may be deployed in GiGi
is called a Gridlet. It is semantically-enriched to fully
describe a data workload as well as the transformations
required on it.

GiGi provides an abstraction of an Ocean of Gridlets
that are portrayed as sets of small squares. Gridlets are
submitted by nodes and flow across the peer-to-peer over-
lay to be received and serviced by other nodes, and later
returned as gridlet-results to the submitting nodes.

Gridlet data itself is mostly opaque to GiGi. A gri-
dlet may or may not carry the actual code that will pro-
cess the gridlet’s data. Gridlets must have an estimate of
cost associated with them, depicted as gridlets of different

size. This cost is represented as vector
−→
G$=(CPU, BW),

representing both CPU and bandwidth costs of transfer-
ring and processing a gridlet.

GiGi Middleware: The GiGi middleware runs on
each node enrolled in a GiGi grid-overlay, and follows
a layered architecture to favor portability and extensibil-
ity (also depicted in Figure 1). The GiGi middleware, via
the Overlay Management layer, is responsible for main-
taining the overlay network to exchange gridlets with
other nodes. Actual network transfer is carried out by
the Communication Services.

The Gridlet Management layer performs the tasks nec-
essary to partition files into properly formed gridlets, and
later reassemble gridlet results, in order to generate result
files. The Application Adaptation layer is responsible for
interacting with the actual unmodified desktop applica-
tions, e.g., launch them, feeding the data inside gridlets,
and collecting results.

GiGi Overlay Management: In GiGi, nodes are or-
ganized in a peer-to-peer overlay such as Pastry [16]. This

2

H I1 P1 P1 P1 I2 P2 P2 I3 P3 P3 P3 P3 I4 P4 P4 I5 P5 P5 I6 P6

H I1 P1 P1

H I2 P2 P2

H I3 P3 P3 P3 P3

H I4 P4 P4

H I5 P5 P5

H I6 P6

 movie file (e.g., mpg, avi, flv, mov, wmv) movie file (e.g., mpg, avi, flv, mov, wmv)

XML Format

Description
< >

< >
..............
..............
</ >

</ >

XML Format

Description
< >

< >
..............
..............
</ >

</ >

Gridlet Manager

Figure 2. Gridlet Creation for a movie file

allows resource discovery protocols to follow overlay links,
and inherit several of the good properties of the overlay,
such as adjusting automatically to frequent membership
changes.

To reduce bandwidth and CPU costs, we intend to
heavily exploit the caching of code, gridlet input, and
gridlet results, since gridlets are regarded as determinis-
tic. If two users run the same computation (e.g., con-
verting the same movie to the same format) by submit-
ting a number of gridlets to the overlay, each one should
profit from the other’s gridlet-processing, and download
gridlet-results from it right away.

In general, any submitting node should get gridlet-
results from those nodes that already contributed to per-
forming the same computation, earlier, over the same
data. For that matter, a peer-to-peer DHT is well suited
for storing a small index of where the owners of cached
results can be located. Furthermore, gridlet execution
may be combined with replication for higher availability
and to allow screening from forged results.

3 Gridlet Application Model

In this section, we describe the Gridlet Application
Model, resorting to a prototypical example of a video
transcoding utility, as depicted in Figures 2 and 3.

The gridlet application model divides application ex-
ecution in the following phases: 1) gridlet creation, 2)
gridlet processing, and 3) gridlet-result aggregation. Gri-
dlet processing can be further divided in: 2a) gridlet-
data injection, 2b) application execution, and 2c) gridlet-
result extraction. A gridlet is always in one of the states
{REQUEST, EXECUTION, RESULT, ERROR}. A gri-
dlet is in REQUEST state when it is created submitted
to the Gigi overlay. When some peer accepts to service a
gridlet, it transits to the EXECUTION state. When pro-
cessing is complete, the gridlet transits to the RESULT
state and becomes available to be returned. Gridlets fin-
ished with incomplete result data or causing errors, are
in ERROR state, and may be silently discarded.

XML Format
Description
< >

< >
..............

..............
</ >

</ >

XML Format
Description
< >

< >
..............

..............
</ >

</ >

Gridlet Manager

H' I1' P1' P1' P1' I2' P2' P2' I3' P3' P3' P3' P3' I4' P4'P4' I5' P5' P5' I6' P6'

 movie file converted/processed

H' I2' P2' P2'

H' I1' P1' P1' P1'

H' I4' P4'P4'

H' I5' P5' P5'

H' I6' P6'

H' I3' P3' P3' P3' P3'

Figure 3. Reassembly of Gridlet-Results

Gridlet Creation: The first stage of gridlet creation
is data-partitioning. In its most basic form, data-
partitioning may be performed simply by partitioning
the file(s) holding the data to be processed. However,
this may not be as simple, as we describe next.

The Gridlet Manager is the GiGi middleware com-
ponent that is responsible for semantics-aware (no-
nonsense) data-partitioning, and appending required pre-
fixes and/or suffixes to gridlet data, so that it may be
processed transparently by non-gridlet-aware code of un-
modified desktop applications. The Gridlet Manager is
driven by XML-based format descriptions. These depict
file formats, namely regarding partitioning and reassem-
bly points, headers that must be adapted and included
in each gridlet, and fragments of files that should be kept
within the same gridlet.

As an example, consider the unmodified video
transcoding utility that is to be executed in GiGi, de-
picted in Figure 2. Splitting the movie file in several frag-
ments, place each of them in a separate gridlet, and exe-
cute the video transcoding application on each of them,
will not produce the desired results. The transcoding
utility is unable to decode arbitrary fragments of a video
file. It must be fed with complete frames (or pictures).
More so, it needs to access the movie header informa-
tion to be able to decode it, and each predicted picture,
containing only deltas, must be in the same gridlet that
contains the full (intra) picture it is based on. The Gri-
dlet Manager, consulting the XML format description,
is able to correctly partition the file data, in individual
frames. Then, it creates gridlets of different sizes suit-
able to the intended application ({H,I1,P1,P1} through
{H,I6,P6}). They all contain a proper file header (as if
they were a short movie), and all predicted pictures are
placed in the same gridlet of the picture they are based
on (e.g., P6 and I6 frames are placed in the same gridlet).

Gridlet Processing: Data inside gridlets may be pro-
vided to execution in several ways. The most fundamen-

3

tal form of gridlet data-injection (widely used in Grid in-
frastructures and desktop applications) is file semantics
and runtime arguments. Gridlet code being executed is
allowed to randomly access gridlet data for its input as if
it was a file. Alternatively, gridlet-data could be injected
into application execution via a pipe, or as a high-level
language data-structure (e.g., a Java array for a Java-
based gridlet).

Peers servicing gridlet execution need not trust gri-
dlet code. The GiGi runtime does not execute gridlets
directly. Gridlets that are bytecode-based are executed
in the context of a sandbox provided by its virtual ma-
chine. Gridlets based on native code should be executed
in the context of a general-purpose virtual machine, such
as VMWare’s, VirtualServer, or Xen. Naturally, gridlet
code may be subject to regular certification procedures in
order to increase peer confidence. Hopefully, for popular
applications, the application code will already reside at
the servicing peer (it may also service its own gridlets).

Once gridlet execution is complete, the results of the
application execution must be extracted to update the
gridlet, now in the RESULT state. i.e., a gridlet-result.

In the example described in this section, gridlet-data
injection and result extraction are performed via the in-
put and output files of the video transcoding utility.
Gridlet-results are updated versions of the gridlet-request
received ({H’,I1’,P1’,P1’} through {H’,I6’,P6’}).

In general, the data payload of a gridlet may vary from
REQUEST to RESULT state. For some applications
gridlet-results may have but a fraction of data size of the
corresponding gridlet-request (e.g., cryptographic chal-
lenge), while others may have substantially more (e.g.,
high-resolution ray-tracing).

Gridlet-Result Reassembly: Once the processing of
a gridlet is completed, the gridlet-result becomes avail-
able for being returned back to the submitting peer. The
final part of the execution of a gridlet-based application
is result gathering and reassembly, portrayed in Figure 3.

Gridlet-results must be fetched back from whatever
nodes have serviced them and reassembled (i.e., recom-
bined) in a result file. In the example, the resulting
transcoded video file must have one (and only one) proper
header, and all its frames correctly ordered. The Gridlet
Manager, driven by the XML format description, is able
to reassemble all gridlet-results, according to application
and format semantics, into a playable result movie file.

Some application might not be subject to ordering con-
straints, or not even need to all gridlet-results. A cryp-
tographic challenge does not to need any of its results,
except the one that defeats the proposed challenge.

Gridlet Representation: Gridlets are represented in-
ternally as XML documents comprised of two headers
and payload. One header carries information to be used
by the Gridlet Manager (e.g., gridlet-cost and sequenc-
ing information). The other is to be used by the Ap-
plication Adaptation Layer (e.g., application names or
GUIDs, URLs, etc., and parameter-passing).

Gridlets should not be large to be easily routed around
nodes and serviced. A gridlet may be regarded as an en-
hancement of a file fragment (in BtTorrent) or part (in
eMule), that will be processed by an unmodified appli-
cation instead of just stored and exchanged. Therefore,
common sizes for these fragments or blocks can also be
employed for gridlets (e.g., 64 KB, 256 KB).

4 Resource Management

Gridlets do not have all the same associated cost, both
in terms of CPU and bandwidth cost. Some may require
more data to be carried, while others may be more com-
putational intensive. Therefore, we require a standard
unit of measurement for gridlet cost.

Resource currency in GiGi is the unit vector
−→
G$=(1,1),

w.r.t. both CPU and bandwidth. The standard unit, it-
self, is solely instrumental, and does not have to carry

special meaning. Naturally, it is practical if
−→
G$ is asso-

ciated with the total cost of servicing a standard gridlet
in a standard machine.

Gridlet costs are always represented against the

standard-gridlet, e.g.,
−→
G$(5.5, 2.75) . The

−→
G$ currency

unifies resource management is GiGi. It is used to de-
scribe gridlet cost, and is the basis upon which resource
contribution and availability are measured. Gridlet costs
may be added simply by using regular vector addition.

Gridlet Cost Estimation: Ultimately, the cost of a
gridlet would equate to a number of CPU-cycles and

bandwidth required. Therefore we can define a
−→
G$ stan-

dard unit arbitrarily, e.g., of (1 MFLOP, 1 KB) or a much
larger one of (1 GFLOP, 1 MB). An alternative and prac-

tical approach is to define
−→
G$ as the cost of solving the

Linpack [8] benchmark, paired with the bandwidth re-
quired to transfer the benchmark test-data used.

Since the cost of a given gridlet is always assessed
against the cost of servicing the standard-gridlet, gri-
dlet cost estimation can be easily achieved. The gridlet
submitting peer needs only process some sample gridlets
locally, and weight the cost of their execution against cur-
rent CPU-load, and against the average time to compute
the standard-gridlet in its computer.

Nonetheless, it is only natural that the perceived com-
putational cost of a gridlet will actually vary from sys-
tem to system. Nonetheless, as gridlets are processed,
the servicing peer is able to produce its own estimate of
their computational cost, and use it for future accounting
w.r.t. similar gridlets.

If there are relevant variations between submitted and
locally calculated gridlet costs, the servicing peer may
include this notification in the gridlet-result informing
the submitter and other peers. Conversely, when gridlet-
results are returned, submitting peers may double-check
cost-claims of the servicing peers.

Accounting Peer Availability and Contribution:

Gridlet costs may be subject to management activities
such as integration of gridlet cost serviced over a specific
time-interval. Likewise, it is possible to estimate peer

4

capabilities as a function of the availability to serve a
number of gridlets during a unitary time interval (one
second, minute, hour), i.e., gridlet processing power, or
over a period of time, i.e., gridlet processing work (as
KW and KWh in electric grids, respectively).

Thus, peer contribution to GiGi is evaluated by sta-
tistical functions over gridlet availability, i.e., gridlet re-
quests submitted, received, and gridlet-results returned,
during a specific period of time, both in number as well
as their aggregate cost. Conversely, peer usage of GiGi
is evaluated by gridlet requests submitted, and gridlet
results received, during a specific period of time.

Since peers are expected to connect to GiGi using their
personal computers, they should be able to define their
contribution to GiGi in order not to disturb their regular
usage. A special case of this is to execute the GiGi run-
time as a low-priority process, limiting the contribution

to the intended
−→
G$ value over time. This technique has

been adopted in earlier distributed computing voluntary
efforts [4] with great success. We believe that near cost-
free participation is quintessential to GiGi adherence and
proliferation.

As with every parallel distributed application, the
trade-off between remote execution of code and data
transfers versus local execution must be addressed. The
use of GiGi, gridlets, and run-time data partitioning eases
the evaluation of the best remote execution strategy, e.g.,
users can interactively instruct the gridlet managers to
create gridlets with maximum execution cost while re-
ducing bandwidth cost.

5 Implementation Issues

We are currently implementing the gridlet application
model using a Java prototype of GiGi. It performs Gri-
dlet Management, and Application Adaptation is lim-
ited to launching applications whose input and output
files can be provided as runtime arguments. Gridlet ex-
changing among nodes employs an overlay set-up with
JXTA. The use of Java does not preclude the execu-
tion of unmodified applications. Java code simply creates
and reassembles gridlets, driven by XML format descrip-
tions, and invokes desktop applications as native-code
processes.

Following, we will address the integration of the gri-
dlet model with open-source versions of popular P2P file-
sharing tools, such as BitTorrent or eMule. These will be
used for overlay management, gridlet compression, and
user interaction, reusing the gridlet management code.

6 Related Work

The most significant implementation of a standards-
based Grid infrastructure is the Globus toolkit [9], that
implements services for user authentication and autho-
rization, job submission and data transfer, among oth-
ers. The programming model in Globus is based on the
use of specialized libraries for remote job submission and
control like GRAM.

In Condor [19], another important infrastructure for
resource sharing in the context of High-Throughput Com-

puting (HTC), users can submit executable binaries that
are run on remote machines, and can read/write their
input/output from/to a shared file system. They also
provide separate support for file transfer, when a shared
file system is not available. All of these features (like
which files need to be copied and to where) have to be
configured by the user that wants to run a remote job,
which contrasts with our vision of users being given a
generic tool that they can run and will perform all the
necessary work seamlessly.

Cluster Computing on the Fly (CCOF) [13] is a project
that shares our goals of deploying a generic peer-to-peer
grid infrastructure, although with many relevant design
differences. However, they have focused on issues like re-
source discovery, and detection of incorrect results, and
to the best of our knowledge have not detailed the pro-
gramming model.

InteGrade [11] is a middleware that constructs a hi-
erarchy of clusters to speed-up MPI-based applications,
over a lightweight CORBA implementation. Resource
management is based on usage pattern analysis that mon-
itors available resources over periods of time, and deter-
mines relevant situation categories (e.g., lunch, weekend,
etc.). Though effective in harnessing spare cycles from
other nodes, it is designed for a traditional parallel pro-
gramming model, which is not adopted by most popular
desktop applications.

The OurGrid [5] project also federates sites with grid
clusters in a peer-to-peer manner, by scheduling appli-
cations to run on remote nodes, and managing resources
using a Network of Favours. It is also unable to exploit
the parallelism, at the data-level, of popular desktop ap-
plications, as the gridlet model does.

The work in P3 [14] proposes a parallel programming
environment based on an underlying peer-to-peer infras-
tructure. Participating machines may behave as comput-
ing nodes, that perform actual computations, or manager
nodes, that behave as Gnutella [15] ultra-peers. Applica-
tions are exclusively developed in Java and must derive
from a specific class (P3Parallel), which precludes our vi-
sion of fostering adoption of the system by running exist-
ing applications unmodified. P3 also contrasts in the fact
that it tries to build a peer-to-peer storage system to save
intermediate results, and also for process synchronization
and message passing. This raises bandwidth issues w.r.t.
maintaining data available in the presence of a dynamic
membership [7]. Once again, an approach based on state-
less components, like we prescribe, is more adequate to a
peer-to-peer deployment.

Triana [18] provides an alternative programming
model for Grid applications that is based on graphical
component composition for task-graphs. Although it uses
peer-to-peer technologies, their programming model is
quite different from ours, since it requires using a spe-
cific tool to develop applications.

Xtremweb [10] proposes a three-tier model for a peer-
to-peer based parallel programming system. Clients sub-
mit jobs to a central coordinator that manages a commu-

5

nity of users. Worker nodes, as they become available,
pull work jobs from the coordinator. The presence of
such a central component is probably not very adequate
to the environments we are addressing, where the failures
are the norm and not the exception. Unlike our propos-
als, this system uses a traditional parallel programming
model based on RPC and MPI is not the most appropri-
ate for the scenarios we envision.

BOINC [3] is a distributed computing platform devel-
oped at Berkeley. It has surpassed its original project,
SETI@home, and encompasses now a large number of
related projects. BOINC contains the notion of work
unit but it is not flexible. Every work unit is regarded
as having the same computational and bandwidth cost,
determined by each project. It is impossible to know, in
advance, e.g., whether it costs more CPU or bandwidth
to serve a block of SETI@home or of Folding@home. Fur-
thermore, users cannot submit their own work units with-
out having to develop a full-fledged BOINC client and
setting up their BOINC server. This is a much more
inflexible and complex approach than one based on the
gridlet application model.

Mosix [6] is a management system for Linux-based
systems. It is able to combine several nodes into a
Linux cluster, offering transparent process migration,
and system-call redirection. However, it does not ex-
ploit data-parallelism automatically as the gridlet model.
Also, users probably will not replace their operating sys-
tem.

In summary, although there is relevant related work
and successful projects in the areas of grid computing,
distributed cycle-sharing, and peer-to-peer computing, to
the best of our knowledge, none of them provides an ap-
plication model that offers improved performance, with
transparency, to existing applications executed by Inter-
net home users.

7 Conclusion

In this paper, we presented a new application model
based on the concept of gridlet that can bridge the
gaps between a number of existing infrastructures (i.e.,
grids, distributed cycle-sharing, and decentralized P2P
file-sharing), bringing Grid technology to home users.

We described how the gridlet model is employed to
adapt application execution in the context of a generic
peer-to-peer grid infrastructure: Gigi. We also described
how gridlets are used to estimate computation cost, and
to manage resources and peer-contribution.

Contrary to previous approaches, it is able to trans-
parently enhance the performance, by using cycles of idle
nodes, of unmodified popular desktop applications usu-
ally executed. This key novel feature overcomes the lim-
itations w.r.t. worldwide deployment of previous work.

In the future, we plan to further develop the GiGi
prototype and experiment with adaptation to several ap-
plications and formats, and other overlay configurations.
We intend to mechanically derive XML descriptions for
the formats handled by each specific application, based
on current parsers for those formats.

References

[1] Bittorrent accounts for 35% of internet traffic, Slashdot article
referring to an internet traffic study, nov 2004.

[2] M. Allen. Do-it-yourself climate prediction. Nature,
401(6754):642–642, 1999.

[3] D. P. Anderson. Boinc: a system for public-resource comput-
ing and storage. In Proceedings. Fifth IEEE/ACM International
Workshop on Grid Computing, 2004.

[4] D.P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer. SETI@ home: an experiment in public-
resource computing. Communications of the ACM, 45(11):56–
61, 2002, data regarding fake results in http://www.openp2p.com/
pub/a/p2p/2001/02/15/anderson.html.

[5] N. Andrade, L. Costa, G. Germglio, and W. Cirne. Peer-to-peer
grid computing with the ourgrid community. In 23rd Brazilian
Symposium on Computer Networks (IV Special Tools Session),
May 2005.

[6] Amnon Barak, Amnon Shiloh, and Lior Amar. An organizational
grid of federated mosix clusters. In Proc. IEEE International
Symposium on Cluster Computing and the Grid, 2005.

[7] Charles Blake and Rodrigo Rodrigues. High availability, scalable
storage, dynamic peer networks: Pick two. In Ninth Workshop on
Hot Topics in Operating Systems (HotOS-IX), pages 1–6, Lihue,
Hawaii, May 2003.

[8] J.J. Dongarra. Performance of various computers using standard
linear equations software. ACM SIGARCH Computer Architec-
ture News, 20(3):22–44, 1992.

[9] I. Foster and C. Kesselman. Globus: A metacomputing infras-
tructure toolkit. In Proc. of the Workshop on Environments and
Tools for Parallel Scientific Computing, SIAM, August 1996.

[10] Cecile Germain, Vincent Nori, Gilles Fedak, and Franck Cappello.
Xtremweb: Building an experimental platform for global comput-
ing. In GRID ’00: Proceedings of the First IEEE/ACM Inter-
national Workshop on Grid Computing, pages 91–101, London,
UK, 2000. Springer-Verlag.

[11] A. Goldchleger, F. Kon, A. Goldman, M. Finger, and G.C. Bez-
erra. InteGrade: object-oriented Grid middleware leveraging the
idle computing power of desktop machines. Concurrency and
Computation: Practice & Experience, 16(5):449–459, 2004.

[12] S.M. Larson, C.D. Snow, M. Shirts, and V.S. Pande. Folding@
home and genome@ home: Using distributed computing to tackle
previously intractable problems in computational biology. Com-
putational Genomics, 2002.

[13] Virginia Lo, Daniel Zappala, Dayi Zhou, Yuhong Liu, and Shanyu
Zhao. Cluster computing on the fly: P2p scheduling of idle cycles
in the internet. In 3rd International Workshop on Peer-to-Peer
Systmes (IPTPS 2004), 2004.

[14] Licinio Oliveira, Luis Lopes, and Fernando M. A. Silva. P3: Par-
allel peer to peer. In Revised Papers from the NETWORKING
2002 Workshops on Web Engineering and Peer-to-Peer Com-
puting, pages 274–288, London, UK, 2002. Springer-Verlag.

[15] M. Ripeanu. Peer-to-Peer Architecture Case Study: Gnutella Net-
work. Proceedings of International Conference on Peer-to-peer
Computing, 101, 2001.

[16] Antony Rowstron and Peter Druschel. Pastry: Scalable, dis-
tributed object location and routing for large-scale peer-to-peer
systems. In IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), pages 329–350, November 2001.

[17] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet
applications. Proceedings of the 2001 SIGCOMM conference,
31(4):149–160, 2001.

[18] Ian Taylor, Matthew Shields, Ian Wang, and Omer Rana. Triana
Applications within Grid Computing and Peer to Peer Environ-
ments. Journal of Grid Computing, 1(2):199–217, 2003.

[19] Douglas Thain, Todd Tannenbaum, and Miron Livny. Condor and
the grid. In Fran Berman, Geoffrey Fox, and Tony Hey, editors,
Grid Computing: Making the Global Infrastructure a Reality.
John Wiley & Sons Inc., December 2002.

6

