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Abstract
This paper presents Rubah, the first dynamic software up-
dating system for Java that: is portable, implemented via li-
braries and bytecode rewriting on top of a standard JVM; is
efficient, imposing only 5–9% overhead on normal, steady-
state execution; is flexible, allowing nearly arbitrary changes
to classes between updates; and is non-disruptive, employ-
ing either a novel eager algorithm that transforms the pro-
gram state with multiple threads, or a novel lazy algorithm
that transforms objects as they are demanded, post-update.
Requiring little programmer effort, Rubah has been used to
dynamically update three substantial, long-running applica-
tions: the H2 database, the Voldemort key-value store, and
the Jake2 implementation of the Quake 2 shooter game.

1. Introduction
As on-line services go global, an increasing number of sys-
tems require constant availability, and as a matter of con-
venience many other systems would prefer it. A common
technique for ensuring high availability is rolling upgrades,
enabled by a load balancer that distributes requests among
many back-end servers. These servers can be taken off-line
on a rolling basis when they become idle, and then upgraded
and re-entered into service. For this approach to work, in-
teresting state must be kept external to the server (e.g., in a
DBMS) and connections must be fairly short lived (so that
servers quickly become idle). These requirements are some-
times infeasible or too inefficient.

An alternative approach to rolling upgrades is dynamic
software updating (DSU). This technique works by updat-
ing a process in place, patching the existing code and trans-
forming the existing in-memory state. By not shutting down
the updated program, DSU addresses the shortcomings of
rolling upgrades. First, it preserves active, long-running con-
nections (e.g., to databases, media streaming, FTP and SSH
servers), which can immediately benefit from important pro-
gram updates (e.g., security fixes). Second, it preserves in-
memory server state. Doing so is extremely valuable for
in-memory databases, gaming servers and many other sys-
tems, that rely on the relatively low expense and high per-
formance of commodity RAM, to maintain large data sets in
the heap. This problem is acute enough that Facebook uses

a custom version of memcached that keeps in-memory state
in a ramdisk to which it can reconnect on restart after an
update [17].

General-purpose systems developed for C and C++ have
been applied to dozens of realistic applications, tracking
changes according to those applications release histories [8,
10, 15, 16]. Increasingly, important on-line services are writ-
ten in managed languages like Java. For example, Twitter
has moved most of its major infrastructure to Java [23], and
the Java-based Voldemort noSQL database is used by com-
panies like Linkedin. While several DSU systems for Java
have been developed [21, 22, 24] they all have shortcomings
that inhibit practical usage.

This paper presents Rubah, the first full-featured, portable
DSU system for Java with good performance. Rubah imple-
ments DSU as whole program updates, in the style of Kit-
sune [8], a DSU system for C we developed previously.1

Compared to prior DSU systems for Java, Rubah has sev-
eral advantages (further comparisons are in Section 6):

• Rubah works by bytecode rewriting, enhancing its porta-
bility; no changes to the underlying JVM are required,
unlike past systems such as Jvolve [22], the DVM [24],
and JDrums [21].

• Rubah is extremely flexible, handling release-level up-
dates. As far as we are aware, no prior system can handle
the same range of updates Rubah can.

• Rubah enjoys good steady-state performance: support-
ing updating imposes 5–9% overhead on normal execu-
tion for our benchmarks when using a production-quality
VM, whereas prior systems either did not work with pro-
duction VMs (Jvolve used Jikes) or imposed high over-
heads (e.g., DuSTM [20] imposed overheads of more
than 50% on similar benchmarks).

In addition, Rubah uses two novel algorithms to reduce the
pause in application execution while the application’s state
is being transformed. Rubah’s parallel algorithm speeds up
the standard algorithm by parallelizing it. Rubah’s lazy algo-
rithm injects proxy objects that mediate access to outdated
instances; when accessed, the proxy precipitates the target

1 Kitsune is the Japanese word for fox, a shape shifter. Rubah is the Indone-
sian word for fox; natives of the island of Java speak Indonesian.



object’s transformation and then removes itself, to avoid
adding further overhead. The proxy implementation and data
structures are wait-free, which means that the original pro-
gram cannot deadlock/livelock due to an update.

We have used Rubah with Oracle’s production HotSpot
VM to dynamically update three substantial applications:
the H2 SQL relational database; the Voldemort key-value
store, used in practice by LinkedIn; and Jake2, a Quake2
port translated to Java. We modified these applications by
hand to support updates in Rubah and found that the amount
of effort required correlates with the application’s control-
flow structure rather than with the application’s size. This
effort added from 29 to 267 lines of code and is a one-time
effort: Once the first version supports Rubah, subsequent
versions require little, if any, modification. We also wrote
code to transform the state between three versions of H2
and two versions of Voldemort. This effort must be done
for each supported version and is a function of the number
of classes with a different representation between versions.
Rubah automates the majority of this process and so we only
had to write a total of 77 lines of code for all the updates we
tested.

Performance experiments using benchmarks for Volde-
mort and H2 found that Rubah imposes 5% and 9% over-
head, respectively. We also found that our state transforma-
tion algorithms reduce the pause at update-time. The parallel
algorithm performed nearly 5 times faster than the single-
threaded version for larger heaps. However, for larger heaps,
the total pause time can still be quite high; e.g., tens of sec-
onds to minutes. By contrast, when using the lazy algorithm
on real updates to H2 and Voldemort, the pause time was
typically 2–3 seconds, regardless of the heap size, and the
application recovered 90% of the steady-state performance
in 30 seconds or less.

In summary, Rubah represents the first portable, perfor-
mant, full-featured DSU system developed for Java, and rep-
resents an important step toward practical use.

2. Dynamic Software Updating with Rubah
This section describes how Rubah supports dynamic updat-
ing for Java programs, with its design inspired by Kitsune’s
approach for C [8], but employing new algorithms (Sec-
tion 3) and a novel implementation strategy (Section 4).

2.1 Workflow
The workflow for using Rubah is given in Figure 1. Prior
to deploying the initial version of a program (which we call
“version 0” or v0), that version’s code (v0.jar) is given to
the Rubah analyzer tool, which produces a version descrip-
tor (v0.desc) that contains meta-data, such as the list of all
updatable classes, for that version. The program is executed
by Rubah’s driver, which takes the application’s classes and
the descriptor. The driver uses a custom classloader that in-
tercepts each class that the application loads and performs
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Figure 1. Deploying a program, and preparing and installing
an update for it, using Rubah. Square boxes represent artifacts:
Compiled code (jar/class), source code (java), or update descriptors
(desc). Round boxes represent tools: Rubah’s driver, analyzer, and
updater, and the unmodified Java compiler (javac).

a semantics-preserving bytecode transformation that adds
support for future updates to the loaded class, most notably
in support of state transformation, discussed below.

Once a new version of the program is available (which
we call “version 1”, or v1), the developer prepares a dy-
namic update by passing the new code (v1.jar) and the v0
descriptor to the analyzer, which produces, along with the
v1 descriptor, an update class (UpdateClass.java) that
describes how existing objects should be changed to work
with the new code. The programmer can customize this class
as needed, and then compile it using the analyzer-produced
skeleton.jar as a placeholder for the old-version classes.

The dynamic update is deployed by the updater, which
signals the running driver, providing the new code and the
update class. The driver then deploys the update in three
stages. In the first stage, quiescence, the driver gets each
thread to a point at which it is safe to perform he update.
In the second stage, state transformation, the driver initiates
(and may complete) the modification of object instances
whose class has changed (according to the update class).
In the final stage, control flow migration, each thread is
restarted and shepherded to a point equivalent to the one
at which the update took place. At this point, the update is
logically complete. Future versions repeat steps 3–6 in the
figure.

This approach is extremely flexible. Rubah permits chang-
ing any class in an arbitrary manner, with few exceptions,
whereas past approaches often limit which classes can be
changed, and in what ways. For Rubah, the only classes that
cannot be updated are the Java runtime classes and libraries
(e.g., Java collections). Updatable classes can directly refer-
ence non-updatable classes but not the reverse, due to issues
involving the bootstrap class path of a Java application [12].



1 public void run() {
2 if (!Rubah.isUpdating()) {
3 transfer.init();
4 trace("Connect");
5 // Parse client version
6 // Negotiate protocol params
7 transfer.flush();
8 trace("Connected");
9 }

10 try {
11 while (!stop) {
12 try {
13 Rubah.update("process");
14 process();
15 } catch (UpdateRequestedException e) {
16 continue;
17 } catch (UpdatePointException e) {
18 throw e;
19 } catch (Throwable e) {
20 sendError(e);
21 }
22 }
23 trace("Disconnect");
24 } catch (UpdatePointException e) {
25 throw e;
26 } catch (Throwable e) {
27 server.traceError(e);
28 } finally {
29 if (!Rubah.isUpdateRequested())
30 close();
31 }
32 }

Figure 2. Example adapted from H2 TcpServerThread featuring
logic related with update points (gray highlight) and control-flow
migration (black highlight).

Of course, library classes do not directly reference applica-
tion classes, so this restriction poses no practical difficulty.

Rubah requires the programmer to write (or retrofit) the
program so that the update process works properly. In par-
ticular, to help with quiescence, the programmer must insert
update points that identify safe moments to perform updates.
The programmer must also add code to perform control flow
migration. Finally, for each new version that comes out, the
programmer may also need to customize the default update
class. In the remainder of this section we describe what must
be done, using an example.

2.2 Example
Figure 2 shows a simplified version of a method from the H2
database that we modified to support updating. The changes
we made are highlighted. While much of figure constitutes
modifications, bear in mind that most of the application logic
will be in methods like process, which will require no
changes. In our experience, code changes to support updat-
ing are small, requiring on the order of 100 lines of code,
and stable, typically requiring no changes between versions.

Ignoring the highlighted code for now, we can see that
this method handles client connections. The method starts by
parsing the client data and negotiating the protocol parame-

ters (lines 3 to 8). Then, it executes every client command
by calling method process (line 14) inside an infinite loop
(lines 11 to 22). Method process blocks until the client is-
sues the next command, executes that command, and returns.

Note the complex handling of exceptions, typical in
server methods. All recoverable exceptions thrown inside
the process method are sent back to the client (line 20),
and non-recoverable exceptions are logged (line 27, which
catches exceptions re-thrown by the sendError method). A
finally block ensures that the connection is closed when
the server method exits (line 30).

2.3 Update Points and Quiescence
The light gray highlighted code in the figure is related with
update points [10]. In Rubah, update points are simply calls
to method Rubah.update. This method takes a string as its
sole argument, which is a label intended to identify logically
distinct program points.

The example in Figure 2 shows an update point placed
on line 13. This is a good place to put an update point be-
cause the program is quiescent:2 At this point it has finished
processing the last client command and has not started to
process the next one. The state relevant to the update is not
in the middle of being modified. In general, update points
are best placed at the head of long-running loops to ensure
both safety and availability [9].

When an update becomes available, the program may be
blocked waiting for some I/O operation. To avoid an undue
delay to the update, Rubah requires the program to either:
(1) Use non-blocking sockets and select operations, which
are blocking but can be interrupted without closing the
socket [7]; or (2) have each thread voluntarily wake-up from
I/O calls frequently and reach an update point before block-
ing again. Rubah provides an API that simplifies retrofitting
a program to use non-blocking I/O, if needed; we used this
API for the H2 database (see Section 5.1). In the example,
process will throw an UpdateRequestedException if
interrupted by an update. This exception is caught on line 16
and the loop soon reaches the update point on line 13.

Calling method Rubah.update when an update is avail-
able results in it throwing an UpdatePointException;
unhindered, this exception will ultimately reach a Rubah-
provided wrapper for a thread’s run (or main) method,
where it is caught and dealt with. The thread wrapper is im-
plemented in the class RubahThread, which is a drop-in re-
placement for class java.lang.Thread that applications
must use. Of course, the exception may be caught by in-
tervening catch blocks in the application, so the developer
may need to make changes to avoid this (lines 18 and 25).
The developer also needs to ensure that the exception does
not change any state by being propagated, therefore actions

2 Note that our definition of quiescence differs from (and is not comparable
to) that of some prior work [14], which defines it to mean that all updated
functions are inactive, i.e., not running.



within finally blocks must be guarded to account for possible
updates (line 29).

When all threads have been stopped at update points, the
program is quiescent, and the update may take place. This
happens in two steps: state transformation, which loads in
new and updated classes and transforms existing objects to
use those new classes, and control-flow migration, which re-
turns the threads to their logically correct positions in the
(new) application code. We defer discussion of state trans-
formation to Section 2.5 and discuss control-flow migration
next, completing the explanation of the code in our example.

2.4 Control-flow Migration
The goal of the control-flow migration is to return each pro-
gram thread to an update point in the new version that is
equivalent to the point at which it stopped in the previous
version. Rubah begins control-flow migration by re-starting
each thread’s (possibly updated) run method (or the main

method for the main thread, if it is still alive). Each thread
eventually reaches, and blocks at, an update point with same
label as the update point at which the thread quiesced origi-
nally. Once all threads have so blocked, control-flow migra-
tion is complete, and all threads may continue.

When a thread starts for the first time, it typically per-
forms initialization actions that should not be re-performed
during control-flow migration. In our example, lines 3 to 8
negotiate protocol parameters with the client, and this ne-
gotiation should not be repeated, post update. To avoid ini-
tialization code, Rubah provides API calls that the developer
can use to determine whether a thread is running for the first
time or as a result of an update. In our example, line 2 guards
the initialization code with a call to Rubah.isUpdating
which returns true if called while performing the control-
flow migration and false otherwise. Besides application
threads and the main thread, Rubah also supports control-
flow migration of thread pools.

Note that some systems, like UpStare [13], attempt to per-
form control-flow migration automatically. Following Kit-
sune, Rubah prefers the manual approach because (a) it
makes the updating process manifest in the program code
and thus easier for the programmer to reason about, and (b) it
imposes less overhead than would full support for program-
wide stack unwinding and rewinding (as in UpStare).

2.5 State transformation
Prior to restarting each thread, Rubah performs state trans-
formation to convert the existing program’s objects to use
the updated classes. Conceptually, this happens by visiting
each object in the heap that might have been affected by an
update and transforming it to work with the new version’s
code. In most cases this transformation is simple; e.g., ver-
sion v0 of a class has two fields while version v1 has three,
and the newly added field is initialized with its default value.
In rare cases the transformation is more involved, and so the
programmer can specify what to do in the update class.

1 class UpdateClass {
2 void convert(
3 v0.org.h2.store.PageStore o0,
4 v1.org.h2.store.PageStore o1) {
5 o1.readCount = 0L;
6 o1.writeCount = 0L;
7 o1.writeCountBase = o0.writeCount;
8 }
9 }

Figure 3. Example adapted from H2 of an update class with a
single instance conversion method.

Figure 3 shows an example of an update class, which
specifies the transformation. This example has a single in-
stance conversion method that transforms instances of class
org.h2.store.PageStore by taking an existing instance
o0 that belongs to version v0 and using it to initialize the
equivalent new instance o1 that shall take o0’s place in v1.

Update classes have one instance conversion method for
each class that has a different set of fields from version v0 to
version v1. Even if the set of fields is the same, with regards
to name and type, the developer can define instance conver-
sion methods to account for fields whose semantics changes.
If a field has changed neither name nor type, then Rubah
copies its value from the old to new version by default; the
developer can override this behavior by assigning to the field
in the conversion method. Update classes may also define
static conversion methods to transform static fields.

In Figure 3, field writeCount in v0 keeps the total num-
ber of bytes ever written to a particular store. v1 renames
field writeCount to writeCountBase and introduces two
new fields, readCount and writeCount, to track how
many bytes were read/written since the store was opened.
The transformation code copies the value from the renamed
field in line 7 and sets to zero the two new fields in lines 5
and 6. This transformation code makes the store act as if it
was opened when the update took place.

The arguments of the conversion method in Figure 3
are skeleton classes, which as the name implies, have been
stripped of a lot of the original’s contents: all methods are re-
moved, and all fields are made public (so as to be accessible
to the update class’s code). Each class is placed in a distinct
namespace, depending on its version, allowing the developer
to refer to version v0 or v1 unambiguously and still use the
regular Java compiler to compile the update class.

Rubah’s analyzer generates a default update class that the
programmer may customize. The analyzer compares v0 and
v1 and matches fields by owner class name, field name, and
field type. It generates a conversion method for each class
with unmatched/changed fields that initializes those fields
to a default value (0, false, or null). The developer then
“fills in the blanks.”

Rubah’s state transformation algorithms are responsible
for finding outdated instances and updating them via the
update class. We have developed two algorithms, a parallel



one and a lazy one, which have different tradeoffs. These
algorithms constitute one of the main contributions of this
work, and so are discussed in detail in the next section.

Once the programmer has suitably modified the update
class, the update can be tested for correctness in the expected
way, e.g., by running tests and ensuring that an update mid-
test does not violate expected behavior [6, 9].

3. State Transformation Algorithms
Once the current version of the program becomes quiescent,
Rubah initiates the process of transforming the program’s
outdated objects, that is, those whose (own or ancestor) class
has been changed by the update.

Rubah supports two novel state transformation algo-
rithms. The first, parallel algorithm transforms all outdated
objects eagerly, using multiple threads, while the program is
stopped. Rubah is the first DSU system to develop a parallel
eager transformation algorithm. The second, lazy algorithm
transforms each outdated object as late as possible, just be-
fore the program attempts to use the object after the update
takes place. This section describes each algorithm in detail.

3.1 Notation
The algorithms are presented in Java-like pseudocode (the
differences from Java are made for brevity and readability):

• Brackets are omitted, and indentation determines scope.
• We use a map visited to keep track of visited ob-

jects. The map associates outdated objects with their
transformed versions. All other objects map to them-
selves. We write visited[key] = val to associate key
with val, and retrieve the current mapping by writing
visited[key]; if no mapping for key exists, this ex-
pression yields ⊥.

• Visiting each field in an object, used to compute the
transitive closure of the object graph, is written using a
for-like notation, for (Field f : obj) ... obj.f ....

• We use atomic compare and swap (CAS) to ensure safe
concurrency. The expression CAS(lval, expectVal,

setVal) atomically sets the l-value lval to setVal as-
suming that lval’s contents are currently expectVal,
in which case setVal is returned, otherwise the cur-
rent contents are. Thus, if obj.f=0, then the expression
CAS(obj.f,0,1) sets obj.f to be 1, and returns 1,
at which point the expression CAS(obj.f,0,2) would
make no change to obj.f and return 1. We assume the
map supports atomic semantics so that map[key] can
be used as an l-value, i.e., CAS(map[key],expect,
newKey) denotes an atomic map insertion.

We explain how we actually implement some of these prim-
itives in our prototype in the next section.

3.2 Parallel state transformation
The simplest way to transform the program state is to do
so eagerly, while the program is stopped. A single thread
can, starting from the root references, follow each object
reference transitively until all the program state is visited
and transformed. This is very similar to a stop-the-world
tracing garbage collection algorithm [11], and is used by
many DSU systems [8, 10, 22, 24]. We improve on this
basic idea by performing tracing in parallel, using multiple
threads. Here we present single- and multi-threaded variants
of our algorithm, for presentation purposes.

For the purposes of state transformation, we consider the
root references to be the static fields in all loaded classes
and the fields in all stopped java.lang.Thread objects.
We do not consider local variables to be roots, as their stacks
are unwound during quiescence; our experience (with Rubah
and Kitsune [8]) is that values in locals at update-time are
rarely needed, but if they are the programmer can store them
away (e.g., in a hashtable) temporarily.

Figure 4 shows the parallel state transformation algo-
rithm. The main code is in the migrate method. The
traverse and map methods differ for the single- and multi-
threaded variants, and their code is prefixed with labels ST
and MT, respectively, in the figure.

The algorithm calls migrate(o) for each root object
o. This method starts by looking up the object in the map
(line 5). If not present, it proceeds to map the old class
to the new one, create an instance of the new class, and
transforms the object (lines 7 to 14). Rubah.convert calls
instance conversion methods in a hierarchical way similar to
how Java calls constructors [5]. Let us consider the case in
which classes A and B are updatable, class B extends A, class
N is non-updatable, and class A extends N. In this case, to
transform instances of class B, Rubah: (1) copies all fields
inherited from class N, (2) copies all unchanged fields from
class A, (3) calls A’s conversion method to transform A’s
updated fields, (4) copies all unchanged fields from class B,
and (5) calls B’s conversion method to transform B’s updated
fields.

After transforming the object, the algorithm marks the
object as visited (lines 15 to 17) and traverses the trans-
formed object (line 18). In the single-threaded variant of the
algorithm, traversal is done by the method ST:traverse,
which simply calls migrate for every field that the object
has. In this variant, ST:map simply looks up an object in
the map, so in the single-threaded variant, the condition on
line 16 is always false.

The multi-threaded algorithm uses a TaskQueue to co-
ordinate state transformation among multiple threads. The
multi-threaded object traversal (method MT:traverse) cre-
ates tasks to do object transformation for each field (line 33).
Each task, itself, creates further tasks and the algorithm fin-



1 Map visited;
2 TaskQueue queue;
3
4 migrate (Object obj) =
5 if (visited[obj])
6 return visited[obj];
7 Class c = obj.getClass();
8 Class newC = Rubah.mapClass(c);
9 Object newObj;

10 if (newC != c)
11 newObj = Rubah.new(newC);
12 Rubah.convert(obj, newObj);
13 else
14 newObj = obj;
15 Object mapped = map(obj, newObj);
16 if (mapped != newObj)
17 return mapped;
18 traverse(newObj);
19 return newObj;
20
21 ST:traverse (Object obj) =
22 for (Field f : obj)
23 obj.f = migrate(obj.f);
24
25 ST:map(Object pre, Object post) =
26 visited[pre] = post;
27 return post;
28
29 MT:traverse (Object obj) =
30 for (Field f : obj)
31 Task t = new Task()
32 { obj.f = migrate(obj.f); }
33 queue.add(t);
34
35 MT:map(Object pre, Object post) =
36 return CAS(visited[pre], ⊥, post);

Figure 4. Parallel state migration algorithm

ishes when the task threads complete with an empty task
pool.3

Multiple threads will be reading from and writing to the
visited map concurrently and there is a danger of data
races. In particular, it is possible for one thread to read the
map (line 5), find it empty, and then create a new object to
store in the map (line 15). Before this new object is stored
in the map, however, another thread could follow the same
path, and ultimately overwrite the object stored by the first
thread, leading to an inconsistency in the transformed heap.

The multi-threaded algorithm solves this problem by us-
ing CAS in its MT:map implementation. If the CAS goes to
write the new object but finds the map does not contain ⊥,
and thus some other thread beat it to writing an object there,
it will simply return the existing object. Then, on line 16 of
migrate, the object mapped will be different than newObj

and so migrate will simply complete (since the existing ob-
ject has already been set for traversal by whatever thread put
it there).

3 We notate tasks (line 31 to line 32) using braces, which form the boundary
of a closure: obj and f are free variables inside task t resolved to those in
the lexical scope (i.e., the variables defined in lines 29 and 30, respectively).

3.3 Lazy state transformation
Lazy state transformation takes place while the program is
running. The goal is to postpone the transformation of each
object o to the last possible moment, which is just before the
program uses o for the first time after an update takes place;
at this point we say the object is visited. Laziness avoids the
significant pause that would occur for large heaps.

To implement lazy transformation, Rubah uses proxies to
intercept when the program manipulates unvisited objects.
When the program reaches a proxy, we say that such proxy is
dereferenced. At that moment, Rubah transforms the proxied
object, creates proxies for the objects that the transformed
object refers to, and transfers the control flow to the trans-
formed object.4

Rubah modifies the original program so that every object
can behave like a proxy to itself by setting a flag. When the
proxy flag is set, methods start by redirecting the control
flow to Rubah’s API before executing the original method
body. Lines 28 to 31 show a possible implementation that
we shall use throughout this section. We discuss the actual
implementation in Section 4.3.

3.3.1 Correctness conditions
The lazy algorithm is correct if the new program code can
find only transformed program state. This intuition is cap-
tured by the following invariants:

Invariant 1: Visited objects only refer to other visited ob-
jects or to proxies

Invariant 2: Objects are not proxied after being visited

Invariant 1 is a safety property that ensures the object
graph has a clear frontier between the visited and unvisited
program state that is composed of proxies. This frontier
starts by being the root references and expands outward as
more proxies get dereferenced.

Invariant 2 is a liveness property that ensures that the state
transformation makes progress because it does not allow
for an object to be constantly proxied and dereferenced in
sequence. This situation might lead to stack overflow, as the
call stack grows at each proxy-dereference, or to live-lock if
two program threads end up installing proxies to an object
and dereferencing another constantly and mutually.

3.3.2 Algorithm
Figure 5 shows the lazy state transformation algorithm. We
assume that the algorithm starts by running the loop that
starts in line 9 for every root reference. Lines 17 to 19 test
if each referred object needs to be transformed. If not, the
algorithm simply proxies the object (line 26). Otherwise, the
algorithm creates an object of the new class without run-

4 During this section we assume that proxies can only be dereferenced
through method invocations for the sake of simplicity. We discuss how
Rubah handles all other ways in which proxies may be dereferenced, such
as field access, in Section 4.3.



ning any constructors (line 20), runs the conversion code to
transfer the state from the outdated object (line 21), proxies
the new object (line 22), marks the the old object as visited
(line 23), and sets the original reference to point to the new
object (lines 24). (Recall from Section 3.1 that the first argu-
ment of CAS is treated as an l-value, not an r-value.) Objects
referred to by the root references are transformed only once:
aliased objects are detected by line 13 and each aliasing ref-
erence is set to the correct object in line 14. For now, assume
that the CAS operations on lines 14, 23, and 24 always suc-
ceed; their role will become evident later on this section.

At this point all root references refer to proxies. Invari-
ant 1 is therefore true and Rubah can safely start running the
each paused thread’s run/main method at the new version,
beginning the process of control-flow migration. Assuming
for now that all accesses to objects are via method calls, then
the next method call on an object will be to a proxy. We as-
sume all methods have been modified according to the bot-
tom of the figure: the program calls method LAZYmigrate

(line 30), which traverses the proxy (line 4), installing prox-
ies for all the unvisited objects that the proxy refers to. It
then dereferences the proxy (line 5), and marks the object as
visited (line 6). Invariant 1 remains true when the program
flow reaches line 31 because the new object only refers to
proxies and other transformed objects.

If an object is aliased, several threads might find it con-
currently and try to install a proxy for it. All these threads
will race to mark the outdated object as visited. Line 23 en-
sures that only one thread wins the race and all the threads
use the same transformed object. As a consequence, the con-
version methods that the developer writes may be called
more than once for the same object. Therefore, all the con-
version methods must be idempotent.

Let us assume that two threads T1 and T2 race to map
the same object o1 which is referred to by o2.f. Further-
more, consider that T1 wins and T2 is not scheduled to run
for a long while after executing line 23. T1 finishes run-
ning method LAZYtraverse, then finishes running method
LAZYmigrate, and then starts executing the new program
version’s code. Suppose that now T1 performs o2.f = o3
while executing the program code. At this point T2 runs
again and executes line 24. T2 cannot be allowed to perform
o2.f = p because that would overwrite o3, thus changing the
program’s semantics and introducing an error. That is why
line 24 has a CAS operation, CAS(o2.f,o1,p), which in this
case will (correctly) fail for T2. This race is also the reason
for the CAS operation in line 14.

3.3.3 Ensuring Progress
The only two lines that install proxies are line 22 and line 26,
for objects that need to be transformed and for objects that
do not, respectively. It is trivial to ensure invariant 2 for
transformed objects: They are proxied before being globally
visible, at line 23. Once they are dereferenced (line 5) they
cannot be proxied again because they are marked as visited.

1 Map visited;
2
3 LAZYmigrate (Object obj)
4 LAZYtraverse(obj);
5 obj.isProxy = false;
6 visited[obj] = obj;
7
8 LAZYtraverse (Object obj)
9 for (Field f : obj)

10 Object ref = obj.f;
11 if (ref.isProxy)
12 continue;
13 else if (visited[ref])
14 CAS(obj.f, ref, visited[ref]);
15 continue;
16 else
17 Class c = ref.getClass();
18 Class newC = Rubah.mapClass(c);
19 if (c != newC)
20 Object p = Rubah.new(newC);
21 Rubah.convert(ref, p);
22 p.isProxy = true;
23 p = CAS(visited[ref], ⊥, p);
24 CAS(obj.f, ref, p);
25 else
26 p.isProxy = true;
27
28 Object method(Object ... args)
29 if (this.isProxy)
30 LAZYmigrate(this);
31 // Rest of original method

Figure 5. Lazy conversion algorithm. Note that this algorithm
assumes that all field accesses from outside a class are via methods
(we validate this assumption in our implementation).

For all the other objects, reasoning about progress is more
subtle. When they are proxied (line 26), they already are
globally visible but not marked as visited. To understand
why this is different than transformed objects, consider the
following scenario: An object o is aliased by two fields
o1.f and o2.f. Thread T1 traverses o1.f, proxies o into
oP , dereferences oP , and stops executing after line 5. Then
thread T2 traverses o2.f and proxies o again because o is not
marked as visited yet, so the test on line 13 fails.

In this case, object o goes back and forth from proxied
and dereferenced. This does not violate invariant 2, however,
because object o only becomes visited at line 6. If this line
executes while o is proxied as oP , the next time oP gets
dereferenced it goes back to o in line 5. From this point on, o
cannot become proxied again because it is marked as visited
and thus passes the test in line 13.

The worst case scenario is if half of the threads in the
application behave as T1 and the other half as T2, alternately,
as in the scenario that we are following. However, there is a
limited number of threads. So, there is a bounded number
of times which an object can be proxied and dereferenced in
sequence. Assuming that the map visited is wait-free, it
follows that there is a bound on the number of steps required



to mark each object as visited. Therefore, we can state that
the lazy state transformation algorithm is wait-free.

4. Implementation
Rubah is the first DSU system for Java that is both full-
featured (flexibly handling release-level updates) and VM-
independent. This section details how Rubah’s driver actu-
ally performs a dynamic update once one becomes available.
Our implementation is written in roughly 9KLOC of Java,
and makes use of the ASM bytecode rewriting tool [1].

4.1 Class replacement
After the updater signals that an update is ready (step 6 in
Figure 1), the driver will load the new classes. For those
classes that have changed their method bodies but not their
class signature (i.e., the method and field types are un-
changed), Rubah uses HotSwap support [18] (a standard
JVM feature) to replace the method bodies with their new
versions. To update classes whose signatures have changed,
Rubah uses bytecode rewriting, described next, to give each
updated class a distinct name. During state transformation,
references to objects of the old class will be redirected to
(transformed) instances of the new one.

4.2 Bytecode transformation
The Rubah driver uses a custom classloader to rewrite all
classes, updatable or not, as they are loaded. Bytecode
rewriting consists of three parts:5

1. Name Mangling. Rubah renames updatable classes to
distinguish those of different (past and future) versions. A
class named AppClass gets renamed to AppClass__0 in
version v0 and AppClass__1 in version v1. Changing the
name of all classes might break some reflection calls, such
as Class.forName. Rubah rewrites all invocations of these
methods to call Rubah’s API instead, which provides the
same semantics and accounts for name mangling.

2. Type Erasure. Rubah replaces occurrences of updatable
types in all fields and method arguments with java.lang.

Object, and adds casts to the code that uses them. It does
this for the following reason.

Suppose an updatable program has three classes, A, B,
and C, such that A has a field that refers to B and B has
one that refers to C. Consider also that a particular update
changes class C’s signature and how class B interacts with
class C. In this case, Rubah needs to generate an updated
class C1 for C0. It also needs to generate an updated class
B1 to update all references (in fields and methods) from C0

to C1. But now class B has also changed and, following
the same rationale, Rubah ends up generating class A1 even
though class A did not change and does not use directly any
updated class.

5 Bootstrap class packages, such as thejava.lang, are re-written before
execution and placed in a bootstrap jar that the JVM must load.

Replacing updatable types with java.lang.Object
eliminates this problem, since the types of declarations will
never change. In our example, Rubah generates C1 and
rewrites the methods in B0 so that they refer to C1 instead
of C0. But class A0 is left completely unchanged.

3. Hash Code. When we update an object oold with a
replacement onew, we must take care that, post-update, for
all objects pold updated to pnew:
− if oold.equals(pold) then onew.equals(pnew)
− if oold.hashCode() == pold.hashCode() then
onew.hashCode() == pnew.hashCode().

These properties are particularly important for collections.
If equals is overridden by the program, it is up to the

programmer to ensure that the update class preserves equal-
ity behavior. Likewise, overridden hashCode methods must
be ensured equal semantics by the programmer.

Non-overridden equals methods just implement == (i.e.,
pointer) equality, which Rubah ensures by construction.
Non-overridden hashCode must also be ensured as having
the required semantics by Rubah. It does this by injecting an
integer field to every updatable class to hold the hash-code,
and overrides the hashCode method to return the contents
of that field. Rubah also injects code to initialize the field on
every constructor’s exit. Thus the hashcode field can simply
be copied when an object is transformed.

Performance. The type erasure and the hash-code trans-
formations are the main sources for the steady-state over-
head that Rubah imposes. However, the JIT compiler masks
most of the overhead. For type erasure, most of the type
erased fields and methods always hold instances of the same
type. The JIT compiler is able to realize this and generate
optimized code for the common case. As for the hash-code,
the JIT inlines calls to the hashCode method, thus reducing
them to a simple field read operation in most cases.

4.3 State transformation
Our implementation largely follows the state transforma-
tion algorithms given in Section 3, with two exceptions: the
visited map is implemented as an added field, and the
isProxy field is actually implemented as a proxy object.

Visited map. The visited map from Section 3 conceptu-
ally marks objects as visited and maps outdated v0 object
instances to their v1 equivalents as they are transformed.
Rather than implement the map as a separate data struc-
ture, Rubah adds an extra instance field to updatable and
non-updatable classes called $forward that points to an ob-
ject’s updated version. This approach adds a small per-object
overhead, but avoids adding the extra memory pressure at
update-time that a separate data structure would impose. It
also permits more fine-grained concurrency control: reading
or writing the forwarding pointer can be done with a regular
compare-and-swap operation.

Unfortunately, not all classes can be changed to add this
new field. For instance, the JVM directly accesses the fields



in all java.lang.Reference subclasses by their index.
Adding a field changes the index and makes the JVM crash.
Also, arrays cannot have extra fields. In these cases, Rubah
uses an adaptation of java.util.concurrent.Concur-
rentHashMap that provides the same semantics as java.
util.IdentityMap. This map supports an atomic oper-
ation that checks if a key is present, otherwise inserting a
mapping in a single step.

Lazy Proxies. Section 3.3 suggests that proxies are just a
flag that changes how methods work. A direct implementa-
tion would require adding an extra field to every class, and
adding a dynamic test to the start of each method. Instead,
Rubah generates a proxy class for each class that it loads, ex-
tending it and overriding all of the original class’s methods,
redirecting the control flow to Rubah’s API.6 Thus, proxies
inherit the fields of the classes they extend, having the same
layout as the object they proxy, with the only difference be-
tween an object and a proxy is the vtable it keeps.

In HotSpot, the vtable is placed inside a _klass structure
and every object points to its _klass at a fixed offset. (Jikes
has a similar object layout.) The JIT engine uses the _klass
reference to resolve virtual method invocation, the GC uses
the _klass reference to find relevant information about the
object, e.g., its size and layout, while traversing the heap.
Turning an object into a proxy and back is just a matter of
installing a different _klass. Rubah does exactly that using
unsafe operations present in class sun.misc.Unsafe.

Changing the _klass of an object is potentially unsafe
because the code that the JIT emits assumes that the _klass
does not change. Violating this invariant makes the JVM
crash when invoking methods over objects with an unex-
pected _klass. We developed Rubah carefully to ensure
that this violation only happens in methods inside of Rubah
that never get inlined in the program’s code and that such
methods never perform any virtual method invocation that
might reach the vtable. The GC also uses the _klass. How-
ever, it assumes far less than the JIT engine about the struc-
ture of the _klass and just looks for the relevant metadata
at a fixed offset for all objects. Given that both the proxy and
the proxied _klass agree on this metadata, this optimiza-
tion does not cause the GC to crash the JVM.

Changing the vtable makes proxies intercept virtual
method invocations. However, besides those, proxy classes
must also intercept other ways that the proxied object might
be manipulated, which are field accesses and non-virtual
method calls.7

For field accesses, Rubah rewrites all field accesses so
that they are made through accessor methods, which can

6 Rubah removes all final modifiers from classes and methods (but not
fields) it loads to ensure that every class and method can be proxied. There
are some classes in the java.lang package that do not support this,
such as java.lang.String, but these classes are never proxied.
7 In java, calls to private methods are non-virtual, as are calls to methods via
super.

be overriden and intercepted by proxy objects. When such
accessors are called from within the class’s own methods,
the JIT safely optimizes the call away by inlining; the only
overhead will be due to accesses from outside the class.

For non-virtual calls, there is no issue if the call is made
via this or super, since the current object cannot be a
proxy. The only time the receiver of a non-virtual call can
be a proxy is when invoking a private method of a different
object (having the same class). Rubah places a check before
the invocation to ensure that the other object is not a proxy;
if it is, it must be transformed. This case is very rare and the
extra call does not add any measurable overhead in practice.

4.4 Portability assumptions
Rubah was tested on Oracle’s HotSpot JVM. It does not
modify any part of it, but it relies on a number of assump-
tions about it. In particular, Rubah (1) uses “unsafe opera-
tions” to read fields directly, circumventing access checks
and bounds checks, and to compare-and-swap on arbitrary
memory locations; and (2) assumes the JVM lays out fields
in the same order along the class hierarchy, and that each
object’s vtable is in a fixed placed accessible to unsafe oper-
ations. As far as we know, IBM’s Jikes and OpenJDK both
satisfy these assumptions.

5. Evaluation
This section presents the details and results of our experi-
mental evaluation of Rubah. We used Rubah to dynamically
update three applications: H2, an SQL DBMS written in
Java; Voldemort, a key-value store used by LinkedIn; and
Jake2, a Java port of the shooter game Quake 2. All three
applications are long-running, and maintain important in-
memory state (the database contents for the first two, and
the game state in the last) that would be lost on restart.
All of our code is available at http://web.ist.utl.pt/
˜luis.pina/oopsla14.

We evaluate Rubah along three axes:

Programmer effort (Section 5.1) How difficult is it to
retrofit an application to use Rubah? How difficult is it to
write an update class (which describes how to transform
the application’s state)?

Steady state overhead (Section 5.2.1) How much slower is
the normal operation of the Rubah-retrofitted version of
an application than its unmodified version?

Per update overhead (Section 5.2.2) How is the perfor-
mance of an application negatively affected while the
update is being installed? That is, how long is the appli-
cation paused and/or its performance degraded?

5.1 Programmer Effort
Table 1 assesses the programming effort to use Rubah on
our applications. The first two columns list the application
versions and their size. We retrofitted three versions of H2,



Version Original Modifications Update
Code Class

H2
1.2.121 36882 / 428 267 / 9 -
1.2.122 37182 / 428 Same 106 / 45
1.2.123 37084 / 428 Same 40 / 30

Voldemort
1.5.3 51679 / 518 175 / 7 -
1.5.4 51667 / 518 Same 12 / 2

Jake2
0.9.5 40077 / 257 29 / 2 -

Table 1. Programmer effort to support Rubah. Column original
code shows the total lines of code, excluding comments and blank
lines, and number of files on the original application. Column
modifications shows how many lines of code we added/modified to
support Rubah and how many files were changed. Column update
class shows the LOC of the automatically generated update class
file and the number of its lines we added/modified.

two of Voldemort, and one of Jake2 (as previous versions
lack sufficient differing functionality to be of interest).

The third column counts the number of files and lines af-
fected by our retrofit of the application to use Rubah. For
all three, we added update points to long-running loops and
added control-flow migration as described in Sections 2.3
and 2.4, respectively. For H2, we also changed blocking I/O
calls to use Rubah’s equivalent calls that use non-blocking
I/O and can be interrupted (accounting for 134 LOC); Volde-
mort already uses non-blocking I/O and Jake2 polls I/O fre-
quently rather than blocking. Consistent with our experi-
ence with dozens of updates to six C applications using Kit-
sune [8], the number of changes required is relatively small
and not strongly correlated with program size, but rather
with its control structure—notice that Jake2 required only
29 lines changed compared to 267 for H2, but is actually
larger. Moreover, as indicated by the table, no new changes
were required for subsequent versions of H2 and Voldemort.
Retrofitting an application to support Rubah is, therefore, a
modest one-time cost.

For H2 and Voldemort, we developed update classes to
implement state transformation between the supported ver-
sions; the fourth column provides some data about these
classes. We can see that stub update classes eased the burden
placed on the developer for these updates: The maximum
number of lines that we had to modify was 45. We tested our
updates to H2 and Voldemort by running standard bench-
marks (described shortly) and updating while they were un-
derway, ensuring the integrity of the final data.

5.2 Performance
We conducted an experimental evaluation of Rubah’s perfor-
mance using our three applications. Measurements were car-
ried out on a machine equipped with two Intel Xeon E5520
processors (8 physical cores, 16 logical) and 24GB of RAM

running Ubuntu 10.04 (Linux kernel 2.6.32). We used the
Oracle JVM version 1.7.0 25 with HotSpot 64-Bit Server
VM (build 23.25-b01) configured to use a maximum heap
size of 16GB for the server and 2GB for the client (bench-
mark).

Experimental setup. In all of our experiments, we start the
application server process and then launch a separate client
process that executes a performance benchmark that inter-
acts with the server and measures its performance. To mea-
sure steady-state overhead we compare the performance of
the unmodified server with that of the Rubah-enabled one—
no updates are performed. To assess per-update overhead we
update the Rubah-enabled server in the middle of the bench-
mark run and measure the performance impact of doing so.
In addition to performing a real update from one version to
the next (which we call a v0v1 update), we also consider a
v0v0 update, which installs the same version that the pro-
gram is running, but considers all classes incompatible and
transforms all the updatable program state, copying all in-
stances while the program state traversal takes place. This is
a good approximation of a worst case scenario.

To measure H2’s performance, we used the TPC-C
benchmark available in the DaCapo benchmark suite [3]
as the client process. We can configure the TPC-C bench-
mark with the number of transactions to run and the size
of the database to create before running the workload. The
database size is expressed in terms of a scale factor that
TPC-C uses to multiply the number of rows in several tables
it creates. The H2 server keeps all data in memory.

Voldemort ships with a performance benchmark that we
used as the client process. The benchmark has several con-
figurable parameters. The most interesting are: The number
of operations to perform, number of key-value pairs cre-
ated before running the workload, the size (in bytes) of each
stored key, and the ratio of read and write operations per-
formed by the workload. Besides these parameters, we ex-
tended the benchmark with support to run the workload for
a fixed period of time (as opposed to a fixed number of op-
erations). We configured Voldemort’s server in a single node
setting, with all the data in memory. The benchmark exe-
cutes a realistic mix of 95% read and 5% write operations [?
].

For Jake2 we do not have an automated performance
benchmark. Since we have no client process, therefore, we
do not measure steady-state overhead but rather only the
pause time resulting from applying a v0v0 update to the
(idle) process loaded with game state.

5.2.1 Steady state overhead
Rubah-enabled applications are going to be somewhat slower
than the original ones due to the changes made to the appli-
cation during bytecode transformation (which, in part, in-
volve calls to the Rubah run-time library). Table 2 shows
that Rubah imposes little overhead during steady-state exe-



Version Vanilla Rubah Overhead
H2

1.2.121 372.7± 6.9 412.0± 10.0 10.5%

1.2.122 375.7± 4.4 407.1± 3.2 8.4%

1.2.123 373.4± 2.8 405.8± 7.2 8.7%

Voldemort
1.5.3 478.0± 3.8 499.0± 5.1 4.4%

1.5.4 475.4± 1.7 500.5± 2.4 5.2%

Table 2. Elapsed time (in seconds) of benchmark runs, with and
without Rubah, thus reporting steady-state performance. Reported
values are the median and semi-interquartile range of 10 bench-
mark runs. Overhead is computed by (Rubah/V anilla)− 1.

cution: About 5% for Voldemort and 9% for H2. For these
measurements, we configured H2’s benchmark to run 256K
transactions on a database with a scale factor of 32; for
Voldemort we ran 25M operations over a key-value store
populated with 5M entries of size 128 bits.

5.2.2 Per-update overhead
Installing an update will temporarily slow down the applica-
tion. Under all circumstances, we must wait for the threads
to quiesce and we must wait for Rubah to HotSwap outdated
method code. When transforming the program state eagerly,
the application will remain paused while Rubah threads tra-
verse and transform the heap; when transforming state lazily,
the application begins running quickly, but will briefly pause
each time it must transform an object.

Parallel transformation. We configured each benchmark
to install an update 10 seconds after it finishes populating
the server with test data. We repeat the experiment for both
v0v0 and v0v1 updates (1.2.121 to 1.2.122 in H2’s case) and
with a varying number of transformation threads.

Table 3 reports how long Rubah takes to transform the
program state in each case. Rubah achieves speedups using
up to 12 threads on H2 and 16 on Voldemort, despite the
fact that the test machine has only 8 physical CPUs. The
v0v0 case has more work to do per object, therefore sees
a higher speedup than the v0v1 case. In Voldemort’s case,
changing from 1 to 2 threads yields little or no speedup,
and sometimes slows down because 2 threads create a much
larger number of in-flight conversions, thus creating a larger
task queue and triggering more garbage collections. Adding
more threads amortizes this added memory pressure.

We expect the pause time to increase as heap size in-
creases. Table 4 shows the length of the pause, from the
client process’s point of view, which grows as the heap
grows. For larger heaps, the pause is quite pronounced. Fig-
ure 6 visualizes this effect. The figure presents plots where
the x-axis is elapsed time, and the y-axis is transactions/-
operations per second. The left column on Table 4 shows
the results when using parallel state transformation. We con-
figured H2’s benchmark to run 256K transactions over a

Num. v0v0 v0v1
threads H2

1 60.8± 1.5 1 15.7± 0.2 1

2 34.4± 0.8 1.8 9.2± 0.1 1.7

4 20.3± 0.3 3.0 7.0± 0.2 2.2

8 13.7± 0.5 4.4 6.0± 0.2 2.6

12 13.3± 0.3 4.6 5.9± 0.2 2.6

16 13.0± 0.1 4.7 6.3± 0.3 2.5

Voldemort
1 80.3± 1.0 1 37.1± 1.2 1

2 68.3± 1.2 1.2 43.5± 2.7 0.8

4 37.3± 1.2 2.2 26.1± 3.3 1.4

8 22.4± 0.8 3.6 16.2± 0.8 2.3

12 20.3± 1.1 3.9 14.4± 0.5 2.6

16 18.9± 1.4 4.2 13.2± 0.7 2.8

Table 3. Elapsed time (in seconds) of parallel state transforma-
tion. The first column under each benchmark is the median time
and semi-interquartile range, in seconds, required to transform the
program state. The second column is the speedup relative to one
thread. Reported values are the average and standard-deviation of
10 benchmark runs. The H2 benchmark used a database with a scale
factor of 32 and the Voldemort benchmark used a key-value store
with 5M entries.

database with a varying scale factor and Voldemort’s bench-
mark to run for 20 minutes over a server with a varying num-
ber of key-value pairs; there is a different line for each vari-
ation, listed for each application. We run the benchmark for
v0v0 and v0v1 (1.2.121 to 1.2.122 for H2’s case).

We install an update at time T=60 seconds for H2 and
T=300 seconds for Voldemort. Thus at these times we see a
performance drop, a pause, and then a rapid rise back toward
the pre-update peak. There are two things to notice: First,
the update pause increases with the heap size, particularly
for v0v0, which must traverse all of the heap. Second, we
see that performance does not completely return to its pre-
update level. We believe this happens due to JIT confusion:
After the update, there are more types for the JIT compiler to
reason about, i.e., more concrete implementations of virtual
methods inherited by updatable types (Rubah never unloads
the outdated types). We are investigating how to improve the
situation.

Lazy transformation. The lazy algorithm performs state
transformation as needed, on a per-object basis, thus amor-
tizing the performance cost over time. The right column of
Figure 6 shows the performance for lazy state transforma-
tion. The key feature is the far smaller drop in performance at
update-time, after which performance slowly rises, depend-
ing on the heap size. Returning to Table 4, we can see that
pauses for lazy updates on H2 v0v0 increase linearly; this is
because much of the heap is reached (in an array) prior to
completing a single transaction. For all other lazy updates,
the update pause is constant regardless of the total heap size,
and is quite small compared to the parallel algorithm.
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Figure 6. Plotting of Rubah’s performance while installing an update under varying heap sizes. Each line shows the performance for a
different-sized database (the line label is the scale factor for H2 and the number of key-value pairs for Voldemort). We report the average of
10 benchmark runs. For parallel transformation we used 16 threads. The occasional performance dips are due to garbage collections; their
number and magnitude indicate the level of memory pressure.



Size v0v0 v0v1
Parallel Lazy Parallel Lazy

H2
32 13.0± 0.5 7.0± 0.5 7.5± 0.5 3.0± 0.1

64 24.5± 0.5 13.0± 0.7 13.0± 0.5 3.0± 0.5

128 83.0± 3.6 23.0± 0.6 27.0± 0.8 2.5± 0.5

Voldemort
1M 5.1± 0.1 1.3± 0.1 4.2± 0.1 1.9± 0.2

5M 20.5± 0.5 1.3± 0.4 15.1± 0.3 1.5± 0.3

10M 40.1± 1.4 1.8± 0.3 29.8± 0.7 1.8± 0.5

15M 242.3± 3.8 1.7± 0.3 151.4± 7.8 2.8± 0.4

Jake2
1.5± 0.1 1.2± 0.1 - -

Table 4. Pause time (in seconds) required to install each update
under various heap sizes. Reported values are the median and semi-
interquartile range of 10 benchmark runs. The first column is the
size that each benchmark used to populate the server with test data
(scale factor for H2 and number of key-value pairs for Voldemort).
The parallel transformation used 16 threads.

Returning briefly to Figure 6, we note that the experiment
also shows that lazy transformation does disproportionately
better than the parallel transformation with larger heaps. For
Voldemort, the 15M case runs close to the total heap size.
The parallel transformation makes the GC thrash, triggering
numerous full-GC cycles that are not able to free much
memory. The lazy algorithm performs much better. It still
triggers one full-GC cycle, but that one cycle actually frees
enough memory to keep the GC from ever thrashing. We
can see a similar thrashing pattern for H2’s 128 v0v0, even
though it happens after the update is installed.

Finally, note that the post-update drop of peak perfor-
mance is larger for the lazy case, compared to the parallel
one. We speculate this is due to the many proxies that are in
the object graph. The JIT ends up optimizing for transform-
ing proxies, which is a frequent operation immediately after
the update. This optimization is, obviously, less performant
when the program reaches steady-state after the update and
most of the proxies are already transformed.

Jake2. Table 4 shows that the update time for Jake2, both
lazy and parallel versions, is quite small. We confirmed that
the update was non-disruptive by playing several matches
of Quake2 and updating in the middle; the Quake2 client
already tolerates network latency and the Jake2 server keeps
a very small program state.

6. Related Work
As mentioned in Section 2, Rubah employs the same ap-
proach to whole program updates as Kitsune [8], a DSU sys-
tem for C; in particular, both systems employ the concepts
of control-flow migration and update points. Kitsune’s state
transformation algorithm is like Rubah’s parallel algorithm
but uses a single thread. Due to C’s weak type system, Kit-

sune’s compiler cannot always produce a traversal algorithm
automatically, and so may require manual assistance. Kit-
sune uses a domain-specific language to specify state con-
versions; Rubah’s update class is a more compact, and natu-
ral, representation for conversions in the Java context.

Rubah’s update class bears some similarity to PJama’s
bulk conversion [4] routines. However, these routines work
on offline updates of persistent object stores, rather than on-
line updates to running Java programs. PJama also does not
use skeleton classes to refer to old/new state unambiguously.

There have been several prior systems that support DSU
for Java without requiring VM support. JRebel [25] allows
unrestricted changes to the structure of a class (add/remove
fields/methods) but not to the class position in the hierar-
chy, which Rubah supports. JRebel also does not support any
state transformation besides the default Java initialization to
added fields. DUSC [19] and DUSTM [20] work by insert-
ing proxies as an indirection to every object, and paying the
respective steady-state performance penalty, which can be as
high as 50% for a similar H2 benchmark.

The JVM itself is a natural place to support DSU. The
Oracle JVM supports dynamic updates to method bodies in
existing classes [18], for the purposes of enabling “stop-edit-
continue” development (JRebel also targets this domain).
Full-featured DSU is supported by the JVolve [22] and DCE
VMs [24], though even these do not support some changes
to the class hierarchy, which Rubah does. Since the DSU
services are located inside the JVM itself, these systems can
take advantage of internal mechanisms, such as the garbage
collection (GC) and JIT compiling, to implement efficient
support for DSU. However, this approach is inherently non-
portable. The goal of building Rubah was to show that sim-
ilarly powerful mechanisms can be built outside the VM
while imposing comparable performance and development
costs. And ultimately, that similar performance could be ob-
tained while imposing only a fraction of the intrusion to VM
code as previous works.

The JDrums [21] JVM supports lazy updates using a
technique analogous to Rubah’s $forward field. JDrums
also uses a conversion class to specify how to transform
each class. Rubah is more flexible than JDrums and more
performant: JDrums cannot transform data in each object’s
superclass, it does not support changing existing methods,
and it executes only in interpreted mode.

Lazy updates have also been implemented for C. Ginseng
implements lazy-updates for both single [16] and multi-
threaded [15] programs. It uses a proxying approach similar
to Rubah’s. However, it ensures safety via a per-type mutex
rather than via a wait-free algorithm and it does not remove
proxies dynamically as objects are converted. POLUS [2]
also allows for old and new data to co-exist while the update
takes place, and converts old data when it is viewed by new
code, on demand. POLUS tracks data changes at a coarser
level than Rubah (using page protection).



Our state transformation algorithms have natural ana-
logues in the GC literature [11]: Rubah’s eager and lazy
algorithms resemble parallel and incremental, concurrent
GC, respectively. There is likely further gain in applying GC
ideas to our state transformation algorithms, though DSU re-
quirements are more stringent: GC may delay garbage iden-
tification and reclamation (e.g., floating garbage), while state
transformation must always be applied prior to access, to
bring objects up to date.

7. Conclusion
This paper has presented Rubah, the first full-featured,
portable DSU for Java that enjoys good performance and
is not difficult to use. Rubah’s updating model is inspired
by the that of the Kitsune updating system for C, inheriting
its simplicity and flexibility. Rubah adds the novel notion of
an update class for specifying how to update the program’s
state, two new algorithms for performing state transforma-
tion: one parallel algorithm that transforms all state at once,
and one lazy algorithm that transforms state as demanded
by post-update execution. Rubah imposes modest overhead
on steady-state execution, and when using the lazy trans-
formation algorithm imposes short pauses for real-world
dynamic updates, recovering its steady-state performance
fairly quickly. Rubah still has some performance shortcom-
ings which we are currently addressing. In particular, par-
allel transformation is slow when using large heaps, and
steady-state performance does not completely recover, post-
update. We plan to continue to improve our approach, and
expand it to new applications.
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