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Abstract
This paper presents Rubah, the first dynamic software up-
dating system for Java that: is portable, implemented via li-
braries and bytecode rewriting on top of a standard JVM;
is efficient, imposing essentially no overhead on normal,
steady-state execution; is flexible, allowing nearly arbitrary
changes to classes between updates; and is non-disruptive,
employing either a novel eager algorithm that transforms the
program state with multiple threads, or a novel lazy algo-
rithm that transforms objects as they are demanded, post-
update. Requiring little programmer effort, Rubah has been
used to dynamically update five long-running applications:
the H2 database, the Voldemort key-value store, the Jake2
implementation of the Quake 2 shooter game, the CrossFTP
server, and the JavaEmailServer.

Categories and Subject Descriptors C.4 [Performance of
Systems]: Reliability, availability, and serviceability

Keywords Dynamic Software Updating; Java; JVM

1. Introduction
As on-line services go global, an increasing number of sys-
tems require constant availability, and as a matter of con-
venience many other systems would prefer it. A common
technique for ensuring high availability is rolling upgrades,
enabled by a load balancer that distributes requests among
many back-end servers. These servers can be taken off-line
on a rolling basis when they become idle, and then upgraded
and re-entered into service. For this approach to work, in-
teresting state must be kept external to the server (e.g., in a
DBMS) and connections must be fairly short lived (so that
servers quickly become idle). These requirements are some-
times infeasible or too inefficient.
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An alternative approach to rolling upgrades is dynamic
software updating (DSU). This technique works by updat-
ing a process in place, patching the existing code and trans-
forming the existing in-memory state. By not shutting down
the updated program, DSU addresses the shortcomings of
rolling upgrades. First, it preserves active, long-running con-
nections (e.g., to databases, media streaming, FTP and SSH
servers), which can immediately benefit from important pro-
gram updates (e.g., security fixes). Second, it preserves in-
memory server state. Doing so is extremely valuable for
in-memory databases, gaming servers and many other sys-
tems, that rely on the relatively low expense and high per-
formance of commodity RAM, to maintain large data sets in
the heap. This problem is acute enough that Facebook uses a
custom version of memcached that keeps in-memory state in
a ramdisk to which it reconnects on a post-update restart [2].

General-purpose systems developed for C and C++ have
been applied to dozens of realistic applications, tracking
changes according to those applications release histories [3–
6]. Increasingly, important on-line services are written in
managed languages like Java. For example, Twitter has
moved most of its major infrastructure to Java [7], and the
Java-based Voldemort noSQL database is used by compa-
nies like Linkedin. While several DSU systems for Java have
been developed [8–10] they all have shortcomings that in-
hibit practical usage.

This paper presents Rubah, the first full-featured, portable
DSU system for Java with good performance. Rubah imple-
ments DSU as whole program updates, in the style of Kit-
sune [6], a DSU system for C we developed previously.1

Compared to prior DSU systems for Java, Rubah has sev-
eral advantages (further comparisons are in Section 6):

• Rubah works by bytecode rewriting, enhancing its porta-
bility; no changes to the underlying JVM are required,
unlike past systems such as Jvolve [10], the DVM [9],
and JDrums [8].

• Rubah is extremely flexible, handling release-level up-
dates. As far as we are aware, no prior system can handle
the same range of updates Rubah can.

1 Kitsune is the Japanese word for fox, a shape shifter. Rubah is the Indone-
sian word for fox; natives of the island of Java speak Indonesian.



• Rubah enjoys good steady-state performance: support-
ing updating imposes negligible (-1.0–2.5%) overhead
on normal execution for our benchmarks when using a
production-quality VM, whereas prior systems either did
not work with production VMs (Jvolve used Jikes) or im-
posed high overheads (e.g., DuSTM [11] imposed over-
heads of more than 50% on similar benchmarks).

In addition, Rubah uses two novel algorithms to reduce the
pause in application execution while the application’s state
is being transformed. Rubah’s parallel algorithm speeds up
the standard algorithm by parallelizing it. Rubah’s lazy algo-
rithm injects proxy objects that mediate access to outdated
instances; when accessed, the proxy triggers the target ob-
ject’s transformation and then removes itself, to avoid adding
further indirection overhead. The proxy implementation and
data structures are wait-free, which means that the original
program cannot deadlock/livelock due to an update.

We have used Rubah with Oracle’s production HotSpot
VM to dynamically update five long-running applications:
the H2 SQL relational database; the Voldemort key-value
store, used in practice by LinkedIn; Jake2, a Quake2 port
translated to Java; CrossFTP, an FTP server written in Java;
and JavaEmailServer, an POP3/SMTP server written in Java.
We modified these applications by hand to support updates
in Rubah and found that the amount of effort required corre-
lates with the application’s control-flow structure rather than
with the application’s size. This effort added from 29 to 267
lines of code and is a one-time effort: Once the first ver-
sion supports Rubah, subsequent versions require little, if
any, modification. We also wrote code to transform the state
between four versions of CrossFTP, three versions of H2 and
JavaEmailServer, and two versions of Voldemort. This effort
must be done for each supported version and is a function
of the number of classes with a different representation be-
tween versions. Rubah automates the majority of this pro-
cess and so we only had to write a total of 114 lines of code
for all the updates we tested.

Performance experiments using benchmarks for Volde-
mort, H2, and CrossFTP found that the overhead Rubah im-
poses (-1.0%–2.5%) is well within the noise on modern sys-
tems [12]. We also found that our state transformation algo-
rithms reduce the update-time pause. The parallel algorithm
performed nearly 4 times faster than the single-threaded ver-
sion for larger heaps. However, for larger heaps, the total
pause time can still be high (tens of seconds to minutes). By
contrast, when using the lazy algorithm on real updates to H2
and Voldemort, the pause time was typically 2–3 seconds, re-
gardless of the heap size, and the application recovered 90%
of the steady-state performance in 30 seconds or less.

In summary, Rubah represents the first portable, perfor-
mant, full-featured DSU system developed for Java, and rep-
resents an important step toward practical use.
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Figure 1. Deploying a program, and preparing and installing
an update for it, using Rubah. Square boxes represent artifacts:
Compiled code (jar/class), source code (java), or update descriptors
(desc). Round boxes represent tools: Rubah’s driver, analyzer, and
updater, and the unmodified Java compiler (javac).

2. Dynamic Software Updating with Rubah
This section describes how Rubah supports dynamic updat-
ing for Java programs, with its design inspired by Kitsune’s
approach for C [6], but employing new algorithms (Sec-
tion 3) and a novel implementation strategy (Section 4).

2.1 Workflow
The workflow for using Rubah is given in Figure 1. Prior
to deploying the initial version of a program (which we call
“version 0” or v0), that version’s code (v0.jar) is given to
the Rubah analyzer tool, which produces a version descrip-
tor (v0.desc) that contains meta-data, such as the list of all
updatable classes, for that version. The program is executed
by Rubah’s driver, which takes the application’s classes and
the descriptor. The driver uses a custom classloader that in-
tercepts each class that the application loads and performs
a semantics-preserving bytecode transformation that adds
support for future updates to the loaded class, most notably
in support of state transformation, discussed below.

Once a new version of the program is available (which
we call “version 1”, or v1), the developer prepares a dy-
namic update by passing the new code (v1.jar) and the v0
descriptor to the analyzer, which produces, along with the
v1 descriptor, an update class (UpdateClass.java) that
describes how existing objects should be changed to work
with the new code. The programmer can customize this class
as needed, and then compile it using the analyzer-produced
skeleton.jar as a placeholder for the old-version classes.

The dynamic update is deployed by the updater, which
signals the running driver, providing the new code and the
update class. The driver then deploys the update in three
stages. In the first stage, quiescence, the driver gets each
thread to a point at which it is safe to perform the update.



In the second stage, state transformation, the driver initiates
(and may complete) the modification of object instances
whose class changed (according to the update class). In the
final stage, control flow migration, each thread is restarted
and shepherded to a point equivalent to the one at which
the update took place. At this point, the update is logically
complete. Future versions repeat steps 3–6 in the figure.

This approach is extremely flexible. Rubah permits chang-
ing any class in an arbitrary manner, with few exceptions,
whereas past approaches often limit which classes can be
changed, and in what ways. For Rubah, the only classes that
cannot be updated are the Java runtime classes and libraries
(e.g., Java collections). Updatable classes can directly refer-
ence non-updatable classes but not the reverse, due to issues
involving the bootstrap class path of a Java application [13].
Of course, library classes do not directly reference applica-
tion classes, so this restriction poses no practical difficulty.

Rubah requires the programmer to write (or retrofit) the
program so that the update process works properly. In par-
ticular, to help with quiescence, the programmer must insert
update points that identify safe moments to perform updates.
The programmer must also add code to perform control flow
migration. Finally, for each new version that comes out, the
programmer may also need to customize the default update
class. In the remainder of this section we describe what must
be done, using an example.

2.2 Example
Figure 2 shows a simplified version of a method from the H2
database that we modified to support updating. The changes
we made are highlighted. While much of figure constitutes
modifications, bear in mind that most of the application logic
is in methods like process, which require no changes. In
our experience, code changes to support updating are small,
requiring on the order of 100 lines of code, and stable,
typically requiring no changes between versions.

Ignoring the highlighted code for now, we can see that
this method handles client connections. The method starts by
parsing the client data and negotiating the protocol parame-
ters (lines 3 to 8). Then, it executes every client command
by calling method process (line 14) inside an infinite loop
(lines 11 to 22). Method process blocks until the client is-
sues the next command, executes that command, and returns.

Note the complex handling of exceptions, typical in
server methods. All recoverable exceptions thrown inside
the process method are sent back to the client (line 20),
and non-recoverable exceptions are logged (line 27, which
catches exceptions re-thrown by the sendError method). A
finally block ensures that the connection is closed when
the server method exits (line 30).

2.3 Update Points and Quiescence
The light gray highlighted code in the figure is related with
update points [3]. In Rubah, update points are simply calls
to method Rubah.update. This method takes a string as its

1 public void run() {
2 if (!Rubah.isUpdating()) {
3 transfer.init();
4 trace("Connect");
5 // Parse client version
6 // Negotiate protocol params
7 transfer.flush();
8 trace("Connected");
9 }

10 try {
11 while (!stop) {
12 try {
13 Rubah.update("process");
14 process();
15 } catch (UpdateRequestedException e) {
16 continue;
17 } catch (UpdatePointException e) {
18 throw e;
19 } catch (Throwable e) {
20 sendError(e);
21 }
22 }
23 trace("Disconnect");
24 } catch (UpdatePointException e) {
25 throw e;
26 } catch (Throwable e) {
27 server.traceError(e);
28 } finally {
29 if (!Rubah.isUpdateRequested())
30 close();
31 }
32 }

Figure 2. Example adapted from H2 TcpServerThread featuring
logic related with update points (gray highlight) and control-flow
migration (black highlight).

sole argument, which is a label intended to identify logically
distinct program points. The example in Figure 2 shows an
update point placed on line 13. This is a good place to put
an update point because the program is quiescent:2 At this
point it has finished processing the last client command and
has not started to process the next one. State relevant to an
update is not in the middle of being modified.

We designed Rubah to be directly applicable to pro-
grams with a control-flow structure similar to this exam-
ple, which in our experience is typical of high-availability
programs [15], i.e., each thread has a long-running loop to
process internal or external requests, and the head of this
loop is a point where the program is naturally quiescent.

When an update becomes available, the program may be
blocked waiting for some I/O operation. To avoid an un-
due delay to the update, Rubah requires the program to ei-
ther: (1) Use non-blocking sockets and select operations,
which are blocking but can be interrupted without closing
the socket [16]; or (2) have each thread voluntarily wake-
up from I/O calls frequently and reach an update point be-

2 Note that our definition of quiescence differs from (and is not comparable
to) that of some prior work [14], which defines it to mean that all updated
functions are inactive, i.e., not running.



fore blocking again. Rubah provides an API that simplifies
retrofitting a program to use non-blocking I/O, if needed;
we used this API for the H2 database, CrossFTP server, and
JavaEmailServer (see Section 5.1). In the example, process
throws an UpdateRequestedException if interrupted by
an update. This exception is caught on line 16 and the loop
soon reaches the update point on line 13.

Method Rubah.update throws an UpdatePointExcep-
tion when an update is available; unhindered, this excep-
tion will ultimately reach a Rubah-provided wrapper for
a thread’s run (or main) method, where it is caught and
dealt with. The thread wrapper is implemented in the class
RubahThread, which is a drop-in replacement for class
java.lang.Thread that applications must use. Of course,
the exception may be caught by intervening catch blocks in
the application, so the developer may need to make changes
to avoid this (lines 18 and 25). The developer also needs to
ensure that the exception does not change any state by being
propagated, therefore actions within finally blocks must be
guarded to account for possible updates (line 29).

When all threads have been stopped at update points, the
program is quiescent, and the update may take place. This
happens in two steps: state transformation, which loads in
new and updated classes and transforms existing objects to
use those new classes, and control-flow migration, which re-
turns the threads to their logically correct positions in the
(new) application code. We defer discussion of state trans-
formation to Section 2.5 and discuss control-flow migration
next, completing the explanation of the code in our example.

2.4 Control-flow Migration
The goal of the control-flow migration is to return each pro-
gram thread to an update point in the new version that is
equivalent to the point at which it stopped in the previous
version. Rubah begins control-flow migration by re-starting
each thread’s (possibly updated) run method (or the main

method for the main thread, if it is still alive). Each thread
eventually reaches, and blocks at, an update point with same
label as the update point at which the thread quiesced origi-
nally. Once all threads have so blocked, control-flow migra-
tion is complete, and all threads may continue. Besides ap-
plication threads and the main thread, Rubah also supports
control-flow migration of thread pools.

When a thread starts for the first time, it typically per-
forms initialization actions that should not be re-performed
during control-flow migration. In our example, lines 3 to 8
negotiate protocol parameters with the client, and this ne-
gotiation should not be repeated, post update. To avoid ini-
tialization code, Rubah provides API calls that the developer
can use to determine whether a thread is running for the first
time or as a result of an update. In our example, line 2 guards
the initialization code with a call to Rubah.isUpdating
which returns true if called while performing the control-
flow migration and false otherwise.

1 class UpdateClass {
2 void convert(
3 v0.org.h2.store.PageStore o0,
4 v1.org.h2.store.PageStore o1) {
5 o1.readCount = 0L;
6 o1.writeCount = 0L;
7 o1.writeCountBase = o0.writeCount;
8 }
9 }

Figure 3. Example adapted from H2 of an update class with a
single instance conversion method.

Note that some systems, like UpStare [17], attempt to per-
form control-flow migration automatically. Following Kit-
sune, Rubah prefers the manual approach because (a) it
makes the updating process manifest in the program code
and thus easier for the programmer to reason about, and (b) it
imposes less overhead than would full support for program-
wide stack unwinding and rewinding (as in UpStare).

2.5 State transformation
Prior to restarting each thread, Rubah performs state trans-
formation to convert the existing program’s objects to use
the updated classes. Conceptually, this happens by visiting
each object in the heap that might have been affected by an
update and transforming it to work with the new version’s
code. In most cases this transformation is simple; e.g., ver-
sion v0 of a class has two fields while version v1 has three,
and the newly added field is initialized with its default value.
In rare cases the transformation is more involved, and so the
programmer can specify what to do in the update class.

Figure 3 shows an example of an update class, which
specifies the transformation. This example has a single in-
stance conversion method that transforms instances of class
org.h2.store.PageStore by taking an existing instance
o0 that belongs to version v0 and using it to initialize the
equivalent new instance o1 that shall take o0’s place in v1.

Update classes have one instance conversion method for
each class that has a different set of fields from version v0 to
version v1. Even if the set of fields is the same, with regards
to name and type, the developer can define instance conver-
sion methods to account for fields whose semantics changes.
If a field has changed neither name nor type, then Rubah
copies its value from the old to new version by default; the
developer can override this behavior by assigning to the field
in the conversion method. Update classes may also define
static conversion methods to transform static fields.

In Figure 3, field writeCount in v0 tracks the total
number of bytes ever written to a particular store. Version
v1 renames field writeCount to writeCountBase and
introduces two new fields, readCount and writeCount,
that track how many bytes were read/written since the store
was opened. The transformation code copies the value from



the renamed field in line 7 and sets to zero the two new fields
in lines 5 and 6. This transformation code makes the store act
as if it was opened when the update took place.

The arguments of the conversion method in Figure 3
are skeleton classes, which as the name implies, have been
stripped of a lot of the original’s contents: all methods are re-
moved, and all fields are made public (so as to be accessible
to the update class’s code). Each class is placed in a distinct
namespace, depending on its version, allowing the developer
to refer to version v0 or v1 unambiguously and still use the
regular Java compiler to compile the update class.

Rubah’s analyzer generates a default update class that the
programmer may customize. The analyzer compares v0 and
v1 and matches fields by owner class name, field name, and
field type. It generates a conversion method for each class
with unmatched/changed fields that initializes those fields
to a default value (0, false, or null). The developer then
“fills in the blanks.”

Rubah’s state transformation algorithms are responsible
for finding outdated instances and updating them via the
update class. We have developed two algorithms, a parallel
one and a lazy one, which have different tradeoffs. These
algorithms constitute one of the main contributions of this
work, and so are discussed in detail in the next section.

Once the programmer has suitably modified the update
class, the update can be tested for correctness, e.g., using
the strategies proposed in our prior work [15, 18]. In brief:
For tests whose outcome should be the same in both the
old and new version (e.g., because the tested features are
unaffected by the update), we can run the test and update the
program at various moments during the test, making sure the
test still passes. For tests relevant only to the new version,
e.g., because they test a new feature, we can establish the
initial state using old-version commands, updating at any
time while doing so, and then complete the test at the new
version, ensuring it still passes. We may need to construct
new tests when the new-version behavior is incompatible
with old-version behavior but the update supports a kind of
intermediate view. This could happen, say, when the new
version imposes a connection limit, but that limit is exceeded
when the update takes place; we might nevertheless like to
preserve existing connections until going below the limit. A
new test would have to be written to establish that the update
does indeed ensure this behavior. More details can be found
in our prior papers.

3. State Transformation Algorithms
Once the current version of the program becomes quiescent,
Rubah initiates the process of transforming the program’s
outdated objects, that is, those whose (own or ancestor) class
has been changed by the update.

Rubah supports two novel state transformation algo-
rithms. The first, parallel algorithm transforms all outdated
objects eagerly, using multiple threads, while the program

is stopped. The second, lazy algorithm transforms each out-
dated object as late as possible, just before the program at-
tempts to use the object after the update takes place. This
section describes each algorithm in detail.

3.1 Notation
The algorithms are presented in Java-like pseudocode, with
the differences from Java made for readability:

• Brackets are omitted, and indentation determines scope.
• We use a map visited to keep track of visited objects.

The map associates outdated objects with their trans-
formed versions (or with themselves, if they have not
changed). We write visited[key] = val to associate
key with val, and retrieve the current mapping by writ-
ing visited[key]; if no mapping for key (yet) exists,
this expression yields ⊥.

• Visiting each field in an object, used to compute the
transitive closure of the object graph, is written using
notation: for (Field f : obj) ... obj.f ....

• We use atomic compare and swap (CAS) to ensure safe
concurrency. The expression CAS(lval, expectVal,

setVal) atomically sets the l-value lval to setVal as-
suming that lval’s contents are currently expectVal,
in which case setVal is returned, otherwise the cur-
rent contents are. Thus, if obj.f=0, then the expression
CAS(obj.f,0,1) sets obj.f to be 1, and returns 1,
at which point the expression CAS(obj.f,0,2) would
make no change to obj.f and return 1. We assume the
map supports atomic semantics so that map[key] can
be used as an l-value, i.e., CAS(map[key],expect,
newKey) denotes an atomic map insertion.

We explain how we actually implement some of these nota-
tional conveniences in our prototype in the next section.

3.2 Parallel state transformation
The simplest way to transform the program state is to do
so eagerly, while the program is stopped. A single thread
can, starting from the root references, follow each object
reference transitively until all the program state is visited and
transformed. This is very similar to a stop-the-world tracing
garbage collection algorithm [19], and is used by many DSU
systems [3, 6, 9, 10]. We improve on this basic idea by
performing tracing in parallel, using multiple threads.

For the purposes of state transformation, we consider the
root references to be the static fields in all loaded classes
and the fields in all stopped java.lang.Thread objects.
We do not consider local variables to be roots, as their stacks
are unwound during quiescence; our experience (with Rubah
and Kitsune [6]) is that values in locals at update-time are
rarely needed, but if they are the programmer can store them
away (e.g., in a hashtable) temporarily.



1 Map visited;
2 TaskQueue queue;
3
4 migrate (Object obj) =
5 if (visited[obj])
6 return visited[obj];
7 Class c = obj.getClass();
8 Class newC = Rubah.mapClass(c);
9 Object newObj;

10 if (newC != c)
11 newObj = Rubah.new(newC);
12 Rubah.convert(obj, newObj);
13 else
14 newObj = obj;
15 Object mapped = map(obj, newObj);
16 if (mapped != newObj)
17 return mapped;
18 traverse(newObj);
19 return newObj;
20
21 ST:traverse (Object obj) =
22 for (Field f : obj)
23 obj.f = migrate(obj.f);
24
25 ST:map(Object pre, Object post) =
26 visited[pre] = post;
27 return post;
28
29 MT:traverse (Object obj) =
30 for (Field f : obj)
31 Task t = new Task()
32 { obj.f = migrate(obj.f); }
33 queue.add(t);
34
35 MT:map(Object pre, Object post) =
36 return CAS(visited[pre], ⊥, post);

Figure 4. Parallel state migration algorithm

Figure 4 shows the parallel state transformation algorithm
as well as a single-threaded variant, for comparison. The
main code is in the migrate method. The traverse and
map methods differ for the single- and multi-threaded vari-
ants, and their code is prefixed with labels ST and MT, re-
spectively, in the figure.

The algorithm calls migrate(o) for each root object
o. This method starts by looking up the object in the map
(line 5). If not present, it proceeds to map the old class to
the new one by calling method Rubah.mapClass (line 8)
which, for argument class c, returns either class c if the up-
date does not modify c; or the updated version of outdated
class c. For outdated objects, the algorithm creates an in-
stance of the new class, and transforms the object (lines 11
and 12).

Rubah.convert calls instance conversion methods in a
hierarchical way similar to how Java calls constructors [20].
Let us consider the case in which classes A and B are updat-
able, class B extends A, class N is non-updatable, and class
A extends N. In this case, to transform instances of class B,
Rubah: (1) copies all fields inherited from class N, (2) copies
all unchanged fields from class A, (3) calls A’s conversion

method to transform A’s updated fields, (4) copies all un-
changed fields from class B, and (5) calls B’s conversion
method to transform B’s updated fields.

After transforming the object, the algorithm marks the
object as visited (lines 15 to 17) and traverses the trans-
formed object (line 18). In the single-threaded variant of the
algorithm, traversal is done by the method ST:traverse,
which simply calls migrate for every field that the object
has. In this variant, ST:map simply updates an object in the
map, so the condition on line 16 is always false.

The multi-threaded algorithm uses a TaskQueue to co-
ordinate state transformation among multiple threads. The
multi-threaded object traversal (method MT:traverse) cre-
ates tasks to do object transformation for each field (line 33).
Each task, itself, creates further tasks and the algorithm fin-
ishes when the task threads complete with an empty queue.3

Multiple threads read from and write to the visited map
concurrently and there is a possibility of races. In particular,
it is possible for one thread to read the map (line 5), find
it empty, and then create a new object to store in the map
(line 15). Before this new object is stored in the map, how-
ever, another thread could follow the same path, and ulti-
mately overwrite the object stored by the first thread, leading
to an inconsistency in the transformed heap.

The multi-threaded algorithm solves this problem by us-
ing CAS in its MT:map implementation. If the CAS attempts
to write the new object but finds the map does not contain
⊥, and thus another thread won the race to write an object
there, it simply returns the existing object. Then, on line 16
of migrate, the object mapped is different from newObj

and so migrate simply completes since the existing object
has already been set.

3.3 Lazy state transformation
Lazy state transformation takes place while the program
is running. The goal is to postpone the transformation of
each object to the last possible moment. Laziness avoids the
significant pause that would otherwise occur for large heaps.

To implement lazy transformation, Rubah uses proxies to
intercept control when the program is about to dereference
an object o (i.e., read/write one its fields or call a method)
that is not completely up to date. The proxy does the nec-
essary work to bring the object up to date before allowing
the program to continue. To simplify the presentation, we
present the algorithm as if every object can behave like a
proxy to itself by setting a flag, rather than using a separate
object. The start of each method is modified to check the
proxy flag, and perform the necessary work if the flag is set,
before executing the original method body.4 We discuss the
actual implementation in Section 4.3.

3 We notate tasks (line 31 to line 32) using braces, which form the boundary
of a closure: obj and f are free variables inside task t resolved to those in
the lexical scope (i.e., the variables defined in lines 29 and 30, respectively).
4 We discuss how Rubah handles all other ways in which proxies may be
dereferenced, such as field access, in Section 4.3.



1 Map visited;
2
3 LAZYmigrate (Object obj)
4 LAZYtraverse(obj);
5 obj.isProxy = false;
6 visited[obj] = obj;
7
8 LAZYtraverse (Object obj)
9 for (Field f : obj)

10 Object ref = obj.f;
11 if (ref.isProxy)
12 continue;
13 else if (visited[ref])
14 CAS(obj.f, ref, visited[ref]);
15 continue;
16 else
17 Class c = ref.getClass();
18 Class newC = Rubah.mapClass(c);
19 if (c != newC)
20 Object p = Rubah.new(newC);
21 Rubah.convert(ref, p);
22 p.isProxy = true;
23 p = CAS(visited[ref], ⊥, p);
24 CAS(obj.f, ref, p);
25 else
26 ref.isProxy = true;
27
28 Object method(Object ... args)
29 if (this.isProxy)
30 LAZYmigrate(this);
31 // Rest of original method

Figure 5. Lazy conversion algorithm. Note that this algorithm
assumes that all field accesses from outside a class are via methods
(we validate this assumption in our implementation).

3.3.1 Correctness conditions
Any state transformation algorithm is correct if, once the
program threads are restarted after reaching quiescence, they
only run up-to-date code and access up-to-date state. This is
trivially true for the parallel algorithm.

For the lazy algorithm to guarantee correctness, it ensures
that the restarted threads will only ever use objects that are
safe to access.

Invariant 1: After the update, the program only uses objects
that are safe to access

An object o is safe to access if and only if (1) o’s class is
not outdated, and (2) either o is a proxy (i.e., its proxy flag
is set) or all of its fields are safe to access. By ensuring this
invariant, we ensure that whenever the program uses an ob-
ject, the object is either up to date or a proxy. In the latter
case, the algorithm updates the proxied object’s fields so that
they are safe to access and uninstalls the proxy before letting
the program use the (now up-to-date) object. This approach
causes the object graph to have a clear frontier between the
up-to-date and partially updated program state that is com-
posed of proxies. This frontier starts at the root references
and expands outward as more proxies get dereferenced.

In addition to this core invariant, the lazy algorithm main-
tains another important invariant, which is that all objects
mapped to by visited are safe to access.

Invariant 2: If visited[o] = p then p is safe to access

As we shall see shortly, this invariant helps ensure that after
converting a proxy object to one that is up to date, the latter
is safe to access.

3.3.2 Algorithm
Figure 5 shows the lazy state transformation algorithm. The
algorithm first handles the roots by running the loop on
line 9, where each field obj.f considered is a root refer-
ence (e.g., a static field). Lines 17 to 19 test if each re-
ferred object needs to be transformed. If not, the algorithm
simply proxies the object (line 26). Otherwise, the algorithm
creates an object of the new class without running any con-
structors (line 20), runs the conversion code to initialize the
new object using the state of the outdated object (line 21),
proxies the new object (line 22), marks the old object as
visited (line 23), and sets the original reference to point to
the new object (lines 24). (Recall from Section 3.1 that the
first argument of CAS is treated as an l-value, not an r-value.)
Note that assigning visited[ref] to p on line 23 satisfies
invariant 2 because p is not outdated, and is a proxy. Ob-
jects are transformed only once: aliased proxies are skipped
(lines 11–12) and aliased objects are set to the correct, safe-
to-access object (lines 13–15). For now, assume that the CAS
operations on lines 14, 23, and 24 always succeed; their role
shall become evident later on this section.

At this point all root references refer to proxies. Invari-
ant 1 is therefore true and Rubah can safely start running
each paused thread’s run/main method at the new version,
beginning the process of control-flow migration. Assuming
that all accesses to objects are via method calls, then the next
method call on an object will be to a proxy. We assume all
methods have been modified according to the bottom of the
figure: the program calls method LAZYmigrate (line 30),
which traverses the proxy (line 4) using LAZYtraverse. As
explained above, this method ensures all of the proxy’s fields
are safe to access. Each field is already a proxy (line 11),
is made into a proxy (lines 22 and 26), or was previously
visited (line 13), in which case we update it with the new
version from the map. Invariant 2 ensures that this new ver-
sion is safe to access. Once a proxied object is traversed,
LAZYmigrate uninstalls the proxy (line 5), and marks the
object as visited (line 6) by mapping the object to itself. Do-
ing so satisfies invariant 2 since the object’s fields are all safe
to access. This fact also ensures invariant 1 when, at line 31,
we start running the object’s code.

Now let us revisit the uses of CAS in the algorithm. If an
object is aliased, several threads might find it concurrently
and try to transform it. All these threads race to mark the
outdated object as visited. We consider that objects become
visited only when they are registered in the visited map



such that, for object o, visited[o] 6= ⊥. Line 23 ensures
that only one thread wins the race and all the threads use the
same transformed object. As a consequence, the conversion
methods that the developer writes may be called more than
once for the same outdated object. Therefore, all the conver-
sion methods must be idempotent.

There are two more uses of CAS we can justify with an
example. Suppose two threads T1 and T2 race to mark the
same object o1 as registered, which is referred to by o2.f.
Furthermore, suppose T1 wins and T2 is not scheduled to
run for a long while after executing line 23. T1 finishes run-
ning method LAZYtraverse, then finishes running method
LAZYmigrate, and then starts executing the new program
version’s code. Suppose that now T1 performs o2.f = o3
while executing the program code. At this point T2 runs
again and executes line 24. T2 cannot be allowed to perform
o2.f = p because that would overwrite o3, thus changing the
program’s semantics and introducing an error. That is why
line 24 has a CAS operation, CAS(o2.f,o1,p), which in this
case (correctly) fails for T2. This race is also the reason for
the CAS operation in line 14.

Assuming that the visited map is wait-free, this algo-
rithm is trivially wait-free: all operations are guaranteed to
finish in a bounded number of steps because there are no
loops.

4. Implementation
Rubah is the first DSU system for Java that is both full-
featured (flexibly handling release-level updates) and VM-
independent. This section details how Rubah’s driver actu-
ally performs a dynamic update once one becomes available.
Our implementation is written in roughly 9KLOC of Java,
and makes use of the ASM bytecode rewriting tool [1].

4.1 Name Mangling
Rubah renames updatable classes to distinguish those of dif-
ferent (past and future) versions. A class named AppClass

gets renamed to AppClass__0 in version v0 and
AppClass__1 in version v1. For brevity, in the following
text we write C0 for C__0 and C1 for C__1. Changing the
name of a class might break some reflection calls, such as
Class.forName. Rubah rewrites all invocations of these
methods to call Rubah’s API instead (e.g. Rubah.classFor-
Name), which provides the same semantics and accounts for
name mangling.5

4.2 Class replacement
After the updater signals that an update is ready (step 6 in
Figure 1), the driver will load the new classes. Rubah gen-
erates a new class C1 for each class C in the new version

5 The added version suffix should not be too confusing for developers to
see during debugging, nor should replacing field accesses with accessor
methods, as described in Section 4.3. The standard compiler already inserts
accessor methods for use by inner classes to access containing-class private
fields.

of the program, even if class C is unchanged from the previ-
ous version. As a consequence, Rubah must transform all in-
stances of C0 to instances of class C1. But executing the state
transformation algorithms for objects of classes that did not
change would be inefficient. Rubah takes advantage of how
the JVM lays out objects in memory to avoid such transfor-
mations.

HotSpot finds the class to which any object belongs by
looking for that object’s _klass reference at a fixed offset
within the object (Jikes and OpenJDK have a similar object
layout). If two classes A and B define the same fields in the
same order, we can turn an instance of A into an instance of
B by simply modifying the _klass reference.

Rubah uses the unsafe operations available in class
sun.misc.Unsafe to manipulate _klass references. If
the structure of a class C does not change between versions,
Rubah turns all instances of class C0 it finds into instances
of class C1 by setting the _klass reference. Note that the
bodies of the methods might change between versions. In
this case, installing a new _klass also changes the vtable
of the object, effectively installing the new methods. This
technique is analogous to using HotSwap [21] to install new
code for loaded classes. However, this technique does not re-
quire the JVM to run in debug mode, which we have found
adversely affects JIT performance.

Changing the _klass reference of an object is potentially
unsafe because the code that the JIT emits, e.g. when in-
lining, assumes that the _klass does not change. As such,
changing the _klass could crash the JVM. We developed
Rubah carefully to ensure that this violation only happens
in methods inside of Rubah that never get inlined in the pro-
gram’s code and that such methods never perform any virtual
method invocation that might reach the vtable. The GC also
uses the _klass. However, it assumes far less than the JIT
engine about the structure of the _klass and just looks for
the relevant metadata at a fixed offset for all objects. Given
that both the old and the new _klass agree on this metadata,
this optimization does not cause the GC to crash the JVM.

4.3 State transformation
Our implementation of state transformation largely follows
the algorithms given in Section 3, with two exceptions: (1)
the visited map is often implemented as an added field
rather than entirely as a separate data structure, and (2) the
isProxy field is actually implemented by manipulating the
_klass pointer to refer to a proxy class.

Visited map. The visited map from Section 3 marks ob-
jects as visited and maps outdated v0 object instances to their
v1 equivalents as they are transformed. Rather than imple-
ment the map entirely as a separate data structure, Rubah
adds an extra instance field to updatable and non-updatable
classes called $forward that points to an object’s updated
version. This approach adds a small per-object overhead, but
avoids adding the extra memory pressure at update-time that



a separate data structure would impose. It also permits more
fine-grained concurrency control: reading or writing the for-
warding pointer can be done with a regular compare-and-
swap operation.

Unfortunately, not all classes can be changed to add this
new field. For instance, the JVM directly accesses the fields
in all java.lang.Reference subclasses by their index.
Adding a field changes the index and makes the JVM crash.
Also, arrays cannot have extra fields. In these cases, Rubah
uses an adaptation of java.util.concurrent.Concur-
rentHashMap that provides the same semantics as java.
util.IdentityMap. This map supports an atomic oper-
ation that checks if a key is present, otherwise inserting a
mapping in a single step.

Lazy Proxies. Section 3.3 suggests that a proxy is just an
object whose added isProxy flag is set, where the flag
changes how methods work. Checking this flag would de-
grade performance at the entrance of every method. Further-
more, given that the JVM JIT optimizer aggressively inlines
small methods, the flag check would increase the code size
of all methods, making the JIT compiler miss inline oppor-
tunities for small methods and thus generate slower code. It
would also require an extra field in every class.

Instead, Rubah generates a proxy class to hold the proxy
code and turns regular objects into proxies, and proxies back
into regular objects, by manipulating the _klass reference
with unsafe operations in the same way we describe in Sec-
tion 4.2.

Rubah generates a proxy class CP for each class C that
it loads. CP extends C and overrides all of C’s methods,
redirecting the control flow to Rubah’s API.6 Thus, proxies
inherit the fields of the classes they extend, having the same
layout as the object they proxy, with the only difference
between an object and a proxy is the vtable it keeps.

Changing the vtable through the _klass pointer makes
proxies intercept virtual method invocations. However, be-
sides those, proxy classes must also intercept other ways that
the proxied object might be manipulated, which are field ac-
cesses and non-virtual method calls.7

For field accesses, Rubah rewrites all field accesses so
that they are made through accessor methods, which can
be overriden and intercepted by proxy objects. When such
accessors are called from within the class’s own methods,
the JIT safely optimizes the call away by inlining; the only
overhead will be due to accesses from outside the class.

6 Rubah removes all final modifiers from classes and methods (but not
fields) it loads to ensure that every class and method can be proxied. There
are some classes in the java.lang package that do not support this,
such as java.lang.String, but these classes are never proxied.
7 In Java, calls to private methods are non-virtual, as are calls to methods
via super.

For non-virtual calls, there is no issue if the call is made
via this or super, since the current object cannot be a
proxy. The only time the receiver of a non-virtual call can
be a proxy is when invoking a private method of a different
object (having the same class). Rubah places a check before
the invocation to ensure that the other object is not a proxy;
if it is, it must be transformed. This case is very rare and the
extra call does not add any measurable overhead in practice.

Wait freedom. The pseudocode of the algorithm given in
Figure 5 checks the isProxy flag on line 29 to determine
if an object is a proxy, and calls LAZYmigrate if so, be-
fore continuing with the body of the original method. In
our actual implementation, the _klass pointer has been
modified to point to a proxy class whose methods consist
simply of a call to LAZYmigrate, followed by a call to
this.method(args). Because LAZYmigrate resets the
_klass pointer to that of the original object (equivalent
to the resetting of the isProxy flag on line 5 in the pseu-
docode), this call executes the correct method. However,
there is a possibility that another thread could re-proxy the
object after line 5 executes. As such, we can view the con-
ditional on line 29 as being a while loop, instead of an if.
Now we must be concerned: Is it possible that a thread will
be stuck in the while loop forever, thus violating wait free-
dom? Fortunately, the answer is ’no’.

Consider the following scenario: An object o is aliased by
two objects such that o1.f= o2.f= o. Thread T1 traverses
o1.f, proxies o (e.g., on line 26), and then calls a method
on o. Because o is a proxy, this prompts Rubah to traverse
it, eventually executing line 5. But before T1 can execute
line 6, suppose thread T2 traverses o2.f and, because o is
not marked as visited yet, the test on line 13 fails and T2 re-
proxies o. At this point, thread T1 executes line 6 and returns
from method LAZYmigrate. The guard in the notional while
loop, replacing the if on line 29, is true and LAZYmigrate

is called again. However, notice that thread T1 marked o
as visited in line 6. The next time a thread finds o while
traversing an object, the conditional on line 13 is true, so
the object is not be specifically re-proxied again. Therefore,
once T1 executes line 5 the second time, the object will be
de-proxied permanently.

The worst case scenario is if half of the threads in the
application behave as T1 and the other half as T2, alter-
nately, as in the sketched scenario. However, because there
is a bounded number of threads, there is a bounded number
of times that a proxy can be installed and uninstalled in se-
quence for the same object. Assuming that the map visited
is wait-free, it follows that there is a bound on the number of
steps required for each proxy to break out of its while loop.
Therefore, we can state that the implementation of the lazy
state transformation algorithm remains wait-free.



4.4 Portability assumptions
Rubah was tested on Oracle’s HotSpot JVM. It does not
modify any part of it, but it relies on a number of assump-
tions about it. In particular, Rubah (1) uses “unsafe opera-
tions” to read fields directly, circumventing access checks
and bounds checks, and to compare-and-swap on arbitrary
memory locations; and (2) assumes the JVM lays out fields
in the same order along the class hierarchy, and places each
object’s vtable in a fixed location accessible to unsafe opera-
tions. Besides Oracle’s HotSpot, IBM’s Jikes and OpenJDK
also satisfy these assumptions.

5. Evaluation
This section presents our experimental evaluation of Rubah.
We used Rubah to dynamically update five applications: H2,
an SQL DBMS written in Java; Voldemort, a key-value
store used by LinkedIn; Jake2, a Java port of the shooter
game Quake 2; CrossFTP, an FTP server; and JavaE-
mailServer, a POP3/SMTP mail server. All five applica-
tions are long-running, and maintain important in-memory
state (the database/store contents, the game state, and/or the
protocol’s state for each client) that would be lost on restart.
All of our code is available at http://web.ist.utl.pt/
˜luis.pina/oopsla14.

We used Rubah to install application releases as dynamic
updates. The first three columns of table 1 list the appli-
cation versions, their size, and how they changed between
releases. H2 changed considerably in the releases we consid-
ered: Among other changes, developers implemented sup-
port for new SQL commands/idioms and full-text search,
and improved the performance of H2’s page store. Volde-
mort did not change as much: the new release fixes a race
and improves throttling when cleaning up data after rebal-
ancing a server cluster. CrossFTP added support for new
configuration options for the PASV command and the in-
ternational character encoding for directory lists. JavaE-
mailServer added support for limiting the maximum size
for incoming messages, maximum delivery attempts before
dropping a message, and relaying messages based on the
recepient’s address. We evaluate Rubah along three axes:

Programmer effort (Section 5.1) How difficult is it to
retrofit an application to use Rubah? How difficult is it to
write an update class (which describes how to transform
the application’s state)?

Steady-state overhead (Section 5.3) How much slower is
the normal operation of the Rubah-retrofitted version of
an application than its unmodified version?

Per update overhead (Section 5.4) How is the performance
of an application negatively affected while the update
is being installed? That is, how long is the application
paused and/or its performance degraded?

5.1 Programmer Effort
Table 1 assesses the programming effort to use Rubah on
our applications. We retrofitted four versions of CrossFTP,
three versions of H2 and JavaEmailServer, two of Volde-
mort, and one of Jake2 (as other versions lack sufficiently
different functionality). The fourth column counts the num-
ber of files and lines affected by our retrofit of the application
to use Rubah. For all five, we added update points to long-
running loops and added control-flow migration as described
in Sections 2.3 and 2.4, respectively.

We placed update points so that each applications reaches
them shortly after an update is available. The following
paragraphs briefly describe how each application reaches an
update point, considering idle and active scenarios.

When idle, all applications wait either for new clients
to connect, or for new requests from connected clients.
We retrofitted each application so that it can be interrupted
while waiting. For H2, CrossFTP, and JavaEmailServer, we
changed I/O calls to use Rubah’s equivalent interruptible
calls that use non-blocking I/O8 (accounting for 134 and 49
LOC, respectively); Voldemort already uses non-blocking
I/O; and Jake2 polls I/O frequently rather than blocking.

When active, each application processes requests from
clients: H2 processes SQL commands, Voldemort processes
read/store operations, Jake2 processes network frames, Cross-
FTP processes FTP commands, and JavaEmailServer pro-
cesses POP3/SMTP commands. We retrofitted each applica-
tion so that it finishes processing the current requests it al-
ready started processing at the time an update became avail-
able, and reaches an update point before starting to process
any new requests.

Some applications might take a long time processing re-
quests. For instance, CrossFTP RETR/STOR commands in-
volve sending/receiving an arbitrarily large file over the net-
work. To avoid large periods of quiescence, while the server
is not accepting new clients/requests because an update is
available but it cannot start the update process because it is
executing such a command, we took advantage of the pres-
ence of a transfer buffer that CrossFTP fills before send-
ing/receiving data and added an update point reached when
the buffer gets filled.

Consistent with our experience with dozens of updates to
six C applications using Kitsune [6], the number of changes
required is relatively small and not strongly correlated with
program size, but rather with its control structure—notice
that Jake2 required only 29 lines changed compared to 267
for H2, but is actually larger. Moreover, as indicated by the
table, no new changes were required for subsequent ver-
sions of H2, Voldemort, and JavaEmailServer. We expect
that retrofitting an application to support Rubah is, like Kit-
sune, a modest, largely one-time cost.

8 Rubah’s I/O library does not support SSL at this point, so we had to
comment out CrossFTP’s code that uses SSL. Supporting SSL is just a
matter of engineering effort.



Version
Release Release Retrofit Update
Code Changes Modifications Class

(#lines / #files) (#classes / #methods / #fields) (#lines / #files) (#stub / #mod) LOC
H2

1.2.121 40119 / 98 - 267 / 9 -
1.2.122 40566 / 98 63 / 149 / 12 Same 106 / 45
1.2.123 40655 / 99 44 / 86 / 3 Same 40 / 30

Voldemort
1.5.3 87516 / 517 - 175 / 7 -
1.5.4 87539 / 517 8 / 12 / 2 Same 12 / 2

Jake2
0.9.5 85408 / 256 - 29 / 2 -

CrossFTP
1.07 18221 / 161 - 224 / 8 -
1.08 18108 / 161 9 / 20 / 1 Same 16 / 1
1.09 18173 / 160 30 / 58 / 4 +4 / Same 47 / 2
1.11 18435 / 161 10 / 34 / 11 Same 51 / 23

JavaEmailServer
1.3.3 2368 / 20 - 183 / 6 -
1.3.4 2447 / 20 5 / 11 / 1 Same 26 / 2
1.4 2529 / 20 7 / 17 / 3 Same 55 / 9

Table 1. Changes between releases and programmer effort to support Rubah. Column release code shows the total lines of code, excluding
comments and blank lines, and number of files on the original application. Column release changes shows the code changes between
the previous release, in terms of modified classes, methods, and fields. Column retrofit modifications shows how many lines of code we
added/modified to support Rubah and how many files were changed. Column update class shows the LOC of the automatically generated
update class file and the number of its lines we added/modified.

For H2, Voldemort, CrossFTP, and JavaEmailServer, we
developed update classes to implement state transformation
between the supported versions; the fifth column provides
some data about these classes. We can see that stub up-
date classes eased the burden placed on the developer: The
maximum number of lines that we had to modify was 45.
We tested our updates to H2, Voldemort, and CrossFTP by
running standard benchmarks (described shortly), updating
while they were underway, and confirming the integrity of
the final results.

5.2 Performance Experiments: Setup
We conducted an experimental evaluation to measure Rubah’s
influence on an application’s steady state performance, and
its performance at update time. Measurements were carried
out on a machine equipped with two Intel Xeon E5520 pro-
cessors (8 physical cores, 16 logical) and 24GB of RAM
running Ubuntu 10.04 (Linux kernel 2.6.32). We used the
Oracle JVM version 1.7.0 25 with HotSpot 64-Bit Server
VM (build 23.25-b01) configured to use a maximum heap
size of 16GB for the server and 2GB for the client.

In all of our experiments, we start the application server
process and then launch a separate client process that ex-
ecutes a performance benchmark that interacts with the
server and measures its performance. To measure steady-
state overhead we compare the performance of the unmodi-
fied server with that of the Rubah-enabled one—no updates

are performed. To assess per-update overhead we update
the Rubah-enabled server in the middle of the benchmark
run and measure the performance impact of doing so. In
addition to performing a real update from one version to
the next (which we call a v0v1 update), we also consider a
v0v0 update, which installs the same version that the pro-
gram is running, but considers all classes incompatible and
transforms all the updatable program state, copying (and not
just adjusting the _klass pointer) all instances while the
program state traversal takes place. This is a good approxi-
mation of a worst case scenario.

To measure H2’s performance, we used the TPC-C
benchmark available in the DaCapo benchmark suite [22]
as the client process. We can configure the TPC-C bench-
mark with the number of transactions to run and the size
of the database to create before running the workload. The
database size is expressed in terms of a scale factor with
which TPC-C multiplies the number of rows in several ta-
bles it creates. The H2 server keeps all data in memory.

Voldemort ships with a performance benchmark that we
used as the client process. The benchmark has several con-
figurable parameters. The most interesting are: The number
of operations to perform, number of key-value pairs cre-
ated before running the workload, the size (in bytes) of each
stored key, and the ratio of read and write operations per-
formed by the workload. Besides these parameters, we ex-
tended the benchmark with support to run the workload for



a fixed period of time (as opposed to a fixed number of op-
erations). We configured Voldemort’s server in a single node
setting, with all the data in memory. The benchmark executes
a realistic mix of 95% read and 5% write operations [23].

To evaluate CrossFTP, we implemented an FTP bench-
mark. Existing FTP benchmarks focus on measuring the
bandwidth of file transfer, typically downloading/uploading
the same file as many times as possible over the duration of
the benchmark. This workload does not exercise the parts
of a server that deal with other FTP commands, e.g. brows-
ing the file structure. Our benchmark connects to a remote
FTP server, randomly browses the directory structure in a
depth-first manner, and downloads the first file it finds. The
benchmark spawns multiple threads, each one representing
one client. We have CrossFTP server a directory tree that
is D = 2 levels deep, with each non-leaf folder contain-
ing W = 10 sub-folders, and each leaf folder containing
a file. Files have random contents with sizes in the range
2MB-300MB following an exponential distribution with a
mean size of 50MB. We chose these parameters so that the
workload resembles a repository of binary software pack-
ages used by current GNU/Linux distributions, which are
typically made available through an FTP server.

Jake2 and JavaEmailServer lack an automated perfor-
mance benchmark. As such we only measure the pause time
resulting from applying an update to an idle process; for
Jake2 this is a v0v0 update after loading the game state, and
for JavaEmailServer it is v0v1 update after startup.

5.3 Steady-state overhead
Table 2 reports the time H2’s benchmark took to run 256K
transactions on a database with a scale factor of 32; the
time Voldemort’s benchmark took to run 25M operations
over a key-value store populated with 5M entries of size
128 bits, and the bandwidth CrossFTP’s benchmark used
after a 5 minute run with 8 client threads. From this data,
we can claim that Rubah essentially imposes no overhead in
normal execution: The performance difference ranges from
−1.0% to 2.5%, which is well within the noise on modern
systems [12].

5.4 Per-update overhead
Installing an update temporarily slows down the application.
Rubah pauses the application while waiting for the threads
to quiesce, and then while loading the new classes. On top
of that, when transforming the program state eagerly, the
application remains paused while Rubah threads traverse
and transform the heap; when transforming state lazily, the
application resumes execution, but it briefly pauses each
time it must transform an object. We measure these two
effects with two experiments. The first experiment measures
the benefits of parallelization to eager state transformation,
and the second measures the pause for both the eager and
lazy case as well as the impact on post-update performance.

Version Vanilla Rubah Overhead
H2

Elapsed time (seconds)
1.2.121 350.5± 6.4 351.4± 3.9 0.3%

1.2.122 348.8± 7.0 350.0± 3.5 0.8%

1.2.123 347.1± 7.0 350.0± 3.5 0.8%

Voldemort
Elapsed time (seconds)

1.5.3 469.1± 3.1 471.6± 1.3 0.5%

1.5.4 469.1± 2.5 473.7± 3.5 1.0%

CrossFTP
Bandwidth (Mbps)

1.07 829.9± 5.5 811.1± 15.6 2.3%

1.08 827.8± 3.7 813.7± 6.0 2.5%

1.09 801.8± 4.9 809.7± 5.5 −1.0%

1.11 803.5± 14.1 809.1± 3.4 −0.7%

Table 2. Results of benchmark runs, with and without Rubah,
thus reporting steady-state performance. Reported values are the
median and semi-interquartile range of 10 benchmark runs. Over-
head is computed by (Rubah/V anilla)− 1.

Num.
Threads

v0v0 v0v1
Time (sec) Speedup Time (sec) Speedup

H2
1 31.2± 0.7 1 18.8± 0.7 1

2 19.0± 0.5 1.7 12.3± 0.5 1.5

4 12.6± 0.3 2.5 9.2± 0.2 2.0

8 10.0± 0.2 3.1 8.2± 0.4 2.3

12 9.3± 0.3 3.3 8.1± 0.3 2.3

16 9.2± 0.2 3.4 7.8± 0.2 2.4

Voldemort
1 42.5± 1.0 1 29.2± 0.9 1

2 39.5± 1.0 1.1 30.4± 1.1 0.9

4 22.0± 0.8 1.9 18.0± 0.9 1.6

8 13.7± 0.7 3.0 12.1± 1.0 2.5

12 12.6± 0.7 3.3 10.6± 0.5 2.8

16 12.0± 0.4 3.5 10.7± 0.4 2.7

Table 3. Elapsed time (in seconds) of parallel state transforma-
tion. The first column under each benchmark is the median time
and semi-interquartile range, in seconds, required to transform the
program state. The second column is the speedup relative to one
thread. Reported values are the average and standard-deviation of
10 benchmark runs. The H2 benchmark used a database with a scale
factor of 32 and the Voldemort benchmark used a key-value store
with 5M entries.

5.4.1 Parallelizing state transformation
We configured each benchmark to install an update 10 sec-
onds after populating the server with test data, and measured
the time Rubah took to perform parallel transformation. We
ran the experiment for both v0v0 and v0v1 updates (1.2.121
to 1.2.122 in H2’s case) and with a varying number of trans-
formation threads.



Table 3 reports the results for H2 and Voldemort. Cross-
FTP, Jake2, and JavaEmailServer keep such a modest amount
of program state that increasing the number of threads does
not influence the state transformation time. We thus exclude
them from this experiment. Comparing to single-threaded
transformation, Rubah achieves speedups using up to 16
threads on H2 and Voldemort, despite the fact that the test
machine has only 8 physical CPUs. The v0v0 case has more
work to do per object, therefore sees a higher speedup than
the v0v1 case. In Voldemort’s case, changing from 1 to 2
threads yields little or no speedup, and sometimes slows
down because 2 threads create a much larger number of
in-flight conversions, thus creating a larger task queue and
triggering more garbage collections. Adding more threads
amortizes this added memory pressure.

5.4.2 Update-time performance
Our second experiment considers how the length of the
pause caused by the state transformation varies with algo-
rithm/heap size, and how an update affects the program’s
subsequent performance.

We approximate the pause due to an update by measur-
ing the maximum server latency that the client ever experi-
ences during the benchmark run; we expect that the pause
induced by an update will dwarf the normal latency a client
would experience. For H2, we keep track of the time each
successful9 SQL command takes to execute; for Voldemort,
we keep track of each store read/write; and, for CrossFTP,
we keep track of the time the server takes to reply to each
CWD/LIST command and the time it takes to fill a 4MB
transfer buffer when downloading a file.

For H2, the benchmark executes 256K transactions, while
for Voldemort we run its standard benchmark for 20 minutes.
We install an update at time T=60 seconds for H2 and T=300
seconds for Voldemort, to give each program time to reach
peak performance. For CrossFTP, we ran our benchmark for
five minutes and installed the update at T=10 seconds. For
Jake2 and JavaEmailServer we perform the update after the
servers are loaded and initialized, while idle (since we had
no good automated benchmark). We run the benchmarks for
v0v0 and v0v1 (1.2.121 to 1.2.122 in H2’s case, 1.08 to 1.09
in CrossFTP’s case, and 1.3.4 to 1.4 in JavaEmailServer’s
case).

Jake2, CrossFTP, and JavaEmailServer. Table 4 presents
the measured pause times. For Jake2, both the parallel and
lazy algorithms induce short pauses. We confirmed that the
update was non-disruptive by playing several matches of
Quake2 while performing the update; the Quake2 client al-
ready tolerates network latency and the Jake2 server keeps a
very small program state.

9 The TPC-C benchmark issues commands that timeout due to table locking
made by other commands. We discard such unsuccessful commands.

Size v0v0 v0v1
Parallel Lazy Parallel Lazy

H2
32 11.0± 0.3 3.3± 0.2 9.0± 0.1 3.1± 0.1

64 20.9± 0.8 3.7± 0.4 15.3± 0.6 3.7± 0.1

128 71.0± 1.2 4.0± 0.5 30.9± 0.9 3.7± 0.3

Voldemort
1M 4.9± 0.3 1.5± 0.3 4.4± 0.4 1.9± 0.4

5M 13.5± 1.0 1.6± 0.6 10.7± 0.8 2.2± 0.5

10M 24.7± 1.8 1.6± 0.5 19.1± 2.1 2.2± 0.5

15M 158.2± 7.1 1.8± 0.5 107.4± 0.8 2.4± 0.4

Jake2
1.5± 0.1 1.2± 0.1 - -

CrossFTP
0.33± 0.04 0.35± 0.08 0.35± 0.07 0.44± 0.06

JavaEmailServer
0.11± 0.01 0.09± 0.01 0.10± 0.01 0.09± 0.02

Table 4. Pause time (in seconds) required to install each update
under various heap sizes. Reported values are the median and semi-
interquartile range of 10 benchmark runs. The first column is the
size that each benchmark used to populate the server with test data
(scale factor for H2 and number of key-value pairs for Voldemort).
The parallel transformation used 16 threads.

CrossFTP and JavaEmailServer also have small pause
times. These programs keep a modest amount of program
state—consisting of meta-data about each connected client
(e.g. current working directory, transfer mode, permissions
for CrossFTP; authentication state, list of messages, mes-
sage being composed for JavaEmailServer)—so Rubah takes
little time to traverse and transform their state. The parallel
algorithm has slightly better results than the lazy algorithm.
We report the result of using 16 threads. We interacted man-
ually with JavaEmailServer through a telnet client connected
to the POP3/SMTP port while an update was taking place to
ensure that the server does not drop connections or session
data due to the update process.

H2 and Voldermort: Parallel transformation. Now we
consider H2 and Voldemort’s performance as impacted by
Rubah’s use of the parallel algorithm.

Table 4 shows the update-time pause for a variety of
heap sizes. In particular, for H2 the size column reports
the scale factor of the database over which the benchmark
performs 256K transactions, while for Voldemort the size
column reports the number of key-value pairs in the store.
The pause times for the parallel algorithm, shown in the
second and fourth columns, grow as the heap size grows,
as expected. For larger heaps, the update pause causes a
pronounced increase in the maximum latency.10

10 Note that the results that Table 4 reports are not directly comparable to
those of Table 3; e.g., the numbers in Table 3 for Voldemort are measured
for an update taken at T=10 seconds, but for Table 4 the update is at T=300
seconds. For the latter, we measured a heap transformation time of 10.3
seconds for Voldemort v0v1 at 5M (out of the 10.7 second pause reported
in Table 4), which is slightly less than the 10.7 seconds reported in Table 3,
but within the reported error range.
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Figure 6. Plotting of Rubah’s performance while installing an update under varying heap sizes. Each line shows the performance for a
different-sized database (the line label is the scale factor for H2 and the number of key-value pairs for Voldemort). We report the average of
10 benchmark runs. For parallel transformation we used 16 threads. The occasional performance dips are due to garbage collections; their
number and magnitude indicate the level of memory pressure.



Figure 6 visualizes the performance of H2 and Voldemort
during the experiment. The figure presents plots where the
x-axis is elapsed time, and the y-axis is transactions/oper-
ations per second. The left column of charts in the Figure
show the results when using parallel state transformation. At
the update times we see a performance drop, a pause, and
then a rapid rise back toward the pre-update peak. There are
two things to notice: First, the update pause increases with
the heap size, particularly for v0v0, which must traverse all
of the heap. Second, we see that performance does not com-
pletely return to its pre-update level. We observed a simi-
lar drop in steady-state performance on an experiment that
traverses the whole heap starting from the root references
without making any changes. We thus believe that the per-
formance drop is due to a change in some internal JVM state
triggered by the state traversal; we will investigate further
to understand the reasons behind the performance drop. We
installed a second update for the parallel v0v0 case and con-
firmed that the performance after the second update reached
the same levels as the performance after the first update.

Lazy transformation. Now we consider the use of the
lazy algorithm with H2 and Voldemort. The right column
of charts in Figure 6 plots performance when using lazy
transformation. The key feature is the far smaller drop in
performance at update-time, after which performance slowly
rises, depending on the heap size. Table 4 shows that the up-
date pause is constant regardless of the total heap size, and
is quite small compared to the parallel algorithm.

Returning briefly to Figure 6, we note that the experiment
also shows that lazy transformation does disproportionately
better than the parallel transformation with larger heaps. For
Voldemort, the 15M case consumes nearly the entire heap.
The parallel transformation makes the GC thrash, triggering
numerous full-GC cycles that are not able to free much
memory. The lazy algorithm performs much better. It still
triggers one full-GC cycle, but that one cycle actually frees
enough memory to keep the GC from ever thrashing. We
can see a similar thrashing pattern for H2’s 128 v0v0, even
though it happens after the update is installed.

Figure 6 also shows that the lazy algorithm converges
very quickly to steady-state performance after the update.
Several reasons contribute to this behavior: Converting an
object lazily is fast, thus imposing a small performance
penalty; the working set of each application is small and
constant despite the heap size; and the rate of lazy object
conversion drops quickly after the update.

Post-update performance for lazy transformation. The
post-update drop of peak performance is larger for the lazy
case, compared to the parallel one. This happens due to de-
cisions that the JIT compiler takes when optimizing the code
immediately after an update, when proxies are present and
used frequently. To diagnose this behavior, we ran Oracle’s
HotSpot JVM with debug flags that log the optimization

decisions the JIT compiler makes.11 The compilation logs
show differences in how the JIT optimizes virtual method
invocation after a lazy update.

The JVM supports method dispatch based on the runtime
type of the object in which the method is executed — the
receiver. The JVM uses the object’s vtable to choose the
most specific concrete method to execute when performing
a virtual method invocation. However, looking up the vtable
at each invocation is costly and the JVM optimizes for the
common cases, as follows:

1. Single method always invoked: The JIT compiler in-
lines the method at the call site, protected with a trap that
checks the receiver object type and ensures that the in-
lined code is correct for each call;

2. Two methods always invoked: Similar to 1. The JIT
compiler inlines both methods after a conditional branch
that jumps to the right method. A trap is also used to
ensure correctness;

3. More than two methods invoked The JIT inlines the
two most frequently invoked methods, as in 2. The JIT
emits code to perform a slow virtual method call that
consults the object’s vtable for all the other concrete
methods.

After a lazy update, some virtual method invocations are
resolved to proxy methods. This affects the JIT compiler’s
optimization decisions, turning (a) case 1 into 2, (b) 2 into 3,
or (c) changing the two methods inlined in case 3. For (a), the
size of the optimized code increases due to the extra inlined
method. This might prevent the optimized code from being
itself inlined elsewhere, resulting in a performance penalty.
For (b) and (c), the JIT might decide to inline proxy code. As
the program executes after an update, the number of prox-
ies found by the code drops because they get transformed.
This optimization thus increases the number of slow virtual
method invocations that use the vtable and bypass the inlined
code, which in turn yields lower steady-state performance.

We are exploring solutions to this problem, such as im-
plementing a mechanism to reset the JIT compiler on de-
mand, dropping all the emitted code and collected perfor-
mance metrics; or implementing a flag to keep the JIT com-
piler from inlining code belonging to particular Java classes.
Both options require JVM changes. However, the changes
required are minimal and completely backwards compatible.

6. Related Work
As mentioned in Section 2, Rubah employs the same ap-
proach to whole program updates as Kitsune [6], a DSU sys-
tem for C; in particular, both systems employ the concepts
of control-flow migration and update points. Kitsune’s state
transformation algorithm is like Rubah’s parallel algorithm
but uses a single thread. Due to C’s weak type system, Kit-

11 -XX:+UnlockDiagnosticVMOptions -XX:+LogCompilation



sune’s compiler cannot always produce a traversal algorithm
automatically, and so may require manual assistance. Kit-
sune uses a domain-specific language to specify state con-
versions; Rubah’s update class is a more compact, and natu-
ral, representation for conversions in the Java context.

Rubah’s update class bears some similarity to PJama’s
bulk conversion [24] routines. However, these routines work
on offline updates of persistent object stores, rather than on-
line updates to running Java programs. PJama also does not
use skeleton classes to refer to old/new state unambiguously.

There have been several prior systems that support DSU
for Java without requiring VM support. JRebel [25] allows
unrestricted changes to the structure of a class (add/remove
fields/methods) but not to the class position in the hierar-
chy, which Rubah supports. JRebel also does not support any
state transformation besides the default Java initialization to
added fields. DUSC [26] and DUSTM [11] work by insert-
ing proxies as an indirection to every object, and paying the
respective steady-state performance penalty, which can be as
high as 50% for a similar H2 benchmark.

The JVM itself is a natural place to support DSU. The
Oracle JVM supports dynamic updates to method bodies in
existing classes [21], for the purposes of enabling “stop-edit-
continue” development (JRebel also targets this domain).
Full-featured DSU is supported by the JVolve [10] and DCE
VMs [9], though even these do not support some changes to
the class hierarchy, which Rubah does. Rubah also supports
updates in a more timely fashion, as it does not require
changed methods to be inactive (i.e., not on the call stack),
while JVolve does. Instead, Rubah expects the programmer
to use non-blocking I/O so that it can interrupt and unwind
threads’ call stacks prior to initiating an update, and use
control migration code to restart those threads. As such,
Rubah can install an update to CrossFTP that JVolve could
not support (version 1.07 to 1.08). JVolve also could not
install some JavaEmailServer updates for the same reason.
Even though we did not test those updates, we believe Rubah
would be able to install them.

Implementing DSU services inside the JVM itself makes
JVolve and DCE VM able to take advantage of internal
mechanisms, such as the garbage collection (GC) and JIT
compiling, to implement efficient support for DSU. How-
ever, this approach is inherently non-portable. The goal of
building Rubah was to show that similarly powerful mecha-
nisms can be built outside the VM while imposing compara-
ble performance and development costs.

The JDrums [8] JVM supports lazy updates using a tech-
nique analogous to Rubah’s $forward field. JDrums also
uses a conversion class to specify how to transform each
class. Rubah is more flexible than JDrums and more perfor-
mant: JDrums cannot transform data in each object’s super-
class, it does not support changing existing methods, and it
executes only in interpreted mode.

Lazy updates have also been implemented for C. Gin-
seng implements lazy-updates for both single [4] and multi-
threaded [5] programs. It uses a proxying approach similar
to Rubah’s. However, it ensures safety via a per-type mutex
rather than via a wait-free algorithm and it does not remove
proxies dynamically as objects are converted. POLUS [27]
also allows for old and new data to co-exist while the update
takes place, and converts old data when it is viewed by new
code, on demand. POLUS tracks data changes at a coarser
level than Rubah (using page protection).

Our state transformation algorithms have natural ana-
logues in the GC literature [19]: Rubah’s eager and lazy
algorithms resemble parallel and incremental, concurrent
GC, respectively. There is likely further gain in applying GC
ideas to our state transformation algorithms, though DSU re-
quirements are more stringent: GC may delay garbage iden-
tification and reclamation (e.g., floating garbage), while state
transformation must always be applied prior to access, to
bring objects up to date.

7. Conclusion
This paper has presented Rubah, the first full-featured,
portable DSU for Java that enjoys good performance and
is not difficult to use. Rubah’s updating model is inspired
by the that of the Kitsune updating system for C, inherit-
ing its simplicity and flexibility. Rubah adds the novel no-
tion of an update class for specifying how to update the
program’s state, two new algorithms for performing state
transformation: one parallel algorithm that transforms all
state at once, and one lazy algorithm that transforms state as
demanded by post-update execution. Rubah imposes essen-
tially no overhead on steady-state execution, and when using
the lazy transformation algorithm imposes short pauses for
real-world dynamic updates, recovering its steady-state per-
formance fairly quickly. Rubah still has some performance
shortcomings which we are currently addressing. In particu-
lar, parallel transformation is slow when using large heaps,
and steady-state performance does not completely recover,
post-update. We plan to continue to improve our approach,
and expand it to new applications.
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