
OSMOSIS - Semantic Work-Spaces for Smart Environments

Luı́s Veiga Paulo Ferreira

INESC-ID/IST
Rua Alves Redol No 9, 1000-029 Lisboa, Portugal

{luis.veiga, paulo.ferreira}@inesc-id.pt

Abstract

Recent advances in device miniaturization have clearly
contributed to make Weiser’s vision of ubiquitous comput-
ing closer to reality. However, such vision is still far from
being accomplished because some difficult problems remain
to be solved.

It is still hard to develop applications that take advan-
tage of the disappearance of the real/virtual barrier, and to
support such applications in a way that can be easily inte-
grated with current environments.

We propose a middleware approach (OSMOSIS) that em-
ploys pragmatic approach to solve the previous drawbacks
so that ubiquitous computing can become a reality. It pro-
vides a file-system abstraction in order to make real objects
virtual so that each real-world object has a virtual counter-
part in the form of a file. Thus, the topology of a workplace,
or a house, is reflected in the directories and subdirecto-
ries organization.

The OSMOSIS middleware combines the use of RFID,
Location and Context Management and a Policy Engine in
order to provide to applications a context-aware file-system
enriched with semantic-information.

1. Introduction

Recent advances in device miniaturization (CPU, WiFi,
sensors, RFID tags, etc.) have clearly contributed to make
Weiser’s vision of ubiquitous computing closer to real-
ity [37, 3, 36]. However, the merging of virtual and real
worlds, one of the vision’s aspects, is still far from being
accomplished because some difficult problems remain to be
solved.

In particular, it is still hard: i) to develop applications that
take advantage of the disappearance of the real/virtual bar-
rier, and ii) to support such applications in a way that can be
easily integrated with current environments while ensuring

users’ privacy. As a matter of fact, current ubiquitous appli-
cations are mostly developed with no clear standard appli-
cation programming interface that can be used by all appli-
cation programmers, many solutions are cumbersome im-
posing a heavy burden on the user as is the case with virtual
or augmented reality, and many systems are very expensive
for the normal user (e.g. requiring many large flat displays,
attaching sensors and actuators to all objects, etc.) while ex-
posing many aspects of users’ private life [28, 25].

Contribution and Paper Road-map: In OSMOSIS, we
propose a pragmatic approach to solve the previous draw-
backs so that ubiquitous computing can become a reality
right now, at our homes and offices, at a reasonable cost.
The idea is to make real objects virtual so that each real-
world object has a virtual counterpart in the form of a file.

Thus, the topology of a workplace, or a house, is re-
flected in the directories and subdirectories organization.
Symbolic links can be used to express cases in which a
room is reachable from several others. Objects currently in a
room appear as files inside the corresponding directory (vir-
tual counterpart of a room).

This view is intuitive to most users, even for those that
are not computer experts (the main target of OSMOSIS).
As a matter of fact, most users know what a file and a direc-
tory is; listing the contents of a directory shows the names
(or thumbnails) of the objects currently in the correspond-
ing room.

The rest of the paper is organized as follows. The next
Section presents an overview of OSMOSIS, its goals, fea-
tures and usage scenario. Section 3 presents the OSMOSIS
architecture focusing on communication and middleware
modules. In Section 4, we briefly describe a number of pro-
posed applications to run on top of OSMOSIS, while Sec-
tion 5 presents the main implementation issues. Section 6
is dedicated to the vast related work in the fields of ubiqui-
tous computing with context-awareness and use of seman-
tic information. In Section 7, we finish with some conclu-
sions.

2. OSMOSIS

The main objective of OSMOSIS is to design, imple-
ment, test and demonstrate a ubiquitous middleware system
that can be used at home or at the office by non-computer
experts, on a daily basis, providing a large number of func-
tionalities to improve the quality of life for many.

In particular, such a middleware can provide answers and
notifications to users concerning real-world objects and sit-
uations as those illustrated in previous sections. In addition,
the system provides a file-based API that can be easily used
by programmers as this is a simple and widely known pro-
gramming interface. More precisely, OSMOSIS prescribes:

• Insert real objects into the virtual world by attaching
them passive RFID tags allowing us to obtain their
identification and location.

• Provide a context-aware file system, offering tradi-
tional file-system API to develop applications, sup-
porting context-information (e.g. object’s location and
history) associated to such virtual objects.

• Allow the specification of complex history-based se-
curity policies thus ensuring users’ privacy concerning
their real-world objects.

• Offer a simple (as invisible as possible) user interface
so that non-experts users can interact with OSMOSIS
applications in a non-disruptive way.

Making real objects virtual, thus creating a file as a coun-
terpart of a real-world object has obvious advantages as it
allows extending features and operations available in the
virtual world to real objects (even those most ”dumb”). We
envisage several scenarios in which such an extension is
useful as it allow us to answer common everyday questions
as well as being notified of certain situations:

• Where is the object that I brought from my last Sum-
mer vacations?

• What was the present that Joe gave me on my last birth-
day?

• Warn me if a child is close to some dangerous object
x.

• Warn be if objectx andy get close to each other.

• Remember me that I should take objectx whenever I
take objecty, etc.

These examples reveal common situations that can be
handled once we extend common operations performed on
virtual objects (i.e. files) to real-world objects, and consider
the context information associated with them.

In particular, i) a search operation can be performed on
a desktop’s disk including real-world objects that have been
previously incorporated into the virtual world, ii) it is pos-
sible to provide the user with the information concerning

T

T

T

PDA

P

PDA

P

R
R

T

T

T

PDA

P

PDA

P

R
R

T

T

T

T

PDA

P

PDA

P

R
R

T

T
 T

PDA

P

PDA

P

R
R

T

T

T

T

PDA

P

PDA

P

R
R

T

T

T

T

PDA

P

PDA

P

R
R

T

R
-
R
FID reader

P
-
 PDA for user interface and communication with OSMOSIS server

T
-
T
agged objects
 existing in places such as rooms/closets/etc.

OSMOSIS

Server

OSMOSIS

Server

Room
 Room
 Room

Room

Room
Room

Wi
-
Fi

Connectivity

T

Figure 1. OSMOSIS Network Architecture.

which real-world objects should be hoarded together (once
such objects are included in the virtual world), etc.

Thus, the main requirements addressed in OSMOSIS are
the following:

• The design and implementation of a context-aware file
system that, while keeping the well-known traditional
file-system API, is capable of storing the context infor-
mation related to each real-world object.

• Ensuring that users’ information is really kept private
while providing the tools to specify and enforce com-
plex security policies.

• Provide a simple (and as much as possible invisible)
interface to the system.

3. Architecture

In this section, we describe the main architectural aspects
of OSMOSIS. Initially, we present the network architecture
of OSMOSIS describing how the the various devices and
computers interact. Next, we present the software architec-
ture of the OSMOSIS middleware.

3.1. Network Architecture

The physical entities involved in a system employing the
OSMOSIS middleware are portrayed in a prototypical situ-

Operating System / Virtual Machine

Location

Management

Context

Management

OSMOSIS Core

OSMOSIS

Web
-
Service

Gateway

OSMOSIS Voice

I/O Module

File Explorer

Policy Engine

Event Handling

Communication

Services

RFID

Interface

Persistent

Repository

Unmodified

Applications

OSMOSIS

Installable

File System

Module

OSMOSIS

Middleware

OSMOSIS

Core

File
-
System

Library

Figure 2. OSMOSIS Middleware Components.

ation depicted in Figure 1. We envisage a house with a num-
ber of rooms, naturally connected via doors.

There is a central OSMOSIS server running on a desktop
machine. In each room, there is a PDA that connects, via
Wi-Fi, with the OSMOSIS server. The PDA in each room
makes use of a RFID reader to be aware of which objects
are in the room, and when objects enter and leave the room.
Naturally, all relevant objects are

3.2. Middleware Components

Thus, OSMOSIS will be comprised of a set of middle-
ware components depicted in Figure 2. A number of them
are mandatory and constitute the OSMOSIS core. The other
ones depend on this core to provide extend functionality to
applications, namely a file-based API and other forms of in-
teraction. The OSMOSIS core is comprised of the follow-
ing modules:

RFID Location Management: The RFID location subsys-
tem is responsible for detecting (tagged) real objects and
communicating their location to the OSMOSIS server. It
comprehends a set of passive RFID tags attached to real-
world objects, a set of fixed RFID readers strategically lo-
cated at doorways, closets, etc. (so that the entrance and
exit of tagged objects is detected), and a set of mobile non-
obtrusive readers (e.g. bracelets [5]). We expect that pas-
sive RFID tags and readers cost will continue to drop while
the accuracy and performance increase [29] thus making
OSMOSIS a widely accepted reality in the near future.

Context Management: The context information can be
stored by the file system using several techniques (e.g. se-
mantic file systems, context aware systems, relational or
XML databases, etc.) with consequences on the namespace
organization, file contents and file properties [14, 17, 1, 18].
Although interesting for the OSMOSIS project, these ap-
proaches are mostly targeted at finding files (with a spe-
cific content) with no relation to real-world objects. Conse-
quently, the requirements raised by OSMOSIS are different,
thus requiring a different approach. In particular, the loca-

tion of directories and files are tied to their real counterpart
physical location; additionally, deleting a directory or a file
is not acceptable in OSMOSIS (even if you are the legiti-
mate owner) as this would be inconsistent with the fact that
the corresponding real-world objects still exist.

Policy Engine: Understandably, the issue of privacy is vi-
tal for users as it is not acceptable that tagged objects lo-
cation and characteristics are accessed freely. To ensure pri-
vacy and security in general, OSMOSIS extends the file sys-
tem access control mechanisms with a security policy spec-
ification language (SPL) and the corresponding policy en-
forcer [8]. SPL supports a wide variety of security policies,
including more complex ones such as those based on history
(e.g. chinese-wall) and obligations. Using SPL it is possible
to, for example, specify and enforce the following scenar-
ios:

• Only the owner of objectx, Joe, is allowed to be aware
of x’s location,

• Only Joe and Mary are allowed to know that a certain
objecty does exist,

• Notify Joe whenever Mary enters room 421 for the
third time during the last two weeks,

• Notify Joe if Mary and objectx are moved from room
123 at the same time, etc.

Note that OSMOSIS does not provide a means to enforce
access control to real-world objects as all policy specifica-
tions and enforcement is applied to the real objects virtual
counterparts.

The rest of the OSMOSIS middleware is comprised by
the following modules:

Context-aware Installable File-System:The context-
aware file system is provided by the OSMOSIS mid-
dleware and is the preponderant mediation between
applications and the OSMOSIS core. It looks to appli-
cations like a standard file system. Applications perform
file-system system-calls that are redirected to and ulti-
mately serviced by the OSMOSIS IFS.

The OSMOSIS IFS has the ability to store real-world
objects context information; this information consists on
the current (and past) location(s) of each tagged object,
along with a corresponding narrative description (e.g. stat-
ing where and when the object was bought, what is used for)
and any other relevant characteristic. This context informa-
tion is particularly useful for (context-based) search opera-
tions performed on virtual objects on behalf of real objects
as illustrated by the applications we intend to develop (de-
scribed in Section 4). Although this module is not part of the
OSMOSIS core, it is the one that provides the most basic
abstraction to applications and should, therefore, be preva-
lent.

Web-service Gateway:The OSMOSIS Web-Service
Gateway provides for applications running on remote com-
puters to interact with the OSMOSIS core, residing in an
OSMOSIS server, without the need to set-up a complex dis-
tributed file-system infrastructure. Furthermore, it can be
used to integrate OSMOSIS with virtually any applica-
tion running on top of any architecture.

Voice Input/Output Interface: An important aspect of
ubiquitous applications is the interface provided to users.
Ideally, it should be invisible [20]. For this purpose we will
allow users to instruct the system (for the most usual oper-
ations) using voice commands in Portuguese and English;
for example, the user should be capable of asking ”where is
the book that Joe offered me last year” ? Accordingly, OS-
MOSIS will provide an answer in spoken English and Por-
tuguese as well.

4. Proposed Applications

We intend to develop a set of applications on top of the
context-aware file system supporting the scenarios previ-
ously illustrated. Among others, the following applications
seem of most value to users:notificator, finderandhoarder.

• Thenotificator is responsible for notifying the user of
some particular situation such as Mary being close to a
dangerous objectx. Notifications can be sent as email
messages or mobile text messages.

• Thefindersupports complex searches of objects based
on contextual information; for example, where is the
object that Joe offered me last week? show me all the
objects I brought from last vacations. Thefinderis able
to provide not only the current location of an object but
also its past locations along with any other details that
have been attached to it; virtual directories are auto-
matically created containing related objects.

• The hoarder is responsible for hoarding files thus
suggesting the set of real-world objects that the user
should pack together. The set of hoarded objects re-
sults from the context information related to each one
along with the action that the user will perform. As an
example, when going for a meeting or on vacations,
the hoarderaggregates all files related to such activi-
ties (based on the associated context information a vir-
tual directory is created) and suggests the set of real-
world objects that should be taken by the user.

Note that, since real world objects can be seen as files,
the above mentioned applications (as other applications run-
ning on top of OSMOSIS) are very simple to develop. They
can simply use the file-based API and are built upon all
other already existing legacy (file-based) applications.

For example, detecting that Mary and objectx are close
to each other is performed by detecting that the virtual coun-
terpart of Mary and the virtual counterpart of real-world ob-
ject x are co-located in the same directory (virtual counter-
part of a particular place).

Naturally, thehoardercan also take advantage of exist-
ing solutions and improve on them [23].

5. Implementation Issues

OSMOSIS is targeted to desktop PCs and PocketPCs,
equipped with .Net Framework and .Net Compact Frame-
works and implemented in C#. We employ RFID passive
tags on objects and RFID readers on top of each room door.
The Persistent Repository is implemented as a SQLServer
database.

Context Management and the Policy Engine extend pre-
vious work in policy-based adaptive middleware [34].
Hoarding is performed as described in our previous de-
scribed in [16]. The OSMOSIS context-aware FS is de-
veloped on top of previous work regarding file-system
extension in mobile constrained devices [35].

6. Related Work

Much work has been done in the area of ubiquitous
computing since Weiser’s seminal work [37] and several
projects have addressed the specific issue of breaking the
frontier between real and virtual worlds.

Many projects [22, 7, 14, 13] focus on providing lo-
cation awareness technologies to support people and real-
world presence in the web; e.g., CoolTown’s main goal
(which shares some similarities with MIT’s Oxygen [4])
is to enable nomadic computing such that computing re-
sources follow the user and customize human computing
interaction based on the local human environment.

Some other projects focus on people location and study
the adequacy of several technologies such as WiFi, Blue-
tooth, RFIDs tags, etc. for such purpose [9, 11, 24, 21]. All
these systems are mostly concerned with the specific loca-
tion aspects and technology, i.e. they are not concerned with
the usage of such location information.

The Smart-Its project [19] developed a platform for aug-
mentation of everyday objects. A Smart-It is a small com-
puting active device (similar to a label) that can be attached
unobtrusively to physical objects so that these become em-
powered with processing, context-awareness and commu-
nication features. This kind of approach is interesting but
it increases significantly the cost of everyday (traditionally
”dumb”) objects.

Romer [26] presents two frameworks, one based on Jini
and other based on web-services to support the development
of ubiquitous computing applications. Real-world objects

are identified with passive RFID tags as proposed in OS-
MOSIS. The system was used by a set of applications that
illustrated the usefulness of inserting real-world objects into
the virtual world. However, when compared to OSMOSIS,
it is much less ambitious as it does not consider neither se-
curity, nor interface issues and, differently from our pro-
posal, it does not explore the advantages of the well-known
file-system paradigm and API.

Some projects propose the creation of interactive
workspaces [2, 31, 15] whose aim is to provide an in-
frastructure for interactive rooms equipped with large dis-
plays and other wireless devices for interaction; thus,
they focus on user interaction and group work in aug-
mented rooms. This is the kind of approach that it is
currently very costly and mostly oriented towards pro-
fessional environments activities such as presentations,
meetings, etc.

Other projects [10, 12, 6, 33, 38] share the goal of
providing an infrastructure to support augmented environ-
ments. They address the issues of what are the basic ab-
stractions and mechanisms for coping with the dynamics
and device heterogeneity of pervasive computing. These ap-
proaches, as many others, have some points in common with
OSMOSIS but their main goal is clearly different.

Savant [30] (developed at MIT Auto-ID Center) has the
goal of replacing the traditional barcodes with passive RFID
tags. For this purpose, the project investigates a large num-
ber of issues such as low-level protocols for the communi-
cation between tags and readers, XML-based language to
exchange information about products, etc. The results from
this initiative as well as the result of other similar projects
[29] provide valuable input for OSMOSIS as they tend to
make RFID technology cheaper and more precise.

Specifically concerning context-aware file systems, the
ParcTab project [27] was one of the first addressing the inte-
gration of context with file access. Although they only con-
sidered location in their file system, this work demonstrated
the relevance of context in data access and application adap-
tation. Since then, and for several purposes, many other sys-
tems addressed the issue of context-awareness in file sys-
tems [14, 17, 1, 18] and distributed applications [32]. Their
work provides valuable insights for OSMOSIS. However,
none has addressed the privacy issues resulting from the fact
that directories and files are the counterparts of real world
objects. In addition, the OSMOSIS context-aware file sys-
tem must take into account specific issues such as those re-
sulting from the unrestricted context information that can be
attached to virtual counterparts of real-world objects (e.g.
historical data) as well as from the needs of the applications
finder,notificatorandhoarder, among others.

OSMOSIS differentiates from all these projects as it ad-
dresses, in a single system, all the most fundamental is-
sues that are vital for a prototype to be useful: it goes from

the operating system level (context-aware file system) up to
the (invisible) interface while taking privacy into account
from the beginning. In addition, it targets everyday (pos-
sibly dumb) objects, including those whose cost does not
allow adding computing and communication features (e.g.
clothes, toys, CDs, books).

7. Conclusion

In this paper, we presented OSMOSIS, a novel middle-
ware architecture that employs a pragmatic approach to ease
application development in ubiquitous computing. These
applications will be more and more prevalent with the dis-
appearance of the real/virtual barrier occurring today. We
also overview a thorough set of related work and projects in
the areas of context-awareness and management of seman-
tic and location information.

OSMOSIS aims at making real-objects virtual so that
each real-world object has a virtual counterpart represented
as a file. This provides an intuitive view for most users
as well as the ability for programmers to use the well-
established file-system API.

The OSMOSIS middleware provides a persistent repos-
itory enriched with context-awareness, location manage-
ment, and policy enforcement, integrated with RFID, pro-
viding a file-system abstraction, encompassing the possibil-
ity to employ other interfaces as well (e.g., web-services,
voice input).

References

[1] N. B. The prospero file system: a global file system based on the vir-
tual system model. comp sys 5(4):407- 432, 1992.

[2] A. F. B. Johanson and T. Winograd. The interactive workspaces
project: Experiences with ubiquitous computing rooms. ieee perva-
sive computing, 1(2):71-78, apr. 2002.

[3] G. Borrielo. Rfid: tagging the world. communications of the acm,
september 2005, vol. 48, n. 9.

[4] M. L. Dertouzos. The future of computing. scientific american, aug.
1999.

[5] J. S. el at. Rfid-based techniques for human-activity detection. com-
munications of the acm, september 2005, vol. 48, n. 9.

[6] B. B. et al. Easy living: Technologies for intelligent environments.
huc 2000, bristol (uk), sept. 2000.

[7] B. S. et al. Bootstrapping the location-enhanced world wide web. 5th
international conf. on ubiquitous computing, oct. 2003.

[8] C. N. R. et al. Spl: An access control language for security policies
with complex constraints. proceedings of the network and distributed
system security symposium, san diego, california, feb 2001.

[9] L. M. et al. Landmarc: Indoor location sensing using active rfid. 1st
ieee conference on pervasive computing and communications (per-
com03), mar. 2003.

[10] M. R. et al. Gaia: A middleware infrastructure to enable active
spaces. acm sigmobile mobile computing and communications re-
view,vol. 6(4), oct. 2002.

[11] N. B. P. et al. The cricket location-support system. 6th international
conf. on mobile computing and networking. aug. 2000.

[12] R. G. et al. System support for pervasive applications. transactions
on computer systems, 22(4):421-486, november 2004.

[13] R. W. et al. The active badge location system. acm trans. information
systems, vol. 10(1), jan. 1992.

[14] R. W. et al. Bridging physical and virtual worlds with electronic tags.
computer-human interaction conference, 370-377,1999.

[15] T. P. et al. Spontaneous marriages of mobile devices and interactive
spaces. communications of the acm, september 2005, vol. 48, n. 9.

[16] J. C. Garcia, L. M. A. Veiga, and P. J. P. Ferreira. Context awareness:
an experiment with hoarding. October 2006.

[17] M. U. Gopal B. Integrating content-based access mechanisms with
hierarchical file systems. proceedings of the 3rd symposium on oper-
ating systems design and implementation, new orleans, la, february
1999.

[18] C. Hess and R.Campbell. An application of a context-aware file sys-
tem. pers. ubiquitous computing, 7: 339-352, 2003.

[19] e. a. Holmquist, L.E. Smart-its friends: A technique for users to eas-
ily establish connections between smart artefacts. ubicomp 2001, at-
lanta, usa, oct. 2001.

[20] H. Ishii and B. Ullmer. Tangible bits: Towards seamless interfaces
between people, bits and atoms. proceedings of chi ’97, 234-241,
march 22-27, 1997, acm.

[21] G. B. J. Hightower. Location systems for ubiquitous computing.
computer, vol. 34 (8), aug. 2001.

[22] T. Kindberg. Implementing physical hyperlinks using ubiquitous
identifier resolution. 11th conference on www. acm press, 2002.

[23] G. H. Kuenning and G. J. Popek. Automated hoarding for mobile
computers. proceedings of the 16th acm symposium on operating
systems principles, st. malo, france, october, 1997.

[24] M. T. M. Spreitzer. Providing location information in a ubiquitous
computing environment. 14th acm sigops conf., asheville, nc, decem-
ber 1993.

[25] M. Ohkubo. Rfid privacy issues and technical challenges. communi-
cations of the acm, september 2005, vol. 48, n. 9.

[26] K. e. a. Rmer. Smart identification frameworks for ubiquitous com-
puting applications. kluwer/acm wireless networks (winet), vol. 10
no. 6, pp. 689-700, december 2004.

[27] A. N. Schilit BN and W. R. Context-aware computing applications.
proceedings of the ieee workshop on mobile computing systems and
applications, santa cruz, february 1994.

[28] F. Stajano. Security for ubiquitous computing. john wiley and sons.
chicester, uk, 2002.

[29] T. P. I.-C. System. wwwus2. semiconduc-
tors.philips.com/identification/products/icode.

[30] O. Systems and M. A.-I. Center. The savant. technical report mit-
autoid-tm-003, mit auto-id center, may 2002.

[31] P. Tandler. Software infrastructure for ubiquitous computing envi-
ronments: Supporting synchronous collaboration with heterogeneous
devices. ubicomp 2001, atlanta, usa, sept. 2001.

[32] T. Urnes, A. Hatlen, P. Malm, and Ø. Myhre. Building Distributed
Context-Aware Applications.Personal and Ubiquitous Computing,
5(1):38–41, 2001.

[33] K. Van Laerhoven and K. Aidoo. Teaching Context to Applications.
Personal and Ubiquitous Computing, 5(1):46–49, 2001.

[34] L. Veiga and P. Ferreira. Poliper : Policies for mobile and perva-
sive environments. In3rd Workshop on Reflective and Adaptive Mid-
dleware. In 6th ACM International Middleware Conference, Toronto,
Canada, October 2004.

[35] L. Veiga and P. Ferreira. Semantic-Chunks a middleware for ubiqui-
tous cooperative work.Proceedings of the 4th workshop on Reflec-
tive and adaptive middleware systems, pages 1–6, 2005.

[36] R. Want. Rfid: A key to automating everything. scientific american,
56-65, jan. 2004.

[37] M. Weiser. Some computer science issues in ubiquitous computing.
communications of the acm, 36(7), 1993, pp. 74-84.

[38] T. Zimmer and M. Beigl. AwareOffice: Integrating Modular Context-
Aware Applications. Proceedings of the 26th IEEE International
ConferenceWorkshops on Distributed Computing Systems, 2006.

