
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 1 46 - 51

46
IJRITCC | January 2015, Available @ http://www.ijritcc.org

Overview of Auditing Cloud Consistency

Hemant T. Aher
1

BE Student at BVCOE&RI

University of PUNE

Nasik, Maharashtra, India

aher.hemant@hotmail.com

Poonam D. Shirode
2

BE Student at BVCOE&RI

University of PUNE

Nasik, Maharashtra, India

pshirode25@gmail.com

Kundan L. Shinde
3

BE Student at BVCOE&RI

University of PUNE

Nasik, Maharashtra, India

kundancool007@gmail.com

Arti A. Jadhav
4

BE Student at BVCOE&RI

University of PUNE

Nasik, Maharashtra, India

jadhav.arti655@gmail.com

Abstract — Cloud storage services have become very popular due to their infinite advantages. To provide always-on access, a cloud service

provider (CSP) maintains multiple copies for each piece of data on geographically distributed servers. A major disadvantage of using this

technique in clouds is that it is very expensive to achieve strong consistency on a worldwide scale. In this system, a novel consistency as a

service (CaaS) model is presented, which involves a large data cloud and many small audit clouds. In the CaaS model we are presented in our

system, a data cloud is maintained by a CSP. A group of users that participate an audit cloud can verify whether the data cloud provides the

promised level of consistency or not. The system proposes a two level auditing architecture, which need a loosely synchronize clock in the audit

cloud. Then design algorithms to measure the severity of violations with two metrics: the commonality of violations, and the oldness value of

read. Finally, heuristic auditing strategy (HAS) is devised to find out as many violations as possible. Many experiments were performed using a

combination of simulations and a real cloud deployment to validate HAS.

Keywords- Cloud Service Provider (CSP), Consistency as a Service (CaaS), Heuristic Auditing strategy, Service Level Agreement, User

Operation Table, Directed Acyclic Graph, Network Time Protocol

__*****___

I. INTRODUCTION

CLOUD computing is popular commercially because it
provides three main factors needed for computing like
scalability, elasticity, and high availability at low cost[1], [2].
According to today’s trend of everything-as-a-service (XaaS)
model, data storages, virtualized infrastructure & platforms,
software & applications are being provided and consumed as
service in cloud. Typical cloud storage services are like data
storage, which are billed according to the size of storage,
example Google drive which provide free storage service up to
15GB per user and charge for extra storage. The main
advantage of this kind of services is user can access this service
any time as needed and from anywhere. These services are
device independent, no need to purchase special hardware to
access the service.

To fulfill the commitment of 24/7 access, the cloud service
provider (CSP) stores multiple copies of same data on different
servers located at different locations geographically. The
problem in using this technique is that it required high cost to
achieve strong consistency on global scale. According to CAP
principle[3],[4] various CSPs only provide weak consistency
level like eventual one, to provide high performance and
availability, where users view old data for a period of time. One
of the most popular applications like the DNS (Domain Name
System) uses eventual consistency. In eventual consistency
model the updates are not visible immediately all users are
ensured to see them in some time. However, eventual type of
consistency is not suitable for all kind of applications.
Interactive type of applications specially needs stronger
consistency.

Fig.1 An application that requires causal consistency

Consider the scenario shown in Fig. 1. In this case assume
that Alice and Bob are working on a project using cloud storage
services, the data related to the project is copied to five cloud
storage servers CS1,…..,CS5. Alice upload a new version of
the requirement analysis to CS4, then calls Bob to download
the updates. The causal relationship [5] must be established
between update and read. Therefore, the cloud should provide
causal consistency, which guarantees that Alice’s update is
committed to all copies before Bob’s read. If the server
provides eventual consistency only, then Bob read an old
update which may not satisfy customer requirements.

Generally, the consistency requirement varies according to
its applications. For example, social networking services need
causal consistency whereas mail servers need monotonic read
consistency [6]. The system considering both correctness and
cost per transaction. The CaaS (consistency as a service) model
presented in this paper. It consists of mainly two types of
clouds large data clouds and multiple small audit clouds. The

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 1 46 - 51

47
IJRITCC | January 2015, Available @ http://www.ijritcc.org

data cloud is maintained by Cloud Service Provider (CSP) and
audit cloud is maintained by a group of users which are
cooperating on the same project, job, etc. The Service Level
Agreement (SLA) is established between the data and audit
cloud, which provide guidelines about the level of consistency
should be provided, and how much cost is charged if the SLA
is violated.

The implementation detail of the data cloud is hidden to the
users because of virtualization technique. So, it is hard for users
to find the multiple copies of the data in the cloud is latest or
not. The solution provided in [7], users in the audit cloud can
verify the cloud consistency by analyzing their interactive
operations. The system only need loosely synchronized clock
for our solution. Each user has to maintain a logical vector [8]
for partial ordering of operations. Here the presented system
uses two level auditing scheme, Firstly each user perform local
auditing on its own with local trace of operations, Secondly
global auditing is perform by elected auditor from the users
with an global trace of operations. The two main focus area for
auditing, on local level it on monotonic read and read your
write consistencies can be perform by a light weight online
algorithm, on global level causal consistency auditing perform
by constructing directed graph, if the graph is directed acyclic
graph (DAG) then conclusion is that causal consistency is
preserved. The violations are measure on two factors:
commonality and staleness of the value of read.[9] Finally HAS
(Heuristic Auditing Strategy) use to add appropriate reads to
find out as many as violations possible.

Key Factors are as follows:

1) System Present CaaS model, which consist of data cloud

and audit cloud

2) System suggests a two level auditing structure.

3) System design algorithms to measure the occurrences of

violations with different metrics.

4) In this system devise HAS to find out as many as violations

possible.

II. RELATED WORK

A cloud is basically a major distributed system where each

portion of data is copied on multiple globally distributed

servers to attain high accessibility and high performance.

Thus, we first check the consistency models in distributed

systems. Ref. [10], as anticipated two consistency models:

data-centric consistency and client-centric consistency. Data-

centric consistency model consider the inner state of a storage

system, that how updates stream through the system and what

guarantees the system can supply with respect to updates. On

the other hand, to a customer, it actually does not matter

whether or not a storage system inside contains any old copies.

As long as no old data is observed from the client’s side, the

customer is satisfied. Therefore, client-centric consistency

model focuses on what exact customers want, with the aim of

is how the customers view data updates. Their work also

describes multiple levels of consistency in distributed systems,

as of strict consistency to weak consistency. High consistency

results in high cost and reduced availability. Firm consistency

is never necessary in practice [11], and is even considered

detrimental. In reality, by the CAP protocol [3], [4], many

distributed systems forgo strict consistency for availability.

 Then, the system analyzes the work on attaining different

levels of consistency in a cloud. Investigated the consistency

properties provided by commercial clouds and made several

useful opinions [12]. Existing commercial clouds generally

limit strong consistency promises to small datasets (Google’s

Megastore and Microsoft’s SQL Data Services), or provide

only eventual consistency (Amazon’s simpleDB and Google’s

BigTable) [13]. The consistency requirements differ over time

depending on tangible accessibility of the data, and the authors

deliver techniques that make the system dynamically adjust to

the consistency level by monitoring the state of the data. The

proposed novel consistency model that allows it to

automatically modify the consistency levels for altered

semantic data [14].

 Finally, we analyze the work on authenticating the levels of

consistency provided by the CSPs from the user’s point of

view. Existing solutions can be categorized into trace-based

verifications [7], [9] and benchmark-based verifications [15]-

[18]. Trace-based verifications focus on three consistency

semantics: safety, regularity. A register is safe if a read that is

not coexisting with any write returns the value of the most

recent write, and a read that is coexisting with a write can

return any value.

Fig.2 Consistency as a service model.

 A register is regular if a read that is not coexisting with any

write returns the value of the most contemporary write, and a

read that is coexisting with a write returns either the value of

the most contemporary write, or the value of the coexisting

write. A register is atomic if every read returns the value of the

most contemporary write. Misra [19] is the first to present an

algorithm for confirming whether the suggestion on a

read/write catalog is atomic. Following his work, Ref. [7]

proposed offline algorithms for validating whether a key-value

storage system has protection, reliability, and atomicity

properties by assembling a directed graph. Ref. [9] offered an

online verification algorithm by using the GK algorithm [20],

and Used diverse metrics to enumerate the brutality of

violations.

The main weakness of the existing trace-based

authentications is that a global clock is required among all

users. Our solution belongs to trace-based authentications.

However system emphasis on different consistency semantics

in commercial cloud systems, where a loosely synchronized

clock is proper for our explanation Benchmark-based

authentications emphasis on benchmarking in a storage

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 1 46 - 51

48
IJRITCC | January 2015, Available @ http://www.ijritcc.org

system. The results of validate our two-level auditing

structure. Refer client centric benchmarking approach for

understanding ultimate consistency in scattered key value

storage systems. Amazon, Google, and Microsoft’s

contributions showed that, in Amazon S3, consistency was

surrendered and only a weak consistency level known as,

eventual consistency was attained.

III. PRELIMINARIES

In preliminaries section, first system illustrates the

consistency as a service (CaaS) model. Then, it illustrates the

structure of the user operation table (UOT), with which each

user records his operations. Lastly, system makes available an

overview of the two-level auditing structure and associated

definitions.

A. Consistency as a Service (CaaS) Model

 The CaaS model consists of a data cloud and multiple audit

clouds. Data cloud is maintained by the cloud service provider

(CSP), is a key-value data storage system where each part or

piece of data is recognized by a unique key. The CSP

replicates all of the data on multiple geographically distributed

cloud servers to afford always-on services.

 An audit cloud consists of a group of users that assist on a

job. Now assume that each user in the audit cloud is identified

by a unique ID. The audit cloud and the data cloud will engage

in a service level agreement (SLA), before outsourcing the job

to the data cloud, Which specifies the promised level of

consistency. The audit cloud verify whether the data cloud

violates the SLA or not, and to enumerate the severity of

violations.

 In this system, a two-level auditing model is implemented:

each user records his operations in a user operation table

(UOT), which is referred to as a local trace of operations.

Local auditing can be carry out freely by each user with his

own UOT; periodically, an auditor is designated from the audit

cloud. In this, all other users will send their UOTs to the

auditor, which will present global auditing with a global trace

of operations. The system simply let each user turn into an

auditor. The dotted line in the audit cloud shows that users are

loosely connected. It implies that users will communicate to

exchange messages after executing a set of reads or writes,

rather than communicating instantly after executing each

operation. Once two users finish communication, a causal

relationship on their operations is established.

B. User Operation Table (UOT)

 Each record in the UOT has three elements: operation,

logical vector, and physical vector. User will record

operation, his current logical vector and physical vector, while

issuing an operation in his UOT.

C. Overview of Two-Level Auditing Structure
System examined several consistency models provided by
profitable cloud systems. Following their work, we provide a
two-level auditing structure for the CaaS model. At the first
each user independently performs local auditing at his own
with UOT. The following consistencies should be verified at
this level

Monotonic-read consistency. If a process reads the value of

data, any successive reads on data by that process will always

return that same value or a more recent value

Fig.4. shows an application that has different consistency

requirements.

 In Fig. 4, after uploading a latest version of the report to the

data cloud, Bob ask over Alice to download it. After the call,

Bob’s update and Alice’s read are causally associated.

Therefore, causal consistency needs that Alice must read

Bob’s new report.

Read-your-write consistency. Effect of a write by a process

on data K will always be seen by a successive read on data K

by the same process.

Causal consistency. Writes that are causally related must be

seen by all processes in the similar order. Simultaneous writes

may be seen in a different order on different machines

IV. VERIFICATION OF CONSISTENCY PROPERTIES

 In this, systems first afford the algorithms for the two level

auditing structure for the CaaS model, and then analyze their

success. Finally, system demonstrates how to perform a trash

collection on UOTs to save space. As the accesses of data with

different keys are independent of each other, a user can group

operations by key and then verify whether each group satisfies

the promised level of consistency. After that, system reduces

read operations with R (a) and writes operations with W (a).

A. Local Consistency Auditing

Algorithm 1 Local consistency auditing

Initial UOT with Ø
While issue an operation op
does

If op = W (a) then

Record W (a) in UOT

If op = r (a) then

W (b) ∈ UOT is the last write
If W (a) → W (b) then

Read-your-write consistency is violated

R(c) ∈ UOT is the last read
If W (a) → W (c) then

Monotonic-read consistency is violated

Record r (a) in UOT

Where,

UOT – User Operation Table

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 1 46 - 51

49
IJRITCC | January 2015, Available @ http://www.ijritcc.org

R (a) – Users Current Read

W (a) – Current reads dictating write

R (c) – Last Read in UOT

W (c) – Last Read in UOT’s dictating write

W (b) – Last write in UOT

 This is an online algorithm. In this each user will record all of

his operations in his UOT. User will perform local consistency

auditing independently.

B. Global Consistency Auditing

Algorithm 2 Global consistency auditing

 Every operation in the global trace is represented by a vertex

Let any two operations op1 and op2 do

If op1 → op2

 Then

 A time edge is added from op1 to op2

If op1 = W (a), op2 = R (a), and two operations come from

different users

Then
 A data edge is constructed from op1 to op

If op1 = W (a), op2 = W (b), two operations come from

different users, and W (a) is on the route from W (b) to R (b)

Then

 A causal edge is added from op1 to op2 Check whether the

graph is a DAG by topological sorting.

 This is an offline algorithm (Alg. 2). An auditor will be

chosen periodically from the audit cloud to perform global

consistency auditing. All other users will submit their UOTs to

the auditor for getting a global trace of operations. After

performing global auditing, the auditor will send audit results

as well as its vectors to all other.

 C. Effectiveness

 Effectiveness of the local consistency auditing algorithm is

easy to demonstrate. For monotonic-read consistency, a user is

needed to read either the same value or a newer value. Hence,

if the dictating write of a new read happens before the

dictating write of the last read, then system say that monotonic

read consistency is violated. In case of read-your-write

consistency, the user is needed to read his latest write. Hence,

if the dictating write of a new read happens before his last

write, system can say that read-your-write consistency is

violated.

 For causal consistency, system should prove that:

(1) There is an violation if the constructed graph is not a DAG.

(2) There is no violation if the graph is DAG.

C. Garbage Collection

 Each user should keep all operations in his UOT in the

process of auditing, exclusive of intercession; the size of the

UOT would grow without bound. Also, the communication

cost for transferring the UOT to the auditor will be too much.

So, system provides a garbage collection system which can

delete unnecessary records, which will preserve the efficiency

of auditing.

 In local consistency auditing, suppose dictating write of a

new read does not exist in the UOT and the dictating write is

issued by the user, the user can say that he has failed to read

his last updates, and asserts that read-your-write consistency is

violated.

 Suppose the dictating write of this read happens before the

dictating write of his last read recorded in the UOT, the user

can say that he has read an old value, and asserts that

monotonic-read consistency is violated. Let the dictating write

of a new read does not present in the user’s UOT and the

dictating write comes from other users, then a violation will be

exposed by the auditor.

 In global consistency auditing, if a read that does not have a

dictating write, then the auditor say that the value of this read

is too stale, and state that causal consistency is violated.

Summary. HAS can detect nearly all of the violations when

the inception value and interval length are chosen accurately;

Random can perceive only about 60% of destructions.

Although HAS involves the auditing cloud to dispute more

auditing reads, the grossed profit is still higher than Random.

Specifically, as the parameters inception value and interval

length reduce, HAS works better

V. QUANTIFYING SEVERITY OF VIOLATIONS

 System provides two ways to quantify the severity of

violations for the Camas model: commonality and staleness.

Commonality quantifies how the violations happen whereas

the Staleness quantifies how much older the value of a read is

compared to that of the latest write. Staleness can be classified

into time-based staleness and operation based staleness.

Commonality can be easily quantified by leasing each user set

a local counter and increasing the counter by one when a local

consistency violation is exposed. Commonality can be

quantified by counting the number of cycles in the erected

graph for global consistency. This can be transformed into

removing the less number of edges to make the graph acyclic.

VI. HEURISTIC AUDITING STRATEGY

 From the auditing procedure in the Camas model, we see that

only reads can expose violations by their values. Hence, the

basic indication of our heuristic auditing strategy (HAS) is to

add appropriate reads for illuminating as many violations as

possible. We call these supplementary reads as auditing reads.

As shown in Fig. 6, Physical time is divided into L time slices

according to HAS, where l time slices established an

intermission.

Fig.6 Physical time is divided into time slices.

Each time slice is associated with a state, which can be

either normal or abnormal. A normal state denotes that there is

no consistency violation, and an abnormal state denotes that

there is one destruction in this time slice. Under the CaaS

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 1 46 - 51

50
IJRITCC | January 2015, Available @ http://www.ijritcc.org

model, consistency suits a part of the SLA, the users can

acquire proportional benefit from the CSP, by illuminating

consistency violations and enumerating the severity of the

violations. We believe that the CaaS model will help both the

CSP and the users implement consistency as an important fact

of cloud services offerings.

VII. EVALUATION

In this unit, system unite HAS with a random strategy,

denoted as Random. To confirm the efficiency of HAS, system

conduct tests on synthetic as well as real violation traces.

A. Synthetic Violation Traces

System review the parameters used in the artificial

violation races in Table II. In the random strategy, system

erratically choose [1, l] auditing reads in each recess, where l

is the length of an recess. To obtain the synthetic violation

traces, physical time is divided into 2,000 time slices. We

accept that once a data cloud activates to violate the assured

consistency, this violation will continue for several time slices,

rather than ending instantaneously. In the recreation, the

period of each violation d is set to 3-10 time slices.

Consider that the audit cloud can earn $5 from the

data cloud once a consistency violation is detected; the audit

cloud will be charged $0.1 for an auditing read task. Fig. 8

shows the contrast results of the earned profit P. From Fig. 8,

we know that HAS typically earns a higher profit than

Random. Finally, HAS will produce higher earned profit as the

parameters α and l decrease.

B. Real Violation Traces

 To check the productivity of HAS, system collect traces from

two real clouds. We use network time protocol (NTP) to

coordinate time amongst all cases. We know that the

proportion of exposed destructions reduces as l rises, in terms

of both HAS as well as Random. However, the change of l’s

value has less impression on HAS than Random. We know

that the proportion of exposed destructions drops as α rises or

k falls. However, these factors have slight effects on the

proportion of exposed destructions. We know the percentage

of revealed violations decreases as α increases.

VIII. CONCLUSION

 In this paper, The presented system is a consistency as a

service (CaaS) model and a two-level auditing scheme to help

users validate whether the cloud service provider (CSP) is

providing the promised consistency, and to enumerate the

occurrences of the violations. The CaaS model used in the

system helps the users can assess the superiority of cloud

services and decide a right CSP among various services. For

example the less costly one that still provides satisfactory

consistency for the users’ applications.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A.

Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, et

al., “A view of cloud computing,” Commun. ACM, vol. 53,

no. 4, 2010.

[2] P. Mell and T. Grance, “The NIST definition of cloud

computing (draft),” NIST Special Publication 800-145

(Draft), 2011.

[3] E. Brewer, “Towards robust distributed systems,” in Proc.

2000 ACM PODC.

[4] “Pushing the CAP: strategies for consistency and

availability,” Computer, vol. 45, no. 2, 2012.

[5] M. Ahamad, G. Neiger, J. Burns, P. Kohli, and P. Hutto,

“Causal memory: definitions, implementation, and

programming,” Distributed Computing, vol. 9, no. 1, 1995.

[6] W. Lloyd, M. Freedman, M. Kaminsky, and D. Andersen,

“Don’t settle for eventual: scalable causal consistency for

wide-area storage with COPS,” in Proc. 2011 ACM SOSP.

[7] E. Anderson, X. Li, M. Shah, J. Tucek, and J. Wylie, “What

consistency does your key-value store actually provide,” in

Proc. 2010 USENIX HotDep.

[8] C. Fidge, “Timestamps in message-passing systems that

preserve the partial ordering,” in Proc. 1988 ACSC.

[9] W. Golab, X. Li, and M. Shah, “Analyzing consistency

properties for fun and profit,” in Proc. 2011 ACM PODC.

[10] A. Tanenbaum and M. Van Steen, Distributed Systems:

Principles and Paradigms. Prentice Hall PTR, 2002.

[11] W. Vogels, “Data access patterns in the Amazon.com

technology platform,” in Proc. 2007 VLDB.

[12] “Eventually consistent,” Commun. ACM, vol. 52, no. 1,

2009.

[13] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann,

“Consistency rationing in the cloud: pay only when it

matters,” in Proc. 2009 VLDB.

[14] S. Esteves, J. Silva, and L. Veiga, “Quality-of-service for

consistency of data geo-replication in cloud computing,”

Euro-Par 2012 Parallel Processing, vol. 7484, 2012.

[15] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu, “Data

consistency properties and the trade-offs in commercial

cloud storages: the consumers’ perspective,” in Proc. 2011

CIDR.

[16] D. Bermbach and S. Tai, “Eventual consistency: how soon

is eventual?” in Proc. 2011 MW4SOC.

[17] M. Rahman, W. Golab, A. AuYoung, K. Keeton, and J.

Wylie, “Toward a principled framework for benchmarking

consistency,” in Proc. 2012Workshop on HotDep.

[18] D. Kossmann, T. Kraska, and S. Loesing, “An evaluation of

alternative architectures for transaction processing in the

cloud,” in Proc. 2010 ACM SIGMOD.

[19] J. Misra, “Axioms for memory access in asynchronous

hardware systems,” ACM Trans. Programming Languages

and Systems, vol. 8, no. 1, 1986.

[20] P. Gibbons and E. Korach, “Testing shared memories,”

SIAM J. Computing, vol. 26, no. 4, 1997.

Hemant T Aher he is

engineering student of

Information Technology at

NGSPM Brahma Valley

College, Nasik under University

of Pune. His areas of interest

include Cyber Security,

Networking.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 1 46 - 51

51
IJRITCC | January 2015, Available @ http://www.ijritcc.org

Arti A Jadhav she is

engineering student of

Information Technology at

NGSPM Brahma Valley

College, Nasik under University

of Pune. Her areas of interest

include Web Designing,

Computer Network Security.

Kundan L Shinde he is

engineering student of

Information Technology at

NGSPM Brahma Valley

College, Nasik under University

of Pune. His areas of interest

include Programming,

Networking.

Poonam D Shirode she is

engineering student of

Information Technology at

NGSPM Brahma Valley

College, Nasik under University

of Pune. Her areas of interest

include Web Designing, Cloud

Computing.

