
UNIVERSIDADE DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

Economics-inspired Adaptive Resource Allocation
and Scheduling for Cloud Environments

José Manuel de Campos Lages Garcia Simão

Supervisor: Doctor Luís Manuel Antunes Veiga

Thesis approved in public session to obtain the PhD Degree in
Information Systems and Computer Engineering

Jury final classification: Pass with Distinction

Jury:
Chairperson: Chairman of the IST Scientific Board
Members of the Committee:

Doctor Gaël Thomas
Doctor Bruno Miguel Brás Cabral
Doctor David Manuel Martins de Matos
Doctor Luís Manuel Antunes Veiga

2015

UNIVERSIDADE DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

Economics-inspired Adaptive Resource Allocation
and Scheduling for Cloud Environments

José Manuel de Campos Lages Garcia Simão

Supervisor: Doctor Luís Manuel Antunes Veiga

Thesis approved in public session to obtain the PhD Degree in
Information Systems and Computer Engineering

Jury final classification: Pass with Distinction

Jury:
Chairperson: Chairman of the IST Scientific Board
Members of the Committee:

Doctor Gaël Thomas
Professor
Télécom SudParis, France

Doctor Bruno Miguel Brás Cabral
Professor Auxiliar
Faculdade de Ciências e Tecnologia da Universidade de Coimbra

Doctor David Manuel Martins de Matos
Professor Auxiliar
Instituto Superior Técnico da Universidade de Lisboa

Doctor Luís Manuel Antunes Veiga
Professor Auxiliar
Instituto Superior Técnico da Universidade de Lisboa

Funding Institutions:
Fundação para a Ciência e Tecnologia

INESC-ID Lisboa
Instituto Superior de Engenharia de Lisboa

Instituto Politécnico de Lisboa

2015

Para a Margarida e para o Miguel

Publications

The work and results presented in this thesis were partially supported by the Portuguese
Science and Technology Foundation (Fundação para a Ciência e Tecnologia), projects
“Synergy”, “RepComp” and “Prosopon”, and by a PROTEC grant from the Polytecnic
Institute of Lisbon (Instituto Politécnico de Lisboa, Ministério da Ciência e do Ensino
Superior). They are partially described in the following peer-reviewed scientific publi-
cations:

• International Journals

1. José Simão and Luís Veiga, Partial Utility-driven Scheduling for Flexible SLA
and Pricing Arbitration in Clouds. IEEE Transactions on Cloud Computing,
online first.

2. José Simão and Luís Veiga, Adaptability Driven by Quality Of Execution in
High-Level Virtual Machines for Shared Environments. International Journal
of Computer Systems Science and Engineering, 28(6), pp. 59-72, November
2013, CRL Publishing. Q2 in SCImago

3. José Simão and Tiago Garrochinho and Luís Veiga, A Checkpointing-enabled
and Resource-Aware Java VM for Efficient and Robust e-Science Applications in
Grid Environments, Concurrency and Computation: Practice and Experi-
ence, 24(13), pp. 1421-1442, September 2012, Wiley. Q2 in SCImago.

• International Conferences and Workshops

1. José Simão and Luís Veiga, Flexible SLAs in the Cloud with Partial Utility-
driven Scheduling Architecture, IEEE 5th International Conference on Cloud
Computing Technology and Science (CloudCom 2013), December 2013, IEEE,
Acceptance ratio ≈ 17.8%, (Best-Paper Runner-up).

2. José Simão and Navaneeth Rameshan and Luís Veiga, Resource-Aware Scaling
of Multi-threaded Java Applications in Multi-tenancy Scenarios, IEEE Cloud-
Com 2013, December 2013, IEEE [short paper].

i

3. José Simão and Jeremy Singer and Luís Veiga, A Comparative Look at Adap-
tive Memory Management in Virtual Machines, IEEE CloudCom 2013, De-
cember 2013, IEEE [short paper].

4. João Marques Silva and José Simão and Luís Veiga, Ditto - Deterministic
Execution Replayability-as-a-Service for Java VM on Multiprocessors, ACM/I-
FIP/Usenix International Middleware Conference (Middleware 2013), De-
cember 2013, Springer. Core A, Acceptance ratio ≈ 18.7%, RADIST A.

5. José Simão and Luís Veiga, A Progress and Profile-driven Cloud-VM for Im-
proved Resource-Efficiency and Fairness in e-Science Environments, 28th ACM
Symposium On Applied Computing (SAC 2013), March 2013, ACM.

6. José Simão and Luís Veiga, A Classification of Middleware to Support Virtual
Machines Adaptability in IaaS, 11th International Workshop on Adaptive and
Reflective Middleware (ARM 2012), In conjuntion with Middleware 2012,
December 2012, ACM.

7. José Simão and Luís Veiga, QoE-JVM: An Adaptive and Resource-Aware Java
Runtime for Cloud Computing, 2nd International Symposium on Secure Vir-
tual Infrastructures (DOA-SVI 2012), OTM Conferences 2012, September
2012, Springer, LNCS.

8. José Simão and Luís Veiga, VM Economics for Java Cloud Computing - An
Adaptive and Resource-Aware Java Runtime with Quality-of-Execution, The
12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (CCGrid 2012) - Doctoral Symposium: Cloud Scheduling, Clusters
and Data Centers, May 2012, IEEE.

9. José Simão and João Lemos and Luís Veiga, A2 − VM : A Cooperative Java
VM with Support for Resource-Awareness and Cluster-Wide Thread Scheduling,
19th International Conference on Cooperative Information Systems (CoopIS
2011), September 2011, LNCS, Springer. Core A, Acceptance ratio ≈ 20%,
RADIST B.

• Posters and Talks

1. José Simão and Axel Domingues and Luís Veiga, Flexible SLAs in the Cloud
With Partial-Utility Scheduling, Poster Session of EuroSys 2013, April 2013.

2. José Simão and Luís Veiga, Invited talk in the Middleware 2012 Doctoral
Symposium, December 2012.

ii

3. José Simão and Luís Veiga, Towards an Adaptive and Resource-Aware Java
Runtime for Cloud Computing with Quality-of-Execution, Poster session of
the 17th Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), March 2012.

During the PhD program I have also published further extensions to the work pre-
sented in my master dissertation, describing how a location service can disclose in-
formation conditioned by the enforcement of history-based and discretionary security
policies. The policies are described in a extended version of the Security Policy Lan-
guage [Ribeiro et al., 1999].

• International Journals

– José Simão and Carlos Nuno da Cruz Ribeiro and Paulo Ferreira and Luís
Veiga, Jano: Location-Privacy Enforcement in Mobile and Pervasive Environ-
ments through Declarative Policies, Journal of Internet Services and Applica-
tions (JISA), 3(3), pp. 291-310, December 2012, Springer.

• International Workshop

– José Simão and Paulo Ferreira and Carlos Nuno da Cruz Ribeiro and Luís
Veiga, Jano - Specification and Enforcement of Location Privacy in Mobile and
Pervasive Environments, Workshop on Middleware for Pervasive Mobile and
Embedded Computing (M-MPAC 2010), in Middleware 2010, December
2010, ACM.

iii

iv

Abstract
Cloud infrastructures host different kinds of applications belonging to clients with differ-
ent levels of service agreements. Their execution is supported by high language virtual
machines and system-level virtual machines (VMs). Aiming to maximize revenue, by
minimizing the operational expenditure, cloud providers often consolidate several VMs
in a single server. This is particularly useful also for the emergent distributed clouds
where physical resources, at each node, are not so abundant. However, this technique
can lead to overcommitment of resources, and to undesirable performance degradation,
if carried out in a non-informed way.

This thesis proposes new allocation mechanisms for the VMs used by Platform-as-a-
Service (PaaS) and Infrastructure-as-a-Service (IaaS) clouds, and how these mechanisms
are to be controlled. They are driven by classic economic notions such as yield, which
expresses the return the provider has in applying a given resource allocation to the ten-
ants’ workload, and utility functions, a relation of clients’ perceived usefulness to a given
allocation.

For PaaS providers, a Java VM was extended with an integrated resource manage-
ment API, heap resizing policies for yield maximization and concurrent checkpoint for
migration of the execution state. Overall, these new mechanisms impose small penalties,
measured in the execution of typical benchmarks, while allowing the use of application-
tailored policies. At the IaaS level, we present a novel cost model and new scheduling
algorithms for system-level VMs, along with their implementation in a state-of-the-art
cloud simulation framework. Simulations with synthetic and real-world traces, show
that the utility-based scheduling allows more VMs to be allocated, thus allowing extra
revenue per resource allocated, and shorter waiting times for clients, when comparing
with a utility-oblivious redistribution of resources.

Keywords

Cloud computing, Platform-as-a-Service, Infrastructure-as-a-Service, Virtual Machines,
Multi-tenancy, Resources Scheduling, Garbage Collection, Cost Model, Economic Yield,
Utility Functions

v

Resumo

As plataformas e infra-estruturas de computação em nuvem executam diferentes tipos
de aplicações, as quais pertencem a clientes com contractos de serviço distintos. A ex-
ecução destas aplicações é suportada por máquinas virtuais (MVs). Com o objectivo
de minimizar despesas operacionais, os fornecedores de serviços recorrem a técnicas de
consolidação, juntando várias MVs num único servidor. Esta técnica é ainda mais útil
em cenários emergentes como é o caso das nuvens comunitárias. Contudo, tem tam-
bém o potencial de afectar o desempenho das aplicações, se realizado de uma forma não
informada.

Esta tese propõe novos mecanismos de atribuição de recursos para MVs usadas nos
modelos de Plataforma como um Serviço (PaaS) e Infra-estrutura como um Serviço
(IaaS). A alocação é inspirada em noções clássicas de Economia, como o retorno do
investimento, que relaciona o proveito do fornecedor de serviço em usar determinada
alocação de recursos, e funções de utilidade, que determinam como o cliente valoriza
possíveis alocações apenas parciais.

Para os fornecedores no mercado de Plataforma como um serviço (PaaS), foi esten-
dida uma MV Java para incorporar uma interface uniformizada para a gestão de recursos,
políticas para gestão de dimensão dinâmica, e um mecanismo para salvaguarda concor-
rente do estado de execução das aplicações. No seu conjunto, a implementação destes
mecanismos revelou ter um impacto pequeno no tempo de execução de aplicações de
referência, dando a possibilidade de usar políticas de gestão de recursos específicas para
cada aplicação. Para os fornecedores no mercado de Infra-estrutura como um Serviço
(IaaS), é apresentado um novo modelo de custos e de alocação de MVs, bem como a sua
implementação numa infra-estrutura para simulação de computação em nuvem. Quando
comparado com uma redistribuição de recursos que não tem em conta a utilidade parcial,
os resultados de simulações mostram que a estratégia proposta permite que mais MVs
sejam alocadas, proporcionando ao fornecedor de serviço maior rentabilidade, e menor
tempo de espera para os clientes.

Palavras-chave

Computação em nuvem, Plataforma como um Serviço, Infraestrutura como um Serviço,
Máquinas Virtuais, Multi inquilino, Modelo de Custos, Retorno Económico, Funções
de Utilidade, Alocação de Recursos, Recolha de Objectos não Alcançáveis

vii

Agradecimentos

Quando em 2009 conheci o Prof. Luís Veiga e discuti com ele a hipótese de trabal-
har na área da distribuição de recursos e máquinas virtuais, depressa me apercebi do
entuasiasmo e energia que coloca em cada conversa. A sua vontade de fazer progresso
manteve-se ao longo dos trabalhos de doutoramento. Havia sempre disponibilidade para
uma opinião de como ir mais longe. A sua personalidade, conhecimento científico e
estilo de orientação, foram essenciais para os sucessos que conseguimos ao longo deste
percurso. A ele o meu muito obrigado.

Chegado aqui, ao olhar para trás vejo mais de duas décadas de estudo, prática e en-
sino, que se enquadram no que é habitualmente designado como engenharia informática
e de computadores. Foram várias as pessoas que ao longo da minha vida académica me
mostraram, através do exemplo, as melhoras práticas em cada uma destas actividades.
Estou particularmente agradecido a diversos membros do Centro de Cálculo do ISEL os
quais, primeiro como meus professores, e depois como meus colegas, contribuiram para
a minha formação, e por isso, para o trabalho que agora apresento.

Agradeço ao IPL e ao ISEL, em particular à ADEETC e aos seus docentes, as condições
criadas para eu conseguir usufruir da dispensa parcial de serviço docente, no contexto da
bolsa PROTEC.

Faço também um balanço muito positivo destes últimos quatro anos de trabalho no
INESC-ID Lisboa. Agradeço aos alunos cujos trabalhos tiveram um papel relevante na
elaboração de artigos em que fui co-autor. Destes destaco o Tiago Garrochinho e o
João Lemos. Agradeço também à direcção do INESC-ID pelas condições que directa e
indirectamente me proporcionaram.

Agradeço aos meus pais, Rosália e José, por acreditarem em mim e no meu sucesso,
por se terem entusiasmado com as minhas conquistas e serem solidários nas minhas
frustações.

Agradeço à Carmen a compreensão pelo tempo que não estive com ela e com os
nossos filhotes, a Margarida e o Miguel. Aos três, agradeço o carinho que sempre me
deram.

Lisboa, 16 de Outubro de 2014

ix

Contents

Abstract v

Resumo vii

Agradecimentos ix

I Thesis Motivation and Artifacts 1

1 Introduction 1
1.1 Computing in the Cloud . 1

1.1.1 Service Models . 2
1.1.2 Fundamentals and Innovations in Cloud Technology 4

1.2 Thesis Motivation and Challenges . 5
1.2.1 Plataform-as-a-Service . 6
1.2.2 Infrastructure-as-a-Service . 8
1.2.3 Overall scheduling . 8

1.3 Current shortcomings . 9
1.3.1 PaaS . 9
1.3.2 IaaS . 10

1.4 Contributions . 11
1.4.1 VM’s adaptability framework 12
1.4.2 Scheduling of PaaS resources . 13
1.4.3 Scheduling of IaaS resources . 15
1.4.4 Summary of major publications 16

1.5 Outline . 19

xi

Contents

2 Adaptive Mechanisms and Techniques in Virtual Machines 21

2.1 Introduction . 22

2.2 Virtual Machines Fundamentals . 25

2.2.1 Computation as a resource . 27

2.2.2 Memory as a resource . 28

2.2.3 Input/Output as a resource . 32

2.3 Adaptation techniques . 34

2.3.1 System Virtual Machine . 35

2.3.2 High-Level Language Virtual Machine 36

2.3.3 Summary of techniques . 39

2.4 The RCI Framework for classification of VM adaptation techniques . . . 42

2.4.1 Quantitative Criteria of the RCI framework 44

2.4.2 Classification of techniques . 48

2.4.3 Aggregation of quantities . 51

2.4.4 Critical analysis of the framework 52

2.5 VM systems and their classification . 53

2.5.1 System Virtual Machine . 53

2.5.1.A Overall systems analysis 57

2.5.2 High-Level Language Virtual Machines 59

2.5.2.A Overall systems analysis 63

2.6 Summary . 65

II Allocation and Scheduling in Platform-as-a-Service 67

3 Architecture of a Cloud-enabled JVM 69

3.1 Introduction . 70

3.2 Related work . 71

3.2.1 Resource accounting in High-Level Virtual Machines 71

3.2.2 Measuring progress . 74

3.2.3 Checkpointing, restoring and migration mechanisms 76

3.3 Architecture Overview . 78

3.3.1 Resource Awareness and Control 79

xii

Contents

3.3.2 Accurate Progress Monitoring 80

3.3.3 Checkpointing and Migration of the Execution State 81

3.3.4 Adaptability and the Policy Engine 82

3.4 Driving Adaptability with Quality-of-Execution 83

3.4.1 An economic-inspired model 83

3.4.2 QoE-JVM Economics . 86

3.4.3 Progress monitoring . 89

3.4.4 Resource types and usage . 91

4 Resource Management Mechanisms 95

4.1 Overview of the Jikes Research Virtual Machine 96

4.1.1 Thread management . 97

4.1.2 Memory management . 98

4.1.3 Extensions to the language and Native Calls 98

4.2 Resource accounting framework . 99

4.2.1 Resource management policies 100

4.2.2 Resource management hooks in the VM and classpath 102

4.2.3 Yield-driven heap management 105

4.2.4 Yield-driven CPU ballooning 108

4.3 Progress monitoring library . 109

4.4 Checkpointing and migration of the execution state 111

4.4.1 Consistent extraction of the execution state 111

4.4.2 Concurrent checkpointing . 114

5 Evaluation 119

5.1 QoE applied to memory and CPU management 120

5.1.1 Heap size management . 120

5.1.2 QoE Yield applied to Heap size 125

5.1.3 QoE Yield applied to CPU usage 129

5.2 Resource consumption constraints . 130

5.3 Fine-grained progress accounting . 134

5.4 Concurrent checkpoint . 138

xiii

Contents

III Allocation and Scheduling in Infrastructure-as-a-Service 143

6 Architecture and Cost Model 145
6.1 Introduction . 146

6.1.1 Overcommitted environments 147
6.1.2 Scheduling Based on Partial-Utility 149

6.2 Related Work . 150
6.2.1 Scheduling with Energy Awareness 151
6.2.2 Scheduling with Service-Level Objectives 152
6.2.3 Flexible SLAs . 154

6.3 A partial utility cost model for cloud scheduling 154
6.3.1 Degradation factor and Partial utility 155
6.3.2 Classes for prices and partial utility 157
6.3.3 Total costs . 158
6.3.4 Practical scenario . 158
6.3.5 Comparing flexible pricing profiles in a cloud market 160

7 Partial Utility Scheduling Algorithms and Implementation 163
7.1 Partial Utility-based Scheduling for IaaS Deployments 164

7.1.1 Analysis of the scheduling cost of the utility-oblivious scheduling 165
7.1.2 Partial utility-aware scheduling strategies 166
7.1.3 Analysis of the partial-utility scheduling cost 167

7.2 Cloud simulators and the CloudSim framework 168
7.2.1 SimGrid . 169
7.2.2 CloudSim . 170

7.3 Implementing the Partial Utility-Driven Scheduling in CloudSim 173

8 Evaluation 177
8.1 Methodology and Configurations . 178

8.1.1 Utility Unaware Allocation . 179
8.2 Over subscription . 182
8.3 Utility-driven Allocation . 183

8.3.1 Allocation of VMs . 183
8.3.2 Effects on workloads . 187

xiv

Contents

IV Conclusions and Future Work 191

9 Conclusions and Future Work 193
9.1 Platform-as-a-Service . 194
9.2 Infrastructure-as-a-Service . 195
9.3 Future Work . 197

References 199

xv

Contents

xvi

List of Figures

1.1 Overall system view . 11
1.2 Layered view of the researched topics and references to specific contribu-

tions . 16

2.1 Virtualization layers . 25
2.2 The control loop of memory management in hypervisor based deploy-

ments . 30
2.3 The control loop of memory management in HLL VM based deployments 32
2.4 Adaptibility loop . 34
2.5 Techniques used by System VMs in the monitoring, decision and action

phases . 40
2.6 Techniques used by HLL-VMs in the monitoring, decision and action

phases . 41
2.7 A step-by-step classification process . 43
2.8 Systems design interval . 44
2.9 Quantitative values for the design options of the RCI framework 46
2.10 RCI of Sys-VMs . 59
2.11 RCI of HLL-VMs . 64

3.1 Overall architecture . 79
3.2 Declarative policy example considering two types of resources 83
3.3 Ratio of Progress versus Resource Allocation variation overview. 85

4.1 Layered view of the new resource management mechanisms 96
4.2 Interactions with the Resource Awareness and Management Module . . . 99
4.3 Class diagram with the main entities of JSR 284, Resource attributes,

Constraints, and Notifications . 101

xvii

List of Figures

4.4 Regulate consumption based on past wndSize observations 102

4.5 Modification to the code that resolves the bytecode 0xbb (“new”) 104

4.6 Delegation of resource consumption decision to the installed constraints 104

4.7 Java stub to generate call to native code 105

4.8 Native code for reading /proc cpu usage 106

4.9 The progress annotation . 109

4.10 Example of usage of the progress annotation 109

4.11 Entrypoint of the Java agent . 110

4.12 Bytecode instrumentation inserting calls to the markProgess 112

4.13 Timelines of serial and concurrent checkpoint 116

5.1 Default heap growth matrix. 121

5.2 Alternative matrices to control the heap growth. 122

5.3 Growth and shrink percentage for the M0 matrix 123

5.4 Growth and shrinkage percentage for each matrix 124

5.5 Histogram of GC ratios for each benchmark using the default matrix . . 125

5.6 Histogram of GC ratios for each benchmark using other heap manage-
ment matrices . 126

5.7 Results of using each of the matrices (M0..3), including savings and degra-
dation when compared to a fixed heap size. 128

5.8 Effects of restraining CPU by 25%, 50% and 75% 131

5.9 Relative slowdown . 131

5.10 Relative efficiency . 132

5.11 Policy evaluation cost . 133

5.12 GC execution time during Dacapo’s LuSearch benchmarck 134

5.13 Four Dacapo’s multi threaded benchmarks with RAMM enabled and
disabled . 135

5.14 Average window call rate for periods of 5 seconds and using a different
number of cores . 137

5.15 Average window call rate for periods of 5 seconds and using a different
heap sizes . 137

5.16 Checkpointing experiments triggered on percentage of computation . . . 139

5.17 Checkpointing experiments with checkpoint triggered by time elapsed . 141

xviii

List of Figures

6.1 Cloud deployments: From heavy clouds to small, geo-distributed near-
the-client datacenters . 147

6.2 Scenario where partial release of resources varies during renting period . 156
6.3 A practical scenario of using flexible SLAs in a market-oriented environ-

ment . 159
6.4 Matrices combining price and utility for the different VM types and par-

tial utilities. 161

7.1 Organization of CloudSim simulation environment 170
7.2 Highlighted extensions to the CloudSim simulation environment 173
7.3 Class diagram with extensions to the CloudSim object model 174

8.1 Base algorithm which allocates a single VM to each CPU core. 179
8.2 Base algorithm which allocates one or more VMs to a single CPU core. 180
8.3 Types, sizes, and counting of requested but not allocated VMs 181
8.4 Unused hosts . 182
8.5 Base algorithm with over subscription, taking the first host with more

cores, equal depreciation and unaware of client classes 183
8.6 Number of requested but not allocated VMs using datacenters with dif-

ferent sizes and VMs with different number of cores. 184
8.7 Compared resource utilization using datacenters with different sizes . . . 185
8.8 Compared revenue using datacenters with different sizes 186
8.9 Compared average execution time of traces from PlaneLab VMs using

datacenters with different sizes . 188
8.10 Compared median execution time of traces from PlaneLab VMs using

datacenters with different sizes . 189

xix

List of Figures

xx

List of Tables

2.1 System VMs: Sensors . 49
2.2 System VMs: Control techniques . 49
2.3 System VMs: Actuators . 49
2.4 HLL VMs: Sensors . 50
2.5 HLL VMs: Control techniques . 50
2.6 HLL VMs: Actuators . 50
2.7 Example of the aggregations made in step 2 for system Sα 52
2.8 Example of the arithmetic operations in step 2 for system Sα 52
2.9 Sys-VM Systems . 58
2.10 HLL-VM Systems . 64

3.1 Implicit resources and their throttling properties 92

5.1 Growth and shrink norms and their relation 123
5.2 Heap Size Savings, Execution Degradation and Yield 129
5.3 Heap Size Savings, Execution Degradation and Yield 130

8.1 Hosts configured in the simulation. Number of hosts per configura-
tion, number of cores per host, computational capacity, hyper-threading,
Memory capacity . 178

8.2 Characteristics of each VM type used in the simulation 179
8.3 Summary of VMs requested but not allocated and the number of addi-

tional hosts when cores are not shared 181

xxi

List of Tables

xxii

Part I

Thesis Motivation and Artifacts

1 Introduction

Contents
1.1 Computing in the Cloud . 1

1.1.1 Service Models . 2

1.1.2 Fundamentals and Innovations in Cloud Technology 4

1.2 Thesis Motivation and Challenges . 5

1.2.1 Plataform-as-a-Service . 6

1.2.2 Infrastructure-as-a-Service . 8

1.2.3 Overall scheduling . 8

1.3 Current shortcomings . 9

1.3.1 PaaS . 9

1.3.2 IaaS . 10

1.4 Contributions . 11

1.4.1 VM’s adaptability framework . 12

1.4.2 Scheduling of PaaS resources . 13

1.4.3 Scheduling of IaaS resources . 15

1.4.4 Summary of major publications 16

1.5 Outline . 19

1.1 Computing in the Cloud

In today’s scenarios of large scale computing and service providing, the deployment of
software workloads in distributed infrastructures, namely computer clusters, is a very
active research area. In recent years, the use of Grids, Utility and Cloud Computing

1

1. Introduction

shows that these are approaches with growing interest and applicability, as well as scien-
tific [Hiden et al., 2013; Ishakian et al., 2012; Beloglazov and Buyya, 2012; Silva et al.,
2011; Buyya et al., 2009] and commercial impact.1

After some efforts of the research community to reach a consensual explanation of
what is Cloud Computing, from which a minimum set of features would be scalability,
pay-per-use utility model, and virtualization [Vaquero et al., 2008], institutional organi-
zations have recently promoted a common ground definition. A report from the Eu-
ropean Commission [European Commission, 2012] describes, in simplified terms, that
cloud computing is the storing, processing, and use of data on remotely located comput-
ers accessed over the internet. Although the report recognizes the wide range of defining
features, it focused on some key features such as: i) the dynamically and optimized use
of hardware across a network of computers, ii) the ability for the user to pay by usage
and, iii) the easiness to change the hardware requirements. The European Commission
report also mentions that a cloud set-up consists of several layers: hardware, middleware
or platform, and application software.

A similar previous definition, which also emphasizes the remote nature of cloud
computing, is made in a report from the U.S. National Institute of Standards and Tech-
nology (NIST) [Peter Mell and Tim Grance, 2011], where cloud computing is presented
as a computing model for enabling ubiquitous, convenient, on-demand networked ac-
cess to a shared pool of configurable computing resources. Its main requirements are:
i) on-demand self-service, ii) resource pooling, iii) rapid elasticity, iv) Broad network
access, and v) Measured service.

Both definitions agree on the same central issue: cloud computing is computation
capacity offered as a commodity. This notion is captured in what is today commonly
known as Utility Computing [Armbrust et al., 2009], a vision initially presented by
professor Jonh MacCarthy in 1961 [Garfinkel, 1999].

1.1.1 Service Models

Widely adopted cloud service models are known as: i) Infrastructure-as-a-Service (IaaS),
ii) Platform-as-a-Service (PaaS), and iii) Software-as-a-Service (SaaS). In IaaS, assets are

1Cloud Computing Will Become the Bulk of New IT Spend by 2016, http://www.gartner.com/
newsroom/id/2613015, visited July 3, 2014

2

http://www.gartner.com/newsroom/id/2613015
http://www.gartner.com/newsroom/id/2613015

1.1 Computing in the Cloud

generic processing and storage resources where clients can remotely run their own soft-
ware stack using system-wide virtual Machines (VMs) [Smith and Nair, 2005]. In PaaS,
the asset is a remote execution platform or framework supported by the provider, free-
ing the client from the configuration of the underlying network, servers and storage
systems. Finally, the SaaS asset is a complete application running on the provider’s
hardware, accessed using different types of users-agents, typically browsers.

All these service models are usually multi-tenant, which means that the same un-
derlying infrastructure will serve different clients (or tenants), each using the service in
different ways. They offer a computational asset for a given price, while promising to
free the client from the hardships of assembling and maintaining the necessary hardware
resources. While Software-as-a-Service may have commercial interest to almost any In-
ternet user, the other two service models are usually appealing to startups, small and
medium enterprises, and research labs and universities.

NIST’s definition also covers several deployment models [Peter Mell and Tim Grance,
2011], namely, Private, Community, Public, and Hybrid Clouds. Private deployments
are for exclusive use of a single organization (e.g. Companies). Community clouds are
shared among organizations (more or less formal) with similar interests, and may be
owned by one or more members of the community. Public deployments exist on the
premise of a cloud provider which can be a business, a government department or a
university. Finally, hybrid clouds are a combination of the former types with support
for assets portability using open source or proprietary technologies.

The IaaS service model rents system virtual machines, lower-level storage and net-
work capabilities. The manager of virtual machines, known as virtual machine monitor
or hypervisor [Smith and Nair, 2005], enables the hosting of complete execution stacks,
from the operating system to the application server. Amazon EC22 is a popular provider
for this kind of service. Other major technology players, such as Microsoft, also have so-
lutions for IaaS integrated in their cloud offer.3 Other providers such as RacketSpace4 or
Apache CloudStack5 support their business model in open-source solutions, e.g. Open-
Stack6, promising to make an easy migration between a private and their public cloud.

Current PaaS providers offer a service model that is mostly tailored to the develop-
2http://aws.amazon.com/ec2/, visited July 2, 2014
3http://azure.microsoft.com/en-us/services/virtual-machines/, visited July 2, 2014
4http://www.rackspace.com/, visited July 2, 2014
5http://cloudstack.apache.org/, visited October 14, 2014
6http://www.openstack.org/, visited July 2 2014

3

http://aws.amazon.com/ec2/
http://azure.microsoft.com/en-us/services/virtual-machines/
http://www.rackspace.com/
http://cloudstack.apache.org/
http://www.openstack.org/

1. Introduction

ment of web applications, usually supported by the use of different managed runtimes.
Google App Engine and Microsoft Azure are two representative examples of PaaS [Arm-
brust et al., 2009]. Google App Engine is a multi-language development environment
with several language extensions to support web application scaling and to enforce their
service-level restrictions. Microsoft Azure offers a similar environment but is focused
on the .NET platform. Heroku [Heroku, 2014] is a more general purpose platform
where applications do not have to bind to vendor-specific programming interfaces. In
all these cases, workloads execute inside modern managed runtimes which are known
in the literature as high-level language virtual machines (HLL-VM) [Smith and Nair,
2005].

1.1.2 Fundamentals and Innovations in Cloud Technology

From a scientific point of view, Cloud Computing is the natural evolution of research
efforts related to computer grids, clusters and data center hosting in general. For exam-
ple, Grid infrastructures have long dealt with the need to devise market-driven strategies
to manage resources, while cluster-related technologies, such as distributed shared mem-
ory, are used in many scenarios to simplify crossing the boundary of a single machine
(e.g., application scaling [Ferreira et al., 2003] or distributed key-value storage [Drago-
jević et al., 2014]). Although all these technologies contribute to the success of Cloud
Computing, virtualization in general, and virtual machines at the system and language-
level, in particular, made a decisive contribution to provide seamless resource pooling,
consolidation, on-demand self-service and elasticity. An idea that IBM started in the
1960s was recovered and later extended with hardware support and is now the enabler
of many Cloud Computing solutions [Armbrust et al., 2009].

But now that the today’s Cloud is well established, and adopted across all the in-
formation technology market, how will it evolve? Will current datacenters continue
to grow larger and larger, struggling to keep up with energy, cooling, and operational
costs, or will the Cloud of the future be made of a mesh of Clouds, where dispersed,
heterogeneous computational resources can be used to support either public, private or
hybrid cloud solutions? The second option seems to be the most promising one and is
currently being embraced by the research and engineering community. For example, the
Institute of Electrical and Electronics Engineers (IEEE) is currently assembling, in the

4

1.2 Thesis Motivation and Challenges

context of the IEEE Cloud Computing Initiative,7 a testbed – The Intercloud Testbed8

– to promote the definition of standards for the federation of clouds. Each cloud is
supported by different organizations, both companies and universities.

1.2 Thesis Motivation and Challenges

Recently, some researchers have proposed to bring the cloud closer to the clients [Liu
et al., 2011; Khan et al., 2013b; Lèbre et al., 2013; Sharifi et al., 2014], distributing the
datacenter across a network of nodes. These deployments can be more energy-efficient
and bring speed-ups because they reduce network latency.

Although any Internet node can potentially host these new deployments, they will
be of most interest to organizations where, although resources may not be abundant,
they are used sparsely and with different peaks during the day or periods of longer dura-
tion. Examples include universities and research labs where resources already exist and
can be organized with advantage into a cloud. For example, Rutgers – The State Uni-
versity of New Jersey – assembled a solar powered datacenter comprised of small con-
tainers, solar panels and batteries, hosting two racks of energy-efficient servers.9 Other
public places, such as condominiums and malls, could also have economic advantages by
renting resources from their publicly accessed clouds. This is actually what Amazon did
with their idle capacity and that started the widespread adoption of cloud computing.
Another example is the data furnace, proposed by Liu et al. [Liu et al., 2011], which
would place small datacenters across condominiums and use the wasted heat produced
by the servers for heating residential homes.

Multi-tenancy and resource pooling are essential characteristics of Cloud Comput-
ing, which means that the allocation of resources must be done according to each ten-
ant’s requests and demand. By distributing the cloud, hosting nodes will have more
resource restrictions than the large, energy-hungry and remote datacenters. This makes
the problem of resource allocation not just a problem of how to scale (how to dynami-
cally give more or less resources), but to determine which are the tenants that can benefit
the most from the new allocation.

Providers must employ dynamic resource allocation strategies to take into account
7http://cloudcomputing.ieee.org/, visited July 2, 2014
8http://www.intercloudtestbed.org/, visited July 2, 2014
9http://parasol.cs.rutgers.edu/, visited July 2, 2014

5

http://cloudcomputing.ieee.org/
http://www.intercloudtestbed.org/
http://parasol.cs.rutgers.edu/

1. Introduction

how effectively each tenant uses their allocated resources, and how their progress will
be affected by handing the available resources to higher priority/paying tenants. Such
resource allocation considerations are relevant to be taken into account regarding the
assets involved both in the PaaS and IaaS service models.

1.2.1 Plataform-as-a-Service

In the PaaS environment, the resource allocation should be tailored in a application-
driven way, taking into account the effective progress of the workload. Although cur-
rently commercial PaaS are dominated by web hosting infrastructures, there is an in-
creasing interest in using managed languages for physics simulation, economics/statis-
tics, network simulation, chemistry, computational biology and bio-informatics [Hiden
et al., 2013; Krampis et al., 2012; Pierre and Stratan, 2012].

We target applications that have little or no user interactions. They are setup to run
in the remote cluster with the necessary information at the execution site (which can
be in each machine’s file system or in a network storage). These applications can also
use widely available distributed shared objects middlewares to create the illusion of a
distributed shared heap, subject of previous research work [Zhu et al., 2002; Ferreira
et al., 2003; Bonér and Kuleshov, 2007] and currently popularized by industry.10,11,12

In general, this type of computation is referred to as e-science, which constitutes the
act of using large scale computational resources to carry out research in biologic, eco-
nomic, social and other sciences. Available tools for these applications often also belong
to a class of computing known as High Performance Computing (HPC). Although some
facilities of modern languages, such as just-in-time compilation and automatic garbage
collection, have traditionally hindered the adoption of these languages to HPC envi-
ronments due to their dynamic compilation and pause overheads, they are now more
appealing to these communities [Fries, 2012; Chen et al., 2014].

Special-purpose runtimes to take advantage of the growing number of available cores
in each node and, by extension, across the cluster, are also being implemented and mi-
grated to managed runtimes. X10 [Charles et al., 2005] is a programming language with
constructs for splitting the application’s data across a partitioned global address space

10http://hazelcast.org/, visited July 2, 2014
11http://infinispan.org/, visited July 2, 2014
12http://terracotta.org/products/bigmemorymax, visited July 2, 2014

6

http://hazelcast.org/
http://infinispan.org/
http://terracotta.org/products/bigmemorymax

1.2 Thesis Motivation and Challenges

and for explicitly coordinate parallel execution flows. ClusterSs [Tejedor et al., 2012]
adopts a different approach, hiding must of these details from the programmer. The
MapReduce programming pattern has become popular by being able to process large
amounts of data in parallel. This pattern has also been adopted for running in a single
process, both for unmanaged [Ranger et al., 2007] and managed environments [Singer
et al., 2011].

These applications are executed in the context of a managed runtime which handles
memory allocation and the access to system resources, being able to adapt its manage-
ment policies, or be instructed to adapt. For a more coarse-grained management strategy,
checkpointing and migration at the application-level are useful to avoid the burdens of
migrating the entire system stack.

The work of Silva et al. [Silva et al., 2010a] classifies users in four different types, in
order to apply differentiating policies to the work of these users. In academic institu-
tions, for example, the same cluster of computers can be used to run e-science applica-
tions by students in different academic levels. Using the same infrastructure will have
fewer costs and will be easier to maintain. Nevertheless, the managers of the infrastruc-
ture will want to impose a high level policy and give distinguished execution quality to
different types of students. The mechanisms to obtain this may range from restraining
resource consumption (e.g. CPU usage, physical memory allocated), to the migration
of the application to another node.

The execution environment for these compute-intensive applications, with little user
interaction, has to comply with different requirements from each tenant. To do so, the
execution runtime has to have elasticity, in the sense that resources are made available
proportionally to the effective need, based on the progress of each workload. Measuring
progress cannot depend only on externally observed events. CPU usage, for example,
may not be that relevant because consuming more or less CPU it is not a direct measure
of application progress. An application that depends on I/O to make progress in its
work will exhibit, over time, lower CPU utilization than a CPU-intensive workload.
Therefore, one cannot decide, just by observing CPU usage, which one is making more
relative progress [Hoffmann et al., 2010].

7

1. Introduction

1.2.2 Infrastructure-as-a-Service

In the IaaS service model, commercial clouds are still dominated by allocating/buying
slots of resources that are seemingly paid-per-use, but as if they were to be used in full
over the renting period, and not actually integrating the actual resources used, even if
(highly probable) sometimes lower than those allocated. Currently, clients of the IaaS
service model rent different kinds of computation capacity, in the form of a virtual
machine, but they cannot express what happens if the service cannot completely fulfill
their requests. This can be accomplished with an extension to current service level
agreements (SLAs), where providers would be able to transfer resources in a way that
maximizes the client’s utility and the provider’s revenue.

Current Cloud SLAs include some form of compensation for customers (i.e., re-
source renters) with credits when average availability drops below a certain point. How-
ever, this credit scheme is too inflexible because consumers lose a non-measurable quan-
tity of performance and are only compensated later (i.e., in the next charging cycle). The
clients of classic cloud deployments, but also the ones that rely on these new and more
heterogeneous deployments, can have different requirements regarding the execution of
their workloads and are willing to trade performance for a lower (or almost free) usage
cost. To that end, clients should be able to negotiate with the provider a service level
agreement that covers scenarios where a requested VM can only be allocated if some
level of depreciation is applied to the VMs running in the datacenter. This would allow
the provider to transfer resources between VMs aiming to maximize its profit and mini-
mize the penalty to each workload, in a principled approach that is clear and transparent
to the client.

1.2.3 Overall scheduling

In summary, typical IaaS scheduling solutions, which sell general purpose computation
capability, need a negotiated and economically sound way to determine how to move
resources from a tenant to others. Such a resource exchange can be made in favour of
higher priority clients or to the ones that are willing to pay more for the same kind of
resources.

Regarding the execution of applications, focusing on the ones running on managed
runtimes, a similar problem exists. Although several resources have elasticity, that is, re-

8

1.3 Current shortcomings

sources can be removed or assigned without breaking the application’s execution, mem-
ory is the one with more impact. To take advantage of the resources available in the
cluster supporting the cloud, a managed runtime for these environments needs a syn-
ergy of mechanisms and allocation strategies. These mechanisms should include local
adaptations to the consumption of resources (where memory must have an prominent
attention), ways to determine progress, along with coarse-grained checkpoint and mi-
gration capabilities (e.g., for consolidation, failure recovery).

1.3 Current shortcomings

This thesis proposes new approaches to resource allocation and scheduling at the PaaS
and IaaS service level. This is a very active research area with a significant amount of
contributions. In this section, we briefly identify some of the limitations of the systems
proposed in the literature regarding the managed runtimes in multi-tenant environments
and the allocation of system-wide virtual machines.

1.3.1 PaaS

The use of workload-aware policies to distribute resources among different tenants needs
specific allocation mechanisms and strategies that can act upon the assets controlled by
the managed runtimes, most notably memory. To complement this local management,
checkpoint and migration of execution state is a relevant resource management tech-
nique that today is mostly done at lower-levels of the system stack, namely by the hy-
pervisor, with all the corresponding overhead of keeping and migrating the execution
state of several running applications and kernel services.

Recently, the research community has shown the importance of also incorporat-
ing resource-aware mechanisms into managed runtimes, giving them the capabilities to
adapt resource usage driven by the the workload characteristics [Singer and Jones, 2011;
Salomie et al., 2013]. Two major lines of resource-awareness can be identified: i) avoidind
application’s bad behavior, ii) performance tunning using adaptive memory structures.

Regarding the first line of research, if the only goal is to restrain resource usage,
there are currently lightweight virtualization solutions, such as the Linux containers
or the Spoon Virtual Machine, where the main focus is to have an environment simi-
lar to a system-wide VM but without a complete separated kernel and emulation of all

9

1. Introduction

the hardware, which is a source of overhead in these VMs.13,14 These solutions can im-
pose restrictions at several types of resources (e.g., network, memory, cores). However,
these solutions operate in an application-oblivious way and are mostly statically ruled.
The second line of research is more relevant to our scenario. Nevertheless, current ap-
proaches have no notion of multi-tenancy resource effectiveness in the sense that when
there are scarce resources, there is no attempt to determine where to take resources from
applications in such a way that they hurt performance the least.

Finally, regarding mechanisms for checkpointing and migration, they are mainly
supported at process-level or at system-level virtual machine. These approaches are in-
sufficient because they either require to store/transfer information that is not on the
application itself (e.g., information on the operating system on which it runs), or limit
the portability of the solution.

1.3.2 IaaS

With the advent of Cloud Computing, resource scheduling in virtualized environments
received prominent attention from the research community [Dawoud et al., 2012; Buyya
et al., 2011; Hertz et al., 2011; Singer et al., 2010]. But, as we migrate to the small, geo-
distributed near-the-client datacenter model, we need an architectural extension to the
current relation between cloud users and providers, particularly useful for private and
hybrid cloud deployments.

One of the main motivations for this distributed cloud movement is energy effi-
ciency. This problem is also of utmost relevance to classic datacenters. Current solu-
tions use well-known techniques such as consolidation [Beloglazov and Buyya, 2010]
and dynamic voltage frequency scaling (DVFS) [Chase et al., 2001; Hagimont et al.,
2013]. All these techniques may need to violate to some degree the service level agree-
ment established with the client, but they see that only as a secondary effect, missing
the opportunity to establish an economic cost model for the client and the provider to
negotiate what happens in such events.

Few works consider that some customers indeed are willing to accept a negotiable
performance degradation during the workload execution. This type of flexibility usually
requires the adoption of an economic or cost theoretical model. Besides the work in

13https://linuxcontainers.org/, visited July 3, 2014
14https://spoon.net/docs, visited August 12, 2014

10

https://linuxcontainers.org/
https://spoon.net/docs

1.4 Contributions

[Li et al., 2012], Cloudpack [Ishakian et al., 2012] provides support for users to specify
workloads in such a way so that they can declare their quantitative resource requirements
and temporal flexibilities.

In market-based approaches, the users bid for a VM with a certain amount of re-
sources. To guarantee a steady amount of resources, some systems [Costache et al.,
2013] migrate VMs between different nodes. Still, this approach has been found to have
the potential to impose a significant performance penalty [Xu et al., 2014].

Hypervisor

Commodity hardware

\Hypervisor

Commodity hardware
Hypervisor

Commodity hardwareCommodity hardware

IaaS
P

a
a

S

Resize based on SLA
negociated with the client

Resize based on effective
progress and resource usage

Checkpoint and migrate at
the application level

Distributed shared objects space

 Multi-threaded application

Research Center

Finance Industry

Software Suppliers

Multi-tenant System Virtual Machine Layer

Multi-tenant Language Virtual Machine Layer

Datacenter-wide
VM Provisioner

and Broker

Applications
Deployment

Interface

Datacenter wide
Resource

Distributor

VM Deployment
Interface

Figure 1.1: Overall system view

1.4 Contributions

Our main contributions are new allocation and scheduling mechanisms driven by strate-
gies that are inspired by classic economic notions such as utility functions, a relation of
usefulness to a given resource, and return on investment, which expresses the advantage
the provider has in applying a given resource allocation to the tenant’s workload. Fig-
ure 1.1 presents the overall view of the systems researched and developed during the

11

1. Introduction

PhD work. The figure focuses on the resource management issues at the PaaS and IaaS
levels, targeting scenarios of resource overcommitment.

At the PaaS level we have focused on integrating resource management mechanisms
which are currently not available in language runtimes widely used by cloud providers,
such as the Java Virtual Machine. These mechanisms enable the use of application-
driven policies, which can be used by the cloud provider to redistribute resources more
effectively.

At the IaaS level, because resource distribution mechanisms are already commonly
available, we have focused on the definition of a new resource distribution model were
clients and providers can negotiate how VMs will be provisioned, particularly useful
when hosts are overcommited. In the following sections, we briefly describe the most
relevant contributions presented in this thesis.

1.4.1 VM’s adaptability framework

Researchers have developed a large body of work using different mechanisms and dy-
namic allocation decisions to tailor how memory, CPU, and I/O management can be
adapted to specific workloads. In general, such systems are designed as a control loop
where sensors are monitored, decisions are made, and actions are performed by actu-
ators. Nevertheless, as is common in systems research, improvement in one property
may only be accomplished at the expense of some other property.

The first contribution of this thesis is a framework to classify adaptability in virtual
machines [Simão and Veiga, 2012a; Simão et al., 2013]. It describes the adaptation loop
of virtual machines discussing their principles, algorithms, mechanisms and techniques.
It then proposes a way to qualitative classify each of those according to their responsive-
ness, i.e., how fast it can react to changes; their comprehensiveness, i.e., the scope of the
mechanisms involved; and their intricateness, i.e., the complexity of the modifications
to the code base or to the underlying systems. In contrast with other virtual machine
surveys [Goldberg, 1974; Arnold et al., 2005; Cherkasova et al., 2007], we present an
integrated view of all the steps in the adaptation loop and use a classification approach
applied to system-wide and language virtual machines.

12

1.4 Contributions

1.4.2 Scheduling of PaaS resources

We have designed an Economics-inspired adaptability model and framework to drive
the allocation of resources to applications running on high-level language virtual ma-
chines, deployed in cloud-like environments, where resources are shared by several ten-
ants [Simão and Veiga, 2012b]. Managed runtimes, executing the workloads of multiple
tenants, must adapt to the execution of applications, with different (and sometimes dy-
namically changing) requirements concerning to their quality-of-execution (QoE). QoE
aims at capturing the adequacy and efficiency of the resources provided to an application
according to its needs.

The goal of our Economics-inspired model is to incrementally obtain gains in QoE
for HLL-VMs running applications requiring more resources (or for more privileged
tenants). This, must be accomplished while balancing the relative resource savings
drawn from other tenants with the perceived performance degradation. To achieve this
goal, we must positively discriminate certain applications, changing their allocation of
elastic resources, such as memory. For other applications, resources must be restricted,
imposing limits to their consumption, regardless of some performance penalties (that
should also be mitigated). In any case, these changes are made transparently to the de-
veloper (e.g., by changing internal memory allocation strategies of the runtime) or with
minimal cooperation (e.g., through the identification of which operations are the most
sensitive to measure progress). Several metrics can be used to infer how applications are
making progress, given the resources they are using.

We have developed and evaluated a yield-based model, which has similarities with
the economic notion of return-on-investment. It determines the benefits that different
strategies regarding the heap size (based on the relation between the ratio of live ob-
jects and the time spent in GC) and CPU allocation, have to the applications effective
progress [Simão and Veiga, 2012, 2013a]. Progress assessment was made based on total
execution time but also using workload-aware progress indicators using a simple anno-
tations framework. The framework uses a progress agent that can be attached to any
JVM so that the execution of progress-relevant identified methods can be observed with
low overhead [Simão and Veiga, 2013c], providing the input variables to our economic
model. Results show there are significant benefits for the provider from applying a given
policy (e.g. heap size, CPU allocation) in a workload-aware manner, so that resources
can be better distributed while performance is not significantly hindered.

13

1. Introduction

JVM-level resource management

As the fundamental building block of our execution environment, we have incorpo-
rated, into a Java VM widely-used in research [Alpern et al., 2005; White et al., 2013],
the ability to monitor base mechanisms (e.g. garbage collection performance, memory
or network consumptions) in order to assess an application’s performance and resource
usage, and reconfigure these mechanisms at run-time, according to previously defined
resource allocation policies (or quality-of-execution specifications) [Simão et al., 2011].

We have implemented a Java Specification Request (JSR) not available at current
HLL-VMs, the JSR-284 Resource Management API [Grzegorz Czajkowski, 2009]. Our
implementation allows the enforcement of JVM-wide policies that act either when re-
sources are being consumed (constraint policies) or in response to a given event (notifi-
cation policies) [Simão et al., 2011]. High-level policies are evaluated by consumption
points inside the HLL-VM but can be defined externally to the execution environment
itself, that is, by the application developer or the provider.

Concurrent checkpointing

We propose a novel solution to Java applications with long execution times, by incor-
porating checkpoint and migration mechanisms in a Java VM [Simão et al., 2012]. It is
able to checkpoint multithreaded applications, ensuring the checkpoint is a consistent
snapshot of the execution, taking into account thread concurrency and synchroniza-
tion, while avoiding application pause by performing the checkpoint concurrently (or
incrementally) alongside with application execution.

Our techniques rely on three base mechanisms: on-stack-replacement (OSR), safe
yield points (used by the garbage collector) and copy-on-write (COW). The first two
mechanisms are available in many other HLL-VM implementations (e.g. Sun HotSpot)
while the last one, COW, is generally supported by any modern OS. Therefore, our
techniques could be readily applied to other VMs. The main objectives are focused
on the problems of transparency and completeness, and how these mechanisms can be
activated according to resource management policies.

14

1.4 Contributions

1.4.3 Scheduling of IaaS resources

Cloud users (i.e., clients) can rent virtual machines with a given memory, CPU, storage,
and networking capacity. Clients typically take into account the estimated peak usage
of their workloads. To accommodate this simplistic interface, cloud providers have to
deal with massive hardware deployments, and all the management and environmental
costs that are inherent to such a solution.

In smaller, distributed, and near-the-client cloud deployments, either public, private
or hybrid, overcommitment of resources, hardware failures and consolidation may hap-
pen more frequently. To help an IaaS provider determine how to transfer resources
among tenants, we employ an economic rational based on utility functions. In sum-
mary, our main contributions in this area are [Simão and Veiga, 2013b, 2014]:

• An architectural extension to the current relation between cloud users and providers,
particularly useful for private and hybrid cloud deployments;

• A cost model which takes into account the clients’ partial utility of having their
VMs depreciated when in overcommit;

• Strategies to determine, in scenarios where overcommittment can occur, the best
distribution of workloads (from different classes of users) among VMs with differ-
ent execution capacities, aiming to maximize the overall utility of the allocation;

• Extension of a state-of-the-art cloud simulation framework. Implementation and
evaluation of the cost model in the extended simulator.

Our work incorporates in the economic model the notions of partial utility degra-
dation in the context of VM scheduling in virtualized infrastructures. It clearly demon-
strates that it can render benefits for the providers, as well as reduce user dissatisfac-
tion in a principled-based way. Using our algorithms for overcommited scenarios, the
provider’s revenue increases with more allocated VMs, even if some are depreciated. The
execution time of the workloads decreases as more VMs can be allocated. We demon-
strate that this approach has benefits for the providers, users satisfaction in a structured
and principled-based way, instead of the typical all-or-nothing approach of queuing, de-
laying, or rejecting requests.

15

1. Introduction

Resource Management in the JVM

JSR 284
Heap grow/

shrink Matrices

Workload distribution
mechanisms

Concurrent
Checkpoint/
migratrion

Sys-VM Scheduling

Economics-inspired
Resource Management ModelsHigh-level

Models and
Classifications

Distributed
Architectures

Allocation and
Scheduling
Mechanisms

Partial Utility Cost Model
Yield-based (QoE) and Return

On Investement (RoI)

Thread
spawning

Progress
monitor

framework

Partial Utility-
driven algorithms

PaaS topics IaaS topics

CloudSim
extensions

Adataption tecnhiques for CPU and
Memory scheduling

Economics-inspired
Resource Management Models

Survey and Classification Framework
for Adaptability in Virtual Machines

Distributed Oject Heap and High Level Policies for Workload
Distribution based on Resource Utilization and Efficiency

Small, Geo-Distributed Datacenter for
Infrastructure-as-a-Service

W2 W1

W WorkshopC ConferenceJ Journal

J1 C2

C3

C2 C4 J2

C4
C4 J3

C1 C4C2 J1

Figure 1.2: Layered view of the researched topics and references to specific contributions

1.4.4 Summary of major publications

Figure 1.2 shows a layered view of the several topics that were researched throughout the
PhD work. From top to bottom, it starts by a higher abstraction and systematization
layer representing the Economics-inspired resource management models along with a
classification framework for adaptability in virtual machines. Then, at the middle layer,
it depicts the distributed architectures where we focused our work. Finally, the bottom
layer shows the allocation, management and scheduling mechanisms that were developed
to support our resource management models. The figure also identifies each topic as
related to the PaaS and IaaS service model. Each specific contribution is associated with
the corresponding paper, either journal (J), conference (C) or workshop (W), using the
references presented next, in the following list of major publications.

The papers that present our survey and classification framework were accepted in a
international workshop (co-located with Middleware 2012) and in a international con-
ference (CloudCom 2013) as a short paper. The first describes the idea from the IaaS
perspective and the second specializes on memory-only adaptations both at system and

16

1.4 Contributions

language level virtual machines. They are being extended for an ulterior journal submis-
sion.

(W1) José Simão and Luís Veiga, A Classification of Middleware to Support Virtual Ma-
chines Adaptability in IaaS, 11th International Workshop on Adaptive and Reflec-
tive Middleware (ARM 2012), In conjuntion with Middleware 2012, December
2012, ACM.

(C1) José Simão and Jeremy Singer and Luís Veiga, A Comparative Look at Adaptive
Memory Management in Virtual Machines, IEEE CloudCom 2013, December 2013,
IEEE [short paper]. Ranked C in CORE.

Regarding the research at the PaaS level, the most relevant works are two interna-
tional journal articles, one regarding memory and CPU yield-based adaptability and
the other describing the concurrent checkpoint mechanism inside a JVM. The compan-
ion of these two last articles is the paper accepted in Cooperative Information Systems
(CoopIS 2011), where details of the resource monitoring and accounting inside a JVM
are presented, along with a thread distribution mechanism based on a middleware for
distributed shared objects.

• Resource management mechanisms and Economics-inspired allocation strategies
in the JVM:

(W2) José Simão and Luís Veiga, VM Economics for Java Cloud Computing - An
Adaptive and Resource-Aware Java Runtime with Quality-of-Execution, The
12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (CCGrid 2012) - Doctoral Symposium: Cloud Scheduling, Clusters
and Data Centers, May 2012, IEEE.

(C2) José Simão and Luís Veiga, QoE-JVM: An Adaptive and Resource-Aware Java
Runtime for Cloud Computing, 2nd International Symposium on Secure Vir-
tual Infrastructures (DOA-SVI 2012), OTM Conferences 2012, September
2012, Springer, LNCS.

(C3) José Simão and Luís Veiga, A Progress and Profile-driven Cloud-VM for Im-
proved Resource-Efficiency and Fairness in e-Science Environments, 28th ACM
Symposium On Applied Computing (SAC 2013), March 2013, ACM. Ranked
B in CORE.

17

1. Introduction

(J1) José Simão and Luís Veiga, Adaptability Driven by Quality Of Execution in
High Level Virtual Machines for Shared Environments. International Journal
of Computer Systems Science and Engineering, 28(6), pp. 59-72, November
2013, CRL Publishing. Q2 in SCImago.

• Workload distribution mechanisms:

(C4) José Simão and João Lemos and Luís Veiga, A2 − VM : A Cooperative Java
VM with Support for Resource-Awareness and Cluster-Wide Thread Scheduling,
19th International Conference on Cooperative Information Systems (CoopIS
2011), September 2011, LNCS, Springer. Core A, Acceptance ratio ≈ 20%,
RADIST B.

(J2) José Simão and Tiago Garrochinho and Luís Veiga, A Checkpointing-enabled
and Resource-Aware Java VM for Efficient and Robust e-Science Applications in
Grid Environments, Concurrency and Computation: Practice and Experi-
ence, 24(13), pp. 1421-1442, September 2012, Wiley. Q2 in SCImago.

The work regarding scheduling and cost models for IaaS providers was first pre-
sented as a poster in a top-level conference (EuroSys 2013). The definition and usage
of our economic models to IaaS was then a distinguished paper in a IEEE conference,
CloudCom 2013, which is one of the most cited conferences in the topics of cloud com-
puting [Heilig and Vob, 2014]. This paper was selected for submission to the IEEE
Transactions on Cloud Computing (TCC) journal and is now accepted to appear in
a future issue. The original CloudCom’s paper was extended by i) enhancing and de-
tailing the cost model, ii) discussing how different utility matrices can be compared,
iii) comparing the proposed strategy with a more comprehensive list of utility-oblivious
algorithms, iv) presenting the results of a larger set of datacenter configurations.

(C5) José Simão and Luís Veiga, Flexible SLAs in the Cloud with Partial Utility-driven
Scheduling Architecture, IEEE 5th International Conference on Cloud Comput-
ing Technology and Science (CloudCom 2013), December 2013, IEEE. Acceptance
ratio ≈ 17.8%, (Best-Paper Runner-up), ranked C in CORE.

(J3) José Simão and Luís Veiga, Partial Utility-driven Scheduling for Flexible SLA and
Pricing Arbitration in Clouds, IEEE Transactions on Cloud Computing, (to ap-
pear).

18

1.5 Outline

1.5 Outline

This document is organized in four parts as described next:

• Part I - Thesis Motivation and Artifacts. This part is divided in three chap-
ters. Chapter 1 presents the thesis motivation and scope along with current short-
comings of the work found in the literature and in commercial systems. Chap-
ter 2 present several systems, mechanisms and algorithms that are related to the
work presented in this thesis. In particular, it describes the fundamental build-
ing blocks of virtual machines, which are used and extended in the literature to
built adaptable systems where resource allocation changes as the workloads are ex-
ecuted. Next, a novel and systematic approach for the classification of adaptability
at system-level and high-level language virtual machines is presented. Several state-
of-the-art systems are evaluated according to this novel classification framework.

• Part II - Allocation and Scheduling in Platform-as-a-Service. This part is di-
vided in three chapters. Chapter 3 starts by presenting the building blocks of the
adaptive runtime environment. It describes each building block requirement in
order to support adaptation in an application-centric way. It follows with a dis-
cussion of our yield-based rationale to drive adaptability, so that resources can be
transferred from applications that use them poorly to the ones that can use them
more efficiently. Next, Chapter 4 delves into some relevant implementation de-
tails of the mechanisms incorporated in a JVM to support progress monitoring,
resource allocation, and concurrent checkpoint. This part ends with Chapter 5
which is dedicated to the evaluation of our JVM-level mechanisms and policies.
It starts by evaluating how effective the adaptability model is, demonstrating that
the tailored allocation of resources to each application has benefits. It concludes
with the evaluation of overheads and improvements over the baseline execution of
the three adaptation mechanisms.

• Part III - Allocation and Scheduling in Infrastructure-as-a-Service. This part
discusses the contributions towards the establishment of a new economic relation
between clients and providers of the IaaS service model. It is also divided in three
chapters. Chapter 6 presents the motivation and overall architecture of the dat-
acenters we are considering, along with a new cost model to be adopted by this

19

1. Introduction

kind of service providers. It shows how the current cost model can be extended to
incorporate a partial-utility specification when scheduling the execution of virtual
machines. Chapter 7 presents algorithms to determine the best distribution of
workloads and maximize the overall utility in a scenario where overcommitment
is necessary to accept new requests, instead of delaying or rejecting them. It then
discusses the extensions made to a state-of-the-art simulation environment in or-
der to validate and assess the algorithms proposed. Chapter 8 closes this part with
the evaluation of the proposed algorithms using simulations of different sizes (i.e.,
hosts and requested VMs with increasing computing capacity), showing that the
approach scales.

• Part IV - Overall analysis and Future Work. This chapter concludes the docu-
ment discussing the overall work and some future directions which we consider as
important improvements or extensions, either to the resource management mod-
els or the inner mechanisms.

20

2 Adaptive Mechanisms and Tech-
niques in Virtual Machines

Contents
2.1 Introduction . 22

2.2 Virtual Machines Fundamentals . 25

2.2.1 Computation as a resource . 27

2.2.2 Memory as a resource . 28

2.2.3 Input/Output as a resource . 32

2.3 Adaptation techniques . 34

2.3.1 System Virtual Machine . 35

2.3.2 High-Level Language Virtual Machine 36

2.3.3 Summary of techniques . 39

2.4 The RCI Framework for classification of VM adaptation techniques . . 42

2.4.1 Quantitative Criteria of the RCI framework 44

2.4.2 Classification of techniques . 48

2.4.3 Aggregation of quantities . 51

2.4.4 Critical analysis of the framework 52

2.5 VM systems and their classification . 53

2.5.1 System Virtual Machine . 53

2.5.2 High-Level Language Virtual Machines 59

2.6 Summary . 65

21

2. Adaptive Mechanisms and Techniques in Virtual Machines

Chapter overview

Data centers make extensive use of virtualization to achieve workload isolation and ef-
ficient resource management, providing the IaaS service model. In general, this is done
using virtual machines. In this chapter, we review the main approaches for adaptation
and monitoring in virtual machines deployments, their tradeoffs, and their main mech-
anisms for resource management. We frame them into the control loop [Salehi et al.,
2013] where sensors are monitored (e.g. page utilization), decisions are made (e.g. if-
else rule, proportional-integral-derivative controller), and actions are performed using
actuators (e.g. share page, change heap size). As is common in systems research, im-
provement in one property is accomplished at the expense of some other property. So,
we also propose a classification framework that, when applied to a group of systems,
can help visually in determining their similarities and differences. We propose to ana-
lyze adaptability techniques in virtual machines using three orthogonal characteristics:
responsiveness (R), comprehensiveness (C), and intricateness (I). We then present the
details of an extensible classification framework which emphasizes the tradeoffs of dif-
ferent approaches. Using this framework, some representative state-of-the-art systems
are evaluated.

2.1 Introduction

Virtual machines (VM) are used today both at the system and programming language
level. At the system level, they virtualize the hardware, giving the ability to host multi-
ple instances of an operating system on multi-core architectures, sharing computational
resources in a secure way. Regarding high-level programming languages, and similarly
to the system-level virtual machines, these VMs abstract from the underlying hardware
resources, introducing a layer that can be used for fine-grained resource control. Further-
more, they promote portability through dynamic translation of an intermediate repre-
sentation to a specific instruction set. High-level language virtual machines (HLL-VM)
are also an important building block in the organization of modern applications, due to
techniques such as runtime component loading or automatic memory management.

System-level VMs (Sys-VM), or hypervisors, are strongly motivated by the sharing
of low-level resources. As a result, much research and industry work can be found about
how resources are to be delivered to each guest operating system. The partition is done

22

2.1 Introduction

with different reasonings. It ranges from strategies aiming to maximize fairness in the
distribution of resources, to those that deliberately favor a given guest based on past
resource consumption and prediction on future resource demand. Among all resources,
CPU [Zhang et al., 2005; Gong et al., 2010; Hagimont et al., 2013] and memory [Wald-
spurger, 2002; Mian et al., 2012; Agmon Ben-Yehuda et al., 2014a] are the two for which
a larger body of work can be found. Nevertheless, other resources, such as the access
to I/O operations, have also been analyzed [Ongaro et al., 2008; Kesavan et al., 2010;
Gordon et al., 2012].

High-level language VMs have also been designed as a way to isolate and abstract
away from the underlying environment. Despite this middleware position, HLL-VMs
have only one guest at each time - the application. As a consequence, in most cases,
some resources are monitored not to be partitioned but for the runtime to adapt its
algorithms to the available environment. For example, a memory outage could force
some of the already compiled methods to be unloaded, freeing memory to maintain
more data resident. There are some works about controlling system resources usage in
HLL-VMs, most of them targeting the Java runtime (e.g. [Czajkowski et al., 2005a;
Binder et al., 2009; Singer and Jones, 2011; Bobroff et al., 2014]). They use different
approaches: from making modifications to a standard VM, or even proposing a new
implementation from scratch, to modifications in the byte codes and hybrid solutions.

In each work, different compromises are made, putting more emphasis either on the
portability of the solution (i.e., not requiring changes to the VM) or on the portability
of the guests (i.e., not requiring changes to the application source code).

Virtual machines are not only an isomorphism between the guest system and a
host [Smith and Nair, 2005], but a powerful system software layer that can adapt its
behavior, or be instructed to adapt, in order to transparently control their guests’ per-
formance, in order to comply with a local or global policy. In order to do so, VMs,
or systems augmenting their services, can be framed into the well-known adaptation
loop [Salehie and Tahvildari, 2009], where systems monitor themselves and their con-
text, detect significant changes, decide how to react, and act to execute such decisions. In
this chapter, and similarly to Maggio et al. [Maggio et al., 2012], we consider a control
loop with three phases: i) monitoring, ii) decision, iii) actuation. Monitoring deter-
mines which components of the system (e.g. hardware, VM, application) are observed.
Control and decision take these observations and use them in some decision strategy to
decide what has to be changed. Enforcement deals with applying the decision to a given

23

2. Adaptive Mechanisms and Techniques in Virtual Machines

component/mechanism of the VM.

Existing surveys of virtualization technologies (e.g. [Arnold et al., 2005]) tend to
focus on a wide variety of approaches which sometimes results only in an extensive
catalog. One of the first published surveys of research in virtual machines was pre-
sented in 1974 [Goldberg, 1974]. Goldberg’s work was focused on the principles, per-
formance and practical issues regarding the design and development of system-level vir-
tual machines that, at the time, where developed by IBM, the Massachusetts Institute
of Technology (MIT), and few others. Arnold et al. [Arnold et al., 2005] focus only
on HLL-VMs and particularly on the techniques that are used to control the optimiza-
tions employed by the just-in-time (JIT) compiler, taking advantage of runtime profiling
information.

This chapter surveys several techniques used by virtual machines, and systems that
depend on them, to make an adaptive resource management. We present a novel frame-
work to classify resource monitoring and adaptation techniques in virtualized environ-
ments, both in Sys-VMs and HLL-VMs. It is grounded on the fundamental techniques
used in virtualization and takes an alternative approach to existing survey work. Our
framework’s goal is to compare different systems regarding three metrics: responsive-
ness, comprehensiveness, and intricateness. These metrics are used to classify the mech-
anisms and scheduling policies. This analysis does not try to find the best system, as
this depends on the scenario where the system is going to be used, but instead it aims to
identity the tradeoffs underpinning each system.

We argue that there are potential overlaps and unexploited synergies between system
VM and language VM adaptation processes. It might be the case that techniques from
one domain could be transferred profitably to the other. Alternatively, in a system stack,
it might be possible for cross-layer exchange of information between these two VM levels
to enable co-operative adaptation.

Section 2.2 presents the architecture of high-level and system-level VMs, depicting
the building blocks that are used in research concerning resource usage. Section 2.3
presents several adaptation techniques found in the literature and frames them into the
adaptation loop. In Section 2.4, the classification framework is presented. For each of
the resource management components of VMs, and for each of the three steps of the
adaptation loop, we propose the use of a quantitative classification regarding the impact
of the mechanisms used by each system. We use this framework to classify state-of-the-

24

2.2 Virtual Machines Fundamentals

Hardware (CPUs, memory, I/O

devices)

Operating System

Native

Application1

Native

Applicationn

...

(a) Non virtualized system

HW

Guest OS1

App App

Guest OSn

App

...

App

Virtual Machine Monitor

(VMM)

(b) System-level VM

HW

C1
... Cn ...

Host OS

High Level

Language

Virtual Machine

Native

Application

(c) High-level language VM

HW

App App
Hosted

VMM

Guest

OS
Guest

OS

Host OS

(d) Hosted System-level VM

Figure 2.1: Virtualization layers

art systems in Section 2.5, aiming to compare and better understand the benefits and
limitations of each one.

2.2 Virtual Machines Fundamentals

Virtual machines have their roots in the 1960’s [Rosenblum, 2004] with the IBM 360 and
370 [Amdahl et al., 1964]. These systems provided a time-sharing environment where
users had a complete abstraction of the underlying hardware resources, in a time where
the notion of personal computer did not even exist. IBM’s goal was to provide better iso-
lation among different users, providing virtual machines to each one. The architecture
of the IBM System/370 was divided in three layers: the hardware, the control program
(CP), and the conversational monitor system (CMS). The CP controlled the resource
provision and the CMS delivered the services to the end user underpinned on these re-

25

2. Adaptive Mechanisms and Techniques in Virtual Machines

sources. Today, the same architecture can be found in modern System VMs [Barham
et al., 2003]. Figure 2.1 depicts these three layers, where CP’s role is given to the virtual
machine monitor (VMM). VMM’s purpose is to control the access of the guest oper-
ating systems running in each virtual machine to the physical resources, virtualizing
processors, memory, and I/O.

High Level Language VMs, which are highly influenced by the Smalltalk virtual ma-
chine [Deutsch and Schiffman, 1984], also provide a machine abstraction to their guest,
which is an end-user application. This abstraction promotes portability in the sense that
the source code is compiled not to a specific hardware but to a virtual instruction set
architecture (V-ISA), whose running machine can be implemented in different ways by
different operating systems and hardware.

The just-in-time (JIT) compiler is responsible for this translation and is, in itself,
a source of adaptation [Arnold et al., 2005]. Regarding its self-adaptive behavior, the
JIT compiler adaptations are not driven by resource allocation but by the dynamics in
the flow of execution (e.g. hot methods are compiled using more sophisticated opti-
mizations). On the other hand, memory management has a high impact on the use of
memory and CPU. After more than three decades of research work focusing on tunning
garbage collection algorithms [Jones et al., 2011], recent research work is made towards
the selection of application-specific algorithms and parameters, in particular, heap size
and the moment of triggering memory collection [Mao et al., 2009; Hertz et al., 2009;
Soman et al., 2004].

This section presents fundamental building blocks of virtual machines. These blocks
are adapted during the execution of guests in order to reach different execution perfor-
mance goals. Figure 2.1 depicts four types of deployments. The first is a traditional
configuration where an operating system (OS) regulates the access of native applications
(i.e., the ones that use the services of the OS) to the hardware. The second, Figure 2.1.b,
represents a configuration where an hypervisor, known as virtual machine monitor,
takes control of the hardware, making it possible to host several system-level virtual
machine on top of the same physical resources. Each virtual machine runs a possibly
different operating systems instance. The third depicts the position of high-level lan-
guage VMs. They are at the level of native applications but support the hosting of
managed components which rely (almost exclusively) on the services provided by these
VMs. Underlying these, finally, and for the sake of completeness, Figure 2.1.d, shows a
hosted system-level VM. This chapter focus on deployments b) and c).

26

2.2 Virtual Machines Fundamentals

Most of the techniques analyzed in this chapter are equally valid for the deployment
presented in Figures 2.1.b and 2.1.d and so they are treated as equivalent. However,
in practice, and for efficiency reasons, the deployment depicted in Figure 2.1.d usually
relies on kernel drivers installed in the hosting OS.

The next three sections will briefly describe how fundamental resources, CPU, mem-
ory, and I/O, are virtualized by the two types of VMs. The systems presented in Sec-
tion 2.5 are based on the building blocks presented here, extending them aiming to
implement different adaptive resource management strategies.

2.2.1 Computation as a resource

In a VM, virtualization of computation concerns two distinct aspects: i) the translation
of instructions, especially if the guest and host use different ISA, ii) the scheduling of vir-
tual CPUs to a physical CPU (or CPU core on the now common multicore hardware).
These two aspects have different degrees of importance in System and HLL VMs.

Instruction emulation (i.e., the translating from a set of instructions to another one)
is common to both types of VMs. In system-level VMs, emulation is necessary to adapt
different ISAs or in response to the execution of a privileged instruction (or behavior-
sensitive instruction, even if not privileged) in the guest OS. Dynamic binary and byte
code translation is achieved by changing the translation technique (between interpre-
tation and compilation) and by replacing code previously translated with a more op-
timized one. These adaptations are driven by profiling information gathered during
program execution.

Regarding CPU scheduling, HLL-VMs rely on the underlying OS to schedule their
threads of execution. In spite of this portability aspect, the specification of HLL VMs is
supported by a memory model [Manson et al., 2005] making it possible to reason about
the program behavior. Regarding System VMs, because they operate directly above the
hardware, the VMM must decide the mapping between the real CPUs and each running
VM [Barham et al., 2003; Cherkasova et al., 2007]. The next section will discuss different
types of algorithms to schedule VMs in physical CPUs.

System VMs scheduling

CPU scheduling is a well known issue in operating systems [Tanenbaum, 2007]. In
single or multi-core systems, the operating system virtualizes the CPU, scheduling the

27

2. Adaptive Mechanisms and Techniques in Virtual Machines

runnable tasks to a physical CPU. The distribution of these tasks should be as fair as
possible. Modern versions of Linux use the Completely Fair Scheduler (CFS) which
models an ideal, precise and multitasking CPU, that is, each process has an equal share
of the CPU.1 On a VMM running above the hardware, each guest VM is assigned one
or more virtual CPUs (VCPU), whose total number can be larger than the available
physical CPUs. When ready, the VCPU needs to be scheduled to a physical CPU. This
results in a system with two layers of scheduling: inside the VMM and inside each guest
OS.

A VMM scheduler has additional requirements when compared to the OS scheduler,
namely the need to enforce a resource usage specified at the user’s level. To achieve this,
the CPU scheduler must take into account the share (or weight) given to each VM and
make scheduling decisions proportional to this share [Stoica et al., 1996; Cherkasova
et al., 2007]. This family of schedulers are named Proportional Share. Operating systems
have traditionally used a priority-based approach which is unable to enforce this kind of
requirement.

Cherkasova et al. [Cherkasova et al., 2007] classify schedulers as: i) work conserva-
tive or non-work conservative, and ii) preemptive or non-preemptive. Work conserva-
tive schedulers take the share as a minimum allocation of CPU to the VM. If there are
available CPUs, VCPUs will be assigned to them, regardless the VM’s share. In non-
work conservative, even if there are available CPUs, VCPUs will not be assigned above
a given previously defined value (known as cap or cpu limit). A preemptive scheduler
can interrupt running VCPUs if a ready to run VCPU has a higher priority. Section 2.5
presents systems that dynamically change the scheduler’s parameters to give guest VMs
the capacity that best fits their needs.

2.2.2 Memory as a resource

Regardless of the target environment, designing memory management strategies is a
demanding task. Virtual machines (VMs), either virtual machine monitors (Sys-VMs)
or high-level language runtimes (HLL-VMs), add an extra level of complexity.

Sys-VMs (e.g. Xen) host multiple isolated guest instances of an operating system
(OS) on multi-core architectures, sharing computational resources in a secure way. From
an abstract perspective, managing memory in a Sys-VM is a generalization of operations

1http://www.linuxjournal.com/magazine/completely-fair-scheduler, visited August 19, 2014

28

2.2 Virtual Machines Fundamentals

performed by a classical OS [Smith and Nair, 2005]. However, in practice, many Sys-
VMs gain performance advantages by dynamically adapting their memory management
strategies.

HLL-VMs (e.g. JVM) have a single guest application, even when there is more than
one address space, i.e., application domains in the Common Language Runtime (CLR).
Again, HLL-VMs adapt memory management decisions based on the dynamics of a
given workload. Actions include heap resizing or, in more extreme scenarios, chang-
ing the garbage collection algorithm to one that saves memory at the expense of some
performance.

Conceptually, Sys-VMs and HLL-VMs perform the same memory management task,
i.e., they mediate hosted application access to an underlying, potentially scarce, address
space. Memory is virtualized to give the illusion to their guests of a virtually unbounded
address space. Because memory is effectively limited, it will eventually become full and
the guest (operating systems or application) will have to deal with memory shortage.

In system-level VMs, an extra level of indirection is added to the already virtualized
environment of the guest operating systems, which give to their guests (i.e., processes)
a dedicated virtual address space, usually larger than the real available hardware. As
pointed out by Smith et al. [Smith and Nair, 2005], the VMM extra level of indirection
generalizes the virtual memory mechanisms of operating systems.

In HLL-VMs, memory is requested on demand by the guest application, without the
need to be explicit freed by it. When a given threshold is reached, a garbage collection
activity is started to detect unreachable objects and reclaim their memory. There is no
“one size fits all” garbage collector algorithm.

Memory management in System VMs

The VMM can be managing multiple VMs, each with his guest OS instance and type.
Therefore, the mapping between physical and real addresses must be extended because
what is seen by a guest OS as a real address (i.e., machine address), can now change each
time the VM hosting the OS is scheduled to run. The VMM introduces an extra level of
indirection to the virtual → real mapping of each OS, keeping a real → physical to
each of the running VMs.

When an operating system kernel, running on an active VM, uses a real address to
perform an operation (e.g., I/O), the VMM must intercept this address and change it

29

2. Adaptive Mechanisms and Techniques in Virtual Machines

VMM

Allocation
Policies

Inflate/
Deflate

Hardware

ballon driver

Machine memory

VM1 VM2 VM3

page
in

page
out

OS

Page
sharing

Figure 2.2: The control loop of memory management in hypervisor based deployments

to the correspondent physical one. On the other hand, user level applications use a vir-
tual address to accomplish their operations. To avoid a two-fold conversion, the VMM
keeps shadow pages for each process running on each VM, mapping virtual→ physical

addresses. Access to the page table pointer is virtualized by the VMM, trapping read or
write attempts and returning the corresponding table pointer of the running VM. The
translation look-aside buffer (TLB) continues to play its accelerating role because it will
still keep in cache the virtual→ physical addresses.

When the VMM needs to free memory, it has to decide which page(s) from which
VM(s) to reclaim. This decision might have a poor performance impact. If the wrong
choice is made, the guest OS will soon need to access the reclaimed page, resulting in
wasted time. The decision of which specific pages should be removed from memory is
usually left to the guest OS, using a kernel driver known as the balloon driver [Barham
et al., 2003; Waldspurger, 2002].

Figure 2.2 depicts the balloon driver available at each guest. The balloon driver is
controlled by memory management policies which will be introduced in Section 2.3.
When the balloon is instructed to inflate it will make the guest OS swap memory to
secondary storage. When the balloon is instructed to deflate, the guest OS can use more
physical pages, reducing the need to swap memory. Another issue related to memory

30

2.2 Virtual Machines Fundamentals

management in the VMM is the sharing of machine pages between different VMs. If
these pages have code or read-only data they can be shared avoiding redundant copies.

Automatic memory management in High Level Language VMs

The goal of memory’s virtualization in high language VMs is to free the application
from explicit dealing with memory deallocation, giving the perception of an unlimited
address space. This avoids keeping track of references to data structures (i.e. objects),
promoting easier extensibility of functionalities because the bookkeeping code that must
be written in non-virtualized environment is no longer needed [Wilson, 1992; Smith and
Nair, 2005].

Different strategies have been researched and used during the last decades. Simple
mark and sweep, compacting or copying collectors, all identify live objects starting from a
root set (i.e., the initial set of references from which live objects can be found, containing
thread stacks and globals). All these approaches strive for a balance between the time the
program needs to stop and the frequency the collecting process needs to execute. This is
mostly influenced by the heap dimension and, in practice, some kind of nursery space
is used to avoid searching all the heap.

New objects are created in a small space (e.g. 512 KBytes). When this space fills-up,
live objects are promoted to a bigger space, leaving the nursery empty and ready for
new allocations. These collectors are called generational collectors. The nursery space
can be generalized and the heap organized in more than two generations. As parallel
hardware becomes ubiquitous and GC pause time reduction becomes essential, the stop-
the-world has been questioned, resulting in the design of concurrent and incremental
collectors [Click et al., 2005; Tene et al., 2011]. However, recent studies show that
the base approach has no fundamental scalability problem [Gidra et al., 2013] and that
the GC impact can be diminished with parallel techniques, which still need to stop the
program, but that explore the root set in parallel.

Researchers have analyzed garbage collection performance and found it to be appli-
cation-dependent [Soman and Krintz, 2007] and even input-dependent [Mao et al., 2009;
Tay et al., 2013]. Based on these observations, several adaptation strategies have been
proposed [Arnold et al., 2005], ranging from parameters adjustments (e.g. the current
size of the managed heap [Guan et al., 2009; Singer and Jones, 2011]) to changing the
algorithm itself before the first execution [Singer et al., 2011] or at runtime [Soman and

31

2. Adaptive Mechanisms and Techniques in Virtual Machines

OS

VMM / Hardware

HLL VM

Gen0 Gen1 LOS

Increase/Decrease
Heap Size

GC
Policies

C1 C2 CnC3

Memory managment events

Internal
thresholds

Applitcation
hints

Figure 2.3: The control loop of memory management in HLL VM based deployments

Krintz, 2007].

Figure 2.3 depicts different events that have been researched to guide the moment of
garbage collection and the resizing of the heap size. These events, which are either col-
lected from the application key performance indicators, or from the operating system,
are taken into account by the memory management policies of the garbage collection
sub-system. These policies determine when to act on selected actuators (e.g. heap size,
GC algorithm). Section 2.3 discusses these different approaches.

2.2.3 Input/Output as a resource

In both types of VMs, virtualization of input/output deals with the emulation, account-
ing and constraining of using available physical devices. In spite of these similar goals,
virtualization occurs with different impacts. In a VMM, the access to device drivers can
be para-virtualized or full virtualized. In the first scenario, a cooperative guest OS is
expected to call a virtual API in the VMM [Barham et al., 2003]. In the second scenario
(a full virtualized environment) the VMM can either intercept the I/O operation, at
the device driver or system call level [Smith and Nair, 2005]. The typical option is to
virtualize at the device driver level, installing virtual device drivers at each guest, which,
from the guest operating system standpoint, are regular drivers.

32

2.3 Adaptation techniques

The main challenge in I/O virtualization for fully virtualized systems, such as the
ESX [Waldspurger, 2002] or the KVM [Lublin et al., 2007] hypervisors, is to avoid the
extra context switches between the guest and the host to handle interrupts generated
by I/O devices [Adams and Agesen, 2006; Gordon et al., 2012]. The interrupts are, by
nature, asynchronous and sent to the CPU to signal the completion of I/O operations.
So, the overhead comes from the extra CPU cycles necessary to exit the guest, run the
host interrupt handler and inject the virtual interrupt in the guest.

The performance of I/O-intensive applications in a virtualized environment is also
affected by the CPU scheduling and memory sharing mechanisms [Cheng and Wang,
2012; Ram et al., 2010; Ongaro et al., 2008; Cherkasova et al., 2007]. The CPU schedul-
ing strategy of each physical cores to the virtual cores has impact in the I/O performance
of the applications running on top of virtual machines. A detailed analysis of the sched-
uler’s impact on VM’s performance is available in the literature [Ongaro et al., 2008;
Cherkasova et al., 2007]. The main observations were related to the domain driver’s
preemption during the dispatch of multiple network events and the order of VMs in the
run queue.

High-level language VMs rely on the operating system API to accomplish input/out-
put operations as disk and network read and writes. Depending on the address space
isolation supported by the VM, accounting and regulation have different levels of granu-
larity. In a classic JVM implementation, accountability can be done globally at the VM
or on a per-thread basis [Suri et al., 2001]. In HLL-VMs supporting the abstraction of
different address spaces (e.g. isolates in Multi-task VM [Czajkowski et al., 2005a], appli-
cation domains in the Common Language Runtime) accounting is made independently
for each of these spaces.

In summary, although the interaction with I/O devices has a major role in the design
of virtual machines, the sub-systems responsible for this task do not have to make regular
scheduling or allocation decisions. So, this chapter will not focus on these works, but on
adaptive techniques related to the virtualization of CPU and memory (which indirectly
contribute to the performance of I/O-intensive applications).

33

2. Adaptive Mechanisms and Techniques in Virtual Machines

Monitoring Decision

Action

Collect data from sensors

(e.g. hardware, VMM, OS,

VM, App)

Make decision, either inside

or outside de VM codebase

(e.g. if-else rules, complex

optimizations)

Use actuators

(e.g. change parameter,

change algoritm)

Adaptation Loop

Figure 2.4: Adaptibility loop

2.3 Adaptation techniques

In a software system, adaptation is regulated by monitoring, analyzing, deciding and
acting [Salehie and Tahvildari, 2009]. Monitoring is fed by sensors and actions are ac-
complished by actuators, forming a process known as the adaptation loop, as depicted in
Figure 2.4. Virtual machines, regardless of their type, are no exception.

In a broad sense, virtual machines have an important property of autonomic sys-
tems which is self-optimization [IBM, 2005]. An example are the adaptive JIT compila-
tion techniques of HLL-VMs [Arnold et al., 2005] or GC algorithms that use feedback-
directed online techniques to avoid page faults [Grzegorczyk et al., 2007]. Further-
more, virtual machines export adaptability mechanisms that are used by outside deci-
sion systems to reconfigure VM’s parameters or algorithms. Examples include the work
of [Padala et al., 2009] which periodically imposes a new CPU limits (i.e. setting the cap
parameter) to each VM controlled by their system. Gingko [Hinesa et al., 2011] also
places the decision step outside the hypervisor, acting upon the balloon controller to
automatically transfer memory between VMs.

There is a broad range of strategies regarding the analysis and decision processes.
Many solutions that augment system VMs use control theory elements, such as the
proportional-integral-derivative controller, and Additive-Increase/Multiplicative-Decrease
(AIMD) rules, to regulate one or more VM’s parameters. Typically, when the analysis
and decision are done in the critical execution path (e.g. scheduling, JIT, GC), the choice
must be done as fast as possible, and so, a simpler logic is used.

Next we will present and discuss the state of the art regarding the three major steps

34

2.3 Adaptation techniques

of the adaptation loop for each type of VM and their internal resource management
mechanisms.

2.3.1 System Virtual Machine

The VMM has built-in parameters to regulate how resources are shared by their different
guests. These parameters regulate the allocation of resources to each VM and can be
adapted at runtime to improve the behavior of the applications given a specific workload.
The adaptation process can be internal, driven by profiling made exclusively inside of
the VMM, or external, which depends on application’s events such as the number of
pending requests. In this section, the two major VMM subsystems, CPU scheduling and
Memory Manager, will be framed into the adaptation processes - monitoring, decision,
and acting.

CPU Management

CPU management relates to activities that can be done exclusively inside the hypervisor
or both inside and outside. An example of an exclusively inside activity is the CPU
scheduling algorithm. To enforce the weight assigned to each VM, the hypervisor has to
monitor the time of CPU assigned to each VCPUs of a VM, decide which VCPU will
run next, and assign it to a CPU [Shao et al., 2009; Cherkasova et al., 2007]. An example
of an inside and outside management strategy is the one employed by systems that mon-
itor events outside the hypervisor (e.g. operating systems load queue, application level
events) but then use its internal actuators to adjust parameters. For example, monitor-
ing the waiting time inside the spin lock synchronization primitive (in the kernel of the
guest operating system) may be necessary to inform the hypervisor’s scheduler about
the best co-scheduling [Ousterhout, 1982] decisions of VCPUs [Weng et al., 2011].

Decision strategies can be simple, like the proportional share-based that enforces pre-
defined shares defined by high level policies in a multi-tenant environment. More com-
plex decisions, made outside the hypervisor, include: i) control theory using a PID con-
troller [Zhang et al., 2005; Park and Humphrey, 2009], ii) linear optimization [Padala
et al., 2009], iii) signal processing and statistical learning algorithms [Gong et al., 2010].

The actions taken by the CPU scheduler inside the hypervisor include: i) number of
VCPUs [Shao et al., 2009], ii) co-scheduling [VMware, 2009; Weng et al., 2011, 2009],
iii) VCPU migration [VMware, 2009], iv) number of threads and sleep time [Zhang

35

2. Adaptive Mechanisms and Techniques in Virtual Machines

et al., 2005]. Systems where decisions are made outside the hypervisor use the available
actuators, namely: i) VCPUs share, ii) VCPUs cap [Gong et al., 2010; Padala et al., 2009;
Heo et al., 2009].

Memory Management

The memory manager virtualizes hardware pages and determines how they are mapped
to each VM. To establish which and how many pages each VM is using, the VMM can
monitor page utilization using either page or sub-page scope. In this step of the con-
trol loop, the VMM needs to determine how pages are being used by each VM. To do
so, it must collect information regarding: i) page utilization [Waldspurger, 2002; Weim-
ing and Zhenlin, 2009], ii) page (and sub-page) contents equality or similarity [Wald-
spurger, 2002; Gupta et al., 2008]. Some systems also propose to monitor application
performance, either by instrumentation or external monitoring, in order to collect in-
formation closer to the application’s semantics [Hinesa et al., 2011; Salomie et al., 2013].

Because operating systems do not support dynamic changes to physical memory,
the maximum amount of memory that can be allocated is statically configured for each
VM. Nevertheless, the VMM supports overcommit, that is, the total memory config-
ured to the overall VMs can be higher than the one that is physically available. When
in overcommit, pages of memory need to be transfered between VMs. To determine
which guest OS must relinquish pages in favor of other guests, decisions are made us-
ing i) shares [Waldspurger, 2002] ii) feedback control [Heo et al., 2009], iii) LRU his-
togram [Weiming and Zhenlin, 2009], iv) linear programming [Hinesa et al., 2011].

After deciding that a new configuration must be applied to a set of VMs, the VMM
can enforce: i) page sharing [Waldspurger, 2002], ii) page transfer between VMs. Page
sharing relies on the mechanisms that exist at the VMM layer to map real → physical

page numbers, as described in Section 2.2.2. On the other hand, the page transfer mech-
anism relies on the operating systems running at each VM, so that each operating system
can use its own paging policy, using the balloon driver described in Section 2.2.

2.3.2 High-Level Language Virtual Machine

In this section, the three major language VM subsystems, JIT compiler, GC and Re-
source manager, will be framed into the adaptation processes. HLL-VMs monitor events
inside their runtime services or in the underlying platform. As always, there is a trade

36

2.3 Adaptation techniques

off between deciding fast but poorly, or deciding well (or even optimally), but spending
too much resources and time in the process of doing so. Most systems base their decision
on an heuristic, that is, some kind of adjustment function or criterion that, although it
cannot be fully formally reasoned about, it still gives good results when properly used.
Nevertheless, some do have a mathematical model guiding their behavior [Tay et al.,
2013]. Next we will analyze the most common strategies.

Just in time compilation

The JIT is mostly self-contained in the sense that the monitoring process (also know
as profiling in this context) collects data only inside the VM. Modern JIT compilers
are consumers of a significant amount of data collected during the compilation and
execution of code.2 Hot methods information is acquired using: i) sampling, ii) instru-
mentation. In the first case, the execution stacks are periodically observed to determine
hot methods. In the second case, method code is instrumented so that its execution
will fill the appropriate runtime profiling structures. Sampling is known to be more
efficient [Arnold et al., 2005] despite its partial view of events.

To determine which methods should be compiled or further optimized, there are
two distinct group of techniques: i) counter-based, ii) model-based. Counter-based sys-
tems look at different counters (e.g. method entry, loop execution) to determine if a
method should be further optimized. The threshold values are typically found by ex-
perimenting with different programs [Arnold et al., 2005]. In a model-driven system,
optimization decisions are made based on a mathematical model which can be reasoned
about. Examples include a cost-benefit model where the recompilation cost is weighted
against further execution with the current optimization level [Alpern et al., 2005; Kulka-
rni and Cavazos, 2012].

Adaptability techniques in the JIT compiler are used to produce native optimized
code while minimizing impact in application’s execution time overhead. Because native
takes more memory than intermediate representations, some early VMs discarded native
code compilations when memory became scarce. With the growth of hardware capacity
this technique is less used. Thus, the actions that can complete the adaptation loop are:
i) partial or total method recompilation, ii) inlining, or iii) deoptimization.

2The adaptive optimization system (AOS) in Jikes RVM [Alpern et al., 2005] produces a log with
approximately 700Kbytes of information regarding call graphs, edge counters and compilation advices
when running and JIT compiling ’bloat’, one of DaCapo’s benchmarks [Blackburn et al., 2006].

37

2. Adaptive Mechanisms and Techniques in Virtual Machines

Garbage collection

Traditional GC algorithms are not adaptive in the sense that the strategy to allocate new
objects, the kind of spaces used to do so, and the way garbage is detected, does not change
during program’s execution. Nevertheless, most research and commercial runtimes in-
corporate some form of adaptation strategy regarding memory management [Arnold
et al., 2005]. To accomplish these adaptations, monitoring is done by observing: i) mem-
ory structures dimensions (e.g. heap in used) [Singer et al., 2010, 2011], ii) GC statistics
(e.g. GC load, GC frequency) [Soman and Krintz, 2007], iii) relevant events in the op-
erating systems (e.g. page faults, allocation stalls) [Grzegorczyk et al., 2007; Hertz et al.,
2011], iv) working set size [Yang et al., 2006].

Decision regarding the adaptation of heap-related structures are taken either i) of-
fline, or ii) inline with execution. Offline analysis takes into consideration the result of
executing different programs to see which parameter or algorithm has the best perfor-
mance for a given application. Inline decisions must be taken either based on a mathe-
matic model or on some kind of heuristic. Some authors have elaborated mathematical
models of objects’ lifetimes. These models are mostly used to give a rationale of the GC
behavior, rather than being used in a decision process [Baker, 1994]. Thus, most systems
have a decision process based on some kind of heuristics. The decision process includes:
i) machine learning, ii) PID controller, iii) microeconomic theories such as the elasticity
of demand curves.

Similarly to the JIT compiler, adaptability regarding memory management aims to
improve overall system performance. Classic GC algorithms provide base memory vir-
tualization. Recent works have been focused on optimizing memory usage and exe-
cution time, taking in consideration not only the program dynamics and but also the
state of the execution environment [Hertz et al., 2009]. Some work also adapts GC
to avoid memory exhaustion in environments where memory is constrained [Soman
and Krintz, 2007]. To accomplish this, actions regarding GC adaptability are related
to changing: i) heap size [Singer et al., 2010], ii) GC parameters [Singer et al., 2011],
iii) GC algorithm [Soman and Krintz, 2007].

Resource management

Monitoring resources, that is, collecting usage or consumption information about dif-
ferent kinds of resources at runtime (e.g. state of threads, loaded classes) can be done

38

2.3 Adaptation techniques

through: i) a service exposed by the runtime [Back and Hsieh, 2005; Czajkowski et al.,
2005a], or ii) byte code instrumentation [Hulaas and Binder, 2008]. In the former, it is
possible to collect more information, both from a quantitative as a qualitative perspec-
tive. A well-known example is the Java Virtual Machine Tool Interface, which is mainly
used by development environments to display debug information.3 Because HLL-VMs
do not necessarily expose this kind of service, instrumentation allows some accounting
in a portable way. Accounted resources usually include CPU usage, allocated memory
and relevant system objects such as threads or files.

This subsystem has to decide whether a given action (e.g. consumption) over a
resource can be done or not. This is accomplished with a policy, which can be classified
as: i) internal or ii) external. In an internal policy, the reasoning is hard-coded in the
runtime, possibly only giving the chance to vary a parameter (e.g. number of allowed
opened files). An external policy is defined outside the scope of the runtime, and thus,
it can change for each execution or even during execution.

This subsystem is particularly important in VMs that support several independent
processes running in a single instance of the runtime. Research and commercial systems
apply resource management actions to: i) limit resource usage, ii) resource reservation.
Limiting resource usage aims to avoid denial of service, or to ensure that the (possi-
bly payed) resource quota is not overused. The last scenario is less explored in the
literature [Czajkowski et al., 2005a]. Resource reservation ensures that, when multiple
processes are running in the same runtime, it is possible to ensure a minimum amount
of resources to a given process.

2.3.3 Summary of techniques

Figure 2.5 presents the techniques used in the adaptation loop. They are grouped by the
two major adaptation targets, CPU and memory, and then into the three major phases of
the adaptation loop. The CPU management sub-tree is the one that has more elements
(i.e., more adaptation techniques). This reflects the emphasis given by researchers to this
component of Sys-VMs. Regarding memory, early work of Waldspurger [Waldspurger,
2002] and Barham et al. in [Barham et al., 2003] laid solid techniques for virtualizing
and managing this resource. Recent work shows that, to improve perform of workloads

3http://docs.oracle.com/javase/7/docs/technotes/guides/jvmti/, visited July 1, 2014

39

http://docs.oracle.com/javase/7/docs/technotes/guides/jvmti/

2. Adaptive Mechanisms and Techniques in Virtual Machines

Figure 2.5: Techniques used by System VMs in the monitoring, decision and action
phases

regarding their use of memory, it is crucial to have more application-level information
[Weiming and Zhenlin, 2009; Hinesa et al., 2011].

Figure 2.6 presents the techniques used in the adaptation loop of systems using
HLL-VMs. They are grouped into the three major adaptation targets i) JIT compiler,
ii) garbage collection, iii) resource management. Each adaptation target is then divided
into the three phases of the adaptation loop. The garbage collection sub-tree has a higher
number of elements when compared with any of the other two. This reflects different
research paths, but also a higher dependency of the garbage collection process on the
workloads and on the context of execution (i.e., shared environment, limited memory,

40

2.3 Adaptation techniques

Figure 2.6: Techniques used by HLL-VMs in the monitoring, decision and action phases

etc.).

The techniques used in the monitoring and action phase are domain-specific. For
example, there are sensors related to the utilization of memory pages or actuators that
change a parameter in the garbage collection algorithm. On the contrary, the strategies
used in the decision phase can be found in other adaptability works and, in general, in
autonomic computing systems [Salehie and Tahvildari, 2009; Maggio et al., 2012].

Maggio et al. [Maggio et al., 2012] have focused attention on the characterization of
decision techniques. They divide them into three broad categories: heuristics, control-
based, and machine learning. In fact, we can also see these categories when we look
to the techniques identified in this section. Figure 2.5 and Figure 2.6 show that the
decision strategies are either heuristic (e.g. microeconomics, share-based), control-based

41

2. Adaptive Mechanisms and Techniques in Virtual Machines

(e.g. PID controller), based on signal processing techniques (e.g. correlation of different
windows of samples), and machine learning (e.g. reinforcement learning). Regarding
strategies that use linear programming, they are used only to make a general model of
the scheduling variables. In practice, these approaches use integer linear programming
which is known to be NP-hard. Thus, they use some kind of greedy approach to solve
it.

Based on the survey of these different techniques, the next section will present a
classification framework that aims to compare complete adaptive systems.

2.4 The RCI Framework for classification of VM adap-
tation techniques

To understand and compare different adaptation processes we now introduce a frame-
work for classification of VM adaptation techniques. The classification is based on the
different techniques described earlier and depicted in Figure 2.5 and Figure 2.6. The anal-
ysis and classification of the techniques and the way they are used in each of the adapta-
tion loops revolves around three fundamental criteria: Responsiveness, Comprehensiveness
and Intricateness. We call it RCI framework. Our goal is to put each system in perspec-
tive and compare them regarding three criteria. The final RCI values of a given system
depend on the techniques the system uses for monitoring, decision and acting.

These aspects were chosen, not only because they encompass many of the relevant
goals and challenges in VM adaptability research, but mainly because they also seem to
embody a fundamental underlying tension: that a given adaptation technique, aiming at
achieving improvements on two of these aspects, can only do so at the expense of the remaining
one.

Initially, we realized that no technique was able to combine full comprehensiveness
and full intricateness, and still be able to perform without significant overhead and la-
tency (possibly even requiring off-line processing). Full responsiveness, for example,
will potentially always imply some level of restriction either to comprehensiveness or
to intricateness. This RCI conjecture is yet another manifestation in systems research of
where the constant improvement on a given set of properties, or the behavior of a given
set of mechanisms, can only come at an asymptotically increasing cost. This always
forces designers to choose one of them to degrade in order to ensure the other two.

42

2.4 The RCI Framework for classification of VM adaptation techniques

Sα

Monitor Decide

Act

Adaptation

Loop

M

D

A

Rmin

Imax

R

I

tj

Rmin

Imax

 R

 I

C(M,A)

R

C

I

Step 1 Step 2 Step 3

N
o
rm

a
liz

a
tio

n

RCI framework

Figure 2.7: A step-by-step classification process

A paramount example is the CAP conjecture (or CAP theorem) [Brewer, 2010],
portraying the tension in large-scale distributed systems among (C)onsistency, (A)vaila-
bility, and tolerance to (P)artitions. Another example is the tension, in the domain
of peer-to-peer systems, among high availability, scalability, and support for dynamic
populations [Blake and Rodrigues, 2003].

The framework starts by taking the input system and decomposes it into the adapta-
tion techniques used in the monitoring, decision, and acting phase. This is represented
in step 1 of Figure 2.7. Then, for each technique, a value for R, and I is determined (step
2). The metric C is determined in step 3 by taking into account the order of magnitude
of the number of sensors and actuators. Also in step 3, the previous values are aggregated
and normalized, determining the final RCI tuple for the system.

Decomposing the system into the previously mentioned parts (step 1) is simply done
by analyzing the reported techniques, both in their nature and cardinality. To proceed
with the classification process, the framework must determine:

i) Which quantitative value is assigned to each technique in the monitoring, decision
or acting phase;

ii) How these values are aggregated to reach a final RCI tuple.

These two steps are detailed in the following sections. First, Section 2.4.1 discusses
a quantitative criteria, where design options, representing groups/classes of techniques,

43

2. Adaptive Mechanisms and Techniques in Virtual Machines

Time

(Responsiveness)

Number of sensors/actuators

(comprehensiveness)

Code

(Intricateness)

(0,0,0)

(max(R),max(C),max(I))

Figure 2.8: Systems design interval

are assigned a single value. Next, Section 2.4.2 maps the set of specific techniques pre-
sented in Section 2.3 to these classes, so that each technique is assigned a unique value
of R and I. This completes step 2 of the classification process. Finally, Section 2.4.3 ex-
plains the rationale of step 3, showing how the previous values are aggregated with the
C metric to determine a system’s RCI.

2.4.1 Quantitative Criteria of the RCI framework

We think the three metrics are able to capture a design interval as presented in Figure 2.8.
They capture time, space and complexity-related characteristics. Our conjecture is that
we will see systems that are away from the minimum and the maximum of the cube,
that is, neither too simple (e.g., near the base of the coordinates) nor excelling in the
three metrics (e.g., near or coincident with the maximum point in the design space).
The following list points the exact meaning of the three criteria, regarding each of the
adaptation phases. Next, we will detail how they are mapped to a numeric scale, in each
phase, which will be used to determine the RCI of systems.

• Responsiveness. It captures time-related characteristics of the techniques. Regard-
ing the monitoring phase, it depends on the latency of reading a value. Higher
values are assigned to sensors immediately available on the VM code base, where
higher values represent external sensors (operating system or application-specific).
For the decision phase, responsiveness is lower in those techniques that take longer

44

2.4 The RCI Framework for classification of VM adaptation techniques

to reach a given adaptation target. Regarding the action phase, high values indi-
cates that the effect is (almost) immediate, while a low value represents actuators
that will take some time to produce effects.

• Comprehensiveness. It captures quantity-related characteristics of the techniques.
Regarding the monitoring and deciding phases, it gets higher as the quantity of the
monitored sensors increases. Regarding the acting phase, the comprehensiveness
value grows with the quantity of actuators that the system can engage.

• Intricateness. It captures the inherent complexity of the techniques. Regarding
the monitoring and acting phase, higher values are reserved for sensors/actuators
that had to be added to the base code of the virtual machine, operating system, or
application layer. Low values represent sensors/actuators that are already available
and can be easily used. In the deciding phase, intricateness represents the inherent
complexity of the deciding strategy. For example, an if-then-else rule has low
intricateness but advanced control theory has higher values.

Figure 2.9 represents each of these criteria (R, C, I) for the three adaptation phases
(M, D, A). For each criteria, in each adaptation phase, the figure shows the several
options there are for the classification of a given technique, used in step 2 of the clas-
sification process. It does so by showing the mapping between a design option (e.g.
use a sensor that is an extension inside the VM) and a quantitative value. These values
establish an order among different options.

It is important so stress that these design options do not represent a specific technique
but a class of techniques. For example, “direct reading” in the criterion I of the phase
M, is to be selected when the sensor is available in the original code base or in another
level of the system stack, without the necessity of building further extensions. This
indirection makes the classification system generic because the number of techniques,
sensors and actuators can grow in the future while being accommodated by the frame-
work in one of the existing classes. Even so, we think these classes are expressive and
distinctive enough to characterize different levels of responsiveness, comprehensiveness,
and intricateness.

The mapping between classes and specific techniques will be presented next, in Sec-
tion 2.4.2. Note also that the scale of the values is not important (they typically repre-
sent different orders of magnitude) as long as the values are positive and monotonically

45

2. Adaptive Mechanisms and Techniques in Virtual Machines

Figure 2.9: Quantitative values for the design options of the RCI framework

46

2.4 The RCI Framework for classification of VM adaptation techniques

increasing or decreasing, in accordance with the corresponding criteria.

Across all the adaptation phases, comprehensiveness is directly represented by the
number of sensors or actuators, as explained previously. This is represented by n, which
is a positive quantity (between 1 and 3) corresponding to the number of sensors or
actuators that are used. This means that the comprehensiveness increases as this number
grows. The other two criteria have more distinctive characterizations in each of the
adaptation phases, which we elaborate next:

• Monitoring. The responsiveness of the monitoring phase depends on the cost of
reading. The cost of reading relates to the time spent in reading a single value, that
is, how fast can a single value be collected. This depends on the layer where the
sensor is in relation to where the decision is made. For example, some systems
use application-level monitors which require inter-process communication to read
them (e.g. number of completed SQL transactions [Hinesa et al., 2011]). Others
depend only on values collected inside the virtual machine monitor or the HLL-
VM context. A middle ground approach is that of systems that depend on sensors
from other layers, such as the OS, but, reading them has a low cost (e.g. the /proc

virtual file system).

The intricateness of the monitoring phase is a measurement of how complex is
the code for reading sensors. Value 1 is assigned to systems that use preexisting
sensors of the virtual machine or in the execution environment, which have a
direct access. Value 2 is for extensions made inside the virtual machine and value 3
is assigned when extensions were made in the underlying system and/or hardware
(e.g. operating system, in the case of HLL-VMs).

• Deciding. The responsiveness and intricateness of the deciding phase is in a large
part inspired by the study of Maggio et al. [Maggio et al., 2012]. They discuss how
feedback control mechanisms compare to each other in the context of a bench-
mark suite composed of multi-threaded programs, instrumented with the Appli-
cation Heartbeat framework [Hoffmann et al., 2010]. Taking into account the
analyzed techniques, our classification framework is based on five decision types
i) rules/heuristics; ii) linear optimization; iii) control-based solutions; iv) signal
processing techniques; v) model-free machine learning solutions.

We have classified these five types of decision strategies as decreasingly respon-
sive, because they take an increasing amount of time to reach a certain target

47

2. Adaptive Mechanisms and Techniques in Virtual Machines

point. They are increasingly intricate with the exception of control-based solu-
tions which we consider more intricate than signal processing. This is so because
of the panoply of parameters that usually have to be tunned. A model-free solution
has also the highest intricateness value because the tunning of assigning credits to
each possible action and the balance between exploitation versus exploration (i.e.
balancing between making the best decision given current information or explore
more system states) [Maggio et al., 2012].

• Acting. In this phase, responsiveness reflects the capacity of the actuator to pro-
duce an observable and measurable consequence. Any throttle to the processing
capacity will have almost immediate effect and so a value of 1 is assigned to this
type of actuators. Regarding memory, tweaking the set of pages assigned to a VM
will have a quicker impact than simply changing its memory share. Changing heap
parameters is, in comparison with the other techniques, the least responsive one,
and so it gets a value of 3. Intricateness has, in this phase, a similar characterization
to the one made in the monitoring phase.

In the following section, we map the previous analyzed techniques to this tree of
design options.

2.4.2 Classification of techniques

Tables 2.1-2.3 refer to system-level virtual machines and map a specific sensor, actuator
or decision technique to a particular value. This is done according to the classes and
values defined in Figure 2.9, which was discussed in the previous section. For each
line, the first column identifies a technique (as presented in Figures 2.5 and 2.6) while
the second and third columns contain a design class and the corresponding value, for
responsiveness (second column) and intricateness (third column). Tables 2.4-2.6 are the
ones corresponding to the high-level language virtual machines and follow the same
logic.

Looking at the techniques used in the monitor phase, Tables 2.1 and 2.4 show us
that only two techniques have the minimum responsiveness. This is so because most
of the sensors are near the VM execution space (either in a sub-system of the VM or in
the operating system). Low intricateness also is dominant as most sensors are already
available. Regarding the decision phase, analyzed in Tables 2.2 and 2.5, a majority of

48

2.4 The RCI Framework for classification of VM adaptation techniques

Table 2.1: System VMs: Sensors
Sensor R option Value I option Value

page utilization inside VM 3 direct reading 1
page contents inside VM 3 extension same layer 2
page faults kernel 2 direct reading 1
memory demand kernel 2 direct reading 1
application’s performance outside 1 direct reading 1
Virtual time clock inside VM 3 direct reading 1
CPU consumed by each VCPU inside VM 3 direct reading 1
Xen CPU/Mem consumed kernel reading 2 direct reading 1
OS sync primitives kernel 2 extension other layer 3
OS CPU usage counter kernel 2 direct reading 1

Table 2.2: System VMs: Control techniques
Control technique R option Value I option Value

share based rule / heuristic 5 rule / heuristic 1
counter threshold rule / heuristic 5 rule / heuristic 1
integer linear programming linear optimization 4 linear optimization 2
PID controller Control-based 2 Control-based 4
resource usage samples correlation signal processing 3 signal processing 3
LRU histogram rule / heuristic 5 rule / heuristic 1

techniques have high responsiveness values. As a consequence, they are less intricate.
In HLL-VMs, techniques are usually either very simple or have maximum complexity.
Finally, regarding the action phase, we note that all actuators are either already available
in the VM code base or are extensions to the VM code base. Contrary to sensors, no
new actuators are proposed for other layers of the execution stack. This leads to not
having, in practice, actuators with the maximum intricateness.

Table 2.3: System VMs: Actuators
Actuator R option Value I option Value

page sharing VM parameter 3 extension in same 2
page compression VM algorithm 2 extension in same 2
page/memory transfer VM parameter 3 direct acting 1
co-scheduling VM parameter 3 extension in same 2
number of VCPUs assigned to CPU VM parameter 3 direct acting 1
change shares or caps VM parameter 3 direct acting 1
number of processes/threads VM parameter 3 direct acting 1

49

2. Adaptive Mechanisms and Techniques in Virtual Machines

Table 2.4: HLL VMs: Sensors
Sensor R option Value I option Value

Memory structures dimensions inside 3 direct 1
Events of the operative system kernel 2 direct 1
Working set size kernel 2 extension other layer 3
GC load inside 3 direct 1
Frequency of GC inside 3 direct 1
Memory usage patterns app 3 extension same layer 2

Table 2.5: HLL VMs: Control techniques
Control technique R option Value I option Value

if-then-rule rule / heuristic 5 rule / heuristic 1
Generic condition rule / heuristic 5 rule / heuristic 1
Reinforcement learning Model-free ML 1 Model-free ML 4
PID controller Control-based 2 Control-based 4
Elasticity (micro-economy) rule / heuristic 5 rule / heuristic 1

Table 2.6: HLL VMs: Actuators
Actuator R option Value I option Value

Heap size VM parameter 3 direct 1
Run GC VM parameter 3 direct 1
Change GC algorithm VM algorithm 2 extension same layer 2
Limit usage VM algorithm 2 extension same layer 2
Reservation VM algorithm 2 extension same layer 2

50

2.4 The RCI Framework for classification of VM adaptation techniques

2.4.3 Aggregation of quantities

In this section, we give the details about the implementation of the final stage of step 2
and how step 3 operates, as depicted in Figure 2.7.

Regarding the final stage of step 2, because a given system may use more than one
sensor, in the monitoring phase, and more than one actuator, in the acting phase, the
framework must determine how a single R and I value is determine for these two phases
(i.e. RM , RA, IM , IA). Regarding responsiveness, we consider the technique with the
lowest responsiveness, as presented in Equation 2.1. This was so because the monitor
or the action phase will be as responsive as the least responsive technique the system
uses. Regarding the intricateness metric, we use the technique with the highest value as
a representative of the phase’s intricateness. Finally, note that this is not an issue for the
decision phase because specific systems only use one strategy.

Rπ = minimum of techniques′ responsiveness, where π ∈ {M,A} (2.1)

For a given system, Sα, the three metrics of the framework, responsiveness, com-
prehensiveness and intricateness, are represented by R(Sα), C(Sα), I(Sα), respectively.
Each of these metrics depends on the specific values of the techniques used by the sys-
tem. So, to determine R(Sα), the framework adds the responsiveness of each phase
of the adaptation loop (Monitor, Decision, Action), as presented in Equation 2.2. A
similar operation is done to determine the intricateness metric.

R(Sα) =
∑

π ∈ {M,D,A}
Rπ(Sα) (2.2)

To determine comprehensiveness, C(Sα), the framework takes into account the
number of sensors used in the monitoring phase, the number of actuators used in the
acting phase, and adds them to reach a single value. This is the operation identified as
C(M,A) in step 3 of Figure 2.7.

As an example, consider system Sα, which uses several hypothetical techniques for
each phase of the adaptation loop. The last line of Table 2.7 shows the result of the
aggregation operations used to determine, for each of the three phases, the R and I
values. The aggregate function minimum is used for responsiveness, while the aggregate

51

2. Adaptive Mechanisms and Techniques in Virtual Machines

Table 2.7: Example of the aggregations made in step 2 for system Sα

System Monitor R I Decision R I Action R I

Sα

Ta 2 3 Td 2 3 Te 1 2
Tb 3 2 Tf 2 1
Tc 1 2

1 3 2 3 1 2

function maximum is used for intricateness. Table 2.8 completes the example, showing
the arithmetic operations necessary to determine the overall R, C, I values of system
Sα. The values from the last line of Table 2.7 are the ones used to determine R and I in
Table 2.8, following the equation 2.2.

Table 2.8: Example of the arithmetic operations in step 2 for system Sα

System R C I

Sa 1+2+1 #sensors+ #actuators 3+3+2

2.4.4 Critical analysis of the framework

The RCI framework is the first work that tries to make this kind of classification, aiming
to show trade-offs in the design of adaptive systems in the context of virtual machines. Its
critical point is the design options tree, presented in Figure 2.9, and the corresponding
quantitative values. It can be the case that either the design options do not represent
the entire design space or that the quantitative values are not correctly assigned. We
tried to minimize this by designing the framework after examining several systems to
better understand the scope of the design space. However, we are still missing to collect
the opinion of other researchers in the area while using the framework, and possibly
improve it based on theirs feedback.

In the next section, we analyze relevant works regarding monitoring and adaptability
in virtual machines, both at system as well as managed languages level. The RCI frame-
work is used to compare different systems and better understand how virtual machine
researchers have explored the tension between responsiveness, comprehensiveness, and
intricateness.

52

2.5 VM systems and their classification

2.5 VM systems and their classification

In this section we start by surveying several state of the art systems, regarding system-
level VMs, Section 2.5.1, and high-level language VMs, Section 2.5.2. In each case we
frame the analyzed systems into the classification framework presented in Section 2.4,
describing each of the techniques used, resulting in the classification and comparison of
complete systems.

2.5.1 System Virtual Machine

The following are succinct descriptions of system-level VMs and systems that extend
them. We start by presenting a well known open-source hypervisor. A list of systems
that extend this or other similar hypervisors follows. Most of them are centered either
on CPU or memory. At the end of the section, Table 2.9 summarizes the techniques
used in each system. This process was identified as step 1 in Figure 2.7. This is the base
for determining each system’s RCI.

Xen. In Xen [Barham et al., 2003], each VM is called a domain. A special domain0
(called driver domain) handles I/O requests of all other domains (called guest domain)
and runs the administration tools. Because Xen’s core solution is developed by the open
source community, several works have studied Xen’s scheduling strategies, for example
in face of intensive I/O. Others propose adaptation strategies to be applied by the VMM,
regarding CPU to VCPU mapping or dynamically changing the scheduling algorithms
parameters.

Xen includes three scheduling algorithms: Borrow Virtual Time (BVT), Simple Ear-
liest Deadline First (SEDF) and Credit [Cherkasova et al., 2007]. 4 The former two are
deprecated and at the time of this writing the documentation mentions that they will
be removed from the available schedulers. Credit is a proportional fair scheduler. This
means that the interval of time allocated for each VCPU is proportional to its weight,
excluding small allocation errors. Additionally to weight, each domain has a cap value
representing the percentage of extra CPU it can consume if its quantum has elapsed and
there are idle CPUs. At each clock tick, the running VPCUs are charged and eventually
some will loose all their credit and tagged be as over, while the others are tagged under.

4http://wiki.xenproject.org/wiki/Credit_Scheduler, visited at June 16, 2014

53

http://wiki.xenproject.org/wiki/Credit_Scheduler

2. Adaptive Mechanisms and Techniques in Virtual Machines

VCPUs tagged as under have priority in scheduling decisions. Picking the next VCPU
to run on a given CPU, Credit looks, in this order, for an under VCPU from the local
running queue, an over VCPU from the local running queue, or an under VCPU from
the running queue of a remote CPU, in a work-stealing inspired fashion.

Friendly Virtual Machines (FVM). Friendly Virtual Machines (FVM) [Zhang et al.,
2005] aims to enable efficient and fair usage of the underlying resources. Efficient in the
sense that underlying system resources are neither overused nor underused. Fairness is
in the sense that each VM gets a proportional share of the bottleneck resource. Each
VM is responsible for adjusting its demand of the underlying resources, resulting in a
distributed adaptation system.

The adaptation strategy is done using feedback control rules such as Additive-Increa-
se/Multiplicative-Decrease (AIMD), typically used in network congestion avoidance
[Chiu and Jain, 1989], driven by a single control signal - the Virtual Clock Time (VCT),
to detect overload situations. VCT is the real time taken by the VMM to increment the
virtual clock of a given VM. An increase in VCT means that the host VMM is taking
longer to respond to the VM, which indicates a contention on a bottleneck resource.
Depending on the nature of the resource, the VCT will evolve differently as more VMs
are added to the system. For example, with more VMs sharing the same memory, more
page faults will occur, and even a small increase in the number of page faults will result
in a significant increase in VCT.

A VM runs inside a hosted virtual machine, the User Mode Linux, an thus, two types
of mechanisms are used to adapt VM’s demand to the available underlying resources.
FVM imposes upper bounds on: i) the Multi Programming Level (MPL), and on ii) the
rate of execution. MPL controls the number of processes and threads that are effectively
running at each VM. When only a single thread of execution exists, FVM will adapt the
rate of execution forcing the VM to periodically sleep.

ASMan. The Adaptive Scheduling Manager (ASMan) [Weng et al., 2011] is an exten-
sion to Xen’s scheduler. It adds the capacity to co-schedule virtual CPUs (VCPU) of
VMs where there are threads holding a blocking synchronization mechanisms, such as
spin locks. In non-virtualized systems, threads holding spin locks are not preempted.
In a virtualized system, the VCPU continues to be hold by the thread but, because the
hypervisor sees the VCPU as being idle, the VCPU is taken from execution and placed

54

2.5 VM systems and their classification

on the waiting queue. Using the concept of VCPU related degree (VCRD), the ASMan
system determines the degree of relationship between the VCPUs in a VM. The system
dynamically determines this metric by monitoring, in each guest OS, the time spent in
spin locks. The VM is then classified with a low or high VCRD if it is bellow or above
a certain threshold. When the VCRD is high, the VCPUs of that VM are co-scheduled.

HPC computing. Shao et al. [Shao et al., 2009] use runtime information collected by
a monitor running inside each guest’s operating system to adapt the VCPU mapping of
Xen [Barham et al., 2003]. They target high performance computing applications, and
adjust the number of VCPUs to meet the real needs of each guest running these types of
workloads. Decisions are made based on two metrics: the average VCPU utilization rate
and the parallel level. The parallel level mainly depends on the length of each VCPU’s
run queue. The adaptation process uses an addictive increase and subtractive decrease
(AISD) strategy. Shao et al. focus their work on benchmarks used to represent the
common operations of high performance computing applications.

Auto Control. The Auto Control system [Padala et al., 2009] uses a control theory
model to regulate resource allocation, based on multiple inputs and driving multiple
outputs. Inputs are applications running in a VMM and can spawn several nodes of
the data center (i.e., web and DB tier can be located in different nodes). Outputs are
the resource allocation of caps for CPU and disk I/O. For each application, there is an
application controller which collects the application’s performance metrics (e.g. applica-
tion throughput or average response time) and, based on the application’s performance
target, determines the new requested allocation. Because computational systems are
non-linear, the model is adjusted automatically, aiming to adapt to different operating
points and workloads.

Based on each application’s controller output, a per-node controller will determine
the actual resource allocation. It does so by solving the optimization problem of mini-
mizing the penalty function for not meeting the performance targets of the applications.
To evaluate their system, applications were instrumented to collect performance statis-
tics. Xen monitoring tool (i.e., xm) was used to collect CPU usage and iostat was used
to collect CPU and disk usage statistics. Enforcement is made by changing Xen’s credit
scheduler parameters and a proportional-share I/O scheduler [Gulati et al., 2007].

55

2. Adaptive Mechanisms and Techniques in Virtual Machines

PRESS. PRedictive Elastic ReSource Scaling for cloud systems (PRESS) [Gong et al.,
2010] is an online resource demand prediction system, which aims to handle both cyclic
and non-cyclic workloads. It tries to allocate just enough resources to avoid service level
violations while minimizing resource waste. PRESS tracks resource usage and predicts
how resource demands will evolve in the near future. To detect repeating patterns,
it employs signal processing techniques (i.e., Fast Fourier Transform and the Pearson
correlation), looking for a similar pattern (i.e., a signature) in the resource usage history.
If a signature is not found, PRESS uses a discrete-time Markov chain. This technique
allows PRESS to calculate how the system should change the resource allocation policy,
by transitioning to the highest probability state, given the current state. The authors
focus on CPU usage [Gong et al., 2010]. Thus, the prediction scheme is used to set
the CPU cap of the target VM. The evaluation was made based on a synthetic workload
applied to the RUBiS benchmark, built from observations of two real world workloads.5

Overbooking and Consolidation. In [Heo et al., 2009], Heo et al. use a feedback
control mechanisms to dynamically allocate memory in an environment where multi-
ple virtual machines share the same host. They show that allocating memory in such
an overcommitted environment without taking also into account the CPU, results in
significant service level violations. Their sensors measure memory allocation and usage
and also application performance (i.e., response time of an Apache Web server). Mem-
ory allocations are collected from the balloon driver along with page fault rates from
the /proc file system.

Ginko. Ginko [Hinesa et al., 2011] is an application-driven memory overcommitment
framework which allows cloud providers to run more System VMs with the same mem-
ory. For each VM, Ginkgo uses a profiling phase where it collects samples of the ap-
plication performance, memory usage, and submitted load. Then, in the production
phase, instead of assigning the same amount of memory for each VM, Ginko takes the
previously built model and, using a linear program, determines the VM’s ideal amount
of memory to avoid violations of service level agreements. This means that the linear
program will determine the memory allocation that, for the current load, maximizes
the application performance (e.g. response time, throughput).

5http://rubis.ow2.org/, visited July 2, 2014

56

http://rubis.ow2.org/

2.5 VM systems and their classification

VMMB. In [Min et al., 2012], Min et al. presents VMMB, a Virtual Machine Memory
Balancer for Unmodified Operating Systems. It uses the LRU histogram to estimate
memory demand to periodically re-balance the memory allocated to each VM. Their
algorithm determines the memory allocation size of each VM while it strives to globally
minimize the page miss ratio. Their sensors are looking at nested page faults and to guest
swapping, using a pseudo swap device for monitoring. They act of the balloon driver to
enforce each VM’s new memory size. When the balloon cannot collect enough memory,
VMMB uses a VMM-level swapping to select a set of victim pages and immediately
allocate memory to a beneficiary VM.

Difference engine. Gupta et al. [Gupta et al., 2008] is an extension to the Xen VMM
which supports sub-page sharing using a novel approach that builds patches to pages by
using the difference relative to a reference page. Similar pages are identified by comparing
hash values of randomly selected parts of different pages. In-memory compression of
infrequently accessed pages is made using multiple algorithms.

2.5.1.A Overall systems analysis

Table 2.9 summarizes the systems analyzed in this section. After the system name, the
second column identifies the dominant resource, that is, the resource over which the
system is monitoring but also acting. From the third to the fourth column, we present
the techniques used in each of the adaptation phases. The last column allows us to
quickly determine if the system proposes extensions to the code base of the VM or not.

Figure 2.10 depicts the overall RCI of each system that uses or augments a system-
level VM. It presents a visual, quantitative and comparative analysis, which completes
Table 2.9. Overall, systems tend to favor responsiveness design options (as this metric
prevails in every system).

When looking for memory-dominant systems (Difference engine, VMMB, Ober-
booking, Ginko) we see that Overbooking, by trying to embrace a large number of
sensors and actuators, is less responsive. In the CPU-dominated systems, HPC is the
one classified as the most responsiveness but uses simply techniques (low intricateness)
and a minimum number of sensors and actuators. ASMan is more intricate, basically
because it needs extensions for the monitoring and action phase, but it had to give up
on some responsiveness. Overall, these observations are in line with our initial RCI

57

2. Adaptive Mechanisms and Techniques in Virtual Machines

Table 2.9: Sys-VM Systems

System D
om

in
an

tR
es

ou
rc

e

M
on

ito
r

D
ec

isi
on

A
ct

io
n

M
od

ifi
ed

V
M

M
/V

M

FVM CPU VTC PID Controller
AIMD

Number of threads,
periodic sleep

Yes

AutoControl CPU,
I/O

CPU, I/O usage,
Average response
time

Model Predictive,
Quadratic solver

cap, disk share No

Press CPU CPU, Mem, I/O
usage

Pearson correlation CPU cap No

HPC CPU VCPU utiliza-
tion rate, System
Parallel level

Rules with AISD Number of VCPUs No

ASMan CPU Spin locks utiliza-
tion and waiting
time

Thresholding rules co-scheduling Yes

Ginko Mem Average time per
URL request,
#SQL transactions,
response time

Linear program-
ming

Balloon No

Overbooking CPU,
Mem

CPU, Mem, Aver-
age time per URL
request

PID Controller CPU Cap, Balloon No

VMMB Mem Page faults, swap
operations

LRU histogram Balloon, VMM
swapping

Yes

Difference
Engine

Mem (sub-)Page contents Not Recently Used Page sharing, Patch-
ing, Compression

Yes

58

2.5 VM systems and their classification

0

0.2

0.4

0.6

0.8

1
FVM

AutoControl

Press

HPC

ASManGinko

Overbooking

VMMB

Difference
Engine

R

C

I

Figure 2.10: RCI of Sys-VMs

conjecture.

2.5.2 High-Level Language Virtual Machines

This section will present and discuss different systems that monitor resource usage, re-
sulting in either imposing limitations or changing the policies of the JIT, GC, or resource
manager sub-systems. Adaptation in high-language virtual machines is made by chang-
ing their building block parameters (e.g. JIT level of optimization, GC heap size) or the
actual algorithm used to perform certain operations. This section starts by presenting
classic work on Java Virtual Machines (JVMs) whose goal was to incorporate resource
usage constraints on regular VMs. It then surveys more recent systems where the focus
was to diminish the impact of GC in program execution. At the end of the section, Ta-
ble 2.10 summarizes the techniques used in each system. As in the case of system-level
VMs, this process is the implementation of step 1 in Figure 2.7, which is the base for
determining each system RCI.

KaffeOS. Built on top of Kaffe virtual machine [Back and Hsieh, 2005], KaffeOS [Back
and Hsieh, 2005] provides the ability to run Java applications isolated from each other
and also to limit their resource consumption. KaffeOS, adds a process model to Java that
allows a JVM to run multiple untrusted programs safely. The runtime system is able to

59

2. Adaptive Mechanisms and Techniques in Virtual Machines

account for and control all of the CPU and memory resources consumed on behalf of
any process. Consumption of individual processes can be separately accounted for, be-
cause the allocation and garbage collection activities of different processes are separated.
To account for memory, KaffeOS uses a hierarchical structure where each process is as-
signed a hard and a soft limit. Hard limits relate to reserved memory. Soft limits acts
as guard limit not assuring that the process can effectively use that memory. Children
tasks can have, globally, a soft limit bigger than their parent but only some of them will
be able to reach that limit.

JRES. The work of Czajkowski et al. [Czajkowski and von Eicken, 1998] uses native
code, library rewriting, and byte code transformations to account and control resource
usage. JRES was the first work to specify an interface to account for heap memory, CPU
time, and network consumed by individual threads or groups of threads. The proposed
interface allows for the registration of callbacks, used when resource consumption ex-
ceeds some limits and when new threads are created. The only supported resources are
the CPU usage (in miliseconds), the total amount of used memory (in bytes), and the
number of bytes sent and received through a network interface. CPU time is accounted
by instrumenting the thread creation process, placing the native thread identification in
a global registry. Then, at regular intervals, the registry is traversed and native calls are
used to ask the operating system for the time spent in each thread. Byte code rewriting
is also used to know how much memory is used by objects allocated by each thread.

Multitask Virtual Machine (MVM). The MVM [Czajkowski et al., 2005a] extends
the Sun Hotspot JVM to support isolates and resource management. Isolates are similar
to processes in KaffeOS. The distinguishing difference of MVM is in its generic Resource
Management (RM) API, which uses three abstractions: resource attributes, resource
domain, and dispenser. Each resource is characterized by a set of attributes (e.g. memory
granularity of consumption, reservable, disposable). In [Czajkowski et al., 2005a] the
MVM is able to manage the number of open sockets, the amount of data sent over
the network, the CPU usage and heap memory size. When the code running on an
isolate wants to consume a resource, it will use a library (e.g. send data to the network)
or runtime service (e.g. memory allocation). In these places, the resource domain
to which the isolate is bound will be retrieved. Then, a call to the dispenser of the
resource is made, which will interrogate all registered user-defined policies to know if

60

2.5 VM systems and their classification

the operation can continue. A dispenser controls the quantity of a resource available
to resource domains. CPU accounting is done in a similar way to JRES [Czajkowski
and von Eicken, 1998] using native calls to the operating systems. On the other hand,
memory accounting was done modifying the memory management system.

Isla Vista. Grzegorczyk et al. [Grzegorczyk et al., 2007] takes into account allocation
stalls. In Linux, a process will be stalled during the request of a new page if the system
has very few free memory pages. If this happens, a resident page must be evicted to disk.
This operation is done synchronously during page allocation. They have implemented
an algorithm that grows the heap linearly when there are no allocation stalls. Otherwise,
the heap shrinks and the growth factor for successive heap growth decisions is reduced,
in an attempt to converge to a heap size that balances the tradeoff between paging and
GC cost. This heap sizing behavior is inspired by the exponential backoff model for
TCP congestion control, where transmission rate relates to heap size, and packet loss
relates to page faults.

GC in shared environment. Hertz et al. [Hertz et al., 2011] observe that the same
application operating with different heap sizes can perform differently if the heap size is
under- or over-dimensioned, resulting in many collections or many page faults, respec-
tively. Based on this observation, they have devised the time-memory curve, that is, the
shortest running time of a program, independently of its heap size, for a given amount
of physical memory. Their approach allows for the heaps of multiple applications to re-
main small enough to avoid the negative impacts of paging, while still taking advantage
of memory that is available within the system. They have modified the slow path of
the GC (i.e., the code path that can result from tracing alive objects) to also take into
account two conditions: i) if the resident set has decreased or, ii) if the number of page
faults has increased. If any of these conditions is true, a GC will be triggered. They call
this situation a resource-driven garbage collection.

GC economics. In [Singer et al., 2010], Singer et al. discuss the economics of GC,
relating heap size and number of collections with the price and demand law of micro-
economics - with bigger heaps there will be less collections. This relation extends to
the notion of elasticity to measure the sensitivity of the heap size to the size of the
number of GCs. They devise an heuristic based on elasticity to find a tradeoff between

61

2. Adaptive Mechanisms and Techniques in Virtual Machines

heap size and execution time. The user of the VM provides a target elasticity. During
execution, the VM will take into account this target to grow, shrink or keep the heap
size. Doing so, the user can supply a value that will determine the growth ratio of the
heap, independently of application-specific behavior.

CRAMM. In CRAMM [Yang et al., 2006] the heap size is dynamically adjusted to im-
prove application performance. The resizing process is driven by the effective working
set size (WSS) of the application. This is defined as the smallest main memory allocation
for which page faulting degrades process throughput by less than t%. To determine this,
CRAMM proposes to extend the virtual memory manager of the operating system so
that the WSS is dynamically built as the application progresses, monitoring minor and
major page faults. After each heap collection, the GC requests a WSS estimative to the
virtual memory manager. It then considers this value to resize the heap. After each GC
run, the histogram is also reset since the new heap size will produce a new reference
histogram pattern.

Control Theory. Heap sizing was also researched as a control theory problem[White
et al., 2013]. In White’s et al. work, a PID controller is used where the control variable
is the heap resize ratio and the measurement variable is the GC overhead. To determine
the new heap size, the controller, after each collection cycle, measures the error between
the current GC overhead and the target GC overhead, specified by the user. The goal is
to achieve and maintain the user-defined target GC overhead. The controller’s param-
eters, such as the gain and the oscillatory period, were manually fine-tuned for a set of
benchmarks. They have only tested their system under a full-heap collector.

Machine Learning for Memory Management. Machine learning techniques have
been used to dynamically learn which is the best moment to garbage collect [Andreas-
son et al., 2002] and to choose, a-priori, the best GC configuration (algorithm, serial,
parallel) [Singer et al., 2007, 2010] given an profile run of the application. In the first
case, a reinforcement learning algorithm is used. A binary action is to be taken in each
step leading to the decision to run the GC or not. The reinforcement learning algorithm
accumulates penalties based on its decisions and, as time passes, it learns which are the
best situations to run the GC. In the second group of papers, an offline machine learning
algorithm, based on decision trees, is used to generate a classifier that, given a profile run

62

2.5 VM systems and their classification

of a new program (i.e., not used to build the model), can predict a GC algorithm that
minimizes the execution time.

GC switch. Soman et al. [Soman and Krintz, 2007] add to the memory management
system the capacity of changing the GC algorithm during program execution. The
system considers program annotations (if available), application behavior, and resource
availability, in order to decide when to dynamically switch, and which GC it should
switch to. The modified runtime incorporates all the available GC algorithms into a
single VM image. At load time, all possible virtual memory resources are reserved. The
layout of each space (i.e., nursery, Mark-Sweep, High Semispace, Low Semispace) is de-
signed to avoid a full garbage collection for as many different switches as possible. For
example, a switch from Semi-Space to Generational Semi-Space determines that the allo-
cation site will be done at a nursery space, but the two half-spaces are shared. Switching
can be triggered by points statically determined by previous profiling application execu-
tion, or by dynamically evaluating the GC load versus the application’s threads. If the
load is high, they switch from a Semi-Space (which performs better when more mem-
ory is available) to a Generational Mark-Sweep collector (which performs better when
memory is more constrained).

2.5.2.A Overall systems analysis

Table 2.10 summarizes the system analyzed in this section. The majority of them are
focused on the management of the heap size and use simple heuristics to guide this pro-
cess. Exception are the ones using a PID controller [White et al., 2013] and a machine
learning algorithm. However, these two systems either have to be fine-tuned manually
or impose limitations on the type of garbage collector. Only one work takes into ac-
count the collocation of VMs and the need to transfer memory between them [Hertz
et al., 2011]. Even so, it is focused on the individual performance of each instance and
not the distribution of memory based on the progress of each workload.

Figure 2.11 depicts the overall RCI of each system that augments a high-level lan-
guage VM, complementing the analysis of Table 2.10. As in the case of system-level
VMs, systems have design options that favor responsiveness. The system taking into
account the elasticity curve of micro-economics has the highest level of responsiveness
perhaps because of its low overall intricateness of sensors, decision process, and actu-
ators. We also see that the extra intricateness of the decision phase in “Control” and

63

2. Adaptive Mechanisms and Techniques in Virtual Machines

Table 2.10: HLL-VM Systems

System D
om

in
an

tR
es

ou
rc

e

M
on

ito
r

D
ec

isi
on

A
ct

io
n

M
od

ifi
ca

tio
ns

JRES Mix CPU, Heap, I/O Rules Limitation (CPU,
Heap, I/O)

VM

Isla Vista Mem Allocation stalls in
OS

Rules Heap rezise VM

Resource-
driven

Mem Page faults, Resi-
dent set size

3 types of rules Whole heap collec-
tion

VM

Control Mem GC overhead PID Controller Heap resize Yes
PAMM Mem Heap Size, Page

Faults
Threshold Run GC Program

CRAMM Mem Working Set Size,
Heap Utilization

Fixed rule Heap resize VM/OS

Elasticity
Curve

Mem Number of GCs,
Heap size

Elasticity threshold Heap resize VM

Switch Mem Heap Size, GC
load, GC frequency

Threshold rule GC algorithm VM

Learning Mem Available Memory
(current and varia-
tion between obser-
vations)

Reinforcement
learning

Run GC VM

0

0.2

0.4

0.6

0.8

1
Isla Vista

Resource-driven

Learning

Elasticity Curve

Switch

PAMM

CRAMM

Control

R

C

I

Figure 2.11: RCI of HLL-VMs

64

2.6 Summary

“Learning” had a cost. In the first case, it was the overall responsiveness, while in the
second the system had to be designed with a smaller number of sensors, reducing com-
prehensiveness. Further research is needed to determine if other unexplored techniques
in these two fields can bring more advantage.

2.6 Summary

In this chapter, we reviewed the main approaches for adaptation and monitoring in vir-
tual machines, their tradeoffs, and their main mechanisms for resource management.
We framed them into the control loop model (monitoring, decision, and actuation).
Furthermore, we proposed a novel taxonomy and classification framework that, when
applied to a group of systems, can help visually in determining their similarities and dif-
ferences. Framed by this, we presented a comprehensive survey and analysis of relevant
techniques and systems in the context of virtual machine monitoring and adaptability.

This taxonomy was inspired by two conjectures that arise from the analysis of exist-
ing relevant work in monitoring and adaptability of virtual machines. We presented the
RCI conjecture on monitoring and adaptability in systems, identifying the fundamental
tension among Responsiveness, Comprehensiveness, and Intricateness, and how a given
adaptation technique aiming at achieving improvements on two of these aspects, can
only do so at the cost of the remaining one.

65

2. Adaptive Mechanisms and Techniques in Virtual Machines

66

Part II

Allocation and Scheduling in
Platform-as-a-Service

3 Architecture of a Cloud-enabled
JVM

Contents
3.1 Introduction . 70

3.2 Related work . 71

3.2.1 Resource accounting in High-Level Virtual Machines 71

3.2.2 Measuring progress . 74

3.2.3 Checkpointing, restoring and migration mechanisms 76

3.3 Architecture Overview . 78

3.3.1 Resource Awareness and Control 79

3.3.2 Accurate Progress Monitoring . 80

3.3.3 Checkpointing and Migration of the Execution State 81

3.3.4 Adaptability and the Policy Engine 82

3.4 Driving Adaptability with Quality-of-Execution 83

3.4.1 An economic-inspired model . 83

3.4.2 QoE-JVM Economics . 86

3.4.3 Progress monitoring . 89

3.4.4 Resource types and usage . 91

Chapter overview

This chapter starts by discussing the overall architecture of QoE-JVM, its requirements,
along with the most relevant building blocks that must exist in the execution environ-
ment to support them [Simão et al., 2011; Simão and Veiga, 2012, 2013a]. Next, we

69

3. Architecture of a Cloud-enabled JVM

present an economics-inspired model to drive adaptability in environments where re-
sources are shared by multiple tenants. Our adaptability model is used to determine
from which tenants resource scarcity will hurt performance the least, putting resources
where they can do the most good to applications and the cloud infrastructure provider.
We then close this chapter with a more detailed view on how this model can be applied,
discussing different ways to monitor progress and what are the most relevant resources
to be acted upon.

3.1 Introduction

Grid Computing flourished to a great extent due to its widespread adoption in many e-
Science domains. Grids ease resource sharing, pooling and are amenable to both simple
as well as sophisticated scheduling approaches. Currently, there is an analogous ongoing
trend, this time to encompass new and existing Grid infrastructures into private, hybrid
and federated clouds for e-Science. Clouds inherit the potential for resource sharing
and pooling due to their inherent multi-tenancy support. In Grids, resource allocation
and scheduling can be performed online, albeit mostly based on initially predefined and
static job requirements. In contrast, in Clouds, resource allocation can also be changed
elastically (up or down), at runtime, in order to meet the application effective needs at
each time, improving flexibility and resource usage.

Public cloud infrastructures and supporting middleware for private/hybrid clouds
(e.g., eucalyptus, open-stack) offer APIs to allow explicit allocation and deallocation of
instances. Predominantly, this is done using system VMs that run full-fledged guest OS
instances and applications in each instance. Deciding and dealing with this programming
is cumbersome for e-scientists that are required to invoke cloud API besides writing their
own code. This can be partially mitigated in the relevant, yet specific, case of Bag-of-
Tasks applications, where multiple tasks can be successively assigned to a given VM,
while the number of active VMs is managed automatically by the middleware [Silva
et al., 2011].

When allocation needs to be changed, and resources are scarce, determining from
which tenants resources must be taken to impact performance the least is a non-trivial
and often deemed intractable problem, when outside the realm of batch scheduling with
full prior information on resource requirements for each task, job, or VM instance.
Other works have addressed resource allocation in a shared or multi-tenant environ-

70

3.2 Related work

ment [Salomie et al., 2013; Chen et al., 2014; Hertz et al., 2011; Hinesa et al., 2011].
Nevertheless they lack the notion of resource effectiveness in the sense that when there
are scarce resources, there is no attempt to determine when to take such resources from
applications (i.e., either isolation domains or the whole VM) so that they hurt perfor-
mance the least.

Managed languages (e.g., Java, C#) are becoming increasingly relevant in the develop-
ment of large scale solutions, leveraging the benefits of a virtual execution environment
(VEE) to provide secure, manageable and component-oriented solutions. Relevant ex-
amples include work done in various areas such as web application hosting, large scale
data processing [Castro Fernandez et al., 2013], enterprise services, supply-chain plat-
forms, implementation of functionality in service-oriented architectures. The field of
e-Science also shows an increasing interest in Java for physics simulation, economics and
statistics, network simulation, chemistry, computational biology and bio-informatics,
showing that to some extend, high performance and high throughput computing have
also been ported to managed languages [Hiden et al., 2013; Krampis et al., 2012; Pierre
and Stratan, 2012; Holland et al., 2008; Gront and Kolinski, 2008].

To extend the benefits of a local VEE and allow a mostly transparent horizontal scal-
ing, several solutions have been proposed to federate Java virtual machines [Kächele and
Hauck, 2013; Zhang et al., 2008; Zhu et al., 2002], aiming to provide a single system im-
age where the managed application can benefit from the global resources of the cluster.
If this system image has elasticity, in the sense that resources are made available propor-
tionally to the effective need, and if these resources are accounted/charged as they are
used, we can provide a high-level language virtual machine (HLL-VM) across the cluster,
as an utility. If these changes are made dynamically (instead of explicitly by their users),
we will have an adaptive and resource-aware virtual machine, that can be offered as a
value-added Platform-as-a-Service (PaaS).

3.2 Related work

3.2.1 Resource accounting in High-Level Virtual Machines

Resource monitoring and management are required in HLL-VMs for Cloud environ-
ments due to two major reasons: i) monitoring is required to obtain some kind of mea-
surement of resource usage by an application, and ii) management is required in order to

71

3. Architecture of a Cloud-enabled JVM

determine the amount of resources should be awarded to an application, and to enforce
those limits somehow. Such mechanisms, regarding low-level aspects of an execution
environment, may need to be continuously or at least frequently activated, enforced or
inquired. Therefore, their implementation must aim at minimizing the impact to the
overall application’s performance.

Monitoring low-level aspects of a computer system regarding the execution of a given
application must be done with low impact in the overall application’s performance.
Sweeney et al. [Sweeney et al., 2004] aims to accomplish these goals using hardware
performance counters. They extended the Jikes RVM with a performance monitor layer,
interacting with a native C library. Although relevant, in fact, they do not support any
kind of restriction on resource consumption. Regarding implementation, they rely on
a previous version of Jikes RVM and its N-M thread mapping (where there were N VM
threads mapped by the runtime to M native threads), while the current version already
uses a 1-1 mapping to native threads.

For runtime mechanisms, Price et al. [Price et al., 2003] describe a method for mod-
ifying the garbage collector to measure the amount of live memory reachable from each
group of threads. Their implementation is based on an old version of Jikes RVM but the
algorithms proposed are interesting in the context of our system, and have the potential
to be further extended (i.e., the work presented in [Price et al., 2003] does not support
tracing collectors). They give some usage scenarios for the information accounted, but
leave as an open issue the building of a policy driven framework.

Some high-level virtual machines have been augmented or designed from scratch to
integrate resource accounting [Czajkowski and von Eicken, 1998; Suri et al., 2001; Back
et al., 2000; Czajkowski et al., 2005a]. The Multitask Virtual Machine (MVM) [Cza-
jkowski et al., 2005a] is based on the Hotspot virtual machine. It supports isolated
computations, akin to address spaces, to be made in the same instance of the VM. This
abstraction is called isolate. Another distinguishing characteristic is the capacity to im-
pose constraints regarding consumption of isolates. MVM resource management work
is related to the Java Specification Request 284 [Grzegorz Czajkowski, 2009] but MVM
uses services only available on Solaris operating system, which runs on top of SPARC’s
hardware. Porting the open-source code to a new platform is an open issue.

The work in [Suri et al., 2001] and [Back et al., 2000] enables precise memory and
CPU accounting. Nevertheless, they do not provide an integrated interface to deter-

72

3.2 Related work

mine the resource consumption policy, which may involve VM, system or class library
resources. Another approach is to exchange low level precision and additional overhead
for the sake of portability. Binder’s profiling framework [Binder et al., 2009] statically
instruments the core runtime libraries, and dynamically instruments the rest of the
code. The instrumented code periodically calls pure Java agents to process and collect
profiling information.

In [Czajkowski et al., 2005b], Czajkowski et al. propose to enhance the resource
management API of the MVM [Czajkowski et al., 2005a], forming a cluster of this VMs
where there are local and global resources that can be monitored and constrained. How-
ever, Czajkowski’s work lacks the capacity to determine the effectiveness of resource
allocation, relying on predefined allocations. In [Janik and Zielinski, 2010], a recon-
figurable monitoring system is presented. This system uses the concept of Adaptable
Aspect-Oriented Programming (AAOP) in which monitored aspects can be activated
and deactivated based on a management strategy. The management strategy is, in prac-
tice, a policy which determines the resource management constraints that must be acti-
vated or removed during the application’s lifetime.

Ginko [Hinesa et al., 2011] is an application-driven memory overcommitment frame-
work which allows cloud providers to run more system VMs with the same memory.
The system works on a scenario where the virtualization stack is made of system-level
VMs with some running a JVM that supports the execution of an application server.
Ginkgo uses a JVM-level memory balloon that can reclaim memory more quickly when
necessary. For each VM, Ginkgo collects samples of the application performance, mem-
ory usage, and submitted load. Then, in the production phase, instead of assigning the
same amount of memory to each VM, Ginko takes the previously built model and, us-
ing a linear program, determines the VM ideal amount of memory to avoid violations
of service level agreements.

In [Singer et al., 2011], the GC is auto-tuned in order to improve the performance
of a MapReduce Java implementation for multi-core hardware. For each relevant bench-
mark, machine learning techniques are used to find the best execution time for each
combination of input size, heap size and number of threads in relation to a given GC al-
gorithm (i.e., serial, parallel or concurrent). Their goal is to make a good decision about
a GC policy when a new MapReduce application arrives. The decision is made locally
to an instance of the JVM. The experiments we presented are also related to memory
management, but our definition of QoE (as will be presented in Section 3.4) can go

73

3. Architecture of a Cloud-enabled JVM

beyond this resource.

At the middleware level, Coulson et al. [Coulson et al., 2008] present OpenCom,
a component model oriented to the design and implementation of reconfigurable low-
level systems software. OpenCom’s architecture is divided between the kernel and the
extensions layers. While the kernel is a static layer, capable of performing basic oper-
ations (i.e., component loading and binding), the extensions layer is a dynamic set of
components tailored to the target environment. These extensions can be reconfigured at
runtime to, for example, adapt the execution environment to the application’s resource
usage requisites. Our work handles mechanisms at a lower level of abstraction.

Duran et al. [Duran-Limon et al., 2011] use a thin virtual machine to virtualize CPU
and network bandwidth. Their goal is to provide an environment for resource man-
agement, that is, resource allocation or adaptation. Applications targeting this frame-
work use a special purpose programming interface to specify reservations and adapta-
tion strategies. When compared to more heavyweight approaches like system VMs, this
lightweight framework can adapt more efficiently for I/O intensive applications. The
approach taken in Duran’s work binds the application to a given interface for resource
adaptation. Although in our system the application (or the libraries they use) can also
impose their own restrictions, the adaptation process is mainly driven by the underlying
virtual machine without direct intervention of the applications.

3.2.2 Measuring progress

Because measuring application progress is an important step in any adaptation process,
there are several contributions on this topic, ranging from low,level system information,
such as performance counters, to information about the progress of specific variables
inside applications.

Performance counters have been used to analyze object oriented applications [Sweeney
et al., 2004; Hauswirth et al., 2010]. Nevertheless, these works do not attempt to adapt
the behavior of the application or the high-level VM, as they focus only on the study of
different workloads to better understand how major runtime components behave. The
utilization of performance counters in full virtualized systems (using system level VMs)
have similar problems because applications running in a guest VM will see information
about the hypervisor instructions as their own [Du et al., 2011].

74

3.2 Related work

In Chapter 2 we have surveyed several sensors used in high-level language VMs as
input of decision control modules. These systems aim at minimizing execution time or
memory usage. Most monitor how applications running in high-level virtual machines
are using memory and, indirectly, how they are making progress [Andreasson et al.,
2002; Bobroff et al., 2014]. Examples include memory allocation rate, which relates the
heap in use and the memory freed at two distinct time intervals, or the processor time
spent on executing instructions of the running program (and not related to GC tasks).
While the last example seems to be useful across a wide range of applications, the first
one is less effective for scientific applications that allocate most of their working space
before starting the intensive computation phase.

In [Hoffmann et al., 2010], an application programming interface (API) is proposed
to enable applications reporting progress through heartbeats. PowerDial [Hoffmann
et al., 2011] monitors the performance of applications using the Heartbeat framework.
The system can dynamically adapt the application’s configuration (e.g. parameters given
in the command line) in response to changes of load or power, threatening the ability to
deliver results in effective time. In these cases, results will eventually be delivered with
less accuracy. In our work, we want the progress information to be used transparently to
adapt the application execution runtime, restricting or giving more resources, without
depending on the application parameters.

Task-driven workloads, typical in Grid infrastructures, must also be monitored by
the execution runtime to adapt the relevant system parameters and achieve the desired
goals (e.g. improve performance, save energy). Cushing et al. [Cushing et al., 2011] pro-
pose a prediction-based framework to automatically scale the number of tasks running
in scientific workflow management systems. The prediction of the number of tasks is
based on the size of the input queues of each task and the data processing rate.

At a higher level of abstraction, Silva et al. [Silva et al., 2008, 2011] focus on choosing
the best number of hosts to run Bag-of-Tasks workloads, in an attempt to find a trade-
off between performance and cost effectiveness (regarding the host renting time). Their
heuristics are based on the tasks execution time. These approaches not only require
more expertise to organize programs but they are also sensitive to long running work-
loads, where finishing time among different tasks (or length of the input queue and the
size of each element) can have large variations. Unlike Grid infrastructures, Cloud in-
frastructures depend on virtual machines to provide the two basic service models, either
IaaS or PaaS. In [Mc Evoy and Schulze, 2011], Mc Evoy et al. discuss implications of

75

3. Architecture of a Cloud-enabled JVM

scheduling work in such environments showing the importance of knowing more about
the workloads’ profile so that the execution environment can be adapted to provide
improved performance.

3.2.3 Checkpointing, restoring and migration mechanisms

Checkpoint and restore mechanisms have been developed at different levels of the exe-
cution stack, namely, the hypervisor (to operate on virtual machines), operating system
(to operate on native application), and high-level language VMs (to operate on manage
application). At each of these levels, the nature of the artifacts considered for check-
pointing and restoring is different. These artifacts can either be classified as internal
or external to the target of the checkpoint. Internal state includes all the artifacts that
have dependencies with the execution container (which can be the hypervisor, opera-
tive system or high-level language VMs). External state represents guest’s specific data
structures.

At the hypervisor it is necessary to keep the memory pages (and related information)
used by the virtual machine supporting the execution of an operating system and its
application, along with the registers of the virtual CPUs in execution [Lagar-Cavilla
et al., 2011]. At the operating system level a general solution would have to keep the
virtual address space of the process (heap, stack, and any mapped region), the signal
handlers and registers [Hargrove and Duell, 2006]. Finally, in high-level language VMs,
what is necessary to be persisted is the application specific state and the stack frames of
the currently executing threads.

Common to these three levels of intervention is the requirement to keep the external
state of the application, such as file contents or socket connections. While the former
issue is typically solved using a shared file system, the latter is usually not a problem in
e-science scenarios [Lagar-Cavilla et al., 2011]. It is, however, a research topic in contexts
related to the migration of multimedia applications [Velazquez-Garcia et al., 2013].

Our architecture design, presented in Section 3.3, includes a mechanism which can
checkpoint and migrate a given application when running co-located with others in a
consolidated environment. To do so, hypervisor-level techniques are too coarse-grained,
as they would checkpoint (and eventually migrate) all the applications inside a given
virtual machine. Alternatively, it would require us to deploy each application in an indi-
vidual HLL-VM running on top of a single system-level VM. With the widely adopted

76

3.2 Related work

approach of HLL-VMs requesting the services of an operating system, this would de-
mand the provisioning of a large amount of physical resources. However, research ef-
forts to run a HLL-VM directly on top of an hypervisor are being made. 1,2

Application-level checkpoint support at the operating system level is a viable alter-
native. Nonetheless, this is not done without the introduction of extra overheads. These
overheads exist because of extensions to kernel modules [Hargrove and Duell, 2006] or
additional levels of virtualization [Osman et al., 2002] which would lay between the OS
and the managed runtime.

As our work targets checkpoint at the HLL-VM level, we focus our discussion of
related work on this abstraction level. A possible division, when analyzing these works,
is to consider those that require modifications to the HLL-VM and those only rely on
source code or bytecode instrumentation. A similar classification was used when dis-
cussing the resource accounting frameworks and mechanisms in Section 3.2.1.

Regarding the first approach, an HLL-VM is augmented to be able to export and
import the state of individual threads. A significant body of work followed this de-
sign: JavaThread [Bouchenak et al., 2004], Jessica2 [Lam et al., 2010; Zhu et al., 2002],
MobileJikesRVM [Quitadamo and Leonardi, 2008], Nomads [Suri et al., 2000]. Re-
garding the second approach (i.e., instrumentation) it takes a method in bytecode an
produces a new one that can capture and restore the execution state (local variable and
operands) [Ma et al., 2002; Sakamoto et al., 2000; Ferreira et al., 2003]. OBIWAN [Fer-
reira et al., 2003] is a middleware for the migration of mobile agents, and it can deal
with multiple threads. This solution manipulates Java source code in order to add addi-
tional instructions to support migration. This has two main disadvantages: it does not
support applications whose Java source code is not provided and, needs the assistance of
the programmer to annotate where checkpointing can be performed and which data to
be included in it.

In summary, few works consider the checkpoint/migration of the complete appli-
cation and thus, lack the support for obtaining the execution state of blocked threads.
They also lack support for the transparent migration of file contents. Finally, none of
the existent solutions support the checkpointing of the application’s specific state along
with the execution of the application.

1https://kenai.com/projects/guestvm, visited August 27, 2014
2http://www.virtualizationpractice.com/virtualize-java-without-an-operating-system-5639/,

visited August 27, 2014

77

https://kenai.com/projects/guestvm
http://www.virtualizationpractice.com/virtualize-java-without-an-operating-system-5639/

3. Architecture of a Cloud-enabled JVM

3.3 Architecture Overview

In a Cloud-like environment, when several instances of a high-level virtual machine (or
manage runtime) are running, each will have a set of resources allocated to the execu-
tion of a potential distinct application. Target applications of this thesis have typically
a long execution time and can dynamically spawn several execution flows to parallelize
their work. This is common in the field of science supported by informatics like eco-
nomics and statistics, computational biology and network protocols simulation [Pierre
and Stratan, 2012; Halappanavar et al., 2012; Gront and Kolinski, 2008]. Given this
heterogeneity of workloads, each managed runtime will have a different ratio between
the resources allocated and the progress the application is effectively doing. In general,
we name this ratio the quality-of-execution or simply QoE [Simão et al., 2011; Simão and
Veiga, 2012]. In our architecture, each instance of a Java VM with extended services, so
that the QoE can be adjusted, we call it QoE-JVM.

QoE can be inferred coarsely from the application’s execution time for medium
running applications, request execution times for more service driven ones such as those
web-based, or from critical situations such as thrashing or starvation. Also, it can be
derived in a more fine-grained way from incremental indicators of application progress,
such as the amount of processed input, disk and network output generated, execution
phase detection, or memory pages updates.

QoE can be used to drive a VM economics model, where the goal is to incrementally
obtain gains in QoE for VMs running applications requiring more resources or for more
privileged tenants. This, while balancing the relative resource savings drawn from other
tentants’ VMs and considering the perceived performance degradation. To achieve this
goal, certain applications will be positively discriminated, reconfiguring the mechanisms
and algorithms that support their execution environment (or even engaging available al-
ternatives to these mechanisms/algorithms). For other applications, resources must be
restricted, imposing limits to their consumption, regardless of some performance penal-
ties (that should also be mitigated). In any case, these changes should be operationally
transparent to the developer and especially to the application’s user. Section 3.4 will
delve into more details.

Figure 3.1 presents the overall architecture of our distributed platform as a service for
Cloud environments. QoE-JVM is supported by several runtime instances, eventually
distributed by several computational nodes, each one cooperating to the sharing of re-

78

3.3 Architecture Overview

Reconfigurable
HLL-VM

...

...

...

...

OS (non modified)

Hypervisor

Reconfigurable HLL-VM

Heap
Manager

Reconfigurable
HLL-VM

...

Partitioned global address space

...

Checkpoint/
Migration

JIT compiler
Resource
Manager

Ballons
Controlller Checkpoint/

Migration

I/O Scheduler

VCPUs
SchedulerPlug-in and

client-API based
Adaptability

(out VM codebase)

Extended runtime
components

(in VM codebase)

QoE Policy
Manager

Explicit and implicit resource
consumption events

Application
progress metric

Acceptance/
new strategy

New strategy

Multi tenant application

Figure 3.1: Overall architecture

sources. For an effective resource sharing, a coordinated mechanism must be in place to
make weak (e.g. change parameters) or strong (e.g. change GC algorithm, migrate run-
ning application) adaptations [Salehie and Tahvildari, 2009]. QoE-JVM encompasses
a distributed shared objects middleware, a reconfigurable high-level language virtual
machine (HLL-VM), and, at the bottom, the available reconfiguration mechanisms of
system level virtual machine (Sys-VM). In this architecture, the operating system (OS)
services are only used, not extended. The following sections will present details of the
these building blocks.

3.3.1 Resource Awareness and Control

The Resource Aware virtual machine is the underlying component of the proposed in-
frastructure. It has two main characteristics: i) resource usage monitoring, and ii) re-
source usage restriction or limitation. Current virtual machines for managed languages
can already report about several aspects of their internal components, like used memory,
number of threads, classes loaded, such as the JVM Tools Interface. 3 However, they do
not enforce limits on the resources consumed by their single node applications. In a
cluster of competing virtual machines, because there is a limited amount of resources to
be shared among several instances, some resources must be constrained in favor of an
application or group of applications.

Extending a managed language VM to be aware of existing resources must be done

3http://docs.oracle.com/javase/7/docs/technotes/guides/jvmti/, visited July 1, 2014

79

http://docs.oracle.com/javase/7/docs/technotes/guides/jvmti/

3. Architecture of a Cloud-enabled JVM

without compromising the usability (mainly portability) of application code. The VM
must continue to run existing applications as they are. This component is an extended
Java virtual machine with the capacity to extract high- and low-level VM parameters,
e.g., heap memory, network and system threads usage. Along with the capacity to
obtain these parameters, they can also be constrained to reflect a cluster policy. The
monitoring system is extensible in the number and type of resources to consider.

Controlling resource usage inside an HLL-VM can be carried out by either i) inter-
cepting calls to the classes that constitute the platform’s library and virtualize access to
system resources or, ii) changing parameters or algorithms of internal components of
the virtual machine. Examples of the first hook type include classes of the base class
library, such as java.util.Socket (where the number of bytes sent and received per
unit of time can be controlled) and java.util.concurrent.ThreadPoolExecutor

(where parameters control the minimum and maximum number of threads available at
each pool).

Regarding the second hook type, a prominent example is the memory management
subsystem (i.e., garbage collection algorithm, heap size). Because we are dealing with
applications where memory is automatically managed by the runtime, this second type
of hook has the potential for a significant impact on application performance. More than
determining the ideal moment to collect [Zhang et al., 2006; Hertz et al., 2011] or using
intricate mechanisms to minimize page misses during collection [Hertz et al., 2005], the
system should employ heap sizing policies that favor an effective use of resources [Libič
et al., 2014; White et al., 2013; Singer and Jones, 2011].

3.3.2 Accurate Progress Monitoring

We believe that resource scheduling should be done in a mostly transparent way. This
is so because target developers (i.e., scientists using Java applications or writing their
own using existing Java frameworks) will most likely be skeptic about the perspective
of learning new programming interfaces to transfer their applications or frameworks.
In order to comply with this idea, we need, not only to monitor resource consumption,
but also to determine application progress.

There are different ways to measure the progress of an application. Progress metrics
can be either collected from sensors outside or inside the application. In the first case,
progress metrics are collected from the execution environment, which includes, hard-

80

3.3 Architecture Overview

ware, operating system and managed runtimes. In the second case the, application is
built from the source with the capability to report its progress, or is instrumented at
load time and enhanced to do so. To be useful, the instrumentation process must be
guided by hints about relevant flows (e.g. annotations or configuration files).

3.3.3 Checkpointing and Migration of the Execution State

The counterpart of resource containment is when an application needs more resources
but the node where it is running is highly loaded, or resource-exhausted. If the applica-
tion is allowed some elasticity in the used resources, they should be made available.

This migration should be done without the need for an application restart. To
this end, the resource aware VM includes a mechanism for checkpointing and migra-
tion, which enables the whole application to migrate to another node, where another
resource-aware VM is running with the necessary amount of resources. The migration
is performed without restarting the application, avoiding losing all the work previously
done. This is particularly useful for applications with long execution times, as in vari-
ous fields related with e-Science (mostly in the context of Grid and Cloud computing)
where managed languages are becoming dominant, including chemistry, computational
biology and bio-informatics [Hiden et al., 2013; Pierre and Stratan, 2012; Gront and
Kolinski, 2008], with many available Java-based APIs (e.g., Neobio 4).

The checkpointing component of the architecture represents the necessary exten-
sions to the HLL-VM, so that fine-grained checkpointing, restoring and migration of
applications is possible. Our checkpointing mechanism can also run concurrently with
the main program, preventing full pause of the application during checkpointing, thus
further reducing the overhead experienced by applications. It addresses checkpoint con-
sistency and excessive resource consumption (i.e., CPU, memory). The activation of
these mechanisms is regulated either by local rules, activated to provide a failure-tolerant
environment, or by a Quality of Execution Controller (QoE Controller). In the last
case, based on execution requirements (e.g., CPU, memory, and network usage), the
QoE controller can apply two coarse-grained measures: i) checkpoint and suspension of
a VM, ii) migration of the application execution state to another node.

4http://neobio.sourceforge.net/, visited August 6, 2014

81

http://neobio.sourceforge.net/

3. Architecture of a Cloud-enabled JVM

3.3.4 Adaptability and the Policy Engine

The policy engine is responsible for loading and enforcing the policies provided by ad-
ministrators and possibly users, regarding resource management. It achieves this by,
globally, sending the necessary commands to the resource-aware HLL-VMs, in order for
them to modify some runtime parameters, or the type of algorithm used to accomplish
a cluster-related task, as well as instructing them to spawn threads or activate check-
pointing, restoring and migration mechanisms. A special focus of this component of
QoE-JVM is also on the improvement of applications’ performance, and what can be
adapted in the underlying resource-aware VMs in order to achieve it.

The policy engine operates autonomously or in reaction to a given resource out-
age in the VMs. Autonomous behavior is governed by maintaining knowledge about
the applications’ previous execution, and adjusting the VMs and cluster parameters to
achieve better performance for that specific application. Reactive operation is driven by
declarative policies that determine the response to a resource outage. This response may
result in a local adaptation (e.g. restrain the resources of another VM in the same node,
or change the GC algorithm to consume less memory but eventually taking more time
to execute), or have cluster-wide impact (e.g. migrate the entire application to a VM in
another node).

Figure 3.2 presents an example of a declarative policy to be used by VM instances
represented in Figure 3.1. Policies are organized in resource attributes, which identify
adaptation targets, and rules, which determine monitoring, decision and actions to be
made for each resource considered.

The example presented in Figure 3.2 defines limits for CPU usage, and the number
of threads and sockets the application is allowed to use. CPU usage and threads are
monitored and managed by specific rules but using a similar, reusable approach: i) CPU
usage is monitored with a sliding window in order to filter irrelevant peaks, while ii)
the number of active threads is also monitored with a sliding window in order to trig-
ger rescheduling only when the limit is consistently exceeded. When CPU usage limit
is reached the execution is suspended. In the case of reaching the maximum number
of local threads, a cluster-wide thread distributor would be activated to be used in the
creation of new threads.

82

3.4 Driving Adaptability with Quality-of-Execution

1 <? xml ver s ion="1.0" encod ing="UTF-8" ?>
2 <RAMConfiguration>
3 <R e s o u r c e A t t r i b u t e s name="NumberOfThreads" i n i t a l L i m i t="15" />
4 <R e s o u r c e A t t r i b u t e s name="CpuUsage" i n i t a l L i m i t="75%" />
5 . . .
6 <Rule t a r g e t="NumberOfThreads">
7 <!−− Determines how accumulation i s done −−>
8 <OnConsume> <Counter /> </OnConsume>
9 <!−− Determines what happens i f l i m i t i s reached −−>

10 <OnLimit> <ResourceExcept ion /> </OnLimit>
11 <!−− Determines what happens i f consumption i s s u c c e s s f u l −−>
12 <OnAfterComsumption>
13 <UseClus t e r t h r e s h o l d="AllCpus"/>
14 </OnAfterComsumption>
15 </ Rule>
16 <Rule t a r g e t="CpuUsage">
17 <OnConsume> <HistoryAverage window="5"/> </OnConsume>
18 <OnLimit> <Suspend m i l i s e c o n d s="500"/> </OnLimit>
19 </ Rule>
20 . . .
21 </ RAMConfiguration>

Figure 3.2: Declarative policy example considering two types of resources

3.4 Driving Adaptability with Quality-of-Execution

This section starts by presenting how a simple and generic metric can be used to deter-
mine which runtime resource management strategy can be used for each workload in
order to maximize its performance when faced with resource degradation. It then de-
scribes which kind of performance or progress metrics are relevant to be used. We finish
by presenting the kind of resources that are relevant to be controlled, in order to have
an elastic behavior, without breaking the intended semantics of application execution.

3.4.1 An economic-inspired model

In Economics, there are typically two major classes of variables that drive business per-
formance or its processing: those related with: i) Value and its equivalent output, revenue,
ii) those related with input and its associated cost. Depending on the specific kind of
economic activity, revenue may be the value of sales of a shop or factory, or financial

83

3. Architecture of a Cloud-enabled JVM

gains in banking, stock market, etc. Costs may be associated with labour, resources, raw
materials, energy, investment, capital expenditures, and so on.

Economists sometimes need to take into account non-direct monetary aspects, such
as opportunity cost, risk, trade-offs in capital investment [Mankiw, 2011]. This leads
to two inherent notions in Economics (apparent even to those uninitiated) that: i) an
activity consumes/costs resources and creates value, and ii) faced with limited resources,
these should be geared towards the activities that at a given moment provide more re-
turn, and should be taken from activities where they will harm their return the least,
i.e., commit and transfer resources in order to achieve a global positive (or maximized)
yield from the whole process.

In many shared or multi-tenant infrastructures, such as private clouds, there may be
no money. However, even when there is a credit-based system, we are left with more
impressive notions of Progress and Resource Usage. These are more easily comparable
over time, and sometimes across applications and application classes. Resource usage is
more easily established while still open to some debate. Memory, CPU, and storage are
mostly obvious and should be accounted for. The notion of progress, while intuitive, is
more elusive and dependent on application semantics (we address this in Section 3.4.3).
For the moment, let us consider progress as units of work carried out by the application.
Additionally, we can also measure how progress and resource usage vary, at what rate,
and determine the effectiveness by relating both.

Regarding yield, we are mostly interested in determining how to identify two specific
situations: i) when an application is making reduced progress due to resource shortage
and could use more resources effectively, and ii) when an application is not taking full
advantage of its resources and could make similar progress with fewer resources. Ob-
viously, we want to transfer resources from applications in ii) (least effective first) to
applications in i) (more hurt first).

This should be performed incrementally, based on the derivative of progress and re-
source consumption over time. Therefore, we are immune to different ways of measur-
ing progress, resource usage, and profiles across applications. This tradeoff is illustrated
in Figure 3.3, where we compare percentage variation of progress (%dP) against percent-
age variation of resource usage (%dR) and establish a ratio between the two , our yield.
The measurement of this variable will determine the transfer of resources. As decisions
also affect the system, we could restrict resources to take slots of 5% (of currently allo-

84

3.4 Driving Adaptability with Quality-of-Execution

50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100% 105% 110% 115% 120% 125% 130% 135% 140% 145% 150%

50% 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00
55% 0.91 1.00 1.09 1.18 1.27 1.36 1.45 1.55 1.64 1.73 1.82 1.91 2.00 2.09 2.18 2.27 2.36 2.45 2.55 2.64 2.73
60% 0.83 0.92 1.00 1.08 1.17 1.25 1.33 1.42 1.50 1.58 1.67 1.75 1.83 1.92 2.00 2.08 2.17 2.25 2.33 2.42 2.50
65% 0.77 0.85 0.92 1.00 1.08 1.15 1.23 1.31 1.38 1.46 1.54 1.62 1.69 1.77 1.85 1.92 2.00 2.08 2.15 2.23 2.31
70% 0.71 0.79 0.86 0.93 1.00 1.07 1.14 1.21 1.29 1.36 1.43 1.50 1.57 1.64 1.71 1.79 1.86 1.93 2.00 2.07 2.14
75% 0.67 0.73 0.80 0.87 0.93 1.00 1.07 1.13 1.20 1.27 1.33 1.40 1.47 1.53 1.60 1.67 1.73 1.80 1.87 1.93 2.00
80% 0.63 0.69 0.75 0.81 0.88 0.94 1.00 1.06 1.13 1.19 1.25 1.31 1.38 1.44 1.50 1.56 1.63 1.69 1.75 1.81 1.88
85% 0.59 0.65 0.71 0.76 0.82 0.88 0.94 1.00 1.06 1.12 1.18 1.24 1.29 1.35 1.41 1.47 1.53 1.59 1.65 1.71 1.76
90% 0.56 0.61 0.67 0.72 0.78 0.83 0.89 0.94 1.00 1.06 1.11 1.17 1.22 1.28 1.33 1.39 1.44 1.50 1.56 1.61 1.67
95% 0.53 0.58 0.63 0.68 0.74 0.79 0.84 0.89 0.95 1.00 1.05 1.11 1.16 1.21 1.26 1.32 1.37 1.42 1.47 1.53 1.58

100% 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50
105% 0.48 0.52 0.57 0.62 0.67 0.71 0.76 0.81 0.86 0.90 0.95 1.00 1.05 1.10 1.14 1.19 1.24 1.29 1.33 1.38 1.43
110% 0.45 0.50 0.55 0.59 0.64 0.68 0.73 0.77 0.82 0.86 0.91 0.95 1.00 1.05 1.09 1.14 1.18 1.23 1.27 1.32 1.36
115% 0.43 0.48 0.52 0.57 0.61 0.65 0.70 0.74 0.78 0.83 0.87 0.91 0.96 1.00 1.04 1.09 1.13 1.17 1.22 1.26 1.30
120% 0.42 0.46 0.50 0.54 0.58 0.63 0.67 0.71 0.75 0.79 0.83 0.88 0.92 0.96 1.00 1.04 1.08 1.13 1.17 1.21 1.25
125% 0.40 0.44 0.48 0.52 0.56 0.60 0.64 0.68 0.72 0.76 0.80 0.84 0.88 0.92 0.96 1.00 1.04 1.08 1.12 1.16 1.20
130% 0.38 0.42 0.46 0.50 0.54 0.58 0.62 0.65 0.69 0.73 0.77 0.81 0.85 0.88 0.92 0.96 1.00 1.04 1.08 1.12 1.15
135% 0.37 0.41 0.44 0.48 0.52 0.56 0.59 0.63 0.67 0.70 0.74 0.78 0.81 0.85 0.89 0.93 0.96 1.00 1.04 1.07 1.11
140% 0.36 0.39 0.43 0.46 0.50 0.54 0.57 0.61 0.64 0.68 0.71 0.75 0.79 0.82 0.86 0.89 0.93 0.96 1.00 1.04 1.07
145% 0.34 0.38 0.41 0.45 0.48 0.52 0.55 0.59 0.62 0.66 0.69 0.72 0.76 0.79 0.83 0.86 0.90 0.93 0.97 1.00 1.03
150% 0.33 0.37 0.40 0.43 0.47 0.50 0.53 0.57 0.60 0.63 0.67 0.70 0.73 0.77 0.80 0.83 0.87 0.90 0.93 0.97 1.00

%dP
%dR

Figure 3.3: Ratio of Progress versus Resource Allocation variation overview.

cated), possibly repeated while the application yield does not change significantly and is
ranked high by the algorithm.

This simple model allows the scheduler to make decisions, over a given time frame, of
where resources should primarily be diverted to and where from. It is very adaptable and
flexible as it is driven by differential, incremental measurements to detect and determine
effectiveness of resource usage and makes quick decisions on resource allocation transfer,
restriction (in the extreme of application checkpointing or migration).

The upper triangular zone in Figure 3.3 illustrates applications that are using re-
sources effectively, since the extra resources they allocated have resulted in a compara-
tively larger progress, while in the down triangular zone, application progress has not
improved at the same rate as the influx of resources. Empirically, applications experi-
ence several phases where they are more or less eager for resources, and others where
they stabilize, or could even drop some with little impact (e.g. caching data elements
no longer accessed). The key point is to approximately identify when this happens and
transfer resources, when they are scarce, accordingly.

The same happens in Economics, regardless of the type of business. No matter
the business is more or less labor- or capital-intensive, yearly profit percentage increase
reports make up a uniform measurement that allows decision-makers to know when
markets are emergent (booming) or mature (saturated), thus able to reward better or
worse the new investments on them, or are simply below opportunity cost. The same
happens with stock market prices and their percentage variation (even though they may
not represent results accurately but simply expectations). The next section will detail
our resource redistribution model.

85

3. Architecture of a Cloud-enabled JVM

3.4.2 QoE-JVM Economics

Our goal with QoE-JVM is to maximize applications quality-of-execution (QoE). We
initially regard QoE as a best-effort notion of effectiveness of the resources allocated to
the application, based on the computational work actually carried out by the application
(i.e., by employing those allocated resources). To that end, we resort to the Cobb-
Douglas production function from Economics to motivate and to help characterize the
QoE, as described next.

We are partially inspired by the Cobb-Douglas [Cobb and Douglas, 1928] produc-
tion function (henceforth referred to as equation) from Economics to motivate and to
help characterize QoE. The Cobb-Douglas equation, presented in Equation 3.1, is used
in Economics to represent the production of a certain good.

Y = A ·Kα · Lβ (3.1)

In this equation, Y is the total production, or the revenue of all the goods produced
in a given period, L represents the labour applied in the production and K is the capital
invested.

It asserts the now common knowledge (not at the time it was initially proposed,
ca. 1928) that value in a society (regarded simplistically as an economy) is created by
the combined employment of human work (labour) and capital (the ability to grant
resources for a given project instead of to a different one). The extra elements in the
equation (A, α, β) are mostly mathematical fine-tuning artifacts that allow tailoring the
equation to each set of real-life data (a frequent approach in social-economic science,
where exact data may be hard to attain and to assess). They take into account techno-
logical and civilization multiplicative factors (embodied in A) and the relative weight
(cost, value) of capital (α) and labour (β) incorporated in the production output (e.g.,
more capital-intensive operations such as heavy industry, oil refining, or more labour-
intensive such as teaching and health care).

Alternatively, labour can be regarded, not as a variable representing a measure of hu-
man work employed, but as a result, representing the efficiency of the capital invested,
given the production output achieved, i.e., labour as a multiplier of resources into pro-
duction output. This is usually expressed by representing Equation 3.1 in terms of L, as
in Equation 3.2. For simplicity, we have assumed the three extra elements to be equal

86

3.4 Driving Adaptability with Quality-of-Execution

to one. First, the technological and civilization context does not apply, and since the
data center economy is simpler, as there is a single kind of activity, computation, and
not several, the relative weight of labour and capital is not relevant. Furthermore, we
will be more interested in the variations (relative increments) of efficiency than on the
efficiency values themselves, hence the simplification does not introduce error.

L = Y

K
(3.2)

Now, we need to map these variables to relevant factors in a cloud computing site
(a data center). Production output (Y) maps easily to application progress (the amount
of computation that gets carried out), while capital (K), associated with money, maps
easily to resources committed to the application (e.g., CPU, memory, or their pricing)
that are usually charged to users deploying applications. Therefore, we can regard labour
(considered as the human factor, the efficiency of the capital invested in a project, given
a certain output achieved) as how effectively the resources were employed by an appli-
cation to attain a certain given progress.

While resources can be measured easily by CPU shares and memory allocated, ap-
plication progress is more difficult to characterize. We are mostly interested in relative
variations in application progress (regardless of the way it is measured), as shown in
Equation 3.3, according to relative variations in resources (to assess resource efficiency),
and their complementary variations in production cost per unit, PCU , as an approx-
imation of the marginal cost (capital), in resources, to achieve the obtained progress
(output). The term unit is a generic one because we want to apply this rationale to
different kinds of resources, as described next.

∆ L ≈ ∆ Y

∆ K
, and thus ∆ PCU ≈ ∆ K

∆ Y
(3.3)

We assume a scenario where, when applications are executed in a constrained (over-
committed) environment, the infrastructure may remove m units of a given resource
from a set of resources R (e.g. memory size, CPU cores, bandwidth) and give it to
another application that can benefit from this transfer. Examples of transferable units
are 50 MiBytes of heap size, 1 core, and 2 MiBytes/sec of bandwidth. This transfer may
have a negative impact on the application that offers resources and it is expected to have
a positive impact on the receiving application. To assess the effectiveness of the transfer,

87

3. Architecture of a Cloud-enabled JVM

the infrastructure must be able to measure the impact on the giver and receiver applica-
tions, namely somehow to measure the approximate savings in PCU, that is, the relation
between employed resources and effective progress, as described next.

Variations in PCU can be regarded as an opportunity for yield regarding a given
resource r, and a management strategy. The term strategy generically identifies a given
configuration’s options, either in use or available. Naturally, comparing strategy sa and
sb only makes sense if they are of the same nature. For example, sa and sb can represent
different kinds of garbage collection algorithms or different ratios to grow/shrink the
heap size. So, the yield is a return or reward from applying a given strategy to some
managed resource, during the time span ts, as presented in Equation 3.4.

Y ieldr(ts, sa, sb) = Savingsr(sa, sb)
Degradation(sa, sb)

(3.4)

Because QoE-JVM is continuously monitoring the application progress, it is possible
to incrementally measure the yield. Each partial Y ieldr, obtained in a given time span
ts, contributes to the obtained total. This can be evaluated either over each time slice or
globally, when applications, batches or workloads complete. For a given execution or
evaluation period, the total yield is the result of summing all significant partial yields, as
presented in Equation 3.5.

TotalY ieldr(sa, sb) =
n∑

ts=0
Y ieldr(ts, sa, sb) (3.5)

The definition of Savingsr represents the savings of a given resource r when two al-
location or management strategies are compared, sa and sb, as presented in Equation 3.6.
Functions Ur(sa) and Ur(sb) relate the usage of resource r, given two different man-
agement strategies or allocation configuration, sa and sb. For example, if r represents
memory, then U could be total bytes currently allocated. We allow only those recon-
figurations which offer savings in resource usage to be considered in order to calculate
yields.

Savingsr(sa, sb) = Ur(sa)− Ur(sb)
Ur(sa)

(3.6)

Regarding performance degradation, it represents the impact of the savings, given a
specific performance metric, as presented in Equation 3.7. Considering the time taken to

88

3.4 Driving Adaptability with Quality-of-Execution

execute an application (or part of it), the performance degradation relates the execution
time of the original configuration, P (sa), and the execution time after the resource
allocation strategy has been modified, P (sb).

Degradation(sa, sb) = P (sb)− P (sa)
P (sa)

(3.7)

Each instance of the QoE-JVM continuously monitors application progress, mea-
suring the yield of the applied strategies. As a consequence of this process, QoE, for a
given set of resources, can be enforced observing the yield of the applied strategy, and
then keeping or changing it as a result of having a good or a bad impact. To accom-
plish the desired reconfiguration, the underlying resource-aware VM must be able to
change strategies during execution, guided by the global QoE manager. The next sec-
tion will present the architecture of QoE-JVM , detailing how progress can be measured
and which resources are relevant. A fundamental aspect of this approach is to determine
how much progress the application is doing, as explained next.

3.4.3 Progress monitoring

Our economics-inspired metric needs to take as input the performance degradation of the
application. In practical terms, performance relates to the progress, slower or faster, the
application can make with the allocated resources.

To compare different metrics to measure progress, we classify applications as request-
driven (or interactive) and continuous process (or batch). Request-driven applications
process work in response to an outside event (e.g. HTTP request, new work item in
the processing queue). Continuous processing applications have a target goal that drives
their calculations (e.g. aligning DNA sequences). For most non-interactive applications,
measuring progress is directly related to the work done and the work that is still pending.
For example, some algorithms that analyze graphs of objects have a visited/processed ob-
jects set, which typically will encompass all objects when the algorithm terminates (or
at least, a significant part of it). If the rate of objects processed can be determined, it
will indicate how the application is making progress. Other examples would be applica-
tions to perform video encoding, where the number of frames processed is a measure of
progress [Hoffmann et al., 2011].

There is a balance and trade-off in measuring progress, using a metric that is close to

89

3. Architecture of a Cloud-enabled JVM

the application’s semantics, and the transparency of progress measuring. The number of
requests processed, for example, is a metric closely related to the application’s semantics,
which gives an almost direct notion of progress. Nevertheless, it will not always be
possible to acquire such information. On the other hand, low-level activity, such as I/O
or memory pages access, is always possible to acquire inside the VM or the OS. But
relating this type of metrics to the application’s effective progress is a challenging task.
The following are relevant examples of metrics that can be used to monitor the progress
of an application, presented in a decreasing order of closeness to application semantics,
but with an increasing order regarding the level of transparency.

• Number of requests processed: This metric is typically associated with interac-
tive applications, such as web applications or with Bag-of-Tasks jobs;

• Completion time: For short and medium time living applications, where it is
not possible to change the source code or no information is available to lead an
instrumentation process, this metric will be the more effective one. This metric
only requires the QoE-JVM to measure wall clock time when starting and ending
the application (or alternatively measuring CPU time used);

• Code, instrumented or annotated: If information is available about the appli-
cation’s high-level structure, instrumentation can be used to dynamically insert
probes at load time, so that the QoE-JVM can measure progress using a metric
that is semantically more relevant to the application;

• Mutator execution time. When mutators (i.e., application-specific threads) have
high execution percentages, in proportion to the time spent in garbage collec-
tor, this indicates that the application is making more progress than others where
garbage collection is using a higher percentage of total execution.

• I/O: storage and network: For applications dependent on I/O operations, changes
in the quantity of data saved or read from files, or in the information sent and re-
ceived from the network, can contribute to determine whether the application
reached a bottleneck or is making progress;

• Memory page activity: Allocation of new memory pages is a low-level indicator
(collected from the OS or from the VMM) that the application is making effective

90

3.4 Driving Adaptability with Quality-of-Execution

progress. A similar indication will be given when the application is writing in new
or previously unused (or unmodified) memory pages.

Although QoE-JVM could read low-level indicators as I/O storage and network ac-
tivity or memory page activity, we have made experiences with two metrics to measure
performance degradation as defined in Section 3.4.2, the completion time and the fre-
quency of calls to annotated methods. Completion time is used to demonstrate the
benefits of our system when using well known subsets of core application components,
organized as benchmarks [Blackburn et al., 2006] for Java runtimes. These core com-
ponents are representative of different types of workloads but tend to have a short exe-
cution time (more details in Chapter 5). When running the complete version of these
applications, we use the frequency of calls during a window observation. Frequency
of calls metric allows monitoring a small set of methods that have to be identified by
the programmer. We rely on the programmer’s knowledge about the domain model to
identify a relevant set of methods, using language-specific constructions such as annota-
tions. A similar rationale can be found in other fields of software engineering such as
dynamic software updating [Pina et al., 2014; Hayden et al., 2012], or software transac-
tional memory [Carvalho and Cachopo, 2011], where the programmer’s help allows to
reduce the performance impact of identifying critical points in the program.

3.4.4 Resource types and usage

In the model presented at Section 3.4.2, Savingsr refers to any computational resource
(r), a measurable computational asset which applications consume to make progress.
Resources can be classified as either explicit or implicit, regarding the way they are con-
sumed. Explicit resources are the ones that applications request during execution, such
as, the number of allocated objects, the number of network connections, the number
of opened files. Implicit resources are consumed as a result of executing the application,
but are not explicitly requested through a given library interface. Examples include the
heap size, the number of cores or the network transfer rate.

Both resource types are relevant to be monitored and regulated. Explicit and im-
plicit resources might be constrained as a protection mechanism against ill behaved or
misusing applications [Geoffray et al., 2009]. For well-behaved applications, limiting
these resources further below the application contractual levels will lead to an execu-
tion failure. On the other hand, the regulation of implicit resources determines how the

91

3. Architecture of a Cloud-enabled JVM

CPU Mem Net Disk Pools

Counted number
of cores

size quota quota size
(min,
max)

Rate cap per-
centage

growth/
shrink
rate

bandwidth I/O rate -

Table 3.1: Implicit resources and their throttling properties

application will progress. For example, allocating more memory will potentially have
a positive impact, while restraining memory will have a negative effect. Nevertheless,
giving too much memory space is not a guarantee that the application will benefit from
that allocation, while restraining memory space will still allow the application to make
some progress.

In this work, we focus on controlling some types of implicit resources because of
their potential to provide elasticity to resource management. QoE-JVM can control the
admission of these resources, that is, it can throttle resource usage. It gives more to the
applications that will progress faster if more resources are allocated. Because resources
are finite, they will be taken from (or not given to) other applications. Even so, the QoE-
JVM will strive to choose the applications where progress degradation is comparatively
smaller.

Table 3.1 presents implicit resources and the throttling properties associated to each
one. These properties can be either counted values (e.g. x number of cores) or rates
(e.g. y KiBytes/second). To regulate CPU and memory, both types of properties are
applicable. For example, CPU can be throttled either by controlling the number of
cores or the cap (i.e., the maximum percentage of CPU a VM is able to use, even if there
is available CPU time). Memory usage can be regulated, either through a fixed limit, or
by using a factor to shrink or grow this limit. Although the heap size cannot be smaller
than the working set of the application, the size of the extra allocated memory influences
application progress. A similar rationale can be made about resource pools, which are a
common strategy to manage resources in applications handling multiple requests, such
as web and database servers (e.g. thread pools, connection pools).

92

3.4 Driving Adaptability with Quality-of-Execution

Summary

This chapter presented a general resource allocation and adaptation schema which obeys
to a VM economic model, which aims to maximize overall quality-of-execution (QoE)
through resource efficiency. Essentially, our system wants to put resources where they
can do the most good to applications and the cloud infrastructure provider, while tak-
ing them from where they can do the least harm to applications (from which they are
taken).

93

3. Architecture of a Cloud-enabled JVM

94

4 Resource Management Mechanisms

Contents
4.1 Overview of the Jikes Research Virtual Machine 96

4.1.1 Thread management . 97
4.1.2 Memory management . 98
4.1.3 Extensions to the language and Native Calls 98

4.2 Resource accounting framework . 99
4.2.1 Resource management policies . 100
4.2.2 Resource management hooks in the VM and classpath 102
4.2.3 Yield-driven heap management 105
4.2.4 Yield-driven CPU ballooning . 108

4.3 Progress monitoring library . 109
4.4 Checkpointing and migration of the execution state 111

4.4.1 Consistent extraction of the execution state 111
4.4.2 Concurrent checkpointing . 114

Chapter overview

In this chapter we present some implementation details of the main resource manage-
ment mechanisms that are supported by our managed execution platform. We focus on
the necessary extensions to a high-level virtual machine regarding resource accounting,
internal adaptability mechanisms and progress framework [Simão et al., 2011; Simão
and Veiga, 2013c]. We also discuss how a serial checkpointing mechanism, which allows
the migration of applications across nodes in a cluster, was modified to operate concur-
rently with the main execution of the application [Simão et al., 2012; Silva et al., 2013].

95

4. Resource Management Mechanisms

Unified Resource

Management framework

Progress Monitoring

Framework

State checkpointing for

Migration and Resilience

Alternative Heap Resizing

Policies
JIT

Compiler

Class

Loader

GC

Threading

New mechanisms Existing mechanisms

Application

QoE- JVM

Figure 4.1: Layered view of the new resource management mechanisms

Figure 4.1 presents a layered view of the four extensions discussed in this chapter. The
chapter starts by introducing the JVM’s sub-systems that are relevant to our work.

4.1 Overview of the Jikes Research Virtual Machine

The Jikes Research Virtual Machine (Jikes RVM) [Alpern et al., 2005] is a Java VM
(JVM) which provides a flexible infra-structure to test new virtual machine technolo-
gies. It is currently a widely used JVM in several research areas such as garbage col-
lection [Cameron and Singer, 2014; Hertz et al., 2011; Kumar et al., 2012; Click et al.,
2005], just-in-time compilation techniques [Brown and Horspool, 2010; Fink and Qian,
2003; Zhang and Krintz, 2005], debugging and reliability [Makarov and Hauswirth,
2013; Li et al., 2011] and cross-layers interactions [Frampton et al., 2009], with more
than 188 publications. It is the open source evolution of Jalapeño, an IBM internal
project [Alpern et al., 2000].1

The original goal of Jalapeño was to build an efficient JVM for servers, with the
1http://jikesrvm.org/, visited June 30, of 2014

96

http://jikesrvm.org/

4.1 Overview of the Jikes Research Virtual Machine

additional property of being primarily written in Java. To solve this meta-circular na-
ture, the compilation process of Jikes RVM includes the writing of an image file with
the VM’s initial execution state. A Java program called image writer runs in a regular
JVM (called the source JVM) that loads the classes of the basic sub-systems of Jikes RVM,
which are also written in Java. This program resembles a cross-compiler, where, in this
case, the translation is from the object model of the source JVM to the one used by Jikes
RVM. To boot the VM, this image is read by a small C and assembly program. After
creating the necessary external dependencies with the underlying operating system (e.g.
files for the System.in, System.out), Jikes RVM code will setup its sub-systems (GC and
JIT compiler) and call the Main method of the class specified in the command line.

In the following sections we give further details of three sub-system related to the
extensions presented later in this chapter.

4.1.1 Thread management

Japaleño started with a green threading model where, for one physical processor, the
VM would request one operating system thread (called virtual processor) which would
be used to spawn N Java threads. Because it was possible to use M physical processors,
this model was also known as M-to-N threading. It adds some advantages such as rapid
switching between mutators (i.e., regular Java threads) and GC threads, OS-independent
locking mechanisms, and fast context switching. Recently, Jikes RVM has abandoned
this approach and now (since version 3.1.0) maps each Java thread to an OS-native thread
(e.g. a pthread), offloading most scheduling decisions to the OS.

All threads running in each Jikes RVM instance (either the ones spawned by the
applications or the ones dedicated to garbage collection and compilation services) de-
rive from org.jikesrvm.scheduler.RVMThread. This class provides relevant thread
management state and operations that must still be present regardless of the OS thread
scheduler.

Some runtime mechanisms, notably the garbage collector, need threads to yield their
execution, regardless of the application code. A stop-the-world garbage collector needs
to ensure that threads are stopped and in a safe state when scanning objects starting from
each thread’s roots. A thread in a safe state will not change the state of objects. The obvi-
ous way to reach this state is if the thread is blocked in some synchronization mechanism
(e.g. a monitor). However, threads can be in an equivalent state even if not blocked.

97

4. Resource Management Mechanisms

For example, a thread running native code after a call to the Java Native Interface (JNI)
cannot interfere with the garbage collector or other runtime mechanisms, and so it is in
what is called an effectively safe state.

4.1.2 Memory management

Jikes RVM uses the Memory Management Toolkit (MMTk) [Blackburn et al., 2004;
Shahriyar et al., 2013] for garbage collection services. This toolkit provides the im-
plementation of several well-known garbage collection strategies (e.g. copying, mark-
sweep, reference counting, generational) and a well-structured framework to develop
new strategies. MMTk is organized around high-level concepts, such as the policy, which
associates a given memory space to an allocation and collection algorithm. Generational
garbage collectors, which divide the heap in two or more logical spaces (i.e., generations)
can use more than one policy.

Underpinning the execution of all memory management strategies is the request
of new virtual memory pages. This operation is done lazily by MMTk as more heap
space is needed. The total space used by the heap is adjusted during the execution of
the application. The size of this space has a complex relation with the application’s
execution time. A small heap will result in fast but frequent collections while a larger
heap will result in longer but less frequent collections. Concurrently with this trade-off,
when the heap size goes beyond a certain dimension, the number of page faults will
increase.

4.1.3 Extensions to the language and Native Calls

Some services inside Jikes RVM need to execute operations that are not available in the
original Java language. An example is pointer arithmetic used in garbage collectors. This
is done using Magic [Frampton et al., 2009], a small set of extensions targeting high-level
languages.

In some situations the core code of the Jikes RVM has to directly use services of the
underlying operating system. Scheduling mechanisms are a common place to find these
interactions, when, for example, threads have to block in synchronization mechanisms.
Although Java has a mechanism for native invocations, the Java Native Interface (JNI),
Jikes RVM does not use such calls for its own internal communications with the op-
erating system interface, or “C” libraries in general, because of the extra overhead they

98

4.2 Resource accounting framework

RA-JVM

Resource-aware JVM

Resource Awareness
and Managment

Module
(RAMM)

Threads Data Sent/Rcv

Connections

Reconfigurable components
(e.g. Distributed scheduling, Migration,

GC plans, JIT optimization level)

Internal &
 E

xternal
R

esource S
ensors

Files

CPU Usage Used Memory

RA-JVM
Resource

aware
JVM

Node

Manager

Cluster-enabled application

Environment (OS, Network, CPU, ...)

Notify

Add resource
usage rule

Resource attribute

Adapt

Consume

Figure 4.2: Interactions with the Resource Awareness and Management Module

imply. This overhead is the result of, for example, setting up a pointer to the caller object
and the JNI interface pointer so that native code can access JNI functions representing
Java services (e.g. string manipulation, reflection).

4.2 Resource accounting framework

To implement our architecture, we need to develop a managed language virtual machine
with the capacity to monitor and restraint the use of resources based on a dynamic pol-
icy, defined declaratively outside the VM. Some work has been done in the past aiming
to introduce resource-awareness in such high-level virtual machines (which details were
presented in Section 2.5.2). Nevertheless, to the best of our knowledge, none of them is
publicly available or currently usable with widely used software, operating systems, and
hardware architectures. Based on this observation, we have chosen to extend the Jikes
RVM [Alpern et al., 2005] to be resource-aware. Thus, in the next subsection we will
describe different aspects of our current work on Jikes RVM.

Figure 4.2 depicts further details on the architecture of the resource-aware VM we
developed for QoE-JVM . The resource-aware HLL-VM has a specific module for each
type of manageable resource (e.g., files, threads, CPU usage, connections, bandwidth,
and memory). Each of the module exports to the Resource Awareness and Manage-

99

4. Resource Management Mechanisms

ment Module (RAMM) an attribute that abstracts the specifics of the resource. This
way, when the RAMM decides to limit, reduce or block the usage of a resource by the
application, it can instruct the respective attribute without worrying about the details
of applying limitation to that specific resource (e.g., disallowing file open, or take a
thread out of scheduling). The RAMM consumes profile information from the main
VM and QoE-JVM mechanisms (GC and JIT level, and migration, respectively). These
mechanisms can be adapted and reconfigured by command of the RAMM.

4.2.1 Resource management policies

The management of a given resource implies the capacity to monitor its current state
and to be able to directly or indirectly control its usage. The resources that can be
monitored in a virtual machine can be either specific of the runtime (e.g. number of
threads, number of objects, amount of memory) or be strongly dependent of the under-
lying architecture and operating system (e.g. CPU usage). To unify the management of
such disparate types of resources, we carried out the implementation of JSR 284 - The
Resource Management API [Grzegorz Czajkowski, 2009] in the context of Jikes RVM,
previously not implemented in the context of any widely usable virtual machine.

The relevant elements to resource management as prescribed by JSR 284 are: re-
sources, consumers, and resource management policies. Resources are represented by their
attributes. For example, resources can be classified as bounded or unbounded. Unbounded
resources are those that have no intrinsic limit (or if it exists, it is large enough to be es-
sentially ignored) on the acquisition of the resource (e.g. creation of threads). The limits
on the consumption of unbounded resources are only those imposed by application-level
resource usage policies. Resources can also be reservable, if it is possible to reserve a given
number of units of a resource to an application.

A Consumer represents an executing entity which can be a thread or the whole VM.
Each consumer is bound to a resource through a Resource Domain. Although consumers
can be bound to different Resource Domains, they cannot be associated to the same re-
source through different Domains. Currently, we consider the whole VM as a single
consumer.

Resource domains impose a common resource management policy to all registered
consumers. This policy is programmable through callback functions, which can be ei-
ther constraints or notifications. Constraints exist to impose resource consumption limits

100

4.2 Resource accounting framework

HistoryNotification

CPUUsage

HistoryConstraint

IOBytesReceived

MemoryAllocated

IOBytesSent

NumberOfThreads

«Interface»
ResourceAttributes

+ getName(): String
+ getUnitName(): String
+ getTotalQuantity(): long
+ getRateManagementPeriod(): long

1..n

ResourceConsumer

+ currentDomain(
 resourceAttributes: ResourceAttributes
): ResourceDomain
+ currentDomains(): ResourceDomain[]

1..n1..n

ResourceDomain
+ domains: LinkedList<ResourceDomain>
+ addConstraint(constraint: Constraint): void
+ addNotification(notification: Notification): void
+ addConsumer(resourceConsumer: ResourceConsumer): void
+ consume(quantity: long, allowPartialGrant: boolean): long
+ getResourceAttributes(): ResourceAttributes
+ getUsage(): long
+ getUsageRate(): long
+ relinquish(quantity: long): long

«Interface»
Notification

+ postConsume(
 domain: ResourceDomain ,
 previousUsage: long,
 currentUsage: long
): void

«Interface»
Constraint

+ preConsume(
 domain: ResourceDomain,
 currentUsage: long,
 proposedUsage: long
): long

Figure 4.3: Class diagram with the main entities of JSR 284, Resource attributes, Con-
straints, and Notifications

while notifications can be used to monitor the usage of a certain resource and determine
more complex actions (e.g. migration of the execution state). The JSR 284 does not
specify what happens when the consumption of a certain amount of resources is ac-
cepted or denied by the installed constraints. The behavior of our system in this event
is determined by the installed rules, namely the elements <OnAfterComsumption> or
<OnLimit>, as exemplified in the policy of Figure 3.2 in Chapter 3.

Figure 4.3 presents the main interfaces specified by the JSR 284. Basically, the code
artifacts defined by this JSR are only these interfaces, along with their rationale detailed
in the documentation.2 The figure also includes relevant classes representing resource
attributes, constraints and notifications that are currently supported by our execution
environment. The ResourceDomain resembles the observable from the Observer de-

2Although there is a link to a reference implementation in https://home.java.net/, the SVN
repository for the project jsr284-ri-tck does not contain any source code. Visited May 11, 2012.

101

https://home.java.net/

4. Resource Management Mechanisms

1 publ i c c l a s s HistoryAverage implements C o n s t r a i n t {
2 . . .
3 long [] _ s amp l e sHi s to ry ;
4 publ i c HistoryAverage (i n t wndSize , long maxConsumption)
5 { . . . }
6 publ i c long preConsume (ResourceDomain domain ,
7 long currentUsage , long proposedUsage) {
8 long a v e r a g e = 0 ;
9 i f (_nSamples == _sample sHi s to ry . l e n g t h) {

10 a v e r a g e = _currentSum / _nSamples ;
11 _currentSum −= _sample sHi s to ry [_ idx] ;
12 }
13 e l s e { _nSamples += 1 ; }
14 _currentSum += proposedUsage ;
15 _ s ampl e sHi s to ry [_ idx] = proposedUsage ;
16 _ idx = (_ idx + 1) % _sample sHi s to ry . l e n g t h ;
17 return a v e r a g e > _maxConsumption ? 0 : proposedUsage ;
18 }
19 }

Figure 4.4: Regulate consumption based on past wndSize observations

sign pattern [Gamma et al., 1995] where interested observers register for pre- or post-
consumption information, as Constraints or Notifications, respectively.

Figure 4.4 shows an example of a constraint, HistoryAverage, which can be used to
regulate a CPU usage policy. Consider a scenario where the running application cannot
use the CPU above a threshold for a given time window, because the remaining CPU
available is reserved for another application (e.g., as part of the quality-of-execution
awarded to it). In this case, when the CPU usage monitor evaluates this rule, it would
suspend all threads (i.e., return 0 for the allowed usage) if the intended usage is above
the average of the last wndSize observations. A practical case would be to suspend the
application if the CPU usage is above 75% for more than 5 observations.

4.2.2 Resource management hooks in the VM and classpath

A new package of classes was integrated in the GNU classpath in order for applications
to be able to specify their policies.3 With this infrastructure, all consumable resources

3http://www.gnu.org/software/classpath/, visited July 4, 2014.

102

http://www.gnu.org/software/classpath/

4.2 Resource accounting framework

monitored, or directly controlled by the VM and class library, can be constrained by
high-level policies defined externally to the VM runtime.

These classes interact with the resource-aware underlying VM so that applications
can add their own resource consumption policies, if needed. This is useful if there are
third party libraries, used by the application, which want to impose their own restric-
tions or need to receive notifications of resource consumptions. Regarding the particular
case of constraints, application-defined policies cannot give more resources than the ones
allowed for each application by the provider. This is enforced by taking the minimum
values of each constraint for a particular resource domain.

We have considered two kinds of resource consumption, as defined in Section 3.4.4:
explicit and implicit. The control of explicitly consumed resources has a similar imple-
mentation. In general, the resources that can be consumed explicitly (e.g. file, sockets,
threads) are already represented in the platform as Java classes which the application uses
directly (e.g. File, Socket, Thread). During the creation of these objects, to account
the number of instances, and during the use of these services, to account usage rates, the
installed rules are evaluated.

Examples of controlled explicit resources include the number of threads, which is a
common source of CPU contention and performance degradation when multiple appli-
cations are running, and the amount of live objects.

Regarding the first example, the Jikes boot sequence was augmented with the setup
of a resource domain to manage the creation of application level threads. VM threads
(e.g. GC, finalizer) are not accounted. The Jikes RVM class responsible for the creation
and representation of all threads was also extended to use the callbacks of this resource do-
main, so that the number of new threads is determined by a policy defined declaratively
outside the runtime. VM-internal threads (e.g. GC, finalizer) are not accounted.

Regarding the second example, the call to module RAMM, passing an instance of
UsedMemoryResourceAttributes, is made in method RuntimeEntrypoints.resol-

vedNewScalar(RVMClass cls), as demonstrated in Figure 4.5. The final stage of the
garbage collection process was modified to relinquish the amount of memory freed.

When a resource is about to be consumed, the decision on whether the operation
is allowed or not is delegated to the RAMM, giving as parameter an instance of a
ResourceAttribute, which describes the resource that is about to be consumed. The
RAMM, based on the type of ResourceAttribute, then obtains the corresponding

103

4. Resource Management Mechanisms

1 import org . j i k e s r v m . ramm .RAMM;
2 import org . j i k e s r v m . ramm . r e s o u r c e a t t r i b u t e s . UsedMemoryResourceAttr ibutes ;
3 import org . j i k e s r v m .mm. mminter face . MemoryManager ;
4 publ i c c l a s s c l a s s Runt imeEntrypoints
5 implements Constants ,
6 A r c h i t e c t u r e S p e c i f i c . S t a ck f r ameLayoutCons t an t s {
7 publ i c s t a t i c Object r e s o l v e d N e w S c a l a r (RVMClass c l s) {
8 i n t s i z e = c l s . g e t I n s t a n c e S i z e () ;
9 i f (VM. f u l l y B o o t e d)

10 i f (RAMM. i n i t i a l i z e d && RAMM. enableMem) {
11 i f (RAMM. consume (
12 UsedMemoryResourceAttr ibutes . g e t I n s t a n c e () ,
13 s i z e , f a l s e) == 0) {
14 VM. s y s W r i t e l n ("[A2RVM@MemoryUsageMonitor]:
15 Memory policy threshold excedeed.") ;
16 MemoryManager . isMemoryExhausted = true ;
17 }
18 }
19 // remaining unchanged code
20 }
21 }

Figure 4.5: Modification to the code that resolves the bytecode 0xbb (“new”)

1 publ i c f i n a l c l a s s ResourceDomain
2 p r i v a t e long u s a g e ;
3 // . . .
4 publ i c long consume (long q ua n t i t y , boolean a l l o w P a r t i a l G r a n t) {
5 long proposedUsage = u s a g e + q ua n t i t y ,
6 min = Long .MAX_VALUE,
7 r e s u l t = 0 ;
8 for (C o n s t r a i n t c o n s t r a i n t : c o n s t r a i n t s) {
9 r e s u l t = c o n s t r a i n t . preConsume (th i s , u sage , proposedUsage) ;

10 i f (r e s u l t < min)
11 min = r e s u l t ;
12 }
13 i f (r e s u l t < q u a n t i t y)
14 return 0 ;
15 u s a g e = r e s u l t ;
16 return r e s u l t ;
17 }
18 }

Figure 4.6: Delegation of resource consumption decision to the installed constraints

104

4.2 Resource accounting framework

1 package org . j i k e s r v m . runt ime ;

3 publ i c a b s t r a c t c l a s s S y s C a l l {
4 // . . .
5 @SysCal lTemplate
6 publ i c a b s t r a c t in t sysCPUUsage () ;
7 }

Figure 4.7: Java stub to generate call to native code

resource domain and requests that a certain amount of units be consumed. This will
result in either allowing, delaying, or denying the request (thrown and exception). Fig-
ure 4.6 shows the code in the ResourceDomain class which is responsible for querying
the installed constraints.

The information regarding the consumption of implicit resources is currently ob-
tained using the operating system services, namely the /proc filesystem. Others have
adopted a solution that relies on the instrumentation of bytecode. These approaches
have the potential for a significant overhead, in both code size and execution perfor-
mance. Hulaas et al. [Hulaas and Binder, 2008] reports a framework, J-RAF2, for the
demanding task of per-thread accurate CPU accounting. J-RAF2 increases code size in
approximately 14% and has an average execution overhead of 30%. Given these observa-
tions, our approach depends on a small portion of native code that can be easily tailored
to a specific operating system.

Regarding CPU usage, we have modified the booting process of the Jikes RVM so
that a new internal thread is created to monitor this activity. The interaction with OS
system calls is efficiently supported by the available JIT compilers. When a properly
annotated method is called, the JIT compiler will generate a call to a “C” language stub,
using the platform’s underlying calling convention. An example of the stub for reading
CPU usage, by the above mentioned thread, is presented in Figure 4.7. The code invoked
by the stub then reads from /proc, and returns the results, as presented in Figure 4.8.

4.2.3 Yield-driven heap management

The process of garbage collection (GC) relates to execution time but also to allocated
memory. On the CPU side, a GC algorithm must strive to minimize the pause times
(more so if of stop-the-world type). On the memory side, because memory management

105

4. Resource Management Mechanisms

1 extern "C" long unsigned sysCPUUsage (void)
2 {
3 char buf [LIMIT] ;
4 long unsigned cpuUsageUser , cpuUsageKernel ;
5 i n t i , paramCount ;

7 fp = fopen ("/proc/self/stat" , "r") ;
8 i f (f g e t s (buf , LIMIT , fp) == NULL) { /* error */ }
9 f c l o s e (fp) ;

11 cpuUsageUser =0; cpuUsageKernel =0; i =0; paramCount=0;
12 while (i<LIMIT) {
13 i f (buf [i++] == ’ ’) {
14 ++paramCount ;
15 i f (paramCount == PARAM_IDX) break ;
16 }
17 }
18 i f (i == LIMIT) { /* error */ }
19 ++i ;
20 while (i < LIMIT && buf [i] != ’ ’)
21 cpuUsageUser = cpuUsageUser *10 + (buf [i++]−’0’) ;
22 i f (i == LIMIT) { /* error */ }
23 i ++;
24 while (i < LIMIT && buf [i] != ’ ’)
25 cpuUsageKernel = cpuUsageKernel *10 + (buf [i++]−’0’) ;
26 return (cpuUsageUser+cpuUsageKernel) ;
27 }

Figure 4.8: Native code for reading /proc cpu usage

106

4.2 Resource accounting framework

is virtualized, the allocated memory of a managed language runtime is typically bigger
than the actual working set. With many runtimes executing in a shared environment, it
is important to keep them using the least amount of memory to accomplish their work.

Independently of the GC algorithm, runtimes can manage the maximum heap size,
mainly determining the maximum used memory. In the memory management system
of the research runtime Jikes RVM, after a full heap collection, the runtime considers
whether the heap should change size. The algorithm to change the heap size takes into
account the percentage of live objects and the ratio of time spent in GC. The live objects
ratio measures the relation between the total memory reserved (which includes large,
immortal and non-movable objects spaces) and the space reserved for regular objects
allocation, as presented in Equation 4.1.

liveObjectsRatio = reservedMemory

currentHeapSize
(4.1)

On the other hand, the ratio of time spent in GC measures the relation between the
accumulated time spent in GC related activities and total application time, as presented
in Equation 4.2.

gcT imeRatio =
∑n
collection=0 GCDurationcollection

totalAppT ime
(4.2)

This heap size change policy is represented by a function that takes as input the
liveObjectsRatio and the gcT imeRatio, returning the heap size growth/shrink per-
centage. In this document, we refer to this function as a matrix because it maps two
parameters to one. The default policy determines that the heap shrinks about 10%
when the time spent in GC is low (less than 7%) when compared to regular program
execution, and the ratio of live objects is also low (less than 50%). This allows for savings
in memory used. On the other hand, the heap will grow by about 50%, when the exe-
cution environment spends more time in GC activities, and the number of live objects
still remains high. This growth in heap size will lead to an increase in memory used by
the runtime, aiming to use less CPU time because the GC will run less frequently.

Considering this heap management strategy, the heapsize is the resource which con-
tributes to the yield measurement. To determine how the workloads executed by each
tenant react to different heap management strategies, e.g., more targeted at heap expan-
sion or more at heap saving, we apply Equation 3.6. The memory savings (Savingshsize)

107

4. Resource Management Mechanisms

are then found by comparing the results of applying two different allocation policies,
that is, two different allocation matrices, Mα and Mβ, as presented in Equation 4.3. In
this equation, Uhsize represents the maximum number of bytes assigned to the heap.

Savingshsize = Uhsize(Mα)− Uhsize(Mβ)
Uhsize(Mα) (4.3)

4.2.4 Yield-driven CPU ballooning

A similar approach can be extended to CPU management, employing a strategy inspired
by the ballooning mechanism available to virtual machine monitors. In system VMs, bal-
looning works by having a customized kernel driver installed at the guess OS allocating
memory pages excessively, in order to drive the guest OS into swapping, and reduce
the amount of useful pages in the guest’s physical memory. This allows the core work-
ing set of the guest VM to be obtained with a grey-box approach. We have conducted
experiments in ballooning the CPU by using OS processes’ priority levels and capping
mechanisms of the Linux containers.4

In the first case, each instance of the JikesRVM bounds to a single core (calling the
Linux CPU scheduler API using the extensions described in Section 4.1.3) while an
auxiliary process exists in each machine, that is executed with the highest priority. This
last process, when active, can be regulated to consume more or less CPU by varying its
passive waiting period. Because of its high priority, this behavior will have impact on the
regular JikesRVM processes. This approach is effective to assess the relative efficiency of
the remaining CPU usage awarded to a JVM but is only useful and justified when there
are other JVMs to award the CPU time to.

When experimenting with the Linux containers, we executed each JikesRVM process
inside a container, and used the parameter lxc.cgroup.cpuset.cpus, to determine
core affinity, and lxc.cgroup.cpu.shares, to determine the proportional shares. This
second approach proved to be more useful since the one relying only on priorities made
it very difficult to impose a given percentage of CPU restriction. When using the shares

parameter, if the initial share is, for example, 1000, and then changed to 750, this means
the affected JikesRVM will get 25% less CPU time.

4https://linuxcontainers.org/, visited July 3, 2014

108

https://linuxcontainers.org/

4.3 Progress monitoring library

1 @Retention (R e t e n t i o n P o l i c y .RUNTIME)
2 @Target ({ ElementType .METHOD,
3 ElementType . FIELD ,
4 ElementType .PARAMETER})
5 publ i c @ i n t e r f a c e P r o g r e s s M e t e r {
6 double r e l e v a n c e () d e f a u l t 1 . 0 ;
7 }

Figure 4.9: The progress annotation

1 publ i c c l a s s AClass {
2 @ProgressMeter (r e l e v a n c e =0.8)
3 publ i c void m1() { . . . }
4 publ i c void m2(@ProgressMeter (r e l e v a n c e =0.2) p) {
5 for (i n t i=p ; i<l i m i t ; ++i) . . .
6 }
7 }

Figure 4.10: Example of usage of the progress annotation

Akin approaches would include specifically designed user-level mechanisms for CPU
scheduling [dos Reis and Cerqueira, 2010], or with the hypervisor CPU scheduler, low-
ering CPU caps or reassigning the VCPUs to CPUs mapping [Barham et al., 2003].5

Thus, regarding CPU as the resource, the savings in computational capability (that
can be transferred to other tenants) can be measured in MFLOPS or against a known
benchmark as Linpack. The savings are found by comparing two different CPU shares
or priorities, CPUα and CPUβ, as presented in Equation 4.4. In this case, UMflops gives
us the total CPU saved, e.g., relative to the number of MFLOPS or Linpack benchmarks
that can be run with the CPU ‘saved’.

SavingsMflops = UMflops(CPUα)− UMflops(CPUβ)
UMflops(CPUα) (4.4)

4.3 Progress monitoring library

In this section, we discuss some of the implementation details regarding the progress
library used by QoE-JVM to capture the frequency of calls to methods identified by the

5http://wiki.xenproject.org/wiki/Credit_Scheduler, visited at June 16, 2014

109

http://wiki.xenproject.org/wiki/Credit_Scheduler

4. Resource Management Mechanisms

1 publ i c c l a s s Progre s sAgen t {
2 publ i c s t a t i c void premain (S t r i n g a rg s , I n s t r u m e n t a t i o n i n s t) {
3 i n s t . addTrans former (
4 new MethodLookupTransformer (a r g s) , f a l s e
5) ;
6 }
7 }

Figure 4.11: Entrypoint of the Java agent

programmer as most relevant to the progress of the application. The identification is
made using annotations like the one presented in Figure 4.9. These are placed by the
programmer into strategic places of the code, where the application is known to make
effective progress.

By their definition, these annotations can be, in principle, applied to methods, fields
and method parameters. If applied to methods what is relevant is to know what is the
call rate to the method. We currently keep track of the overall call rate (OCR) which
represents the call frequency since the application started. Periodically, QoE-JVM also
calculates a window call rate (WCR) which is the call frequency in the last observation
window (e.g. number of calls in the last 5 seconds). This helps to determine approximate
derivatives of these values and to promptly detect possible phase changes in application
execution. If applied to fields or parameters, what is relevant to know is the frequency
of writes.

The annotation is characterized by the relative contribution of the method to the
overall application progress. Figure 4.10 presents a code snippet with two usage ex-
amples, one associated with a method and the other associated with a parameter. All
annotations are used to insert progress measurement code at load time which will either
count method calls or updates regarding fields and local variables dependent on parame-
ters. The current implementation only looks for annotations associated with methods.

To process annotations at start time and instrument the program with the measuring
code, QoE-JVM augmented the load process of a JVM, using an instrumentation Java
agent of the java.lang.instrument package, to look for annotations in the classes
metadata as they are loaded into the VM. The base structure of the Java instrumen-
tation agent used is represented in Figure 4.11. The agent does not have to obey to
a given interface but it has to define the a method called premain. Here, the agent’s

110

4.4 Checkpointing and migration of the execution state

arguments are processed (e.g. observation window size) and the instrumentation pro-
cess can be setup using the services provided by a JVM specific implementation of the
Instrumentation interface. These services include the hooking of a class-level byte
code transformer, represented by the interface ClassFileTransformer.

The agent transverses each class’ metadata and inserts progress measuring code where
necessary, as explained in the steps of Figure 4.12. This was done with the help of Javas-
sist, a framework which allows injection of source code and bytecode.6 The inserted
code, in step 3, is a call to the method that updates the per-method OCR. Besides this
instrumentation code during class loading, the agent spawns a thread which, in the pre-
defined period, looks at the current and previous OCR to determine the WCR.

4.4 Checkpointing and migration of the execution state

This section presents the extensions made to a mechanism to checkpointing and re-
store the application’s execution state, so that the checkpoint operation can be made
concurrently with the application, instead of having to stop the execution during the
process. The base checkpointing mechanism [Garrochinho, 2010] also extends previous
work [Quitadamo and Leonardi, 2008] by i) being able to autonomously checkpoint and
restore the whole JVM execution, ii) providing support for the modern version of Jikes
RVM, where the green threading model was abandoned, and iii) supporting persistence
of objects representing files. We start by highlighting the main challenges regarding ob-
taining a consistent checkpoint of the execution state and the restoring of that state. We
support our discussion on the overview of the Jikes RVM, particularly Section 4.1.1,
where we have introduced the life cycle of threads managed by the Jikes RVM.

4.4.1 Consistent extraction of the execution state

To obtain a consistent snapshot of the application’s execution context, the checkpointing
mechanism must extract the execution state and the application state. The former con-
sists, in essence, of the current method in execution and its instruction pointer together
with the sequence of calls that resulted in the current one. The latter is the represen-
tation of all the objects that were created during the application’s life time and are still
reachable. In its simplest form, these operations require the following steps to be made

6http://www.csg.ci.i.u-tokyo.ac.jp/~chiba/javassist/, visited July 1, 2014

111

http://www.csg.ci.i.u-tokyo.ac.jp/~chiba/javassist/

4. Resource Management Mechanisms

1 package org . i n e s c i d . g sd . qoevm . a g e n t ;
2 import j a v a . l a n g . in s t ru m en t . * ;
3 import j a v a . s e c u r i t y . Protect ionDomain ;
4 import j a v a s s i s t . * ;
5 import org . i n e s c i d . g sd . qoevm . a n n o t a t i o n . P r o g r e s s M e t e r ;

7 c l a s s MethodLookupTransformer implements C l a s s F i l e T r a n s f o r m e r {
8 publ i c byte [] t r an s fo rm (C l a s s L o a d e r l , S t r i n g name ,
9 Cla s s <?> c , Protect ionDomain d , byte [] b)

10 throws I l l e g a l C l a s s F o r m a t E x c e p t i o n {
11 /* 1 . bui ld Cla s s d e s c r i p t o r from byte array ’b ’ */
12 t ry {
13 C l a s s P o o l pool = C l a s s P o o l . g e t D e f a u l t () ;
14 c l = pool . makeClass (new j a v a . i o . ByteArrayInputStream (b)) ;
15 i f (c l . i s I n t e r f a c e () == f a l s e) {
16 /* 2 . s earch for annotated methods and f i e l d s */
17 ArrayLi s t<CtFie ld> a n n o t F i e l d s = new ArrayLi s t<CtFie ld >() ;
18 C t F i e l d [] f i e l d s = c l . g e t D e c l a r e d F i e l d s () ;
19 for (i n t i = 0 ; i < f i e l d s . l e n g t h ; i++)
20 // . . . keep record of f i e l d s with ProgessMeter annotat ion
21 /* 3 . i n s e r t c a l l to operat ion that marks progre s s */
22 CtMethod [] methods = c l . ge tDec l a redMethods () ;
23 for (i n t i = 0 ; i < methods . l e n g t h ; i++) {
24 i f (methods [i] . isEmpty () == f a l s e) {
25 Object a n n o t a t i o n= methods [i] . g e tAnnota t ion (
26 org . i n e s c i d . g sd . qoevm . . P r o g r e s s M e t e r . c l a s s) ;
27 i f (a n n o t a t i o n != nul l)
28 methods [i] . i n s e r t B e f o r e (
29 "org.inescid.gsd.qoevm.agent.ProgressMarker.markProgress"+
30 "(\""+methods [i] . getName()+"\");") ;
31 f i n a l CtMethod method = methods [i] ;
32 for (C t F i e l d f i e l d : a n n o t F i e l d s) {
33 f i n a l C t F i e l d a n n o t F i e l d = f i e l d ;
34 methods [i] . i n s t r u m en t (new ExprEdi tor () {
35 publ i c void e d i t (F i e l d A c c e s s f a) throws
36 CannotCompileException {
37 i f (f a . getFie ldName () . e q u a l s (a n n o t F i e l d . getName ())) {
38 // . . . d e t e c t read or wri te operat ion
39 // . . . with fa . i sReader ()
40 } } } }
41 // . . . p roc e s s eventua l excep t ions
42 }
43 }

Figure 4.12: Bytecode instrumentation inserting calls to the markProgess

112

4.4 Checkpointing and migration of the execution state

in sequence: 1) pause all application-level threads, so that no new objects are created or
modified, 2) extract and persist the call stack of every application-level thread, 3) extract
and persist the state of all application-level objects, and 4) resume all application-level
threads.

Regarding the first step, we have already discussed that the JIT compiler inserts
yield points in the generated code. The code at these points, inserted in methods’ pro-
logues/epilogues and loop back edges, checks if the thread must yield or not, by calling
the RVMThread.checkBlock() method. This method goes through an extensible sys-
tem for blocking requests, already used by the GC and the locking sub-systems, to check
if the calling thread must be blocked. If this happens, the thread is in what is known as a
safe point - it is not executing bytecodes that could eventually trigger garbage collection
work or any other runtime mechanism. In this case, a consistent snapshot of all call
stacks could be preserved along with application state. After that, execution would be
resumed.

Not all threads will be able to reach the mentioned safe points. Examples include
threads that have called native code, using JNI, taking an unbounded time to return to
the managed context. Threads that are already blocked in synchronization mechanisms
will also not reach these safe points. Nevertheless, in all these situations, the thread
in a state called “effectively safe”. The thread is not necessarily suspended but it is, in
practice, in a state where no bytecode is executing. A more detailed overview of each
thread internal state is presented in the Jikes RVM project website.7

After the JVM is stopped, the second step can proceed. The extraction of the execu-
tion state should be done in a way that can be transfered to another running instance of
the Jikes RVM in a remote node. To this end, the base checkpointing mechanism takes
advantage of a feature of the Jikes RVM compilation system, the on-stack-replacement
(OSR) mechanism [Fink and Qian, 2003], which was originally designed to allow dy-
namic recompilations of currently executing methods. The OSR is able to extract and
represent in memory the state of a given method activation. The state is defined by
the program counter (as a bytecode index), values of local variables (either literals or
references to objects) and their stack location, and a reference to the activation’s stack
frame.

This mechanism is used to recursively extract the execution state of all methods

7http://jikesrvm.org/Thread+Management, visited June 30, 2014

113

http://jikesrvm.org/Thread+Management

4. Resource Management Mechanisms

in the call stack of a given thread, until the frame corresponding to the activation of
Thread.run() is found. There was, however, the need to avoid extracting information
of methods that could not be restarted in another context. A prominent example is
when the top of the call stack is a method of a synchronization primitive managed by
the OS. The state of these primitives cannot be migrated to a remote system.

To solve this, the base mechanism walks back in the call stack and starts extracting
the state in the method that tried to acquire the lock. When the execution is restored, the
thread (i.e., a given execution stack) owning the original lock must be the same. Other
threads trying to obtain the lock will eventually acquire it in a different order from the
original execution. In this work, we assume that applications are deterministic in the
sense that the code path leading to the lock being acquired will surely be executed again.
However, the acquisition and release order can be different from the original execution
because of scheduling decisions of the operating system. Still, applications that depend
on a specific order for these operations are not correct by nature [Silva et al., 2013].

The third and last phase is the persistence of the previously recorded state to an
external file. Currently, this step relies on a combination of default and per-type serial-
ization capabilities. Application-specific objects are assumed to have the capacity to be
serialized.

The main challenge of the restore procedure is how to resume execution at the point
of checkpointing while recovering the complete physical (machine dependent) call stack.
The OSR mechanism offers half of the solution by injecting prologue bytecodes to re-
cover the local variables and stack expressions. In addition to this OSR prologue, an
unconditional call to the next method in the original call stack is inserted, immediately
followed by a jump to the instruction that follows this call in the original execution.

These operations are all made at the bytecode level, leaving to the compiler the
translation to the native layout, typically subjected to optimization. There is, in fact,
two versions of each of these methods that need to be compiled. This is so because the
specialized version can only be used during the first activation after restore. For the rest
of the time, the prologues cannot be present.

4.4.2 Concurrent checkpointing

Our checkpointing mechanism can also run concurrently with the main program, avoid-
ing full pause of the application during checkpointing, thus further reducing the over-

114

4.4 Checkpointing and migration of the execution state

head experienced by applications. There are two main implementation issues regarding
concurrent (or incremental) checkpointing: i) ensuring checkpoint consistency, since
the application continues executing while the checkpoint is created, and ii) avoiding ex-
cessive resource consumption (CPU, memory), due to the extra load of executing the
application and the checkpointing mechanism simultaneously, that could lead to thrash-
ing and preclude the very performance gains sought by executing the checkpointing
concurrently.

The first issue is related with isolation and atomicity. Checkpointing, while being
carried out concurrently, must still be atomic, regarding the running application. This
means it must reflect a snapshot of the execution state that would also be obtained with
the application paused or suspended (while the application is not modifying its state).
Otherwise, there could co-exist in the snapshot objects checkpointed at different times,
making the whole object graph inconsistent and violating application invariants. In
essence, the challenge in this operation is that the application’s working set (and VM’s
internal structures) will change, while the checkpointing is being carried out. If the
changes were to be reflected into the data being saved, the checkpoint would be useless
because if would be inconsistent.

The second issue stems from the fact that if we want to simultaneously freeze a clone
of the application’s state in time (to be able to save it in the checkpoint concurrently),
while the application keeps executing and accessing the original object graph, it would
potentially almost double the memory occupied by the virtual machine. Furthermore,
performing the serialization of the clone object graph will cause contention for the CPU,
with the application code that is simultaneously being executed (although the OS is able
to interleave their execution with some degree of efficiency).

Fortunately, two aspects of current architectures help when dealing with these is-
sues: i) lazy memory duplication, as embodied in copy-on-write mechanisms provided
by the memory management modules in modern operating systems, and ii) the increas-
ing prevalence of multicore hardware, available in most computers today. These two
aspects are leveraged to ensure concurrent checkpointing offers smaller overhead to run-
ning applications.

In fact, the original and clone version of the object graph need not exist physically
in their entirety. To efficiently support this, we use the copy-on-write mechanism that
allows two processes to share the whole of the address space, with pages modified by one

115

4. Resource Management Mechanisms

Parent VM

Child VM
1

Child VM
2

Child VM
3

t
calculation

t
checkpoint

Concurrent CheckpointingConcurrent Checkpointing

Parent VM

t
calculation

t
checkpoint

Serial CheckpointingSerial Checkpointing

t
setup

t
total

t
total

Figure 4.13: Timelines of serial and concurrent checkpoint

of them copied on demand. Currently, our implementation in Linux relies on Linux’s
system call, fork(), which has the desired semantics [Tanenbaum, 2007]. In Windows,
the same primitive and semantics is available through the POSIX subsystem, thus en-
suring portability across the two operating systems. Therefore, the memory overhead
will be limited to the memory pages containing objects that are actually modified during
the checkpointing. Due to the locality in memory accesses during application execution
(locality-of-reference and working set principles), this amount is limited.

Figure 4.13 illustrates how the concurrent checkpoint progresses, along with the
application, in comparison with the serial (non-concurrent) approach. tcalculation is the
free run time, without any checkpoint. ttotal is the total execution time, considering
either serial or concurrent checkpoint.

With serial checkpointing, the total execution time of an application is, expectedly,
the sum of the time performing its calculations or processing (hereafter, calculation
time), with the time to perform a checkpoint (once in the figure), assuming approxi-
mate times, multiplied by the number of checkpoints taken. Therefore, checkpointing is
always in the critical path, regarding the total execution time, precluding frequent check-
pointing (for instance, very large working sets, and not very long executions, probably,
only once at mid execution time).

116

4.4 Checkpointing and migration of the execution state

With concurrent checkpointing, most of the checkpointing time is removed from
the critical path, regarding total execution time (only the time to setup the child-VM
remains). This makes it feasible to perform checkpoints more frequently, without sig-
nificantly penalizing application execution times, thus reducing even more the amount
of lost computation (lost work) whenever a failure takes place.

The internal functioning is as follows. When checkpointing is triggered, the VM
calls fork() to create a child VM, i.e., another process, sharing the whole address space,
responsible solely for carrying out the actual checkpointing operation. The copy-on-
write semantics ensures that the child VM’s working set will be consistent, even while the
parent VM continues to update data, due to application execution. When checkpointing
is complete, the child VM terminates, as it is no longer required.

There are, however, limitations in the semantics of the fork() primitive. Although
the address space is shared, meaning that references collected in the parent VM will still
be valid in the child VM, threads alive in the parent VM will not exist in the child VM.
Only the thread that called the fork() primitive will be cloned. This means that if any
of the remaining threads of the parent VM are holding a lock, that lock will still exist in
the child VM (because of memory copy semantics) but the owner thread will not, and
so, the protected resource will be permanently inaccessible.

This has consequences in what can be made in the child VM. The first two steps
presented in Section 4.4.1, that is, stopping the VM and extracting the representation of
each stack frame of every thread, must be done while all threads are alive. So, this must
be completed in the parent VM. Nevertheless, this action should take only a very small
fraction of the total checkpointing time.

The third and last step is the one where a significant delay can occur, since it de-
pends on the transversal of an object graph with arbitrary size and the interaction with
I/O primitives to write the overall state to disk. This should be done in the child VM.
The parent VM can have threads that are blocked in Java monitors, supported either by
Linux mutexes (pthread_mutex) or conditional variables (pthread_cond). Neverthe-
less, the child VM will not need to request the access to these application-level protected
resources, avoiding a potential deadlock.

This strategy can be used in other VMs, besides Jikes RVM. In most cases, it will
even be simpler to call the system’s service, because most other VMs are implemented

117

4. Resource Management Mechanisms

using the same language of the operating system, C and C++.8 Nevertheless, in the
Jikes RVM, these operations (fork() and akin) are also efficiently supported by the
available JIT compilers, as presented in Section 4.1.3. Our stub calls fork(), with
reduced overhead, and returns the result to the calling VMs (i.e. parent or child).

Summary

This chapter described a combination of new resource allocation and scheduling mech-
anisms that were integrated in a Java Virtual Machine (JVM), the Jikes RVM. These
mechanisms allow the management of co-located JVMs in an application-driven way, al-
lowing the enforcement of the model discussed in Section 3.4. The resource management
and progress frameworks along with the heap resizing policies allows for a fine-grained
control of resource usage. The checkpoint mechanism allows for a more coarse-grain
approach where applications can be migrated to nodes with more available resources.
The ability to conduct the checkpoint in parallel with the application’s execution makes
the this mechanism tailored for scenarios were failures can occur in applications with a
long execution time.

8http://openjdk.java.net/groups/hotspot/, visited July 4, 2014

118

http://openjdk.java.net/groups/hotspot/

5 Evaluation

Contents
5.1 QoE applied to memory and CPU management 120

5.1.1 Heap size management . 120
5.1.2 QoE Yield applied to Heap size 125
5.1.3 QoE Yield applied to CPU usage 129

5.2 Resource consumption constraints . 130
5.3 Fine-grained progress accounting . 134
5.4 Concurrent checkpoint . 138

Chapter overview

In this chapter, we show the evaluation of the adaptability mechanisms and the impact
of the adaptability strategies, as described in Chapters 3 and 4. In particular, we want to
evaluate:

• how do different workloads react to dynamic allocation of resources (Section 5.1)

• how costly is it to monitor and account resource usage in a language runtime
(Section 5.2 and Section 5.3)

• what are the prospective benefits of checkpointing in the event of failures (Sec-
tion 5.4).

The evaluations were made in machines with Intel(R) Core(TM)2 Quad processors
(with four cores) and 8GB of RAM, each running Linux Ubuntu 12.04. Our exten-
sions were made to Jikes RVM [Alpern et al., 2005] code base, version 3.1.1.

119

5. Evaluation

Measuring performance of code running in a JVM is a challenging task because there
are multiple factors to account for, such as, the structure of the application, the con-
figuration of the virtual machine (memory management strategy, heap size, dynamic
optimizer, threading systems, and so on), and the hardware [Georges et al., 2008]. One
of the main factors of non-determinism during evaluation is usually associated with the
sampling mechanism used by the JIT compiler to determine hotspots. Because sampling
can observe different values from an execution to the other, the JIT optimization plans
can also vary. To avoid this disturbance, and according to the suggestions on the VM
web site, we used the replay compilation option when evaluating internal modifications
to the Jikes RVM.1

5.1 QoE applied to memory and CPU management

The resource management economics, presented in Chapter 3.4.2, was applied to manage
the heap size and CPU usage regarding different types of workloads.

5.1.1 Heap size management

The Jikes RVM default heap growing matrix (hereafter known as M0) is presented in
Figure 5.1. Figure 5.2 shows QoE-JVM alternative matrices. In all matrices, 1.0 is the
neutral value, representing a situation where the heap will neither grow nor shrink.
Other values represent a factor of growth or shrinkage, depending on whether the value
is greater or smaller than 1.0, respectively. To assess the benefits of our resource manage-
ment economics, we have setup three new heap size changing matrices. The distinctive
factors are the growth and decrease rates determined by each matrix.

Matrices M1 and M2, presented in Figure 5.2.a and 5.2.b, impose a strong reduction
on the heap size when memory usage and management activity is low (i.e., few live ob-
jects and short time spent on GC). This is especially useful in consolidated multi-tenancy
scenarios where there is usually some measure of overcommitment. Nevertheless, they
provide very different growth rates, with M1 having a faster rate when heap space is
scarce. Finally, matrix M3 makes the heap grow and shrink very slowly, enforcing a
more rigid and conservative heap size until program dynamics reach a high activity

1http://jikesrvm.org/Experimental+Guidelines, visited July 2, 2014

120

5.1 QoE applied to memory and CPU management

0
0.1

0.3
0.6

0.8
1

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0 0.01 0.02 0.07 0.15 0.4 1

R
at
io
 o
f
liv
e
 o
b
je
ct
s

G
ro
w
th
 r
at
e

Ratio of time spent in GC

(a) M0

Figure 5.1: Default heap growth matrix.

point (i.e., high rate of live objects and longer time spent on GC) or decrease activity
sharply.

The overall behavior of the matrices can be visualized, alternatively, as directives
for percentage increases and reductions in heap size, being depicted with up or down
arrows, in Figure 5.3 to Figure 5.4. These new matrices explore different shrink/grow
percentages across an imaginary four-quadrant space. For example, M1 is more heap
conservative, meaning that, when a small percentage of time is spent on GC and live
objects remain below 30%, the heap will decrease between 30% and 45%, while in M0

the same situation implies a resizing between +10% and −10%.

Furthermore, to compare the matrices, from a quantitative point of view, we define
two norms, the growth norm, presented in Equation 5.1, and the shrinkage norm, pre-
sented in Equation 5.2. These capture the aggressiveness of impact (when expanding or
shrinking), that the different matrices have in the heap size, and its skew/bias towards
expansion or shrinkage (more or less expanding, or shrinking-driven). In particular,
Equation 5.1 calculates a sum, across the two dimensions of the matrix (inspired by an
integral over a plane, but in a discrete domain), aggregating only the net contributions
for heap expansion found in the matrix (only the part greater than 1 in each element).
Conversely, Equation 5.2 calculates a sum, across the two dimensions of the matrix (also
inspired by an integral over a plane), this time aggregating only the net contributions
for heap reduction in size.

121

5. Evaluation

0
0.1

0.3
0.6

0.8
1

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0 0.01 0.02 0.07 0.15 0.4 1

R
at
io
 o
f
liv
e
 o
b
je
ct
s

G
ro
w
th
 r
at
e

Ratio of time spent in GC

(a) M1

0
0.1

0.3
0.6

0.8
1

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0 0.01 0.02 0.07 0.15 0.4 1

R
at
io
 o
f
liv
e
o
b
je
ct
s

G
ro
w
th
 r
at
e

Ratio of time spent in GC

(b) M2

0
0.1

0.3
0.6

0.8
1

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0 0.01 0.02 0.07 0.15 0.4 1

R
at
io
 o
f
liv
e
 o
b
je
ct
s

G
ro
w
th
 r
at
e

Ratio of time spent in GC

(c) M3

Figure 5.2: Alternative matrices to control the heap growth.

122

5.1 QoE applied to memory and CPU management

0% 10% 30% 60% 80% 100%
0% -10% -10% -5% 0% 0% 0%

1% -10% -10% -5% 0% 0% 0%

2% -5% -5% 0% 0% 0% 0%

7% 0% 0% 10% 15% 20% 20%

15% 0% 0% 20% 25% 35% 30%

40% 0% 0% 25% 30% 50% 50%

100% 0% 0% 25% 30% 50% 50%

Ratio of live objects

R
at

io
o

f
ti

m
e

sp
en

t
in

 G
C

Figure 5.3: Growth and shrink percentage for the M0 matrix

‖M‖growth =
n∑
i=1

m∑
j=1

g(aij), where g(x) =

x− 1 if x > 1,
0 if x <= 1

(5.1)

‖M‖shrinkage =
n∑
i=1

m∑
j=1

s(aij), where s(x) =

1− x if x < 1,
0 if x >= 1

(5.2)

Table 5.1 summarizes the norms of the four matrices (M0 from the base implemen-
tation of Jikes RVM, and the M1, M2 and M3 proposed alternatives). This helps us
classifying a matrix and to quickly infer its expected behavior. Matrix M0 is clearly bi-
ased towards expansion as its growth norm is greater than its shrinkage norm. This bias
is assessed by the 8.08 ratio meaning an eight-fold potential more impact towards expan-
sion than towards shrinkage. For instance, matrix M2 has an opposite bias, as its norm
ratio is 0.14, roughly 7 times more potential impact towards shrinkage than towards
growth. Both of them have similar aggressiveness regarding aggregated impact (5.45 and
5.40).

Table 5.1: Growth and shrink norms and their relation
M0 M1 M2 M3 interpretation

‖·‖growth 4.85 4.05 0.65 0.65
‖·‖shrinkage 0.60 4.75 4.75 0.60
‖·‖growth

‖·‖shrink
8.08 0.85 0.14 1.08 (bias/skew)

‖·‖growth + ‖·‖shrinkage 5.45 8.08 5.40 1.35 (aggressiveness/potential)

On the other hand, matrices M1 and M3 have much reduced and almost no bias, as
their growth and shrinkage norms are almost equal, hence the ratio of approximately 1

123

5. Evaluation

0% 0% 0% 0% 0% 0%
0% -45% -45% -40% 0% 0% 0%
1% -45% -45% -40% 0% 0% 0%

2% -40% -40% -35% 0% 0% 0%

7% -35% -35% -30% 15% 20% 20%

15% 0% 0% 0% 25% 35% 30%

40% 0% 0% 0% 30% 50% 50%

100% 0% 0% 0% 30% 50% 50%

Ratio of live objects

R
at

io
o

f
ti

m
e

sp
en

t
in

 G
C

(a) M1 percentage increments

0% 0% 0% 0% 0% 0%
0% -45% -45% -40% 0% 0% 0%

1% -45% -45% -40% 0% 0% 0%

2% -40% -40% -35% 0% 0% 0%

7% -35% -35% -30% 0% 0% 0%

15% 0% 0% 0% 5% 5% 5%

40% 0% 0% 0% 5% 10% 10%
100% 0% 0% 0% 5% 10% 10%R

at
io

o
f

ti
m

e
sp

en
t

in
 G

C

Ratio of live objects

(b) M2 percentage increments

0% 0% 0% 0% 0% 0%
0% -10% -10% -5% 0% 0% 0%
1% -10% -10% -5% 0% 0% 0%

2% -5% -5% 0% 0% 0% 0%

7% 0% 0% 0% 0% 0% 0%

15% 0% 0% 0% 5% 5% 5%

40% 0% 0% 0% 5% 10% 10%
100% 0% 0% 0% 5% 10% 10%

Ratio of live objects

R
at

io
o

f
ti

m
e

sp
en

t
in

 G
C

(c) M3 percentage increments

Figure 5.4: Growth and shrinkage percentage for each matrix

124

5.1 QoE applied to memory and CPU management

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
.8

0
.8

4

0
.8

8

0
.9

2

0
.9

6 1

1
.0

4

1
.0

8

1
.1

2

1
.1

6

1
.2

1
.2

4

1
.2

8

1
.3

2

1
.3

6

1
.4

1
.4

4

1
.4

8

1
.5

2

1
.5

6

1
.6

N
o

rm
al

iz
ed

 h
is

to
gr

am

GC ratios

(a) M0

Figure 5.5: Histogram of GC ratios for each benchmark using the default matrix

(1.08 and 0.85). However, they are very different regarding aggressiveness or potential
impact, top for M1 and very small for M3.

Figure 5.5 and Figure 5.6 show how the previously discussed matrices influence the
use of different heap grow/shrink ratios when executing the benchmarks.

Each figure plots in the y-axis the frequency, in a normalized form, with which a
given growth (x-value greater than 1) or shrinkage (x-value lower than 1) ratio is used,
after a decision to change the heap size. From Figure 5.6.a, we can confirm that matrix
M1 is the one with a potential for larger impact (aggressiveness), because it causes heap
change percentages with values from a wider interval, when compared to the other ma-
trices. On the other hand, Figure 5.6.c corroborates that matrix M3 is the one with the
smallest aggressiveness as it uses the smallest interval of values.

5.1.2 QoE Yield applied to Heap size

Each tenant using the Cloud provider’s infrastructure can potentially be running differ-
ent programs. Each of these programs will have a different production, i.e., execution
time, based on the applied capital, i.e., the growth rate behavior allowed for the heap.
To represent this diversity, we used benchmarks from DaCapo [Blackburn et al., 2006]
and SPEC JVM 2008, which correspond to different ways of organizing programs in the
Java platform.2

2http://www.spec.org/jvm2008/, visited November 17, 2012

125

http://www.spec.org/jvm2008/

5. Evaluation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
.8

0
.8

4

0
.8

8

0
.9

2

0
.9

6 1

1
.0

4

1
.0

8

1
.1

2

1
.1

6

1
.2

1
.2

4

1
.2

8

1
.3

2

1
.3

6

1
.4

1
.4

4

1
.4

8

1
.5

2

1
.5

6

1
.6

N
o

rm
al

iz
ed

 h
is

to
gr

am

GC ratios

(a) M1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
.8

0
.8

4

0
.8

8

0
.9

2

0
.9

6 1

1
.0

4

1
.0

8

1
.1

2

1
.1

6

1
.2

1
.2

4

1
.2

8

1
.3

2

1
.3

6

1
.4

1
.4

4

1
.4

8

1
.5

2

1
.5

6

1
.6

N
o

rm
al

iz
ed

 h
is

to
gr

am

GC ratios

(b) M2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
.8

1

0
.8

5

0
.8

9

0
.9

3

0
.9

7

1
.0

1

1
.0

5

1
.0

9

1
.1

3

1
.1

7

1
.2

1

1
.2

5

1
.2

9

1
.3

3

1
.3

7

1
.4

1

1
.4

5

1
.4

9

1
.5

3

1
.5

7

N
o

rm
al

iz
ed

 h
is

to
gr

am

GC ratios

(c) M3

Figure 5.6: Histogram of GC ratios for each benchmark using other heap management
matrices

126

5.1 QoE applied to memory and CPU management

To measure the yield of each matrix, we have setup an identity matrix (all 1’s), that
is, a matrix that never changes the heap size. Using this matrix is equivalent to having a
fixed-sized heap. Figure 5.7.a shows the maximum heap size (left axis) after running the
DaCapo benchmarks with configuration large and a subset of SPECjvm2008 using all
the matrices presented in Figure 5.2.3

When using the four matrices, the heap size was configured to change between a
minimum of 50MiBytes and a maximum of 350 MiBytes. In the right axis, we present
the average resource savings, as defined in Equation 3.6, for each of the applications used
in experimentation. A detailed view of the resource savings is presented in the first part
of Table 5.2. They are above 40% for the majority of the workloads.

In Figure 5.7.b we present the evaluation time of the benchmarks (left axis) and the
average performance degradation (right axis), as defined in Equation 3.7, regarding the
use of each of the matrices. Degradation of execution time reaches a fourfold value
for lusearch, Apache’s fast text search engine library, but stays below 25% for the fast
majority of the benchmarks. In particular, regarding the SPECjvm2008 benchmarks,
most of them have negative performance degradation, that is, they run faster with the
growth/shrink matrices controlling the heap than with a fixed size.

Table 5.2, summarizes the yield, as defined in Equation 3.4. Based on these results,
the main observation is that under the same resource allocation strategy, that is, using
the same resizing matrix, resource savings and performance degradation vary between
applications. This demonstrates the usefulness of applying different strategies to specific
applications. In most cases, the use of a matrix different from the default one (M0) brings
higher yields to the provider because, it saves more memory, but the execution time
suffers a smaller degradation. For example, the xalan workload type has higher yield
with M3 (6.0) while jython and pmd benefit the most with matrix M2 (28.4 and 9.2,
respectively). When memory resources are scarce because of co-location, the provider
will want to use, for each class of applications, the matrix that contributes to the higher
yield. This is good for shared infrastructures to minimize the impact on the execution
time taking the least of the resources of that workload.

We note also that a negative value represents a strategy that actually saves execution
time. Not only memory is saved, but execution time is also lower. These scenarios are

3Due to incompatibilities with GNU classpath, not all SPECjvm2008 can be successfully executed in
Jikes RVM.

127

5. Evaluation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

50

100

150

200

250

300

350

400

M
ax

im
u

m
 H

e
ap

 S
iz

e
 (

M
B

yt
e

s)

Const M0 M1 M2 M3 Average Savings

(a) Maximum heap size and average savings percentage

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

Const M0 M1 M2 M3 Average Degradation

(b) Execution time and average performance degradation percentage

Figure 5.7: Results of using each of the matrices (M0..3), including savings and degrada-
tion when compared to a fixed heap size.

128

5.1 QoE applied to memory and CPU management

a minority in the Dacapo benchmarks and more frequent in the SPECjvm2008 bench-
marks. They may simply reveal that the 350 MiBytes of fixed heap size is already causing
too many page faults for that workload.

Table 5.2: Heap Size Savings, Execution Degradation and Yield
xa

la
n

hs
ql

db

jy
th

on

pm
d

lu
se

ar
ch

lu
in

de
x

bl
oa

t

an
tlr

fo
p

Savings
M0 0.0% 7.7% 60.6% 51.4% 59.4% 70.0% 56.7% 62.3% 74.9%
M1 29.7% 15.7% 69.7% 70.6% 65.1% 76.3% 69.1% 78.0% 79.4%
M2 56.0% 38.0% 85.1% 84.6% 81.4% 85.7% 85.7% 85.7% 85.7%
M3 45.7% 28.0% 79.1% 76.9% 74.3% 84.0% 78.2% 84.3% 80.6%

Degradation
M0 -1.5% -1.2% 17.6% 8.6% 20.3% 9.1% 14.5% 3.9% -2.1%
M1 7.4% -3.5% 2.5% 7.7% 26.1% 14.7% 12.4% 24.8% -3.2%
M2 11.2% 50.9% 80.5% 43.7% 225.5% 26.9% 17.7% 31.0% 18.7%
M3 7.6% 17.0% 13.1% 23.2% 66.2% 25.0% -4.9% 39.4% 10.8%

Yield
M0 0.0 -6.6 3.4 6.0 2.9 7.7 3.9 15.8 -36.3
M1 4.0 -4.5 28.4 9.2 2.5 5.2 5.6 3.1 -24.7
M2 5.0 0.7 1.1 1.9 0.4 3.2 4.8 2.8 4.6
M3 6.0 1.7 6.1 3.3 1.1 3.4 -15.8 2.1 7.5

5.1.3 QoE Yield applied to CPU usage

Our system also takes advantage of CPU restriction in a coarse-grained approach. Fig-
ure 5.8 shows how nine different Java workloads from the DaCapo benchmarks (the
same presented in Table 5.2) react to the deprivation of CPU (in slices of 25%), regard-
ing their total execution time.

Figure 5.8 shows the relative performance slowdown, which represents the yield of
allocating 75%, 50%, and 25%, comparing with 100% of CPU allocation. Note that,
comparing with previous graphics, some applications have longer execution times with
0% CPU taken because they are multithreaded and we used only 1 core for this test.
As expected, the execution time grows when more CPU is taken. This enables priority
applications (e.g. paying users, priority calculus applications) to run efficiently over our
runtime, having the CPU usage transparently restricted and potentially transfered to
others (a capability in itself currently unavailable in HLL-VMs).

Figure 5.9 depicts the relative slowdown, or performance degradation, for the previ-
ously analyzed workloads. We note that the following applications (hsqldb, fop, and
antlr) have yields greater than 1 when CPU restriction is equal or above 50%, as they

129

5. Evaluation

Table 5.3: Heap Size Savings, Execution Degradation and Yield

sc
im

ar
k.

fft
.la

rg
e

sc
im

ar
k.

so
r.l

ar
ge

sc
im

ar
k.

sp
ar

se
.la

rg
e

sc
im

ar
k.

m
on

te
_c

ar
lo

co
m

pr
es

s

m
pe

ga
ud

io

Savings
M0 1.4% 5.4% -0.3% 85.7% 51.9% 83.7%
M1 24.9% 18.1% 13.8% 85.7% 67.3% 87.1%
M2 53.0% 45.3% 32.1% 85.7% 78.2% 85.7%
M3 31.5% 46.4% 12.9% 85.7% 75.1% 85.7%

Degradation
M0 1.2% -0.1% 6.4% 0.3% 4.2% 6.7%
M1 2.7% -0.1% -2.6% 0.8% -1.9% -0.1%
M2 -13.0% -2.9% -2.7% -0.2% -16.2% 2.4%
M3 -11.3% -6.7% -2.4% 1.5% -7.8% 3.0%

Yield
M0 1.2 -89.6 0.0 280.8 12.5 12.4
M1 9.4 -297.1 -5.3 106.3 -36.4 -649.2
M2 -4.1 -15.9 -11.9 -393.2 -4.8 35.2
M3 -2.8 -6.9 -5.4 57.8 -9.6 28.7

stay below the neutral efficiency line in Figure 5.9, due to memory or I/O contention.
This means that these are applications that, when a certain amount of CPU is taken (e.g.
50%), their performance degradation is not proportional to this restriction. So, they are
good candidates to apply CPU restriction when co-located with higher priority work-
loads. This is more clearly visible in Figure 5.10, where we can see those applications
having relative efficiency gains when resources are partially restricted (the four series
represent the proportion of the restriction), as well as those that lose relative efficiency,
but always to a smaller extent.

5.2 Resource consumption constraints

In this section, we analyze the impact on evaluating constraints (i.e., rules regulating
resource usage) during regular VM operations.

Therefore, we conducted a series of tests, measuring different aspects of a running
application: i) the overhead introduced in the consumption of a specific resource, and
ii) policy evaluation in a complete benchmark scenario. All these evaluations are made
locally in a single modified Jikes RVM (version 3.1.1), compiled with the production

profile.4

4It includes a two-generation garbage collector [Blackburn and McKinley, 2008] and the optimized

130

5.2 Resource consumption constraints

0

20

40

60

80

100

120

140

160

180

200

0% 25% 50% 75%

Ex
e

cu
ti

o
n

 t
im

e
 in

 s
e

co
n

d
s

Percentage of CPU restriction

xalan

bloat

antlr

fop

hsqldb

jython

pmd

lusearch

luindex

Figure 5.8: Effects of restraining CPU by 25%, 50% and 75%

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5 3 3.5 4

R
e

la
ti

ve
 s

lo
w

d
o

w
n

(p

e
rf

o
rm

an
ce

 d
e

gr
ad

at
io

n
)

Relative restriction of CPU allocated

neutral

xalan

bloat

antlr

fop

hsqldb

jython

pmd

lusearch

luindex

Figure 5.9: Relative slowdown

In Figure 5.11.a, we can observe the evolution of the overhead introduced in thread
creation, by measuring average thread creation and start time, as the policy engine has
increasingly larger numbers of rules to evaluate, up to 250 (simulating a highly complex
policy). The graph shows that this overhead, while increasing, does not hinder scala-
bility, as it is very small. When evaluating 50 constrains (which would correspond to
a more reasonable but still complex policy), each check of a certain limit having been
reached, the increment is 27 microseconds in each thread creation, which represents an
increase of ≈ 6% to the baseline thread creation time (i.e., no constraints evaluated).

and adaptive compilation system.

131

5. Evaluation

-4%

-2%

0%

2%

4%

6%

8%

xa
la
n

b
lo
at

an
tl
r

fo
p

h
sq
ld
b

jy
th
o
n

p
m
d

lu
se
ar
ch

lu
in
d
ex

R
e

la
ti

ve
 e

ff
ic

ie
n

cy

Neutral

25%

50%

75%

Figure 5.10: Relative efficiency

In Figure 5.11.b, we evaluate whether resource monitoring and policy evaluation
(with 300 constraints) introduce any kind of performance degradation as more and more
threads are created, resources consumed. Figure 5.11.b clearly shows (omitting Garbage
Collection spikes) that thread creation time does not degrade during application execu-
tion; although subject to some variation, it presents no lasting degradation.

The previous results were obtained monitoring only a single resource, i.e., number
of application threads. For other counted resources, e.g. number of bytes sent and re-
ceived, similar results are expected. Although the allocation of new objects can also be
seen as a counted resource, e.g. number of bytes allocated in the heap, it is more efficient
to evaluate it differently. The cost of checking for constraints regarding object alloca-
tion was thus transferred to the garbage collection process, leaving the very frequent
allocation operation new free of additional verifications.

Figure 5.12 presents the duration of each GC cycle during the execution of DaCapo’s
benchmark lusearch, with and without evaluating constraints on heap consumption
(i.e., RAMM enabled and disabled). The lusearch benchmark was configured with a
small data set, one thread for each available processor (i.e., four threads) and the con-
vergence option active, resulting in some extra warm up runs before the final evaluation.

Because of the generational garbage collection algorithm used in our modified Jikes
RVM, we can observe many small collection cycles, interleaved with some full heap
transversal and defragmentation operations. The two runs share approximately the same
average execution time and a similar standard deviation: 1.38 ± 0.31ms and 1.38 ±

132

5.2 Resource consumption constraints

440
467

495

529
551

571

0

100

200

300

400

500

600

0 50 100 150 200 250

t
im

e
 i

n
 m

ic
r
o

s
e

c
o

n
d

s

Number of constraints evaluated

(a) Thread creation time with increasing number of constraints to
evaluate

0

500

1000

1500

2000

2500

3000

3500

4000

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

C
re

at
io

n
 t

im
e

 (
m

ic
ro

 s
e

c.
)

w
it

h
 3

0
0

 c
o

n
st

ra
in

ts

Number of threads

(b) Thread creation time during execution with 300 constraints
(GC spikes omitted)

Figure 5.11: Policy evaluation cost

133

5. Evaluation

1

2

4

8

16

32

64

0.
68

 1
.4
8

 1
.8
8

 2
.1
6

 2
.3
7

 2
.8
5

 3
.4
8

 4
.0
1

 4
.4
6

 4
.7
9

 5
.0
3

 5
.4
6

 6
.2
7

 7
.8
6

 8
.3
7

 8
.7
7

 9
.0
9

 9
.3
0

 9
.8
2

10
.7
2

11
.5
2

12
.1
7

13
.1
7

13
.6
3

13
.9
7

14
.2
5

14
.4
5

15
.3
4

16
.1
5

16
.8
7

G
C
ex
ec
ut
io
n
tim

e
in
 m

ili
se
co
nd

s

Timeline
Instance of QoE-JVM Instance of JikesRVM

Figure 5.12: GC execution time during Dacapo’s LuSearch benchmarck

0.27ms, where the former value is when the RAMM module is enabled and the last
when RAMM is disabled. With these results we conclude that performance of object
allocation and garbage collection is not diminished with the extra work introduced.

To conclude the evaluation of the RAMM module, we stressed an instance of our
resource-aware VM with four macro benchmarks, as presented in Figure 5.13. These
four benchmarks are multi-threaded applications, allowing us to do a macro evaluation
of the proposed modifications. During the execution of these benchmarks there were
three resources being monitored: the number of threads, the total allocated memory,
and CPU usage. The constraints used in evaluation did not constrain the usage of re-
sources so that the benchmarks could properly assess the impact of monitoring different
resources simultaneously in real applications (as opposed to the specific benchmarks pre-
sented previously in Figure 5.11). The results show only a negligible overhead: 3% on
average.

5.3 Fine-grained progress accounting

In this section, we evaluate our progress framework using both synthetic and real e-
Science related workloads. The evaluation is divided into three parts: First, we evaluate
the overhead of instrumenting classes at load time. Second, we show the overhead of
monitoring progress during application execution. Finally, we show results regarding
the experiments with the reallocation of resources.

134

5.3 Fine-grained progress accounting

6800

4835

5911

3424

7048

4949

5984

3609

0

1000

2000

3000

4000

5000

6000

7000

8000

sunflow xalan lusearch luindex

Ex
ec
ut
io
n
tim

e
(m

ili
se
co
nd

s)

Instance of JikesRVM (RAM disabled) Instance of A2VM (RAM enabled)

Figure 5.13: Four Dacapo’s multi threaded benchmarks with RAMM enabled and dis-
abled

To evaluate the load time overhead, we used the SunFlow render system.5 SunFlow
uses ray tracing and projection techniques which are common in other applications for
scientific visualization of data such as biological sequences (e.g. molecules, genes). For
this test case, SunFlow is used without any source code modification. The Java instru-
mentation agent adds 105ms to the total time of the application. For the example file
used, the rendering process had to load 137 classes which corresponds to an average over-
head of 0.76ms for each class. This is a very small startup cost, even more so for such a
long running application.

To assess the overhead of measuring progress during the application runtime we
have setup two scenarios. One aims to micro-benchmark the time taken to call an in-
strumented method and to execute a write operation on an annotated field. The second
scenario’s goal is to measure the overhead of using this framework in a complete, real-
world application.

In the first scenario, we made a synthetic application in which there is a method
performing 1000 write operations on a field. If only the method is annotated, the total
execution time is 1ms, which compares with 45ms, when the field is annotated, and so,
each write operation is instrumented.

In the second scenario we made a single line modification to the SunFlow render
system. Sunflow splits the rendering space into spaces called buckets. We added an an-
notation to a method called for each bucket that finished rendering. When running

5http://sunflow.sourceforge.net/, visited July 4, 2014

135

http://sunflow.sourceforge.net/

5. Evaluation

the original code base, the rendering of a simple scene with a resolution of 1920x1080
took 213 sec. When running SunFlow with QoE-JVM and using the instrumentation
described above, it took 214sec. (based on an average of 3 executions), which corre-
sponds to an overhead of less than 0.5%. Because the instrumentation code is always the
same, regardless of the application, the larger the workload, the smaller the percentage
overhead added to the rendering process.

To evaluate how the resource allocation scheduling influences workloads, we used
three Java open source e-Science related applications/libraries: SunFlow, Xalan, and
Lucene.

SunFlow, a photo-realistic rendering system, with a ray tracing core, was already
presented. Xalan is an eXtensible Stylesheet Language for Transformation (XSLT) pro-
cessor, which transforms XML documents into other formats such as HTML or XMLs
with different schemas.6 It implements the XPath W3C standard for addressing parts
of an XML document.7 Frequently, scientists use well-known information tools, such
as ontologies, to model interactions between their elements of study. These ontolo-
gies are usually represented in XML documents.8 Transformations and queries on these
documents can be made using Xalan or similar libraries.

The Lucene library provides a set of classes for documents indexing (luindex) and
high-speed search (luseach).9 This is an important feature in a biologic sequences database.
Sequences of genetic material are usually represented in a text/readable format (e.g.
FASTA format is a text-based format for encoding DNA or protein sequences sequences),
that often need to be updated with new samples and searched.

To understand how progress evolves with the allocation of different resources, Sun-
Flow was used to render a 1920x1080 image, using 2040 buckets. Xalan converted a XML
file using a complex XSL specification with 53 transformations. Lucene was used to gen-
erate index text files containing the ancestral sequences the Pongo abelii (an orangutan).
Figure 5.14 shows the average call rate (within windows of 5 seconds) of the three work-
loads varies using a different number of cores, while Figure 5.15 shows the results for
the same metric but with different heap sizes.

We can conclude that with call rates interpreted as measuring different progress by
6http://www.w3.org/TR/xslt, visited August 12, 2014
7http://www.w3.org/TR/xpath/, visited August 12, 2014
8http://www.w3.org/TR/owl2-overview/, visited August 12, 2014
9https://lucene.apache.org/core/, visited August 12, 2014

136

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath/
https://lucene.apache.org/core/

5.3 Fine-grained progress accounting

0

0.2

0.4

0.6

0.8

1

1 2 4 8

N
or
m
al
iz
ed

 W
in
do

w
 C
al
l R

at
e

Number of cores

Sunflow Xalan Luindex

Figure 5.14: Average window call rate for periods of 5 seconds and using a different
number of cores

0

0.2

0.4

0.6

0.8

1

250 500 750 1000

N
or
m
al
iz
ed

 W
in
do

w
 C
al
l R

at
e

Heap Size (MiBytes)

Sunflow Xalan Luindex

Figure 5.15: Average window call rate for periods of 5 seconds and using a different heap
sizes

137

5. Evaluation

applications, they are in line with our predictions. While obviously all applications
welcome having more resources, they not always take effective advantage from them,
more so if we analyze the ratio between additional progress achieved derived from the
additional resources. For instance, Lucene mostly always improves performance with
any amount of extra resources, while SunFlow is more affected by CPU. Xalan progress
is almost immune to extra resources, effectively wasting them, and those could be handed
over to other applications.

5.4 Concurrent checkpoint

To evaluate concurrent checkpointing specifically, we used Successive Over-relaxation
(SOR), a method for solving a linear system of equations. It can have a long execution
time and uses raw calculus primitives, necessary to a large set of computer supported
research domains. The calculus is supported by a matrix of integers, whose size varies
based on the number of equations there is to solve.

We have set up two different checkpointing scenarios using SOR, which we identify
as Test 1 and Test 2 checkpoints. These tests use a large array of equations, so that
larger amounts of data need to be saved, while keeping the number of iterations to 7500,
for running times close to 2 hours. We intend to show that concurrent checkpointing
makes it feasible to checkpoint larger applications and more frequently. Thus, for each
of these classes of tests, SOR was run with matrices of 3000, 3600 and 4200 equations.
We averaged 5 executions of each test.

The distinguishing factor between these two types of tests is the event or reason
triggering each checkpoint. In Test 1, the checkpoint is done when a percentage of
the work is completed. In Figure 5.16, checkpointing is done at 20%, 40%, 60%, and
80% of computation progress. We compare SOR’s total execution time without any
checkpointing (series SOR), with the concurrent checkpoint (series SOR+concurrent)
and with the baseline checkpointing mechanisms (series SOR+serial) which can only
be done while the application is fully stopped. The left y-axis depicts the total minutes
elapsed in each scenario, while the right y-axis plots the serial and concurrent overhead
series.

From this, data we conclude that i) the overhead of concurrent checkpointing is
negligible - less than 1% in all configurations, and ii) the overhead of the serial check-

138

5.4 Concurrent checkpoint

1500 3000 4500 6000 7500
SOR 11.32 22.54 33.77 45.01 56.27
SOR + concurrent 11.33 22.55 33.78 45.02 56.28
SOR + serial 24.63 40.30 51.53 62.77 74.03
Serial overhead 118% 79% 53% 39% 32%
Concurrent overhead 0.08% 0.04% 0.03% 0.02% 0.02%

0%

40%

80%

120%

160%

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00

Minutes

SOR SOR + concurrent SOR + serial

Serial overhead Concurrent overhead

(a) Test 1 - 3000 equations

1500 3000 4500 6000 7500
SOR 16.30 32.56 48.76 64.90 81.08
SOR + concurrent 16.37 32.63 48.82 64.97 81.15
SOR + serial 42.20 58.45 74.65 90.79 106.98
Serial overhead 159% 80% 53% 40% 32%
Concurrent overhead 0.42% 0.21% 0.14% 0.11% 0.08%

0%

40%

80%

120%

160%

200%

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Minutes

(b) Test 1 - 3600 equations

1500 3000 4500 6000 7500
SOR 22.17 44.20 66.19 88.22 110.25
SOR + concurrent 22.22 44.25 66.25 88.27 110.31
SOR + serial 57.21 79.23 101.23 123.26 145.29
Serial overhead 158% 79% 53% 40% 32%
Concurrent overhead 0.24% 0.12% 0.08% 0.06% 0.05%

0%

40%

80%

120%

160%

200%

0.00
20.00
40.00
60.00
80.00

100.00
120.00
140.00
160.00

Minutes

(c) Test 1 - 4200 equations

Figure 5.16: Checkpointing experiments triggered on percentage of computation

139

5. Evaluation

point has a decreasing impact on the application’s execution time, as the number of total
iterations increases. This evident decrease is due to the fact that, as computation time in-
creases, the fixed number of serial checkpoints taken (4) will have progressively smaller
impact on the total execution time.

Nevertheless, as the application’s total execution time increases, triggering check-
pointing based on progress may lead, in case of a failure, to significant loss of work and
data (i.e., all the computation done since the previous checkpoint and its results). Fur-
thermore, the percentage of progress may be difficult to estimate in most applications,
and would ultimately require explicit checkpointing invocation by programmers.

To avoid all this, checkpointing could be triggered whenever a given time has elapsed.
In the experiments we considered that checkpointing was done approximately every 5
minutes. This results in doing 2 checkpoints when 3000 equations are considered and 4
checkpoints when 4200 equations are considered. The described scenario is represented
by Test 2. Figures 5.17 presents the results. Here, since longer executions imply more
checkpoints taken (with 5 minute periodicity), the serial checkpoint now increasingly
stretches the total execution time of the application (up to 70% more, broadly), while
the overhead introduced by the concurrent checkpoint always remains very low.

Thus, to applications that need frequent checkpointing, given their longer total ex-
ecution time and larger working set size, concurrent checkpointing is a very effective
alternative. Furthermore, given that all approaches described in the literature are se-
rial in nature, their performance would always be much worse than our new proposal,
added to the fact that they also lack on transparency and completeness, namely: i) either
imposing the use of an API, or ii) requiring extension of class code by programmers, or
iii) not supporting multithreaded and cooperative, synchronized applications.

Summary

In this chapter, we have demonstrated the potential of the three major mechanisms to
manage resources in a cluster where several instances of an HLL-VM run in competition
for a limited number of resources. These mechanisms required extensions to some sub-
systems of the Jikes RVM, such as the heap resizing mechanism, threading and the base
class library. However, they are in general simple and portable to other managed run-
times. Some impose a degradation penalty to the execution time of applications, as in

140

5.4 Concurrent checkpoint

1500 3000 4500 6000 7500
SOR 11.32 22.54 33.77 45.01 56.27
SOR + parallel ckp 11.32 22.54 33.77 45.01 56.28
SOR + serial ckp 15.76 35.86 55.97 76.08 96.22
Serial overhead 39.21% 59.08% 65.73% 69.04% 71.00%
Concurrent overhead 0.00% 0.01% 0.01% 0.01% 0.01%

0%

20%

4л%

60%

80%

0.00

20.00

40.00

60.00

80.00

100.00

120.00

MinutŜs

(a) Test 2 - 3000 equations

1500 3000 4500 6000 7500
SOR 16.30 32.56 48.76 64.90 81.08
SOR + parallel ckp 16.31 32.60 48.82 64.99 81.20
SOR + serial ckp 22.78 51.98 81.13 110.22 139.35
Serial overhead 39.72% 59.66% 66.39% 69.83% 71.86%
Concurrent overhead 0.08% 0.13% 0.14% 0.15% 0.15%

0%

20%

40%

60%

80%

0.00
20.00
40.00
60.00
80.00

100.00
120.00
140.00
160.00

Minutes

(b) Test 2 - 3600 equations

1500 3000 4500 6000 7500
SOR 22.17 44.20 66.19 88.22 110.25
SOR + parallel ckp 22.18 44.23 66.25 88.29 110.35
SOR + serial ckp 30.93 70.47 109.99 149.54 189.09
Serial overhead 39.51% 59.46% 66.16% 69.50% 71.50%
Concurrent overhead 0.05% 0.07% 0.08% 0.08% 0.09%

0%

20%

40%

60%

80%

0.00
20.00
40.00
60.00
80.00

100.00
120.00
140.00
160.00
180.00
200.00

Minutes

(c) Test 2 - 4200 equations

Figure 5.17: Checkpointing experiments with checkpoint triggered by time elapsed

141

5. Evaluation

the case of the resource consumptions constraints. This penalty is, in most cases, small
and introduces the possibility for the provider to distribute resources in an application-
driven way.

142

Part III

Allocation and Scheduling in
Infrastructure-as-a-Service

6 Architecture and Cost Model

Contents
6.1 Introduction . 146

6.1.1 Overcommitted environments . 147
6.1.2 Scheduling Based on Partial-Utility 149

6.2 Related Work . 150
6.2.1 Scheduling with Energy Awareness 151
6.2.2 Scheduling with Service-Level Objectives 152
6.2.3 Flexible SLAs . 154

6.3 A partial utility cost model for cloud scheduling 154
6.3.1 Degradation factor and Partial utility 155
6.3.2 Classes for prices and partial utility 157
6.3.3 Total costs . 158
6.3.4 Practical scenario . 158
6.3.5 Comparing flexible pricing profiles in a cloud market 160

Chapter overiew

Cloud SLAs compensate customers with credits when average availability drops below
certain levels. This is too inflexible because consumers lose non-measurable amounts of
performance being only compensated later, in upcoming billing cycles. We propose to
schedule virtual machines (VMs), driven by range-based non-linear reductions of utility,
taking into account user classes and different ranges of resource allocations: partial util-
ity [Simão and Veiga, 2013b, 2014]. This customer-defined metric, allows providers to
transfer resources between VMs in meaningful and economically efficient ways.

145

6. Architecture and Cost Model

We define a comprehensive cost model incorporating the partial utility reported by
clients to a certain level of degradation, when VMs are allocated in overcommitted en-
vironments (Public, Private, Community Clouds). CloudSim was extended to support
our scheduling model. Several simulation scenarios with synthetic and real workloads
are presented, using datacenters with different dimensions, regarding the number of
servers and computational capacity. We show the partial utility-driven scheduling al-
lows more VMs to be allocated. It brings benefits to providers, regarding revenue and
resource utilization, allowing for more revenue per resource allocated, and scaling well
with the size of datacenters, when comparing with a utility-oblivious redistribution of
resources. Regarding clients, their workloads’ execution time is also improved, by incor-
porating an SLA-based redistribution of their VM’s computational power.

This chapter is organized in three main sections. It starts by introducing the motiva-
tion for scheduling in IaaS overcommited deployment. Section 6.2 presents some related
work on the topic of VM scheduling. Section 6.3 discusses a comprehensive cost model
that incorporates the partial utility the client specifies for a certain level of depreciation
when VMs are allocated in an overcommitted environment.

6.1 Introduction

Currently, cloud providers provide a resource selection interface based on abstract com-
putational units (e.g. EC2 computational unit). This business model is known as
Infrastructure-as-a-Service (IaaS). Cloud users rent computational units taking into ac-
count the estimated peak usage of their workloads. To accommodate this simplistic
interface, cloud providers have to deal with massive hardware deployments, and all the
management and environmental costs that are inherent to such a solution. These costs
will eventually be reflected in the price of each computational unit.

Today, cloud providers’ SLAs already establish some compensation in consumption
credits when availability, or uptime, fall below a certain threshold.1 The problem with
availability is that, from a quantitative point of view, it is often equivalent to all-or-
nothing, i.e., either availability level fulfills the agreed uptime or not. Even so, to get
their compensation credits, users have to fill a form and wait for the next billing cycle.

Some argue that, although virtualization brings key benefits for organizations, mi-

1http://aws.amazon.com/ec2-sla/, visited July 4, 2014

146

http://aws.amazon.com/ec2-sla/

6.1 Introduction

Corporation

Condominium,
Club, NGO,
Association

Small, distributed near-the-
client datacenters

Heavily resourced
datacenter

Figure 6.1: Cloud deployments: From heavy clouds to small, geo-distributed near-the-
client datacenters

grating all to a public cloud is sometimes not the better option.2 A middle ground ap-
proach is to deploy workloads in a private (or hybrid) cloud. Doing so has the potential
to limit costs on a foreseeable future and, also important, keeps private data in-premises.
Others propose to bring private clouds even closer to users, to provide a more environ-
mentally reasonable, or cheaper to cool and operate, cluster [Liu et al., 2011; Khan et al.,
2013a].

6.1.1 Overcommitted environments

Figure 6.1 shows what means to bring the cloud closer to the user. Small, geo-distributed
near-the-client datacenters (private, shared) save money, the environment, and reduce
latency by keeping data on premises. This kind of vision is sometimes referred as Com-
munity Cloud Computing (C3) [Marinos and Briscoe, 2007], which can take advantage
of previous research in peer-to-peer and grid systems [Silva et al., 2010b]. Neverthe-
less, many of the fundamental research and the technological deployments are yet to be
explored.

From a resource management point of view, these new approaches highlight two is-
sues. In the one hand, the deployment sites are more lightly resourced [Saovapakhiran
and Devetsikiotis, 2011; Khan et al., 2014], either because the hardware is intrinsically

2Adopt the cloud, lose money. Virtualize your datacenter instead. http://www.theregister.co.
uk/2009/04/15/mckinsey_cloud_report/, visited August 5, 2013

147

http://www.theregister.co.uk/2009/04/15/mckinsey_cloud_report/
http://www.theregister.co.uk/2009/04/15/mckinsey_cloud_report/

6. Architecture and Cost Model

less powerful or the hardware layer is made of unused parts of deployments already used
for other tasks. Thus, overcommitment, which is commonly used in virtualized envi-
ronments [Waldspurger, 2002; Beloglazov and Buyya, 2012; Agmon Ben-Yehuda et al.,
2014b], will become more frequent. Techniques such as dynamic resource allocation and
accurate cost modeling must be researched to manage this kind of clouds. Because of the
federated and low-cost nature, overcommitment of resources is perhaps a more common
(and needed) scenario than in public clouds. Second, in such environments there will be
many classes of users which, in most cases, are willing to trade the performance of their
workloads for a lower (or even free) usage cost.

In a public cloud, overcommitment can be used to reduce the number of machines
requiring power, when aiming to reduce energy consumption [Beloglazov and Buyya,
2012; Mastroianni et al., 2013]. In private clouds, given the potential physical resource
scarcity, the problem is even more critical. To overcommit with minimal impact on
performance and maximum cost-benefit ratio, cloud providers need to related how the
partial release of resources will impact on the workload performance and user satisfac-
tion. While users can easily decide about their relative satisfaction in the presence of
resource degradation, they cannot easily determine how their workloads react to events
such as peak demands, hardware failures, or any reconfiguration in general.

As private clouds become more frequent in medium and large scale organizations, it
is necessary to promote a fair use of the available resources. Usually, these organizations
consist of several departments, working on different projects. Each project has a budget
to rent computational shared resources. For example, Intel owns a distributed compute
farm that is used for running its massive chip-simulation workloads [Ohad Shai, 2013].
The various Intel projects that need to use the infrastructure, purchase different amount
of servers. Also in this context, it is relevant to know how each department values or
prioritizes each of its workloads, which will influence the price they are willing to pay
for the execution environment.

All-or-nothing resource allocation is not flexible enough for these multi-tenant multi-
typed user environments, especially when users may not know exactly how many re-
sources are actually required. While no one complaints because there is no real market,
it does not mean there is no room for improvements in more flexible pricing models that
can foster competition and entry of smaller players. Like other telecommunications and
commodity markets before, such as electricity, the still emergent Cloud market is still
seen by some as an oligopoly (hence, not a real market with an even playing field) be-

148

6.1 Introduction

cause it still lacks a large number of suppliers [Jin et al., 2014]. From the provider’s
or owner point of view, this is important if there can be cost reductions and/or there
are environmental gains by restricting resources, which will still be more favorable than
simply delaying or queuing their workloads as a whole.

Both memory and CPU/cores [Zhang et al., 2005; Agmon Ben-Yehuda et al., 2014b;
Gong et al., 2010] are common targets of overcommitment. The two major approaches
consist of adapting the resources based on current observation of the system perfor-
mance or using predictive methods that estimate the best resource allocation in the
future based on past observations. Others incorporate explicit or implicit risk-based
QoS requirements and try do decide which requested VMs should be favored but de-
pend on non-deterministic parameters (e.g. client willing to pay) and make uncommon
assumptions about the requested VM characteristics (e.g. homogeneous types) [Macias
and Guitart, 2014; Morshedlou and Meybodi, 2014]. Moreover, they do not consider
the partial utility of applying resource allocation, i.e., that reducing shares equally or in
equal proportion may not yield the best overall result.

6.1.2 Scheduling Based on Partial-Utility

In this work, we propose to schedule CPU processing capacity to VMs (the isolation
unit of IaaS) using an algorithm that strives to account for user’s and provider’s poten-
tially opposing interests. While users want their workloads to complete with maximum
performance and minimal cost, providers will eventually need to consolidate workloads,
overcommitting resources and, thus, inevitably degrading the performance of some of
them.

The proposed strategy operates when new VM requests are made to the provider,
and takes the user’s partial utility specification, which relates the user’s satisfaction for
a given amount of resources, and correlates it with the provider’s analysis of the work-
load progress given the resources applied. This gives an operational interval which the
provider can use to maximize user satisfaction and the need to save resources. Resources
can be taken from workloads that use them poorly, or that do not mind having an agreed
performance degradation (and, thus, pay less for the service), and assign them to work-
loads that can used them better, or belong to users with a more demanding satisfaction
rate (and, thus, are willing to pay more).

We have implemented our algorithm as an extension to scheduling policies of a state

149

6. Architecture and Cost Model

of the art cloud infrastructures simulator, CloudSim [Beloglazov and Buyya, 2012; Cal-
heiros et al., 2011]. After extensive simulations using synthetic and real workloads, the
results are encouraging and show that resources can be taken from workloads, while
improving global utility of the user’s renting cost and of the provider’s infrastructure
management.

In summary, the contributions presented in the following chapters are:

• An architectural extension to the current relation between cloud users and providers,
particularly useful for private and hybrid cloud deployments;

• A cost model which takes into account the clients’ partial utility of having their
VMs release resources when in overcommitment;

• Strategies to determine, in a overcommitment scenario, the best distribution of
workloads (from different classes of users) among VMs with different execution
capacities, aiming to maximize the overall utility of the allocation;

• A comparison with a comprehensive list of utility-oblivious algorithms;

• Extensions to a state of the art cloud simulator;

• Implementation and evaluation of the cost model in the extended simulator using
a large set of datacenter configurations.

The next section gives a short survey of works that make allocation decisions to
comply with previously negotiated level of service with the client. In general, these
works use the scheduling mechanisms presented in Chapter 2. Then, Section 6.3 details
our utility model, which underlies the scheduling strategies presented in Chapter 7.

6.2 Related Work

With the advent of Cloud Computing, particularly with the Infrastructure-as-a-Service
business model, resource scheduling in virtualized environments received prominent at-
tention from the research community [Vaquero et al., 2011; Buyya et al., 2011; Simão
and Veiga, 2012a; Ishakian et al., 2012; Dawoud et al., 2012] addressed, as either a re-
source management, or a fair allocation challenge. At the same time, the research com-
munity has built simulation environments to more realistically explore new strategies

150

6.2 Related Work

while making a significant contribution to repeatable science [Malik et al., 2013; Cal-
heiros et al., 2011; Beloglazov and Buyya, 2012].

The management of virtual machines, and particularly their assignment to the exe-
cution of different workloads, is a critical operation in these infrastructures. Although
virtual machine monitors provide the necessary mechanisms to determine how resources
are shared, finding an efficiency balance of allocations, for the customer and the provider,
is a non-trivial task. In recent years, a significant amount of effort has been devoted to
investigate new mechanisms and allocation strategies, aiming to improve the efficiency
of Infrastructure-as-a-Service datacenters. Improvements to allocation mechanisms at
the hypervisor level, or in an application-agnostic way, aim to make a fair distribution
of available resources to the several virtual machines running on top of an hypervisor,
with intervention over CPU, memory shares, or I/O-related mechanisms [Waldspurger,
2002].

We can organize this research space in two main categories: i) scheduling with en-
ergy awareness, which is usually transparent to the client; ii) scheduling with negotiated
service-level objectives, which has implications in client and provider goals. In this work
we focus on the second category, but both topics can benefit by our approach. The fol-
lowing is a briefly survey of these two areas.

6.2.1 Scheduling with Energy Awareness

A low-level energy-aware hypervisor scheduler is proposed in [Kim et al., 2014]. The
scheduler takes into account the energy consumption, measured based on in-processor
events. It considers the dynamic power, which can change with different scheduling
decisions (unlike leakage power which is always constant).

A common approach is to use dynamic voltage and frequency scaling (DVFS). Typ-
ically, a globally underloaded system will have its frequency reduced. But this will have
a negative and unpredictable impact on other VMs that, although having a smaller share
of the system, are using it fully. To avoid inflicting performance penalties on these VMs,
recent work [Hagimont et al., 2013] proposes extensions to the credit scheduler so that
the allocated share of CPU to these smaller but overloaded VMs remains proportion-
ally the same after the adjustment. Nevertheless, recent findings [Le Sueur and Heiser,
2010] show that frequency scaling and dynamic voltage have a small contribution on

151

6. Architecture and Cost Model

the reduction of energy consumption. Instead, systems based on modern commodity
hardware should favor the idle state.

Others determine which is the minimum number of servers that needs to be ac-
tive in order to fulfill the workload’s demand, without breaking the service level objec-
tives [Meng et al., 2010; Beloglazov and Buyya, 2012; Mastroianni et al., 2013]. Meng
et al. [Meng et al., 2010] determine which are the best VM pairs to be co-located based
on their past resource demand. Given historic workload timeseries and an SLA-based
characterization of the VM’s demand, they determine the number of servers that need
to be used for a given set of VMs. Beloglazov et al. [Beloglazov and Buyya, 2012] de-
tect over and under utilization peaks, and migrate VMs between hosts to minimize the
power consumption inside the datacenter. Mastroianni et al. [Mastroianni et al., 2013]
have similar goals with their ecoCloud, but use a probabilistic process to determine the
consolidation of VMs.

These solutions usually impose constraints on the number of VMs that can be co-
located and do not use client’s utility to drive allocation, missing the opportunity to
explore combinations with advantage to both parties, provider and clients, that is, higher
revenue per resource (which is in the provider’s interest) and more progress for the price
payed (which is in the clients’ interest).

6.2.2 Scheduling with Service-Level Objectives

Clouds inherit Grid’s potential for resource sharing and pooling due to their inherent
multi-tenancy support. In Grids, resource allocation and scheduling can be performed
mostly based on initially predefined, a priori and static, job requirements [Silva et al.,
2011]. In clouds, resource allocation can also be changed elastically (up or down) at run-
time in order to meet the application’s load and effective needs at each time, improving
flexibility and resource usage.

To avoid strict service level objectives violations, the main research works can be
framed into three methods: i) statistical learning and prediction [Gong et al., 2010],
ii) linear optimization methods [Hinesa et al., 2011], iii) and economic-oriented strate-
gies.

Resource management can also be based on microeconomic game theory models,
mostly in two directions: i) forecast in the number of virtual machines (or their char-
acteristics) a given workload will need to operate [Tsakalozos et al., 2011; Mian et al.,

152

6.2 Related Work

2012] and ii) change allocations at runtime to improve a given metric, such as work-
load fairness or the provider’s energy costs [León and Navarro, 2013; Ishakian et al.,
2012]. Auction-based approaches have also been proposed in the context of provisioning
VMs [Xu and Li, 2013; S. Zaman, 2011; Andrzejak et al., 2010] when available resources
are less abundant than requests. Commercial systems such as the Amazon EC2 Spot
Instances have adopted this strategy.

Fewer works consider that the customer accepts a negotiable performance during
workload execution. This type of flexibility usually requires the adoption of an eco-
nomic or cost-theoretical model. Cloudpack [Ishakian et al., 2012] provides support for
users to specify workloads in a way they can declare their quantitative resource require-
ments and temporal flexibilities. S. Costache et al. [Costache et al., 2013] proposes a
market where the users bids for a VM with a certain amount of resources. To guaran-
tee a steady amount of resources, their system migrates VMs between different nodes
(which has the potential to impose a significant performance penalty [Xu et al., 2014]).

In [Macias and Guitart, 2014], clients choose the SLA based on a class of risk, which
has impact on the price the client will pay for the service - the lower the risk, the higher
the price. Based on this negotiation, an allocation policy would be used to allocate
resources for each user, either minimizing the risk (to the client) or the cost (to the
provider). They are, however, unable to explicitly select the VM or set of VMs to
degrade. In [Morshedlou and Meybodi, 2014], a method is presented to decide which
VMs should release their resources, based on each client’s willingness to pay for the
service. This approach is similar to our work, but they assume that some amount of SLA
violations will occur because they demand the victim VM to release its full resources.
They try to minimize the impact on the user’s satisfaction, based on a probabilistic
metric, decided only by the provider. Moreover, they assume homogeneous VM types
and with explicitly assessed different reliability levels, which in uncommon in cloud
deployments.

Seokho et al. [Son et al., 2013] focus on datacenters that are distributed across several
sites, and use SLAs to distribute the load among them. Their system selects a data center
according to a utility function that evaluates the appropriateness of placing a VM. This
utility function depends on the distance between the user and the datacenter, together
with the expected response time of the workload to be placed. Therefore, a VM request
is allocated in the physical machine that is closest to the user and has a recent history
of low utilization. For network-bound workloads, their system could integrate our

153

6. Architecture and Cost Model

approach by also considering the partial assignment of resources, eventually exchanging
locality (and so, smaller network delays) by, for example, a small delay in the workload
finish time.

SageShift [Sukwong et al., 2012] targets the hosting of web services, and uses SLAs
to make admission control of new VMs (Sage) based on the expected rate of co-arrival
requests. In addition, it presents an extension to hypervisor scheduler (Shift) to control
the order of execution of co-located VMs, and minimize the risk of failing to meet the
negotiated response time. Also in the case of Sage, no alternative strategy exists when
the system detects that a new VM cannot strictly comply with a given SLA.

6.2.3 Flexible SLAs

In summary, our work is the first that we are aware of that clearly accepts, and incor-
porates in the economic model, the notions of partial utility degradation in the context
of VM scheduling in virtualized infrastructures, such as data centers, public, private or
hybrid clouds. It demonstrates that it can render benefits for the providers, as well as
reduce user dissatisfaction in a structured and principled-based way, instead of the typi-
cal all-or-nothing approach of queuing or delaying requests, while still able to prioritize
user classes in an SLA-like manner.

6.3 A partial utility cost model for cloud scheduling

Our model uses a non-linear, range-based, reduction of utility that is different for classes
of users, and across different ranges of resource allocations that can be applied. We name
it partial utility.

To schedule VMs based on the partial utility of the clients, we have to define the
several elements that constitute our system model. The provider can offer several cate-
gories of virtual machines, more compute or memory optimized. In each category (e.g.
compute optimized) we consider that the various VM types are represented by the set
VMtypes = {VMt1 , V Mt2 , V Mt3 , . . . V Mtm}. Elements of this set have a transitive less-
than order, where VMt1 < VMt2 iff VirtualPower(VMt1) < VirtualPower(VMt2). The
function VirtualPower represents the provider’s metric to advertise each VM’s compu-
tational power, along with details about a particular combination of CPU, memory and
storage capacity. For example, Amazon EC2 uses the Elastic Computation Unit (ECU)

154

6.3 A partial utility cost model for cloud scheduling

which is an aggregate metric of several proprietary benchmarks. Another example is the
HP Cloud Compute Unit (CCU).

Currently, infrastructure-as-a-service providers rent virtual machines based on pays-
as-you-go or pre-reserved instances. In either case, a price for a charging period is es-
tablished, e.g. $ / hour, for each VM type. This value, determined by the function
Pr(VMti), is the monetary value to pay when a VM of type ti is not in overcommit-
ment with other VMs (of the same type or not). Considering that, for a given VM
instance, vm, the type (i.e., element of the set VMtypes) is determined by the function
VMType(vm), the price is determined by Pr(VMType(vm)).

6.3.1 Degradation factor and Partial utility

For each VM, the provider can determine which is the degradation factor, that is, which
percentage of the VM’s virtual power is diminished because of resource sharing and over-
commitment with other VMs. For a given VM instance, vm, this is determined by the
function Df(vm). In scenarios of overcommitment, described in the previous section,
each user can choose which fraction of the price he/she will pay when workloads are
executed. When the provider must allocate VMs in overcommitment, the client will
see this by having its VMs with fewer resources, resulting in a potentially perceivable
degradation of performance of its workload. Thus, overcommitment and the degrada-
tion factor refer to same the process but represent either the provider’s or the client’s
view. We will use these expressions interchangeably throughout the following chapters.

When overcommitment must be engaged, the same client will pay as described in
Equation 6.1, where the function Pu represents the partial utility that the owner of
the VM gives to the degradation. Both these terms are percentage values. Although
this equation naturally shares the goals of many SLA-based deployment [Morshedlou
and Meybodi, 2014], it takes into account specific aspects of our approach, as it fac-
tors the elements taken from the partial utility specification (detailed in the following
paragraphs).

Cost(vm) = Pr(V MType(vm))
·(1−Df(vm)) · Pu(Df(vm)) (6.1)

155

6. Architecture and Cost Model

0% 40% 20%

H1 H2 H3 H4

Figure 6.2: Scenario where partial release of resources varies during renting period

For example, if Df(vm) is 20% and Pu(Df(vm)) is 100% it means that the client
is willing to accept an overcommitment of 20% and still pay a value proportional to the
degradation. But if in the same scenario Pu(Df(vm)) is 50% it means the client will
only pay half of the value resulting from the overcommit, i.e., Pr(VMType(vm)) ×
(1− 0.2)× 0.5 = Pr(VMType(vm))× 0.4.

In general, overcommitment can vary during the renting period. During a single
hour, which we consider the billing period, a single VM can have more than one degra-
dation factor as depicted in Figure 6.2. In this example, during the first hour no degra-
dation is necessary, while during part of the third and fourth hours, the provider needs
to take 20% of the computation power. Thus, because a VM can be hibernated or de-
stroyed by their owners, and new VMs can be requested, Df must also depend on time.
To take this into account, Dfh(vm, i) is the ith degradation period of hour h. Jin et
al. [Jin et al., 2014] also discuss a fine-grained pricing schema although they focus on the
partial usage waste problem, which is complementary to the work discussed in this the-
sis. Ishakian et al. [Ishakian et al., 2012] uses the epoch concept, although our approach
is more fine-grained and usable in the partial utility model as described next.

Internally, providers will want to control the maximum overcommitment which, on
average, is applied to the VMs allocated to a given client and, by extension, to the data-
center as a whole. Equation 6.2 is able to measure this using the Aggregated Degradation
Index (ADI) for a generic set of VMs. This metric ranges from 0 (non degraded) to 1
(fully degraded).

ADI(V MSet) = 1−

∑
vm ∈ VMSet

(1−Df(vm)) · V irtualPower(vm)∑
vm ∈ VMSet

V irtualPower(vm) (6.2)

156

6.3 A partial utility cost model for cloud scheduling

6.3.2 Classes for prices and partial utility

Clients can rent several types of VMs and choose the class associated with each one.
Classes have two purposes: the first is to establish a partial utility based on the over-
commitment factor; the second is to set the base price for each VM type. Clients,
and the VMs they rent, are organized in classes which are represented as a set C =
{C1, C2, C3, . . . , Cn}. Elements of this set have a transitive less-than order (<), where
C1 < C2 iff base-price(C1) < base-price(C2). The function base-price represents the base
price for each VM type. The class of a given virtual machine instance vm is represented
by the function class(vm), while the owner (i.e., the client who is renting the VM) can
be determined by owner(vm).

Each class determines, for each overcommitment factor, the partial utility degrada-
tion. Because the overcommitment factor can have several values, we define R as a set
of ranges: R = {]0..0.2[, [0.2..0.4[, [0.4..0.6[, [0.6..0.8[, [0.8..1]}. As a result of theses
classes, the Pu function must be replaced by one that also takes into account the class of
the VM, along with the interval of the overcommitment factor, as presented in defini-
tion 6.3. Thus, Puclass is a matrix of partial utilities. Each provider can have a different
matrix which it advertises so that clients can choose the best option.

Puclass : C ×R→ [0..1] (6.3)

Note that, currently, our model assumes that the partial utility matrix is defined con-
sidering the total virtual power of a VM, namely, CPU, memory, and storage capacity.
If some overcommitment must be done in any of these dimensions, we consider them
equal or simply average them. This value is then used to determine the overall partial
utility of the VM’s new allocation. However, a more generic (and complex) model could
be used, where a matrix like the one defined in Equation 6.3 could be specified for each
of the dimensions of the VM. This would result in a vector of partial-utility matrices,
whose final value would have to be aggregated to be used in Equation 6.1. This is seen
as future work.

The Pr function for each VM must also be extended to take into account the VM’s
class, in addition to the VM’s type. We define a new function, Prclass, as presented
in Definition 6.4. Similarly to the matrix of partial utilities, each provider can have a
different price matrix.

157

6. Architecture and Cost Model

Prclass : C × V Mtypes → R (6.4)

In summary, the proposed partial utility model and the associated cost structure is
based on three elements: i) the base price of each VM type, ii) the overcommitment
factor, and iii) the partial utility degradation class associated with each VM.

6.3.3 Total costs

For a given client, the total cost of renting is simply determined by sum of the costs of
renting each VM, as presented in Equation 6.5, where RentVMs(c) represent the VMs
rented by client c.

RentingCost(c) =
∑

vm ∈ RentVMs(c)
V MCost(vm) (6.5)

The cost of each VM is presented in Equation 6.6, where N is the number of hours
the VM was running, and P the number of overcommitment periods in hour h. If, after
allocation, the VM’s degradation factor remains constant, the P equals 1.

V MCost(vm) =
N∑
h=1

P∑
p=1

Prclass(class(vm), V MType(vm))
P

·

·(1−Dfh(vm, p)) ·
·Puclass(class(vm), Dfh(vm, p)) (6.6)

The provider’s revenue is given by how much all clients pay for the VMs they rent.
The provider wants to maximize the revenue by minimizing the degradation factor im-
posed to each virtual machine. Because there are several VM classes, each with a partic-
ular partial utility for a given degradation factor, the provider’s scheduler must find the
allocation that maximizes (Equation 6.6). There are different ways to do so, which we
analyze in Section 7.1.

6.3.4 Practical scenario

As a practical scenario, we consider that the partial utility model has three classes of
users (High, Medium, Low) according to their willingness to relinquish resources in
exchange for a lower cost. More classes could be added (these three are illustrative):

158

6.3 A partial utility cost model for cloud scheduling

Price Matrix PU by Class

Single Cloud
Client

Multiple Cloud
Client

$  VMType PU  Class

$’ PU’

$’’ PU’’

Figure 6.3: A practical scenario of using flexible SLAs in a market-oriented environment

• High: users with more stringent requirements, deadlines, and that are willing
to pay more for a higher performance assurance but, in exchange, demand to be
compensated if those are not met. Compensation may include, not simply refund,
but also some level of significant penalization;

• Medium: users who are willing to pay, but will accept running their workloads
in VMs with less resources for the sake of lower costs, and for other externalities,
such as reduced carbon footprint impact, but have some level of expectation on
execution time, and;

• Low: users who do not mind waiting for their workloads to complete if they pay
less;

Partial utility profiles could also be organized around cloud providers, and assume
that each provider would be specialized in a given profile. For example, flexible would
represent shared infrastructures with no obligations, and many well-dimensioned pri-
vate clouds; business, public clouds or high-load private or hybrid clouds; critical, clouds
where budgets and deadlines of workloads are of high relevance, and penalties are rel-
evant; SLA-Oriented, top scenario where penalties should be avoided at all cost. For
simplicity we focus on a single cloud provider that supports several classes of partial
utility which clients can choose when renting VMs, as illustrated in Figure 6.3.

For the three classes of our example, the cloud provider can define a partial utility
matrix, represented by M (Equation 6.7). This matrix defines a profile of partial utility

159

6. Architecture and Cost Model

for each level of resource degradation (resources released) that can be used to compare
strictness or flexibility of the proposed resource management.

M =



High Medium Low

[0..0.2[1.0 1.0 1.0
[0.2..0.4[0.8 1.0 1.0
[0.4..0.6[0.6 0.8 0.9
[0.6..0.8[0.2 0.6 0.8
[0.8..1[0.0 0.4 0.6

 (6.7)

The provider must also advertise the base price for each type of VM. We assume
there are four types of virtual machines with increasing virtual power, for example,
micro, small, regular, and extra. Matrix P (Equation 6.8) determines the base price
($/hour) for these types of VMs.

P =


High Medium Low

micro 0.40 0.32 0.26
small 0.80 0.64 0.51
regular 1.60 1.28 1.02
extra 2.40 1.92 1.54

 (6.8)

6.3.5 Comparing flexible pricing profiles in a cloud market

In a market of cloud providers that are closer to the client, such as the emerging cloud
communities [Peter Mell and Tim Grance, 2009], clients will be more mobile and inde-
pendent of each provider. In this way, clients will more frequently have to look for the
best prices and partial utility distributions. To this end, based on matrices P and M ,
equation 6.9 defines a new set of matrices for each VM type. In this set, the matrices rep-
resent, for each VM type, the multiplication of a price’s vector (a line in the P matrix)
by the matrix of partial utilities of the provider. C is the ordered set of user’s classes.

PMtype = ∀classes ∈ C : Ptype,classes ·M (6.9)

Figure 6.4 illustrates an instance of this new set for the previously described VM
types. The differences are increasingly significant as we increase the capacity (and conse-
quently the prices) of the VMs. While these matrices represent related pricing profiles,
they can be used by costumers to compare and arbitrate over different providers, either
for a given user class and VM size, or for global aggregate assessment. This further al-
lows users to graphically navigate through the providers’ pricing profiles. In particular,
this make it possible to explore the pricing profile of a given provider, and determine

160

6.3 A partial utility cost model for cloud scheduling

0

0.5

1

1.5

2

2.5

Depreciations

P
ri

ce
/h

o
u

r

Classes of clients

2-2.5

1.5-2

1-1.5

0.5-1

0-0.5

(a) PMMicro

0

0.5

1

1.5

2

2.5

2-2.5

1.5-2

1-1.5

0.5-1

0-0.5

(b) PMSmall

0

0.5

1

1.5

2

2.5

2-2.5

1.5-2

1-1.5

0.5-1

0-0.5

(c) PMRegular

0

0.5

1

1.5

2

2.5

2-2.5

1.5-2

1-1.5

0.5-1

0-0.5

(d) PMExtra

Figure 6.4: Matrices combining price and utility for the different VM types and partial
utilities.

161

6. Architecture and Cost Model

the reallocation of resources a user is willingly to have, in order to fulfill a given level of
cost constraints.

Summary

In this chapter, we have presented the motivation to drive VM allocation using a partial-
utility strategy together with a cost model that supports this approach. We have shown
how this approach compares with other similar SLA-aware systems. In the following
chapter, we will present allocation algorithms that use this strategy to place VMs in
available nodes of a datacenter.

162

7 Partial Utility Scheduling Algorithms
and Implementation

Contents
7.1 Partial Utility-based Scheduling for IaaS Deployments 164

7.1.1 Analysis of the scheduling cost of the utility-oblivious scheduling . 165

7.1.2 Partial utility-aware scheduling strategies 166

7.1.3 Analysis of the partial-utility scheduling cost 167

7.2 Cloud simulators and the CloudSim framework 168

7.2.1 SimGrid . 169

7.2.2 CloudSim . 170

7.3 Implementing the Partial Utility-Driven Scheduling in CloudSim . . . 173

Chapter overview

In this chapter, we discuss scheduling algorithms to be used by providers to organize
VMs in their data centers, along with the implementation of these algorithms in a state
of the art cloud simulator [Simão and Veiga, 2013b].

The chapter is organized in three main sections. Section 7.1 starts by presenting a
comprehensive set of scheduling algorithms which aim to maximize the packing of VMs
in a datacenter, taking into account the partial-utility cost model discussed in Chapter 6.
The scheduling algorithms target the selection of a host inside a data center and the
distribution of resources from that host to the set of VMs assigned to it.

163

7. Partial Utility Scheduling Algorithms and Implementation

In Section 7.2, we introduce the importance of simulators in distributed systems re-
search and delve into details about two widely adopted simulators: SimGrid [Casanova
et al., 2008] and CloudSim [Calheiros et al., 2011]. We then focus on the adopted sim-
ulator, CloudSim, showing the main building blocks and extension points. Section 7.3
concludes the chapter with some details about the scheduling algorithm in this simula-
tor, in particular, the extensions made to the object model.

7.1 Partial Utility-based Scheduling for IaaS Deployments

In general, the problem we have described is equivalent to a bin packing problem [Garey
et al., 1976]. So, the scheduling process must impose constraints, on what would be a
heavy search problem, and be guided by heuristics for celerity. We consider as relevant
resources of a host, and requirements for a virtual machine, the following: number of
cores, the processing capability of each core (expressed as millions of instructions per
second (MIPS), MFLOPS, or any other comparative reference), and memory (in MiB).
The following algorithms focus on the first two requirements but a similar strategy could
be used for memory. They allocate new requested VMs to these resources, taking into
account the partial utility model described in the previous section.

Algorithm 1 presents what is hereafter identified as the base allocation algorithm. It
takes a list of hosts and a virtual machine (with its resource requirements) that needs
to be allocated to physical hardware or otherwise fail. It will search for the host with
either more or less available cores, depending on the order criterion (Φ). When a greater-
than (>) criterion is used, we call it First-Fit Increasing (FFI) since the host with more
available cores will be selected. When a less-than (<) criterion is used, we call it First-Fit
Decreasing (FFD), since the host with less cores still available will be selected. This base
allocation will eventually fail if no host is found with the number of requested MIPS,
regardless of the class of each VM. In this situation, a classic provider cannot fulfill
further requests without using extra hardware, which may simply not be available.

Function allocate checks if a VM can be allocated in a given host (h). Current
allocation strategies either i) try to find the host where there are still more physical
cores than the sum of virtual ones, and each individually has enough capacity to hold
the VM; ii) try to find the host with a core where the VM can fit, even if shared with
others; iii) takes resources from VMs in the host to fit the new VM, until no more
computational power is available in the host. In the first two cases, if the conditions are

164

7.1 Partial Utility-based Scheduling for IaaS Deployments

Algorithm 1 Generic base allocation: First-Fit Increasing/Decreasing
Require: hosts list of available hosts
Require: vm VM to be allocated
Require: Φ order criterion

1: function BaseScheduling(hosts,vm)
2: currCores← 0 or +∞ depending on criterion
3: selectedHost← null
4: for all h ∈ hosts do
5: if AvailableCores(h) Φ currCores then
6: if IsCompatible(h, vm) then
7: currCores← AvailableCores(h)
8: selectedHost← h
9: end if

10: end if
11: end for
12: if selectedHost 6= null then
13: Allocate(selectHost, vm)
14: return true
15: end if
16: return false
17: end function

not met the allocation will fail. In this case, unused cores is used in the sense that they are
still available to allocate without incurring in overcommitment. All the physical cores
will be in use, as usual, but they will not be used to 100% capacity. Thus if, for example,
4 cores have an average of 25% CPU ocupation, we consider it equivalent to saying there
are 3 unused cores (i.e., still available to allocate without overcommitment).

In the last case, the allocation will succeed, but not taking the best choices for the
new utility model proposed in Section 6.3. Function isCompatible uses the same strate-
gies but only determines whether the conditions hold, leaving the effective allocation to
the allocate function.

7.1.1 Analysis of the scheduling cost of the utility-oblivious schedul-
ing

Algorithm 1 iterates over M hosts looking for the one with minimum or maximum
available cores. In either case, this algorithm determines a compatible host in O(M)
iterations. The isCompatible function depends on the total number of cores, C, to de-
termine, i) if there is any unused core and; ii) if any core still has available MIPS. After
determining the host where to allocate the requested VM, function allocate can also
complete with the same asymptotic cost. Thus, in summary, Algorithm 1 has a cost of

165

7. Partial Utility Scheduling Algorithms and Implementation

Algorithm 2 Partial utility allocation strategies
Require: hosts hosts ordered by available resources
Require: vm new VM to be allocated
Require: maxADI maximum aggregated degradation index

1: function VmUtilityAllocation(hosts,vm)
2: if BaseScheduling(hosts, vm) = true then
3: return true . No need to overcommit VM(s)
4: end if
5: selection← null
6: hosts← sort hosts in ascending order of available resources
7: for all h ∈ hosts do
8: needed← Requested(vm)−Available(h)
9: vmList← allocatedVMs(h)

10: selection← SelectVMs(vmList, needed)
11: if ADIndex(hosts, selection) < maxADI then
12: for all (vm, df) ∈ selection do
13: ChangeAllocation(vm, df)
14: end for
15: return true
16: end if
17: end for
18: return false
19: end function

O(M · C).

7.1.2 Partial utility-aware scheduling strategies

When there are no hosts that can be used to allocate the requested VM, some redistribu-
tion strategy must be used, while maximizing the renting cost as defined in Section 6.3.
This means that the provider can use different strategies to do so, by giving priority to
larger or smaller VMs (regarding their virtual power) or to classes with higher or lower
base price.

We have extended the base algorithm so that, when a VM fails to be allocated, we
then have to find a combination of degradation factors that makes it possible to fit the
new VM. Four strategies/heuristics were implemented to guide our partial utility-driven
algorithm. They differ in the way a host and victim VM are selected for degradation.
They all start by taking the host with the most available resources, that is, with more
unitary available cores and with more total computation power (MIPS).

Algorithm 2 presents the modifications to the base algorithm to enable partial utility
allocation strategies. After a host is selected, a set of VMs must be chosen from the list of

166

7.1 Partial Utility-based Scheduling for IaaS Deployments

allocated VMs in that host, i.e., operation selectVMs presented in Algorithm 3. These
VMs are selected either by choosing the ones from the smallest size type (which we
call min strategy) or the ones with the biggest size (which we call max strategy). This
is controlled by using VMtypes sorted in ascending or descending order. In both cases,
there are variants that combine with the lowest partial utility class (w.r.t. the definition
of Section 6.3), either in ascending or descending order, regarding its partial utility class,
i.e., min-class and max-class.

Algorithm 3 Partial utility allocation by min/max VM type and minimum class price
Require: V Mtypes ascending/descending list of VM’s types
Require: vmList list of VMs allocated in host
Require: target virtual power needed to fit all VMs

1: function SelectVMs(vmList, target)
2: selection← null
3: sum← 0
4: vmList← sort vmList in ascending order of price’s class
5: while sum < target do
6: for all t ∈ V Mtypes do
7: for all vm ∈ vmList : VMType(vm) = t do
8: rvm ← NextRange(vm)
9: selection← selection ∪ (vm, rvm)

10: sum← sum + VirtualPower(vm) ∗ (1− rvm)
11: if sum ≥ target then
12: break
13: end if
14: end for
15: end for
16: end while
17: return selection
18: end function

7.1.3 Analysis of the partial-utility scheduling cost

Algorithm 2 goes through the list of hosts trying to find a combination of VMs whose
resources can be reallocated. For each host, VMs are selected based on Algorithm 3.
The cost of this procedure depends on a sort operation of N VMs, O(N lg(N)), and
a search in the space of minimum degradations to reach a target amount of resources.
This search depends on r intervals in matrix M (Equation 6.7) and t classes for prices
(currently, three, as presented in Section 6.3.4), with a cost of O(rtN). This results in
an asymptotic cost of O(rtN + N lg(N)) = O(N lg(N)). Overall, the host and VMs
selection algorithm cost belongs to O(M lgM +MN lgN). Because there will be more
VMs (N), across the datacenter, than hosts (M), the asymptotic cost is O(MN lg(N)).

167

7. Partial Utility Scheduling Algorithms and Implementation

In the next section, we briefly present the more relevant details of extending the
CloudSim [Beloglazov and Buyya, 2012] simulator to evaluate these strategies.

7.2 Cloud simulators and the CloudSim framework

Simulators allow researchers to focus on a specific problem (e.g. algorithm, topology)
without having to immediately deal with technical problems of the deployment. Fur-
thermore, these tools comply with two important research goals - repeatability of expe-
riences and fair comparison with other strategies [Veiga et al., 2011]. Similarly to the
areas related to natural sciences, setting up an in vivo experience in distributed systems
can also be time-consuming and costly.

Over the years, several simulators have been developed, covering the major topics
in the area. Examples for supercomputing and HPC in general include BigSim [Zheng
et al., 2010] and MPI-SIM [Prakash and Bagrodia, 1998]. For general network research,
the NS2 [Issariyakul and Hossain, 2008] is a well-established simulator whose network
format specification was adopted by other simulators with networking requirements.
For peer-to-peer networks, PeerSim [Montresor and Jelasity, 2009] and OverSim [Baum-
gart et al., 2007] are widely used simulators. For volunteer computing there is the Em-
BOINC [Estrada et al., 2009] which can read configuration settings from real BOINC
servers [Anderson, 2004], and outputs performance metrics such as throughput, latency,
and starvation.

Grid and Cloud simulators are also well represented. A classic grid simulator is
GridSim [Buyya and Murshed, 2002] from where the CloudSim [Calheiros et al., 2011]
was adapted and significantly extended to support the typical cloud artifacts. The iCan-
Cloud [Núñez et al., 2012] is a new simulator with a customizable job broker and a
rich user-interface to configure the simulation. SimGrid [Casanova et al., 2008] can
simulate low-level details of virtual machines migration [Hirofuchi et al., 2013]. Green-
Cloud [Kliazovich et al., 2010] is an extension to NS2 [Issariyakul and Hossain, 2008]
and has support to accurately model the energy consumed by the equipment that is
typically present in a datacenter (e.g. computing servers, network switches).

These simulators are, in fact, frameworks that not only have to be parametrized with
a particular configuration but can also be extended to support new algorithms regarding
the research topic [Sakellari and Loukas, 2013]. The language to program extensions

168

7.2 Cloud simulators and the CloudSim framework

can be the same used to develop the simulator, usually C++ or Java, or some domain-
specific language, as in the case of GreenCloud [Kliazovich et al., 2010].

All these simulators have a significant impact in their research communities. The
most prominent examples in our work context are SimGrid and CloudSim, with more
than 310 and 665 citations in July 2014, respectively, according to Google scholar.1 The
GreenCloud and iCanCould simulators lag behind, with 142 and 32, respectively.

7.2.1 SimGrid

SimGrid is a particular case because it represent a set of simulators. It has been used
in more than one topic in the distributed systems arena. Research with this simulator
includes works with peer-to-peer systems [Quinson et al., 2012], networked applications
based on the pattern of Message Passing Interface (MPI) [Bedaride et al., 2013] and
packet-based network protocols in general [Velho et al., 2013]. Although SimGrid can
simulate many forms of distributed systems, only recently was added support for the
cloud computing artifacts that enable the simulation of a IaaS service model. These
artifacts include the representation and simulation of virtual machines [Hirofuchi and
Lebre, 2013] and their migration inside the datacenter [Hirofuchi et al., 2013].

Currently, SimGrid has basic support for IaaS deployments. Important efforts where
made to accurately simulate the migration steps used in system-level virtual machines [Hi-
rofuchi et al., 2013], namely the precopy algorithm [Clark et al., 2005] used the Linux
kernel-based virtual machine Qemu/KVM.2. The simulator captures the essential nature
of this algorithm using a parameter, the memory update speed measured in MiB/s, which
is used to represent different kinds of applications (i.e. with different memory usage
patterns) running in each VM. The memory update speed, together with the network
bandwidth will determine the total migration time.

However, the SimGrid simulators are progressively integrating these capabilities.
There are ongoing efforts to develop a load injector to simulate different migration op-
tions inside the data center [Hirofuchi et al., 2013] and simulators of public and private
Cloud APIs, such as the OpenStack and Amazon EC2 and S3 [Desprez and Rouzaud-
Cornabas, 2013], based on the core SimGrid simulation engine.3

1http://scholar.google.pt, visited July 8, 2014
2http://www.linux-kvm.org/page/Main_Page, visited July 8, 2014
3http://www.openstack.org/, visited July 9, 2014

169

http://scholar.google.pt
http://www.linux-kvm.org/page/Main_Page
http://www.openstack.org/

7. Partial Utility Scheduling Algorithms and Implementation

User Interface Structures

Cloud Services

User Level Scheduling Policy

Cloud Resources

Core CloudSim Simulation Engine

VM Services

computation storage

VM Cloudlet

Datacenter hardware
and network topology

Figure 7.1: Organization of CloudSim simulation environment

7.2.2 CloudSim

Compared with SimGrid, CloudSim has more extension points where different schedul-
ing and migration policies can be researched. We have chosen CloudSim because of its
maturity in IaaS simulations, but also because it allows us to focus on the definition and
implementation of scheduling policies for the allocation of virtual machines in the data
center, in a structured but simple way.

Figure 7.1 shows the modular organization of CloudSim. The first layer, User Level
Scheduling Policy, represents the configuration that the user of CloudSim has to per-
form in order to setup the simulation, which includes an optional external configura-
tion regarding network connections, using the BRITE [Medina et al., 2001] format.
The most significant work performed at this layer consists on the specification on how
tasks, which are known as cloudlets, are assigned to virtual machines. The assignment
between cloudlets and VMs is done by programming a specific kind of broker, in the
form of a Java class.

The basic representation of cloudlets is determined by the number of cores, memory,
and storage they request, along with the number of millions of instructions (MI) they
represent. VMs have a certain number of virtual cores, each with a certain amount
of computation capacity, measured in MIPS. Recent additions have made it possible to
represent more accuratly common types of applications running in the cloud, such as

170

7.2 Cloud simulators and the CloudSim framework

web-based multi-tier application, workflows and MPI-based application [Calheiros and
Buyya, 2014; Garg and Buyya, 2011].

The CloudSim core is composed by the following four layers. At the top, User
Interface Structures, represents the artifacts that the user interacts with, namely virtual
machines and cloudlets. Following are the VM Services. This layer determines how
VMs use the resources available at their assigned host and how cloudlets make progress
based on the resources available at their assigned VMs. The Cloud Services layer’s main
goal is to provision VMs in hosts and determine how the simulated physical resources
(CPU, memory, and storage) are interconnected. The final core layer, Cloud Resources,
represents data centers, which can be distributed across different geographic locations.

The bottom layer is the event engine which keeps track of the simulated time. This
time is independent of the real system running the simulation. The event engine is used
for communication between simulation entities, such as broker, datacenter, and network
switch. These entities are active entities in the sense that they are the ones that receive
and generate new events, delegating further action to passive entities such as VMs.

Out-of-the box scheduling and Utilization Models

Besides the assignment of tasks to VMs, which is, conceptually, a responsibility of the
researcher, as explained in the previous section, scheduling decisions are done in three
major points, when: i) assigning VMs to hosts, ii) determining the number of cores
assigned to each VM, iii) determining the number of virtual cores, and therefore, the
millions of instructions per second available for a cloudlet to make progress, iv) deter-
mining a new assignment of VM-to-host using migration. For all these points, there are
default policies that can be customized by the researcher. In the first point, different
packing strategies can be researched, including the ones that are energy-aware [Khosravi
et al., 2013; Beloglazov and Buyya, 2012]. The second layer of scheduling is a represen-
tation of the work done by each host’s hypervisor in real data centers. The third level
of scheduling is akin to the responsibility of an operating system running inside a VM
because several tasks can be executing simultaneously.

The last point is where migration policies can be plugged-in. These policies should
take into account the current load of the datacenter and, based on a goal to reach (e.g.
consolidation to minimize energy consumption), decide a new configuration of assign-
ment of hosts to VMs. By default, CloudSim does not reconfigure VMs during cloudlet

171

7. Partial Utility Scheduling Algorithms and Implementation

execution.

The configuration of all these policies and the execution of cloudlets is what deter-
mines the result of a simulation. Therefore, cloudlets make more progress if they execute
in a VM whose virtual cores have more MIPS. The finish time of cloudlets can be simply
based on their total number of instructions (#instr) and available capacity computing ca-
pacity (CP), which in that case, the finish time (ft) is determining by adding the ratio
of these two values to the start time (st), as presented in Equation 7.1. Because #instr is
in million of instructions and CP is in millions of instructions per second, the result is
a value in seconds.

ft = st+ #instr
CP

(seconds) (7.1)

Instead of this purely analytic progress model, cloudlets can make progress based
on a percentage of CPU used during a time span. This is a very useful feature because
real world applications exhibit different phases during their execution, where they vary
their resource consumption. In this case, the simulation has to be configured with the
time interval at which the samples where collected. The finish time of these cloudlets
now depends on the the percentage of CPU used during a time interval, as presented in
Equation 7.2.

ft = st+

intervals∑
t=0

cpuusage(t) ∗ CP

CP
(seconds) (7.2)

Currently, CPU usage can be either full, random, or based on traces collected from
real systems.4 These utilization models are also available to model memory and band-
width usage. However, currently, the effective progress of cloudlets does not depend
on these two last mentioned models. They are only used for allocation purposes, to
determine the current level of utilization of the corresponding resource.

4Version 3.0.3 of CloudSim comes with hundreds of CPU traces from PlanetLab’s slices [Chun et al.,
2003], which are virtual machines where experiments are executed.

172

7.3 Implementing the Partial Utility-Driven Scheduling in CloudSim

PUVm PUCloudlet

PUBroker

PUDatacenter

Simulation
Specification

Core CloudSim Simulation Engine

Other unchanged
components

PUVmm
Scheduling

Other unchanged
components

PUHostSelection PUHostSelection

Other unchanged
components

Other unchanged
components

Other unchanged
components

P
U

C
lass

V
M

Typ
e

P
rices M

atrix PUHostSelection

Figure 7.2: Highlighted extensions to the CloudSim simulation environment

7.3 Implementing the Partial Utility-Driven Scheduling
in CloudSim

We have implemented and evaluated our partial utility model on a state-of-the-art simu-
lator, CloudSim [Calheiros et al., 2011]. CloudSim is a simulation framework that must
be programmatically configured, or extended, to reflect the characteristics and schedul-
ing strategies of a cloud provider.

Figure 7.2 highlights the new classes added to the simulation environment, which
range from exploring extension points, like the virtual machine allocation to hosts, to
enrichments of the object model to include partial utility-related types (e.g. VM type,
specification tables).

Regarding CloudSim’s base object model, we have the PUVm type which incorpo-
rates information regarding its partial utility class. The scheduling algorithms were im-
plemented as extensions of two main types: VmAllocationPolicy and VmScheduler.
The former determines how a VM is assigned to a host while the latter determines how
the virtual machine monitor (VMM) of each host allocates the available resources to
each VM. It can use and re-use different matrices of partial utility classes and VM base
prices, defined in the type that represents the partial utility-driven datacenter.

173

7. Partial Utility Scheduling Algorithms and Implementation

CloudletVm

UtilizationModel
+ getUtilization(int time): double

Datacenter

DatacenterBroker
+ submitVMs(...)
+ submitCloudlets(...)

MinPwr_MinClass

MaxPwr_MinClass

FFI

FFD

VmAllocationPolicy
+ allocateHostForVm(...)
+ optimizeAllocation(...)

VmScheduler
+ allocatePesForVm(...)

org.cloudbus.cloudsim

1

PUMatrix
+ getPrice(PUInterval,PUClass): double

1..n1..n

PUDtacenterBroker

1..n

PUDtacenter

11

PUHost

VMTtpe PUClass

PUInterval

PUCloudlet

pt.inescid.gsd.cloudsim.partialutility	

PUVM

Figure 7.3: Class diagram with extensions to the CloudSim object model

The CloudSim type that represents the dynamic use of the available (virtual) CPU
is the Cloudlet type. Because cloudlets represent work being done, each cloudlet must
run in a VM with the appropriate type, simulating work being done on several VMs
with different computational power. Thus, regarding the Cloudlet class, we added
information about which VM type must be used to run the task. To ensure that each
cloudlet is executed in the correct VM (depreciated or not), we also created a new broker
(extended from DatacenterBroker).5.

Figure 7.3 shows the relations between the CloudSim base classes and the ones de-
veloped to support our allocation strategies.

5Code is available at https://code.google.com/p/partial-utility-cloudsim/, visited May
14, 2014

174

https://code.google.com/p/partial-utility-cloudsim/

7.3 Implementing the Partial Utility-Driven Scheduling in CloudSim

Summary

This chapter was dedicated to the algorithms that allocate VMs according to the partial-
utility cost model. It started by presenting the algorithms and their cost analysis. The
chapter then focused on implementation details, which are essential to make a realistic
evaluation. A brief introduction and comparison of the most known and used cloud sim-
ulators was made. Finally, the necessary extensions to the code base of CloudSim [Cal-
heiros et al., 2011] were presented. This implementation will be used to evaluate and
compare the proposed approach versus strategies that either are fully successful allocat-
ing all requested resources or simply fail.

175

7. Partial Utility Scheduling Algorithms and Implementation

176

8 Evaluation

Contents
8.1 Methodology and Configurations . 178

8.1.1 Utility Unaware Allocation . 179

8.2 Over subscription . 182

8.3 Utility-driven Allocation . 183

8.3.1 Allocation of VMs . 183

8.3.2 Effects on workloads . 187

Chapter overview

This chapter reports a detailed evaluation of our partial utility-driven algorithms, while
comparing them with some of classic algorithms for placing virtual machines (or servers)
in a datacenter.

Section 8.1 describes the configurations of the different datacenters used in our sim-
ulation. Section 8.1.1 analyzes what happens when virtual machine allocation is made
in an all-or-nothing way. Section 8.2 discusses a first approach to overcommitment.
Section 8.3 shows the effects of the different utility-driven overcommitment approaches
presented in Chapter 7. The evaluated metrics are relevant to the provider (VM re-
quested but not allocated, resource utilization, revenue) and to the owner of the VMs
(total execution time of workloads).

177

8. Evaluation

DC size Hosts Cores HT MHz Mem (Gbytes)

Size-1 10 2 no 1860 4
10 2 no 2660 4

Size-2 20 4 yes 1860 8
20 4 yes 2660 8

Size-3 40 4 yes 1860 8
40 4 yes 2660 8

Table 8.1: Hosts configured in the simulation. Number of hosts per configuration,
number of cores per host, computational capacity, hyper-threading, Memory capacity

8.1 Methodology and Configurations

In this section we evaluate the proposed scheduling based on partial utility. To do so, we
first describe the datacenters used in the simulation and the VM types whose base price
was already presented in Section 6.3.4. The datacenters are characterized by the number
and type of hosts as described in Table 8.1. We used three types of datacenters hereafter
known as Size-1, Size-2 and Size-3. Each datacenter configuration is representative of a
specific scenario we want to evaluate. Configuration Size-1 represents a typical configu-
ration of a cloud community datacenter [Khan et al., 2014], where low-end processors
are used. Configuration Size-2 represents a set of clusters owned by our research labs,
where raw computational capacity is around 300 cores. The simulation uses quad-core
processes with hyper-threading and a computational capacity per core in the range used
by Xeon processors with this number of cores. Configuration Size-3 doubles the number
of hosts, keeping their computational configuration.

Available VM types are presented in Table 8.2. To enrich the simulation scenario,
VMs have different sizes, simulating the request of heterogeneous virtual hardware. This
is a common practice in the literature [Malik et al., 2013; Beloglazov and Buyya, 2012;
Calheiros et al., 2011; Mian et al., 2012]. The configurations chosen for each VM type
will put our strategies to the test when a new VM request cannot be fulfilled. The num-
ber of cores depends on the size of the datacenter. We simulate different scenarios where
the number of cores per VM will increase as more physical resources are available. Con-
figuration Size-1 uses VMs with 1 core. Configuration Size-2 and Size-3 were simulated
with VMs having 2 and 4 cores respectively. Each virtual core, of each VM type, will
have the CPU power presented in Table 8.2.

178

8.1 Methodology and Configurations

micro small regular extra

Virtual CPU Power (×103 MIPS) 0.5 1 2 2.5
Memory (Gbytes) 1 1.7 2.4 3.5

Table 8.2: Characteristics of each VM type used in the simulation

66.4%

0

5000

10000

15000

20000

25000

30000

0%

20%

40%

60%

80%

100%

20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 M
IP

S
re

q
u

e
st

e
d

 b
u

t
n

o
t

al
lo

ca
te

d

Requested VMs

Potential Allocation FFI (MIPS) FFD (MIPS)

FFI (Memory) FFD (Memory) FFI/FFD (Failed MIPS)

Figure 8.1: Base algorithm which allocates a single VM to each CPU core.

We tried to allocate an increasing number of VMs. Each requested VM has a type
(e.g. micro). We considered VM types to be uniformly distributed (realistic assumption)
and requested one type at a time. The following sections highlight the differences be-
tween the current allocation strategies and the ones that can cope with the proposed
flexible SLAs.

8.1.1 Utility Unaware Allocation

Figures 8.1 and 8.2 show the effects of using two different allocation strategies for host
selection, and other two regarding the use of cores, but still without taking into account
each client’s partial utility. Each x-axis value represents a total number of VMs requested,
r, and the value in the corresponding left y-axis is the datacenter occupation (MIPS and
Memory) obtained when r − f number of VMs are able to run, with f ≥ 0 being the
number of not allocated VMs. The host selection is based on the First-Fit Increasing
(FFI) and First-Fit Decreasing (FFD) algorithms, described in Section 7.1. In each of
these approaches, we present the total percentage of MIPS and memory allocated, in the
left y-axis, for each set of requested VMs. Regarding the 6th series, “FFI/FFD (Failed

179

8. Evaluation

66.4%
73.0%

0

5000

10000

15000

20000

25000

0%

20%

40%

60%

80%

100%

20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 M
IP

S
re

q
u

e
st

e
d

 b
u

t
n

o
t

al
lo

ca
te

d

Title

Potential Allocation FFI (MIPS) FFD (MIPS)

FFI (Memory) FFD (Memory) FFI/FFD (Failed MIPS)

Figure 8.2: Base algorithm which allocates one or more VMs to a single CPU core.

MIPS)”, its results are plotted in the right y-axis.

In Figure 8.1, each VMM (one for each host) allocates one or more cores to each VM
and does not allow any sharing of cores by different VMs. In Figure 8.2, each VMM
(one for each host) allocates one or more cores to each VM and, if necessary, allocates a
share of the same core to a different VM.

In both cases, the datacenter starts rejecting the allocation of new VMs when it is
about at 66% of its raw processing capacity (i.e., MIPS) and at aproximatly 53% of
its memory capacity. Although there are still resources available (cores and memory),
they are not able to fit 100% the QoS of the requested VM. As expected, the core sharing
algorithm promotes better resource utilization because the maximum effective allocation
is 73% of the datacenter, regarding raw processing capacity, and 59%, regarding memory
capacity. The effective allocation of core-based sharing still continues to increase, at a
slower rate, because there are smaller VMs that can be allocated.

Figure 8.3 shows the counting of VM failures grouped by the VM type and VMM
scheduling strategy. The simulation uses hosts with different capacities and heteroge-
neous VMs, for realism, as workloads are varied and resources not fully symmetric, as
it happens in many real deployments in practice. The allocation strategy that enables
sharing of resources is naturally the one with fewer failed requests. In the configured
Size-1 datacenter, the no-core sharing strategy starts rejecting VMs when a total of 40
is requested. In both cases, the bigger VMs (i.e., the ones requesting more computing
power) are the ones with a higher rejection rate.

180

8.1 Methodology and Configurations

NoShare/Micro
NoShare/Small
NoShare/Regular
NoShare/Extra
Share/Micro
Share/Small
Share/Regular
Share/Extra

0

1

2

3

4

5

38 40 42 44 46 48 50 52 54 56 58

R
e

q
u

e
st

e
d

 b
u

t
n

o
t

al
lo

ca
te

d
 V

M
s

Requested VMs

Figure 8.3: Types, sizes, and counting of requested but not allocated VMs

Base No Core Sharing Base Core Sharing

VMs Failed E R S M Hosts Failed E R S M Hosts

38 0 (0%) 0 0 0 0 +0 0 (0%) 0 0 0 0 +0
42 2 (5%) 1 1 0 0 +1 2 (5%) 1 1 0 0 +1
60 20 (33%) 5 5 5 5 +10 10 (17%) 5 5 0 0 +5
76 36 (47%) 9 9 9 9 +18 18 (24%) 9 9 0 0 +8

Table 8.3: Summary of VMs requested but not allocated and the number of additional
hosts when cores are not shared

Table 8.3 (with results for an added number of VM requests) also shows, in the
“Hosts” column, the number of extra hosts that would be necessary to fit the rejected
VMs. These extra hosts are determined by summing all the resources not allocated and
dividing by the resources of the type of host with more capacity (i.e., assuming a perfect
fit and ignoring the computational cost of determining such a fit). Our solution avoids
these extra hosts by readjusting the allocation of new and accepted VMs, following the
utility and price matrices negotiated with the client.

Figure 8.4 shows the evolution of host utilization. This figure presents the result
of allocating a total of 76 VMs. It shows that when using FFD with a core sharing
approach, the number of unused hosts drops more slowly, while with the FFI approach
all hosts start being used with less VMs allocated. If the datacenter is running a number
and type of VMs below its rejection point, the FFD scheduling is better because hosts
can be turned off or put in an idle state.

181

8. Evaluation

0

2

4

6

8

10

12

14

16

18

20

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76

N
u

m
b

e
r

o
f

u
n

u
se

d
 h

o
st

s

Allocated VMs

FFI-no-share FFD-no-share FFI-share FFD-share

Figure 8.4: Unused hosts

8.2 Over subscription

Looking again to Figures 8.1-8.2, at the time when 58 VMs are requested, both strategies
leave a significant part of the datacenter unused.

Figure 8.5 shows the results for the over-subscription algorithm (hereafter known as
Base+OverSub), described in Section 7.1, that is oblivious to client classes, because it de-
preciates all VMs until no more computational power is available in the host. Given that
this strategy looks at the host with more cores, ignoring the total computational power,
it departs immediately from the potential allocation, because VMs are depreciated even
when there is computational power available in other hosts. However, when more than
40 VMs are requested, it will grow more than the previous two allocation strategies.

Differently from the previous two strategies, it will not fail allocations, as can be
seen in the right y-axis regarding the series “Failed MIPS (sec. axis)”. Nevertheless, the
effective allocation still has margin to grow. More importantly, using this approach,
there is no way to enforce the SLA negotiated with the clients. This has a significant
impact in the provider’s revenue, as we will demonstrate next, when we present the
results for our strategies that take into account the type of VMs, their classes, and the
partial utility negotiated.

182

8.3 Utility-driven Allocation

38.7%

36.1%

84%

0

5000

10000

15000

20000

25000

0%

20%

40%

60%

80%

100%

20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58

M
IP

S
re

q
u

es
te

d
 b

u
t

n
o

t
al

lo
ca

te
d

Requested VMs

Potential Allocation (%) Effective Allocation, MIPS

Effective Allocation, Mem Failed MIPS (secondary axis)

Figure 8.5: Base algorithm with over subscription, taking the first host with more cores,
equal depreciation and unaware of client classes

8.3 Utility-driven Allocation

In utility-driven allocation, all requested VMs will eventually be allocated until the dat-
acenter is overcommitted by a factor that can be defined by each provider. Along with
the type, VMs are characterized by a partial utility class (e.g. high), as described in Chap-
ter 6. In the following results, in each set of allocated VMs there are 20% of class high,
50% of class medium, and 30% of class low.

In this section, we will show how the proposed approach behaves, regarding two
important set of metrics: i) allocation of VMs and, ii) execution of workloads by the
allocated VMs. The first set of metrics is mainly important for the provider, while the
second set of metrics is primarily of interest to the client. We compare utility-unware
allocations with two heuristics presented in Section 7.1 - max-class and min-class.

8.3.1 Allocation of VMs

Regarding provider-side metrics, we measure the number of failed VM requests, the
resource utilization percentage, and the revenue (per hour). In all of the metrics, our
strategies are at least as good as the Base+OverSub strategy, while specifically regarding
revenue, we have average increases around 40%.

First, we compare our approaches with the base algorithm described in Section 7,

183

8. Evaluation

0

10

20

30

40

38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76

N
u

m
b

e
r

o
f

re
q

u
es

te
d

 V
M

s

b
u

t
n

o
t

al
lo

ca
te

d

Requested VMs

Base+NoShare Base+Share Base+OverSub

Max-class Min-class

(a) Size-1 datacenter. 1 core/VM

0

20

40

60

80

100

120

N
u

m
b

er
 o

f
re

q
u

e
st

ed
 V

M
s

b

u
t

n
o

t
al

lo
ca

te
d

Requested VMs

Base+NoShare Base+Share Base+OverSub

Max-class Min-class

(b) Size-2 datacenter. 2 core/VM

0

50

100

150

200

250

N
u

m
b

e
r

o
f

re
q

u
e

st
e

d
 V

M
s

b

u
t

n
o

t
al

lo
ca

te
d

Requested VMs

Base+NoShare Base+Share Base+OverSub

Max-class Min-class

(c) Size-3 datacenter. 2 core/VM

0

50

100

150

N
u

m
b

er
 o

f
re

q
u

es
te

d
 V

M
s

b

u
t

n
o

t
al

lo
ca

te
d

Requested VMs

Base+NoShare Base+Share Base+OverSub

Max-class Min-class

(d) Size-3 datacenter. 4 core/VM

Figure 8.6: Number of requested but not allocated VMs using datacenters with different
sizes and VMs with different number of cores.

184

8.3 Utility-driven Allocation

0%

20%

40%

60%

80%

100%

38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76

Requested VMs

Base+NoShare Base+Shared Base+OverSub

max-class min-class

(a) Size-1 datacenter.

0%

20%

40%

60%

80%

100%

Requested VMs

Base+NoShare Base+Shared Base+OverSub

Max-class Min-class

(b) Size-2 datacenter. 2 core/VM

0%

20%

40%

60%

80%

100%

Requested VMs

Base+NoShare Base+Shared Base+OverSub

Max-class Min-class

(c) Size-3 datacenter. 2 core/VM

0%

20%

40%

60%

80%

100%

Requested VMs

Base+NoShare Base+Shared Base+OverSub

Max-class Min-class

(d) Size-3 datacenter. 4 core/VM

Figure 8.7: Compared resource utilization using datacenters with different sizes

regarding the number of VMs that were requested but not allocated. Figure 8.6 shows
that, while the base algorithm fails to allocate some VMs when 40 or more VMs are
requested, the Base+OverSub and utility-driven strategies can allocate all requests in this
configuration of the datacenter (note the collapsed series). Figure 8.6 presents similar
results for a Size-2 datacenter. In this case, after 180 VMs, the Base allocation algorithm
rejects VMs of type extra and regular.

Second, we evaluate how available resources are utilized. Regarding this metric,
Figure 8.7 shows the percentage of resource utilization with an increasing number of
VMs being requested for allocation. Three observations are worth noting:

i) although with base allocation strategy some VMs are not scheduled, as demon-
strated in Figure 8.6, others can still be allocated and can use some of the remaining
resources;

185

8. Evaluation

25

30
35

40
45
50

55
60

65

38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76

R
e

ve
n

u
e

($
/h

o
u

r)

Requested VMs
Base+NoShared Base+Shared Base+OverSub
max-class min-class Optimal
Random

(a) Size-1 datacenter.

30

130

230

330

430

530

R
e

ve
n

u
e

 (
$

/h
o

u
r)

Requested VMs

Base+NoShared Base+Shared Base+OverSub
Max-class Min-class Optimal
Random

(b) Size-2 datacenter. 2 core/VM

200

400

600

800

1000

1200

R
ev

en
u

e
($

/h
o

u
r)

Requested VMs

Base+NoShared Base+Shared Base+OverSub

Max-class Min-class Optimal

(c) Size-3 datacenter. 2 core/VM

30

230

430

630

830

1030
R

ev
en

u
e

($
/h

o
u

r)

Requested VMs

Base+NoShared Base+Shared Base+OverSub
Max-class Min-class Optimal
Random

(d) Size-3 datacenter. 4 core/VM

Figure 8.8: Compared revenue using datacenters with different sizes

ii) second, it is clear that our strategies achieve better resource utilization, while allo-
cating all VMs;

iii) as the size of the datacenter increases, the strategy Base+OverSub lags behind to
use all available resources. Our strategies can reach the peak in a similar fashion,
across all sizes of datacenters.

The third and last metric evaluated for the provider is the revenue. Figures 8.8.a)-
8.8.d) show how the revenue progresses with an increasing number of total VM requests.
It clearly demonstrates the benefits of using a degradation and partial utility-driven ap-
proach, showing that the provider’s revenue can indeed increase if the rejected VMs
(above 40 in the Size-1 datacenter and above 180 in the Size-2 datacenter) are allocated,
even if only with a fraction of their requested resources (i.e., subject to degradation

186

8.3 Utility-driven Allocation

driven by partial-utility ranges).

Comparing with the utility-oblivious redistribution, which also allocates all requested
VMs (i.e., Base+OverSub), the increase of revenues in a Size-1 type datacenter can go up
to a a maximum of 65% ($35.8 to $59.0). In the case of a Size-2 datacenter, it can reach
a maximum of 53% ($294.3 to $451.2), and 54% ($580.1 to $895.8) in a Size-3 configu-
ration. When the comparison is done starting from the point where VMs are rejected
by the base strategy, the medium increase in revenue is 45%, 40%, and 31%, for each
datacenter configuration. This corresponds to an average increase in revenue of 39%,
when considering all revenue increases across all datacenters.

We also compare the scheduling heuristics with a random and an optimal allocation.
The random method chooses the server according to a random order. At a given server
it will iterate over a random number of the available VMs (at most 50%), until it can
take the necessary resources. This strategy stays below or slightly above Base+OverSub
(which also does not reject VMs) but exhibits worse results than any of our heuristics.
The optimal allocation was determined by exhaustively testing all the combinations of
resource reallocation (a very slow process) and at each step choosing the one with better
revenue. Our two main partial utility-driven heuristics are the ones that come closer to
this allocation.

8.3.2 Effects on workloads

Finally, and regarding the execution time, we have evaluated the scheduling of VM re-
sources to each profile based on the partial utility. The data used was collected from
workloads executed during 10 days by thousands of PlanetLab VMs provisioned for mul-
tiple users [Beloglazov and Buyya, 2012; Park and Pai, 2006]. Each of these workloads
are represented by traces with the percentage of CPU usage of a given VM running in
the PlanetLab network, during a day. We use n of these workloads where n is the num-
ber of requested VMs. In our simulation environment, each trace is assigned to a single
VM allocated with each strategy.

Figures 8.9 and 8.10 report on the CPU time used by the workloads running on the
allocated VMs. The CPU time is based on the simulation clock managed by CloudSim.
The average execution time of the workloads in each VM is presented in Figures 8.9 and
8.9 for the three datacenter sizes. The median execution time of the workloads in each
VM is presented in Figures 8.10 and 8.10.

187

8. Evaluation

2.0

3.0

4.0

5.0

6.0

7.0

8.0

38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76

A
ve

ra
ge

 C
P

U
 t

im
e

(x
1

0
^6

 c
yc

le
s)

Running VMs

base base+oversub max-class min-class

(a) Size-1 datacenter.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
ve

ra
ge

 C
P

U
 t

im
e

(x
1

0
^6

 c
yc

le
s)

Running VMs

Base Base+OverSub Max-class Min-class

(b) Size-2 datacenter. 2 core/VM

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

A
ve

ra
ge

 C
P

U
 t

im
e

(x
1

0
^6

 c
yc

le
s)

Running VMs

Base Base+OverSub Max-class Min-class

(c) Size-3 datacenter. 2 core/VM

0.0

0.5

1.0

1.5

2.0

A
ve

ra
ge

 C
P

U
 t

im
e

(x
1

0
^6

 c
yc

le
s)

Running VMs

Base Base+OverSub Max-class Min-class

(d) Size-3 datacenter. 4 core/VM

Figure 8.9: Compared average execution time of traces from PlaneLab VMs using data-
centers with different sizes

188

8.3 Utility-driven Allocation

2.0

2.3

2.5

2.8

3.0

3.3

3.5

3.8

38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76

M
ed

ia
n

 C
P

U
 t

im
e

(x
1

0
^6

 c
yc

le
s)

Running VMs

base base+oversub max-class min-class

(a) Size-1 datacenter.

0.0

0.5

1.0

1.5

2.0

M
ed

ia
n

 C
P

U
 T

im
e

(1
0

^
6

 c
yc

le
s)

Running VMs

Base Base+OverSub Max-class Min-class

(b) Size-2 datacenter. 2 core/VM

0.0

0.5

1.0

1.5

2.0

M
ed

ia
n

 C
P

U
 T

im
e

(1
0

^6
 c

yc
le

s)

Running VMs

Base Base+OverSub Max-class Min-class

(c) Size-3 datacenter. 2 core/VM

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ed

ia
n

 C
P

U
 T

im
e

(1
0

^6
 c

yc
le

s)

Running VMs

Base Base+OverSub Max-class Min-class

(d) Size-3 datacenter. 4 core/VM

Figure 8.10: Compared median execution time of traces from PlaneLab VMs using dat-
acenters with different sizes

189

8. Evaluation

In the base strategy, as some requested VMs will be rejected because no host can be
found with the complete requirements, there will be VMs that receive more than one
PlanetLab VM trace. In the simulation, when these PlanetLab VMs are being repro-
duced, they receive a fraction of the available CPU, proportionally to the number of
co-located PlanetLab VMs.

The results show that with more VMs allocated, even if with less allocated resources
than the ones requested, as it is the case, both the average and the median execution time
of tasks running on VMs allocated with our partial utility-driven scheduler is below the
execution times achieved with the base strategy.

When comparing Base+OverSub with our best strategy (i.e., min-class), we can ob-
serve that the former has a marginally better average execution time while the latter has
a slightly better median, rendering the differences seemingly non-significant. Neverthe-
less, as shown before in Section 8.3.1, the Base+OverSub strategy is unable to reach the
best revenue for the provider and cannot provide any economic benefits for the clients
given its utility obliviousness.

Summary

In this chapter we presented an extensive set of results regarding the evaluation of our
partial utility-driven allocation of VMs. We analyzed provider-side metrics such as the
number of virtual machines requested but not fulfilled, the percentage of resource alloca-
tion and the revenue. The client perspective was also examined, looking at the execution
time spent by different workloads when running on the allocated VMs. The results are
based on experiments performed on the CloudSim simulation environment.

190

Part IV

Conclusions and Future Work

9 Conclusions and Future Work

“The whole is more than the sum of its parts.”

Aristotle in Metaphysical

Contents
9.1 Platform-as-a-Service . 194
9.2 Infrastructure-as-a-Service . 195
9.3 Future Work . 197

The idea of computing as an utility is being materialized in what is called Cloud
Computing. Industry and academia have embraced this new space of opportunities.
While still dominated by information technology giants, such as Amazon and Google,
with millions of clients across the globe, new companies are exploring this area of busi-
ness, gaining new clients by their cost model or differentiating services.1,2 In academia,
many of the research groups working on related areas, such as Grid and Cluster environ-
ments, are now extending their efforts to the specific challenges of Cloud Computing,
namely, virtualization technologies, new cost and revenue models and the big data chal-
lenges. The work presented on this thesis has embraced the first two topics.

The Cloud Computing space is largely divided into three service layers:

i) Infrastructure-as-a-Service (IaaS), where assets are virtual physical resources;

ii) Platform-as-a-Service (PaaS), where assets are managed runtimes;
1http://www.lunacloud.com, visited September 22, 2014
2http://www.jelastic.com, visited September 22, 2014

193

http://www.lunacloud.com
http://www.jelastic.com

9. Conclusions and Future Work

iii) Software-as-a-Service (SaaS), where assets are complete or customizable applica-
tions.

This thesis is centered on the first two layers proposing new models, algorithms, and
mechanisms to be used by providers for the distribution of resources among different
tenants.

To better understand current proposals regarding resource allocation in virtual ma-
chines (VMs), the first contribution is a classification process that allows different sys-
tems to be put into perspective regarding the techniques they used to monitor, decide
and act. They are compared in three axis that we argue are independent, namely, respon-
siveness, comprehensiveness, and intricateness.

In the case of PaaS providers, it is possible to collect application-specific information
about the workload running at each moment. We propose to use this information to
avoid an equal distribution of resources and instead apply an application-aware alloca-
tion that can distribute resources where they are more effective. Our resource allocation
model takes into account application progress and, when resources are scarce, favors
tenants which bring greater yield, that is, the ones whose workloads will suffer less per-
formance degradation when deprived of resources.

Regarding the IaaS service model, we have also considered a scenario where not all
VM requests can be fulfilled. Our goal was to make overcommitment an explicit variable
of the cost model. This way the consumer is easily able to determine the valuation of
having its requests partially fulfilled. That is, we want to make clear its inherent and
unavoidable drawbacks, but also its opportunities for some users with more relaxed
requirements that are paying more than they could today. This variable should not be
a hidden, exogenous one, only observable in the limit case scenario of Service Level
Agreements violations.

9.1 Platform-as-a-Service

In this thesis, we described the research to design a new execution environment to be
used in consolidated PaaS environments. Our goal was to manage resources and use an
adaptation strategy that obeys a VM economics model, based on aiming overall quality-
of-execution (QoE) through resource efficiency. Essentially, our goal was to put re-

194

9.2 Infrastructure-as-a-Service

sources where they can do the most good to applications and the cloud infrastructure
provider, while taking them from where they can do the least harm to applications.

To fulfill this vision, each managed runtime instance is an extended resource-aware
runtime for a high-level language, Java, where resources can be allocated based on their
effectiveness for a given workload. QoE-JVM has the ability to monitor base mech-
anisms (e.g. CPU, memory or network consumptions) in order to assess application
performance, so that these mechanisms can be reconfigured at runtime.

We had to devise an allocation model and incorporate resource management mecha-
nisms which are not available in current managed runtimes. Regarding the mechanisms,
a Java VM was extended with:

i) Resource accounting mechanisms and APIs. This includes an implementation of
the JSR-284 and new matrices to regulate the heap rezising process.

ii) Concurrent checkpointing capabilities. We have extended a serial checkpointing
mechanism to operate in concurrency with the application. It can be activated
externally to the application in a transparent way.

Moreover, a program-level progress monitoring framework was also designed and imple-
mented. The framework is based on counting the frequency of calls to critical methods
as a proxy to determining the application’s progress, so that this information can be used
in the adaptation model.

We presented the details of our adaptation mechanisms in each VM. Jikes RVM, a
Java VM, was extended to incorporate them. Regarding the general resources of heap
size and CPU allocation, transversal to a large set of applications, we experimentally
evaluated the benefits of our approach, showing resources can be transferred among
applications, from where they hurt performance the least (higher yields in our metrics),
to more higher priority or requirements applications.

9.2 Infrastructure-as-a-Service

SLA violations (and their avoidance) is a well established field of research. Cloud
providers now offer no multi-level SLA agreements, and therefore, the user pays full

195

9. Conclusions and Future Work

price for anything that does not violate SLA (that, for that matter, ends up being care-
fully handcrafted to be seldom violated). If the user gets fewer resources than the max-
imum requested, he should pay less for it, instead of having a much more conservative
SLA that is never violated. Furthermore, if the user is willing to do this, to take this
risk, her price should also be cut down.

Our goal was to build an SLA model that was not based on outages/unavailability
but on the actual ability to satisfy the physical resources that were requested. If some
VM has to have its resources released for the allocation of further requests, this is imme-
diately taken into account in the pricing. For this risk, the user gets a premium, which
is how we make him aware of the overcommitment. If the requested VM is so simple
that it will perform acceptably even if severely under-provisioned, it means it belongs
to a lower SLA class, with a unitary price that is lower, but with little reduction in
performance if full resources are not provided.

In this thesis, we have proposed a cost model for IaaS providers that takes into ac-
count the user’s partial utility specification when the provider needs to transfer resources
between VMs. As the consolidation ratio increases, overcommitment will naturally hap-
pen and performance will be prone to degradation. Our model makes overcommitment
(and higher consolidation factors) explicit to the users and rewards them, with more
flexible and reduce pricing, for the upfront possibility of getting fewer resources than
that they have payed for. This way, users pay more closely to what they consume (by
what is made available to them) than for what they rent in contract (regardless of the
actual physical resources that are made available to them).

We developed extensions to the scheduling policies of a state-of-the-art cloud infras-
tructure simulator, CloudSim, that are driven by this model. The cost model and par-
tial utility-driven strategies were applied to the oversubscription of CPU. The provider’s
revenue, resource utilization and client’s workloads execution time were measured. Re-
sults show that, although our strategies partially degraded and release the computational
power of VMs when resources are scarce, they overcome the classic allocation strategy
which would not be able to allocate above a certain number of VMs.

With this work we are a step forward in having a price model akin to paying for
actual electricity consumption instead of paying for the maximum electrical power re-
served contracted, such as a rent. This a step forward toward real pay-per-use, and to a
true utility-like scheme.

196

9.3 Future Work

9.3 Future Work

Several topics can be regarded as future work. There are new research directions that
have the potential to bring benefits to our system. There are also improvements to the
current design choices. The following are examples that fit into these two areas.

Statistical methods applied to the selection of heap growth matrices. Statistical
learning methods, also known as machine learning, can be used to select the matrix that
best fits an unknown workload. For each of the current evaluated workloads, a clas-
sification of their static and dynamic structure is described in the DaCapo benchmark
paper [Blackburn et al., 2006]. Each of the metrics has the potential to be an analysis
variable of a supervised learning experiments. Using these variables and the performance
results of using different matrices, we could then use the results from previous learning
experiments and choose what is expected to be the best matrix for the current workload.

Further integration with distributed scheduling middlewares. In [Simão et al.,
2011], we have presented a middleware related to this thesis. It is a single-system im-
age middleware that distributes threads across a set of nodes, giving the illusion to the
application of a single address space. We discuss how the distribution policies of the mid-
dleware could be controlled by the resource management API available in our extended
HLL-VM. In [Simão et al., 2013], this middleware was extended so that the placement
of new threads takes into account the load of each node but also the benefits (yield) it
brings to the overall workload execution. Although these two works were not detailed
in this thesis, we consider this line of work to be a valuable one.

Future work must take into account that in multi-threaded application there will be
threads interacting among themselves more than with others. Thread interaction can
be measured by counting the number (frequency, recency, etc.) of accesses to objects
protected by monitors. Identifying these threads is important to co-locate them when
threads are spawned over the cluster. Also, during the execution of long running pro-
grams, highly correlated threads could be migrated, in groups, to less loaded nodes. The
techniques used in our recent work [Silva et al., 2013] about the recording and replay
of threads’ concurrent access to object fields have the potential to also be used for this
propose because they provide a view of thread affinity.

197

9. Conclusions and Future Work

Integration with state of the art cloud scheduling simulators. Currently, state-of-
the-art cloud scheduling simulators, such as CloudSim [Calheiros et al., 2011], assume
that workloads make progress only based on the assigned CPU (i.e., number of instruc-
tions per second). This is useful for simulation because it contributes to the determin-
ism of each experiment and to a fair comparison between strategies. However, we think
that the simulator progress model can be made more realistic by accounting for execu-
tion degradation due to memory or even bandwidth shortage, thrashing or congestion.
There must be further research concerning how we can simulate such behavior, taking
into account progress measurement versus allocated resources, based on real workloads.

Experimentations with open source IaaS stacks. We plan to incorporate this ap-
proach in open source private cloud solutions such as OpenStack and extend the evalu-
ation of the model to other resources, namely the network bandwidth.3

3http://www.openstack.org/, visited October 8, 2014

198

http://www.openstack.org/

References

Adams, K. and Agesen, O. (2006). A comparison of software and hardware techniques
for x86 virtualization. In Proceedings of the 12th International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ASPLOS XII, pages
2–13, New York, NY, USA. ACM.

Agmon Ben-Yehuda, O., Posener, E., Ben-Yehuda, M., Schuster, A., and Mu’alem, A.
(2014a). Ginseng: Market-driven memory allocation. In Proceedings of the 10th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, VEE
’14, pages 41–52, New York, NY, USA. ACM.

Agmon Ben-Yehuda, O., Posener, E., Ben-Yehuda, M., Schuster, A., and Mu’alem, A.
(2014b). Ginseng: Market-driven memory allocation. In Proceedings of the 10th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, VEE
’14, pages 41–52, New York, NY, USA. ACM.

Alpern, B., Attanasio, C., Barton, J., Burke, M., Cheng, P., Choi, J., Cocchi, A., Fink,
S., Grove, D., Hind, M., et al. (2000). The Jalapeno virtual machine. IBM Systems
Journal, 39(1):211.

Alpern, B., Augart, S., Blackburn, S. M., Butrico, M., Cocchi, A., Cheng, P., Dolby,
J., Fink, S., Grove, D., Hind, M., McKinley, K. S., Mergen, M., Moss, J. E. B., Ngo,
T., and Sarkar, V. (2005). The jikes research virtual machine project: building an
open-source research community. IBM Syst. J., 44:399–417.

Amdahl, G. M., Blaauw, G. A., and Brooks, F. P. (1964). Architecture of the IBM
system/360. IBM J. Res. Dev., 8:87–101.

Anderson, D. P. (2004). Boinc: A system for public-resource computing and storage. In

199

References

Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing, GRID
’04, pages 4–10, Washington, DC, USA. IEEE Computer Society.

Andreasson, E., Hoffmann, F., and Lindholm, O. (2002). To collect or not to collect?
Machine learning for memory management. In Proceedings of the 2nd Java Virtual Ma-
chine Research and Technology Symposium, pages 27–39, Berkeley, CA, USA. USENIX
Association.

Andrzejak, A., Kondo, D., and Yi, S. (2010). Decision model for cloud computing under
SLA constraints. In Modeling, Analysis Simulation of Computer and Telecommunication
Systems (MASCOTS), 2010 IEEE International Symposium on, pages 257–266.

Armbrust, M., Fox, A., Grifth, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., and Zaharia, M. (2009). Above the clouds: A
berkeley view of cloud computing. Technical report, UC Berkeley.

Arnold, M., Fink, S. J., Grove, D., Hind, M., and Sweeney, P. F. (2005). A survey
of adaptive optimization in virtual machines. In Proceedings of the IEEE, 93(2), 2005.
Special Issue on Program Generation, Optimization, ans Adaptation, pages 449–466.

Back, G. and Hsieh, W. C. (2005). The KaffeOS Java runtime system. ACM Trans.
Program. Lang. Syst., 27:583–630.

Back, G., Hsieh, W. C., and Lepreau, J. (2000). Processes in kaffeos: Isolation, resource
management, and sharing in java. In In Proceedings of the 4th Symposium on Operating
Systems Design and Implementation, pages 333–346.

Baker, H. G. (1994). Thermodynamics and garbage collection. SIGPLAN Not., 29:58–
63.

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt,
I., and Warfield, A. (2003). Xen and the art of virtualization. SIGOPS Oper. Syst. Rev.,
37:164–177.

Baumgart, I., Heep, B., and Krause, S. (2007). Oversim: A flexible overlay network
simulation framework. In IEEE Global Internet Symposium, 2007, pages 79–84.

Bedaride, P., Degomme, A., Genaud, S., Legrand, A., Markomanolis, G., Quinson, M.,
Stillwell, Mark, L., Suter, F., and Videau, B. (2013). Toward Better Simulation of MPI

200

References

Applications on Ethernet/TCP Networks. In PMBS13 - 4th International Workshop on
Performance Modeling, Benchmarking and Simulation of High Performance Computer
Systems, pages 158–181, Denver, États-Unis.

Beloglazov, A. and Buyya, R. (2010). Energy efficient resource management in virtual-
ized cloud data centers. In Cluster, Cloud and Grid Computing (CCGrid), 2010 10th
IEEE/ACM International Conference on, pages 826–831.

Beloglazov, A. and Buyya, R. (2012). Optimal online deterministic algorithms and
adaptive heuristics for energy and performance efficient dynamic consolidation of
virtual machines in cloud data centers. Concurrency and Computation: Practice and
Experience, 24(13):1397–1420.

Binder, W., Hulaas, J., Moret, P., and Villazón, A. (2009). Platform-independent profil-
ing in a virtual execution environment. Softw. Pract. Exper., 39:47–79.

Blackburn, S. M., Cheng, P., and McKinley, K. S. (2004). Oil and Water? High Perfor-
mance Garbage Collection in Java with MMTk. In Finkelstein, A., Estublier, J., and
Rosenblum, D. S., editors, ICSE, pages 137–146. IEEE Computer Society.

Blackburn, S. M., Garner, R., Hoffmann, C., Khang, A. M., McKinley, K. S., Bentzur,
R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S. Z., Hirzel, M., Hosking, A.,
Jump, M., Lee, H., Moss, J. E. B., Moss, B., Phansalkar, A., Stefanović, D., Van-
Drunen, T., von Dincklage, D., and Wiedermann, B. (2006). The DaCapo bench-
marks: Java benchmarking development and analysis. In OOPSLA ’06: Proceedings
of the 21st annual ACM SIGPLAN conference on Object-oriented programming systems,
languages, and applications, pages 169–190, New York, NY, USA. ACM.

Blackburn, S. M. and McKinley, K. S. (2008). Immix: a mark-region garbage collector
with space efficiency, fast collection, and mutator performance. In Proceedings of the
2008 ACM SIGPLAN conference on Programming language design and implementation,
PLDI ’08, pages 22–32, New York, NY, USA. ACM.

Blake, C. and Rodrigues, R. (2003). High availability, scalable storage, dynamic peer
networks: Pick two. In Jones, M. B., editor, HotOS, pages 1–6. USENIX.

Bobroff, N., Westerink, P., and Fong, L. (2014). Active control of memory for Java
virtual machines and applications. In 11th International Conference on Autonomic
Computing (ICAC 14), pages 97–103, Philadelphia, PA. USENIX Association.

201

References

Bonér, J. and Kuleshov, E. (2007). Clustering the Java Virtual Machine using Aspect-
Oriented Programming. In AOSD ’07: Industry Track of the 6th international confer-
ence on Aspect-Oriented Software Development. Conference on Aspect Oriented Soft-
ware Development.

Bouchenak, S., Hagimont, D., Krakowiak, S., De Palma, N., and Boyer, F. (2004). Ex-
periences implementing efficient Java thread serialization, mobility and persistence.
Software: Practice and Experience, 34(4):355–393.

Brewer, E. A. (2010). A certain freedom: thoughts on the CAP theorem. In Richa,
A. W. and Guerraoui, R., editors, PODC, page 335. ACM.

Brown, R. H. F. and Horspool, R. N. (2010). Local redundant polymorphism query
elimination. In Proceedings of the 8th International Conference on the Principles and
Practice of Programming in Java, PPPJ ’10, pages 78–88, New York, NY, USA. ACM.

Buyya, R., Garg, S. K., and Calheiros, R. N. (2011). Sla-oriented resource provisioning
for cloud computing: Challenges, architecture, and solutions. In Proceedings of the
2011 International Conference on Cloud and Service Computing, CSC ’11, pages 1–10,
Washington, DC, USA. IEEE Computer Society.

Buyya, R. and Murshed, M. (2002). GridSim: a toolkit for the modeling and simulation
of distributed resource management and scheduling for Grid computing. Concurrency
and Computation: Practice and Experience, 14(13-15):1175–1220.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., and Brandic, I. (2009). Cloud comput-
ing and emerging it platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Gener. Comput. Syst., 25(6):599–616.

Calheiros, R. N. and Buyya, R. (2014). Meeting deadlines of scientific workflows in
public clouds with tasks replication. IEEE Transactions on Parallel and Distributed
Systems, 25(7):1787–1796.

Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A. F., and Buyya, R. (2011).
Cloudsim: a toolkit for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms. Softw. Pract. Exper., 41(1):23–50.

202

References

Cameron, C. and Singer, J. (2014). We are all economists now: Economic utility for
multiple heap sizing. In Proceeding of Implementation, Compilation, Optimization of
OO Languages, Programs and Systems (ICOOOLPS).

Carvalho, F. and Cachopo, J. (2011). Stm with transparent api considered harmful. In
Xiang, Y., Cuzzocrea, A., Hobbs, M., and Zhou, W., editors, Algorithms and Archi-
tectures for Parallel Processing, volume 7016 of Lecture Notes in Computer Science, pages
326–337. Springer Berlin Heidelberg.

Casanova, H., Legrand, A., and Quinson, M. (2008). Simgrid: a generic framework for
large-scale distributed experiments. In Proceedings of the Tenth International Confer-
ence on Computer Modeling and Simulation, UKSIM ’08, pages 126–131, Washington,
DC, USA. IEEE Computer Society.

Castro Fernandez, R., Migliavacca, M., Kalyvianaki, E., and Pietzuch, P. (2013). Inte-
grating scale out and fault tolerance in stream processing using operator state manage-
ment. In Proceedings of the 2013 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’13, pages 725–736, New York, NY, USA. ACM.

Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., and Sarkar, V. (2005). X10: An object-oriented approach to non-uniform
cluster computing. In Proceedings of the 20th Annual ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applications, OOPSLA ’05,
pages 519–538, New York, NY, USA. ACM.

Chase, J. S., Anderson, D. C., Thakar, P. N., Vahdat, A. M., and Doyle, R. P. (2001).
Managing energy and server resources in hosting centers. In Proceedings of the Eigh-
teenth ACM Symposium on Operating Systems Principles, SOSP ’01, pages 103–116,
New York, NY, USA. ACM.

Chen, L., Serazzi, G., Ansaloni, D., Smirni, E., and Binder, W. (2014). What to expect
when you are consolidating: effective prediction models of application performance
on multicores. Cluster Computing, 17(1):19–37.

Cheng, L. and Wang, C.-L. (2012). vbalance: Using interrupt load balance to improve
i/o performance for smp virtual machines. In Proceedings of the Third ACM Symposium
on Cloud Computing, SoCC ’12, pages 2:1–2:14, New York, NY, USA. ACM.

203

References

Cherkasova, L., Gupta, D., and Vahdat, A. (2007). Comparison of the three cpu sched-
ulers in xen. SIGMETRICS Perform. Eval. Rev., 35:42–51.

Chiu, D.-M. and Jain, R. (1989). Analysis of the increase and decrease algorithms for
congestion avoidance in computer networks. Comput. Netw. ISDN Syst., 17(1):1–14.

Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., and Bow-
man, M. (2003). Planetlab: An overlay testbed for broad-coverage services. SIGCOMM
Comput. Commun. Rev., 33(3):3–12.

Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E., Limpach, C., Pratt, I., and
Warfield, A. (2005). Live migration of virtual machines. In Proceedings of the 2Nd
Conference on Symposium on Networked Systems Design & Implementation - Volume 2,
NSDI’05, pages 273–286, Berkeley, CA, USA. USENIX Association.

Click, C., Tene, G., and Wolf, M. (2005). The pauseless gc algorithm. In Proceedings
of the 1st ACM/USENIX international conference on Virtual execution environments,
VEE ’05, pages 46–56, New York, NY, USA. ACM.

Cobb, C. and Douglas, P. (1928). A theory of production. The American Economic
Review, 18(1):139–165.

Costache, S., Parlavantzas, N., Morin, C., and Kortas, S. (2013). On the use of a
proportional-share market for application SLO support in clouds. In Euro-Par 2013
Parallel Processing, volume 8097 of Lecture Notes in Computer Science, pages 341–352.
Springer Berlin Heidelberg.

Coulson, G., Blair, G., Grace, P., Taiani, F., Joolia, A., Lee, K., Ueyama, J., and Siva-
haran, T. (2008). A generic component model for building systems software. ACM
Trans. Comput. Syst., 26:1–42.

Cushing, R., Koulouzis, S., Belloum, A. S. Z., and Bubak, M. (2011). Prediction-based
auto-scaling of scientific workflows. In Proceedings of the 9th International Workshop
on Middleware for Grids, Clouds and e-Science, MGC ’11, pages 1–6, New York, NY,
USA. ACM.

Czajkowski, G., Hahn, S., Skinner, G., Soper, P., and Bryce, C. (2005a). A resource
management interface for the java platform. Softw. Pract. Exper., 35:123–157.

204

References

Czajkowski, G. and von Eicken, T. (1998). Jres: a resource accounting interface for java.
In Proceedings of the 13th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, OOPSLA ’98, pages 21–35, New York, NY, USA.
ACM.

Czajkowski, G., Wegiel, M., Daynes, L., Palacz, K., Jordan, M., Skinner, G., and Bryce,
C. (2005b). Resource management for clusters of virtual machines. In Proceedings of
the Fifth IEEE International Symposium on Cluster Computing and the Grid - Volume
01, CCGRID ’05, pages 382–389, Washington, DC, USA. IEEE Computer Society.

Dawoud, W., Takouna, I., and Meinel, C. (2012). Dynamic scalability and contention
prediction in public infrastructure using internet application profiling. In Cloud Com-
puting Technology and Science (CloudCom), 2012 IEEE 4th International Conference on,
pages 208–216.

Desprez, F. and Rouzaud-Cornabas, J. (2013). SimGrid Cloud Broker: Simulating the
Amazon AWS Cloud. Research Report RR-8380, INRIA.

Deutsch, L. P. and Schiffman, A. M. (1984). Efficient implementation of the smalltalk-80
system. In Proceedings of the 11th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, POPL ’84, pages 297–302, New York, NY, USA. ACM.

dos Reis, V. Q. and Cerqueira, R. (2010). Controlling processing usage at user level: a
way to make resource sharing more flexible. Concurrency and Computation: Practice
and Experience, 22(3):278–294.

Dragojević, A., Narayanan, D., Castro, M., and Hodson, O. (2014). Farm: Fast remote
memory. In 11th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 14), pages 401–414, Seattle, WA. USENIX Association.

Du, J., Sehrawat, N., and Zwaenepoel, W. (2011). Performance Profiling of Virtual
Machines. In Proceedings of the 7th ACM SIGPLAN/SIGOPS international conference
on Virtual execution environments, VEE ’11, pages 3–14.

Duran-Limon, H., Siller, M., Blair, G., Lopez, A., and Lombera-Landa, J. (2011). Us-
ing lightweight virtual machines to achieve resource adaptation in middleware. IET
Software, 5(2):229–237.

205

References

Estrada, T., Taufer, M., Reed, K., and Anderson, D. (2009). Emboinc: An emulator for
performance analysis of boinc projects. In Parallel Distributed Processing, 2009. IPDPS
2009. IEEE International Symposium on, pages 1–8.

European Commission (2012). Unleashing the potential of cloud computing in europe.
http://eur-lex.europa.eu/.

Ferreira, P., Veiga, L., and Ribeiro, C. (2003). OBIWAN: design and implementa-
tion of a middleware platform. Parallel and Distributed Systems, IEEE Transactions
on, 14(11):1086–1099.

Fink, S. and Qian, F. (2003). Design, implementation and evaluation of adaptive re-
compilation with on-stack replacement. In Code Generation and Optimization, 2003.
CGO 2003. International Symposium on, pages 241–252.

Frampton, D., Blackburn, S. M., Cheng, P., Garner, R. J., Grove, D., Moss, J. E. B.,
and Salishev, S. I. (2009). Demystifying magic: High-level low-level programming. In
Proceedings of the 2009 ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, VEE ’09, pages 81–90, New York, NY, USA. ACM.

Fries, A. (2012). The use of Java in large scientific applications in HPC environments. PhD
thesis, Universitat de Barcelona.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Elements
of Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

Garey, M. R., Graham, R. L., and Johnson, D. S. (1976). Resource constrained schedul-
ing as generalized bin packing. J. Comb. Theory, Ser. A, 21(3):257–298.

Garfinkel, S. (1999). Architects of the Information Society. MIT press.

Garg, S. and Buyya, R. (2011). NetworkCloudSim: Modelling parallel applications in
cloud simulations. In Utility and Cloud Computing (UCC), 2011 Fourth IEEE Interna-
tional Conference on, pages 105–113.

Garrochinho, T. (2010). CRM-HLL-VM: Checkpoint, Restore, Migração em Máquinas
Virtuais Java. Master’s thesis, Instituro Superior Técnico.

206

References

Geoffray, N., Thomas, G., Muller, G., Parrend, P., Frenot, S., and Folliot, B. (2009).
I-JVM: a Java Virtual Machine for component isolation in OSGi. In IEEE/IFIP Inter-
national Conference on Dependable Systems & Networks, pages 544–553.

Georges, A., Eeckhout, L., and Buytaert, D. (2008). Java performance evaluation
through rigorous replay compilation. In Proceedings of the 23rd ACM SIGPLAN Con-
ference on Object-oriented Programming Systems Languages and Applications, OOPSLA
’08, pages 367–384. ACM.

Gidra, L., Thomas, G., Sopena, J., and Shapiro, M. (2013). A study of the scalability of
stop-the-world garbage collectors on multicores. In Proceedings of the Eighteenth Inter-
national Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’13, pages 229–240, New York, NY, USA. ACM.

Goldberg, R. P. (1974). Survey of virtual machine research. Computer, 7(9):34–45.

Gong, Z., Gu, X., and Wilkes, J. (2010). Press: Predictive elastic resource scaling for
cloud systems. In Network and Service Management (CNSM), 2010 International Con-
ference on, pages 9 –16.

Gordon, A., Amit, N., Har’El, N., Ben-Yehuda, M., Landau, A., Schuster, A., and
Tsafrir, D. (2012). ELI: Bare-metal performance for I/O virtualization. In Proceedings
of the Seventeenth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XVII, pages 411–422, New York, NY,
USA. ACM.

Gront, D. and Kolinski, A. (2008). Utility library for structural bioinformatics. Bioin-
formatics, 24(4):584–585.

Grzegorczyk, C., Soman, S., Krintz, C., and Wolski, R. (2007). Isla vista heap sizing:
Using feedback to avoid paging. In Proceedings of the International Symposium on Code
Generation and Optimization, CGO ’07, pages 325–340, Washington, DC, USA. IEEE
Computer Society.

Grzegorz Czajkowski (2009). Java Specification Request 284 - Resource Consumption
Management API, http://jcp.org/en/jsr/detail?id=284. Java Community Process.

207

References

Guan, X., Srisa-an, W., and Jia, C. (2009). Investigating the effects of using different nurs-
ery sizing policies on performance. In Proceedings of the 2009 international symposium
on Memory management, ISMM ’09, pages 59–68, New York, NY, USA. ACM.

Gulati, A., Merchant, A., Uysal, M., and Varman, P. J. (2007). Efficient and adaptive
proportional share I/O scheduling. Technical report, HP Laboratories Palo Alto.

Gupta, D., Lee, S., Vrable, M., Savage, S., Snoeren, A. C., Varghese, G., Voelker, G. M.,
and Vahdat, A. (2008). Difference engine: harnessing memory redundancy in virtual
machines. In Proceedings of the 8th USENIX conference on Operating systems design and
implementation, OSDI’08, pages 309–322, Berkeley, CA, USA. USENIX Association.

Hagimont, D., Mayap Kamga, C., Broto, L., Tchana, A., and Palma, N. (2013). DVFS
aware CPU credit enforcement in a virtualized system. In Middleware 2013, volume
8275 of Lecture Notes in Computer Science, pages 123–142. Springer Berlin Heidelberg.

Halappanavar, M., Feo, J., Villa, O., Tumeo, A., and Pothen, A. (2012). Approximate
weighted matching on emerging manycore and multithreaded architectures. Int. J.
High Perform. Comput. Appl., 26(4):413–430.

Hargrove, P. and Duell, J. (2006). Berkeley lab checkpoint/restart (BLCR) for linux
clusters. Technical Report 60520, Lawrence Berkeley National Laboratory.

Hauswirth, M., Sweeney, P. F., and Diwan, A. (2010). Temporal vertical profiling.
Software Practice and Experience, 40(8):627–654.

Hayden, C. M., Smith, E. K., Denchev, M., Hicks, M., and Foster, J. S. (2012). Kit-
sune: Efficient, general-purpose dynamic software updating for c. In Proceedings of
the ACM International Conference on Object Oriented Programming Systems Languages
and Applications, OOPSLA ’12, pages 249–264, New York, NY, USA. ACM.

Heilig, L. and Vob, S. (2014). A scientometric analysis of cloud computing literature.
Cloud Computing, IEEE Transactions on, 2(3):266–278.

Heo, J., Zhu, X., Padala, P., and Wang, Z. (2009). Memory overbooking and dynamic
control of xen virtual machines in consolidated environments. In Proceedings of the
11th IFIP/IEEE international conference on Symposium on Integrated Network Manage-
ment, IM’09, pages 630–637, Piscataway, NJ, USA. IEEE Press.

208

References

Heroku (2014). Heroku - cloud computing designed and built for developers.

Hertz, M., Bard, J., Kane, S., Keudel, E., Bai, T., Kelsey, K., and Ding, C. (2009). Waste
not,want not: resource-based garbage collection in a shared environment. Technical
Report TR-2006-908, University of Rochester.

Hertz, M., Feng, Y., and Berger, E. D. (2005). Garbage collection without paging.
SIGPLAN Not., 40:143–153.

Hertz, M., Kane, S., Keudel, E., Bai, T., Ding, C., Gu, X., and Bard, J. E. (2011).
Waste not, want not: resource-based garbage collection in a shared environment. In
Proceedings of the international symposium on Memory management, ISMM ’11, pages
65–76, New York, NY, USA. ACM.

Hiden, H., Woodman, S., Watson, P., and Cala, J. (2013). Developing cloud applications
using the e-science central platform. Phil Trans Royal Society, 371:1983.

Hinesa, M., Gordon, A., Silva, M., Silva, D. D., Ryu, K. D., and Ben-Yehuda, M. (2011).
Applications know best: Performance-driven memory overcommit with ginkgo. In
CloudCom ’11: 3rd IEEE International Conference on Cloud Computing Technology and
Science, pages 130–137.

Hirofuchi, T., Lèbre, A., and Pouilloux, L. (2013). Adding a live migration model into
simgrid: One more step toward the simulation of infrastructure-as-a-service concerns.
In Proceedings of the 2013 IEEE International Conference on Cloud Computing Tech-
nology and Science - Volume 01, CLOUDCOM ’13, pages 96–103, Washington, DC,
USA. IEEE Computer Society.

Hirofuchi, T. and Lebre, A. (2013). Adding virtual machine abstractions into simgrid: A
first step toward the simulation of infrastructure-as-a-service concerns. In Proceedings
of the 2013 International Conference on Cloud and Green Computing, CGC ’13, pages
175–180, Washington, DC, USA. IEEE Computer Society.

Hoffmann, H., Eastep, J., Santambrogio, M. D., Miller, J. E., and Agarwal, A. (2010).
Application heartbeats: a generic interface for specifying program performance and
goals in autonomous computing environments. In Proceedings of the 7th international
conference on Autonomic computing, ICAC ’10, pages 79–88.

209

References

Hoffmann, H., Sidiroglou, S., Carbin, M., Misailovic, S., Agarwal, A., and Rinard, M.
(2011). Dynamic knobs for responsive power-aware computing. In Proceedings of the
sixteenth international conference on Architectural support for programming languages
and operating systems, ASPLOS ’11, pages 199–212.

Holland, R. C. G., Down, T. A., Pocock, M. R., Prlic, A., Huen, D., James, K., Foisy, S.,
Dräger, A., Yates, A., Heuer, M., and Schreiber, M. J. (2008). Biojava: an open-source
framework for bioinformatics. Bioinformatics, 24(18):2096–2097.

Hulaas, J. and Binder, W. (2008). Program transformations for light-weight cpu ac-
counting and control in the java virtual machine. Higher Order Symbol. Comput.,
21:119–146.

IBM (2005). An architectural blueprint for autonomic computing. Technical report,
IBM.

Ishakian, V., Sweha, R., Bestavros, A., and Appavoo, J. (2012). CloudPack: Exploiting
workload flexibility through rational pricing. In Middleware 2012, volume 7662 of
Lecture Notes in Computer Science, pages 374–393. Springer Berlin Heidelberg.

Issariyakul, T. and Hossain, E. (2008). Introduction to Network Simulator NS2. Springer
Publishing Company, Incorporated, 1st edition.

Janik, A. and Zielinski, K. (2010). AAOP-based dynamically reconfigurable monitoring
system. Information & Software Technology, 52(4r):380–396.

Jin, H., Wang, X., Wu, S., Di, S., and Shi, X. (2014). Towards optimized fine-grained
pricing of iaas cloud platform. Cloud Computing, IEEE Transactions on, PP(99):1–1.

Jones, R., Hosking, A., and Moss, E. (2011). The Garbage Collection Handbook: The Art
of Automatic Memory Management. Chapman & Hall/CRC, 1st edition.

Kächele, S. and Hauck, F. J. (2013). Component-based scalability for cloud applica-
tions. In Proceedings of the 3rd International Workshop on Cloud Data and Platforms,
CloudDP ’13, pages 19–24, New York, NY, USA. ACM.

Kesavan, M., Gavrilovska, A., and Schwan, K. (2010). On disk i/o scheduling in virtual
machines. In Proceedings of the 2nd conference on I/O virtualization, WIOV’10, pages
6–6, Berkeley, CA, USA. USENIX Association.

210

References

Khan, A., Buyuksahin, U., and Freitag, F. (2014). Prototyping incentive-based resource
assignment for clouds in community networks. In Advanced Information Networking
and Applications (AINA), 2014 IEEE 28th International Conference on, pages 719–726.

Khan, A., Navarro, L., Sharifi, L., and Veiga, L. (2013a). Clouds of small things: Provi-
sioning infrastructure-as-a-service from within community networks. In Wireless and
Mobile Computing, Networking and Communications (WiMob), 2013 IEEE 9th Interna-
tional Conference on, pages 16–21.

Khan, A. M., Navarro, L., Sharifi, L., and Veiga, L. (2013b). Clouds of small things: Pro-
visioning infrastructure-as-a-service from within community networks. In WiMob,
pages 16–21.

Khosravi, A., Garg, S. K., and Buyya, R. (2013). Energy and carbon-efficient placement
of virtual machines in distributed cloud data centers. In Wolf, F., Mohr, B., and
an Mey, D., editors, Euro-Par, volume 8097 of Lecture Notes in Computer Science,
pages 317–328. Springer.

Kim, N., Cho, J., and Seo, E. (2014). Energy-credit scheduler: An energy-aware virtual
machine scheduler for cloud systems. Future Generation Computer Systems, 32(0):128
– 137.

Kliazovich, D., Bouvry, P., Audzevich, Y., and Khan, S. (2010). Greencloud: A packet-
level simulator of energy-aware cloud computing data centers. In Global Telecommu-
nications Conference (GLOBECOM 2010), 2010 IEEE, pages 1–5.

Krampis, K., Booth, T., Chapman, B., Tiwari, B., Bicak, M., Field, D., and Nelson, K. E.
(2012). Cloud biolinux: pre-configured and on-demand bioinformatics computing for
the genomics community. BMC Bioinformatics, 13:42.

Kulkarni, S. and Cavazos, J. (2012). Mitigating the compiler optimization phase-
ordering problem using machine learning. In Proceedings of the ACM Interna-
tional Conference on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’12, pages 147–162, New York, NY, USA. ACM.

Kumar, V., Frampton, D., Blackburn, S. M., Grove, D., and Tardieu, O. (2012). Work-
stealing without the baggage. SIGPLAN Not., 47(10):297–314.

211

References

Lagar-Cavilla, H. A., Whitney, J. A., Bryant, R., Patchin, P., Brudno, M., de Lara, E.,
Rumble, S. M., Satyanarayanan, M., and Scannell, A. (2011). Snowflock: Virtual
machine cloning as a first-class cloud primitive. ACM Trans. Comput. Syst., 29(1):2:1–
2:45.

Lam, K. T., Luo, Y., and Wang, C.-L. (2010). Adaptive sampling-based profiling tech-
niques for optimizing the distributed jvm runtime. In Parallel Distributed Processing
(IPDPS), 2010 IEEE International Symposium on, pages 1 –11.

Le Sueur, E. and Heiser, G. (2010). Dynamic voltage and frequency scaling: The laws
of diminishing returns. In Proceedings of the 2010 International Conference on Power
Aware Computing and Systems, HotPower’10, pages 1–8. USENIX Association.

Lèbre, A., Pastor, J., Bertier, M., Desprez, F., Rouzaud-Cornabas, J., Tedeschi, C.,
Anedda, P., Zanetti, G., Nou, R., Cortes, T., Rivière, E., and Ropars, T. (2013). Be-
yond The Cloud, How Should Next Generation Utility Computing Infrastructures
Be Designed? Rapport de recherche RR-8348, INRIA.

León, X. and Navarro, L. (2013). A stackelberg game to derive the limits of energy sav-
ings for the allocation of data center resources. Future Generation Computer Systems,
29(1):74–83.

Li, D., Srisa-an, W., and Dwyer, M. B. (2011). Sos: Saving time in dynamic race detection
with stationary analysis. In Proceedings of the 2011 ACM International Conference
on Object Oriented Programming Systems Languages and Applications, OOPSLA ’11,
pages 35–50, New York, NY, USA. ACM.

Li, J., Shuang, K., Su, S., Huang, Q., Xu, P., Cheng, X., and Wang, J. (2012). Reducing
operational costs through consolidation with resource prediction in the cloud. In
Proceedings of the 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGRID ’12, pages 793–798, Washington, DC, USA. IEEE Computer
Society.

Libič, P., Bulej, L., Horky, V., and Tůma, P. (2014). On the limits of modeling gener-
ational garbage collector performance. In Proceedings of the 5th ACM/SPEC Interna-
tional Conference on Performance Engineering, ICPE ’14, pages 15–26, New York, NY,
USA. ACM.

212

References

Liu, J., Goraczko, M., James, S., Belady, C., Lu, J., and Whitehouse, K. (2011). The
data furnace: heating up with cloud computing. In Proceedings of the 3rd USENIX
conference on Hot topics in cloud computing, HotCloud’11, pages 15–15, Berkeley, CA,
USA. USENIX Association.

Lublin, U., Kamay, Y., Laor, D., and Liguori, A. (2007). KVM: the Linux virtual
machine monitor. In Ottawa Linux Symposium.

Ma, R., Wang, C., and Lau, F. (2002). M-JavaMPI: A Java-MPI binding with process
migration support. The Second IEEE/ACM International Symposium on Cluster Com-
puting and the Grid, pages 1–9.

Macias, M. and Guitart, J. (2014). A risk-based model for service level agreement dif-
ferentiation in cloud market providers. In Distributed Applications and Interoperable
Systems, Lecture Notes in Computer Science, pages 1–15. Springer Berlin Heidelberg.

Maggio, M., Hoffmann, H., Papadopoulos, A. V., Panerati, J., Santambrogio, M. D.,
Agarwal, A., and Leva, A. (2012). Comparison of decision-making strategies for
self-optimization in autonomic computing systems. ACM Trans. Auton. Adapt. Syst.,
7(4):36:1–36:32.

Makarov, D. and Hauswirth, M. (2013). Jikes RDB: a debugger for the Jikes RVM. In
Proceedings of the 2013 International Conference on Principles and Practices of Program-
ming on the Java Platform: Virtual Machines, Languages, and Tools, PPPJ ’13, pages
169–172, New York, NY, USA. ACM.

Malik, S., Khan, S., and Srinivasan, S. (2013). Modeling and analysis of state-of-the-art
vm-based cloud management platforms. Cloud Computing, IEEE Transactions on, 1(1).

Mankiw, G. (2011). Principles of Microeconomics. Cengage Learning.

Manson, J., Pugh, W., and Adve, S. V. (2005). The Java memory model. SIGPLAN Not.,
40:378–391.

Mao, F., Zhang, E. Z., and Shen, X. (2009). Influence of program inputs on the selection
of garbage collectors. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments, VEE ’09, pages 91–100, New York, NY,
USA. ACM.

213

References

Marinos, A. and Briscoe, G. (2007). Community cloud computing. In First International
Conference on Cloud Computing, pages 472–484.

Mastroianni, C., Meo, M., and Papuzzo, G. (2013). Probabilistic consolidation of virtual
machines in self-organizing cloud data centers. Cloud Computing, IEEE Transactions
on, 1(2):215–228.

Mc Evoy, G. and Schulze, B. (2011). Understanding scheduling implications for scientific
applications in clouds. In Proceedings of the 9th International Workshop on Middleware
for Grids, Clouds and e-Science, MGC ’11, pages 3:1–3:6, New York, NY, USA. ACM.

Medina, A., Lakhina, A., Matta, I., and Byers, J. (2001). BRITE: An approach to uni-
versal topology generation. In Proceedings of the Ninth International Symposium in
Modeling, Analysis and Simulation of Computer and Telecommunication Systems, MAS-
COTS ’01, pages 116–135, Washington, DC, USA. IEEE Computer Society.

Meng, X., Isci, C., Kephart, J., Zhang, L., Bouillet, E., and Pendarakis, D. (2010). Ef-
ficient resource provisioning in compute clouds via vm multiplexing. In Proceedings
of the 7th International Conference on Autonomic Computing, ICAC ’10, pages 11–20,
New York, NY, USA. ACM.

Mian, R., Martin, P., Zulkernine, F., and Vazquez-Poletti, J. L. (2012). Estimating
resource costs of data-intensive workloads in public clouds. In Proceedings of the 10th
International Workshop on Middleware for Grids, Clouds and e-Science, MGC ’12, pages
3:1–3:6, New York, NY, USA. ACM.

Min, C., Kim, I., Kim, T., and Eom, Y. I. (2012). Vmmb: Virtual machine memory
balancing for unmodified operating systems. J. Grid Comput., 10(1):69–84.

Montresor, A. and Jelasity, M. (2009). PeerSim: A scalable P2P simulator. In Proc. of the
9th Int. Conference on Peer-to-Peer (P2P’09), pages 99–100, Seattle, WA.

Morshedlou, H. and Meybodi, M. R. (2014). Decreasing impact of SLA violations: A
proactive resource allocation approachfor cloud computing environments. IEEE T.
Cloud Computing, 2(2):156–167.

Núñez, A., Vázquez-Poletti, J. L., Caminero, A. C., Castañé, G. G., Carretero, J., and
Llorente, I. M. (2012). icancloud: A flexible and scalable cloud infrastructure simula-
tor. Journal of Grid Computing, 10(1):185–209.

214

References

Ohad Shai, Edi Shmueli, D. G. F. (2013). Heuristics for resource matching in intel’s
compute farm. In Proceedings of the 17th Workshop on Job Scheduling Strategies for
Parallel Processing (co-located with IPDPS).

Ongaro, D., Cox, A. L., and Rixner, S. (2008). Scheduling I/O in virtual machine mon-
itors. In Proceedings of the fourth ACM SIGPLAN/SIGOPS international conference on
Virtual execution environments, VEE ’08, pages 1–10, New York, NY, USA. ACM.

Osman, S., Subhraveti, D., Su, G., and Nieh, J. (2002). The design and implementation
of zap: A system for migrating computing environments. SIGOPS Oper. Syst. Rev.,
36(SI):361–376.

Ousterhout, J. K. (1982). Scheduling techniques for concurrent systems. In ICDCS,
pages 22–30. IEEE Computer Society.

Padala, P., Hou, K.-Y., Shin, K. G., Zhu, X., Uysal, M., Wang, Z., Singhal, S., and Mer-
chant, A. (2009). Automated control of multiple virtualized resources. In Proceedings
of the 4th ACM European conference on Computer systems, EuroSys ’09, pages 13–26,
New York, NY, USA. ACM.

Park, K. and Pai, V. S. (2006). Comon: a mostly-scalable monitoring system for planet-
lab. SIGOPS Oper. Syst. Rev., 40(1):65–74.

Park, S.-M. and Humphrey, M. (2009). Self-tuning virtual machines for predictable
escience. In Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster
Computing and the Grid, CCGRID ’09, pages 356–363, Washington, DC, USA. IEEE
Computer Society.

Peter Mell and Tim Grance (2009). The NIST Definition of Cloud Computing.

Peter Mell and Tim Grance (2011). The NIST Definition of Cloud Comput-
ing. Technical Report 800-145, National Institute of Standards and Technology,
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf.

Pierre, G. and Stratan, C. (2012). Conpaas: A platform for hosting elastic cloud appli-
cations. IEEE Internet Computing, 16(5):88–92.

Pina, L., Veiga, L., and Hicks, M. (2014). Rubah: DSU for java on a stock JVM. In Pro-
ceedings of the ACM Conference on Object-Oriented Programming Languages, Systems,
and Applications (OOPSLA).

215

References

Prakash, S. and Bagrodia, R. L. (1998). MPI-SIM: Using parallel simulation to evaluate
MPI programs. In Proceedings of the 30th Conference on Winter Simulation, WSC ’98,
pages 467–474, Los Alamitos, CA, USA. IEEE Computer Society Press.

Price, D. W., Rudys, A., and Wallach, D. S. (2003). Garbage collector memory account-
ing in language-based systems. In Proceedings of the 2003 IEEE Symposium on Security
and Privacy, SP ’03, pages 263–, Washington, DC, USA. IEEE Computer Society.

Quinson, M., Rosa, C., and Thiery, C. (2012). Parallel simulation of peer-to-peer sys-
tems. In Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (Ccgrid 2012), CCGRID ’12, pages 668–675, Washington,
DC, USA. IEEE Computer Society.

Quitadamo, R. and Leonardi, L. (2008). The Issue of Strong Mobility: an Innovative
Approach based on the IBM Jikes Research Virtual Machine. PhD thesis, University of
Modena and Reggio Emilia.

Ram, K. K., Santos, J. R., and Turner, Y. (2010). Redesigning xen’s memory sharing
mechanism for safe and efficient I/O virtualization. In Proceedings of the 2Nd Confer-
ence on I/O Virtualization, WIOV’10, Berkeley, CA, USA. USENIX Association.

Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G., and Kozyrakis, C. (2007).
Evaluating mapreduce for multi-core and multiprocessor systems. In High Perfor-
mance Computer Architecture, 2007. HPCA 2007. IEEE 13th International Symposium
on, pages 13–24.

Ribeiro, C., Zúquete, A., Ferreira, P., and Guedes, P. (1999). Spl: An access control lan-
guage for security policies with complex constraints. In In Proceedings of the Network
and Distributed System Security Symposium, pages 89–107.

Rosenblum, M. (2004). The reincarnation of virtual machines. Queue, 2(5):34–40.

S. Zaman, D. G. (2011). Combinatorial auction-based dynamic VM provisioning and
allocation in clouds. In IEEE, editor, Third International Conference on Cloud Com-
puting Technology and Science (CloudCom), pages 107–114.

Sakamoto, T., Sekiguchi, T., and Yonezawa, A. (2000). Bytecode transformation for
portable thread migration in java. In Kotz, D. and Mattern, F., editors, Agent Systems,

216

References

Mobile Agents, and Applications, volume 1882 of Lecture Notes in Computer Science,
pages 16–28. Springer Berlin Heidelberg.

Sakellari, G. and Loukas, G. (2013). A survey of mathematical models, simulation
approaches and testbeds used for research in cloud computing. Simulation Modelling
Practice and Theory, 39:92–103.

Salehi, M. A., Javadi, B., and Buyya, R. (2013). Resource provisioning based on preempt-
ing virtual machines in distributed systems. Concurrency and Computation: Practice
and Experience, 26(2):412–433.

Salehie, M. and Tahvildari, L. (2009). Self-adaptive software: Landscape and research
challenges. ACM Trans. Auton. Adapt. Syst., 4:14:1–14:42.

Salomie, T.-I., Alonso, G., Roscoe, T., and Elphinstone, K. (2013). Application level
ballooning for efficient server consolidation. In Proceedings of the 8th ACM European
Conference on Computer Systems, EuroSys ’13, pages 337–350, New York, NY, USA.
ACM.

Saovapakhiran, B. and Devetsikiotis, M. (2011). Enhancing computing power by ex-
ploiting underutilized resources in the community cloud. In Proceedings of IEEE In-
ternational Conference on Communications, pages 1–6. IEEE.

Shahriyar, R., Blackburn, S. M., Yang, X., and McKinley, K. S. (2013). Taking off the
gloves with reference counting immix. In Hosking, A. L., Eugster, P. T., and Lopes,
C. V., editors, OOPSLA, pages 93–110. ACM.

Shao, Z., Jin, H., and Li, Y. (2009). Virtual machine resource management for high
performance computing applications. Parallel and Distributed Processing with Applica-
tions, International Symposium on, 0:137–144.

Sharifi, L., Rameshan, N., Freitag, F., and Veiga, L. (2014). Energy efficiency dilemma:
P2p-cloud vs. datacenter. In IEEE 6th International Conference on Cloud Computing
Technology and Science. to appear.

Silva, J., Ferreira, P., and Veiga, L. (2010a). Service and resource discovery in cycle-
sharing environments with a utility algebra. In Parallel Distributed Processing (IPDPS),
2010 IEEE International Symposium on, pages 1–11.

217

References

Silva, J. a. N., Veiga, L., and Ferreira, P. (2008). Heuristic for Resources Allocation on
Utility Computing Infrastructures. In Proceedings of the 6th international workshop on
Middleware for grid computing, MGC ’08, pages 9:1–9:6, New York, NY, USA. ACM.

Silva, J. M., Simão, J., and Veiga, L. (2013). Ditto - deterministic execution replayability-
as-a-service for java vm on multiprocessors. In Eyers, D. M. and Schwan, K., edi-
tors, Middleware, volume 8275 of Lecture Notes in Computer Science, pages 405–424.
Springer.

Silva, J. N., Ferreira, P., and Veiga, L. (2010b). Service and resource discovery in cycle-
sharing environments with a utility algebra. In IPDPS, pages 1–11. IEEE.

Silva, J. N., Veiga, L., and Ferreira, P. (2011). A2HA - Automatic and adaptive host
allocation in utility computing for bag-of-tasks. J. Internet Services and Applications,
2(2):171–185.

Simão, J., Garrochinho, T., and Veiga, L. (2012). A checkpointing-enabled and resource-
aware Java Virtual Machine for efficient and robust e-Science applications in grid envi-
ronments. Concurrency and Computation: Practice and Experience, 24(13):1421–1442.

Simão, J. and Veiga, L. (2012a). A classification of middleware to support virtual ma-
chines adaptability in iaas. In Proceedings of the 11th International Workshop on Adap-
tive and Reflective Middleware, ARM ’12, pages 5:1–5:6, New York, NY, USA. ACM.

Simão, J. and Veiga, L. (2012b). VM Economics for Java Cloud Computing: An Adap-
tive and Resource-Aware Java Runtime with Quality-of-Execution. In Proceedings of
the 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
CCGRID ’12, pages 723–728. IEEE Computer Society.

Simão, J., Lemos, J., and Veiga, L. (2011). A2-VM a cooperative Java VM with sup-
port for resource-awareness and cluster-wide thread scheduling. In 19th International
Conference on Cooperative Information Systems (CoopIS 2011). LNCS, Springer.

Simão, J., Rameshan, N., and Veiga, L. (2013). Resource-aware scaling of multi-threaded
java applications in multi-tenancy scenarios. In IEEE 5th International Conference on
Cloud Computing Technology and Science, CloudCom 2013, Bristol, United Kingdom,
December 2-5, 2013, Volume 1, pages 445–451. IEEE.

218

References

Simão, J., Singer, J., and Veiga, L. (2013). A comparative look at adaptive memory
management in virtual machines. In IEEE CloudCom 2013. IEEE.

Simão, J. and Veiga, L. (2012). QoE-JVM: An Adaptive and Resource-Aware Java Run-
time for Cloud Computing. In Meersman, R., Panetto, H., Dillon, T. S., Rinderle-Ma,
S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S., and Cruz, I. F.,
editors, OTM Conferences (2), volume 7566 of Lecture Notes in Computer Science, pages
566–583. Springer.

Simão, J. and Veiga, L. (2013a). Adaptability driven by quality of execution in high level
virtual machines for shared cloud environments. International Journal of Computer
Systems Science & Engineering, 29(6).

Simão, J. and Veiga, L. (2013b). Flexible SLAs in the cloud with a partial utility-driven
scheduling architecture. In CloudCom, pages 275–281. IEEE.

Simão, J. and Veiga, L. (2013c). A progress and profile-driven cloud-VM for resource-
efficiency and fairness in e-science environments. In Shin, S. Y. and Maldonado, J. C.,
editors, SAC, pages 357–362. ACM.

Simão, J. and Veiga, L. (2014). Partial Utility-driven Scheduling for Flexible SLA and
Pricing Arbitration in Clouds. IEEE Transactions on Cloud Computing. to appear.

Singer, J., Brown, G., Watson, I., and Cavazos, J. (2007). Intelligent selection of
application-specific garbage collectors. In Proceedings of the 6th international sympo-
sium on Memory management, ISMM ’07, pages 91–102, New York, NY, USA. ACM.

Singer, J. and Jones, R. (2011). Economic utility theory for memory management opti-
mization. In Rogers, I., editor, Proceedings of the workshop on Implementation, Com-
pilation, Optimization of Object-Oriented Languages and Programming Systems, page 4.
ACM. (Position paper).

Singer, J., Jones, R. E., Brown, G., and Luján, M. (2010). The economics of garbage
collection. SIGPLAN Not., 45:103–112.

Singer, J., Kovoor, G., Brown, G., and Luján, M. (2011). Garbage collection auto-tuning
for java mapreduce on multi-cores. In Proceedings of the International Symposium on
Memory Management, ISMM ’11, pages 109–118, New York, NY, USA. ACM.

219

References

Smith, J. and Nair, R. (2005). Virtual Machines: Versatile Platforms for Systems and
Processes. Morgan Kaufmann.

Soman, S. and Krintz, C. (2007). Application-specific garbage collection. J. Syst. Softw.,
80:1037–1056.

Soman, S., Krintz, C., and Bacon, D. F. (2004). Dynamic selection of application-specific
garbage collectors. In Proceedings of the 4th international symposium on Memory man-
agement, ISMM ’04, pages 49–60, New York, NY, USA. ACM.

Son, S., Jung, G., and Jun, S. (2013). An SLA-based cloud computing that facilitates
resource allocation in the distributed data centers of a cloud provider. The Journal of
Supercomputing, 64(2):606–637.

Stoica, I., Abdel-Wahab, H., and Jeffay, K. (1996). On the duality between resource reser-
vation and proportional share resource allocation. Technical report, Old Dominion
University, Norfolk, VA, USA.

Sukwong, O., Sangpetch, A., and Kim, H. (2012). SageShift: Managing SLAs for highly
consolidated cloud. In INFOCOM, 2012 Proceedings IEEE, pages 208–216.

Suri, N., Bradshaw, J., Breedy, M., Groth, P., Hill, G., and Jeffers, R. (2000). Strong
mobility and fine-grained resource control in nomads. In Kotz, D. and Mattern, F.,
editors, Agent Systems, Mobile Agents, and Applications, volume 1882 of Lecture Notes
in Computer Science, pages 2–15. Springer Berlin Heidelberg.

Suri, N., Bradshaw, J. M., Breedy, M. R., Groth, P. T., Hill, G. A., and Saavedra, R.
(2001). State capture and resource control for java: the design and implementation
of the aroma virtual machine. In Proceedings of the Symposium on JavaTM Virtual
Machine Research and Technology Symposium, JVM’01, pages 11–11, Berkeley, CA,
USA. USENIX Association.

Sweeney, P. F., Hauswirth, M., Cahoon, B., Cheng, P., Diwan, A., Grove, D., and Hind,
M. (2004). Using hardware performance monitors to understand the behavior of Java
applications. In Proceedings of the 3rd conference on Virtual Machine Research And Tech-
nology Symposium - Volume 3, pages 5–5, Berkeley, CA, USA. USENIX Association.

Tanenbaum, A. S. (2007). Modern Operating Systems. Prentice Hall Press, Upper Saddle
River, NJ, USA, 3rd edition.

220

References

Tay, Y. C., Zong, X., and He, X. (2013). An equation-based heap sizing rule. Perform.
Eval., 70(11):948–964.

Tejedor, E., Farreras, M., Grove, D., Badia, R. M., Almasi, G., and Labarta, J. (2012).
A high-productivity task-based programming model for clusters. Concurrency and
Computation: Practice and Experience, pages 2421–2448.

Tene, G., Iyengar, B., and Wolf, M. (2011). C4: The continuously concurrent compact-
ing collector. SIGPLAN Not., 46(11):79–88.

Tsakalozos, K., Kllapi, H., Sitaridi, E., Roussopoulos, M., Paparas, D., and Delis, A.
(2011). Flexible use of cloud resources through profit maximization and price dis-
crimination. In Proceedings of the 2011 IEEE 27th International Conference on Data
Engineering, ICDE ’11, pages 75–86, Washington, DC, USA. IEEE Computer Soci-
ety.

Vaquero, L. M., Rodero-Merino, L., and Buyya, R. (2011). Dynamically scaling appli-
cations in the cloud. SIGCOMM Comput. Commun. Rev., 41(1):45–52.

Vaquero, L. M., Rodero-Merino, L., Caceres, J., and Lindner, M. (2008). A break in the
clouds: Towards a cloud definition. SIGCOMM Comput. Commun. Rev., 39(1):50–55.

Veiga, L., Silva, J. a. N., and Garcia, J. a. C. (2011). Peer4Peer: e-science community
for network overlay and grid computing research. In Yang, X., Wang, L., and Jie, W.,
editors, Guide to e-Science, Computer Communications and Networks, pages 81–113.
Springer London.

Velazquez-Garcia, F., Andersen, H., Hansen, H., Goebel, V., and Plagemann, T. (2013).
Sockman: Socket migration for multimedia applications. In Telecommunications (Con-
TEL), 2013 12th International Conference on, pages 115–122.

Velho, P., Schnorr, L. M., Casanova, H., and Legrand, A. (2013). On the validity of
flow-level TCP network models for grid and cloud simulations. ACM Trans. Model.
Comput. Simul., 23(4):23:1–23:26.

VMware (2009). VMware vSpher 4: The CPU Scheduler in VMware ESX 4.

Waldspurger, C. A. (2002). Memory resource management in VMware ESX server.
SIGOPS Oper. Syst. Rev., 36:181–194.

221

References

Weiming, Z. and Zhenlin, W. (2009). Dynamic memory balancing for virtual machines.
In Proceedings of the 2009 ACM SIGPLAN/SIGOPS international conference on Virtual
execution environments, VEE ’09, pages 21–30.

Weng, C., Liu, Q., Yu, L., and Li, M. (2011). Dynamic adaptive scheduling for virtual
machines. In Proceedings of the 20th International Symposium on High Performance
Distributed Computing, HPDC ’11, pages 239–250, New York, NY, USA. ACM.

Weng, C., Wang, Z., Li, M., and Lu, X. (2009). The hybrid scheduling framework for
virtual machine systems. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS inter-
national conference on Virtual execution environments, VEE ’09, pages 111–120, New
York, NY, USA. ACM.

White, D. R., Singer, J., Aitken, J. M., and Jones, R. E. (2013). Control theory for
principled heap sizing. In Proceedings of the 2013 International Symposium on Memory
Management, ISMM ’13, pages 27–38, New York, NY, USA. ACM.

Wilson, P. R. (1992). Uniprocessor garbage collection techniques. In Proceedings of
the International Workshop on Memory Management, IWMM ’92, pages 1–42, London,
UK. Springer-Verlag.

Xu, F., Liu, F., Jin, H., and Vasilakos, A. (2014). Managing performance overhead of
virtual machines in cloud computing: A survey, state of the art, and future directions.
Proceedings of the IEEE, 102(1):11–31.

Xu, H. and Li, B. (2013). Dynamic cloud pricing for revenue maximization. Cloud
Computing, IEEE Transactions on, 1(2):158–171.

Yang, T., Berger, E. D., Kaplan, S. F., and Moss, J. E. B. (2006). Cramm: Virtual mem-
ory support for garbage-collected applications. In Proceedings of the 7th Symposium
on Operating Systems Design and Implementation, OSDI ’06, pages 103–116, Berkeley,
CA, USA. USENIX Association.

Zhang, C., Kelsey, K., Shen, X., Ding, C., Hertz, M., and Ogihara, M. (2006). Program-
level adaptive memory management. In Proceedings of the 5th international symposium
on Memory management, ISMM ’06, pages 174–183, New York, NY, USA. ACM.

222

References

Zhang, H., Lee, J., and Guha, R. (2008). Vcluster: a thread-based java middleware for
smp and heterogeneous clusters with thread migration support. Softw. Pract. Exper.,
38:1049–1071.

Zhang, L. and Krintz, C. (2005). The design, implementation, and evaluation of adaptive
code unloading for resource-constrained devices. ACM Trans. Archit. Code Optim.,
2(2):131–164.

Zhang, Y., Bestavros, A., Guirguis, M., Matta, I., and West, R. (2005). Friendly vir-
tual machines: leveraging a feedback-control model for application adaptation. In
Proceedings of the 1st ACM/USENIX international conference on Virtual execution en-
vironments, VEE ’05, pages 2–12, New York, NY, USA. ACM.

Zheng, G., Gupta, G., Bohm, E., Dooley, I., and Kale, L. V. (2010). Simulating Large
Scale Parallel Applications using Statistical Models for Sequential Execution Blocks.
In Proceedings of the 16th International Conference on Parallel and Distributed Systems
(ICPADS 2010), number 10-15, Shanghai, China.

Zhu, W., Wang, C.-L., and Lau, F. C. M. (2002). JESSICA2: A distributed java vir-
tual machine with transparent thread migration support. Cluster Computing, IEEE
International Conference on, 0:381.

223

	Abstract
	Resumo
	Agradecimentos
	Contents
	I Thesis Motivation and Artifacts
	1 Introduction
	1.1 Computing in the Cloud
	1.1.1 Service Models
	1.1.2 Fundamentals and Innovations in Cloud Technology

	1.2 Thesis Motivation and Challenges
	1.2.1 Plataform-as-a-Service
	1.2.2 Infrastructure-as-a-Service
	1.2.3 Overall scheduling

	1.3 Current shortcomings
	1.3.1 PaaS
	1.3.2 IaaS

	1.4 Contributions
	1.4.1 VM's adaptability framework
	1.4.2 Scheduling of PaaS resources
	1.4.3 Scheduling of IaaS resources
	1.4.4 Summary of major publications

	1.5 Outline

	2 Adaptive Mechanisms and Techniques in Virtual Machines
	2.1 Introduction
	2.2 Virtual Machines Fundamentals
	2.2.1 Computation as a resource
	2.2.2 Memory as a resource
	2.2.3 Input/Output as a resource

	2.3 Adaptation techniques
	2.3.1 System Virtual Machine
	2.3.2 High-Level Language Virtual Machine
	2.3.3 Summary of techniques

	2.4 The RCI Framework for classification of VM adaptation techniques
	2.4.1 Quantitative Criteria of the RCI framework
	2.4.2 Classification of techniques
	2.4.3 Aggregation of quantities
	2.4.4 Critical analysis of the framework

	2.5 VM systems and their classification
	2.5.1 System Virtual Machine
	2.5.1.A Overall systems analysis

	2.5.2 High-Level Language Virtual Machines
	2.5.2.A Overall systems analysis

	2.6 Summary

	II Allocation and Scheduling in Platform-as-a-Service
	3 Architecture of a Cloud-enabled JVM
	3.1 Introduction
	3.2 Related work
	3.2.1 Resource accounting in High-Level Virtual Machines
	3.2.2 Measuring progress
	3.2.3 Checkpointing, restoring and migration mechanisms

	3.3 Architecture Overview
	3.3.1 Resource Awareness and Control
	3.3.2 Accurate Progress Monitoring
	3.3.3 Checkpointing and Migration of the Execution State
	3.3.4 Adaptability and the Policy Engine

	3.4 Driving Adaptability with Quality-of-Execution
	3.4.1 An economic-inspired model
	3.4.2 QoE-JVM Economics
	3.4.3 Progress monitoring
	3.4.4 Resource types and usage

	4 Resource Management Mechanisms
	4.1 Overview of the Jikes Research Virtual Machine
	4.1.1 Thread management
	4.1.2 Memory management
	4.1.3 Extensions to the language and Native Calls

	4.2 Resource accounting framework
	4.2.1 Resource management policies
	4.2.2 Resource management hooks in the VM and classpath
	4.2.3 Yield-driven heap management
	4.2.4 Yield-driven CPU ballooning

	4.3 Progress monitoring library
	4.4 Checkpointing and migration of the execution state
	4.4.1 Consistent extraction of the execution state
	4.4.2 Concurrent checkpointing

	5 Evaluation
	5.1 QoE applied to memory and CPU management
	5.1.1 Heap size management
	5.1.2 QoE Yield applied to Heap size
	5.1.3 QoE Yield applied to CPU usage

	5.2 Resource consumption constraints
	5.3 Fine-grained progress accounting
	5.4 Concurrent checkpoint

	III Allocation and Scheduling in Infrastructure-as-a-Service
	6 Architecture and Cost Model
	6.1 Introduction
	6.1.1 Overcommitted environments
	6.1.2 Scheduling Based on Partial-Utility

	6.2 Related Work
	6.2.1 Scheduling with Energy Awareness
	6.2.2 Scheduling with Service-Level Objectives
	6.2.3 Flexible SLAs

	6.3 A partial utility cost model for cloud scheduling
	6.3.1 Degradation factor and Partial utility
	6.3.2 Classes for prices and partial utility
	6.3.3 Total costs
	6.3.4 Practical scenario
	6.3.5 Comparing flexible pricing profiles in a cloud market

	7 Partial Utility Scheduling Algorithms and Implementation
	7.1 Partial Utility-based Scheduling for IaaS Deployments
	7.1.1 Analysis of the scheduling cost of the utility-oblivious scheduling
	7.1.2 Partial utility-aware scheduling strategies
	7.1.3 Analysis of the partial-utility scheduling cost

	7.2 Cloud simulators and the CloudSim framework
	7.2.1 SimGrid
	7.2.2 CloudSim

	7.3 Implementing the Partial Utility-Driven Scheduling in CloudSim

	8 Evaluation
	8.1 Methodology and Configurations
	8.1.1 Utility Unaware Allocation

	8.2 Over subscription
	8.3 Utility-driven Allocation
	8.3.1 Allocation of VMs
	8.3.2 Effects on workloads

	IV Conclusions and Future Work
	9 Conclusions and Future Work
	9.1 Platform-as-a-Service
	9.2 Infrastructure-as-a-Service
	9.3 Future Work

	References

