

PROCEEDINGS

2016 IEEE 15th International Symposium on
Network Computing and Applications

NCA 2015

PROCEEDINGS

2016 IEEE 15th International Symposium on
Network Computing and Applications

30 October – 2 November 2016

Cambridge, MA, USA

Editors
Alessandro Pellegrini, Sapienza University of Rome, Italy

Aris Gkoulalas-Divanis, IBM Watson Health, USA
Pierangelo Di Sanzo, Sapienza University of Rome, Italy

Dimiter R. Avresky, IRIANC, USA/Germany

Sponsored by
IEEE Computer Society Technical Committee on Distributed Processing (TCDP)

Akamai Technologies, Inc.
International Research Institute on Autonomic Network Computing (IRIANC)

Copyright © 2016 by The Institute of Electrical and Electronics Engineers, Inc.

All rights reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are
permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in
this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the
code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For reprint
or republication permission, email to IEEE Copyrights Manager at pubs-permissions@ieee.org. All rights
reserved. Copyright ©2016 by IEEE.

Other copying, reprint, or republication requests should be addressed to: IEEE Copyrights Manager,
IEEE service Center, 445 Hoes Lane, P.O. Box 133, Piscataway, NJ 08855-1331.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page. They
reflect the authors’ opinions and, in the interests of timely dissemination, are published as presented and
without change. Their inclusion in this publication does not necessarily constitute endorsement by the
editors, the IEEE Computer Society, or the Institute of Electrical and Electronics Engineers, Inc.

ISBN 978-1-5090-3215-0
ISBN 978-1-5090-3216-7

v

2016 IEEE 15th International Symposium on
Network Computing and Applications

NCA 2016
Table of Contents

Message from the Steering Committee and General Chairs .. xiii

Message from the Program Chairs .. xiv

Conference Committee ... xv

Technical Program Committee ... xvi

External Reviewers ... xviii

Keynote ... xx

Session 1: Systems, Architectures, and Applications

Crowdsourcing-based architecture for post-disaster Geolocation:
a comparative performance evaluation ... 1

Florent Coriat, Anne Fladenmuller, Luciana Arantes and Olivier Marin

GeoTrie: A Scalable Architecture for Location-Temporal Range Queries
over Massive GeoTagged Data Sets .. 10

Rudyar Cortés, Xavier Bonnaire, Olivier Marin, Luciana Arantes and Pierre Sens

Characterizing GPS Outages: Geodesic Dead Reckoning Solution
for VANETs and ITS (short paper) .. 18

Pedro Libório, Richard Pazzi, Daniel Guidoni and Leandro Villas

Contextual Geotracking Service of Incident Markers in Disaster
Search-and-Rescue Operations (short paper) ... 22

Ev Cheng, Kourtney Meiss, Kendall Park, John Gillis, Dave Weber,
Salman Ahmad and Prasad Calyam

vi

Session 2: Cloud Computing

Using NAS Parallel Benchmarks to Evaluate HPC Performance in Cloud (short paper) 27
Thiago K. Okada, Alfredo Goldman and Gerson G. H. Cavalheiro

A User Level Approach to Schedule BoT Applications on Private Clouds (short paper) 31
Gerson Cavalheiro, Maicon Santos and André Du Bois

Heterogeneous Resource Allocation in Cloud Management (short paper) 35
Serdar Kadioglu, Mike Colena and Samir Sebbah

Leveraging an Homomorphic Encryption Library to Implement a
Coordination Service (short paper) .. 39

Eugénio Silva and Miguel Correia

Multi-Phase Proactive Cloud Scheduling Framework Based on High Level Workflow
and Resource Characterization (short paper) ... 43

Nelson Mimura Gonzalez, Tereza Cristina Carvalho and Charles Christian Miers

Task Based Load Balancing for Cloud Aware Massively Multiplayer
Online Games (short paper) .. 48

André Negrão, Luís Veiga and Paulo Ferreira

Session 3: Network Security I

DARSHANA: Detecting Route Hijacking For Communication Confidentiality 52
Karan Balu, Miguel Pardal and Miguel Correia

MACHETE: Multi-path Communication for Security .. 60
Diogo Raposo, Miguel Pardal, Luís Rodrigues and Miguel Correia

Feature Set Tuning for Machine Learning based Network Intrusion Detection........................ 68
Arnaldo Gouveia and Miguel Correia

A Security Policy Query Engine for Fully Automated Resolution of Anomalies in
Firewall Configurations (short paper) ... 76

Ahmed Bouhoula and Anis Yazidi

vii

Enforcement of Global Security Policies in Federated Cloud Networks with
Virtual Network Functions (short paper) ... 81

Philippe Massonet, Anna Levin, Massimo Villari,
Sébastien Dupont and Arnaud Michot

Neutralizing Interest Flooding Attacks in Named Data Networks using
Cryptographic Route Tokens (short paper) .. 85

Aubrey Alston and Tamer Refaei

Evaluation of Distributed Denial of Service Threat in the
Internet of Things (short paper) ... 89

Priscila Solis, Luis Pacheco, João Gondim and Eduardo Alchieri

Session 4: Networking

A Continuous Enhancement Routing Solution aware of Data Aggregation
for Wireless Sensor Networks ... 93

Edson Ticona Zegarra, Rafael Schouery, Flavio Keidi Miyazawa
and Leandro Villas

Fast Hybrid Network Reconfiguration for Large-Scale Lossless
Interconnection Networks .. 101

Evangelos Tasoulas, Ernst Gunnar Gran, Tor Skeie and Bjørn Dag Johnsen

An Offset Based Global Sleeping Schedule for Self-Organizing Wireless
Sensor Networks (short paper) ... 109

Stephanie Imelda Pella, Prakash Veeraraghavan and Ghosh Somnath

Label Encoding Algorithm for MPLS SegmentRouting (short paper) 113
Rabah Guedrez, Olivier Dugeon, Samer Lahoud and Géraldine Texier

Named Data Networking for Tactical Communication Environments (short paper) 118
Tamer Refaei, Sean Ha, Zac Cavaliero and Creighton Hager

Reducing the Latency-Tail of Short-Lived Flows: Adding Forward Error
Correction in Data Centers (short paper) ... 122

Klaus-Tycho Förster, Demian Jaeger, David Stolz and Roger Wattenhofer

viii

The Cardinality-Constrained Paths Problem: Multicast Data Routing in
Heterogeneous Communication Networks (short paper) .. 126

Alvaro Velasquez, Piotr Wojciechowski, K. Subramani,
Steven L. Drager and Sumit Kumar Jha

Session 5: Software-Defined Networks

A Network Service Design and Deployment Process for NFV Systems 131
Sadaf Mustafiz, Francis Palma, Maria Toeroe and Ferhat Khendek

ViTeNA: An SDN-Based Virtual Network Embedding Algorithm for
Multi-Tenant Data Centers ... 140

Daniel Caixinha, Pradeeban Kathiravelu and Luís Veiga

A Scalable Peer-to-Peer Control Plane Architecture for
Software Defined Networks (short paper)... 148

Kuldip Singh Atwal, Ajay Guleria and Mostafa Bassiouni

Enabling Software-Defined Networking for Wireless Mesh Networks in Smart
Environments (short paper) .. 153

Prithviraj Patil, Akram Hakiri, Yogesh Barve and Aniruddha Gokhale

SDAR: Software Defined Intra-Domain Routing in
Named Data Networks (short paper) ... 158

Yaoqing Liu and Hitesh Wadekar

Session 6: Internet of Things

Cost-effective Processing for Delay-sensitive Applications in Cloud of Things Systems 162
Yucen Nan, Wei Li, Wei Bao, Flavia Delicato, Paulo Pires and Albert Zomaya

Smart Scene Management for IoT-based Constrained Devices
Using Checkpointing (short paper) ... 170

François Aïssaoui, Gene Cooperman, Thierry Monteil and Saïd Tazi

ix

Session 7: Fault Tolerance

Byzantine Reliable Broadcast in Sparse Networks ... 175
Sisi Duan, Lucas Nicely and Haibin Zhang

Evaluating Reliability Techniques in the Master-Worker Paradigm ... 183
Evgenia Christoforou, Antonio Fernandez Anta, Kishori Konwar
and Nicolas Nicolaou

NoSQL Undo: Recovering NoSQL Databases by Undoing Operations 191
David Matos and Miguel Correia

Exploiting Universal Redundancy (short paper) .. 199
Ali Shoker

Towards Designing Reliable Messaging Patterns (short paper) ... 204
Naghmeh Ivaki, Nuno Laranjeiro and Filipe Araujo

Traffic Engineering based on Shortest Path Routing Algorithms for
FTV (Free-Viewpoint Television) Applications (short paper) ... 208

Priscila Solis and Henrique Garcia

vtTLS: A Vulnerability-Tolerant Communication Protocol (short paper) 212
André Joaquim, Miguel L. Pardal and Miguel Correia

Session 8: Distributed Computing I and Energy Efficiency

Optimal Proportion Computation with Population Protocols .. 216
Yves Mocquard, Emmanuelle Anceaume and Bruno Sericola

CoVer-ability: Consistent Versioning in Asynchronous, Fail-Prone, Message-Passing
Environments .. 224

Nicolas Nicolaou, Antonio Fernandez Anta and Chryssis Georgiou

CMTS: Consensus-based Multi-hop Time Synchronization Protocol in
Wireless Sensor Networks ... 232

Amin Saiah, Chafika Benzaid and Nadjib Badache

x

V-Hadoop: Virtualized Hadoop Using Containers (short paper) ... 237
Srihari Radhakrishnan, Bryan Muscedere and Khuzaima Daudjee

A Hardware and Software Web-Based Environment for Energy Consumption Analysis
in Mobile Devices (short paper) ... 242

Sidartha A. L. Carvalho, Rafael N. Lima, Daniel C. Cunha
and Abel G. Silva-Filho

Energy Efficient File Distribution Problem and its Applications (short paper) 246
Kshitiz Verma, Alberto Garcia-Martinez and Samar Agnihotri

On the Use of Nonlinear Methods for Low-Power CPU Frequency Prediction Based
on Android Context Variables (short paper) .. 250

Sidartha A. L. Carvalho, Daniel C. Cunha and Abel G. Silva-Filho

Session 9: Distributed Computing II

A Distributed Self-Reconfiguration Algorithm for Cylindrical Lattice-Based
Modular Robots .. 254

André Naz, Benoît Piranda, Seth Goldstein and Julien Bourgeois

Analysis of the Propagation Time of a Rumour in Large-scale Distributed Systems 264
Yves Mocquard, Samantha Robert, Bruno Sericola and Emmanuelle Anceaume

Cost Sensitive Moving Target Consensus ... 272
Sisi Duan, Yun Li and Karl Levitt

Session 10: Mobile Computing and Security

Peripheral Authentication for Autonomous Vehicles (short paper) ... 282
Shlomi Dolev and Nisha Panwar

Efficient Transmission Strategy Selection Algorithm for M2M Communications:
An Evolutionary Game Approach .. 286

Safa Hamdoun, Abderrezak Rachedi, Hamidou Tembine
and Yacine Ghamri-Doudane

xi

On The Privacy-Utility Tradeoff in Participatory Sensing Systems ... 294
Rim Ben Messaoud, Nouha Sghaier, Mohamed Ali Moussa
and Yacine Ghamri-Doudane

Decision-Theoretic Approach to Designing Cyber Resilient Systems 302
Vineet Mehta, Paul Rowe, Gene Lewis, Ashe Magalhaes and Mykel Kochenderfer

The Blockchain Anomaly .. 310
Christopher Natoli and Vincent Gramoli

Safety Analysis of Bitcoin Improvement Proposals ... 318
Emmanuelle Anceaume, Thibaut Lajoie-Mazenc,
Romaric Ludinard and Bruno Sericola

Session 11: Performance, QoS, and Monitoring

A Comparison of GPU Execution Time Prediction using Machine
Learning and Analytical Modeling ... 326

Marcos Amarís González, Mohamed Dyab, Raphael De Camargo,
Alfredo Goldman and Denis Trystram

A QoS-Aware Controller for Apache Storm ... 334
Mohammadreza Hoseinyfarahabady, Hamidreza Dehghani Samani,
Yidan Wang, Albert Zomaya and Zahir Tari

An Algorithm Based on Response Time and Traffic Demands
to Scale Containers on a Cloud Computing System .. 343

Priscila Solis and Marcelo Abranches

SLA and Profit-aware SaaS Provisioning through Proactive Renegotiation 351
Aya Omezzine, Narjes Bellamine Ben Saoud, Said Tazi and Gene Cooperman

modeling Dynamic Location Update Strategies for PCS Networks (short paper) 359
Chung-Chin Lu, Ruey-Cheng Shyu and Yung-Chung Wang

Client-Side Monitoring Techniques for Web Sites (short paper) .. 363
Ricardo Filipe and Filipe Araujo

xii

Session 12: Network Security II

To Route or To Secure: Tradeoffs in ICNs over MANETs ... 367
Hasanat Kazmi, Hasnain Lakhani, Ashish Gehani, Rashid Tahir
and Fareed Zaffar

Confidential and Authenticated Communications in a Large Fixed-Wing UAV Swarm 375
Richard Thompson and Preetha Thulasiraman

A Back-end Offload Architecture for Security of Resource-constrained
Networks (short paper) .. 383

Jiyong Han and Daeyoung Kim

MANETs Monitoring with a Distributed Hybrid Architecture (short paper) 388
Jose Alfredo Alvarez Aldana, Stephane Maag and Fatiha Zaidi

Secure Complex Monitoring Event Processing (short paper) .. 392
Mehdi Bentounsi and Salima Benbernou

Author Index .. 396

MESSAGE FROM THE STEERING COMMITTEE AND GENERAL CHAIRS

All research topics of IEEE NCA*, for more than one decade, have been contributing to the creation of
the foundation of the Network/Cloud Computing research and application do domain. Now,
Network/Cloud Computing is becoming the major mode of operation of the Information
Technology Industry over the Internet. BIG Data, Software Defined Networks (SDN), Network
Functions Virtualization (NFI), Internet of Things (IoT) have profound effect on the innovations
and modern society. The challenge for Network Cloud Computing is to realize a true Internet of
Things, a network capable of supporting potentially trillions of wireless connected devices and with
overall bandwidth one thousand times higher that today’s wireless networks. Current IT technologies are
approaching their limits.

The organizers of the IEEE NCA2016 would like to recognize the support of the leading scientists in
this research field. They contributed to the NCA* as distinguished chairs, keynote speakers or provided
sponsorship.

We would like to mention some of the leading institutions and companies, such as
Massachusetts Institute of Technology – MIT Cambridge, MA; Akamai Technologies Inc.,
Cambridge, MA; IBM – Thomas J. Watson Research Center, New York; Cornell University, USA; BBN
Cambridge, MA, USA; Microsoft Research, CA, USA; CNRS – LAAS, Toulouse, France; University of
Tennessee & Oakridge National Labs; National Science Foundation – NSF,USA; DARPA, USA; Cisco,
MA, USA; Argonne National Lab – Chicago; European Research Counsel – ERC, Brussels, Belgium;
University of Illinois at Urbana Champaign; International Research Institute on Autonomic Network
Computing – IRIANC, Boston/ Munich Germany.

We would like to thank all TPC members, PC Chair A. Gkoulalas-Divanis, PC Co-Chair and
Financial Chair A. Pellegrini, PC Co-Chair and Publication Chair P. Di Sanzo, for their voluntary
hard work, which has contributed to the success of IEEE NCA2016.

Our special acknowledgments are to the IEEE Computer Society for its Sponsorship and The
IEEE Computer Society Technical Committee on Distributed Processing (TCDP).

Mladen A. Vouk
General Chair NCA 2016
NC State University, USA
http://renoir.csc.ncsu.edu/Faculty/Vouk

D. R. Avresky
Co-Founder NCA* and Steering Committee Chair
President of International Research Institute on
Autonomic Network Computing (IRIANC)
Boston, USA / Munich, Germany
autonomic@irianc.com

MESSAGE FROM THE PROGRAM CHAIRS

Dear friends, Dear colleagues, Dear participants,

It is with great pleasure that we welcome you to the 15th edition of IEEE NCA. Over the years, NCA
has become a successful series of conferences that serves as a large international forum for presenting and
sharing recent research results and technological developments in the fields of Network and Cloud
Computing. This edition of NCA features a lively, interesting, and stimulating program with a lot of
opportunities for discussing new results, on-going projects, and the future trend in our fields.

As in the previous editions, the conference is organized in thematic sessions that reflect the diversity
of topics. This year, we received a total of 105 submissions, and accepted 29 as full papers, which is a
selective rate of acceptance of less than 28%. Additionally, 36 contributions have been accepted as short
papers, to allow for a more dynamic and interactive event.

The Technical Program Committee, consisting of 36 distinguished experts, made this selection,
closely aided by an External Review Committee of 28 additional experts, active in our fields. We thank
from our hearts the Technical Program Committee and the external reviewers for their invaluable effort
in this process, which made possible this year's excellent program. Special thanks are also due to the NCA
Steering Committee Chair Dimiter Avresky for his support in the organization of this event.

The high quality of this edition is also attested by two distinguished papers, winner of the best paper
award (Cost-effective Processing for Delay-sensitive Applications in Cloud of Things Systems by Yucen Nan,
Wei Li, Wei Bao, Flavia C. Delicato, Paulo F. Pires, and Albert Y. Zomaya), and the best student paper
award (Analysis of the Propagation Time of a Rumour in Large-scale Distributed Systems by Yves Mocquard,
Samantha Robert, Bruno Sericola, and Emmanuelle Anceaume). We are also pleased to host a keynote
from Tim Strayer on “Evolving Systems for Situational Awareness”, which is expected to interest
everyone attending the conference. The topics of this year’s edition are well reflecting the needs of
IT technologies. Some of them include: cloud computing, autonomic management, machine learning,
SDN, NVF, security, privacy, and virtualization.

The success of a conference is mainly on the side of the participants, we therefore warmly thank all the
contributors and participants. The team of chair persons did a huge work – despite all the difficulties
and hindrances faced during the process – which finally led to a very attractive program. We wish you a
successful conference, and a pleasant stay in the beautiful Boston!

Alessandro Pellegrini, Sapienza University of Rome, Italy
Pierangelo Di Sanzo, Sapienza University of Rome, Italy
Program Co-Chairs

Aris Gkoulalas-Divanis
IBM Watson Health, Cambridge, MA, USA
Program Chair

CONFERENCE COMMITTEE

Steering Committee Chair
Dimiter R. Avresky, IRIANC, Boston, USA / Munich, Germany

General Chair
Mladen A. Vouk, NC State University, USA

Program Chair
Aris Gkoulalas-Divanis, IBM Watson Health, Cambridge, MA, USA

Program Co-Chairs
Alessandro Pellegrini, Sapienza University of Rome, Italy
Pierangelo Di Sanzo, Sapienza University of Rome, Italy

Financial Chair
Alessandro Pellegrini, Sapienza University of Rome, Italy

Publication Chair
Pierangelo Di Sanzo, Sapienza University of Rome, Italy

TECHNICAL PROGRAM COMMITEE

Emmanuelle Anceaume, CNRS / IRISA, France

Spiros Antonatos, IBM Research, Dublin, Ireland

Luciana Arantes, Universite Pierre et Marie Curie-Paris6, France

Dimiter R. Avresky, IRIANC, Boston, USA / Munich, Germany

Arndt Bode, Technische Universität München, Germany

Yann Busnel, Crest (Ensai) / Inria, France

Bruno Ciciani, Sapienza, University of Rome, Italy

Gene Cooperman, Northeastern University, MA, USA

Michel Cukier, University of Maryland, MD, USA

Peter Desnoyers, Northeastern University, MA, USA

Pierangelo Di Sanzo, Sapienza University of Rome, Italy

Aris Gkoulalas-Divanis, IBM Watson Health, Cambridge, MA, USA

Alfredo Goldman, University of São Paulo, Brazil

Doan Hoang, University of Technology, Sydney, Australia

Barry W. Johnson, University of Virginia, VA, USA

Zbigniew Kalbarczyk, Coordinated Science Laboratory, IL, USA

Kostas Katrinis, IBM Dublin Technology Campus, Ireland

Roger Khazan, MIT Lincoln Laboratory, MA, USA

Ioannis Konstantinou, National Technical University of Athens, Greece

Nectarios Koziris, National Technical University of Athens, Greece

Michael Liu, the Chinese University of Hong Kong

Erik Maehle, University of Lübeck, Germany

Grzegorz Malewicz, Facebook, USA

Antonio Manzalini, Telecom Italia Lab, Italy

Philippe Massonet, CETIC, Belgium

Rasmus L. Olsen, Aalborg University, Denmark

Philippe Owezarski, LAAS-CNRS, France

Roberto Palmieri, Virginia Tech, VA, USA

Alessandro Pellegrini, Sapienza University of Roma, Italy

Francesco Quaglia, Sapienza, University of Rome, Italy

Hans-Peter Schwefel, Aalborg University, Denmark

Pierre Sens, LIP6 - University of Paris 6 - CNRS – INRIA, France

Jacek Serafiński, OtherLevels

Wilfried Steiner, TTTech Computertechnik AG, Austria

Mladen A. Vouk, NC State University, NC, USA

Gabriel Wainer, Carleton University, ON, Canada

EXTERNAL REVIEWERS

Andrea Ceccarelli, Università degli studi di Firenze, Italy

Davide Cingolani, Sapienza University of Rome, Italy

Daniel Cordeiro, University of São Paulo, Brazil

Katerina Doka, National Technical University of Athens, Greece

Simone Economo, Sapienza University of Rome, Italy

Athena Elafrou, National Technical University of Athens, Greece

Rene Gabner, FTW Telecommunications, Austria

Ioannis Giannakopoulos, National Technical University of Athens, Greece

Jan Haase, Universität zu Lübeck, Germany

Pinjia He, The Chinese University of Hong Kong

Michel Hurfin, Inria Rennes, France

Mauro Ianni, Sapienza University of Rome, Italy

Evie Kassela, National Technical University of Athens, Greece

Mohammed Kemal, Aalborg Universitet, Denmark

Jian Li, The Chinese University of Hong Kong

Romaric Ludinard, Crest (Ensai) / Inria Rennes, France

Tatiana Madsen, Aalborg Universitet, Denmark

Romolo Marotta, Sapienza University of Rome, Italy

Nikela Papadopoulou, National Technical University of Athens, Greece

Thomas Paulin, Aalborg Universitet, Denmark

Nuno Pratas, Aalborg Universitet, Denmark

Nicolo Rivetti, Sapienza University of Rome, Italy – Crest (Ensai)/Inria, France

Han Shao, The Chinese University of Hong Kong

Dimitrios Siakavaras, National Technical University of Athens, Greece

Hui Xu, The Chinese University of Hong Kong

Xiaotian Yu, The Chinese University of Hong Kong

Jichuan Zeng, The Chinese University of Hong Kong

Shenglin Zhao, The Chinese University of Hong Kong

KEYNOTE

Evolving Systems for Situational Awareness

Dr. Tim Strayer
Raytheon BBN Technologies
Cambridge, MA, USA

Abstract. The most basic functions of any organism or organized unit requires understanding the
environment. This is accomplished through sensing; for organisms, sensing is an evolved faculty. The
same is true for military and first responder units such as squads, who are relying on more sophisticated
sensing systems to gain greater situational awareness (SA) in order to more effectively and safely conduct
their missions. Adding sensing to the squad, however, only solves part of the problem; there must be an
appropriate communications system in place to make full use of the acquired SA information. This talk
will explore the use of content-based networking solutions for efficiently distributing the SA information
in a decentralized manner.

Bio. Tim Strayer is a Principal Scientist in Raytheon BBN Technologies' Network and
Communications group, where he leads several Government-funded projects focused
on applying content-based networking techniques to soldier communications at the
tactical edge. He joined BBN in 1997 from Sandia National Laboratories (California),
where he was developing novel transport protocols. At BBN, he has worked on many

DARPA and industry sponsored projects in the areas of Active Networking, satellite packet switching,
mobile IP, virtual private networks, and routing systems, as well as many projects on attack tracing and
botnet detection. He received his PhD from the University of Virginia in 1992. He has written over 30
journal and conference papers, 14 patents, several book chapters, and two Addison-Wesley books.

Crowdsourcing-based architecture for post-disaster
Geolocation: a comparative performance evaluation

Florent Coriat∗†, Anne Fladenmuller∗†, Luciana Arantes∗†,‡ and Olivier Marin§
∗ Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France

E-mail: [florent.coriat, anne.fladenmuller, luciana.arantes]@lip6.fr, ogm2@nyu.edu
† CNRS, UMR 7606, LIP6, F-75005, Paris, France

‡ Inria, REGAL project-team, Paris-Rocquencourt, France
§ New York University Shanghai (NYU Shanghai), Shanghai, China

Abstract—In the aftermath of a natural or industrial disaster,
locating individuals is crucial. However, disasters can cause
extensive damage to the network infrastructures and a gener-
alized loss of communication among survivors. In this article, we
present a network support solution that provides a post-disaster
geolocation-collecting service that relies on inter mobile device
connections. On top of this dynamically built network, survivors’
mobile devices exchange information about geolocation of others
they have encountered. Such information is routed towards pre-
defined data collection centers using either the DTN Epidemic or
Spray and Wait DTN protocol. Experiments were conducted on
the ONE simulator and performance evaluation results confirm
the effectiveness of our proposal.

Index Terms—geolocation, DTN, early post-disaster manage-
ment, mobile devices

I. INTRODUCTION

After a natural or human-made disaster, regular communi-

cation infrastructure is often damaged and/or overloaded by

witnesses, survivors, or their relatives who keep repeatedly

trying to get information about the current situation, in order to

help or simply to reassure themselves. Yet global information

assessment is a crucial issue for rescuers. Thus, establishing,

as soon as possible, a dedicated communication network, until

the regular network works normally, remains a top priority

and a great challenge [1]. Ideally, such a communication

network should also provide support for real-time mapping

of the disaster area, danger zones and resources, as well as

geolocation information of victims and survivors. In other

words, the support must help to assess and deal with the

emergency situation, mapping accident areas, locating users,

warning users about the accidents, and maintaining contact

between survivors, rescue teams, and emergency operation

centers.

Many existing solutions deploy emergency network infras-

tructures (e.g. mobile cell sites, balloons, etc.). However, these

solutions are often expensive, can take several hours after the

disaster to be operational, depend on dedicated equipments, or

are frequently restricted to rescue teams.

Hence, considering the above constraints, a feasible, rela-

tively cheap, and easily available solution would be to build an

ad-hoc network composed of people’s (victims and survivors)

mobile devices, i.e., to exploit existing mobile devices without

counting on additional dedicated network infrastructure. Since

users’ mobile devices usually have wireless interfaces (Wi-Fi

and/or BlueTooth), it would be possible to establish, maybe

intermittently, ad-hoc communication links between mobile

nodes, similarly to MANET (mobile ad-hoc network) or DTN

(disrupted-tolerant network).

In this paper, we present a post-disaster network support

solution that exploits such an ad-hoc dynamically built com-

munication approach, requiring a minimum of fixed support.

We consider that dedicated software for disaster situations

runs on peoples’ mobile devices as well as the existence

of well-known places, denoted convergence points CPs (e.g.,

hospitals, railway stations, schools, etc.). Some of these CPs

are also collecting data centers, denoted hotspots. The latter are

endowed with processing and storage resources. Seeking to be

in safe area when a disaster takes place, people move towards

one of the CPs, establishing the ad-hoc communication links

between his/her mobile device and those of the persons he/she

crosses along the path to the CP. Furthermore, whenever a

communication link exists between two persons’ devices, they

can exchange information about geolocation of other persons

they have met. Therefore, users mobility contributes to both

build an ad-hoc network and propagate information about users

location. Through such a network, users can also be informed

about accidents which might help them to find a better path

to the most convenient CP.

Since a network composed of persons’ mobile devices

is intermittently connected, i.e. connections between them

and the hotspots are built over time, similarly to DTNs, we

applied (and adapted) two well-known DTN routing protocols,

Epidemic [2] and Spray and Wait [3], for routing geolocation

data towards the hotspots. Based on such disaster context, we

also propose a mobility model, denoted Danger Movement.
Extensive experiments were conducted with both protocols on

Danger Movement, varying different parameters, on top of the

ONE1 simulator [4]. Performance evaluation results confirm

the effectiveness and feasibility of our approach.

The paper is organized as follows: Section II gives a brief

background about DTNs and the protocols Epidemic and Spray
and Wait. In Section III, we summarizes some existing related

1The Opportunistic Networking Environment978-1-5090-3216-7/16/$31.00 ©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

1

work. Our solution is described in Section IV which also

includes the description of the Danger Movement. Section V

presents and discuss some evaluation performance results with

both protocols. Finally, Section VI concludes the paper and

gives some directions for future work.

II. DISRUPTION-TOLERANT NETWORKING

Base radio stations are statically placed aiming at offer-

ing network coverage to users. However, if they have been

damaged by a disaster or the latter caused a power failure,

their re-establishment or the deployment of mobile cell sites

to complete or replace the failing infrastructure can take from

hours to several days, wasting valuable time for victims and

rescuers. Thus, autonomous and fast operational solutions

to offer some communication support in the first moments

of a disaster are crucial in such a context. To this end,

disruption-tolerant networking (DTN) technology has been

largely considered for post-disaster communications.

A disruption-tolerant network (DTN) is an opportunistic

network where each node acts as a router for the network

packets. Nodes can be pedestrians’ mobile devices, on-board

vehicle specialized devices, fixed relays, etc. In [5], the authors

present a classification of these types of nodes, their mobility

patterns, and communication abilities (terminals, stationary

relays, dedicated fixed or mobile routing facilities, etc.) from

the perspective of post-disaster communication and coverage.

Devices like mobile cell stations, satellite relays, etc. can be

components of a DTN. However, the main purpose of DTNs

is to exploit non specialized, not expensive devices, usually

with limited resources, but which are fast deployed and, thus,

very suitable for disaster context.

DTN routing: Many protocols have been developed for DTNs

and evaluated on different network architectures. “Simple”

protocols like First Contact, Epidemic, or Spray and Wait

do not rely on any assumption or network structure measures

for their routing rules. They are often used as references in

comparative studies, regardless of the study context.

Epidemic [2] is one of the most simple DTN routing proto-

cols: whenever two nodes meet, they compare their respective

sent and received message histories and exchange their “new”

messages. The advantage of the Epidemic protocol is its high

delivery probability. On the other hand, it consumes a lot of

storage, power, and bandwidth resources. To circumvent such

a problem, a FIFO policy is usually used to discard messages

when the node’s storage buffer is full. Hence, dissemination is

limited by both bandwidth and storage and, in the long term,

by available remaining energy.

Spray and Wait (SnW) [3] is a simple trade-off be-

tween replication-based routing protocols, like Epidemic, and

forward-based routing ones. The source of a message repli-

cates it in L copies. The latter are firstly disseminated to

L − 1 other nodes. This spray phase accepts some variants.

For instance, in Binary SnW, any node that has n > 1
message copies (source or relay), and encounters a second

node (with no copies), gives to it
⌊
n
2

⌋
and keeps

⌈
n
2

⌉
for

itself. Binary SnW has a lower delivery delay than the original

Spray and Wait. Whenever a node has only one copy left, it

switches to wait phase: it stores the message until it crosses

the destination node to directly transmit the message. In other

words, the Spray and Wait protocol manages the number of

copies messages in the spray phase and uses Direct Delivery

in the wait phase. As a result, the protocol presents fewer

message transmissions than the Epidemic protocol.

Other protocols more “complex” than the previous ones,

such as Spray and Focus [6], PRoPHET [7], MaxProp [8], rely

on history of nodes’ crossing or specific characteristics of a

mobility model (Time To Return) which predicts future nodes

meeting probabilities. These protocols assume a somewhat

redundant contact approach. In particular, a node S can

efficiently route a message to a node D if and only if S
knows D, i.e., if a packet (whichever it is a data or protocol

packet) already followed a path from D to S, provided that this

path still exists or at least part of it. However, these protocols

perform at best as efficiently as the “simple” ones when

this condition is not met. As we shall see later, geolocation

messages of our protocols mainly follow such unknown paths.

We should also point out that DTN protocols are usually

evaluated and compared under various scenarios and/or large

randomly-generated data transfers. On the contrary, our sce-

narios rely on small geolocation messages, whose generation

depends on each specific scenario.

III. RELATED WORK

In the context of disasters, we summarize in this section

some existing solutions that provide support for diffusion of

information and/or communication coverage as well as some

mobility models proposed in some works.

A. Existing Solution for Support

Rescue workers typically use a dedicated trunked net-

work infrastructure, based on a specific protocol like P25 or

TETRA [9]. These protocols provide support for encrypted

voice and data transmission throughout a fixed mesh in-

frastructure, or using direct (point-to-point) communications.

However, these networks are restricted to licensed profession-

als, and their design would not scale to a large use. Further-

more, P25 and TETRA do not provide multi-hop routing when

using point-to-point communications, thus preventing their use

for data collection without a resilient infrastructure.

Some hardware solutions have also been proposed with the

goal of temporarily replacing or restoring part of the damaged

infrastructure, In this case, mobile cell sites (e.g.,“Cell On

Wheels”, “Cell On Truck”, etc.), can be deployed to address

emergencies and usually connected through wired connections,

parabolic antennas, a satellite network, or a network of helium-

inflated balloons, as proposed by the Loon project [10] for

restoring access to the internet. Nevertheless, these solutions

remain expensive — tens of thousands of dollars per cell — and

their post-disaster deployment requires time.

In recent years, different disasters led to the emergence

of many projects whose goal is to inform people about

2

the disaster and to include them in the situation assessment

process. For instance, after the earthquake in Japan in 2011,

more than 150 applications were developed [11] to face the

disaster consequences. Most of these applications rely on

crowdsourcing, offering information about the current situa-

tion, risks, needs, resources, people locations, etc. to victims,

rescuers, and/or authorities. Ushahidi [12], Sahana Eden [13],

Google Crisis Response [14], UbAlert Disaster Alert Network

[15] or People Locator [16] are examples of projects that

make available collaborative maps on top of which the above

information can be added. These applications consist of web

sites or mobile applications. Even if some of them exploit

alternative communications channels, like Ushahidi, which is

able to collect information by SMS/MMS, they all rely on

regular infrastructures as communication support.

Aiming at tolerating network failures and disruption, some

other projects provide solutions that decentralize communica-

tion. Twimight [17] (“Twitter in disaster mode”), is a Twitter

client that can work without internet connection, exchanging

tweets in an opportunistic way between terminals. Firechat

[18] is a messaging application that can communicate with or

without internet connection: Wi-Fi and BlueTooth interfaces

are responsible for building a mesh network where each

message can be stored, carried and forwarded on any available

link. The Serval project [19] developed a yet experimental

messaging application that can transmit all sorts of data

(messages, maps, voice, pictures, etc.) over an ad-hoc mesh

network. These projects are not specially tailored to tackle with

disaster situations but they are general solutions for regions or

situations where network coverage is not working properly.

B. Mobility Models

The use of MANET or DTN to deal with a crisis situation

has already been proposed [20], [21]. Several studies have

compared known protocols in a crisis scenario [5], [22]–[26],

or the in everyday life [7], [27], [28]), and have shown the

impact of mobility on system performance.

Despite its lack of realism [29], RWP is often used for

simple [26] or non-crisis-specific [30] evaluations or even as a

reference or a sub-model of a more specific model. In [5], the

authors compare a set of DTN routing protocols in the scenario

of Uttarakhand floods (India, 2013, 4 days of intense rainfall,

4200 affected villages, 5700 deaths). The impact of RWP,

Map Based [4], Cluster Movement and Post Disaster Mobility

(PDM) [31] mobility models is evaluated on top of the ONE

simulator. Among those, the last two ones also use RWP

and Map Based as sub-models. For instance, PDM assigns

different roles to nodes, with different mobility patterns: patrol,

exploration, round-trip. Some of these patterns are based on

RWP. PDM is also used in the experiment scenario in [32],

which addresses mobility prediction in a crisis situation.

The Disaster Area (DA) model is used in [25] and [33]

to evaluate DTN routing or broadcast protocols. The DA

model introduces the concept of zones which are deployed by

rescuers. Pedestrians follow a zone-restrained RWP mobility

model with obstacles, whereas vehicles go back and forth

between two zones.

There exist several other models in the literature which

were conceived for disaster situations such as CORPS [34],

Dispatched Ambulance [35], Reference Point Group Mo-

bility (RPGM) [36], Human Behaviour for Disaster Areas

(HBDA) [37], etc. However, all these models focus on rescue

teams mobility, neglecting the movement of other people

present in the disaster scenario [38]. In other words, victims

and survivors are poorly represented, if not simply ignored, or

follow a simplistic generic model (e.g., RWP or similar).

IV. OUR PROPOSED POST-DISASTER SYSTEM

In this section, we present our post-disaster system that aims

at gathering geolocation and mapping information in collecting

centers (hotspots) as well as informing users about accident

locations. Moving to convergence points CPs, which can also

be a hotspot, persons’ mobile devices that get into contact

with others, exchange information about geolocation of other

persons they have met. Users mobility contributes then to both

build a connected network and propagate information.

Our solution is deployed as a specific application, installed

on people’s mobile devices beforehand. We denote holder a

person that holds a mobile device running this application and

is within the disaster area. Note that a holder can be also a

motionless victim, such as injured or dead victims as well as

active dropped mobile devices.

Our goal is to provide a post-disaster geolocation system

with the following features:

• Public availability: the network built by holders’ devices

must be available and usable by everyone that has a

mobile device (smartphones, tablets, etc.).

• Fast operational capacity / ad hoc routing: exploiting

the holders’ mobile devices, the network must be fully

operational without considering, except hotspots, any ad-

ditional fixed support. In other words, no specific devices

and support should be used for routing messages, which

would, then, require the assumption that holders’ devices

handle them.

• Collection of data: data should be routed to central points

(hotspots).

• Freshness of information: collected data mainly consist

of geolocation of persons’ mobile devices in the area.

However, only recent information about their respective

location should be considered, which means that those

messages with old information must be discarded.

• Informing users about accident locations: holders should,

as much as possible, be informed about where there are

accidents in order to allow them to change their path and

circumvent risking zones.

In the following, we firstly describe the environment and

assumptions that we consider for our system. Then, since the

majority of existing mobility models of the literature concern

rescue teams (see Section III), we propose a new mobility

model, denoted Danger Movement, that takes into account the

considered environment and the movement of persons towards

3

CPs. Finally, in this context, we propose to use (and adapt)

both Epidemic and Binary Spray and Wait DTN protocols in

order to route persons information to hotspots and disseminate

accidents geolocation information.

A. Environment and Assumptions

We consider that there exist fixed places, denoted conver-

gence points CPs, like hospitals, railway stations, schools, etc.,

which are known by all people and towards which they move

when a disaster takes place. By default, every user chooses

the closest CP in relation to his/her position when aware of

the disaster. Nonetheless, a person can choose (with a certain

probability) to reach another one, randomly chosen. Such an

option improves the realism of the model, enriching it with

“human” behaviors as, for example, parents fetching their

children from school (a CP) instead of directly reaching the

nearest rescue center.

Holders trying to reach a CP can be blocked by accidents.

An accident is an event that permanently blocks an intersection

of roads. Accidents are triggered on randomly chosen intersec-

tions following an exponential law with a chosen mean time

between two accidents (MTBA).

Some CPs are endowed with storage, processing, and en-

ergy resources which render them collecting centers, denoted

hotspots. The latter are interconnected by long-range resilient

wireless links (laser, parabolic antenna, satellite, etc.). Period-

ically, hotspots synchronize themselves, exchanging collected

data. Notice that this resilient communication infrastructure is

not contradictory with our aim of providing a post-disaster

solution which does not rely on a dedicated infrastructure. In

our case, the latter is only used for synchronization between

hotspots and not for connecting people or routing geolocation

information to hotspots. If such a hotspot synchronization does

not take place, the system still works with each hotspot having

a partial view of people geolocations.

We also assume that both holder’s devices and hotspots have

Wi-Fi and/or Bluetooth wireless interfaces, which are widely

available among the devices of holders nowadays. While, Wi-

Fi benefits from better signal ranges than BlueTooth, Blue-

Tooth consumes significantly less energy than Wi-Fi. Each

of these interfaces runs a DTN router. We consider that a

unique constant identifier (e.g., phone number) is assigned to

each holder’s device which is also equipped with a global

positioning system (GPS).

B. Mobility Model: Danger Movement

Danger Movement is a map-based mobility model which

takes into account the context described in the previous

section. Basically, it characterizes the movements of survivors

who move towards CPs, exchanging information about peo-

ple and accident locations, which are routed to hotspots. A

preliminary version of the model was presented in [39].

In accordance with our assumptions, hotspots are placed on

the map as static nodes. Initially, Danger Movement randomly

places holders over the map. The latter can then walk over the

map at fixed or random (bounded) speeds.

Start

Random walk
(RWP)

At home
(not alarmed)

Walk
to CP

Stranded
(SOS)

Safe
at CP

w
alkP

rob

prewarnedProb

walkTime
selfwarnedProb

warning receivedspontaneous alarm
(selfwarnedProb)

warning receivedend of scenario no path
to

CP

Fig. 1. Danger Movement : state (sub-models) diagram of a holder

Holders running Danger Movement may be aware or not

of the crisis situation. We denote alarmed a holder aware of

the situation. Four cases are possible for a holder in Danger
Movement: (1) he/she is alarmed from the beginning; (2)

he/she spontaneously realizes the situation during simulation;

(3) the holder is warned by another alarmed holder; (4) the

holder is never alarmed.

The map is known by all holders. Therefore, they are always

able to find the shortest off-disaster path to any CP. However,

holders have only knowledge of an accident provided they

have seen it or another holder informed them of it. Upon

having knowledge of a new accident, a holder may recompute

his/her current path. Note that an alarmed holder may become

stranded if there are no more accessible paths left towards

his/her target CP.

Once arrived to the target CP, holders stop moving and,

after transmitting all their data to the hotspot (if the CP is a

hotspot), they disable their interfaces.

Figure 1 describes the different states of a holder, depending

on its awareness and whether he/she is at home, walking

outside or “stranded” by accidents. Notice that, in order to

ensure that simulations based on Danger Movement finish, it

is not required that all holders reach the safe state. Once a

given defined percentage of holders are safe, all remaining

holders become stranded ones.

The probabilities prewarnedProb and walkProb respec-

tively concern the probability that a holder is alarmed
from the beginning of the simulation (case 1) and that

he/she starts walking without being alarmed (case 3). The

selfwarnedProb is the probability, every 1/10 s, for a non-

alarmed holder to become spontaneously alarmed (case 2).

C. Protocols and Messages

As explained, every holder’s interface runs a DTN router.

However, since all geolocation data should be directed to

hotspots, applying “complex” DTN protocols would be unfea-

sible in such a disaster context. Furthermore, the size of the

messages is very small and those with old information should

4

be dropped. Therefore, we have chosen to apply and adapt the

simple and well-known DTN protocols Epidemic and Spray
and Wait (see Section II).

Three message types are used by the protocols:

• geolocation: contains the GPS coordinates of a holder;

• accident: the GPS coordinates of an accident;

• warning: a special message which renders alarmed those

holders who received the message.

Since every holder has a GPS receiver, it is able to build a

geolocation message at any time.

Warning messages are automatically created by already

alarmed holders while accident messages are generated by

holders when getting knowledge about an accident. When

they cross each other, holders may exchange geolocation
information about the holders and accidents of which they are

aware. Each of this information consists of a single message

whose size does not exceed 20B. However, MANET/DTN

routing protocols are usually evaluated with larger messages:

from 64B for MANETs to 100KiB for DTNs. Thus, aiming

at preventing holders from sending numerous small messages,

which would induce high network overhead, messages are

grouped into frames of a predefined maximum transmission

unit (MTU) size before being transmitted.

In order to satisfy the freshness of information requirement,

messages about persons’ geolocation must be versioned, i.e.,

timestamped. In this way, only the most recent ones (last

version) are collected and kept by holders and hotspots.

A status can also be added to each geolocation message,

giving more information about the holder (not injured, injured,

motionless victim, etc.). Our solution should, thus, ensure a

anycast routing service for versioned messages, dropping those

with old version.

As argued, we have chosen to implement both the Epidemic

and Spray and Wait DTN protocols (see Section V), adapting

them to the described disaster environment. In the case of

Spray and Wait, we adapted the Binary SnW, where every node

(holder), keeping more than one copy of a message, transmits

half of them on the next node (holder) contact.

The two protocols have been modified to deal with messages

versions: a message is automatically dropped as soon as a

more recent version is received. In the case of Spray and

Wait protocol, this message dropping may concern several

copies of the same message, independently of the number of

copies received for the new version of the message. Lastly,

a transmission delay is applied to more recent versions of

an already sent message, preventing continuous update flow

transmissions.

It is worth noting that warning and accident messages have

to be disseminated among all holders, i.e., in an epidemic

way, so that only geolocation data are affected by the protocol

choice.

Collected data are forwarded to hotspots, which periodically

synchronize themselve, keeping only last versioned data.

TABLE I
SIMULATION PARAMETERS – REFERENCE SCENARIO

Map Santiago Center, 29 km2

Simulated time 10000s
Walk speed constant : 1.3m s−1 (∼4.7 kmh−1)
Accidents 10, MTBA : 500 s
Number of CPs 3 | 5 | 20
of which hotspots 3
Survivors / victims 1800/200
walkProb .14
preWarnedProb .8
selfWarnedProb 10−6 at each 1/10 s-step
CP choice the nearest one
Interface (range) Wi-Fi (100m) | BlueTooth (10m)
Bitrate 250 ko s−1

MTU 1500bytes
Retransmission delay 300 s
Protocol Epidemic | Spray and Wait
Param. Spray and Wait binary, 8 copies

V. PERFORMANCE EVALUATION

Experiments were conducted on the ONE simulator [4]

using a map of the center of Santiago (29km2). CPs are placed

on real amenities, with hotspots chosen among hospitals. Both

protocols, Epidemic and Spray and Wait (Binary SnW) have

been evaluated. Firstly, we explain and define the metrics used

to evaluate these protocols. Then we describe the parameters

of the simulation testbed. Finally, some results are presented

and discussed.

A. Metrics

In order to estimate the ability/efficiency of routing proto-

cols to deliver messages, performance metrics such as packet

delivery fraction (PDF), throughput or end-to-end delay [22]

are commonly used, while protocol overhead is evaluated

through metrics of normalized routing load (NRL) [25] or

energy cost per message.

However, in a disaster scenario, it is important to deliver

only up-to-date information, discarding obsolete messages

before they can reach their final destination (a hotspot). Hence,

usual performance metrics (e.g., throughput, PDF, NRL) be-

come irrelevant or very difficult to evaluate. In our context, we

aim at gathering as much geolocation information as possible

while keeping low energy consumption. Consequently, to com-

pare the efficiency of different routing protocols, we propose

a new metric that better reflects the quantity of the accurate

geolocation information gathered on hotspots. This efficiency

metric is denote fraction of discovered holders, known by at

least one hotspot. The overhead entails by the protocols is

estimated by measuring the average number of frames sent by

a holder over the time. Note that this second metric gives an

overview of the global energy consumption of our protocol.

B. Simulation Testbed

For each parameters set, 10 simulation runs were executed.

The curves of the figures show the average values for these

runs.

Table I summarizes the parameters for our reference sce-

nario. Note that the number of convergence points can vary

5

between scenarios (3, 5, or 20), but the number of hotspots is

always fixed to 3.

C. Evaluation Results

We have conducted our simulations on different scenarios.

The first one is used as a reference to evaluate the impact of

the type of interfaces, routing protocols, and number of CPs

on the efficiency and energy consumption metrics.

Reference scenario: Figure 2 and the first columns of Table

II show results of the simulations, considering the parameter

set of Table I.

Firstly, we observe that all simulations stabilize within 90
minutes or less and none of them ends with a complete knowl-

edge of the position of all individuals: the best simulation

results yield a knowledge of ∼99.5% of the holders’ positions,

leaving only a dozen of holders unreachable.

Efficiency performance: Since only 3 CPs are hotspots which

collect geolocation information, in scenarios with more CPs,

device holders are statistically less likely to reach a hotspot.

Consequently, performance in terms of number of discovered

holders clearly drops as the number of CPs increases.

As expected, Wi-Fi interfaces produce better results than

BlueTooth ones. The BlueTooth’s best performance (Blue-

Tooth / Epidemic) results stand out ∼5% below Wi-Fi worst

case (Wi-Fi / SnW). Since Wi-Fi propagation range is broader,

Wi-Fi devices have a higher chance to forward their positions

to a holder moving towards a hotspot. Hence, for similar sce-

narios (same number of CPs), Wi-Fi outperforms Bluetooth,

with the difference on the number of detected holders growing

with the number of CPs. The gap is of 5% when considering

3 CPs and up to 15% with 20 CPs.

Epidemic and SnW perform similarly on BlueTooth, but

Epidemic gives slightly better results on Wi-Fi. The reason is

that Epidemic seems to be more resilient to the dispersion of

holders when the number of CPs increases: whereas both of

them acquire ∼99.5% knowledge about holder positions with

3 CPs, SnW misses ∼5% more holders position information

than Epidemic with 5 CPs, and ∼10% with 20 CPs. Such

degradation is easily explained by the bound in the number of

copies of SnW: some relevant holder relays are missed by the

protocol since there is no more copy left upon the encounter

moment.

We also observe that Epidemic discovery convergence time

takes place 10∼15min earlier than SnW one, regardless of the

number of CPs, probably because SnW messages are stuck in

the wait phase of the protocol until their respective holders

reach a hotspot.

Energy consumption: Table II shows that BlueTooth clearly

stands out with less than 30 frames sent per holder on average,

regardless of the protocol: forwarding is limited by interfaces

propagation range more than by the choice of the protocol.

However, with Wi-Fi broader propagation range, energy

consumption becomes more significant: around 20 times more

frames than BlueTooth (note the difference in scales between

the 2 figures). It also impacts the choice of the protocol since

SnW outperforms Epidemic by a factor of about three to five.

Thus, SnW significantly reduces energy consumption when

deploying Wi-Fi interfaces while keeping relatively acceptable

decrease in performance (especially with few non-hotspots

CPs). We could, therefore, consider SnW as a the best option

when deploying with Wi-Fi interfaces.

Given the low consumption of Epidemic, choosing SnW

seems rather useless With BlueTooth: both protocols can be

used interchangeably, with slightly better results for Epidemic.

From the above discussions of the results, we can say

that Wi-Fi / SnW and BlueTooth / Epidemic are interesting

tradeoffs, which will, therefore, be taken as reference in the

rest of this performance evaluation study.

Intermittent interfaces: In a crisis context, where energy

networks may be inoperative, holders who cooperate to define

a cartography of the crisis zone must take care about the

consumption of their battery-powered devices. In this context,

energy aware transmissions which rely on disabling the radio

interface for a certain duration of time, seems quite suitable.

Hence, it is important to study the impact of intermittent radio

interfaces on the propagation of our geolocation information.

To this end, we have defined an environment with intermittent
interfaces: each interface is powered up and shut down peri-

odically. On the other hand, as hotspots are not concerned by

energy issues, they always keep their radio interface active.

Since synchronization to get all wireless interfaces active

simultaneously is not realistic, we consider that holder devices

operate independently from one another. Thus, for the current

simulations, we have chosen an intermittency functioning

which is based on one of the discovery protocols of Wi-Fi

Direct2.

To circumvent the risk of having devices which are never

active at the same time, the intermittency has been imple-

mented as a pseudo-periodic process: interfaces are up for

active = 30 s, then down for a random amount of time

between minInactive = 30 s and maxInactive = 90 s, and

so on. In this way, two holder’s devices whose active time

are originally mutually exclusive will eventually be able to

communicate with each other.

Figure 3 and the second section of Table II present the

intermittency results. With a Wi-Fi interface running SnW,

intermittency has nearly no impact on the performance (num-

ber of discovered devices), whereas the average number of

messages is reduced by ∼25%. Conversely, Bluetooth per-

formance degrades due to these interruptions. The number of

messages is virtually unchanged but performance efficiency

drops. For example, with 3 hotspots, the number of missed

holders doubles from 5% to 10%.

Overall, we can conclude from the results that performance

of both protocols are similar, though slightly reduced, and

that intermittency might be useful with Wi-Fi.

2a Wi-Fi standard enabling devices to connect with each other without
requiring an infrastructure.

6

0:30 1:00 1:30
0

20

40

60

80

100

Time (h:min)

D
is

co
ve

re
d

de
vi

ce
s

(%
)

Wi-Fi

0:30 1:00 1:30
Time (h:min)

BlueTooth

Epidemic 3 CPs 5 CPs 20 CPs
Spray and Wait 3 CPs 5 CPs 20 CPs

Fig. 2. Reference scenario: Epidemic vs. Spray and Wait – proportion of discovered devices

TABLE II
AVERAGE NUMBER OF SENT MESSAGES PER HOLDER

Reference Intermittent V. Speed Random CP
Wi-Fi (WF) BlueTooth (BT) WF BT WF BT WF BT

of CPs Epi SnW Epi SnW SnW Epi SnW Epi SnW Epi
3 684.4 126.0 26.0 15.8 90.7 13.6 139.3 86.1 120.9 59.7
5 150.6 93.7 13.4 12.1 67.8 8.2 102.4 43.1 96.9 71.3

20 123.3 46.2 6.3 5.9 29.1 3.6 47.9 11.9 58.3 48.2

0

20

40

60

80

100

W
i-F

i/
Sn

W
D

is
co

ve
re

d
de

vi
ce

s
(%

)

0:30 1:00 1:30
0

20

40

60

80

100

Time (h:min)

B
lu

eT
oo

th
/

E
pi

de
m

ic
D

is
co

ve
re

d
de

vi
ce

s
(%

)

Reference 3 5 20 CPs
Intermittent 3 5 20 CPs

Fig. 3. Intermittent interfaces

Mobility - variable speeds, CP selection: Based on the refer-

ence scenario, we change, for the current simulation, the value

of some parameters in order to evaluate their influence on the

overall system performances. The first experiments concern

the walking speed of holders. In our reference scenario, all

mobile holders walk with a constant speed of 1.3m s−1. Only

victims or individuals unaware of the crisis remain static. On

the other hand, speed variations may have an influence on

contact occurrences and durations.

Thus, for the simulations, we considered the parameter

values of Table I except for the walk speed, that randomly

varies from 0.7m s−1 to 2.0m s−1. Figure 4 shows the results.

Except for a hardly significant improvement of convergence

time with BlueTooth / Epidemic, performances remain com-

parable: the average speed being still the same, the sets of

encountered contacts remain very similar.

However, speed variations have an impact on contact pat-

terns since irregularity in the mobility speed of holders in-

creases both disconnections and new contacts leading to more

data exchanges. Such an impact is reflected by the increase in

the number of exchanged frames, observed in the third section

of Table II.

Finally, simulations are run considering a constant speed

but mobility is modified by allowing holders to head towards

a random CP, which may not be the closest one in relation to

their current positions.

Results are presented in Figure 4 and the last section of

Table II. Performance efficiency remains quite similar with 3
CPs. However, with more CPs added, this mobility variation

yields to spectacular improvements (more than 60% better with

20 CPs and Wi-Fi / SnW). The reason for such great per-

formance improvement is that divergent holders disseminate

information among holders with different target CPs, and, thus,

mitigate holders’ dispersion.

7

0

20

40

60

80

100
W

i-F
i/

Sn
W

D
is

co
ve

re
d

de
vi

ce
s

(%
)

0:30 1:00 1:30
0

20

40

60

80

100

Time (h:min)

B
lu

eT
oo

th
/

E
pi

de
m

ic
D

is
co

ve
re

d
de

vi
ce

s
(%

)

Reference 3 5 20 CPs
Variable speed 3 5 20 CPs

50% random CP 3 5 20 CPs

Fig. 4. Mobility variations – walk speed & CP choice

VI. CONCLUSION

In this paper, we have proposed a new post-disaster ad

hoc communication architecture for collecting geolocation

information about victims and survivors. Our study focused on

efficiency and speed of information gathering as well as energy

cost in terms of number of exchanged messages. By defining a

reference scenario, we conducted several experiments on top of

the ONE simulator to assess the effect of different parameters

on the overall performance. Mobility patterns and interface

choices were revealed to have a significant impact on both

efficiency and energy consumption, whereas protocol choices

and interface intermittence have a limited (and interface-range

specific) one. Furthermore, walk speed has shown to have little

interest in the considered scenario.

Aiming at optimizing protocols routing choices, future

directions involve the study of the characteristics of dynamic

graphs built over time induced by holders encounters. In

a close future, we intend to enrich our disaster scenario

considering, for instance, larger disaster areas or adding other

participants such as vehicles, rescue teams with specific mo-

bility patterns, etc.

REFERENCES

[1] C. Reuter, T. Ludwig, and V. Pipek, “Ad hoc participation in situation
assessment: supporting mobile collaboration in emergencies,” ACM
Trans. Comput.-Hum. Interact., vol. 21, no. 5, 26:1–26:26, 2014.

[2] A. Vahdat and D. Becker, “Epidemic routing for partially-connected
ad hoc networks,” 2000.

[3] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and
wait: an efficient routing scheme for intermittently connected mobile
networks,” in Proceedings of the ACM SIGCOMM Workshop on Delay-
tolerant Networking, 2005, pp. 252–259.

[4] A. Keränen, J. Ott, and T. Kärkkäinen, “The ONE simulator for
DTN protocol evaluation,” in Proceedings of the 2nd International
Conference on Simulation Tools and Techniques, 2009.

[5] S. Bhattacharjee, S. Roy, and S. Bandyopadhyay, “Exploring an
energy-efficient DTN framework supporting disaster management ser-
vices in post disaster relief operation,” vol. 21, no. 3, pp. 1033–1046,
2014.

[6] T. Spyropoulos, K. Psounis, and C. Raghavendra, “Spray and focus:
efficient mobility-assisted routing for heterogeneous and correlated
mobility,” in Fifth Annual IEEE International Conference on Pervasive
Computing and Communications Workshops, 2007, pp. 79–85.

[7] A. Lindgren, A. Doria, and O. Schelen, “Probabilistic routing in
intermittently connected networks,” in SIGMOBILE Mobile Computing
and Communication Review, 2004, p. 2003.

[8] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine, “MaxProp:
routing for vehicle-based disruption-tolerant networks,” in Proc. of
IEEE INFOCOM, 2006.

[9] P. Stavroulakis, Terrestrial Trunked Radio - TETRA. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2007, ISBN: 978-3-540-71190-2.
[Online]. Available: http://link.springer.com/10.1007/3-540-71192-9
(visited on 07/19/2016).

[10] Project loon, [Online]. Available: https : / / www. google . com / loon/
(visited on 03/08/2016).

[11] A. Utani, T. Mizumoto, and T. Okumura, “How geeks responded to
a catastrophic disaster of a high-tech country: rapid development of
counter-disaster systems for the great east japan earthquake of march
2011,” in Proceedings of the ACM Special Workshop on Internet and
Disasters, 2011, 9:1–9:8.

[12] Ushahidi, [Online]. Available: http: / /www.ushahidi .com (visited on
03/08/2016).

[13] SahanaEden, [Online]. Available: http : / / eden . sahanafoundation .org/
(visited on 10/28/2014).

[14] Google crisis response, [Online]. Available: https://www.google.org/
crisisresponse/about/ (visited on 03/08/2016).

[15] Disaster alert network - ubAlert, [Online]. Available: https : / /www.
ubalert.com/ (visited on 06/20/2014).

[16] G. Pearson, M. Gill, S. Antani, L. Neve, G. Miernicki, K. Phichaphop,
A. Kanduru, S. Jaeger, and G. Thoma, “The role of location for
family reunification during disasters,” in Proceedings of the First ACM
SIGSPATIAL International Workshop on Use of GIS in Public Health,
New York, NY, USA, 2012, pp. 11–18.

[17] T. Hossmann, F. Legendre, P. Carta, P. Gunningberg, and C. Rohner,
“Twitter in disaster mode: opportunistic communication and distribu-
tion of sensor data in emergencies,” in Proceedings of the 3rd ACM
Extreme Conference on Communication: The Amazon Expedition,
2011, p. 1.

[18] FireChat, [Online]. Available: http : / / opengarden . com/ (visited on
03/22/2016).

[19] The serval project, [Online]. Available: http://www.servalproject.org/
(visited on 03/08/2016).

[20] A. Meissner, T. Luckenbach, T. Risse, T. Kirste, and H. Kirchner, “De-
sign challenges for an integrated disaster management communication
and information system,” in Prociding os The First IEEE Workshop on
Disaster Recovery Networks, vol. 24, 2002.

[21] K. Fall, “A delay-tolerant network architecture for challenged inter-
nets,” in The 2003 ACM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, 2003,
pp. 27–34.

[22] D. Reina, S. Toral, F. Barrero, N. Bessis, and E Asimakopoulou,
“Evaluation of ad hoc networks in disaster scenarios.,” in the Third
International Conference on Intelligent Networking and Collaborative
Systems, 2011, pp. 759–764.

[23] S. Saha, Sushovan, A. Sheldekar, R. J. C, A. Mukherjee, and S.
Nandi, “Post disaster management using delay tolerant network,” in
Proceedings of Recent Trends in Wireless and Mobile Networks, 162,
2011, pp. 170–184.

[24] C. Raffelsberger and H. Hellwagner, “A hybrid MANET-DTN routing
scheme for emergency response scenarios,” in The IEEE International
Conference on Pervasive Computing and Communications Workshops,
2013, pp. 505–510.

[25] A. Martín-Campillo, J. Crowcroft, E. Yoneki, and R. Martí, “Evaluating
opportunistic networks in disaster scenarios,” vol. 36, no. 2, pp. 870–
880, 2013.

8

[26] L. E. Quispe and L. M. Galan, “Behavior of ad hoc routing protocols,
analyzed for emergency and rescue scenarios, on a real urban area,”
in Expert Systems with Applications, 5, vol. 41, 2014, pp. 2565–2573.

[27] P. Johansson, T. Larsson, N. Hedman, B. Mielczarek, and M.
Degermark, “Scenario-based performance analysis of routing protocols
for mobile ad-hoc networks,” in The 5th Annual ACM/IEEE Inter-
national Conference on Mobile Computing and Networking, 1999,
pp. 195–206.

[28] M. Boc, A. Fladenmuller, M. D. de Amorim, L. Galluccio, and S.
Palazzo, “Price: hybrid geographic and co-based forwarding in delay-
tolerant networks,” in Computer Networks, 9, vol. 55, 2011, pp. 2352–
2360.

[29] J. Yoon, M. Liu, and B. Noble, “Random waypoint considered harm-
ful,” in INFOCOM 2003, vol. 2, 2003, pp. 1312–1321.

[30] B. Karp and H. T. Kung, “GPSR: greedy perimeter stateless routing
for wireless networks,” in The 6th Annual International Conference on
Mobile Computing and Networking, 2000, pp. 243–254.

[31] M. Uddin, D. Nicol, T. Abdelzaher, and R. Kravets, “A post-disaster
mobility model for delay tolerant networking,” in Simulation Confer-
ence (WSC), Proceedings of the 2009 Winter, 2009, pp. 2785–2796.

[32] S. Ganguly, S. Basu, S. Roy, and S. Mitra, “A location based mobility
prediction scheme for post disaster communication network using
DTN,” in Applications and Innovations in Mobile Computing), 2015,
2015, pp. 25–28.

[33] D. G. Reina, J. M. León-Coca, S. L. Toral, E. Asimakopoulou, F.
Barrero, P. Norrington, and N. Bessis, “Multi-objective performance
optimization of a probabilistic similarity/dissimilarity-based broadcast-
ing scheme for mobile ad hoc networks in disaster response scenarios,”
in Soft. Computing, 9, vol. 18, 2013, pp. 1745–1756.

[34] Y. Huang, W. He, K. Nahrstedt, and W. Lee, “CORPS: event-driven
mobility model for first responders in incident scene,” in IEEE Military
Communications Conference, 2008. MILCOM 2008, pp. 1–7.

[35] N. Aschenbruck, E. Gerhards-padilla, M. Gerharz, M. Frank, and P.
Martini, “Modelling mobility in disaster area scenarios,” in The 10th
ACM 10th ACM Symposium on Modeling, Analysis, and Simulation of
Wireless and Mobile Systems, 2007.

[36] X. Hong, M. Gerla, G. Pei, and C.-C. Chiang, “A group mobility
model for ad hoc wireless networks,” in The 2nd ACM international
workshop on Modeling, analysis and simulation of wireless and mobile
systems, 1999, pp. 53–60.

[37] L. Conceição and M. Curado, “Modelling mobility based on human
behaviour in disaster areas,” in Wired/Wireless Internet Communica-
tion, 7889, Springer Berlin Heidelberg, 2013, pp. 56–69.

[38] D. G. Reina, M. Askalani, S. L. Toral, F. Barrero, E. Asimakopoulou,
and N. Bessis, “A survey on multihop ad hoc networks for disas-
ter response scenarios,” in International Journal of Distributed Sen-
sor Networks, International Journal of Distributed Sensor Networks,
vol. 2015, 2015, p. 647 037.

[39] F. Coriat, L. Arantes, O. Marin, A. Fladenmuller, N. Hidalgo, and
E. Rosas, “Towards distributed geolocation for large scale disaster
management,” in WSDP - Chilean Workshop on Distributed and
Parallel Systems, 2014.

9

GeoTrie: A Scalable Architecture for
Location-Temporal Range Queries over Massive

GeoTagged Data Sets

Rudyar Cortés1, Xavier Bonnaire2, Olivier Marin3, Luciana Arantes1, and Pierre Sens1

1Sorbonne Universités, UPMC Univ Paris 06, CNRS

INRIA - LIP6, Paris, France

E-mail: [rudyar.cortes, luciana.arantes, pierre.sens]@lip6.fr
2Universidad Técnica Federico Santa Marı́a, Valparaı́so, Chile

E-mail: xavier.bonnaire@inf.utfsm.cl
3New York University, Shanghai, China

E-mail: ogm2@nyu.edu

Abstract—The proliferation of GPS-enabled devices leads to
the massive generation of geotagged data sets recently known
as Big Location Data. It allows users to explore and analyse
data in space and time, and requires an architecture that
scales with the insertions and location-temporal queries workload
from thousands to millions of users. Most large scale key-value
data storage solutions only provide a single one-dimensional
index which does not natively support efficient multidimensional
queries. In this paper, we propose GeoTrie, a scalable architecture
built by coalescing any number of machines organized on top of
a Distributed Hash Table. The key idea of our approach is to
provide a distributed global index which scales with the number
of nodes and provides natural load balancing for insertions and
location-temporal range queries. We assess our solution using
the largest public multimedia data set released by Yahoo! which
includes millions of geotagged multimedia files.

Index Terms—Big Location Data; Location-Temporal Range
Queries; Scalability.

I. INTRODUCTION

An ever increasing number of GPS-enabled devices such

as smartphone and cameras generate geotagged data. On a

daily basis, people leave traces of their activities involving

mobile applications, cars, unmanned aircraft vehicles (UAVs),

ships, airplanes, and IoT devices. These activities produce

massive flows of data which cannot be acquired, managed,

and processed by traditional centralized solutions within a

tolerable timeframe. The time and geographic analysis of such

data can be crucial for life saving efforts by helping to locate a

missing child, or for security purposes allowing to know which

smartphone and therefore who was present in a given area and

during a specific event. An emergent field of research, known

as Big Location Data [1], [2], addresses this issue.
The essential characteristic of Big Location Data is that

it associates every data with meta-data which includes a

geotag and a timestamp. Location-temporal range queries [3]

represent a major challenge for data extraction, exploration and

analysis, within both a geographic area and a time window.

Services like automatic smartphones location or smart cities,

can generate meta-data on an even larger scale. Allowing

millions of users to explore these data sets could help get

more insight about what happens in particular geographic areas

within given timeframes. For instance, people who attended a

concert between 20:00 p.m. and 01:00 a.m. may want to review

public pictures and comments from people who attended the

same concert. The concert manager may want to acquire more

feedback about the overall concert experience by analyzing

pictures, comments and tags. Or people might want to verify

whether the referee of a football match missed a foul by

catching multiple amateur videos and pictures of the action.

The main challenge presented by such services is to guar-

antee scalability, fault tolerance, and load balancing for a

high number of concurrent insertions and location-temporal

range queries. Relational databases cannot reach such scales:

their response time significantly increases when concurrent

insertions and queries have to cover billions of objects. Other

approaches that rely on a centralized global index [4]–[6]

contend with a bottleneck. More recent approaches use space-
filling curves [7] in order to collapse the latitude and longitude

coordinates into a one-dimensional index and distribute it

over multiple nodes [8]–[10]. Although they allow scalable

location-temporal query processing, the curse of dimensional-
ity [7] introduces several processing overheads which impact

the query response time.

In this paper, we present a scalable architecture for location-

temporal range queries. The main component of the archi-

tecture is a distributed multidimensional global index which

supports location-temporal range querying on a large scale,

and provides natural insertion and query load balancing.

The main contributions of this paper are:

• An approach to introduce location-temporal data lo-

cality in a fully decentralized system such as a

distributed hash table. This approach is based on

a multidimensional distributed index which maps978-1-5090-3216-7/16/31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

10

latitude, longitude, timestamp tuples into a distributed

prefix octree, thus efficiently filtering false positives while

providing fault tolerance and load balancing for internet-

scale applications.

• A theoretical evaluation of our solution, which shows that

its message complexity for insertions and range queries

is logarithmic with respect to the number N of nodes

involved.

• A practical evaluation, which shows that our solution al-

leviates the bottleneck on the root node during insertions

and range queries. This property has an impact on the

query response time. For instance, queries which avoid

the root node presents an average query response time up

to 1.9x faster than queries which starts at the root level.

The rest of this paper is organized as follows. We detail our

solution in Section II, and then evaluate it in Section III using

a large public multimedia dataset from Yahoo!. We give an

overview of the related work in Section IV, before concluding

in Section V.

II. SYSTEM DESIGN

We aim to propose a scalable architecture for indexing and

querying meta-data extracted from geotagged data sets.

We choose to work on top of a distributed hash table (DHT)

such as Pastry [11] or Chord [12] because it provides a strong

basis for scalable solutions as opposed to centralized server

architectures. DHTs provide an overlay with properties such

as self-organisation, scalability to millions of nodes (usually

routing has a message complexity of O(log(N)), where N
is the number of nodes) and dependability mechanisms via

replication. However, a DHT by itself cannot constitute a sat-

isfactory solution for scalable location-temporal data storage

and retrieval because the hash function usually destroys data

locality for the sake of load balancing.

The proposed architecture must create data locality over

DHTs based on three core dimensions: latitude, longitude and

timestamp. We assume that every meta-data entry references

data stored on an external storage service. We intent for our

architecture to achieve the following properties.

• Self-organisation: The architecture must be self-

organised. That is, every node must run a local protocol

without needing to add a central third party.

• Scalable query processing: Meta-data insertions and

location-temporal range queries must scale with the num-

ber of available nodes in the DHT.

• Query load balance: Meta-data insertions and location-

temporal range queries must be distributed in the archi-

tecture in order to avoid a single bottleneck.

• High Availability: The architecture must tolerate node

failures.

Geotrie builds location-temporal data locality over a DHT

following two main steps: mapping and indexing. The mapping
step associates every (latitude,longitude,timestamp) coordinate

with a tuple key Tk = (Tlat, Tlon, Tt), where every coordinate

of Tk is a 32-bit word. The indexing step inserts every

Fig. 1: Latitude mapping example. The latitude value

24.550558 is mapped to the binary string Tlat =
1010001011101010100101011101101

tuple key Tk in a fully distributed prefix octree which allows

efficient location-temporal range queries.

A. Mapping

Let lat ∈ [−90, 90], lon ∈ [−180, 180], and t ∈ [0, 232 −1]
be the latitude, longitude and timestamp parameters of a given

geotagged object. The timestamp coordinate corresponds to

the Unix epoch timestamp. We map every coordinate to the

multidimensional tuple key Tk = (Tlat, Tlon, Tt), where every

tuple belongs to the same domain {0, 1}32 (i.e, binary string

of 32 bits per coordinate).

Geotrie performs domain partitioning for all the coordinates

as follows. First, the space domain [a, b] of every coordi-

nate is divided in two buckets Dleft = [a, (a + b)/2] and

Dright =](a+b)/2, b]. A bit value of 0 represents a point that

belongs to the left sub domain, while a bit value of 1 positions

it in the right subdomain. This process continues recursively

until all D = 32 bits are set. For instance, the first bit of

latitude -45 is 0 because it belongs to the first left subdomain

[-90,0]. This mapping function reaches its lower bound at

latitude value lat = −90 represented as the identifier {0}32,

and its upper bound at lat = 90 represented as the identifier

{1}32. Longitudes incur the same process, with the lower

bound at lon = −180 and the upper bound at lon = 180.

The mapping of the timestamp coordinate follows the same

principle. It results in the binary representation of the Unix
epoch. Figure 1 presents an example of the mapping strategy

for latitude value 24.550558.

Every tuple Tk encloses coordinates into a location-temporal

cell which covers an area of 0.46 cm × 0.93 cm at the equator,

and ensures a one second time precision. It also induces the

following properties.

• Recursive prefix domain partition. The mapping func-

tion presented above recursively partitions every lati-

tude, longitude, and timestamp coordinates into eight

areas represented by prefixes. For instance, the tuple key

11

Fig. 2: GeoTrie Example: Distributed data structure for keys of D=2 bits size

Input: Tuple key Tk

Output: Leaf node

lower = 0;

higher = D;

while lower ≤ higher do
middle = (lower + higher)/2;

// Extract the prefix of size middle
of every coordinate of Tk and
route the message

node = DHT lookup(Tmiddle(Tk));
if node is a leaf node then

return node;

else
if node is an internal node then

lower = middle+ 1;

else
// node is external node
higher = middle− 1;

end
end

end
return failure;

Algorithm 1: LocateLeaf pseudocode

Input: Tuple key Tk

Meta-data m
node = LocateLeaf(Tk);

node.insert(leafAddr,Tk,m);
Algorithm 2: Insertion pseudocode

Tk = (0, 0, 0) represents all the latitude,longitude, and

timestamp tuples within the interval latitude ([−90, 0]),
longitude ([−180, 0]), and timestamp [0, (232 − 1)/2]).
The next subdomain Tk = (00, 00, 00) represents the

domain latitude ([−90,−45]), longitude ([−180,−90]),
and timestamp = ([0, (232 − 1)/4]), and so on.

• Prefix data locality. Shared prefixes imply closeness.

That is, all keys with the same prefix necessarily belong

to the single and same area represented by this prefix.

For instance, all keys that share the same prefix key

(00,00,00) belong to the interval covered by this prefix.

Note that the converse is not true; for instance 011 and

100 are adjacent but they do not share a common prefix.

B. Indexing

The GeoTrie structure exploits both properties presented

above. It indexes every tuple key Tk = (Tlat, Tlon, Tt) into

a distributed prefix octree-like indexing structure built on top

of a DHT.

Every GeoTrie node holds a label l, a state s, and the range

it covers. The label l is a prefix of Tk and the state s can either

be leaf node, internal node, or external node. Only leaf nodes
store data; internal nodes stand on the path to leaf nodes that

do hold data, while external nodes stand outside any such path.

A DHT node declares itself to be an external node for a label

l, when it receives a query asking for a non existing label l on

its local data structure. The range covered by a GeoTrie node

is locally computed by using its label l and the recursive prefix
domain partition property presented above. Furthermore, every

internal node stores links to its direct children nodes and the

range they cover.

Every GeoTrie node is assigned to the DHT node whose

identifier in the ring is closest to the key k = Hash(l).
Upon start-up, GeoTrie consists of a single root node

with label l = (∗, ∗, ∗) and leaf node state. When a node

becomes full, GeoTrie scales out by switching it to internal

and dispatching its load onto eight new leaf nodes created via

recursive prefix domain partitioning.

Figure 2 shows a representation of the GeoTrie data struc-

ture for tuple keys of size D = 2 bits. GeoTrie can take

advantage of any replication mechanism used by DHTs in

order to provide fault tolerance. For instance, in Pastry [11]

Geotrie can use the leaf set in order to replicate and maintain

the state of every Geotrie node.

Insertions and deletions. Storing and deleting an object

with key Tk consists first in locating the leaf node whose

label is prefix of Tk, and then in carrying out the insertion

12

or deletion operation directly on this node. For instance in

Figure 2, tuple key Tk1
= (00, 00, 00) is stored on the leaf

node with label l1 = (00, 00, 00) and tuple key Tk2 =
(10, 10, 10) is stored on the leaf node with label l2 = (1, 1, 1).
Algorithm 2 presents a pseudocode of the insertion operation;

it uses the locateLeaf procedure detailed in Algorithm 1.

locateLeaf receives a tuple key Tk as input and returns the

leaf node whose label is prefix of Tk. It does so by performing

a binary search over different possible prefixes of Tk until

a node with state leaf node is reached. For every tuple key

Tk, there are exactly D possible prefix labels plus the root

node, and only one them can designate a leaf node. The client

starts by sending a lookup message to a label prefix of Tk of

size D/2 (i.e, the middle of the space of possible candidates).

This label is computed by extracting the first D/2 bits of

every coordinate. If the state of this node is external, it means

that the target leaf node keeps a label of shorter prefixes.

In this case, the binary search cuts the space to prefixes of

higher size D/2 − 1 and it propagates the lookup to shorter

prefixes. Instead, if the target node is an internal node it means

that the leaf node keeps a longer prefix. It cuts the space to

a lower prefix of size D/2 + 1 and propagates the search

down GeoTrie. This process continues recursively and ends

upon reaching a leaf node whose label is prefix of Tk. If the

locateLeaf algorithm fails to return a leaf node due to index

maintenance, the client must retry the insertion at a later time.

This binary search procedure benefits of the prefix property of

GeoTrie which allows queries to start at any node, and thus

prevents the root node from becoming a bottleneck.

Index maintenance. GeoTrie provides two index mainte-

nance operations: split and merge. The split operation occurs

when a leaf node stores B keys, where B is a system param-

eter. An overloaded leaf node scales out its load by creating

eight new children nodes via recursive domain partitioning.

The dispatch of data follows the prefix rule: a data entry with

index Tk gets transferred to the new leaf node whose label l
is prefix of Tk. After transferring all its data, the split node

changes its state from leaf node to internal node and every

child node becomes a new leaf node.

The merge operation is the opposite to the split operation.

GeoTrie triggers the merge operation on a group of eight leaf
nodes which share the same internal node as parent when the

sum of their storage loads becomes less than �B/8� objects.

When this happens the internal node sends a merge message
to all its leaf node children, thus requesting they transfer back

all their stored data. Upon transfer completion, all children

leaf nodes detach from the prefix tree structure and the parent

switches its state from internal node to leaf node. Typical

applications generate far more insertions than deletions, so

we expect a low proportion of merge operations compared to

split operations.

Location-temporal range queries. A location-temporal

range query is represented as a three dimensional range query

Input: (ΔLatb,ΔLonb,Δtb)
Output: Meta − data
prefixLat = commonPrefix(ΔLatb);
prefixLon = commonPrefix(ΔLonb);
prefixT ime = commonPrefix(Δtb);
// Common prefix of minimum size
target = minComPrefix(PrefixLat,PrefixLon,PrefixTime);

// If there is not a common prefix
start from the root node

if target = (, , ,) then
target = (∗, ∗, ∗);

end
node = DHT − lookup(target);
if node is a leaf node then

// process the request
return LocalRequest(ΔLat,ΔLon,Δt);

else
if node is an internal node then

// forward the request to the
children nodes that covers the
range

forwardRequest(children);
else

// Node is an external node
// Locate the leaf node which

covers all the interval using
the target label as starting
point

node = LocateLeaf(target) // Forward
the request to this node

forwardRequest(node)
end

end
Algorithm 3: Location-temporal range query pseudocode

as presented in equation 1.

ΔLat = [lat1, lat2], lat1, lat2 ∈ [−90, 90]
ΔLon = [lon1, lon2], lon1, lon2 ∈ [−180, 180]
Δt = [ti, tf], ti, tf ∈ [0, 232 − 1]

(1)

This query is resolved as follows. First, the sender node uses

the mapping function defined above in order to translate every

coordinate constraint (ΔLat,ΔLon,Δt) into binary strings

belonging to the domain {0, 1}32 as presented in equation 2.

ΔLatb = [lat321 , lat322], lat321 , lat322 ∈ {0, 1}32
ΔLonb = [lon32

1 , lon32
2], lon32

1 , lon32
2 ∈ {0, 1}32

Δtb = [t32i , t32f], t32i , t32f ∈ {0, 1}32
(2)

Then, it computes the common prefix label of minimum

common size for every coordinate constraint and it forwards

the query to the node which covers this label. For instance,

query Q which combines constraints ΔLatb = [00..., 01...],
ΔLonb = [10..., 11...], and Δtb = [110..., 110...] has a

common prefix label of every coordinate (0, 1, 11). This

common prefix label has not a common size because the time

coordinate is longer than the others. Thus, this common prefix

13

is converted to a label of minimum common size lQ = (0, 1, 1)
which represents a label of GeoTrie. This label covers all data

which is inside the interval of Q. If there is not common prefix,

the query must start from the root node labeled l = (∗, ∗, ∗).
Algorithm 3 presents a pseudocode for this procedure.

Depending on the state s of the node which receives

the query, we identify three cases. (i) If the node is an

internal node, it uses the forwardRequest function in order to

recursively forward the query onward to the leaf nodes whose

location-temporal range intersects that of the query interval.

(ii) If the node is a leaf node, it is the only node that covers

the required location-temporal range and returns the objects

that satisfy the query. (iii) If the node is an external node,

it follows that the common prefix is a label which does not

yet exist in the prefix tree (i.e, the query arrived to a DHT

node which does not hold this label). In this case, the query is

necessarily covered by a single leaf node. in order to find this

particular leaf node, the client node then starts the LocateLeaf
algorithm from the label of the external node.

III. EVALUATION

This section presents a theoretical and an experimental

evaluation of GeoTrie. The theoretical evaluation assesses the

scalability of the solution in terms of the message complexity

for insertions and range queries. An extensive experimental

evaluation studies the load balancing and the performance of

GeoTrie in terms of the query response time. We chose to

conduct our experimental evaluation with a real dataset: the

Yahoo Flickr Creative Commons (YFCC) dataset [13] released

by Yahoo! It comprises 48, 469, 177 geotagged multimedia

files (photos and videos).

A. Overview

This section presents a simulation-based assessment of

GeoTrie to measure its performance, with a large scale real

world dataset from Yahoo!

We implemented GeoTrie on top of FreePastry [14], an

open-source DHT implementation. In our experiments, we

deployed N = 1, 000 DHT nodes. Every leaf node stores

at most B = 10, 000 keys. We assume that DHT nodes are

distributed worldwide. We used a baseline latency file provided

in the FreePastry distribution to generate latencies among DHT

nodes. Table I gives the baseline values, while Figure 3a shows

the observed distribution of latencies on the DHT nodes during

our experiments.

1) Query set: In order to assess the performance of GeoTrie

under different range query spans, we generated six query sets

(QS) which cover different geospatial bounding box sizes and

timespans as follows. First, we randomly picked 1, 000 tuples

tk = (latitude, longitude, timestamp) from the dataset.

Then, for every query set and for every tuple, we generated a

query for a geospatial bounding box which encloses a M×M
kilometres square with a time interval of H hours with centre

in tk.

Table II presents the size of M and H we chose for this

evaluation and Table III presents the distribution of the data

Distribution Latency [ms]
Min 2
Quartile 1 178
Quartile 2 225
Quartile 3 269
Max 350

TABLE I: Distribution of latencies among DHT nodes

Query set (QS) B. Box M ×M(km2) Time interval (H)
1 2 × 2 1
2 2 × 2 48
3 200 × 200 1
4 200 × 200 48
5 ALL 1
6 2 × 2 ALL

TABLE II: Location-temporal range query sets

Dist. QS1 QS2 QS3 QS4 QS5 QS6
Min. 1 1 1 1 60 1
Quartile 1 6 12 15 95 535 259
Quartile 2 21 37 36 256 771 1,393
Quartile 3 56 113 81 612 1,027 9,089
Max. 5,353 62,333 6,079 77,629 6,694 215,647
Avg. 50 169 68 555 825 14,008

TABLE III: Distribution of the number of data items that

match every query set QS

Dist. QS1 QS2 QS3 QS4 QS5 QS6
Min 1 1 1 1 796 4
Quartile 1 1 1 5 5 1693 15
Quartile 2 1 1 9 9 2023 23
Quartile 3 1 1 14 14 2161 38
Max 31 82 54 108 2227 284

TABLE IV: Query cost distribution.

items that match every query set. These queries represent

different bounding box sizes and timespans. For instance,

query sets QS1 and QS2 represent highly selective queries.

They target bounding boxes of 2 × 2 km2 and timespans of

1 and 48 hours respectively. Query sets QS3 and QS4 target

bigger bounding boxes of 200 × 200 km2, with respective

timespans of 1 and 48 hours. The query set QS5 targets all

the space domain with a timespan of one hour. Finally, the

query set QS6 targets all the time domain with a bounding

box of two kilometres side size. Query sets QS5 and QS6 are

specific in that the former covers the entire geospatial domain

and the latter covers the entire temporal domain. Therefore,

they both always start at the root node because of the absence

of a common prefix. We believe that these combinations of

queries represent a rich workload to assess the query load

balance and performance of GeoTrie.

B. Data insertions

1) Message Complexity: Let N be the number of nodes

in the DHT, n the number of keys to be indexed, and D the

number of bits used to represent the data domain {0, 1}D of

every coordinate of the tuple key Tk. The insertion/deletion

14

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200 250 300 350

of

 c
on

ne
ct

io
ns

Latency [ms]

(a) Distribution of latencies among DHT nodes

 0

 1

 2

 3

 4

 5

QS#1 QS#2 QS#3 QS#4 QS#5 QS#6

Q
ue

ry
 r

es
po

ns
e

tim
e

[s
]

(b) Location-temporal range query response time

Fig. 3: Latency among DHT nodes and GeoTrie Performance

Distribution Time[s]

Min 1 x 10−3

Quartile 1 1.80
Quartile 2 2.84
Quartile 3 3.33
Max 6.12

TABLE V: Insertion latency distribution

DHT lookups Percentage [%] Min. Time[s] Avg. Time [s] Max Time [s]

1 0.05 1 x 10−3 0.83 1.62
2 27.79 1 x 10−3 1.47 3.20
3 2.01 0.387 2.12 3.90
4 20.27 0.49 2.71 5.05
5 49.84 0.82 3.34 6.12
6 0.04 2.32 3.88 5.76

TABLE VI: Number of DHT lookups per insertion and its

latency distribution

of a data object identified by Tk involves a binary lookup in

order to find the leaf node whose label is a prefix of Tk.

Equation 3 presents the message complexity in terms of

the number of DHT lookup messages generated by a single

insertion/deletion operation. Note that the message complexity

of every DHT lookup is O(log(N). So the total number of

messages generated by a single insertion/deletion operation is

given by equation 4.

Cins/del(D) = O(log(D)) (3)

Cins/del total = O(log(D)) × O(log(N)) (4)

The message complexity of insertions and deletions on

GeoTrie does not depend on the number of objects n. A

balanced tree index built on top of a DHT requires O(log(n))
DHT lookups. Via binary searches on a trie whose height

cannot exceed 32, GeoTrie outperforms a balanced tree for

large values of n. For instance, indexing a new entry among

50 million keys of size D = 32 bits requires about 25 DHT

lookups with a tree, while GeoTrie does the job in about 5

DHT lookups.

2) Insertion time: In this experiment, we indexed all the

meta-data of 48, 469, 177 geotagged multimedia files extracted

from the YFCC dataset [13] at a rate of 1, 000 items per

second. At every insertion, a DHT node is chosen randomly

in order to perform the operation. Then, we measured the

insertion time as the time elapsed between the moment the

client node starts the insertion process until the moment the

leaf node successfully stores the item.

Table V presents the overall distribution of insertion laten-

cies. Most of the latencies are concentrated between 1.8 and

3.3 seconds with a median of 2.84 seconds. The insertion time

depends of the size of the prefix label of the target leaf node.

Some insertions can directly arrive to the target leaf node
through the binary search algorithm presented in section II.

Others insertions require more messages to locate the target

leaf node. In order to understand the behaviour of the binary

search we measured the distribution of the number of DHT

lookups in the insertion process. Table VI presents our results.

Since the binary search algorithm is inherently sequential, the

number of DHT lookups has a strong impact on the insertion

latency. For instance, most insertions (49.84%) require 5 DHT

lookups. They present an average latency of 3.34 seconds.

Instead, insertions that require 2 lookups (27.79 %) present an

average insertion latency of 1.47 seconds (2.27 times faster).

C. Location-temporal range queries

1) Message Complexity: A location-temporal query on

GeoTrie first reaches the node which maintains the common

prefix label of minimum common size, and then branches out

in parallel down the tree until it reaches all leaf nodes. Equa-

tion 5 computes the number of messages for this operation.

O(log(N)) ≤ Crange−query ≤ O(log(N)) +D + 1 (5)

The lower bound occurs when the query arrives directly to a

single leaf node which covers the interval, and the upper bound

occurs when there is no common prefix of minimum size.

In the worst case, the query arrives at the root node labeled

l = (∗, ∗, ∗) and traverses the whole tree in parallel through a

15

(QS#) Min Quartile 1 Quartile 2 Quartile 3 Max Avg
1 0.21 1.45 1.76 2.06 3.11 1.72
2 0.09 1.41 1.77 2.05 3.07 1.69
3 0.01 1.32 1.62 1.97 3.76 1.68
4 0.15 1.33 1.64 1.97 3.99 1.69
5 2.47 3.11 3.24 3.35 4.52 3.23
6 1.34 2.4 2.65 2.90 4.67 2.66

TABLE VII: Location-temporal range query response time in

seconds

Distribution QS1 SP QS3 SP
Min 0 0
Quartile 1 5 3
Quartile 2 6 5
Quartile 3 6 5
Max 12 6

TABLE VIII: Distribution of the GeoTrie level starting point

for QS1 and QS3

maximum of D + 1 levels (the root node plus the maximum

prefix size D=32). Note that the global implicit knowledge

introduced by GeoTrie allows to reach the query subspace

directly when it does not include the root node. Unlike queries

that cover large geographic areas and timespans, queries which

target small geographic areas and timespan share a larger

common prefix of minimum size, and therefore directly arrive

to higher levels of GeoTrie (i.e., close to the leaves). Indexes

relying on a balanced tree usually start queries from the root

node, and thus induces bottlenecks.
2) Range query performance: In this experiment, we study

queries whose prefix maps to any other node than the root

node. More specifically, we assess their impact on the query

response time under a workload composed of concurrent range

queries. In order to conduct this experiment, we generated

a workload of 1, 000 queries per second for every set QS1
to QS5. Every query originates from a DHT node chosen at

random. It consists in counting the number of items inside the

location-temporal range.

Figure 3b and table VII presents the query response time

measured as the time elapsed between emission of the query

and the latest reception of results from all the leaf nodes
that store data relevant to this query. Only about 1% of the

query response time corresponds to processing time (i.e, the

time it takes a leaf node to filter-out all the data outside the

query interval). The remaining 99% of the time corresponds to

communication latency. Indeed, in our experiment the meta-

data is stored in memory, and therefore the local processing

cost of a query over a single leaf node is much lower than the

network latency cost. As expected, queries that span a shorter

space present a lower query response time than queries that

span a larger space. For instance, the average query response

time is 1.9x slower for queries of QS3 than for queries of

QS5. Indeed, we tailored queries in this experiment so that

they can avoid the root node. Our results show that Geotrie

thus allows to alleviate a potential bottleneck on the root node,

and this has a considerable impact on the query response time.

In order to understand how queries are distributed among

the GeoTrie structure we measured the GeoTrie level starting

point (SP) for QS1 and QS3. We exclude both QS5 and QS6
because by construction they always start at the root node.

Table VIII presents our results. Only 0.3% of queries of QS1
(3 out of 1,000) starts at the root node, and 75% of the total

amount of queries starts at a level greater or equal than 5. In

the case of QS3, 8.3% of the queries (83 out of 1,000) started

at the root node and the 75% of the queries started at a level

greater or equal than 3. QS3 queries target bigger areas, and

therefore match shorter common prefixes in the trie structure.

IV. RELATED WORK

Large scale architectures to store, query and analyse big
location data constitute a fast-growing research topic. Current

solutions fall into four groups: (i) Hadoop-based solutions; (ii)

Resilient Distributed Dataset (RDD) based solutions; (iii) Key-

value store-based solutions, and (iv) DHT-based solutions.

Hadoop-based solutions such as SpatialHadoop [4],

Hadoop GIS [5], and ESRI Tools for Hadoop [6], extend

the traditional Hadoop architecture [15] with spatial indexing

structures such as R-Trees [16] or Quad-Trees [17] in order

to avoid a scan of the whole dataset when performing spatial

analysis. These approaches employ a two-layer architecture

that combines a global index maintained on a central server

with multiple local indexes. For instance, SpatialHadoop [4]

builds spatial indexing structures over HDFS [5] in order

to add spatial support for MapReduce tasks. However, these

solutions are ill-suited for concurrent insertions and location-

temporal queries because (i) the global index structure on a

single node is prone to become a bottleneck, and (ii) they

are designed for batch processing of large tasks. Unlike these

solutions, GeoTrie constitutes a large scale global location-

temporal index which provides random access and fault toler-

ance for concurrent insertions and location-temporal queries.

Resilient Distributed Dataset (RDD) based solutions such

as Spatial Spark [18] and GeoTrellis1 extend traditional RDD

solutions such as Spark [19] in order to support big location

data. Similarly to Hadoop-based solutions, these systems are

designed for batch processing and do not target online pro-

cessing.

Key-value store-based solutions such as MD-Hbase [8],

MongoDB [20], ElasticSearch [21], and GeoMesa [9] re-

quire linearization techniques such as space-filling curves [7]

in order to collapse several dimensions into a single one-

dimensional index and to support multi-dimensional queries.

Then, the multidimensional query can be reduce to a single

dimensional space. However, space-filling curves [7] loosely

preserve data locality and introduce several I/O overheads

when the number of dimensions increase due to the curse
of dimensionality [7]. These overheads impacts negatively the

query response time. Unlike these solutions, GeoTrie follows

a multidimensional approach which drastically reduces this

overhead.

DHT-based solutions can be classified into two main

groups: (i) extensions of traditional indexing structures such

1http://geotrellis.io

16

as B-Trees, Prefix Trees, R-Trees, QuadTrees, and KDtrees to

DHTs [22]–[26], and (ii) overlay-dependent solutions [27]–

[30]. Compared to the solutions of the first group, GeoTrie

performs domain partitioning to prevent bottlenecks on the

root node, and introduces global knowledge about the tree

structure to balance the load of insertions and range queries. To

the best of our knowledge, the only structure which performs

domain partitioning over a DHT is the Prefix Hash Tree

(PHT) [22]. PHT can handle multi-dimensional data using

linearisation techniques such as z-ordering. As mentioned

previously, however, dimensionality reduction with respect to

space and time introduces query overheads due to the curse of
dimensionality. GeoTrie reduces this overhead because it uses

a multidimensional structure and, unlike the solutions of the

second group, it is portable to any DHT.

V. CONCLUSION

This paper presents GeoTrie, a scalable architecture for mas-

sive geotagged data storage and retrieval built on top of a DHT.

Our solution indexes the location and temporal dimensions of

every meta-data on a multidimensional distributed structure

which scales and balances the load of insertions and range

queries. A theoretical analysis of the message complexity of

every operation on GeoTrie demonstrates its scalability. An

extensive experimental evaluation over a Yahoo! dataset com-

prising about 48 millions of multimedia files shows that our

solution balances the load of insertions and range queries on a

large scale. In a configuration involving 1, 000 nodes, queries

which avoids the root node presents an average query response

time up to 1.9x faster than queries which starts at the root

level. This property of GeoTrie allows to alleviate a potential

bottleneck on the root node. We are currently working on

an extension of our proposal to handle n-dimensional range

queries over massive data sets.

REFERENCES

[1] N. Pelekis and Y. Theodoridis. The case of big mobility data. In Mobility
Data Management and Exploration, pages 211–231. Springer, 2014.

[2] A. Eldawy and M.F. Mokbel. The era of big spatial data: Challenges and
opportunities. In Mobile Data Management (MDM), 2015 16th IEEE
International Conference on, volume 2, pages 7–10, June 2015.

[3] Volker Gaede and Oliver Günther. Multidimensional access methods.
ACM Computing Surveys (CSUR), 30(2):170–231, 1998.

[4] A. Eldawy and M. F. Mokbel. Spatialhadoop: A mapreduce framework
for spatial data. In 31st IEEE International Conference on Data
Engineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015, pages
1352–1363, 2015.

[5] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz.
Hadoop gis: a high performance spatial data warehousing system over
mapreduce. Proceedings of the VLDB Endowment, 6(11):1009–1020,
2013.

[6] Randall T Whitman, Michael B Park, Sarah M Ambrose, and Erik G
Hoel. Spatial indexing and analytics on hadoop. In Proceedings of
the 22nd ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pages 73–82. ACM, 2014.

[7] Hanan Samet. Foundations of multidimensional and metric data struc-
tures. Morgan Kaufmann, 2006.

[8] Shoji Nishimura, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi.
Md-hbase: a scalable multi-dimensional data infrastructure for location
aware services. In Mobile Data Management (MDM), 2011 12th IEEE
International Conference on, volume 1, pages 7–16. IEEE, 2011.

[9] Anthony Fox, Chris Eichelberger, John Hughes, and Skylar Lyon.
Spatio-temporal indexing in non-relational distributed databases. In Big
Data, 2013 IEEE International Conference on, pages 291–299. IEEE,
2013.

[10] Kisung Lee, Raghu K Ganti, Mudhakar Srivatsa, and Ling Liu. Efficient
spatial query processing for big data. In Proceedings of the 22nd
ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pages 469–472. ACM, 2014.

[11] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In Middleware
2001, pages 329–350. Springer, 2001.

[12] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and
Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. ACM SIGCOMM Computer Communication
Review, 31(4):149–160, 2001.

[13] B Thomee, DA Shamma, G Friedland, B Elizalde, K Ni, D Poland,
D Borth, and LJ Li. Yfcc100m: The new data in multimedia research.
Communications of the ACM, 2015.

[14] Peter Druschel, Eric Engineer, Romer Gil, Y Charlie Hu, Sitaram Iyer,
Andrew Ladd, et al. Freepastry. Software available at http://www. cs.
rice. edu/CS/Systems/Pastry/FreePastry, 2001.

[15] T. White. Hadoop: the definitive guide: the definitive guide. ” O’Reilly
Media, Inc.”, 2009.

[16] Antonin Guttman. R-trees: A dynamic index structure for spatial
searching. In Proceedings of the 1984 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’84, pages 47–57, New
York, NY, USA, 1984. ACM.

[17] Raphael A. Finkel and Jon Louis Bentley. Quad trees a data structure
for retrieval on composite keys. Acta informatica, 4(1):1–9, 1974.

[18] Simin You, Jianting Zhang, and L Gruenwald. Large-scale spatial join
query processing in cloud. In IEEE CloudDM workshop (To Appear)
http://www-cs. ccny. cuny. edu/˜ jzhang/papers/spatial cc tr. pdf, 2015.

[19] M. Zaharia, M. Chowdhury, M. J. Franklin, and S Shenker. Spark:
cluster computing with working sets. In Proceedings of the 2nd USENIX
conference on Hot topics in cloud computing, pages 10–10, 2010.

[20] Kristina Chodorow. MongoDB: the definitive guide. ” O’Reilly Media,
Inc.”, 2013.

[21] Clinton Gormley and Zachary Tong. Elasticsearch: The Definitive
Guide. ” O’Reilly Media, Inc.”, 2015.

[22] Sriram Ramabhadran, Sylvia Ratnasamy, Joseph M Hellerstein, and
Scott Shenker. Prefix hash tree: An indexing data structure over
distributed hash tables. In Proceedings of the 23rd ACM symposium
on principles of distributed computing, volume 37, 2004.

[23] Egemen Tanin, Aaron Harwood, and Hanan Samet. Using a distributed
quadtree index in peer-to-peer networks. The VLDB Journal, 16(2):165–
178, 2007.

[24] Cédric Du Mouza, Witold Litwin, and Philippe Rigaux. Large-scale
indexing of spatial data in distributed repositories: the sd-rtree. The
VLDB Journal?The International Journal on Very Large Data Bases,
18(4):933–958, 2009.

[25] Chi Zhang, Arvind Krishnamurthy, and Randolph Y Wang. Skipindex:
Towards a scalable peer-to-peer index service for high dimensional data.
Department of Computer Science, Princeton University, New Jersey,
USA, Tech. Rep, pages 703–04, 2004.

[26] Rudyar Cortés, Olivier Marin, Xavier Bonnaire, Luciana Arantes, and
Pierre Sens. A scalable architecture for spatio-temporal range queries
over big location data. In 14th IEEE International Symposium on
Network Computing and Applications-IEEE NCA’15, 2015.

[27] Jinbao Wang, Sai Wu, Hong Gao, Jianzhong Li, and Beng Chin Ooi.
Indexing multi-dimensional data in a cloud system. In Proceedings of
the 2010 ACM SIGMOD International Conference on Management of
data, pages 591–602. ACM, 2010.

[28] Rong Zhang, Weining Qian, Aoying Zhou, and Minqi Zhou. An efficient
peer-to-peer indexing tree structure for multidimensional data. Future
Generation Computer Systems, 25(1):77–88, 2009.

[29] Hosagrahar V Jagadish, Beng Chin Ooi, and Quang Hieu Vu. Baton: A
balanced tree structure for peer-to-peer networks. In Proceedings of the
31st international conference on Very large data bases, pages 661–672.
VLDB Endowment, 2005.

[30] Yuzhe Tang, Jianliang Xu, Shuigeng Zhou, and Wang-chien Lee. m-
light: indexing multi-dimensional data over dhts. In Distributed Com-
puting Systems, 2009. ICDCS’09. 29th IEEE International Conference
on, pages 191–198. IEEE, 2009.

17

Characterizing GPS Outages: Geodesic Dead
Reckoning Solution for VANETs and ITS

Pedro P. L. L. do Nascimento∗†, Richard W. Pazzi†, Daniel L. Guidoni‡, and Leandro A. Villas∗
∗Institute of Computing, University of Campinas, Brazil
†University of Ontario Institute of Technology, Canada

‡Departament of Computer Science, Federal University of São João Del-Rei, Brazil
Email: liborio@lrc.ic.unicamp.br, richard.pazzi@uoit.ca, guidoni@ufsj.edu.br and leandro@ic.unicamp.br

Abstract—Several Intelligent Transportation Systems (ITS)
rely on localization to enable services ranging from comfort to
safety applications. Following this same idea, the use of Dedicated
Short Range Communications (DSRC) devices based on the IEEE
802.11p standard, and the Vehicular Ad Hoc Networks (VANETs)
paradigm, have resulted in the deployment of several protocols,
services and applications that need different localization accuracy
levels. The most common solution for localization is based
on Global Navigation Satellite Systems (GNSS). GNSSs have
problems of unavailability in dense urban areas, tunnels and
multilevel roads. Moreover, GNSS have errors in the range of
5-15 meters. These unavailability and error problems are not
acceptable for several VANET and ITS safety applications. In
this work, we investigate and characterize the GNSS problems of
error and unavailability based on datasets of real GNSS devices
installed in vehicles and develop a Geodesic Dead Reckoning
solution to overcome the GNSS unavailability issue.

I. INTRODUCTION

The advent of Intelligent Transportation Systems (ITS) has
opened to the development of a number of applications and
services to enhance the quality of traffic and, consequently,
improve the experience of people through intelligent vehicles.
In this context, several studies have shown the potential of
Dedicated Short Range Communications (DSRC) to establish
inter-vehicle communications [1][2][3]. DSRC technology has
been standardized as IEEE 802.11p. In this context, several
protocols, services and applications have been developed for
Vehicular Ad Hoc Networks (VANETs). These applications
require different levels of position accuracy in order to provide
services ranging from comfort and entertainment to safety and
traffic monitoring.

Some of these applications require accurate localization
in the range of 1-5 meters, e.g., cooperative cruise control,
cooperative safe intersection and vehicle platooning. Similarly,
critical safety applications require high accuracy localization
in the range of centimetres. For instance, collision avoidance
warning systems, lane change warning systems and driver as-
sistance services[1]. These applications control the vehicle for
a short period of time and are highly sensitive to delays[1][2].

The primary solution for localization is a GNSS System.
The Global Positioning System (GPS). However, in dense
urban areas, the reflection of GPS signals on high rise build-
ings, multilevel roads and overpasses bridges can cause the
multipath propagation effect and increase GPS positioning
error [4]. Moreover, GPS signals are completely blocked in
tunnels caused by occlusion of the line of sight which often
affects the provisioning of the GPS localization service.

In this paper we discuss two main contributions: i) The
characterization of the GPS unavailability problems and error

estimation based on real datasets. Several works only consider
a random Gaussian distribution in their analysis and some-
times, these values do not correspond to real scenarios. ii) As a
first step towards a complete localization system for VANETS
and ITS, we present a Geodesic Dead Reckoning solution and
discuss the advantages of the proposed solution to compute
vehicle’s position.

The related work is presented and discussed in Section II.
Section III presents the characterization approach based on
real datasets. Section IV details Geodesic Dead Reckoning
Solution. The experimental results are discussed in Section V.
Finally, the concluding remarks are discussed in Section VI.

II. RELATED WORK

Localization solutions in VANETS and ITS found in the
literature can be divided into two categories: solutions using
vehicular network technology to assist GPS, and solutions that
do not use GPS. In the first category, the proposed solutions
[2][3] merge the GPS information with the vehicle kinematics
information and radio ranging techniques as Time of Arrival
(TOA), Received Signal Strength Indicator (RSSI) or Round
Trip Time (RTT). In this category, solutions often make use
of Dead Reckoning in order to track the displacement and
direction of the vehicle. These works have reported accuracy
in the range of (3-5) meters.

In the second category one can find schemes that do not use
GPS in the localization process. They rely on the use of radio
technologies and Road Side Units (RSUs) [5] [6] to replace
GPS. However, as reported in [2], the high speed of vehi-
cles, network fragmentation, node density and short life-time
of links impose several challenges to non-GPS localization
approaches. Certain studies [3] [5] [6] have evaluated their
solutions only on highway/urban scenarios where the topology
of roads/lanes are straight lines, which minimizes the impact
of errors inherent in proposed localization solutions. These
works have reported accuracy in the range of (5-10) meters.

Nowadays, off-the-shelf GPS receivers are available and
widely used in different services and applications. However,
localization in VANEts and ITS remains an open challenge
when safety applications are considered. Positioning errors in
the range of 3-5 meters, as discussed earlier, have a negative
impact on several safety applications. Moreover, a number of
approaches do not take into account the GPS unavailability
problem. Unlike the aforementioned schemes, we use real
datasets to characterize the GPS outage problem in highway
and urban scenarios. We use paths with different topologies
in order to evaluate the impact of error and accuracy in the
proposed Geodesic Dead Reckoning solution.978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

18

III. GPS ERROR AND UNAVAILABILITY

CHARACTERIZATION

A. Real GPS DataSets and GPS Coordinate System

The Dublin dataset [7] contains GPS data from across
Dublin City. This dataset contains the position of 978 buses
over a total of 55 days in 2013 (an average of 75,000 positions
per vehicle). The San Francisco dataset [8] contains GPS
coordinates of approximately 500 taxis collected over 30 days
in the San Francisco Bay Area in 2009 (an average of 20,930
positions per vehicle). The Rio de Janeiro dataset [9] contains
GPS information of approximately 705 buses collected over
47 days in the Rio de Janeiro city in 2016 (an average
of 35,000 positions per vehicle). Differently from the above
datasets, it was necessary to develop a script to collect the
GPS information in real-time from the online server.

The GPS system uses the World Geodetic System (WGS
84). This geodetic coordinate system representation is based
on an approximation of the Earth’s geoid by an ellipsoid that
rotates around its minor axis. A location in the coordinate
system is described in terms of the latitude and longitude,
angles are measured according to the equatorial and meridional
plan associated with the reference ellipsoid [10].

B. Characterizing GPS Outages

As mentioned previously, GPS systems presents their worst
performance in tunnels. The signals provided by the satellites
are completely blocked. In order to generate GPS unavailabil-
ity problems, we perform a characterization from the data-sets
described in Subsection III-A.

TABLE I
TUNNELS TECHNICAL FEATURES

Name Type Dist. (m) Ways Lanes Vel. (km/h) Min T. (s) Max T.(s)
Rio 450 Urban 1,480 1 3 60.00 44.40 888.00

Dublin Port Highway 4,600 2 2 80.00 103.50 2070.00
Yerba Buena Highway 160 2 5 80.00 3.60 72.00

It is noteworthy that several variables affect the time at
which the vehicle travels through the tunnel. Among the
factors we can highlight traffic congestion and possible traffic
lights at the entrance and exit areas of the tunnel. Table I
shows recognized tunnel features from digital maps. Generally,
the tunnels have two-way roads and it was necessary to
establish a mechanism to differentiate the outages that occurs
on each way. For this purpose the concept of bounding-
box was used to differentiate outages. Given a set of points,
one bounding-box is all points inside the considered area.
Considering points of latitude and longitude, one bounding-
box is defined by a pair of latitude and longitude points:
[(φmin, λmin), (φmax, λmax)]. In order to characterize the
outages, we define two areas named Bounding-Box A and
Bounding-Box B. This approach, jointly with the timestamp
information provided by the GPS datasets, enables the imple-
mentation of the following Algorithm 1.

After the definition of the outage sets, we rebuild the
vehicles routes by recovering all points inside the bounding-
boxes. Figures 1a and 1b show, respectively, the times and
distances of outages recognized considering the filter of out-
ages. Considering only the second and third quartiles, a range
of more converging values of all outages can be evaluated.
For the RIO450, DBPT and YBT tunnels, the outage times
for the 50% more representative central values are respectively
[98, 219], [49, 275], and [54, 61] seconds. The distance in out-
age is directly proportional to the time, and time and distance
are proportional to the tunnel length.

Algorithm 1: GPS Outages Filter

Input : boundingBoxA, boundingBoxB, dataSet

Output: Two sets named outagesWay1, outagesWay2 with pairs of λ, φ
points.

1 minTime = tunnelDistance/(maxV elTunnel ∗ 2);
2 maxTime = tunnelDistance/(maxV elTunnel ∗ 0.1);
3 lengthDataSet ← length(dataSet);
4 i ← 0;

5 while (i < lengthDataSet) do
6 λi ← dataSet[i].λ;
7 αi ← dataSet[i].φ;

8 λj ← dataSet[i + 1].λ;
9 αj ← dataSet[i + 1].φ;

10 timeOut = dataSet[i + 1].timestamp − dataSet[i].timestamp;
11 if ((minTime < timeOut) and (timeOut < maxTime)) then
12 if (V alidateAOI(boundingBoxA, boundingBoxB)) then
13 outagesWay1 ← (λi, φi, λj , φj);
14 end
15 else
16 if (V alidateAOI(boundingBoxB, boundingBoxA))

then
17 outagesWay2 ← (λi, φi, λj , φj);
18 end
19 end
20 end
21 end
22 return outagesWay1, outagesWay2

(a) GPS Outage Distance. (b) GPS Outage Time.

Fig. 1. GPS Outages.

C. Characterizing GPS Error
GPS error analysis illustrates the performance of GPS in real

scenarios. As discussed earlier, several works have considered
the GPS error in the range of 10 - 30 meters and these
works consider only a zero mean Gaussian distribution as
GPS error. It is important to note that we applied the GPS
Outages Filter to remove outliers. We removed values greater
than 15 meters from our analysis. Table II shows the total of
outages recognized and the total of outages after the removal
of outliers. The percentage of outages removed is less than 30
%, justifying the removal of these values. The YBT tunnel is
a multilevel tunnel, for this reason the percentage of outliers
is too high.

TABLE II
OUTAGES WITHOUT OUTLIERS.

Tunnel DataSet GPS error <15 m Outages Removed (%)
way1 way2 way1 way2 way1 way2

RIO450 520 - 436 - 16.15 -
DBPT 960 1435 932 1227 2.91 14.49
YBT 202 391 53 145 73.76 62.91

In order to characterize GPS error from datasets, it is defined
as the distance between the GPS point and the perpendicular
point contained in the center lane. As shown in Figure 2 the
error range of 10 to 30 meters considered by a number of
studies [4][1] has been minimized. Even considering recent
advances in GPS location estimation[11], the analysed error is
still unacceptable for safety applications. In order to overcome

19

the GPS problems and improve localization accuracy, it is
possible to use GPS with contextual information of the vehicle
such as displacement, direction, and track information.

(a) GPS Error in Way1. (b) GPS Error in Way2.

Fig. 2. GPS Error.

IV. DEAD RECKONING

The Dead Reckoning (DR) localization technique computes
the current position of the vehicle based on the vehicle’s
last location estimation. Two devices provide the necessary
information. The odometer is a device that provides infor-
mation about the traveled distance. A digital compass is an
electronic device built with magnetometers, that gives the
angle (azimuth) of the vehicle in relation to the Earth’s
magnetic true north [1][4].

A. Classical Dead Reckoning
The classical Dead Reckoning Solution uses trigonometric

functions in a local coordinate system. In this local coordinate
system, the classical DR solution is given by xk = x0 +∑k−1

i=0 si cos θi and yk = y0 +
∑k−1

i=0 sisinθi.
Here, (x0, y0) is the initial vehicle location at time t0 and

si, θi at time ti are, respectively, the shortest path and the
absolute heading of vehicle in relation to the earlier position
(xi−1, yi−1) at time ti−1. The relative heading (bearing) is
defined as the difference between absolute headings at two
consecutive instances and is denoted by δi. Given relative
heading measurements δi in the range of times t1, t2, ..., tk,
the absolute heading θk of the vehicle at time tk is computed

by θk =
∑k

i=0 δi. The Figure 3 illustrates this approach.

B. Geodesic Dead Reckoning Solution
In Geodesy, the problem of defining the shortest path

between two points on the Earth’s surface is referred as
geodesic. Solving a geodesic implies in solving the ellipsoidal
triangle NAB. Here, N is the North Pole. NAF and NBH
are meridians, and AB is a geodesic length s12. The latitudes
and longitudes of A and B are, respectively, φ1, φ2 and λ1,
λ2. The longitude of B relative to A is λ12 = λ2 − λ1.
EFH is the equator with E laying on the extension of the
geodesic path AB; and α0, α1, and α2 are the azimuths of
the geodesic at E, A, and B [12]. There are two methods
to achieve a solution to this problem: Geodesic Direct and
Geodesic Inverse. The Geodesic Direct receive as input φ1,
α1, s12 and aims to compute φ2, λ2 and α2. The Geodesic
Inverse receive φ1, λ1, φ2, λ2 aims to determine s12, α1, α2,
in this case λ12 = λ2 − λ1.

Recent advances in geodesy have solved some of the
problems, allowing the computation of any geodesic in the
Earth’s surface. Before Karney’s contributions [12], the best
method to compute a geodesic was the Vincenty’s method.
However, Vincenty’s method fails for some cases of geodesics

Fig. 3. Classical DR Solution. Fig. 4. The ellipsoidal triangle
NAB [12].

[12][10]. Based on the aforementioned methods of geodesy,
and the knowledge about coordinate systems, we propose a DR
solution named Geodesic Dead Reckoning (GDR) to overcome
the problem of GPS unavailability. Assuming that the set of
GPS positions is given by (φ0, λ0), (φ1, λ1),
..., (φi, λi), and φi, λi is the last know GPS position before a
GPS outage, the Algorithm 2 is proposed.

Algorithm 2: Geodesic Dead Reckoning Algorithm

Input : Estimated GPS position φi,λi, the true north azimuth αi and the
traveled distance sij .

Output: Estimated GPS + GDR position: φj ,λj

1 gpsOutage ← GPSIsUnavailabe();
2 while gpsOutage do
3 αi, sij ← V ehicleKinematics();

φj , λj ← GeodesicDirect(φi, λi, αi, sij);
4 end

The line 1 of the algorithm determines when the GPS is in
outage stage. The loop in lines 2 − 4 are executed while the
GPS is unavailable. αi is the azimuth in relation to the last
know position and the true north sij is the traveled distance by
the vehicle in a reading cycle. The last know position φi, λi

and αi, sij are parameters of the Geodesic Direct method. The
new estimated position is given by φj , λj .

V. RESULTS

A. Simulation Setup
Our simulation experiments use SUMO version 0.25 in

order to simulate mobility models using realistic traffic condi-
tions. The Krauß Model has been configured with 50% of
drivers imperfection [13]. For each outage recorded in the
dataset, we generate a vehicle in the simulation environment.
The map data with the information about the regions (number
of lanes of a road or street, traffic lights, maximum speed, way
direction, etc.) and the tunnels features were obtained from
Open Street Maps [14]. All simulation results were performed
using a T Student Distribution with confidence interval of
95%.

The implementation of our GDR solution was conducted
using a set of scripts in Python3 and the library Geograph-
icLib [12] that provides the geodesy methods described in
Section IV-B. To estimate the error accumulation of the
GDR, we evaluate the Error Per Cycle (EPC). Since the
coordinates are in degrees, the distance between the true
vehicle position and the estimated GDR is given by EPC =
GeodesicInverse(φv, λv, φGDR, λGDR). Here (φv, λv) and
(φGDR, λGDR) are, respectively, the coordinates of the vehicle
position and the estimated GDR in each reading cycle. In the
last GDR read before GPS recovery, the EPC provides the
amount of error accumulated in the GDR process.

B. DR Trajectory Impact and Error Analisys
As discussed in Section II, several existing works [3] [5]

[6] use highways or straight streets. Consequently it ends up

20

favoring the performance of the proposed location solutions. In
order to highlight this issue, we present the following analysis.
In Figure 5, we present the topologies of streets, highways and
tunnels used in the simulations.

(a) YBT (b) DPT (c) RIO450

Fig. 5. Geodesic Dead Reckoning Trajectories.

The green and blue traces represent respectively vehicles
and GDR trajectories. It is important to note that Rio450 and
DPT tunnels are curvilinear. Moreover, these scenarios contain
sharp curves. On the other hand, YBT tunnel have smoother
curves. We analyzed the GDR EPC exactly at the time which
the vehicles are crossing the curves. In order to evaluate the
GDR solution, we perform an aggregated analysis. We have
marked the points A, B, C, D, E, F in the Figures 5 and 6 to
show the effect of the tunnel path in the GDR tracking and,
consequently, in the EPC.

At the point A (YBT tunnel), the slope in EPC occurs
because the transposition between the vehicle path and the
GDR path, the error reaches 7.35 meters in 47 seconds. At
points B, C, D of the tunnel DPT, we can observe several
curves with different shapes and directions. At the point D,
there are a transposition between the vehicle position and GDR
path causing the same effect observed at the point A. The
points B and D are acute curves causing an increase in the
error. In RIO450 tunnel, the effect of the curves is even more
drastic. Only in 60 seconds the error doubles, jumping from
20 to 40 meters considering points E and F. This is due to the
high angular variation between the point of outage and the
point of recovery in a short time period.

Fig. 6. Error per Cycle (EPC) Fig. 7. GPS Overall Error.

Figure 7 shows the comparison of the mean error between
standalone GPS and GPS+GDR solutions. In a system that

only uses the GPS solution, it tends to keep the same position
during the outage despite the vehicle being moving along the
tunnel. For this reason, the error becomes quadratic while GPS
unavailability time increases. However, GPS + GDR solution
has a linear error increase over time.

VI. CONCLUSION AND FUTURE WORKS

This paper presented an evaluation of GPS error and out-
age problems from real datasets. We characterized time and
distance that vehicles travel through areas of GPS unavail-
ability such as tunnels, and contextualized the requirements
of applications that rely on localization systems. From the
considered datasets, we estimated GPS errors using digital
maps. We have proposed a solution named Geodesic Dead
Reckoning that uses the techniques and concepts of geodesy
in order to overcome GPS error and unavailability problems.
We have also performed evaluation experiments to assess the
impact of errors in different scenarios on the proposed GDR
scheme. In addition, an analysis has been conducted in order
to show the impact of the unavailability of the stand alone
GPS solution when compared to the proposed GDR solution.
For future work, we will investigate a cooperative positioning
solution using IEEE 802.11p technology to overcome the GDR
limitations.

ACKNOWLEDGMENTS

The authors would like to thank Sao Paulo Research Foun-
dation (FAPESP) (grant 2015/07538-1), CNPq (agreement
no. 132244/2016-0) and FAPEMIG (486332/2013-6) for the
financial support. This work is also partially supported by the
Natural Sciences and Engineering Research Council of Canada
(NSERC), Discovery Grant Program.

REFERENCES

[1] A. Boukerche, H. A. Oliveira, E. F. Nakamura, and A. A. Loureiro,
“Vehicular Ad Hoc Networks: A New Challenge for Localization-Based
Systems,” Computer Comm., vol. 31, no. 12, pp. 2838–2849, 2008.

[2] N. Alam and A. G. Dempster, “Cooperative Positioning for Vehicular
Networks: Facts and Future,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 14, no. 4, pp. 1708–1717, dec 2013.

[3] N. M. Drawil and O. Basir, “Intervehicle-Communication-Assisted Lo-
calization,” IEEE Transactions on Intelligent Transportation Systems,
vol. 11, no. 3, pp. 678–691, sep 2010.

[4] I. Skog and P. Handel, “In-Car Positioning and Navigation Technologies
- A Survey,” IEEE Transactions on Intelligent Transportation Systems,
vol. 10, no. 1, pp. 4–21, mar 2009.

[5] A. A. Wahab, A. Khattab, and Y. a. Fahmy, “Two-way TOA with limited
dead reckoning for GPS-free vehicle localization using single RSU,”
13th Int. Conf. on ITS Telecommunications, ITST, pp. 244–249, 2013.

[6] L. Sun, Y. Wu, J. Xu, and Y. Xu, “An RSU-assisted localization method
in non-GPS highway traffic with dead reckoning and V2R communica-
tions,” 2nd Int. Conf. on Consumer Electronics, Communications and
Networks, CECNet, pp. 149–152, 2012.

[7] “Dublin Bus DataSet,” 2013. [Online]. Avail-
able: https://data.dublinked.ie/dataset/dublin-bus-gps-sample-data-from-
dublin-city-council-insight-project

[8] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser, “A par-
simonious model of mobile partitioned networks with clustering,” in
2009 First International Communication Systems and Networks and
Workshops. IEEE, jan 2009, pp. 1–10.

[9] “Data Rio - BUS GPS,” 2016. [Online]. Available:
http://data.rio/dataset/gps-de-onibus

[10] J. M. Zogg, GPS - Essentials of Satellite Navigation. UBLOX, 2007.
[11] “International GNSS Service: Strategic Plan 2013-2016,”

Tech. Rep., 2012. [Online]. Available: http://kb.igs.org/hc/en-
us/article attachments/200543517/IGS Strategic Plan 2013.pdf

[12] C. F. F. Karney, “Algorithms for geodesics,” Journal of Geodesy, vol. 87,
no. 1, pp. 43–55, 2013.

[13] “Simulation of Urban MObility.” [Online]. Available:
http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931 read-
41000/

[14] “Open Street Maps.” [Online]. Available: www.openstreetmap.org

21

Contextual Geotracking Service of Incident Markers
in Disaster Search-and-Rescue Operations

Ev Cheng∗1, Kourtney Meiss∗2, Kendall Park3, John Gillis3, Dave Weber4, Salman Ahmad3, Prasad Calyam3

1Department of Computer Science, Vassar College, NY; 2Department of Computer Science, Wofford College, SC
3Department of Computer Science, University of Missouri-Columbia, MO; 4Missouri Task Force 1

amycheng@vassar.edu; meisskn@email.wofford.edu; {kfp3x5, ahmadsa}@health.missouri.edu;
{gillisj, calyamp}@missouri.edu; dweber@allstateconsultants.net

Abstract—Real-time geovisualization of disaster scenes pro-
vides visual situational awareness, which could decrease medical
triage time, and also allows first responders to better allocate
relief resources. In this paper, we describe a novel contextual
geotracking service that provides spatiotemporal visualization
of response history through the use of mobile devices and a
wireless mesh network. During crisis response, with limited
resources in a high-stress disaster relief environment, contextual
data visualization of disaster incident scene status markers, and
their presentation in a usable dashboard is crucial. We present
novel visualization tools that we have developed to integrate
custom map markers, tracking information collected through a
wireless network, geovisualization over time through gradients,
and spatiotemporal event filters. We evaluate our geotracking
service in a field trial with a search-and-rescue task force
comprising of professional first responders. We show effectiveness
of our service in terms of data entry time, usability survey,
and qualitative feedback within a disaster response simulation
experiment.

I. INTRODUCTION

Lack of usable technology due to the destruction of infras-
tructure during natural disasters can prevent first responders
from responding as quickly and efficiently as possible. Lack
of infrastructure significantly limits what types of technology
can be implemented and standardized for national emergency
response teams. Currently, responders are sent into the field
with hand-held devices to record data for future analysis.
This lack of real-time information contributes to an incoherent
overview of the scene for incident commanders (ICs), which
consequently leads to difficulties in filtering accurate and
updated information, allocating resources, and prioritizing e.g.,
patient triage in medical relief efforts.

In our previous work, we have developed the Panacea’s
Cloud [1] that aims to serve as a real-time communication and
coordination tool designed to provide situational awareness
to incident commanders and responders in disaster scenarios.
Panacea’s Cloud uses an ad hoc network that is independent
of existing infrastructure, such as an 802.11 wireless network
or radio towers, which may be disrupted during a disaster. It

This material is based upon work supported by the National Science
Foundation under Award Number: CNS-1359125 and Coulter Foundation.
Any opinions, findings, and conclusions or recommendations expressed in
this publication are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation or Coulter Foundation.

enables first responders such as, firefighters and emergency
paramedics, to work together to most effectively survey a sce-
nario and provide treatment. Decreased triage time ultimately
allows for efficient allocation of resources and could save lives.

In this paper, we extend our Panacea’s Cloud by developing
a novel contextual geotracking service of incident markers in
disaster search-and-rescue Operations. To this end, we work
collaboratively with Missouri Task Force 1 (MO-TF1), an
organization of first-responders, based in 28 locations around
the United States, who specialize in search-and-rescue and
medical triage. Technological limitations are often encountered
by MO-TF1 after natural disasters, such as Hurricane Katrina,
and correspond closely to the problem Panacea’s Cloud seeks
to resolve.

Currently, MO-TF1’s state-of-the-art technology is limited
to hand-held GPS devices with a custom symbol set. These
GPS devices do not allow for real-time data routing and
are dependent on a central computer for synchronization.
Immediately upon return from a search, responders must both
upload and download data through a USB connection. A new
search team is immediately dispatched after the return of
another, which does not allow enough time for data analysis
and integration. Therefore, no new information can be dis-
tributed until the second dispatch team returns and the third is
dispatched. After synchronization, which is dependent on the
number of responders, the data is analyzed through custom
macros in Microsoft Excel to gain situational awareness [2].

In the absence of GPS devices, traditional handset radios
and paper triage tags are used. However, communication can
be disrupted (e.g., background noise during a disaster situation
that interferes with radio units), and consequently, handset
radios can be unreliable in quickly and accurately conveying
and receiving information. Similarly, paper triage tags do not
allow for real-time location tracking and information updating
(e.g., the movement of patients over time or the number
of patients classified per triage level). Existing works such
as DIORAMA [3], under development by the University of
Massachusetts Amherst, aim to solve the problem of medical
triage during mass casualty incidents through active RFID
readers and tags that transmit information, and support tools
for IC communication and patient tracking user interfaces.
However, they rely on infrastructures of cell and radio towers,
and do not leverage ad hoc wireless networking at disaster
incident scenes.

978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

22

To address the above challenges, we enhance the real-
time component of Panacea’s Cloud for the processing and
display of spatiotemporal information that is essential for ICs
to gain an accurate depiction of the past and present events
to best allocate resources and effectively respond. Due to the
dynamic movement of responders in the field, our solution
helps an IC to visually analyze coverage and organize relevant
information through filters. Furthermore, to decrease cognitive
burden associated with visual analysis, we develop novel spa-
tiotemporal information visualization on the dashboard in an
intuitive manner and in a way that requires minimal temporal
processing and interaction with the interface.

The remainder of the paper is organized as follows: Section
II outlines our geotracking and visualization objectives and
novel visualization tools that we have developed. Section
III presents experimental methods and results with MO-TF1.
Section IV concludes the paper.

II. CONTEXTUAL GEOTRACKING AND
VISUALIZATION

A. DESIGN OBJECTIVES
In the case of crisis response in a limited-resource and high-

stress healthcare environment, data visualization and dash-
board usability are crucial. Given the dynamic nature and high-
stakes involved in mass causality incidents, the IC must be able
to quickly interpret the available data of a scenario at any given
moment and then use the dashboard effectively to allocate
appropriate resources. Prior experience with similar systems
can mitigate a user’s error rates [4]. However, the assumption
cannot be made that such experience exists. Assuming the
user has no prior experience, it is essential for a dashboard to
minimize cognitive burden and facilitate information process-
ing. In this paper, we seek to address methods and tools in
which Panacea’s Cloud’s user interface gives a spatiotemporal
visualization of the patient story with limited visual-cognitive
demand.

B. VISUALIZATION TOOLS
The following interface tools were implemented using JSX,

which adds XML-syntax to Javascript; React, a Javascript
library that renders UI components based on data change;
and Redux, a state container changed through dispatched
actions. These tools were chosen specifically for their efficient
comparisons and re-rendering of current and incoming data.
Visual component libraries that we used include: Leaflet,
Leaflet plugins, Bootstrap, and React-adapted Bootstrap UI
components.

1) Custom Markers: A common method of spatial indica-
tion on maps is the use of markers. However, for a disaster
response interface, generic markers are severely limited in their
ability to convey information as seen in Figure 2. Generic
markers lack distinguishable features which contributes to
users’ inability to differentiate between markers. In addition,
generic markers typically do not display meta-information that
is vital in determining further action. Finally, generic markers
are not interactive and do not provide an option for actionable
updates such as updating the status of a marker. Due to
these limitations, generic markers are not suitable for Panacea
Cloud’s dashboard.

Fig. 1. Generic markers lack sufficient information for disaster response

Custom markers are added to the dashboard using a com-
bination of Javascript libraries as shown in Figure 2. The
different markers include features, such as icons and colors,
which allows users to differentiate between them. To suit any
user’s particular needs, the marker icon, color, and description
are customizable through a centralized JSON configuration
file. The freedom to edit, add, or remove the custom markers
confers an element of extensibility to Panacea Cloud’s dash-
board, eases transition from previous systems, and lessens the
cognitive demand in interpreting data. To expand on the visual
information provided by the markers, a pop-up of plain text
and/or pictures is available through user interaction to allow
for visual geotagging of static points (e.g., a road block) and
dynamic points (e.g., a resource in motion).

Fig. 2. Custom markers are easily distinguishable and display a pop-up with
information from MO-TF1’s legend

In our MO-TF1 use case, twenty-four custom markers,
currently used on the MO-TF1 GPS systems, are configured
into a JSON file. When clicked, the name and description
of the custom symbol is displayed as shown in Figure 2.
To differentiate MO-TF1 responders from incident markers, a
different icon is used. The responder markers can also display
information in pop-ups.

2) Tracking Information: A significant deficit of markers
is the lack of time integration. Markers handle the indication
of spatial location well, but can only display current location
without reference to past locations. In the case of disaster
response, the loss of past information is highly critical. Thus,
creating tracks between markers to visualize past locations is
a means of adding a temporal component to maps.

23

Fig. 3. Solid paths behind responder markers indicate past spatial locations

As shown in Figure 3, paths visualize a survey history in an
area and differentiate incoming data, including but not limited
to responder-to-search-area ratios, responder search efficiency,
specific device failure, total areas searched and needing to
be searched. Incident markers can be directly linked to a
responder, allowing for tests of accuracy (e.g., a marker an
IC may expect to see during training and the actual marker
entered). A progression of the scene can then be traced as an
expanding coverage of an area of disaster. The logging of the
data allows for future analysis of composite search-and-rescue
data as well as future analysis of specific responder data. The
former can lead to improved search-and-rescue methods that
minimizes loss of lives, and the latter can lead to improved
training methods.

We used a model to relate the rendered components to
each responder or custom marker, which in turn refers to
a geotag’s type ID for filtering. Each responder, hardware
device, and custom marker has a unique ID. This differentiates
between responder and device and creates flexibility for a case
where a responder may have to use a different device, due
to issues such as hardware. This also allows for easy testing
of devices, as device failure while tracking can be viewed
on the dashboard in real-time. Within the custom marker,
the responder unique ID is also recorded, which connects
the responder to their markers. On the dashboard itself, each
responder has their own path, marker, and pop-up, while each
marker has its own marker and pop-up.

3) Geovisualization Over Time Through Gradients: The use
of paths behind markers, to indicate past locations of respon-
ders and incidents, is a geovisualization over a temporal frame.
However, in the implementation of these paths, specificity of
information is lost, and relative times cannot be determined.
For example, a marker indicates a responder’s current location
at a specific time, while a path indicates a responder’s past
location at a nonspecific time.

One proposed solution is a dynamic timeline playback.
However, due to its nature, this has a high temporal cost,
forcing a user to view a dynamic image over a period of time in
order to determine the location of markers at a specific time
within the timeline. In the case of disaster response, this is
precious time that could be better allocated. To create a static
image that both displays specific spatial and temporal infor-

mation, gradient paths are implemented. Figure 4 displays the
mapping of a gradient path to a timeline key with timestamp
labels. This allows a user to process a single static image
and extract spatial and temporal information about a scenario
without continuous playback. Thus, a user can use the color
of a gradient to determine the spatial record of resources and
responders at a specific time or within a time frame.

Fig. 4. Close-up of gradient paths and the corresponding gradient key with
labeled timestamps generated with randomized data

The use of gradients to map information confers all the
advantages that a solid-colored line does, including informa-
tion related to specific responders and progression of coverage.
In this case, gradients provide a clearer view of temporal
progression as well as an overall view. Regarding real-time
data upload and display, as in the Panacea’s Cloud dashboard,
the use of gradients visually organizes incoming information.

One criticism of gradients is the reliance on color and a
lack of accessiblity to colorblind users. To address this issue,
a colorblind palette shown in Figure 5 is used to address
the two common forms of colorblindness: protanomaly and
deuteranomaly. Colorblindness is estimated to effect 8% of
men and 0.5% of women worldwide. Of total colorblind
population, 75% of colorblind men have either protanomaly or
deuteranomaly [5]. Consequently, a palette adjusted for red-
green colorblind users increases accessibility. The option to
configure with specific hex triplets is also available through
a JSON file. Like with the custom markers, the centralized
characteristic of configuration files allows this dashboard to
extend to multiple use cases beyond search-and-rescue.

Fig. 5. Slider with the path gradient as perceived by users without color-
blindness and users with red-green colorblindness

The implementation of gradients for the Panacea’s Cloud
dashboard was received positively by MO-TF1, especially
given that gradients are not a feature available on their
current system. The usability, accessibility, and immediate
applicability of the gradients to search-and-rescue operations
makes it a vital component to the Panacea Cloud’s dashboard
for extracting spatial and temporal information without time
resource allocation.

24

4) Spatiotemporal and Event Filter: In the case of vast
amounts of incoming data or an incident with multiple events
(e.g., an earthquake with multiple aftershocks), analysis of
an event rather than the incident may be preferable. Accom-
plishing this necessitates the ability to select a time frame
in which data can be analyzed. By changing the display
view, a spatiotemporal filter decreases the visual-cognitive
burden of the IC by removing distracting or currently irrelevant
information and allows for more accurate analysis.

To focus on an event in an incident, a spatiotemporal filter
is available on the Panacea’s Cloud dashboard. A user is able
to select the timespan for the desired view. By default, if the
whole view is selected or a view including the most recent
timestamp is selected, incoming data is always included. This
removes the task of re-adjusting the slider constantly. Dragging
the display slider through the filtered times changes the view
dynamically. An example is shown in Figure 6. A play/pause
button is also available for users who prefer to play back an
event at a consistent rate, starting at either a specific time
within the filter or at the start of the filter; the button allows for
user interruption on the detection of change events within the
slider. The filter determines the gradient paths displayed, while
the marker above the filter indicates how far along the filtered
path that the resource has traveled. The display therefore shows
past, present, and future progression, and allows for greater
precision in the playback of scenes.

Fig. 6. Filtered gradient paths and corresponding filtered gradient key

For further data organization, a reset button is placed on
the dashboard to separate incidents. Upon user interaction, the
reset button makes a call to the API for a new incident, which
clears the current data from the dashboard without changing its
storage within the database. This enables the IC to access and
display cleared data later as a separate incident. To keep users
from accidentally double-clicking and sending two incident
requests, the button is disabled during fetching.

The separation of data into multiple incidents and events
within an incident filters the data in a user-controlled way.
This creates dashboard-displayed information that is more
usable; gradient paths and markers become more effective
through filtering. Additionally, incident creation and incident-
event filtering makes Panacea’s Cloud’s dashboard extensible
and applicable to other use cases, such as device tracking or
more efficient ambulatory aid.

III. PERFORMANCE EVALUATION

A. EXPERIMENTAL METHODOLOGY
To compare MO-TF1’s current Garmin GPSMAP 64 system

to Panacea’s Cloud, we ran three trials: Trial One tested
Panacea’s Cloud with Recon Jets, Trial Two tested MO-
TF1’s current hand-held Garmin system, and Trial Three tested
Panacea’s Cloud with a Mobile View on Android devices.

Standard training procedure for MO-TF1 involves the place-
ment of laminated placards symbolizing “incidents” with char-
acteristics corresponding to the custom MO-TF1 markers (e.g.,
number of victims, detection of human remains, destroyed
structure, etc.) onto wooden stakes along a road to simulate
a neighborhood for search-and-rescue. The placards are tra-
versed by responders, and the characteristics are entered as
quickly and accurately as possible.

Trial One was performed a week before Trials Two and
Three and without MO-TF1 participants present. The prelim-
inary results of the trial determined that Recon Jets, do not
provide suitable hardware for the MO-TF1’s use case, which
most likely can be contributed to the lack of a competitive
wearable technology market at this time. Transmission of
data though the Recon Jets relied on an internal camera, to
photograph QR codes corresponding to the custom markers,
which produced overexposed images in both high and low
contrast environments. The internal GPS displayed high rates
of GPS scatter and inaccuracies which greatly impacted the
coherence of an incident. The user interface was unusable for
data entry and data verification due to the application closing
at inappropriate times and its inability to confirm the data was
received by the incident commander.

Thus, to suitably and more rigorously test Panacea’s Cloud,
a mobile application was created for data entry; Figure 7 dis-
plays the screen as seen by users. The application was accessed
locally on Android devices, given to MO-TF1 participants in
Trial Two, with instructions on application use. Our focus in
this paper will be on the results of Trials Two and Three.

Fig. 7. Panacea’s Cloud’s Mobile View as seen by interface users

For Trials Two and Three, twenty-nine incidents, marked
as events within a single incident on Panacea’s Cloud’s dash-
board, were placed along a designated road in the training
area. In both trials, two MO-TF1 participants entered all
characteristics of each incident and verbally indicated the start
of data entry and the end of data entry for each incident.
The travel time from one marker to the next was recorded

25

but filtered out. For the Garmin system, a separate time was
recorded for the upload of data from the handheld devices
through the USB. For Panacea’s Cloud, the time between the
last marker recorded and its appearance on the dashboard was
taken as a rough indicator of update time.

To determine MO-TF1’s subjective perception of the current
Garmin system and Panacea’s Cloud’s Mobile View for data
entry, the participants completed a usability survey containing
10 questions, rated on a Likert scale of 1 to 5.

• I think that I would like to use this system frequently.
• I found this system unnecessarily complex.
• I thought the system was easy to use.
• I think that I would need the support of a technical person

to be able to use this system.
• I found the functions in this system well integrated.
• I thought there was inconsistency in this system.
• I would imagine that most people would learn to use this

system quickly.
• I found this system very cumbersome to use.
• I felt very confident using this system.
• I need to learn a lot of things before I could get going

with this system.

Additionally, the same usability survey was completed
by the acting IC for both Iron Sights, the current Garmin
dashboard [2], and Panacea’s Cloud dashboard. A qualitative
analysis was also conducted to gather feedback regarding
suggested improvements to Panacea’s Cloud dashboard.

B. EXPERIMENTAL RESULTS

As shown in Figure 8, the average data entry time per
incident for Panacea’s Cloud was 3.6x faster than the data
entry time per incident for the Garmin system. For the current
Garmin system, the total time taken by the participants in
entering data for the 29 incidents was 850 seconds (≈14.2
minutes) and 1193 seconds (≈19.9 minutes). This averages
to 35.2 seconds per incident. For Panacea’s Cloud, the total
time taken for the same 29 incidents was 329 seconds (≈5.5
minutes) and 242 seconds (≈4.0 minutes). This averages to
9.8 seconds per incident.

Fig. 8. Total time taken by each user to enter 29 incidents for each tested

In terms of overall usability as shown in Figure 9, Panacea’s
Cloud’s Mobile View and dashboard scored the same or better,
as rated by both participants and the incident commander,
in 9 out of the 10 categories. The participants Panacea’s
Cloud was easy to use and learn, a characteristic especially
important in disaster scenarios where users may not have the
time to undergo extensive training before entering the field.

One notable difference is the Garmin system’s higher score in
confidence of use. This outcome was not surprising because
the Garmin is the system they are comfortable and currently
using.

Fig. 9. Usability questionnaire results indicate Panacea’s Cloud outperforms
the current Garmin GPS system in 9 out of the 10 categories

Qualitative analysis of the data reveals that gradients were
received positively by the IC. Suggestions for the dashboard
included an ability to enter a bulk number of markers, a tally
for each marker, data verification for the user that a marker is
successfully sent, and dates of incidents under a separate tab
on the dashboard.

IV. CONCLUSION AND FUTURE WORK

Our experimental trials display a 3.6x decrease in data
entry time using the Panacea’s Cloud contextual geotracking
service instead of the handheld Garmin system. This decrease
of time in sending and retrieving data is indicative of a
reduction in time of search-and-rescue missions as well de-
creased triage time. We found that the Garmin system upload
time is dependent on the number of users, while Panacea’s
Cloud acts in real-time data display on the dashboard. This
creates a scalability for Panacea’s Cloud that does not apply
to the current Garmin system used in search-and-rescue efforts
of groups such as MO-TF1. The usability survey results
and positive feedback also indicate greater system usability.
Further trials with a larger sample size and greater control of
variables are needed for more conclusive results.

Outside of search-and-rescue operations, the Panacea’s
Cloud dashboard is extensible to other use cases where geovi-
sual information must be displayed and filtered over a times-
pan, such as medical triage, device tracking, or environment
monitoring. Because of these many use cases, future work on
Panacea’s Cloud dashboard is focused on increasing usability
and adding to the available features.

REFERENCES

[1] J. Gillis, P. Calyam, A. Bartels, M. Popescu, S. Barnes, J. Doty, D.
Higbee, S. Ahmad, “Panacea’s Glass: Mobile Cloud Framework for
Communication in Mass Casualty Disaster Triage”, Proc. of IEEE
Mobile Cloud, pp. 128-134, 2015.

[2] F. Endrikat, “US&R Program Directive 2014-013 - Search Operation
Data Collection and Reporting Standards”, National Urban Search &
Rescue Force Representatives Report, 2014.

[3] A. Ganz, J. Schafer, Z. Yang, J. Yi, G.Lord, G. Ciottone, “Mobile
DIORAMA-II: Infrastructure less Information Collection System for
Mass Casualty Incidents”, Proc. of IEEE EMBC, pp. 2682-2685, 2014.

[4] H. Tuzun, E. Telli, A. Alir, “Usability testing of a 3D touch screen kiosk
system for way-finding”, Computers in Human Behavior, Vol. 61, pp.
73-79, 2016.

[5] “Types of Colour Blindness”, in Colour Blind Awareness. [Online].
Available: http://www.colourblindawareness.org/colour-blindness/types-
of-colour-blindness. [Accessed: Jul. 25, 2016].

26

Using NAS Parallel Benchmarks to Evaluate HPC
Performance in Clouds

Thiago Kenji Okada
and Alfredo Goldman

Instituto de Matemática e Estatı́stica (IME)

Universidade de São Paulo (USP)

São Paulo – SP, Brazil – 05508-090

Email: {thiagoko,gold}@ime.usp.br

Gerson Geraldo H. Cavalheiro
Centro de Desenvolvimento Tecnológico – Computação

Universidade Federal de Pelotas (UFPel)

Pelotas – RS, Brazil – 96010-610

Email: gerson.cavalheiro@inf.ufpel.edu.br

Abstract—Cloud computing is a reality nowadays, however
there are few studies trying to understand what happens in the
actual cloud infrastructures for HPC applications. The focus
of this study is the evaluation of NAS Parallel Benchmarks
on cloud computing environments. We analyze the execution
of applications from NAS Parallel Benchmarks (LU and SP),
comparing the execution behavior in different infrastructures: a
public cloud, a private cloud and a NUMA multiprocessor system.
Our broad goal is to estimate the performance of actual HPC
applications on cloud, based on its communication characteristics.
We conclude that HPC users should be careful with Virtual
Machines with higher virtual CPU count, thanks to Google usage
of Hyper-Threading technology and Virtual Machine instances
scheduling.

Keywords—cloud computing, benchmark, NAS Parallel Bench-
marks

I. INTRODUCTION

With the advent of cloud computing, it is not necessary
anymore to invest large amounts of money on computing
resources for private use. Instead, it is possible to obtain
processing or storage resources, and even complete systems, on
demand, using one of the several available services from cloud
providers like Amazon EC2, Microsoft Azure and Google
Compute Engine.

In public cloud environments, the user has minimal know-
ledge about the infrastructure of hardware. However, know-
ledge of the network topology can be used to improve per-
formance in HPC applications [1]. Moreover this information
is not available for cloud computing users, HPC users might
have non-optimal performance when executing applications in
public clouds. This may incur an extra cost for the user, since
cloud computing is paid per-usage. There also might be an
important performance loss.

In this work, we analyze the behavior of NAS Parallel
Benchmarks (NPB) in clouds, including Google Compute
Engine (GCE), a public cloud, and a private cloud implemented
with OpenStack. We compare the performance of NPB in
GCE and OpenStack with a NUMA multiprocessor system,
to evaluate the performance of multiple NPB benchmarks
on different systems. Our broad goal is to provide estimates
on HPC applications performance in clouds, based on its

characteristics. In this paper, we present and analyze the results
of two different NPB applications, LU and SP.

The remainder of this paper is structured as follows: in Sec-
tion II, we review the literature about the area. In Section III,
we describe the NAS Parallel Benchmarks. In Section IV, we
describe how we did our experiments and methodology used to
analyse the results. In Section V, we present the results of the
experiments, including our analysis about the results. Finally,
in Section VI, we present the conclusions and future work.

II. RELATED WORK

Ma et al. [2] developed an approach for matching commu-
nication patterns in scientific parallel applications. They ana-
lyze four main properties, namely, temporal, spatial, volume
and communication graphs. After that, they applied a rank
transformation on them, allowing to compare similarities and
contrast differences between applications, independent of size.
They tested their approach using four applications from NAS
Parallel Benchmarks version 3.0: BT, SP, MG and LU. After
applying their methodology on these benchmarks, the authors
show that these problems have similar communication patterns
independent from input size (A, B or C), and even on the
number of processors (they document tests with 16 and 64
logical process).

One limitation from [2] is that it only considers two
MPI operations, MPI_Send and MPI_Recv, to obtain
θ and ε, although the benchmarks include calls to col-
lective communication primitives. However in [3], Faraj
et al. analyzed the communication characteristics of the
MPI implementation of NPB, to study the effectiveness
of compiled communication optimization for MPI pro-
grams. Their tests show that collective communications
in NPB (that includes MPI_Allreduce, MPI_Bcast,
MPI_Barrier, etc.) are just a small part of the communica-
tion in NPB applications, while point-to-point communications
(MPI_Send/MPI_Isend and MPI_Recv/MPI_Irecv) are
the bulk of the communication in NPB, validating the results
from [2] for the whole benchmark.

Evaluation of HPC applications in cloud environments is a
recurring theme in the literature, so different authors tested the
feasibility of running HPC application in clouds [4]–[7]. They
generally analyse metrics such as network bandwidth/latency978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

27

and/or processing speed. However, our approach is differ-
ent: it is based on the previous knowledge from Ma et
al., Faraj et al. [2], [3] of communication attributes from
NPB applications, and it focus in the relation between two
communication approaches used in HPC applications, instead
of raw performance. Those two communication approaches
are: intra-node, that is, communication between process in
the same node (in our case, a virtual machine), via either
multithreading or message passing; and inter-nodes, that is,
communication between process in different nodes (VMs), via
message passing.

III. NAS PARALLEL BENCHMARKS

The NAS Parallel Benchmarks (NPB) are a small set of
programs designed to help evaluate the performance of parallel
supercomputers, developed by NASA. These benchmarks are
derived from computational fluid dynamics (CFD) applica-
tions. They consist of five parallel kernels and three simulated
application benchmarks.In this work we used two of the three
simulated application benchmarks, LU and SP.

We chose LU and SP benchmarks from NPB, because both
had a MPI Single-Zone version (called SZ from now) and
MPI+OpenMP Multi-Zone version (called MZ from now). It is
important for this work to analyze both SZ and MZ versions,
since this allows evaluation of both intra-node and inter-node
communication performance. BT also has both SZ and MZ
implementations, however BT is similar to SP benchmark
considering communication patterns [2]. Thanks to this, BT
analysis was omitted from this work for lack of space.

In this work we focused on three different parameters
to evaluate what is happening during the benchmarks: total
execution time, total communication volume and the number
of communication calls. The total execution time is the ex-
ecution time measured by the application itself, since each
NPB application reports its execution time after finishing
execution. The total communication volume is measured by
running one benchmark instance on 32 containers with 1 CPU
each in our NUMA system, and running sysstat1 in the
background, to measure the bandwidth used in the network
interface. The number of communication calls is the number
of communication function calls from MPI in each benchmark,
measured by TAU2, a portable profiling and tracing toolkit for
parallel programs.

Both total communication volume and the number of
communication calls are constant for the same application
configuration. It means that, for example, running a LU
benchmark in class D with 32 logical processors will always
result the same volume and number of communication calls,
independent of the machine used to run those benchmarks.
However, total execution time should be different on each
virtual machine configuration. So in Table I, we show total
volume communication and number of communication calls,
since they are constants.

IV. METHODOLOGY OF THE EXPERIMENTS

LU-SZ benchmark uses MPI, and in our experiments LU-
SZ is executed with 32 MPI logical processors. SP-SZ bench-

1http://sebastien.godard.pagesperso-orange.fr/
2https://www.cs.uoregon.edu/research/tau/home.php

TABLE I. TOTAL VOLUME COMMUNICATION AND NUMBER OF

COMMUNICATION CALLS IN EACH NPB BENCHMARKS.

Total Volume Communication (GB) Number of Communication Calls
lu.D.32 121.73 12,741,100
sp.D.25 407.60 375,900

mark uses MPI too, however SP-SZ needs a square number
of logical processors to run, so we run it with 25 MPI logical
processors. LU-MZ and SP-MZ versions are executed with 1
MPI logical processor for each VM (e.g.: if we have 4 VMs
we use 4 logical processors). The number of OpenMP threads
used (set by OMP_NUM_THREADS environmental variable)
correspond to the number of vCPUs in each VM (e.g.: if
we have VMs with 8 vCPUs we use 8 threads for each MPI
process). We limited the number of vCPUs to 32 since this
is the size of the biggest available VM in our case of study
(Google Compute Engine).

We modified the number of VMs and the VM size in each
experiment, always maintaining 32 vCPUs. So, if we use only
one VM, we use a 32 vCPUs VM; if we use two VMs we use
16 vCPUs in each one, and so on. The following VMs sizes
are used in the experiments executed in GCE: 1×n1-highcpu-
32, 2×n1-highmem-16, 4×n1-highmem-8, 8×n1-highmem-4,
16×n1-highmem-2.

The change from n1-highcpu to n1-highmem is because
NPB needs a master process with a relatively higher memory
compared to the other nodes. So with smaller VMs, the
benchmarks started to fail thanks to the lack of memory.
However, this should not impact this evaluation, considering
that in terms of CPU power all VMs should be equivalent.
According to GCE dashboard all VMs used Intel R© Haswell
CPUs.

For the private OpenStack cluster we had access to an
OpenStack Liberty setup, called revoada. The host system is
running Ubuntu 14.04 (trusty), Linux kernel 3.19, KVM vir-
tualization. There are 7 physical nodes in revoada, connected
in a star topology in a 1Gbps Ethernet network. Each node
have 2×Intel R© Xeon R© CPU E5645 @ 2.40GHz and 8x4GB
(32GB in total) of RAM.

Finally, our NUMA system is composed of 4×AMD
OpteronTM 6276 @ 1,4GHz, called hydra. Each CPU has
16 cores (resulting in 64 cores in total) and each CPU has
32GB of RAM directly connected to it, however the total
memory is available to all processors with different memory
latency access. This results in a total of 128GB available to the
operational system. The operational system is Ubuntu 14.04
(trusty), running Linux kernel 3.13 and the software LXC
1.0.8. LXC is a container system, used to limit the number
of CPUs in each experiment and simulate separate VMs.

All VMs and containers are running Ubuntu 14.04, GCC
4.8.4 and OpenMPI 1.6.5.

V. EXPERIMENT AND RESULTS

The experiments are executed in GCE, hydra and revoada
infrastructures. For the experiments with large sizes (class
D), we only did five executions for each setting. This was
motivated by two main reasons. On one hand, for the experi-
ments with smaller sizes, we did a careful statistical analysis

28

in the experiment, analyzing the variation in execution for
50 repetitions. In those experiments, we always got results
concentrated near the average, with small standard deviations,
as exemplified in Figure 1. This shows that the experiments
results are stable. On the other hand, each execution of class
D size was very time consuming (around 1 hour for each run).

Fig. 1. Graph of execution times between 50 repetitions in LU-SZ running
in hydra, including mean and standard deviation.

For the graphs in the next subsections, the vertical axis is
the execution time in seconds (s), while the horizontal axis
is the different infrastructures tested. GCE represents Google
Compute Engine, hydra represents our NUMA architecture,
revoada represents our private OpenStack cloud; C represents
the number of vCPUs in each VM, while V represents the
number of VMs used in the experiment. So, GCE-2Cx16V
represents the execution time in Google Compute Engine,
using 16 VMs with 2 vCPUs each, GCE-4Cx8V uses 4 vCPUs
and 8 VMs and so on. Notice that, for any xC×yV, we always
have x × y = 32 vCPUs. To allow reproducibility, the scripts
used in this work are available under an open-source license
(MIT), in GitHub3.

We highlight that we are not comparing the difference
between execution times in different infrastructures. Our actual
objective is to analyse the difference in behavior between
different architectures.

A. LU

Figure 2 shows the results of LU-SZ benchmark, which
exploits intra-node parallelism using MPI. A first observation,
it stands out that the execution time shows a low variation,
except in GCE-32Cx1V and revoada-16Cx2V, which are the
lowest number of possible VMs in each cloud infrastructure
used. Our hypothesis is that in those cases, LU-SZ is affected
by Intel R© Hyper-Threading technology, so in both cases there
are not enough physical cores to support the number of
requested vCPUs per VM.

Our analysis of the results in hydra allows us to conclude
that in a infrastructure with low communication costs, there
is no significant variance in performance (the biggest differ-
ence between means is ±188.6 seconds). Thanks to this, we
conclude that GCE-16Cx2V are probably running in different
physical machines, otherwise the performance would be better
(i.e. similar to the finer-grained cases).

When there is a non-negligible cost of communication
between VMs in physical network (like in revoada), using

3https://github.com/m45t3r/naspb-tests

finer-grained VMs allows the VM scheduler to allocate some
VMs in the same machine, reducing communication costs and,
consequently, reducing the execution time. This is the case in
both revoada-2Cx16V and revoada-4Cx8V, and likewise, GCE-
2Cx16V, GCE-4Cx8V and GCE-8Cx4V.

We can conclude that the scheduling of fine-grained VMs,
in other words, VMs with low vCPU count, is more efficiently
made in this infrastructure.

 1000

 2000

 3000

 4000

 5000

GCE-2Cx16V

GCE-4Cx8V

GCE-8Cx4V

GCE-16Cx2V

GCE-32Cx1V

hydra-2Cx16V

hydra-4Cx8V

hydra-8Cx4V

hydra-16Cx2V

hydra-32Cx1V

revoada-2Cx16V

revoada-4Cx8V

revoada-8Cx4V

revoada-16Cx2V

T
im

e(
s)

Experiment

lu.D.32

Fig. 2. Boxplot of LU-SZ total execution time in our tested infrastructures.

Figure 3 shows the results of LU-MZ benchmark. In those
Multi-Zone benchmarks it is except, at least partially, that
communication related costs are overlapped by effectively
processing when using multithread [8], since threads blocks
while accessing critical region, while other threads occupy the
processor evolving the calculation.

With coarse-grained VMs, the number of communication
channels between VMs is small. So the competition between
threads may occur during the access to the MPI communication
channel. In 2Cx16V cases, we have 1 MPI communication
channel shared between 16 threads in each VM. When we
decrease VM granularity, by reducing the number of vCPUs
and increasing the number of VMs, we have more MPI
communication channels to be explored by each thread. This
reduces the competition in each MPI channel, consequently
increasing the total performance. Looking at GCE results, 4
VMs seems to be the minimum number to avoid MPI channel
congestion.

 1000

 2000

 3000

 4000

 5000

GCE-2Cx16V

GCE-4C-8V

GCE-8Cx4V

GCE-16Cx2V

hydra-2Cx16V

hydra-4Cx8V

hydra-8Cx4V

hydra-16Cx2V

revoada-2Cx16V

revoada-4Cx8V

revoada-8Cx4V

revoada-16Cx2V

T
im

e(
s)

Experiment

lu-mz.D.*

Fig. 3. Boxplot of LU-MZ total execution time in our tested infrastructures.

29

B. SP

Figure 4 shows the result of SP-SZ benchmark. SP-SZ have
a superior total execution time in general compared to LU. The
total volume communication, as shown in Table I, is likewise
superior, however there is a smaller number of communication
calls. Likely happened to LU-SZ, we had low variation in
execution times in hydra infrastructure (the biggest difference
between means is ±212.15 seconds). And we observe in SP-
SZ too, the coarse-grained and the impact of Hyper-Threading
in GCE-32Cx1V, and the Hyper-Threading and communication
impact in revoada-16Cx2V. There is a high variation in GCE-
16Cx2V, that may be caused by the load balancing in GCE,
causing a migration of the VMs used during the experiment.
In GCE cases with finer-grained VMs, that is 8 vCPUs or less,
it is possible to observe the scheduling of VMs in the same
physical node or physical nodes nearby.

 1000

 2000

 3000

 4000

 5000

GCE-2Cx16V

GCE-4Cx8V

GCE-8Cx4V

GCE-16Cx2V

GCE-32Cx1V

hydra-2Cx16V

hydra-4Cx8V

hydra-8Cx4V

hydra-16Cx2V

hydra-32Cx1V

revoada-2Cx16V

revoada-4Cx8V

revoada-8Cx4V

revoada-16Cx2V

T
im

e(
s)

Experiment

sp.D.25

Fig. 4. Boxplot of SP-SZ total execution time in our tested infrastructures.

Figure 5 shows the results of SP-MZ benchmark. The
highest execution times are observed with a smaller number
of VMs, similar to LU-MZ. Similar to LU-MZ too, we
found that communication costs do not affect performance in
configurations with fewer number of vCPUs.

 1000

 2000

 3000

 4000

 5000

GCE-2Cx16V

GCE-4C-8V

GCE-8Cx4V

GCE-16Cx2V

hydra-2Cx16V

hydra-4Cx8V

hydra-8Cx4V

hydra-16Cx2V

revoada-2Cx16V

revoada-4Cx8V

revoada-8Cx4V

revoada-16Cx2V

T
im

e(
s)

Experiment

sp-mz.D.*

Fig. 5. Boxplot of SP-MZ total execution time in our tested infrastructures.

VI. CONCLUSION AND FUTURE WORK

In this work we show the impact of intra-node and inter-
node communication in different infrastructures. The results
show that the performance of HPC application can be affected,

positively, using the appropriate number of vCPUs in each VM
used during the execution of the application. Coarse-grained
VMs was penalized, thanks to the cloud’s VM scheduler
and Hyper-Threading technology. Considering those factors,
it is possible to optimize performance of HPC applications in
clouds.

Our analysis is focused on Google Compute Engine. GCE
is a valuable public cloud to do our experiments since the
pricing of utilization in GCE is charged by minute, after
the first 10 minutes. Since the VMs are billed per minute,
a reduction in total execution time may result in important
savings in total cost. For example, in sp.D.25, we can cut up
to 2300 seconds (∼38 minutes) in execution time, comparing
GCE-2Cx16V with GCE-32Cx1V. In terms of money savings,
it represents a savings of $1.31 per run4.

In the future we will apply the same analysis to other public
clouds, like Amazon EC2 and Microsoft Azure, and compare
them to Google Compute Engine.

ACKNOWLEDGMENT

This work was supported by CAPES/Brasil (Programa
Nacional de Cooperação Acadêmica da Coordenação de
Aperfeiçoamento de Pessoal do Nı́vel Superior).

And we would also like to thank Google for the academic
credits to access their public clouds.

REFERENCES

[1] M. Diener, E. H. M. Cruz, M. A. Z. Alves, M. S. Alhakeem,
P. O. A. Navaux, and H.-U. Heiß, “Locality and balance for
communication-aware thread mapping in multicore systems,”
in 21st Int. Conf. on Parallel and Distributed Computing, Proc.
L. J. Träff, S. Hunold, and F. Versaci, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 196–208.

[2] C. Ma, Y. M. Teo, V. March, N. Xiongy, I. R. Pop, Y. X. He,
and S. See, “An approach for matching communication patterns
in parallel applications,” Proc. of the 2009 IEEE Int. Parallel
and Distributed Processing Symp., no. December 2008, 2009.

[3] A. Faraj and X. Yuan, “Communication characteristics in the
NAS parallel benchmarks,” Proc. of the PDCS ’02, no. January
2002, pp. 729–734, 2002.

[4] Q. He, S. Zhou, B. Kobler, D. Duffy, and T. McGlynn, “Case
study for running HPC applications in public clouds,” in Proc.
of the 19th ACM Int. Symp. on High Performance Distributed
Computing - HPDC ’10, New York, New York, USA: ACM
Press, Jun. 2010, p. 395.

[5] A. Gupta and D. Milojicic, “Evaluation of HPC applications
on cloud,” Proc. - 2011 6th Open Cirrus Summit, OCS 2011,
pp. 22–26, 2012.

[6] P. Mehrotra, J. Djomehri, S. Heistand, R. Hood, H. Jin, A.
Lazanoff, S. Saini, and R. Biswas, “Performance evaluation of
Amazon EC2 for NASA HPC applications,” in Proc. of the 3rd
workshop on Scientific Cloud Computing Date, ACM, 2012,
pp. 41–50.

[7] Z. Li, L. OBrien, R. Ranjan, and M. Zhang, “Early observa-
tions on performance of Google Compute Engine for scientific
computing,” in 2013 IEEE 5th Int. Conf. on Cloud Computing
Technology and Science, IEEE, vol. 1, 2013, pp. 1–8.

[8] L. G. Valiant, “A bridging model for parallel computation,”
Commun. ACM, vol. 33, no. 8, pp. 103–111, Aug. 1990.

4https://cloud.google.com/products/calculator/#id=
fcac81db-0018-41f8-ac3b-b41619157ef8

30

A User Level Approach to Schedule BoT
Applications on Private Clouds

Maicon Ança dos Santos André R. Du Bois Gerson Geraldo H. Cavalheiro
Graduate Program in Computer Science, UFPel, Brazil

Email: {madsantos,dubois,gerson.cavalheiro}@inf.ufpel.edu.br

Abstract—This paper presents a user level approach to sched-
ule tasks generated by bag of tasks (BoT) applications on a
private cloud. At this level, the scheduler consolidates the load
of the tasks in a given number of virtual machines providing the
estimated makespan. We present the proposed algorithm as well
as a model for BoT applications and a performance assessment
in a OpenStack based IaaS infrastructure. The results show that
the makespan can be reduced by grouping tasks in coarse units
of loads.

I. INTRODUCTION

Bag of Tasks (BoT) is a very popular pattern of applications

in cloud computing. This class of application exploits close to

3/4 of total processing capacity provided by cloud infrastruc-

tures [1]. A BoT defines a set of independent tasks requiring

processing resources to be completed. The amount of resources

required by each task can differ as well as the number of tasks

in the bag during the execution. In this paper we consider

a scenario where a client of a private cloud infrastructure

must identify the processing power requirements to run a BoT

application. This client is supposed to know the application to

predict the evolution of the BoT during time. We propose an

application level scheduler to distribute the load of the tasks

over a limited number of processors furnishing the expected

execution time. In this scenario, each processor represents a

virtual machine (VM) owned by the client and responsible for

executing the load it accumulates. The set of VMs is submitted

to run the application in a private cloud infrastructure. Since

the number of host in the infrastructure can be lesser than

the number of VMs, the problem is to identify how far the

effective execution time was from the expected one.

The main contribution of this paper is the task consoli-
dation strategy, achieved at application level, responsible for

distributing the load of tasks among VMs. We propose a

general online strategy to consolidate tasks in coarser workload

units. Different policies specialize this general strategy taking

into account different task attributes, such as arrival time,

computational cost and remaining time to finish, to ordering

ready tasks in a priority list.

The remaining of this paper is structured as follows. In

Section II we present some related work, beholding those con-

sidering the execution of BoTs in clouds and cloud scheduling

strategies. Section III presents the abstraction we propose to

describe BoTs. The task consolidation strategy is presented in

Section IV. Section VI presents the a case study conducted on

a OpenStack based infrastructure. Section VII concludes the

paper and presents the final remarks.

II. RELATED WORK

Different traces of grids usage are analyzed by Iosup and

Epema in [1]. They have observed that tasks generated by

BoT applications consume near to 75% of total available CPU

time, represent 75% of total load submission, and frequently

this kind of applications are responsible for over 90% of total

CPU time consumption.

In [2], the scheduling problem is to maximize the usage

of available processing resources to execute BoT tasks in a

heterogeneous cloud infrastructure. In this work, the authors

propose a scheduling framework composed by 14 heuristics.

This framework implements the heuristics in a two phase

scheduling: in the first phase tasks are ordered prior to execu-

tion; in the second, tasks are mapped to available resources. In

this schema, tasks have two attributes, one is the arrival time,

and the other is the number of instructions (used to compute

the expected execution time). The results of this work were

validate by simulation.

In [3] we found another scheduling strategy for hetero-

geneous clouds taking into account the resources cost. The

scheduling goal is minimizing completion time of an appli-

cation while respecting an upper bound for the budget to

be spent by the user. The scheduling operates dynamically

while the applications evolve. To make scheduling decisions,

the strategy is to profile the execution of tasks to infer their

computational costs. The paper documents a performance

assessment achieved in a local cloud infrastructure managed

by the Ibis platform [4].

In [5] another scheduling strategy for heterogeneous GRIDs

is presented. No information about the infrastructure, is used.

The authors propose three policies for composing resource

offers to schedule deadline constrained BoT applications.

Among other conclusions, the authors state that offer-based

scheduling produces less delay for jobs that cannot meet dead-

lines in comparison to scheduling based on load availability,

and that more jobs can meet deadlines if the total computing

power is known.

Another important work is presented by Iosup an his group

([1], [6]). After analyzing a large number of traces of ex-

ecutions on grids, they propose a workload model for BoT

applications. Some components of this model are:

2016 IEEE 15th International Symposium on Network Computing and Applications

978-1-5090-3216-7/16/$31.00 ©2016 IEEE

31

• A large number of users is able to submit BoTs. The

probability of a given user submitting a new BoT is

determined by a Zipf distribution.

• The inter-arrival time between consecutive BoT arrivals

in a provider is described by a Weibull distribution.

• The number of tasks (BoT size) is also described by

Weibull distribution.

• The computational requirements of tasks in a BoT can be

described also by a Weibull distribution of probability.

• The runtime required to finish each task (task length) in

a BoT better fit a Normal distribution.

• The variability of tasks lengths in a BoT can be described

by a Weibull distribution.

We consider that cloud schedulers can provide better result

if the user is able to schedule himself his BoT in a bounded

number of processing resources. This hypothesis is based in

the conclusion presented in [7]. Different schedulers were

analyzed in this work and authors state that the makespan can

be reduced by regrouping tasks in coarser execution units due

to the high degree of unpredictability with respect to resource

availability of cloud environments.

Our approach to prove this hypothesis is experimental. We

propose a high level abstraction to describe BoT applications

and a basic framework to regrouping tasks in virtual machines

(VMs). A BoT description is translated to a random BoT

application with the proprieties identified by Iosup and group.

The VMs represent the coarser units of work. The prototype

was validated in a cloud infrastructure managed by OpenStack.

III. THE BOT ABSTRACT APPLICATION

A BoT is described by a set A of n 4-tuples A =
{q1, . . . , qn}. Each 4-tuple qi = [ai, di, bi, ci] defines a set

of bi identical tasks ready at the time ai. The duration and

the processing cost of those tasks are giving by di and ci.
In our model, the time evolves discretely. Thus, the attributes

related to time, a e d, are natural positive numbers. The cost

c is informed as a percentage of utilization of a CPU. We

consider a homogeneous architecture.

A. Step-by-step execution

Time evolves discreetly, step-by-step. The attributes a and d
define the granularity of tasks in a BoT. A task τ ij belonging to

qi can be seen, in consequence, as a sequence {w0, . . . , wdi−1}
of jobs, each job having a computational cost ci. Since each

job represents a time step at execution time, the following

rules are valid:

1) The w1 ∈ τ i is ready to execute at time ai;
2) Given two jobs wk−1 and wk belonging to a τ i, with

1 ≤ k < di, the precedence order wk−1 ≺ wk must be

respected.

The number of jobs in a BoT A is the sum of the number

of time steps required to execute each tasks defined by A.

IV. TASK CONSOLIDATION

Task consolidation is a scheduling effort accomplished by

the user to map tasks described by a BoT in a finite number

of processing resources. Different scheduling policies can be

obtained combining information about tasks attributes (arrival

time, duration, computational cost) and the ongoing execution

step (to compute the amount of completed or remaining

number of jobs of each task).

A. Task decomposition

Although tasks in a BoT are independent, a given task is

able to create new tasks on the same BoT while it executes.

Consider two tasks τ ik and τ jl from groups qi and qj where

ai < aj and δ = aj−ai is true. Since tasks have no individual

identification, it is valid to consider that any task in qi creates

the group qj at the end of the job wτ i

δ . In this way, the tasks

in the group qj cannot be pushed into the bag before all tasks

τ i finish the step wδ , even in a situation where there is a

limited number of processing resources. To prevent incorrect

execution order, we introduce a global step as an external clock

to synchronize the creation times.

A job w
τk
i

j ∈ τki is described by w
τk
i

j = [gij , r
i
j , f

i
j , c

i
j]. At

this level of decomposition, the abstraction of tasks is no more

necessary. In this 4-tuple gij represents the global step when

the job becomes ready. The job execution cost cij = ci. The

number of jobs remaining and finished in the original task jobs

sequence are represented by rij and f i
j , respectively. Thus, we

have bi = rij + f i
j and gij = ai + f i

j . For a given task τi,
a sequence of di jobs τi = {wi

1, w
i
2, . . . w

i
di

} is instantiated.

To proceed the task consolidation, the job is the unit of work

considered, taking into account that jobs with the same global

step are independent and those belonging to a same task must

be executed in the strict order of their global steps.

B. Processing contention

A cloud infrastructure M defines a limited amount of

processing resources. We consider an homogeneous cluster

with unbounded memory capacity and no delays for commu-

nication with processors. We also consider that the scheduling

operations introduce no overhead at execution time. Thus,

only the BoTs are the resource consumer in the system.

M is composed by a set of m identical processors M =
{p1, p2, . . . pm}. In a given global step s, this infrastructure

provides |CM | = m×100% processing capacity. The process-

ing requirement LA
s of a BoT An in a given step s is the sum

of the processing requirements of all ready jobs. Processing

contention is observed when LA
s > |C|. In this case, a set of

ready jobs must be choose to be executed at the step s and the

others delayed. Since the load of job is atomic, i.e., cannot be

split, the effective load processed in s is |LA
s | ≤ |CM |.

The set of delayed jobs will be executed, at least, at

the global step s + 1. Since there are creation precedence

constraints, in the form wτ i

δ �−→ qj , ∀qi and qj ∈ A, when

a job is delayed, creation of new tasks must be delayed as a

consequence.

C. Normalizing the global step

As shown previously, the attribute ai of a 4-tuple qi
represents the arrival time in an unbounded architecture of

32

all tasks defined by qi. This time ai represents also the

amount of processing already finished by a given BoT. If

processing contention is occurs, all remaining jobs will suffer

the consequences of the delay.

The processing contention results on the preemption of

some executing tasks, pushing them back to the bag. In this

case, the global step of all jobs in the bag, belonging to

preempted or ready tasks, is incremented in one step. The

normalization is required to preserve both the temporal order

between two jobs wi
j , w

i
j+1 ∈ τi and the creation dependency

between wi
j �−→ qk, ∀i < k ≤ n,∈ An when gij + 1 = ak.

V. USER LEVEL SCHEDULING

The user level scheduling provides the mapping of jobs

produced by a BoT over a cloud infrastructure with limited

number of resources.

A. Basic operation

The user level scheduler has as input a bag description and

the number of available processors. This scheduler is correct

if all dependencies between jobs are respected and it must to

guarantee that a ready job will be waiting if there is at least

one processor with enough processing capacity available. The

scheduler runs at the end of each global step and produces the

load distribution to the following global step. The following

operations may be executed:

Job selection: Only ready jobs (i.e., gi = g), are eligible. A

job is selected from a list, this list may be ordered by a

priority criteria.

Processor selection: Selects a processor to execute the se-

lected job. Since the scheduler operates on a homoge-

neous architecture and there are no communication costs

and memory limits, this selection takes into account the

amount of processing power available on each processor.

Task preemption: A task may be preempted when new tasks

are pushed into the bag and there is not enough processing

power available. Due to some priority criteria, or even by

random choice, a running task can have the execution of

its jobs delayed. Jobs cannot be preempted, since they

execute atomically in one time step.

Task migration: Since there is no communication cost, task

migration occurs without time constraints. As jobs cannot

be preempted, they cannot be migrated.

We define two map policies combining job and processor

selection operations: batch and cyclic. Both policies have in

common the input (the set of processors and a list with ready

jobs) and the output (a list of jobs for each processor). If

the ready list is not empty at the end of a mapping, the

remaining jobs are pushed back to the bag and a normalization

of time steps is triggered. When a mapping processing starts,

the processing capacity of each processor is assumed to be

100% (the processors are idle).

The batch policy first selects a processor and then move

through the list of jobs while the load mapped to the processor

selected is below 100%. If the processing cost of the job in the

head of the list does not exceeds the current capacity of the

processor, the job is removed from the list and its processing

cost added to the processor load. Otherwise, the first job is

skipped and the same check is repeated for the second job in

the list and so on. The mapping process for a processor ends

when it attains 100% of processing capacity or when there are

no more jobs to be considered. The process for all processors

ends when all processors where selected or when the ready

queue becomes empty.

The cyclic policy maps a job to a processor at once.

Processors are numbered from 1 to m. The mapping process

visits all processors cyclically and selects, starting from the

head of the ready list, a job that does not exceed 100% of

the current processor processing capacity. The process ends

when a cycle was completed without any placement or when

the ready list becomes empty.

B. The list scheduling

The model of BoTs allows to build a list of jobs statically.

This list is, first, ordered by the global step of each job, consid-

ering a contention free architecture, then, the jobs belonging

to the same global step are sorted by a priority criteria.

Am′
= S′ < F > (A,m′)

The scheduler is a function S′ that maps the tasks of an

application described by a list of jobs A over the m′ processors

of a homogeneous parallel machine. The scheduler S′ applies

interactively a consolidation algorithm until it finishes the

mapping of all jobs in A. Each iteration represents a global

step evolved. The result of each iteration is the mapping of

jobs in a given global step, removing placed jobs from the list

and updating the load of each processor.

C. Defining a priority criteria

A job in our model is described by a 4-tuple wi =
[gi, ri, fi, ci]. The gi attribute, the global step, defines a tem-

poral order among jobs. The consolidation algorithm assures

that this temporal order is respected. Thus, the priority criteria

must be applied in jobs in the same global step. Any attribute

ri, fi e ci, or attributes combination, can be used to define a

priority order.

The sorting algorithm has as input a list of jobs and provides

as output the same list, ordered by a function F . This function

can implement different criteria, e.g., the computational cost

of a job, the arrival time of the tasks (the older a task is, the

higher is the priority of its jobs), etc.

D. Scheduling result

The application level scheduling, named task consolidation

algorithm, implements an online list strategy statically. It

provides the computational load of each available processor

at each global step. It is assumed there is no overhead at

execution time, e.g. scheduling overheads and communication

latencies, and that a processor executes its load independently

from the others. |SA| represents the expected length, in steps,

of the execution.

33

Table I
PRODUCTION BOTS CASE STUDY (TIME IN MINUTES).

BoT # tasks (Lμ,Lσ) Arrival # VMs |SUP−∗| Finish |SUP−∗|-Finish (%)
UP-1 98 (50,10) 0 10 355 394 10.99%

UP-2 41 (50,10) 65 8 240 262 9.17%

UP-3 56 (10,2) 110 10 215 225 4.65%

UP-4 23 (10,2) 165 8 225 231 2.67%

UP-5 10 (50,10) 200 4 245 252 2.86%

UP-6 39 (50,10) 230 8 345 359 4.06%

UP-7 8 (10,2) 270 4 275 297 8%

UP-8 26 (25,5) 360 8 460 472 2.61%

UP-9 16 (50,10) 400 4 480 489 1.86%

UP-10 10 (25,5) 530 4 570 576 1.05%

VI. PERFORMANCE ASSESSMENT

To illustrate a performance assessment of our scheduling

schema, we investigate the behavior at execution time of ten

independent BoTs (UP-1 to UP-10) submitted to our private

OpenStack (Kilo release) based cloud infrastructure with ten

nodes (quadcore, 16 Gb, Gigabit Ethernet). These BoTs have

different attributes, such as arrival time, number of tasks,

processing loads and ideal number of VMs. Table I provides

some information about the (randomly) generated BoTs as

well as the performance obtained. For example, UP-1 begins

the experiment at minute 0 and its |SUP−1| is 355, but it was

effectively finished at minute 394. The load of the tasks of

each BoT was generated by a normal distribution ([1]) were

the average and the standard deviation was given by Lμ and

Lσ . In this table, |SUP−10| and the Finish time correspond

also to the expected and effective time to finish all executions.

In our experiment, we start OpenStack with the default

parameters and each new VM launched is placed employing

the Filter strategy. Then, during the execution, every 5 minutes

(i.e, the time required to execute a global step in our exper-

iments) a naı̈ve system scheduling strategy detects all nodes

overloaded (CPU occupation above 80%) then migrates VMs

from these nodes in order to balance the load.

Even considering that the UP BoTs have not saturated the

infrastructure, the Difference % between the expected and

the real time execution decreases with the number of active

VMs. We ascribe this behavior to the load balancing among

nodes provided by the system scheduler. In average we have

observed 136 VM migrations on each run of this set of BoTs.

To support this assumption we have submitted all UP-* to be

consolidated as a single BoT with 16, 20 and 36 VMs. The

|Sbig| obtained was 770, 640 and 490 minutes and the effective

running time was 883, 733 and 553 minutes, respectively,

representing roughly a difference of 12% on all cases.

VII. CONCLUSION

Bag-of-tasks is a very common pattern of parallelism in

cloud computing and represents the main source of load in

these infrastructures. In this paper, we proposed an application

level scheduling, named task consolidation, to distribute the

load generated by a BoT in a bounded number of virtual ma-

chines. A performance assessment in a real cloud infrastructure

is also presented. Next steps will include a simulation tool

to evaluate the task consolidation strategy in a large number

of scenarios. Another contribution of this paper is the BoT

description model.

In this work we were able to show that the effect of

unpredictability with respect to resource allocation in a cloud

infrastructure can be constrict by a tasks grouping policy, as

expected by [7].

ACKNOWLEDGEMENT

This work was supported by CAPES/Brasil (Programa

Nacional de Cooperação Acadêmica da Coordenação de

Aperfeiçoamento de Pessoal de Nı́vel Superior).

REFERENCES

[1] A. Iosup and D. Epema, “Grid computing workloads,” IEEE Internet
Computing, vol. 15, no. 2, pp. 19–26, 2011.

[2] J. O. Gutierrez-Garcia and K. M. Sim, “A family of heuristics for agent-
based elastic cloud bag-of-tasks concurrent scheduling,” Future Gener.
Comput. Syst., vol. 29, no. 7, pp. 1682–1699, Sep. 2013.

[3] A.-M. Oprescu and T. Kielmann, “Bag-of-tasks scheduling under budget
constraints,” in CLOUDCOM 2010, 2010, pp. 351–359.

[4] N. Palmer, T. van Kessel, R. Kemp, N. Drost, R. V. van Nieuwpoort,
J. Maassen, H. E. Bal, G. Wrzesinska, T. Kielmann, K. van Reeuwijk,
F. J. Seinstra, C. J. H. Jacobs, and K. Verstoep, “Real-world distributed
computer with ibis,” Computer, vol. 43, no. 8, pp. 54–62, 2010.

[5] M. A. S. Netto and R. Buyya, “Offer-based scheduling of deadline-
constrained bag-of-tasks applications for utility computing systems,” in
IPDPS 2009, 2009, pp. 1–11.

[6] A. Iosup, O. Sonmez, S. Anoep, and D. Epema, “The performance of
bags-of-tasks in large-scale distributed systems,” Proc. of HPDC 2008,
p. 97, 2008.

[7] M. Gokilavani, S. Selvi, and Udhayakumar, “A survey on resource
allocation and task scheduling algorithms in cloud environment,” IJEIT,
vol. 3, no. 4, Oct. 2013.

34

Heterogeneous Resource Allocation
in Cloud Management

Serdar Kadioglu, Mike Colena, Samir Sebbah
Advanced Constraint Technology

Oracle Corporation, Burlington, MA 01803, USA

{firstname.lastname@oracle.com}

Abstract—This paper introduces a combinatorial problem
arising from real-world business requirements as part of resource
allocation in Cloud Management. In particular, we focus on the
allocation of a set of heterogeneous resources serving multiple
tenants with different service level agreements. There exist
certain business rules that govern the application stemming from
privacy, performance, and capacity requirements. We show how
to formulate the problem as constrained optimization and then
solve it efficiently using Artificial Intelligence based constraint
propagation. Our approach stands out as a high-level, declarative
solution that is efficient and easy to maintain and update.

I. INTRODUCTION

In the Cloud Computing era, the number of applications

that requires continuous processing of high-throughput data is

ever growing: consider, for example, financial market anal-

ysis, internet traffic, various IoT applications, or Big Data

analytics [1]. Varying service level agreements and different

applications characteristics make static cloud resource alloca-

tion inefficient. This calls for dynamic, easy-to-modify and

maintain resource allocation strategies.
The particular resource allocation problem studied in this

paper emerges as a part of cloud management and is aimed

at managing physical resources such as CPU cores and disk

space. These resources must be sliced and shared between

virtual machines running potentially heterogeneous workloads.

The ultimate goal is to provide support for the indexing

capability of search platforms, such as the Apache Solr [2]

in our case; a popular open-source search engine designed

to index and search multiple sites in near real-time. Apache

Solr, and other similar engines, continuously generate ever

growing quantities of heterogeneous data. The issue is that,

this unbounded data flow must be handled effectively and

efficiently using limited resources, respecting various business

rules. This is exactly the problem we studied.
Due to their intrinsic complexity, such problems are fre-

quently dealt with custom-designed heuristics. The issue with

heuristic solutions is that they are often rigid, hard to extend,

and even harder to maintain as requirements evolve, which

frequently happens in cloud environments. To circumvent that,

we propose an Artificial Intelligence (AI) based constraint for-

mulation to tackle resource allocation. The main contribution

of this paper is a high-level, declarative AI approach that is

easy to update and maintain, and performs well in practice as

demonstrated in our experiments.

II. PROBLEM DESCRIPTION

Consider a setting where we are given a cluster of host

machines. These are physical systems that host one or more

Solr nodes, i.e., Java Virtual Machines (JVMs). The machines

can be heterogeneous, e.g., with different specifications from

storage to process capacity, bandwidth, etc. Each Solr node

(JVM) can host one or more cores, which are used to index the

incoming data. A logical set of one or more cores represents

a core group. In this context, a group refers to a related set

of data records, and within a single group, the records are

distributed/balanced among multiple cores. This is similar to

the concept of sharding in terms of database architecture.

The system is aimed at serving a set of tenants that own

one or more core groups. The tenants can be of different

types (e.g., trial, standard or enterprise customers) which limits

the number of cores that they are entitled to in core groups.

Similarly, the tenant type also defines the application growth

limit (e.g., trial customers are allowed up to one core group

increment for storage per week). The goal is to assign all the

cores to JVMs achieving a balanced system overall. While

each particular application deployed in the cloud has its own

peculiarities and might be subject to other specifications, the

following rules capture the main structure of our problem.

I. Each tenant should claim separate JVMs.

II. Cores of each core group should be placed on different

JVMs but on the same host machine.

III. The storage capacity of machines and JVMs should be

respected.

IV. The maximum load among all JVMs should be mini-

mized.

We refer to this problem as the CORE GROUP PLACEMENT

PROBLEM (CGPP).

Definition 1 (CGPP INSTANCE) An instance I of the CGPP

can be defined as I (M, T, numJVM, CapacityM, CapacityJ,
numGroups, numCores), where M is the number of host
machines, T is the number of tenants to serve. Then, for
each machine m ∈ M , numJVMm denotes the number
of JVMs in m, CapacityMm denotes the maximum number
of cores allowed in m, CapacityJm denotes the maximum
number of cores allowed per JVM in m. Also, for each tenant
t ∈ T , numGroupst denotes the number of core groups of t,
numCoresgt denotes the number of cores in each group of t.

978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

35

III. SOLUTION APPROACH

We now propose a novel AI-based solution to CGPP

leveraging Constraint Programming (CP) [3]. In principle, a

constraint formulation consists of three elements:

1) A set of decision variables to represent the unknowns of

a problem, whereby

2) Each decision variable can take a value from a set of

possible values, called domain, and

3) A set of restriction on the possible combinations of values

referred to as constraints.

A. The Decision Variables

The CGPP lends itself naturally to a high-level model thanks

to global constraints and the declarative nature of CP.

We only need a single set of decision variables to target the

heart of the problem: where to assign each core?

JVM of Each Core: There is a one-to-one mapping between

these variables and the cores. Each core is treated as an integer

decision variable with a domain that consists of all JVMs.

Let J = Σm∈MnumJVMm be the total number of JVMs

and Gt = {1, . . . , numGroupst} to refer to all groups of

tenant t. Then,

jvmtgc{1, . . . , J} ∀t ∈ T, ∀g ∈ Gt

∀c ∈ numCorestg
(1)

The other set of decision variables are as follows.

Machine of Each Core Group: These variables denote the

machine assigned to each group and their domain is from 1

to the number of machines.

machinetg{1, . . . ,M} ∀t ∈ T, ∀g ∈ Gt (2)

Tenant of JVM: These variables denote the tenant of each

JVM and their domain is from 0 to the number of tenants. The

value 0 means that the JVM does not belong to any tenant.

tenantj{0, . . . , T} ∀j ∈ J (3)

Load of JVM: These variables store the load of each JVM

and their domain is from 0 to the core limit on that JVM. Let

m(j) return the machine index corresponding to a given JVM

j. Then,

loadJj{0, . . . , CapacityJm(j)} ∀j ∈ J (4)

Load of Machine: These variables store the load of each

machine and their domain is from 0 to the core limit on that

machine.

loadMm{0, . . . , CapacityMm} ∀m ∈ M (5)

Notice how in both (4) and (5) the capacity constraints

for JVMs and machines are implicitly enforced by the CP

formalism via the domain information.

B. The Constraints

Now, we need to link these variables together via constraints

to express the desired properties of a solution to CGPP.

The first constraint in our model links the assignment of

cores to JVMs with the tenant of that JVM. This ensures Rule–

I which states that each tenant should claim seperate JVMs.

tenant[jvmtgc] = t ∀t ∈ T, ∀g ∈ Gt

∀c ∈ numCorestg
(1)

Here we are indexing into a set of decision variables,

tenant, using a decision variable, jvmtgc, as opposed to a

simple static array indexing operation. In CP, this is referred

to as the Element global constraint [4] and it neatly captures

this relation. Compare it for example with a low-level binary

representation as in boolean formulations or linear programs

that enumerates each possible assignment and then try to force

or forbid some assignments.

The second constraint links the tenant of a JVM to the

machine assigned to a particular group of a tenant. That means,

the cores in that group can only be placed on the JVMs of that

machine. For example, if a group belongs to the first machine,

then the available values in the domain of the cores in that

group can only consist of JVMs in the first machine. This

ensures the same machine requirement in Rule–II.

Let numJVMBefore be an integer array of size M where

each index corresponds to a machine and returns the number

of JVMs before that machine. Then,

lowerBound = numJVMBefore[machinetg]

upperBound = lowerBound+ numJVM [machinetg]

lowerBound < jvmtgc ≤ upperBound

∀t ∈ T, ∀g ∈ Gt

∀c ∈ numCorestg
(2)

In order to express this constraint, we again take advantage

of the powerful Element constraint and first calculate how

much we should shift from the left, the lowerBound, and

then, how far we can go towards right, the upperBound.

The third constraint states that the cores in the same group

have to be in different JVMs. This ensures the unique JVM

requirement in Rule–II. For simplicity we omit the c subscript

of the jvm variable to refer to the collection of all cores.

We take advantage of another expressive global constraint;

AllDifferent [5]

AllDifferent(jvmtg) ∀t ∈ T

∀g ∈ G
(3)

The next constraint links assignment of JVMs to cores with

the load on that JVM using the Global Cardinality Constraint

(GCC) [6], [7]. Remember that the load variables were created

with appropriate upper bounds which implicitly enforces the

capacity limits.

GCC(jvm, {1, . . . , J}, loadJ) (4)

36

m ∈ M = {1..6}
t ∈ T = {1..5}

g ∈ Gt = {{1..10}, {1..15},
{1..12}, {1..8}, {1..10}}

c ∈ Ct = {{1..4}, {1..4}, {1..2},
{1..4}, {1..2}}

maxCoreJVM = 10

maxCoreMachine = {145, 226, 145, 145, 145, 145}
numJVM = {32, 48, 32, 32, 32}

numJVMBefore = {0, 32, 80, 112, 144, 176, 208}

J =

|M |∑
m=0

numJVMm = 208

∀t, g, c jvmtgc ∈ {1..J}
∀t, g machinetg ∈ {1..|M |}

∀j tenantj ∈ {0..|T |}
∀j loadj ∈ {0..maxCoreJVM}

∀m loadMm ∈ {0..maxCoreMachinem}
∀t, g, c tenant[jvmtgc] = t

∀t, g, c lb = numJVMBefore[machinetg]

lb < jvmtgc ≤ lb+ numJVM [machinetg]

∀t, g AllDifferent(jvmtg)

GCC(jvm, {1..J}, loadJ)

∀m loadMm =

numJVMm∑
j=0

loadJ [numJVMBeforem + j]

minimize max(loadJ)

Fig. 1. The instance data (on the left) and the corresponding constraint formulation with the decision variables, constraints, and the objective (on the right).

Our last constraint accumulates the load of every JVM in

each machine yielding the machine load. Again, the capacity

limit is enforced via the upper bound of the machine load

variables.

loadMm =

j=numJVMm∑
j=0

loadJ [numJVMBeforem + j]

∀m ∈ M
(5)

C. The Objective
Finally, our objective can simply be stated as;

min max(loadJ)

It is possible to infer simple bounds for the objective. Let

Cores be the set of all cores among all the groups of all

tenants. Then the objective can not be less than the ratio of

total number of cores divided by the total number of JVMs

and cannot be greater than the maximum capacity among all

JVMs.

|Cores|
|J | ≤ max(loadJ) ≤ max(CapacityJ)

D. The Search Directive
A key observation is that the value of all decision variables

can be extracted once jvm variables are assigned to feasible

values. Given the assignment of all cores, we can find out the

load of each JVM, which tenant they belong to, the machine

of each group, and so on. Hence, the critical decision variable

in this model is jvm. We can provide this information to the

constraint solver to focus the search on those variables first.

branch(jvm)

The relative branching order among the jvm variables can

be static such as lexicographic order, or dynamic/adaptive

such as weighted-degree [8] or impact-based search [9]. These

heuristic are commonly available in most constraint solvers.

IV. RELATED WORK

Resource allocation problems are commonly solved via

(Meta)-Heuristics. As in [10], we also believe that the addition

of side constraints such as privacy, reliability, and sustain-

ability make declarative AI approaches a prime candidate to

provide robust solutions that can easily adapt to changes.

Strikingly, researchers from Microsoft share our concern on

evolving requirements in cloud systems and that heuristics

might not eventually suffice [11]. While they propose to

use a domain specific language for resource allocation as a

declarative approach, we turn to constraint programming as a

well-established generic AI paradigm for which several open-

source and commercial solvers are available.

V. NUMERICAL RESULTS

Benchmarks: Based on the information and business require-

ments gathered from application teams, we created instances

of varying sizes and complexity as listed in Table I. Our data

set consists of instances generated using a combination of

the following parameters: {25, 50, 100} machines, half of

which was selected uniformly at random to have 32 JVMs

and the other half has 48 JVMs, {25, 50} tenants with {10,

20} average group size per tenant. The physical machines

considered have roughly 16 and 22 TBs storage limits, which

result in 145 or 226 cores respectively on each machine when

JVMs are limited to 600MBs. Each JVM is limited to 10 cores.

Notice that, not all JVMs can be loaded to maximum core

capacity due to storage limits on the machines that restrict

the total number of cores. These instances result in 20%

to 40% density in the machines, at which point we hit the

storage limits. Overall, these benchmark instances allow us to

work with thousands of JVMs in our experiments whereby the

resource provisioning spans a time period of 2 months.

37

Implementation: The constraint model is implemented using

an in-house constraint solver at Oracle. Since the operators

we used are commonly available, our solution can also be

implemented with ease using other commercial or open-source

constraint solvers such as IBM Ilog CP Optimizer [12] or

Gecode [13]. All experiments were run on a Dell laptop with

Intel Core i5 CPU @2.5 GHz and 8.00 Gb RAM.

Runtime Experiments: We remind that our results are for

solving all cores and all groups at once. In that sense, we

are solving larger instances compared to a system that is

progressively growing as needed. There is a strict runtime limit

of 2 minutes based on the needs of the deployed application.

As shown in Table I, any experiment with 25 or 50 machines

took on average less than ∼5 seconds to find and prove the

optimal solution. Going forward, any experiment with 100

machines were solved to optimality on average less than ∼2

minutes. At this point, we hit the time limit dictated by

application preferences as longer runtimes are not considered

viable in practice. Within this time frame, our solution finds

the best allocation involving thousands of JVMs which met

the business requirements successfully.

Parallelization: It is reasonable to assume that larger in-

stances, e.g., thousands of machines might be of interest

in some applications. In that case, for further scalability,

our monolithic solution can be parallelized by decomposing

the instances into smaller groups of machines and tenants,

and running the constraint solver on the resulting models

simultaneously. A similar approach is successfully employed

in BtrPlace, a flexible virtual machine scheduler based on

constraint models [14].

Development Time: We welcome ideas from the community

on how to apply other techniques and improve upon our

solution for CGPP. However, let us emphasis again the im-

portance of simplicity. Our constraint formulation is less than

50 lines of source code and there is almost no gap between the

application and the implementation. This is highly desired in a

production environment and reduces the time to solution. Our

development time was only a few days to build the constraint

model followed by testing, integration, and deployment.

VI. CONCLUSION

We introduced a new combinatorial problem, namely CORE

GROUP PLACEMENT, targeting the allocation of heteroge-

neous resources in cloud centers. We presented a number

of business requirements motivated by a real application.

We showed a succinct and efficient constraint formulation

is possible. The formulation was able to address multiple

requirements; virtualization, capacity limits, privacy and per-

formance issues, and load balancing. The use of a declara-

tive AI-based approach allowed flexibility and extensibility;

much needed properties in cloud settings that are evolving

permanently. Finally, experimental results demonstrated that

the constraint propagation is highly effective in finding optimal

solutions. Overall, our solution excelled in meeting application

requirements and we believe that AI-based approaches stand

MACHINES

Number of machines Avg. Runtime

25 < 2 seconds

50 < 5 seconds

100 < 2 minutes

% of 32 JVMs ∼50

% of 48 JVMs ∼50

Machine storage limit {16 TB, 22 TB}
Machine core limit {145, 226}
JVM storage limit 600 MB

JVM core limit 10

TENANTS

Number of tenants {25, 50}
Avg. group size {10, 20}
Group core limit {2, 4}

% enterprise tenants ∼50

% standard tenants ∼50

RESOURCE PROVISIONING 2 months

TABLE I
CGPP INSTANCES AND THE AVERAGE RUNTIME OVER 30 INSTANCES

GROUPED BY THE NUMBER OF MACHINES FOR ALL PARAMETERS.

out as an attractive alternative to be considered for industrial

applications in cloud management.

REFERENCES

[1] K. Kant, “Data center evolution: A tutorial on state of the art, issues,
and challenges,” Computer Networks, vol. 53, no. 17, pp. 2939–2965,
2009.

[2] D. Smiley, E. Pugh, and K. Parisa, Apache Solr 4 Enterprise Search
Server. Packt Publishing, 2014.

[3] K. Apt, Principles of Constraint Programming. Cambridge Univ. Press,
2003.

[4] P. Van Hentenryck and J. P. Carillon, “Generality versus specificity: An
experience with AI and OR techniques,” in Proceedings of the Seventh
National Conference on Artificial Intelligence, 1988, pp. 660–664.

[5] J.-C. Régin, “A filtering algorithm for constraints of difference in
csps,” in Proceedings of the Twelfth National Conference on Artificial
Intelligence (Vol. 1), ser. AAAI ’94. Menlo Park, CA, USA: American
Association for Artificial Intelligence, 1994, pp. 362–367. [Online].
Available: http://dl.acm.org/citation.cfm?id=199288.178024

[6] Y. T. A. Oplobedu, J. Marcovitch, “Charme: Un langage industriel de
programmation par contraintes, illustré par une application chez renault,”
in Proceedings of the Ninth International Workshop on Expert Systems
and their Applications: General Conferencehnical, 1989, pp. 55–70.

[7] I. Katriel and S. Thiel, “Complete bound consistency for the global
cardinality constraint,” Constraints, vol. 10, no. 3, pp. 191–217, 2005.

[8] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais, “Boosting system-
atic search by weighting constraints,” in ECAI, vol. 16, 2004, p. 146.

[9] P. Refalo, “Impact-based search strategies for constraint program-
ming,” in Principles and Practice of Constraint Programming–CP 2004.
Springer, 2004, pp. 557–571.

[10] J.-C. Régin and M. Rezgui, “Discussion about constraint programming
bin packing models.” AI for data center management and cloud com-
puting, vol. 11, p. 08, 2011.

[11] A. Rai, R. Bhagwan, and S. Guha, “Generalized resource allocation
for the cloud,” in proceedings of the Third ACM Symposium on Cloud
Computing. ACM, 2012, p. 15.

[12] IBM, IBM ILOG CPLEX Optimization Studio 12.5, 2015.
[13] Gecode Team, “Gecode: Generic constraint development environment,”

2016, available from http://www.gecode.org.
[14] F. Hermenier, J. Lawall, and G. Muller, “Btrplace: A flexible consolida-

tion manager for highly available applications,” Dependable and Secure
Computing, IEEE Transactions on, vol. 10, no. 5, pp. 273–286, 2013.

38

Leveraging an Homomorphic Encryption Library to
Implement a Coordination Service

Eugenio A. Silva Miguel Correia
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

Abstract— The paper presents MorphicLib, a new partial
homomorphic cryptography library written in Java that can be
used to implement a wide-range of applications. The paper shows
the use of the library with the HomomorphicSpace coordination
service. This service is a tuple space that stores encrypted tuples
but still supports operations like returning tuples with values
within a certain range.

I. INTRODUCTION

Researchers and practitioners for decades assume that en-

crypted data cannot be processed. Generally, it is necessary to

decrypt the data before performing any operations over that

data. This problem becomes specially important when large

data resides in a public cloud. In this case, there is a dilemma

between two alternatives: (1) either the data is decrypted in the

server-side (in the cloud), which poses security issues, namely

the need to pass the key to the server and have the information

exposed to insider threats in the cloud [1], [2] at least during

the operation; or (2) the data is decrypted in the client-side,

which involves downloading the data from the cloud (typically

expensive and slow) and prevents using the computation power

of the cloud. A good solution to this dilemma would be to

perform the desired operations directly on the encrypted data,

at the server-side, where it is stored. This would avoid the

cost of moving the data, would allow leveraging the cloud’s

computation power, and would solve the security issues.

The term homomorphic encryption designates forms of

encryption that allow some operations to be performed over

encrypted data, without decrypting it. With those forms of

encryption, it is possible to perform resource-intensive com-

puting tasks at server-side without having to decrypt it first.

Homomorphic encryption became popular with Gentry’s work

[3], which was coincident with the emergence of cloud com-

puting. Gentry’s scheme provides fully homomorphic encryp-

tion (FHE), so it allows performing arbitrary computation on

encrypted data. Other FHE schemes were presented in the

following years [4], [5].

Although in theory FHE solves the problem of computing

encrypted data outsourced to a cloud, the performance of these

schemes is too poor for practical applications [6]. For that

reason, much effort has been placed in developing and using

partial homomorphic encryption (PHE) schemes [7], [8], [9],

[10], [11]. PHE schemes allow performing some computation

over encryption data, but not arbitrary computation like FHE.

CryptDB is an important step towards the deployment of

PHE in real systems [11]. CryptDB is a relational database

management system that stores encrypted data and allows

doing SQL queries. The system combines a set of PHE

schemes and has enough performance for many applications.

This paper presents MorphicLib, a new partial homomorphic

cryptography library that can be used to implement a wide-

range of applications. The library contains functions (nor-

mally) executed at the client-side and functions for the server-

side. For the client-side there is the encryption scheme, i.e.,

functions for encryption, decryption, and key generation. For

the server-side there are homomorphic equivalent operations

(addition, multiplication, comparison, etc.). The library was

programmed in Java in order to ensure portability, i.e., that it

can be executed in different platforms, both client and server-

side. Moreover, Java is arguably the most popular general

purpose programming language today, with a large set of APIs,

and a strong programming community.

The paper shows the usefulness of the library with a service

that is interesting in its own right, the HomomorphicSpace co-
ordination service. Coordination services like Google Chubby

[12], Google Megastore [13], Apache Zookeeper [14], and

GigaSpace’s tuple space (now part of XAP) [15] are important

components in current cloud systems. They are used for tasks

such as synchronization, locking, orchestration, metadata stor-

age, leader election, and replica failure detection. DepSpace
[16], [17] is a tuple space, i.e., a coordination service that

follows Linda’s associative memory paradigm [18], similarly

to GigaSpace’s tuple space. DepSpace is replicated, so it can

tolerate arbitrary (Byzantine) faults in some of its replicas.

HomomorphicSpace is an extension of DepSpace with ho-

momorphic encryption (MorphicLib), so that data (tuples) can

be stored encrypted at the servers. DepSpace’s commands

to read and retrieve tuples were extended with operators

for inequality, less/greater relations, and keyword search, all

over encrypted data. Moreover, HomomorphicSpace supports

addition and multiplication of tuples in the server. Data is

never decrypted at the server, only at the client after retrieval.

HomomorphicSpace is Byzantine fault-tolerant like DepSpace.

II. MORPHICLIB LIBRARY

As already mentioned, MorphicLib is a novel library of

partial homomorphic cryptographic functions written in Java

and providing a Java API. MorphicLib was not developed from

scratch, but based on existing source code whenever possible.

The objective was both to simplify the task and to avoid

introducing bugs, which tend to appear due to the complexity

of cryptographic code. This library can be used both at the978-1-5090-3216-7/16/$31.00 ©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

39

TABLE I
MORPHICLIB’S MAIN CLASSES

Property Homomorphic Op-
erations

Class Input Data
Types

Random None (strong
cryptanalisys
resistance)

HomoRand Strings,
Byte Arrays

Deterministic Equality an inequal-
ity comparisons

HomoDet Strings,
Byte Arrays

Searchable Keyword search in
text

HomoSearch Strings

Order
preserving

Less, greater, equal-
ity comparisons

HomoOpeInt 32 bit Inte-
gers

Sum Add encrypted val-
ues

HomoAdd BigInteger,
String

Multiplication Multiply encrypted
values

HomoMult BigInteger,
String

client-side to encrypt and decrypt data, and at the server-side

to do operations over encrypted data.

The code of the library is organized in classes, one per

homomorphic property. One crucial different between PHE

and FHE is that in the former data has to be encrypted taking

into account the kind of operation that will be supported

over the encrypted data. With FHE, on the contrary, arbitrary

computation is possible over encrypted data (at a cost, in terms

of performance). As we opted for PHE, for each homomorphic

operation we have four kinds of functions (or methods):

• key generation function, typically used at client-side;

• encryption function, typically used at client-side;

• decryption function, typically used at client-side;

• homomorphic operation functions, which do operations

over encrypted data, typically used at the server-side.

Information about the properties of the PHE algorithm, the

operations supported, and the classes is in Table I.

III. HOMOMORPHICSPACE COORDINATION SERVICE

This section presents HomomorphicSpace, a coordination

service that leverages MorphicLib to handle encrypted data at

the server. HomomorphicSpace is an extension of DepSpace,

so we start by presenting the latter.

A. DepSpace

DepSpace (Dependable Tuple Space) is a fault- and

intrusion-tolerant tuple space [16]. Architecturally it is client-

server system implemented in Java. The server-side is repli-

cated in order to tolerate arbitrary faults. The client-side is a

library that can be called by applications that use the service.

Clients communicate with the servers using a Byzantine fault-

tolerant total order broadcast protocol called BFT-Smart. The

most recent version supports extensions to the service [17].

The service provides the abstraction of tuple spaces. A tuple

space can be understood as a shared memory that stores tuples,

i.e., sequences of fields (data items) such as (1, 2, a, hi). Tuples

are accessed using templates. Templates are special tuples

in which some fields have values and others have undefined

values, e.g., wildcards meaning any value (“*”). A template

matches any tuple of the space that has the same number of

fields, in which the values in the same position are identical,

and the undefined values match in some sense. For example,

the template (1, *, a, *), matches the tuples (1, 2, a, hi) and (1,

7, a, 14), but neither (1, 2, b, 4) nor (1, 2, a, hi, 5). DepSpace

supports a set of commands, issued by clients and executed

by the servers. Here we consider the following commands:

• out tuple – inserts a tuple in the space;

• inp template – reads and removes from the space a tuple

that matches the template;

• rdp template – reads but does not remove from the space

a tuple that matches the template;

• inAll template – reads and removes from the space all

tuples that match the template;

• rdAll template – reads but does not remove from the

space all tuples that match the template.

DepSpace does not support homomorphic operations. How-

ever, it allows fields to be encrypted and basic equality

matching by storing a hash jointly with the encrypted field.

This solution however is vulnerable to trivial brute force and

dictionary attacks. It does support the definition of access

control policies using its policy-enforcement mechanism.

B. Threat Model

The threat model we consider for HomomorphicSpace is

similar to the threat model for DepSpace except for one crucial

difference: we consider that any server may be adversarial and

try to read the content of the tuples it stores. We consider

that all tuples of their fields for which confidentiality has to

be preserved are encrypted using homomorphic encryption,

preventing malicious servers from doing such an attack. Sim-

ilarly to DepSpace, adversaries may compromise up to f out

of 3f + 1 servers and stop them or modify their behavior

arbitrarily. This is tolerated using replication and the BFT-

Smart protocol. Network messages may also be tampered

with by the adversary, but the system uses this using secure

channels.

C. Commands

HomomorphicSpace extends DepSpace to allow commands

over tuples with encrypted data items. More precisely in

comparison with DepSpace, HomomorphicSpace: (1) supports

the original match operations over encrypted data; (2) ex-

tend matching beyond the equality and wildcards with more

complex matches, i.e., inequality, order comparisons (lower,

greater), and keyword presence in a text, all over encrypted

data; (3) allow addition and multiplication of encrypted fields.

Besides values and wildcards (“*”), HomomorphicSpace’s

templates can include the following fields:

• % word1. . . wordn – matches a textual field containing all the
words indicated;

• > val – matches a numeric field containing a value greater than
val;

• >= val – matches a numeric field containing a value greater
or equal to val;

• < val – matches a numeric field containing a value lower than
val;

• <= val – matches a numeric field containing a value lower or
equal to val.

40

Fig. 1. HomomorphicSpace architecture

HomomorphicSpace adds three commands to those provided

by DepSpace (Section III-A). The first is crypt id template
and aims to define a tuple encryption type. The command takes

as input an identifier (id) for the type it will create, and a

template with the homomorphic operation desired for each of

the fields, which will determine the homomorphic property.

For example, if the template contains for a given field the

operation “=”, the system infers that the encryption to be used

for that field is deterministic, which is the strongest that allows

that operation. If no operation is indicated, the field will not

be encrypted. The complete list of interpreted operations is:

• =, <> – determinist encryption
• >,>=, <,<= – order preserving encryption
• % – searchable encryption
• + – Paillier
• & – RSA
• . – random encryption
• other value – no encryption

The second command is rdSum template. This command

starts by collecting all the tuples that match the template

similarly to rdAll, then sums the (encrypted) fields with +
in the template. The function returns a single tuple with the

result. The third command is rdProd template, which works

similarly to rdSum but does multiplication instead of sum.

This scheme allows a single type of encryption per field

(unlike CryptDB). However, with the tuple data structure this

is not a restriction. For instance, for tuples with a single

numeric field, two operations like equality and sum can be

supported by transforming that field in two and using the tuple

encryption type (=, +).

D. Architecture and Functioning

Architecturally the HomomorphicSpace is similar to

DepSpace, with a client-side and a server-side. Figure 1

represents the system with 4 replicas, i.e., with f = 1. From

the confidentiality point of view, the server-side is untrusted

and the client-side trusted.

The server-side of the system is mostly DepSpace code

with the server-side of the MorphicLib and with extensions to

process the homomorphic operations. The client-side includes

MorphicLib’s and DepSpace’s client-side libraries. The main

functions of the client is to encrypt tuples and send them to

the tuple space, and to decrypt them before they are delivered

to the application. When a tuple is encrypted, the encryption

keys are stored in a key repository (a folder with one file per

key). Next we describe both sides in more detail.

Client side – When the crypt command is issued (i.e.,

that method is called), the library generates keys for every

field of the tuple for which homomorphic properties are

desired. These keys are stored jointly with the tuple encryption

type (id and template) in the key repository. All the other

commands (out, inp, etc.) include an id that the library uses

to retrieve the corresponding tuple encryption type and keys

from the repository. If the operation indicated in a field is

not compatible with the encryption defined with the crypt
command, the command returns an error.

The library uses the DepSpace client library to send to the

servers the command and the fields. If the command is an

out, the fields are encrypted with the scheme defined in the

tuple encryption type and the keys previously stored. If the

command involves reading tuples, it contains the operation

and encrypted values. Note that each field of each id has its

own key (or key pair for RSA), but the same field for the same

id is always encrypted with the same key. When the library

receives a reply from the servers, it does the opposite, i.e., it

decrypts the encrypted fields using the corresponding schemes

and keys.

Server side – The server-side handles different commands in

different ways. The out command is executed the same way

as in DepSpace. The fields may be encrypted but they come

encrypted from the client so the tuple is stored unmodified.

The inp and rdp commands were modified using DepSpace’s

extension mechanism in order to support the =, <>, >,

>=, <, <=, and text search operations over encrypted data,

returning one of the matching tuples. The rdall and inall
commands work similarly, as rdp and inp, but return all

matching tuples. The rdSum and rdProd commands are im-

plemented as a modification of the original rdAll command

that returns a single tuple with the relevant fields respectively

added or multiplied.

IV. EXPERIMENTAL EVALUATION

We did a set of experiments to evaluate the performance of

HomomorphicSpace. The experiments were executed in two

personal computers. The first had an Intel(R) Core(TM) i7-

3537U CPU @ 2.00 GHz, 4 GB RAM, and Windows 8.1 (64

bits). The second had an Intel(R) Core(TM)2 Duo CPU U9400

@ 1.40 GHz, 3,5 GB RAM, and Ubuntu 15.10 (64 bits). The

software was executed using Java 1.8 with Oracle JDK in the

Windows Machine and OpenJDK in the Linux Machine. The

2 machines were connected by an IEEE 802.11b/g/n switch

(up to 54 Mbps).

We used the Linux machine to run the client, and the Win-

dows machine to run the servers. Although we used a single

machine for the server-side, it contained 4 server replicas.

The client-side application had a command line interface that

allows writing commands to be executed by the tuple space.

The performance of tuple space operations depends on the

41

TABLE II
EXACT MATCH EXECUTION TIMES (MS)

Encryption used out 100 tuples rdp 1 tuple inAll
No encryption 3659 ± 465 30 ± 5 235 ± 39
Deterministic 3747 ± 724 35 ± 5 342 ± 62
Order Preserving 3771 ± 580 32 ± 8 312 ± 75

load of the space, so we started all the experiments with an

empty tuple space.

1) Performance of tuple exact matching with encrypted
fields: In order to evaluate the performance of exact matching

(equality) with encrypted fields for the relevant encryption

schemes (and no encryption), we made the following test:

(1) insert (out) 100 tuples with a single field in the tuple

space, which are encrypted in the cases of Determinist and

Order Preserving encryptions; (2) execute an exact match with

rdp value and decrypt the tuple retrieved (if encrypted); (3)

retrieve all tuples from the space with inAll * and decrypt

the 100 tuples (if encrypted).

The tests made were all exact match (equality), indepen-

dently of the encryption scheme or no encryption used (see

Step 2 above). However, the performance for inequalities

(different, greater than, greater or equal to, . . .) would be

very similar as all of them are simple byte comparisons. Each

test was executed 30 times and the times for the three steps

were measured. The results are in Table II. A first conclusion

from the table is that encryption has no impact in the match

operations, as the comparisons without encryption (2nd row)

and with encryption (3rd and 4th rows) take very similar

times (column for command rdp). A second conclusion is

that the use of encryption (3rd/4th rows versus 2nd row) did

not cause observable delay in the experiments (2nd and 4th

columns). This result is consistent with the values obtained for

the library, with encryption/decryption times that are fractions

of a millisecond. Furthermore, the encryption/decryption load

is at the client, not at the server side, so it has no impact in

the capacity of the servers to process requests.

2) Performance of the ordered operations: In order to

evaluate the performance of the ordered operations we made

the following test: (1) insert (out) 100 tuples with a single

field in the tuple space, with values from 0 to 99, encrypted

with the Order Preserving scheme; (2) execute an rdp (read

one matched tuple), with the parameters indicated in the first

column of Table III and decrypt it; (3) execute an inAll (read

and delete all matched tuples), with the parameters indicated

in the first column of Table III and decrypt. The test was

repeated 30 times.

We can observe in the table that the execution times of

the rdp command are all inside the deviation intervals of

each other, meaning that the type of match does not affect the

execution times. For the inAll operation we can see that the

slower operation in the one that reads all the tuples (*), the

second slower is the one that reads all minus one (<>), and

the faster operation is the one that reads just one tuple (=).

The other operations have execution times somewhere in the

middle. This allow us to conclude that the execution time of

TABLE III
ORDERED OPERATIONS EXECUTION TIMES

Condition rdp (ms) inAll (ms) Tuples selected
∗ (match all) 35 ± 8 257 ± 27 100
= (match) 29 ± 9 33 ± 22 1
<> 50 28 ± 6 209 ± 7 99
< 50 31 ± 7 195 ± 46 50
<= 50 30 ± 8 174 ± 21 51
> 50 29 ± 7 181 ± 26 49
>= 50 34 ± 8 204 ± 53 50

the inAll operation depends not on the type of comparison,

but on the number of tuples retrieved. This is caused by the

communication delay caused by more data.

Acknowledgements This work was supported by the European Com-

mission through project H2020-653884 (SafeCloud) and by national

funds through Fundação para a Ciência e a Tecnologia (FCT) with

reference UID/CEC/50021/2013 (INESC-ID).

REFERENCES

[1] Cloud Security Alliance, “The notorious nine: Cloud computing top
threats in 2013,” Feb. 2013.

[2] F. Rocha and M. Correia, “Lucy in the sky without diamonds: Stealing
confidential data in the cloud,” in Proc. 1st DCDW Workshop, 2011.

[3] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.
41st Annual ACM Symposium on Theory of Computing, 2009.

[4] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully
homomorphic encryption over the integers,” in Advances in Cryptology
– EUROCRYPT 2010. Springer, 2010.

[5] M. Yagisawa, “Fully homomorphic encryption without bootstrapping,”
Cryptology ePrint Archive, Report 2015/474, 2015.

[6] K. Lauter, M. Naehrig, and V. Vaikuntanathan, “Can homomorphic en-
cryption be practical?” in Proc. 3rd ACM Workshop on Cloud Computing
Security, 2011.

[7] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill, “Order-preserving
symmetric encryption,” in Proc. 28th Annual International Conference
on Advances in Cryptology, 2009.

[8] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving multi-
keyword ranked search over encrypted cloud data,” IEEE Transactions
on Parallel and Distributed Systems, vol. 25, no. 1, Jan 2014.

[9] B. Ferreira, J. Rodrigues, J. Leitão, and H. Domingos, “Privacy-
preserving content-based image retrieval in the cloud,” CoRR, vol.
abs/1411.4862, 2014.

[10] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and M. Steiner,
“Rich queries on encrypted data: Beyond exact matches,” in Computer
Security - ESORICS, 2015.

[11] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, “CryptDB:
Protecting confidentiality with encrypted query processing,” in Proc.
23rd ACM Symposium on Operating Systems Principles, 2011.

[12] M. Burrows, “The Chubby lock service for loosely-coupled distributed
systems,” Proc. 7th Symposium on Operating Systems Design and
Implementation, 2006.

[13] J. Baker, C. Bond, J. Corbett, and J. Furman, “Megastore: Providing
scalable, highly available storage for interactive services.” in Proc. 5th
Biennal Conference on Innovative Data Systems Research, 2011.

[14] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: Wait-free
coordination for Internet-scale systems,” in Proc. 2010 USENIX Annual
Technical Conference, 2010.

[15] GigaSpaces, “XAP 9.0 documentation – product overview – concepts,”
http://wiki.gigaspaces.com/wiki/display/XAP9/Concepts, 2011.

[16] A. N. Bessani, E. P. Alchieri, M. Correia, and J. S. Fraga, “DepSpace:
a Byzantine fault-tolerant coordination service,” in Proc. 3rd ACM
SIGOPS/EuroSys European Systems Conference, Apr. 2008.

[17] T. Distler, C. Bahn, A. Bessani, F. Fischer, and F. Junqueira, “Extensible
distributed coordination,” in Proc. 10th ACM SIGOPS/EuroSys European
Systems Conference, 2015.

[18] D. Gelernter, “Generative communication in Linda,” ACM Transactions
on Programing Languages and Systems, vol. 7, no. 1, Jan. 1985.

42

Nelson Mimura Gonzalez
Tereza Cristina Melo de Brito Carvalho

Escola Politécnica, Universidade de São Paulo (USP), Brazil
e-mail: {nmimura, carvalho}@larc.usp.br

Charles Christian Miers
Santa Catarina State University (UDESC), Joinville, Brazil

e-mail: charles.miers@udesc.br

Abstract—Workflows are used to represent applications in
terms of the computational cost and the interdependencies
of tasks. In parallel, clouds are a viable solution to execute
complex applications in terms of performance and cost. This
paper presents a cloud scheduling framework composed by
multiple proactive phases that continuously compute and im-
prove resource allocation and load distribution for workflow
execution in cloud environments. The framework relies on
a high-level characterization of resources and workflows to
describe the capabilities provided by the infrastructure and the
performance requirements to be met. Implementation and tests
are based on the optimization of workflows executed on three
scenarios: a private cloud, a hybrid cloud (private and public),
and a multi-cloud setup. Results show improvement of run
time performance compared to greedy approaches. Moreover,
the framework is able to handle performance fluctuations,
especially for long duration workflows.

1. Introduction

Scientific workflows represent a class of complex ap-
plications whose execution requires the utilization of the
compute capacity of a large number of nodes [1]. In parallel,
cloud computing is used to deliver on demand storage and
compute capabilities, as the resources can be leased and uti-
lized on demand [2]. The conjunction of these technologies
is successful, with several existing solutions for execution
of e-Science applications on commercial clouds [3].

However, with more resources available and more com-
plex infrastructures, even a small performance imbalance
among nodes might lead to monetary costs [3]. Existing pro-
posals for cloud scheduling [3], [4] adopt a simple resource
model for nodes that do not fully address the complexities
of each workflow. Furthermore, for data-intensive workflows
such as the APEX workflows [5] the data transfers represent
a substantial fraction of the total time. Nevertheless, for
most scheduling algorithms data movement is considered
part of the execution, which is not the case for modern ap-
plications [1]. In fact, data movement might even dominate
execution time and cost for these cases, especially for hybrid
and multi-cloud setups.

This paper presents MPSF (Multi-Phase Proactive
Scheduling Framework), a cloud scheduling framework
based on multiple scheduling phases that continuously as-
sess system resources in order to dynamically optimize
resource distribution. MPSF is based on a rich high-level
characterization of resources and workflows that describes
the interactions between workflow phases and the computa-
tional cost for each case. Moreover, the framework considers
both compute and transfer times to distribute the input to
the nodes and also to retrieve the results. The workflow
characterization is used to determine the time to process
and transfer the input. The scheduling framework computes
the optimal data distribution by determining how much data
each node must receive in order to balance the execution
and transfers across all nodes. In addition, MPSF is able to
adequately distribute data in scenarios with multiple clouds,
considering the cost of sending and receiving data over
slower links. The framework also provides rescheduling
capabilities in order to redistribute the workload, addressing
the performance fluctuations on the system.

The remainder of the document is organized as follows:
Section 2 presents the problem addressed in this paper. Sec-
tion 3 presents the scheduling framework, the performance
model, the resource and workflow model, and some of its
features. Section 4 presents the evaluation methodology used
in the experiments. Section 5 presents the experimental
results in three different scenarios (private, hybrid, and
multi-cloud). Section 6 presents the analysis of the results
and of the framework. Section 7 presents the related work
and compares MPSF to some other similar approaches.
Section 8 presents our considerations and future work.

2. Problem Definition

For workflows with a large computational component
and associated I/O (e.g., modern scientific workflows [5]),
the fundamental problem to be solved is how to distribute
input data to the cloud nodes. The usual problem definition
starts by considering a set of nodes ni ∈ N , which is the
resource model for the problem. Moreover, consider also the
workflow represented as a weighted Directed Acyclic Graph
(DAG) G = (T ,D), where T is the set of tasks and D is
the dependencies between tasks.

978-1-5090-3216-7/16/$31.00 ©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

Multi-Phase Proactive Cloud Scheduling Framework
Based on High Level Workflow and Resource

Characterization

43

Another approach to interpret this problem is to consider
the total input to be processed, d, the set of nodes N
and the workflow description W . In this case, the nodes
are described not as a function of their peak hardware
capabilities (e.g., number of instructions per second), but
as a function of the workflow being executed. Compute
and transfer capacities are measured as a data rate (i.e., a
multiple of bytes per second). Each node receives a fraction
di of the total input d, thus the time ti of sending data
to a node, processing the data, and receiving the result, is
calculated based on the amount of data di sent to node i,
the node processing capacity pi, and its transfer capacity ri.

3. MPSF

3.1. Performance Model

Based on the problem definition, this is a fundamental
optimization problem and the makespan (time for comple-
tion of all tasks in all nodes) is obtained by balancing the
execution of all nodes in a way that the times ti are all
the same. Considering that the input is concentrated in a
particular node, the transfers occur sequentially and the time
to transfer to one node must be taken into account when
optimizing the ti values. The process continues until all
nodes have received their data fragments. Thus, the time
expression for each node is:

ti =

i∑
j=1

dj
rj

+
di
pi

(1)

The system to be solved is composed by the expressions:{
ti = tj , ∀i, j ∈ N∑N

i=1 di = d
(2)

Solving the system, the final expression for the amount
of data to send to a node in order to optimize the execution
of tasks across the system is:

dm =

∏n−1
j=m pj(

1
rj+1

+ 1
pj+1

)

1 +
∑n−1

i=1

∏n−1
j=i pj(

1
rj+1

+ 1
pj+1

)
· d (3)

This final expression is similar to a weighted distribu-
tion, but the main difference is that the expressions also
consider the transfer time as a relevant portion of the whole
execution.

3.2. Resource Model & Workflow Model

One of the main features of MPSF is the utilization
of a high-level characterization of resources and workflows.
MPSF defines the computational capacity as a function of
the workflow to be executed, as the amount of data that
can be processed at a time varies according to the program
being executed. The high-level description can be manually
generated based on expert knowledge of the workflow, or

it can be automatically generated by MPSF automated
characterization capabilities.

The workflow model in MPSF is defined using five
operators, as observed in the example in Figure 1. These
operators are similar to the ones described in prior refer-
ences, such as the work from Bharathi et al. [6]. In the
Figure 1, from left to right, the first operator defines the
input of the workflow, usually mapped to one or more nodes
that contain the inputs for the execution of the workflow;
the second operator is a splitter, responsible for dividing
the input into several smaller pieces, referred as fragments,
which are distributed to the compute nodes; the third oper-
ator is a compute operation, which could be as simple as
adding numbers or as complex as an actual workflow phase;
the fourth operator is a merger, responsible for receiving
several result fragments (obtained by processing the input
fragments) and merging them into a single result; finally,
the fifth operator indicates an output, representing the final
result of the execution of the workflow.

Figure 1: Example of workflow description.

In this example (Figure 1) the input is represented by
two variables, x and y, which could vectors for instance.
These inputs are sent to the splitter which generates N
fragments. Each compute node m receives Nm fragments,
and the products generated altogether are N result fragments
containing a new value for y.

3.3. Multi-Phase Proactive Scheduling

The scheduling decision is computed several times be-
fore and during the execution of the workflow. First the
scheduling is computed before starting the workflow in order
to calculate how much input data each node should receive.
Then, the scheduling decision is continuously reevaluated
to handle performance fluctuations in the systems. If the
fluctuation surpasses a certain threshold configured in the
framework, a new data distribution is calculated considering
that now each compute node is a potential input node. On
the other hand, even if this threshold is surpassed, if the
performance benefit of redistributing the load is not higher
than another threshold, nothing is modified.

4. Evaluation Methodology

Three systems were used in the experiments to evaluate
the performance of MPSF. Two systems are located in the
United States: Gauss, with ten nodes based on the Intel
Xeon X5687 processor (16 VCPUs and 32 GB RAM per
node), and Vulcan, with sixteen nodes based on the IBM
POWER8 processor (160 VCPUs and 512 GB RAM per

44

node). The third system is located in Brazil: Mamona,
with seven nodes based on the Xeon E3-1230 processor (8
VCPUs and 16 GB RAM per node). All machines were
configured to run Ubuntu Trusty 14.04. The cloud environ-
ments were set up using Docker1, enabling fast deployment
of containers compared to virtual machines. The resources
were partitioned in advance by allocating one container per
VCPU due to the similarity in the amount of memory per
VCPU among the three systems.

Three scenarios were built for the execution of experi-
ments. Scenario A is a private cloud built using nodes from
system Gauss. Scenario B is a hybrid cloud combining the
private cloud from Scenario A and a public cloud built using
nodes from system Vulcan. Finally, Scenario C is a multi-
cloud scenario combining the resources from scenario A to
a remote private cloud.

Three benchmarks were selected for the experiments.
The first is AXPY, the scaled vector addition in the form
y = αx + y, where x and y are vectors with N elements
each and α is a constant. Figure 2 shows the visual rep-
resentation of this benchhmark. Vectors x and y are sent
to the splitter, generating N fragments each containing an
index and the xi and yi values to compute the result. Each
compute component receives Nm fragments and the value of
α, generating Nm tuples containing the index and the final
value of yi. The merger receives all N tuples generated by
the compute components, each tuple containing an index
and the final yi value. These values are combined and the
merger creates the final y vector.

Figure 2: Workflow description for AXPY.

The second benchmark is GEMM, the general matrix to
matrix multiplication in the form C = αAB+βC, where A,
B, and C are matrices and α and β are constants. Matrices
were set square matrices N × N , and α and β were set to
1.0. The visual representation of this benchmark is depicted
in Figure 3. Matrices A, B, and C are sent to the splitter,
producing N2 tuples with enough information to compute
a single cell of the resulting matrix. Finally, the merger
receives N2 result fragments, creating the final matrix C.

Figure 3: Workflow description for GEMM.

The third benchmark is WAVG, the implementation of a
weighted average algorithm given a vector of N values vi

1. https://www.docker.com/

and their associated weights wi. The splitter receives both
vectors and generates N fragments composed by the tuple
(vi, wi). Each compute component m receives Nm frag-
ments and calculates a local weighted average. The visual
representation of this workflow is depicted in Figure 4.

Figure 4: Workflow description for WAVG.

4.1. Compared Methods

The methods compared in the experiments were:

1) Single/Serial: Execution on a single thread;
2) Single/Parallel: Single node using all cores;
3) Naive/VCPU: Naive distribution strictly based on

processing power and greedy over VCPUs (i.e.,
tries to use all VCPUs available);

4) Naive/Core: Naive distribution greedy over cores;
5) Naive/Node: Naive distribution greedy over nodes;
6) MPSF no-resc.: Partial implementation of MPSF

without the rescheduling components; and
7) MPSF: The full implementation of MPSF.

5. Experimental Results

Experiments were repeated ten times and the results
represent the average for each case.

5.1. Scenario A

The results for AXPY on Scenario A (private cloud) are
summarized in Table 1. Results show the importance of

Table 1: Results (run time in seconds) for AXPY on Scenario A with vector
size N of 500 million elements (8 GB of total footprint), 5 billion elements
(80 GB), and 50 billion elements (800 GB).

Algorithm 500M 5G 50G
1 Single/Serial 4.96 68.15 -

2 Single/Parallel 0.67 22.78 -

3 Naive/VCPU 0.22 3.09 62.05

4 Naive/Core 0.21 3.01 49.87

5 Naive/Node 0.32 4.12 54.10

6 MPSF no-resc. 0.14 1.19 28.15

7 MPSF 0.15 1.21 26.82

the I/O component during resource allocation phase. For
50G the memory footprint (800 GB) is larger than the total
memory available in the system (320 GB), thus requiring
intense disk I/O. Because the naive algorithms do not con-
sider the I/O components in the initial resource allocation
the performance is severely compromised. MPSF is able
to gradually split the input based on the time to transfer

45

data from the input node to the other nodes. Compared to
the best naive approach, for 50G vectors MPSF provides
a speedup of 1.86x. Moreover, the rescheduling mechanism
provides an improvement of 4.7% by handling performance
fluctuations in the system.

Table 2: Results (run time in seconds) for GEMM on Scenario A with matrix
side sizes N of 10k (total memory footprint of 3 · (10k)2 · 8B = 2.4 GB),
20k (9.6 GB), and 40k (38.4 GB).

Algorithm 10k 20k 40k
1 Single/Serial 82.34 667.31 -

2 Single/Parallel 12.10 188.40 -

3 Naive/VCPU 1.49 13.12 252.13

4 Naive/Core 1.52 14.39 128.93

5 Naive/Node 8.48 102.26 979.90

6 MPSF no-resc. 1.38 13.17 122.35

7 MPSF 1.41 13.25 117.41

The results for GEMM on scenario A are summarized
in Table 2. Matrix sizes are presented as the number of
elements in each dimension (N). For the 20k matrix the
Naive/VCPU distribution provides a slightly better result
over MPSF, as the I/O contention effects are not expressive
and due to the management overhead generated by the
framework. However, for the 40k matrix the larger amount
of data to be transferred favors MPSF, and the rescheduling
mechanism also leads to some improvement by handling the
performance fluctuations.

Table 3: Results (run time in seconds) for WAVG on Scenario A with vector
size N of 500 million elements (8 GB of total footprint), 5 billion elements
(80 GB), and 50 billion elements (800 GB).

Algorithm 500M 5G 50G
1 Single/Serial 28.51 898.07 -

2 Single/Parallel 4.12 124.84 -

3 Naive/VCPU 0.37 11.10 497.28

4 Naive/Core 0.58 17.40 716.88

5 Naive/Node 2.91 97.78 3,920.20

6 MPSF no-resc. 0.40 12.01 362.81

7 MPSF 0.41 12.59 384.97

Finally, the results for WAVG on Scenario A are summa-
rized in Table 3. For vectors of size 500M and 5G the core-
based and VCPU-based naive approaches even outperforms
MPSF. For larger data sizes the I/O component becomes
relevant and only MPSF is able to attain to the natural
increase in number of operations. Compared to the best
result obtained via naive approaches, MPSF provides a
performance gain of 27.0%, with a speedup factor of 1.37x.

5.2. Scenario B

Scenario B combines the resources from Gauss (private
cloud) and Vulcan (public cloud). MPSF was configured to
either allocate one container per VCPU or one container per
core, depending on the benefit of running tasks on memory,
without having to use disk I/O. The benchmark selected for
the experiments was GEMM. The input is located in the Gauss

cluster, and the results must be stored there too. Table 4
shows the results comparing GEMM for scenario A and B.

Table 4: Results (run time in seconds) for GEMM. Table compares results
for 40k matrices running on Scenarios A and B.

Algorithm A B
4 Naive/Core 128.93 88.26

6 MPSF no-resc. 122.35 70.68

7 MPSF 117.41 71.12

The average compute rate is 153.6 MB/s for Gauss and
1,474.8 MB/s for Vulcan. Moreover, the effective bandwidth
(also collected by the framework during execution and con-
sidering fluctuations) between the clusters is 128.12 MB/s.
The data distribution reported by the framework is around
56% for Gauss and 44% for Vulcan. The improvement over
the Naive/Core approach is of 19.9%, with a 1.25x speedup.

5.3. Scenario C

Scenario C combines a private cloud built on top of
the Gauss nodes to another private cloud in a different
geographical location using the Mamona nodes. To test this
setup the data source was configured in one of the Mamona
nodes and the GEMM benchmark was executed. Moreover, a
restriction was set in the experiment to force the result of
the operation to be sent to a Gauss node.

Table 5: Results (run time in seconds) for GEMM, 40k matrices running the
workflow only on Mamona nodes vs. also using the Gauss nodes.

Algorithm A/Gauss A/Mamona C/+Gauss
4 Naive/Core 128.93 7,098.21 5,443.31

6 MPSF no-resc. 122.35 6,172.35 3,601.54

7 MPSF 117.41 5,075.12 3,330.68

Table 5 shows the results of running GEMM with 40k
matrices. The new run times are much longer as the results
must be sent over the network from Mamona to Gauss.
To simplify the tests, only the Naive/Core approach was
considered in the comparisons. Executing the workflow us-
ing Mamona nodes only and using the Naive/Core approach
leads to a total run time of around 2h – 1h20min is spent
just to send the results over the network to Gauss. For
Scenario C Naive/Core simply distributes the load across all
containers (one container per core) without considering the
I/O costs. This leads to a total run time of around 1h30min,
an improvement of 23.3% over the A/Mamona run time.
However, using MPSF with the rescheduling capabilities
leads to a run time of around 55min, 38.8% of improvement
over the Naive/Core approach and 7.5% over MPSF without
rescheduling.

6. Analysis

MPSF consistently delivers better performance over
naive approaches that try to greedily explore the available
resources. Internally, MPSF also provides rescheduling ca-
pabilities that are particularly useful for workflows with

46

long duration (pipeline longer than one hour). Based on
high-level workflow descriptions such as the APEX Work-
flows [5], this is usually the case for scientific applications.
Figure 5 shows a summary of the experimental results show-
ing the relative run time of MPSF compared to Naive/Core.

Figure 5: Summary of experimental results showing relative run time of
MPSF compared to the Naive/Core approach. Figure shows scenarios (A,
B, C), benchmark (AXPY, GEMM, WAVG), and problem size.

MPSF performs well especially for workflows wherein
the data distribution constitutes an important component
in the total time. For AXPY and WAVG MPSF shows a
relative run time of around 50% compared to Naive/Core.
Moreover, the experiments for scenarios B and C show that a
scheduling algorithm that considers the time to transfer data,
whether input or results, leads to much better performance.

7. Related Work

Topcuoglu et al. [7] proposed Heterogeneous Earliest-
Finish-Time (HEFT) algorithm designed for makespan min-
imization. Computation cost is modeled by using estimates
of the execution time to complete the task on a processor.
Compared to HEFT, MPSF encompasses a more detailed
view of resources and the performance characteristics of
each workflow phase.

Proportional Deadline Constrained (PDC) [3] is the algo-
rithm which selects cloud instances to meet deadlines while
minimizing cost. Cluster Combining Algorithm (CCA) [4] is
the algorithm which addresses multicore clouds by using a
scoring approach. MPSF describes computational capacity
as a function of the application, rendering more accurate
predictions and a better initial load distribution. On the other
hand, MPSF does not consider cost nor deadline constraints
in its scheduling decisions.

For hybrid clouds Bittencourt et al. [2] proposed the
Hybrid Cloud Optimized Cost (HCOC) scheduling algo-
rithm, which reduces makespan by leasing resources from
the public cloud to fit a deadline while maintaining a rea-
sonable cost. MPSF, in contrast, focuses on maximizing

performance without initially considering cost, although the
allocation threshold avoids MPSF to become greedy.

Avresky et al. [8] presented a framework based on
machine learning techniques to predict failures cause by
anomalies during the execution of applications. Their work
focuses on the reliability part of scheduling, while MPSF
focuses on balancing the load sent to each node.

8. Considerations and Future Work

MPSF, Multi-Phase Proactive Scheduling Framework,
defines a set of components to read and continuously mon-
itor the resources of systems, and then distribute the work-
load based on a high-level description of the systems and
the characterization of the workflow. The framework is able
to predict this workload by calculating the optimal run time
based on the distribution of the input data to the containers
configured across the systems. The framework provides
components to reschedule a workflow based on the perfor-
mance fluctuations of the system. Finally, the framework
is able to consider the I/O time component, such as data
transfers among containers and between different clouds
(Scenarios B and C). Experimental results indicate run time
improvement of over 2x compared to greedy approaches,
especially for larger input data sets and longer computations.
Regarding limitations, the automatic detection and analysis
of different algorithm implementations (or binaries) and
the mechanism to choose the best alternative require these
alternatives to be represented in the workflow description.
Future work includes the definition of a reliability metric
based on the Mean Time Between Failures (MTBF) of nodes
and containers, then comparing these values to the makespan
of a workload and to the remaining time to failure [8].

References

[1] F. Wu, Q. Wu, and Y. Tan, “Workflow scheduling in cloud: a survey,”
The Journal of Supercomputing, vol. 71, no. 9, pp. 3373–3418, 2015.

[2] L. F. Bittencourt and E. R. M. Madeira, “HCOC: a cost optimiza-
tion algorithm for workflow scheduling in hybrid clouds,” Journal of
Internet Services and Applications, vol. 2, no. 3, pp. 207–227, 2011.

[3] V. Arabnejad and K. Bubendorfer, “Cost Effective and Deadline Con-
strained Scientific Workflow Scheduling for Commercial Clouds,” in
Network Computing and Applications (NCA), 2015 IEEE 14th Inter-
national Symposium on, Sept 2015, pp. 106–113.

[4] A. Deldari, M. Naghibzadeh, and S. Abrishami, “CCA: a deadline-
constrained workflow scheduling algorithm for multicore resources on
the cloud,” The Journal of Supercomputing, pp. 1–26, 2016.

[5] “APEX Workflows,” http://www.nersc.gov/assets/apex-workflows-v2.
pdf, March 2016, accessed: 2016-07-25.

[6] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and
K. Vahi, “Characterization of scientific workflows,” in 3rd Workshop
on Workflows in Support of Large-Scale Science. IEEE, 2008.

[7] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
Transactions on Parallel and Distributed Systems, Mar 2002.

[8] D. R. Avresky, P. Di Sanzo, A. Pellegrini, B. Ciciani, and L. Forte,
“Proactive scalability and management of resources in hybrid clouds
via machine learning,” in Network Computing and Applications (NCA),
IEEE 14th International Symposium on. IEEE, 2015, pp. 114–119.

47

Task Based Load Balancing for Cloud Aware
Massively Multiplayer Online Games

André Pessoa Negrão, Luís Veiga and Paulo Ferreira
Distributed Systems Group, INESC-ID

Instituto Superior Técnico, Universidade de Lisboa

andre.pessoa@tecnico.ulisboa.pt,{luis.veiga,paulo.ferreira}@inesc-id.pt

Abstract—In this paper we propose a task based load dis-
tribution framework for Massively Multiplayer Online Games
running in hybrid cloud environments. Our solution breaks
down high level tasks into subtasks in such a way that i) core
subtasks (those with strong timing constraints) are executed at
private resources owned by game operators; while ii) background
subtasks (those with looser timing/reliability constraints) can be
offloaded to temporary resources acquired from a public cloud.
Our approach is lightweight and allows for faster deployment of
newly acquired servers, making it more suitable for temporary
overload situations. We present evaluation results confirming our
solution as a viable alternative to traditional strategies.

I. INTRODUCTION

The popularity of a Massively Multiplayer Online Game

(MMOG) is hard to predict at deploy time. In addition,

MMOGs have a highly dynamic active user population, which

experiences variations in number even over short periods of

time. These two factors combined make it difficult for MMOG

operators to anticipate the exact amount of resources necessary

to efficiently provision the game. As a result, operators tend

to adopt pessimistic measures by deploying static and large

infrastructures in which the number of resources is based

in worst case predictions of load. The result is an over-
provisioned environment in which a number of resources are

idle for most of the time [1].

In light of this, several authors [1], [2], [3], [4], [5],

[6] have proposed alternatives to over-provisioning based on

Cloud Computing (CC). By taking advantage of the elasticity

of CC [7], MMOG operators can deploy more conservative

infrastructures and resort to the cloud to acquire resources

according to the actual load experienced at runtime. As a

result, the available resources are used more efficiently and

the costs of deploying and supporting the game are reduced,

benefiting every stakeholder in the MMOG environment.

While cloud aware resource provisioning promises to im-

prove the cost-effectiveness of MMOGs, existing solutions

employ the traditional technique of partitioning/replicating the

virtual world on a fully operational game server deployed

at the newly acquired resource. This approach has two main

drawbacks. First, adding a new replica/partition to the system

entails reconfiguration costs (e.g., data migration) at deploy

time and heavy synchronization costs during the time the

acquired server is up. Second, given the unreliable nature of

the cloud, deploying fully operational servers might not be an

acceptable solution for some MMOG companies.

In this work, we propose a workload distribution solution

for cloud-aware MMOGs inspired by task based computing.

In our solution, when an overload event is identified, regular

high level tasks that are executed by the overloaded server

are broken down into subtasks that can offloaded to different

resources. Tasks are partitioned so that i) subtasks with strong

timing constraints or that require reliable game data are kept at

the original server or offloaded to reliable resources, while ii)

subtasks with less stringent timing requirements (background
tasks) can be offloaded to temporary resources acquired from

the cloud or to lightly loaded active resources.

The main advantage of this approach is that background

tasks can be designed to operate over abstract data and execute

low priority operations, while critical tasks/data are concen-

trated on reliable, long term resources. These characteristics

make task partitioning more suitable for temporary overload

situations (it introduces lower overhead at deploy time) and

for execution in unreliable environments (it promotes the use

of unreliable resources only for less critical operation).

The paper is structured as follows. Section II describes our

task based load distribution framework. Section III presents

implementation information. Section IV discusses the experi-

mental results obtained. Section V overviews the related work.

Finally, Section VI concludes the paper.

II. TASK PARTITIONING

In this section we describe our task partitioning framework

in detail. Without loss of generality, we discuss the process

as involving two servers, the main (or master) server and the

task (or worker) server. The master is the server that requests

load distribution in order to have its workload lightened. The

worker is the server that absorbs the extra workload coming

from the master (in the form of tasks).

A. Definition and Offloading

The task partitioning process consists in breaking down

a high level task that is executed as a whole at a single

server into multiple tasks: one core subtask and one or more

background subtasks. By default, the core task continues its

execution at the main server. Background tasks, on the other

hand, are meant to be offloaded to cloud resources.978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

48

The core subtask should be designed to keep responsibility

for executing the most time critical operations, as well as

those that require application specific information. Background

tasks, on the other hand, are designed to execute operations

with weaker timing and reliability requirements. In addition,

background tasks should be designed to be game-independent
– their execution should not require the installation of a copy

of the game, it should depend only on abstract data (e.g.,

standard geometric data, such as positions and areas).

This separation of concerns between core and back-

ground tasks allows a system facing an overload situation

to avoid/minimize the need for expensive code and/or data

transfer. The main server retains the main responsibilities for

user and data management; background tasks execute less

critical operations over abstract, non-sensitive data, making

them more suitable to be offloaded to unreliable resources,

such as those obtained from the cloud. They can, however, also

be offloaded to private resources, both new and active: because

task partitioning allows the high level task to be partitioned

into subtasks with arbitrarily small sizes, applications can more

easily take advantage of lightly loaded active resources.

While having independent background tasks is ideal for the

scenarios we envision, forcing this requirement on their design

would be too restrictive. This way, application designers

can also design dependent background tasks – background

tasks that need a full copy of the game data (or a reliable

partial copy). This solution gives application programmers

more freedom and still allows applications to benefit from the

advantages task partitioning provides in terms of separation

of concerns between reliable and unreliable resources. On

the downside, it has the potential of preventing the fast

server loading that independent background tasks allow. A

workaround to this is to design dependent subtasks with an

independent loading phase. This way, when they are offloaded

to a new server they can be executed while the application

loads onto the new machine. When loading is complete, the

subtask can be upgraded to its dependent phase.

B. Task Characterization

In state partitioning and state replication, the effects

of adding a partition/replica are general and mostly inde-

pendent of scenario: it results in a distribution of load

and server↔client bandwidth at the expense of additional

server↔server communication. When it comes to task par-

titioning, the arbitrary and application specific nature of the

process means that each task partitioning strategy may have a

different impact on each different resource. For example, one

task partitioning policy may only reduce computational load;

a different policy may have a higher impact on bandwidth,

while still influencing CPU usage.

For the load distribution process to efficiently make use of

task partitioning, each task partitioning strategy must have a

task descriptor that characterizes its effects on the relevant

resources. In particular, the task descriptor should describe

which resources will experience a load reduction at the master

and which resources will have a load increase at the worker(s).

The task descriptor can also contain a quantification of these

increases/reductions, although the reliability of the quantifica-

tions is difficult to ensure due to the dynamics of the execution

environment.

In addition to task characterization, servers also need to

be defined as core or background, in order for the system to

appropriately offload tasks. By default, private resources are

considered core and take precedence for the execution of core

tasks. Core resources can, however, also execute background

tasks if necessary.

Public resources, on the other hand, are considered back-

ground by default. Individual public resources can, however,

be promoted to the core group if application operators so

decide. Promotion can be done temporarily on-the-fly (e.g.,

if core resources are necessary, but the system no longer has

private resources available) or permanently, if operators see no

reason to distinguish between public and private resources.

III. IMPLEMENTATION

Our task based solution is an extension to the load bal-

ancing component of CloudDReAM [8], our middleware for

cost-effective execution of MMOGs in the cloud. Cloud-

DReAM follows a hybrid cloud architecture in which virtu-

alized servers can be acquired from public cloud providers,

as well as from a private cloud run by the operators of the

MMOG. To manage server→client traffic CloudDReAM uses

Interest Management [9], which consists in sending to each

user only updates that refer to relevant objects – typically

those within an Area of Interest (AoI) surrounding the player’s

avatar. In particular, we use our own Vector-field Consistency

(VFC) model [10], which divides the AoI into multiple zones

such that: updates to objects in the inner zone are sent to

the user immediately; as the distance increases, updates are

propagated at increasingly lower frequencies.

Within CloudDReAM, we implemented a few default task

partitioning strategies. Due to space constraints, in this paper

we focus on the two main strategies: matching and update

propagation partitioning. Matching is one of the main tasks

executed by a game server. It consists in identifying, for

each user, which objects are within the user’s AoI and, of

those, which ones have been modified (and, consequently,

need to be propagated to the user). The matching process

naturally lends itself to partitioning into two subtasks: the first

subtask identifies which objects are within each client’s AoI;

the second task identifies which of those objects have been

updated and need to be sent to the user.

Of these two tasks, the first one can safely be executed

at a task server, which becomes responsible for identifying

and informing the main server of modifications to each user’s

AoI . To make sure that the natural synchronization delays

between the master and the worker do not result in missed

interactions, the worker monitors and informs the master about

each user’s extended AoI – the actual AoI , plus an additional

area surrounding it. The master can, this way, keep track of the

objects in the nearby area and timely identify new additions

to any AoI .

49

(a) Frame rate. (b) Upload bandwidth.

Figure 1. Performance comparison between state and task partitioning.

To partition update propagation, we take advantage of the

multi layered characteristics of VFC by having the task server

propagating updates that refer to the less critical consistency

zones. Updates regarding high priority zones continue to be

managed by the master.

IV. EVALUATION

In this section we analyse how our solution fares against

state partitioning. To evaluate our solution, we deployed a 9

machine cloud from which new servers (VMs) are acquired as

necessary. We compare the performance of the system when

all servers are state partitioned against a version of the system

mixing task servers and state partitioned servers. For clarity,

we focus our evaluation on partitions that in one case are state

partitioned and the other are task partitioned. Thus, our results

show a pairwise comparison between the two strategies: a pair

of partitioned servers versus a main and a task server.

Throughout the analysis, we show the results obtained with

a varying number of clients. Clients were simulated by bots,

each controlling a single avatar that explores the game map.

We deployed clients evenly across the game map, resulting in

approximately the same number of clients in each partition;

as a result, the performance of the state partitioned server is

very similar. For this reason the figures show the averages of

the values obtained by each pair of state partitioned servers.

By contrast, due to their inherently asymmetrical relation, we

show the results of the master and worker servers separately.

The number of clients presented in each figure corresponds

not to the total number of clients in the system, but to the

number of clients shared by each pair of servers.

Figure 1(a) shows the performance differences between

state and task partitioning in terms of frame rate. Frame rate
measures how frequently the server is able to execute the

matching algorithm and send updates to clients. It is a crucial

high level metric that determines if the application is able to

provide its required quality of service.

As shown in the figure, the performance improvements of

offloading the matching task enable the system to ease the

natural degradation in frame rate that occurs as the number of

clients increases. Our solution is able to achieve frame rates

higher than 10 fps for up to 1500 clients, delivering optimal

frame rates for slow paced games and suitable for most types

of games. At 2000 clients, frame rates drop to approximately

6 fps, which, while not generally suitable, are still enough

for many types of games, especially under high load. The

partitioned system, on the other hand, experiences a clear sharp

decrease with more than 500 clients.

The frame rates of the worker, on the other hand, are

considerably lower than the master. This is due to the fact

that the worker has to execute the two parts of the matching

algorithm: 1) identifying if an object is within the AoI of

another and, if so, 2) identifying the specific VFC consistency

zone of such object. The worker, however, is responsible for

propagating updates that refer to the lower priority zones,

which have weaker requirements in terms of propagation

frequency. Considering the values achieved, it is unlikely

that the lower frame rates of the worker prevent the timely

propagation of such lower priority updates.

As Figure 1(a) shows, the worker is, nevertheless, able to

obtain higher frame rates than the state partitioned servers. The

main reason for this is that as the number of users increases,

update processing takes on a larger role at those servers,

due to conflict detection and synchronization with neighbour

servers, among other application specific issues. The worker,

on the other hand, does not handle such issues, because it only

deals with lower priority updates and does not participate in

neighbour synchronization.

Figure 1(b) shows the upload bandwidth results obtained.

The results show that the master is able to offload between

35%-40% of its bandwidth requirements to the worker. These

values put the maximum per-server upload bandwidth require-

ments of the task based solution, at most, 15% above those of

the state partitioned system, which has an approximately even

ratio between each pair of servers.

Note that the balanced distribution between state partitioned

servers only occurs because players have been evenly dis-

50

tributed across partitions. In practice, however, this situation

is highly unlikely and differences in load between partitioned

servers occur naturally. In fact, if the difference increases

past a certain threshold (due to hotspots), one of the servers

becomes overloaded. Overcoming this situation requires ac-

quiring a new server or, at least, redistributing the load among

active servers. In any case, this it involves expensive server

reconfigurations, adding more complexity to the system.

Task partitioning, on the other hand, is less exposed to

hotspots because workload partitioning between the master

and the server is mainly determined by AoI density (i.e.,

the average number of objects inside a user’s AoI), whereas

in partitioned systems the main factor is partition density.

Hotspots impact both of these factors, but have a stronger

influence on partition density, which depends exclusively on

the number of players in the partition. AoI density, on

the other hand, additionally depends on user behaviour and

increases at a slower rate.

V. RELATED WORK

Nae et al. developed some of the most seminal work on

cloud aware resource provisioning for MMOGs [11], [1].

Among their main contributions is a neural-network load

prediction algorithm that identifies the resources necessary

to provision a game environment over time. Marzolla et al.
[5]propose using a Queueing Network model to balance load

among servers in a multi-tier cloud infrastructure. Najaran

et al. [2] propose renting game servers from the cloud and

organize them in a P2P network. Glinka et al. [4] also

proposed a cloud aware infrastructure, but organize servers

as a replicated cluster.

The common factor between these solutions is that they

are based on traditional state partitioning/replication workload

distribution strategies, which have some important limitations.

First, they require full game servers, which take time to

become fully operational in the cloud. Load prediction may

minimize this problem, but makes the system too dependent on

its accuracy. Second, they involve server reconfiguration and

synchronization costs that are not suitable for temporary (and,

potentially, short-term) overload situations. Finally, they ex-

pose application data to the unreliable resources of the cloud,

which might not be acceptable for some game companies.

Our solution tackles these issues by allowing fast deploy-

ment of servers executing background tasks, which, by design,

are also more appropriate for execution in unreliable resources.

In addition, the task partitioning process is more stable, as it

maintains the most critical operations and data at the original

server.

Lim and Lee [12] have previously proposed a task based

load distribution scheme for MMOG-like environments. Their

solution allocates fine-grained, message-level tasks to servers

on a cluster at runtime according to CPU and network load.

However, their solution assumes a static infrastructure and

requires servers to be connected through high-speed networks,

which contrasts with the cloud environments our work targets.

VI. CONCLUSIONS

In this paper we proposed a task-based load balancing

architecture for Massively Multiplayer Online Games running

in cloud environments. Our system breaks down high level

server tasks into subtasks of arbitrary size and priority that

can be offloaded to other servers. Critical tasks are meant

to keep executing at the original server, while lower priority

tasks are designed to be offloaded to public cloud resources.

In comparison with the load distribution strategies typically

used in MMOGs, our solution is faster to deploy (making

it more suitable for temporary overload situations) and more

appropriate for execution in unreliable cloud resources. In

addition, it is general enough to allow applications to freely

define how and which tasks should be partitioned, as well as

the conditions for their offloading.

Acknowledgments: This work was partially supported by national

funds through FCT – Fundação para a Ciência e Tecnologia with

reference UID/CEC/50021/2013.

REFERENCES

[1] V. Nae, A. Iosup, and R. Prodan, “Dynamic resource provisioning in
massively multiplayer online games,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 22, no. 3, pp. 380 –395, march 2011.

[2] M. T. Najaran and C. Krasic, “Scaling online games with adaptive
interest management in the cloud,” in Proceedings of the 9th Annual
Workshop on Network and Systems Support for Games, ser. NetGames
’10. Piscataway, NJ, USA: IEEE Press, 2010, pp. 9:1–9:6.

[3] E. Carlini, M. Coppola, and L. Ricci, “Integration of p2p and clouds to
support massively multiuser virtual environments,” in Proceedings of the
9th Annual Workshop on Network and Systems Support for Games, ser.
NetGames ’10. Piscataway, NJ, USA: IEEE Press, 2010, pp. 17:1–17:6.

[4] S. Gorlatch, D. Meilaender, A. Ploss, and F. Glinka, “Towards bringing
real-time online applications on clouds,” in Computing, Networking and
Communications (ICNC), 2012 International Conference on, 2012, pp.
57–61.

[5] M. Marzolla, S. Ferretti, and G. D’Angelo, “Dynamic resource pro-
visioning for cloud-based gaming infrastructures,” Comput. Entertain.,
vol. 10, no. 3, pp. 4:1–4:20, Dec. 2012.

[6] C.-F. Weng and K. Wang, “Dynamic resource allocation for mmogs
in cloud computing environments,” in Wireless Communications and
Mobile Computing Conference (IWCMC), 2012 8th International, 2012,
pp. 142–146.

[7] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, Apr. 2010.

[8] A. P. Negrão, M. Adaixo, L. Veiga, and P. Ferreira, “On-demand
resource allocation middleware for massively multiplayer online games,”
in Proceedings of the 2014 IEEE 13th International Symposium on
Network Computing and Applications, ser. NCA ’14. Washington, DC,
USA: IEEE Computer Society, 2014, pp. 71–74.

[9] K. L. Morse, “Interest management in large-scale distributed simula-
tions,” University of California, Irvine, Department of Information and
Computer Science, Technical Report ICS-TR-96-27, Jul. 1996.

[10] L. Veiga, A. Negrão, N. Santos, and P. Ferreira, “Unifying divergence
bounding and locality awareness in replicated systems with vector-field
consistency,” Journal of Internet Services and Applications, vol. 1, pp.
95–115, 2010.

[11] V. Nae, R. Prodan, and T. Fahringer, “Cost-efficient hosting and load
balancing of massively multiplayer online games,” in Grid Computing
(GRID), 2010 11th IEEE/ACM International Conference on, 2010, pp.
9–16.

[12] M. Lim and D. Lee, “A task-based load distribution scheme for
multi-server-based distributed virtual environment systems,” Presence,
vol. 18, no. 1, pp. 16–38, 2009. [Online]. Available: http://dx.doi.org/
10.1162/pres.18.1.16

51

DARSHANA: Detecting Route Hijacking for
Communication Confidentiality

Karan Balu Miguel L. Pardal Miguel Correia
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa – Lisbon, Portugal

{karan.balu, miguel.pardal, miguel.p.correia}@tecnico.ulisboa.pt

Abstract—The Border Gateway Protocol (BGP) plays a crit-
ical role in the Internet providing connectivity to hosts across
the world. Unfortunately, due to its limited security, attackers
can hijack traffic by generating invalid routes. Some detection
systems for route hijacking have been presented, but they
require non-public information, high resources, or can easily
be circumvented by attackers. We propose DARSHANA, a
monitoring solution that detects route hijacking based solely on
data-plane information, and has enough redundancy to prevent
attacker countermeasures such as dropping of traceroute probes.
DARSHANA uses active probing techniques that enable detection
in near real-time. By using diverse methods, DARSHANA can
still detect attacks even if the adversary manages to counter some
techniques. We show that our solution allows effective detection
of many hijacking attacks by emulating them using PlanetLab
and Amazon AWS.

I. INTRODUCTION

The Internet is a network composed by many intercon-

nected networks. Administrative network domains are called

Autonomous Systems (AS), and the routing between these au-

tonomous systems is handled by the Border Gateway Protocol
(BGPv4) [1]. Each AS contains one or more Internet Protocol
(IP) prefixes, whereas each prefix is an identifier for a sub-

network. If some AS wants to provide connectivity between its

IP prefixes and other ASes, it will announce those prefixes to

those ASes. Each AS contains one or more routers configured

with BGP, known as BGP speakers. Each speaker contains

forwarding tables that provide the information necessary to

forward a packet based on the destination and the prefix

available in the table. BGP speakers send UPDATE messages

to other BGP speakers in order to announce or withdraw

routes. Upon receiving these update messages, an AS selects

the best route to a certain prefix based on its internal policy.

Although BGP plays an essential role in the Internet, it has

considerable limitations in terms of security. One example

of its lack of security happened on August 2013 when a

company called Hacking Team helped the Italian police regain

control over computers that were being monitored by them.

Hacking Team worked with an Italian Web host called Aruba

announcing to the global routing system 256 IP addresses that

it did not own. This caused all the traffic directed to the 256

IP addresses to be redirected to the Hacking Team. This was

the first known case of an ISP performing a route hijacking
attack intentionally [2].

These security problems mainly come from the potential

to interfere with route announcements in order to corrupt

BGP routing. Attackers can exploit this vulnerability to claim

ownership of victim prefixes and announce them to their

upstream providers. Providers that do not verify the origin of

the announcements may end up injecting these in to the global

routing system, which leads network packets to reach incorrect

destinations. In some cases, attackers may intercept traffic

and forward it to its destination, compromising confidentiality
without being noticed.

The vulnerability of the BGP protocol has been well-

known for over two decades. Several solutions have been

proposed, but none is widely adopted and deployed. These

solutions mainly fall into filtering and cryptography methods

[3]–[6], which require changes in routers configurations, router

software and a public key infrastructure. Others proposals [7]–

[10] rely on passive monitoring of BGP data, so they are easier

to deploy; however, they suffer from high false positive rate,

since they access public registries that are frequently outdated.

Finally, there are systems that use only data-plane information,

by executing active probing, but can easily be bypassed [11],

or require vantage points [12].

We present DARSHANA (or DaRsHANa, from Detecting

Route HijAckiNg – in Sanskrit, Darshana means to see, vision

or glimpse) that works by continuously observing network

information to detect route hijacking attacks. Our main goal

is to detect if Internet traffic is diverted to be eavesdropped

in arbitrary places around the world, when the adversary has

no access to the path normally taken by the traffic. Therefore,

the security property we are most interested in is communica-

tion confidentiality. DARSHANA has the advantage of being

implemented in the data-plane, above the OSI network layer,

therefore it can be implemented in terminals connected to the

Internet, instead of being specific to Internet Service Providers

(ISP) and large Internet companies. DARSHANA uses a set of

monitoring techniques like: traceroute, latency measurements

and IP traceback mechanisms that can effectively monitor

the routes that packets are taking. Ultimately, this allows

detecting route hijacking that could be used to eavesdrop on

a communication to break confidentiality. We do not intend to

substitute the use of best practices to configure BGP, or several

prevention mechanisms that have already been proposed like

[3]–[6], [8], [13].

The system applies active probing techniques which enables

the detection in near real-time. The order of execution of these978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

52

techniques is defined in terms of overhead and reliability:

techniques with lower overhead and reliability are executed

more often; when needed, heavier, more reliable techniques

are used. The system does not depend solely on a specific

technique to be able to accurately detect attacks.

We performed an experimental evaluation by deploying

nodes in PlanetLab and Amazon AWS. We show that nodes

can identify when traffic is being hijacked, although this is

more difficult if the hijacker is close to the source.

The contributions of this paper are three-fold. First, we

propose the design and implementation of DARSHANA, a

route hijacking detection system that is accurate, does not need

access to privileged information, does not require changes in

routers software, is redundant enough to deal with attacker

countermeasures, and does not need vantage points. Second,

we present a new mechanism that uses the propagation delay

in order to detect route hijacking. Third, we analyze and

conduct experiments in large scale environments to evaluate

DARSHANA.

II. BACKGROUND

BGP does not ensure that BGP routers use the AS number

they have been allocated, or that the ASes holds the prefixes

they originate. Therefore, a router can be configured to adver-

tise a prefix from an address space belonging to another AS

in an action known as route hijacking or IP prefix hijacking

[13]. This action can happen in the following forms:

Hijack the entire prefix. The hijacker announces the exact

prefix of the victim, meaning that the same prefix has two

different origins.

Hijack only a sub-prefix. The offender announces a more

specific prefix from an already announced prefix (e.g., the vic-

tim announces 200.200.0.0/16, the attacker 200.200.200.0/24).

Due to the longest prefix matching rule, ASes that receive

these announcements may direct traffic towards the wrong AS.

These forms of attacks can impact routing, leading to:

Blackhole. An AS drops all the packets received. The Pakistan

Telecom / YouTube incident originated a blackhole where all

the traffic sent to YouTube was redirected to Pakistan Telecom.

Since there was no working path back to YouTube, Pakistan

Telecom was forced to drop all packets [14].

Interception. The attacker announces a fake route to an AS,

that forwards traffic of the victim to the original server. The

contents of the intercepted traffic can be analyzed/changed,

before sending it to the legitimate destination [15]. This type

of attack requires an untampered working path that will route

the traffic back to the legitimate destination.

BGP security procedures today consist mainly on filtering

suspicious BGP announcements, e.g., announcements that

contain loopback addresses or addresses that are not owned

by the AS that announced it. The problem of this approach is

that detecting invalid route announcements is more challenging

when the offending AS is several hops away.

An accurate routing registry would have prefix ownership,

AS-level connectivity and routing policies enabled in each AS,

helping ASes to verify the legitimacy of the advertisements

that they receive. The drawbacks of this model mainly include,

the lack of desire of ISPs to share their proprietary routing

policies.

In this work, we focus on interception attacks and propose

a solution that does not rely completely on Internet registries.

III. DARSHANA

We introduce DARSHANA a route hijacking detection

system that uses only data-plane information.

A. Mechanisms used in the system

This section presents the mechanisms used in DARSHANA.

We indicate the short names we use for each between paren-

theses (e.g., Lat for the first mechanism). Table I shows a

summary of the mechanisms.

1) Monitoring network latency (Lat): One of the metrics

used in our system is the RTT (round trip time). Each node

that is monitoring another (node) keeps information about the

total time that each packet takes from source to destination

and from destination to source. In a hijacking event the end-

to-end latency between a certain source and a destination tends

to change significantly. Measuring the RTT has some benefits

like low overhead and the fact that time is a factor that is hard

for an attacker to evade. On the other hand, an increase in

RTT is hard to distinguish from network congestion.

We designed a new version of ping that we denote as cryp-
tographic ping. The objective is to avoid having an adversary

respond to a ping request earlier, before the request reaches

the destination, leading to readings of RTT that are lower than

the real value. The new mechanism works as follows. The

machine that is monitoring A marks time and sends a nonce

to a machine that is being monitored B. B will cipher the

nonce with its private key and send it back. A marks the time

again and will verify the received signed nonce by applying

the public key of B. If the nonce matches, A calculates the

round trip time by subtracting the first marked time from the

last marked time. Without this ping, the hijacker, since he has

hijacked the traffic, could answer to the ping probes sooner,

ultimately fooling the system. This way we can guarantee

authenticity and uniqueness. This requires the server to run

code and share its public key.

2) Estimating hop count (Hop): We propose adding the

hop count, the number of intermediate devices between a

source and a destination, as one more criteria to detect a

route hijacking attack. According to [12] the hop count to

a certain destination generally remains unchanged over time.

When a prefix is hijacked, the hop count tends to change. In

an interception attack, the traffic takes a detour to the AS of

the hijacker, then it is forwarded to the legitimate destination.

This deviation can change significantly the hop count if the

hijacker is far from the source, which is likely due to the size

of the Internet. In contrast to the RTT, the hop count is not

affected by congestion. However, other less frequent events

53

TABLE I
THE METHODS, BENEFITS AND DRAWBACKS OF THE MECHANISMS USED BY DARSHANA PRESENTED IN SECTION III-A

Mechanism Detection Benefits Drawbacks

Monitoring network latency
(Lat)

High latency could mean traffic hijack. Easy to measure.
Latency is also affected
by congestion so it does not
indicate hijacking with certainty.

Estimating hop count
(Hop)

The hop count is usually stable, so a high increase
in hop count could be induced by traffic hijack.

Usually stable.
Link failures and legitimate
route changes may trigger alteration
in the network topology.

Calculating path similarity
(Path)

Paths may end up showing significant disagreement
when traffic is hijacked.

Filters small legitimate
route changes.

Not all route changes
are the result of traffic hijack.

Monitoring propagation delay
(Prop)

Propagation delay gives the time that a bit takes
in the wire, meaning that in a hijacking event
this value may show an anomolous value.

Provides insights about the
attack even when traceroute
does not give results.

Requires a period of initialization,
to estimate all the other latencies.

like link failures and operational route changes may cause it

naturally.

3) Calculating path similarity (Path): The system tracks

the path that packets are following. It periodically stores the

path obtained using traceroute and translates the IP addresses

found to autonomous systems numbers (ASN). This mapping

increases accuracy, because we only need one router from a

autonomous system to correctly obtain a path that packets are

taking. The correlation between the new path measurement

and the previous path measurement may provide insights about

the occurrence of the attack. In a hijacking event, since the

traffic has taken a detour, the paths measured may end up

showing significant differences. The level of this difference

sets apart legitimate route changes and hijacking situations.

On the contrary, legitimate changes are not expected to result

in a dramatic route change.

4) Monitoring propagation delay (Prop): We propose a

new technique that isolates the propagation delay from the

RTT and uses this metric to declare a route hijacking. This

technique is divided into two phases. The second phase is

activated only if the system stops obtaining results from the

Path mechanism, indicating an attacker is interfering with this

mechanism.

Phase one. Consider that the RTT can be decomposed in

the following delays: transmission delay (σtrans), propagation

delay (σprop), queuing delay (σqueue) and processing delay

(σproc) as depicted in RTT = σtrans+σprop+σqueue+σproc.

The propagation delay is the time that a bit takes in the

communication medium from a node to another node. This

delay can be calculated as the ratio between the link length

and the propagation speed on that medium.

The system uses the IP addresses of the origin and the

destination to obtain their approximate geographical coordi-

nates. The link length is calculated by computing the shortest

distance between both. For the propagation speed, we make

a conservative approximation by considering that all nodes

are connected with fiber-optics, which has higher propagation

speed than alternative media (copper, air). We use the usual

approximation that fiber optics operates at 2/3 the speed of

light [16]. The minimum possible propagation delay is given

by formula 1, where o represents the origin, d is the destination

and c is the speed of light:

Fig. 1. The maximum propagation delay is represented as a circle defined
by the source o with radius r where the destination d is inside of the circle.

σprop =
3

c
× ShortestDistance(o, d) (1)

Besides the propagation delay, the system estimates

the sum of the others latencies (σtrans,queue,proc) by

σtrans,queue,proc = RTT − σprop.

Phase two. When the system obtains an anomalous RTT

and stops receiving results from Path, it selects the min-

imum value of σtrans,queue,proc and the maximum value

of the RTT estimated. By max (σprop) = max (RTT) −
min(σtrans,queue,proc), we obtain an upper bound on the

value of the propagation delay. This allows drawing a circle

around the source with a radius r that represents the maximum

propagation delay (represented in Figure 1). If the distance

between d and o is greater than r we detect a route hijacking.

This mechanism allows detecting route hijacking even if the

Path measurements cease to exist. However, it requires a

period of initialization, to estimate the different latencies.

B. System operation

This section presents the operation of DARSHANA. Figure

2 divides the mechanisms presented in the previous section in

components and presents their relations. DARSHANA has the

following components:

Active Probing. In this component three mechanisms come

into play: Lat, Hop, and Prop (first phase). The system

constantly takes values for RTT, hop count and the path that

packets are taking. The system probes the RTT more often

because this is the mechanism with the lowest overhead. Upon

detecting an anomaly in the RTT the system passes to more

reliable mechanisms, as this anomaly could be caused by

temporary congestion in the network. The next mechanism

54

is estimating the hop count, for the reasons explained in

Section III-A2. This metric is more reliable than Lat so it

is used to filter out small legitimate changes. This component

also executes the first phase of monitoring propagation delay,

calculates this delay with the shortest distance in a straight

line between the source and the destination and estimates the

other latencies belonging to the RTT.

Fig. 2. Fluxogram of DARSHANA, with the mechanisms organized in
different components

Path Similarity Detection (Path). Traceroutes with different

protocols (ICMP, UDP, TCP) are issued. The system uses

different protocols because routers may be configured to block

certain protocols [17]. The path that contains the most nodes

is chosen and stored. If enough results were received, then the

new path will be compared with the last path obtained by the

Active Probing. Disagreement above a certain threshold may

indicate the existence of the attack.

Propagation Delay Validation (Prop, second phase). In

case no conclusive results are received from path similarity

detection, the max (σprop) and the anomalous(σprop) are

calculated. The maximum propagation delay is computed by

max (σprop) = max (RTT) − min(σtrans,queue,proc).
The anomalous propagation delay is calculated

with anomalous(σprop) = anomalous(RTT) −
max (σtrans,queue,proc). This calculated propagation delay is

compared with max (σprop).

Hijacking declared. Upon conclusion of the method chosen,

an analysis is made and presented to the sender of the traffic.

C. The system in detail

In this section, we present the implementation decisions of

DARSHANA.

Active probing. DARSHANA issues cryptographic pings and

Paris traceroute [18] probes with different periods. Paris

traceroute is known to evade anomalies like loops, cycles

and diamonds. These anomalies stem from the fact that a

load balancer sends probes of traceroute to different interfaces

based on the header of the probes. By not varying the fields

used by a load balancer, Paris traceroute enables probes to be

forwarded in the same interface even if load balancers exist.

Three values are obtained by executing traceroute: hop

count, traffic path and propagation delay. For calculating the

hop count we use traceroute. We only need to execute a partial

traceroute with a TTL that is close to the destination in the

majority of times. TTL = 1 is only used when we do not know

about the destination.

We characterize the traffic path in terms of a set of au-

tonomous systems, so each node of the result of the traceroute

is mapped to the corresponding autonomous system using the

CYMRU database [19].

Finally, the propagation delay is calculated by first, trans-

lating the IPs of the source and destination to geographical

coordinates using MaxMind database [20], then the shortest

distance is calculated between them and passed to the propa-

gation delay by using the formula presented in Section III-A4.

Each iteration of the cryptographic ping gives a new sample

of RTT and by subtracting the RTT with the propagation delay,

we estimate the other latencies of the RTT.

Path Similarity Detection. New samples of RTT and hop count

are compared with the exponential weighted moving average

of past samples, the formula for the average is the following:

sample = (1 − α) × sample + α × samplenew. The moving

average allows DARSHANA to adapt to the normal changes in

the network. If the quotients between the new samples of both

RTT and hop count with the exponential weighted moving

average passes certain defined thresholds TLat and THop,

Paris traceroutes are issued to the destination in an attempt

to reveal the cause of the anomalies. If there are enough

elements in the resulting path, then this path is compared

to the last path stored. The comparison of these two paths

can be computed from path and path ′ using the Sorensen-

Dice coefficient: sim = 2|path ∩ path ′|/(|path| + |path ′|).
This gives the similarity in a number that ranges from [0,1].

0 means that there is no similarity at all and 1 means that the

items of the two paths are the same. If the similarity is below

a threshold TPath, then a route hijacking is declared.

Propagation Delay Validation. In case the traceroutes ex-

ecuted in the previous module do not produce any re-

sults, DARSHANA calculates the σprop with the RTT

and σtrans,queue,proc that were estimated. More precisely,

the system will compute the max (σprop), by subtract-

ing the max (RTT), found before the anomaly, and the

min(σtrans,queue,proc). This computed delay will be com-

pared with anomalous(σprop) resulted from the subtraction

of the anomalous(RTT) with the max (σtrans,queue,proc). If
anomalous(σprop)

max(σprop)
is higher than a defined threshold TProp, then

a route hijacking is declared.

55

IV. EVALUATION

Simulations of prefix hijackings were conducted to validate

our proposed implementation in terms of performance and

cost. The objective of the experimental evaluation is to answer

two important questions: (1) How effective is DARSHANA in

detecting attacks? (Section IV-B) (2) How many times is DAR-

SHANA forced to execute techniques with higher overhead in

normal conditions when there is no attack? (Section IV-C)

The experiment was done in PlanetLab Europe [21] and

AWS EC2 [22]. PlanetLab offers a geographically diverse

set of nodes which provides more choice to build scenarios.

However, the restriction of only being able to access nodes

from Europe limits the testing in larger scale scenarios. AWS

permits access to instances in different continents but does

not provide much geographical diversity. With PlanetLab we

use nodes from Portugal (POR), Ireland (IRE), France (FRA),

Germany (GER) and Poland (POL). From AWS we used

instances from N. Virginia (VA), N. California (NA) and South

Korea (S. Korea). Figure 3 shows a world map with all the

nodes used from PlanetLab and AWS marked in black circles

and squares, respectively.

Fig. 3. Nodes used from PlanetLab and AWS

A. Simulating route hijacking attacks

Before we present the tests done, it is important to explain

how the simulation of the attacks is made. We simulate only

the interception attack, because the blackhole attack ends up

being just an interruption of communication, therefore it is

easy to detect. In order to simulate the attack, we need three

nodes: one node that is the source of the Internet traffic; a

node that will serve as the destination; and another node that

is trying to hijack traffic by receiving it and then sending it to

the legitimate destination.

B. Performance of the system

In order to evaluate the performance of DARSHANA, we

measured the percentage of times that DARSHANA detects

existing attacks and assess the false positives in different

scenarios (i.e., false route hijacks reported). We compared

DARSHANA with the individual mechanism: Lat, Hop, Path,

Prop. Each scenario of the experiment was repeated 30 times.

1) Small scale scenarios: We tested small scale scenarios

with nodes from PlanetLab. Each scenario is composed by

three nodes. Two of them have a source-destination relation

and the third one serves as the hijacker. Throughout the

scenarios the source and the destination are fixed and the

Lat

Hop

Prop Path

DARSHANA

0

50

100

soft

medium

hard

Fig. 4. The percentage of times that each mechanism detects a simulated
route hijacking attack. The scenario involves Portugal as the source, Ireland
as the destination and France as the hijacker. The labels soft, medium and
hard represent different sets of thresholds for each mechanism.

Lat

Hop

Prop Path

DARSHANA

0

50

100

soft

medium

hard

Fig. 5. The percentage of times that each mechanism detects a simulated
route hijacking attack. The scenario involves Portugal as the source, Ireland
as the destination and Poland as the hijacker.

hijacker varies its distance to the source. We selected a

node from Portugal as the source, a node from Ireland as

the destination and the hijackers are nodes from France and

Poland. The distances from source to hijacker were chosen

in a way that would enable us to determine the cases when

DARSHANA has more difficulty in detecting the attack. The

results are presented in Figures 4 and 5.

The figures show the percentage of times that each mecha-

nism detects a simulated route hijacking attack under different

scenarios. Each figure contains three labels: soft, medium and

hard. They specify qualitatively the thresholds that were used

for each mechanism. There are four thresholds, TLat, THop,

TPath and TProp, that indicate how much measurements of

RTT, hop count, path and propagation delay have to deviate

in order to declare a route hijacking. The values of the

thresholds used in the experiments were defined based on

many experiments done before the evaluation here reported.

These values are presented in Table II.

Observing the results, we can conclude that soft thresholds

lead Lat to detect all hijacks. However, this also leads to false

positives and, in the case of DARSHANA, prevents the other

mechanisms from actuating and removing such false positives,

while keeping a high detection rate. The Hop and the Path

mechanism present 0 or 100% values. This is due to the

fact that these mechanisms provide constant results through

time. Therefore for certain values of THop and TPath, these

mechanisms will detect or not the simulated attack. In regard

56

Lat

Hop

Prop Path

DARSHANA

0

50

100

soft

medium

hard

Fig. 6. The percentage of times that each mechanism detects a simulated route
hijacking attack. The scenario involves N. Virginia as the source, N. California
as the destination and Germany as the hijacker.

to the propagation delay mechanism and observing Figures 4,

5 and Table II, the hard label in Figure 4 corresponds to TProp

= 4.6 and the soft label in Figure 5 is equal to TProp = 7.4.

In Figure 5 with the soft label, the detection of the attack is

very close to 100%, but by observing Figure 4 we can see

that for the hard label, this mechanism can only identify the

attack less than 50% of the times. This means that changes in

propagation delay are much more observable as the hijacker

increases its distance to the source of the traffic.

When the source and the hijacker are close, the packets

do not traverse many different autonomous systems and so

DARSHANA is not able to detect the hijack with the hard

thresholds.

2) Real scenarios: While our analysis in the previous

section provided some insights about the capacity of detection

of our system, we wanted to test our detection mechanism

using historical prefix hijacking events and confirm that our

mechanism behaves better by having the hijacker farther away.

We simulated two scenarios. It was not possible to choose

nodes from the exact locations in which these scenarios took

place so we chose nearby nodes. The first scenario corresponds

to the Belarusian Traffic Diversion [23], where traffic from

New York was diverted to Belarusian ISP GlobalOneBel

before arriving to the intended destination, Los Angeles. To

simulate this, we deployed two nodes (micro-instances) in

two different Amazon AWS regions: N. Virginia and N. Cal-

ifornia. The node from N. Virginia is the source, the node

from N. California is the destination. We used a node from

PlanetLab in Poland to serve as a hijacker and to represent the

Belarusian ISP GlobalOneBel. The second scenario emulates

the China 18-Minute Mystery [24], in which, allegedly, traffic

between London and Germany took a detour through China.

We simulate this by selecting a node from PlanetLab in Ireland

as the source, a node from Germany as the destination and a

micro-instance of Amazon AWS in Seoul as the hijacker. The

results can be found in Figures 6 and 7. In these scenarios

there is substantially more change, between the samples after

attack and the samples prior to the simulated attack, than in

the small scenarios experiments. The values for thresholds are

shown in Table II.

To better understand why DARSHANA presents superior

Lat

Hop

Prop Path

DARSHANA

0

50

100

soft

medium

hard

Fig. 7. The percentage of times that each mechanism detects a simulated
route hijacking attack. The scenario involves Ireland as the source, Germany
as the destination and South Korea as the hijacker.

detection values in relation to the experiments done in Section

IV-B1, we need to have an idea of the paths that packets take

from source to destination, before the hijacking and after the

hijacking. Table III shows the number of the ASes the traffic

traverses, before the attack and after. It is possible to observe

that the normal path and the hijacked path from the small

scale scenarios share more numbers than the paths from real

case scenarios. Furthermore, detecting the attack between two

instances of Amazon AWS is easy, because there is not a lot

path diversity as we can see from the normal path between

N. Virginia and N. California.

3) False positives: There is a false positive when a scheme

claims to have detected an attack that did not exist. We

evaluated the false positives for each individual mechanism

of our system during a run of 1h15m. The false positives

were calculated by executing each detection mechanism with

scenarios without running the attack (i.e., without hijacking).

By capturing the amount of alerts given by a mechanism we

get the false positive rate #alerts/#samples, where #alerts
is the number of alerts and #samples the number of samples

taken. We tested for three different scenarios and each scenario

contains a source and a destination. For the first scenario, we

chose a node from POR as the source and a node from IRE

as the destination; in the second, the source is a node from

IRE and the destination is a node from GER; finally for the

last scenario the source is a node from VA and the destination

is a node from CA.

For Path and Hop the number of false positives observed

was 0, because there would have to be legitimate route changes

to cause them, but these are not frequent and none was

observed. For Prop the number of false positives was also 0, as

the mechanism always searches for the maximum RTT stored

to compute the maximum propagation delay ever observed.

Unless a great anomaly in RTT is found, the mechanism will

not raise an alarm. For Lat, we received a new sample from 30

to 30 seconds getting a total of 150 samples per scenario. The

results are presented in Figure 8. The values for the thresholds

were chosen with the objective to reveal variation in the false

positive rate. As we can see in all sets of columns the false

positive rate is bigger for softer thresholds. This makes sense

since small thresholds mean that a small variance of RTT is

considered an attack. For the soft label the value used was 1.2,

57

TABLE II
VALUES OF THRESHOLDS USED FOR EACH SCENARIO. S, D AND H ARE THE SOURCE, DESTINATION AND HIJACKER, RESPECTIVELY.

S:POR | D:IRE | H:FRA S:POR | D:IRE | H:POL S:VA | D:CA | H:POL S:IRE | D:GER | H:S.Korea
Mechanisms Soft Medium Hard Soft Medium Hard Soft Medium Hard Soft Medium Hard
Lat 1.2 1.3 1.4 2.1 2.2 2.3 3.6 3.65 3.7 13 13.5 14
Hop 1.05 1.1 1.15 1.05 1.1 1.15 2.05 2.1 2.15 2.2 2.25 2.3
Path 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.7
Prop 3.6 4.1 4.6 7.4 7.9 8.4 12.5 13 13.5 70 75 80

TABLE III
NUMBERS OF THE ASES THAT PACKETS TRAVERSE

Hijacker
From - To

POR - IRE IRE - GER VA - CA
Normal Hijacked Normal Hijacked Normal Hijacked

FRA 1930,21320,1213 1930,21320,2200,15557,1213 - - - -
POL 1930,21320,1213 1930,21320,8501,8890,1213 - - 16509 16509,2603,8501,8890,16509

S.Korea - - 1213,21320,680
1213,3356,2516,
16509,4766,174,680

- -

0.033

0.027

0.06

0.02

0.013

0.033

0.007 0.007

0.013

VA-CA

Soft
Medium
Hard

POR-IRE

F
al

se
 P

os
iti

ve
 R

at
e

IRE-GER

Fig. 8. False positive rate of RTT in different scenarios. The Y axis refers to
the false positive rate and the X axis represents the different scenarios tested.

for medium the value was 1.3 and for the hard label the value

chosen was 1.4.

The results for DARSHANA were obtained with the soft

thresholds for Lat. However, on the contrary of Lat, the false

positive rate for DARSHANA was 0 in all scenarios, as the

other mechanisms (Path, Hop, and Prop) filtered the false

positives of Lat, leading to 0 false positives as obtained with

each of the 3 individually.

C. Cost

DARSHANA keeps probing for RTT with period k. Unless

anomalies in RTT are verified, leading the system to use

techniques with bigger overhead, like Hop and Path. We

evaluate the cost as how many times DARSHANA is forced to

execute heavier techniques in normal conditions. The scenarios

used were the same as in Section IV-B3. Setting a probing rate

for RTT to 60 seconds, Figure 9 illustrates the values for round

trip time in different scenarios.

During this period the mean deviations of the samples were

low. The scenario with VA and CA, has the biggest mean

deviation of approximately 5.02. This implies that the RTT

usually remains constant, being difficult to observe anoma-

lies and pass to heavier methods. Considering a value of

Fig. 9. RTT values in different scenarios. The Y axis refers to the RTT values
in milliseconds and the X axis represents the number of samples.

TLat = 1.5, the total ping and traceroute messages for this

period follow the following formulas, where #Msg_Ping
and #Msg_Traceroute correspond to number of ping and

traceroute messages, respectively #Msg_Ping = T × k and

#Msg_Traceroute = #Msg_Ping/n .

Where T is the total time of the experiment, k is the

ping period and n is the traceroute period. For this exper-

iment #Msg_Ping = 100 × 1 = 100 ping messages and

#Msg_Traceroute = 100/5 = 20 traceroute messages. All

of this demonstrates that even for low values of TLat, the

total number of #Msg_Ping and #Msg_Traceroute end

up only being dependent on k and n.

V. RELATED WORK

Many solutions have been proposed for the IP prefix hijack-

ing problem. Some of them are crypto-based such as [3]–[6].

These solutions require deep changes in routers and network

protocols. BGP routers need to sign and verify announcements

which leads to a non negligible overhead.

Other solutions like [7]–[10] are more deployable because

they do not require changes in routers, they only need access

to public registries, like Route Views and European IP Net-

works (RIPE) to conduct passive monitoring and look out for

58

Multiple Origin Autonomous Systems (MOAS) [25]. An IP

prefix should only be generated by a single AS, so this conflict

may indicate a prefix hijacking. The problem associated to

these solutions is that many times the public registries may be

outdated and inaccurate, leading to an increase of the number

of false positives.

Finally, there are solutions that rely only on the data plane

like ours. They are not constrained by the availability of

BGP information and are more accurate. [12] uses a set of

monitors to detect prefix hijacking in real time. These vantage

points monitor a prefix from topologically diverse areas. Each

monitor keeps track of the hop count and the path to a target

prefix and if past measurements disagree with new ones then a

route hijacking is declared, the need for vantage points end up

limiting the system. On the other hand, [11] detects IP prefix

hijacking by observing unreachability events. It is owner-

centric, in a point that the mechanism keeps sending probes

to transit ASes. If enough ASes stop responding, the system

declares the attack. If the attacker forwards the responses of

the probes back to the sender, the attack is not detected.

In this paper we make use of the propagation delay as

another criteria to detect route hijacking. This delay has been

used in [26], which proposed a system that presents undeniable

proof about traffic traversing a certain forbidden zone defined

by the sender. To know if a certain relay node is not in the

forbidden region, the minimum possible RTT from the source

to any node in the forbidden zone was calculated, with the

propagation delay. In case the RTT from the source to the

relay node is less than the RTT calculated earlier, then the

relay node is not in the forbidden region.

The design of the lightweight and end-host-based probing

techniques was inspired by Hubble [27], where low overhead

probing techniques are used first and heavier, but more reliable

techniques, are only used when there is such a need.

VI. CONCLUSION

This paper presented DARSHANA, a route hijacking de-

tection system. By only applying active probing methods, we

ensure accuracy and deployability. Different techniques turn

the system redundant enough to not be avoided by attackers.

The design of the detection system minimizes the overhead, by

using techniques with low overhead more often. Techniques

with greater reliability and overhead are only executed when

necessary. Our system is the first to use the propagation delay

in this context, providing one more metric for the purpose of

detection. We evaluated the system with small scale and real

scenarios.

Acknowledgements This work was supported by the European Com-

mission through project H2020-653884 (SafeCloud) and by national

funds through Fundação para a Ciência e a Tecnologia (FCT) with

reference UID/CEC/50021/2013 (INESC-ID).

REFERENCES

[1] S. H. Y. Rekhter, T. Li, “A border gateway protocol 4 (RFC 4271),”
January 2006.

[2] D. Goodin, “Hacking Team orchestrated brazen BGP
hack to hijack IPs it did not own,” 2015. [On-
line]. Available: http://arstechnica.com/security/2015/07/hacking-team-
orchestrated-brazen-bgp-hack-to-hijack-ips-it-didnt-own/

[3] M. Lepinski, “BGPSEC protocol specification, draft-ietf-sidr-bgpsec-
protocol-17,” 2016.

[4] S.Kent, C.Lynn, and K.Seo, “Secure border gateway protocol (S-BGP),”
IEEE JSAC Special Issue on Network Security, 2000.

[5] W.Aiello, J.Ioannidis, and P.McDaniel, “Origin authentication in inter-
domain routing,” Proceedings of ACM Conference on Computer and
Communications Security, 2003.

[6] K.Butler, P.McDaniel, and W.Aiello, “Optimizing BGP security by
exploiting path stability,” Proceedings ACM Conference on Computer
and Communications Security, 2006.

[7] M. Lad, D. Massey, D. Pei, and Y. Wu, “PHAS: A prefix hijack alert
system,” Proceedings of the Usenix Security Conference, pp. 153–166,
2006.

[8] J. Karlin, S. Forrest, and J. Rexford, “Pretty good BGP: improving
BGP by cautiously adopting routes,” Proceedings of the 2006 IEEE
International Conference on Network Protocols, pp. 290–299, 2006.

[9] X. Hu, Mao, and Z. Morley, “Accurate Real-time Identification of IP
Prefix Hijacking,” IEEE Symposium on Security and Privacy, no. 2, pp.
3–17, 2007.

[10] X. Shi, Y. Xiang, Z. Wang, X. Yin, and J. Wu, “Detecting prefix
hijackings in the Internet with ARGUS,” Proceedings of the 2012 ACM
Internet Measurement Conference, 2012.

[11] Z. Zhang, Y. Zhang, Y. C. Hu, Z. M. Mao, and R. Bush, “iSPY: detecting
IP prefix hijacking on my own,” Proceedings of the ACM SIGCOMM
2008 Conference on Data Communication, 2008.

[12] C. Zheng, L. Ji, D. Pei, J. Wang, and P. Francis, “A light-weight dis-
tributed scheme for detecting IP prefix hijacks in real-time,” Proceedings
of the 2007 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, pp. 277–288, 2007.

[13] K. Butler, T. Farley, P. McDaniel, and J. Rexford, “A survey of BGP
security issues and solutions,” Proceedings of the IEEE, vol. 98, no. 1,
pp. 100–122, 2010.

[14] M. Brown. (2008) Pakistan hijacks youtube. [Online]. Available:
http://research.dyn.com/2008/02/pakistan-hijacks-youtube-1/

[15] H. Ballani, P. Francis, and X. Zhang, “A study of prefix hijacking and
interception in the Internet,” ACM SIGCOMM Computer Communica-
tion, 2007.

[16] “The handbook for radio communications, 89th edition,” 2012.
[17] M. Luckie, Y. Hyun, and B. Huffaker, “Traceroute probe method and

forward IP path inference,” Proceedings of the 8th ACM SIGCOMM
conference on Internet measurement conference, p. 311, 2008.

[18] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Lat-
apy, C. Magnien, and R. Teixeira, “Avoiding traceroute anomalies with
Paris traceroute,” Proceedings of the 6th ACM SIGCOMM Conference
on Internet Measurement, pp. 153–158, 2006.

[19] Team cymru. [Online]. Available: http://www.team-cymru.org/IP-ASN-
mapping.html

[20] Maxmind. [Online]. Available: http://dev.maxmind.com/
[21] Planetlab : global research networks that supports the development of

new network services. [Online]. Available: https://www.planet-lab.eu/
[22] Amazon web services. [Online]. Available: https://aws.amazon.com/
[23] J. Cowie. (2013) The new threat: Targeted Internet traffic misdirection.

[Online]. Available: http://research.dyn.com/2013/11/mitm-internet-
hijacking/

[24] ——. (2010) China 18-minute mystery. [Online]. Available:
http://research.dyn.com/2010/11/chinas-18-minute-mystery/

[25] X. Zhao, D. Pei, L. Wang, D. Massey, A. Mankin, S. F. Wu, and
L. Zhang, “An analysis of BGP multiple origin AS (MOAS) conflicts,”
Proceedings of the First ACM SIGCOMM Workshop on Internet Mea-
surement Workshop, pp. 31–35, 2001.

[26] D. Levin, Y. Lee, L. Valenta, Z. Li, V. Lai, C. Lumezanu, N. Spring,
and B. Bhattacharjee, “Alibi routing,” Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, pp. 611–
624, 2015.

[27] J. John, E. Katz-Bessett, H. Madhyastha, A. Krishnamurthy,
D.Wetherall, and T. Anderson, “Studying blackholes in the Internet with
hubble,” Proceedings of NSDI, 2008.

59

MACHETE:
Multi-path Communication for Security

Diogo Raposo, Miguel L. Pardal, Luı́s Rodrigues, Miguel Correia
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

Abstract—Communication through the Internet raises privacy
and confidentiality concerns. Protocols such as HTTPS may be
used to protect the communication, but occasionally vulnerabili-
ties that may allow snooping on packet content are discovered. To
address this issue, we present MACHETE, an application-layer
multi-path communication mechanism that provides additional
confidentiality by splitting data streams in different physical
paths. MACHETE has to handle two challenges: sending packets
over different paths when Internet’s routing imposes a single path
between pairs of network interfaces; splitting streams of data
sent over TCP connections. MACHETE is the first to exploit
MultiPath TCP (MPTCP) for security purposes. It leverages
overlay networks and multihoming to handle the first challenge
and MPTCP to handle the second. MACHETE establishes an
overlay network and scatters the data over the available paths,
thus reducing the effectiveness of snooping attacks. Mechanisms
are provided to select paths based on path diversity.

Index Terms—Multi-path Routing, Communication Confiden-
tiality, Eavesdropping, Communication Privacy, MultiPath TCP

I. INTRODUCTION

Sending information over the Internet has the disadvantage

of making it vulnerable to eavesdropping by unauthorized third

parties. This problem is especially important for organizations

that handle critical data, such as governments, military, or

healthcare. Communication protocols based on cryptographic

mechanisms such as HTTPS and IPsec are the common

solution to this problem. However, recent events show that

it may be possible to break these protocols under certain

conditions, and suggest that powerful adversaries may be able

to do it if they access the encrypted data. For example, Adrian

et al. presented a flaw in the Diffie-Hellman key exchange

that allows downgrading the security of a TLS connection for

a specified 512-bit group [1]. They claim that a nation-state

may have the computational power to attack 1024-bit groups,

which would allow decryption of many TLS channels over the

Internet that implement this method.

We present MAChETe (Multi-pAth Communication for sE-
curiTy), a means to mitigate the impact of such vulnerabilities.

This system consists on using MultiPath TCP (MPTCP) [2]–

[4] and overlay networks [5], [6] to split communication

flows on different physical paths, possibly over a multihomed

subnetwork [7], [8], as a defense-in-depth mechanism.

The rationale is that more effort is required to eavesdrop

data split over several flows in comparison to a single flow.

The problem addressed in this paper is, therefore, achieving

additional communication confidentiality for critical data while

still assuming confidence in the cryptography mechanisms.

MACHETE has to handle two challenges. The first con-

sists in sending packets over different paths when Internet’s

routing imposes a single path between a pair of source and

destination network addresses. Overlay routing enables doing

application-layer routing, allowing packets to deviate from the

routing imposed at network level, by the Internet’s routers

and routing protocols. Overlay networks, in combination with

multihoming, are used to create path diversity, allowing flows

to be split over physically disjoint paths. Using a topology-

aware decision algorithm, several overlay nodes are chosen,

according to their location. Each node will create a single-hop

overlay path to the destination, generating an overlay network.

The second challenge is to split the stream of data sent

over a TCP connection. MPTCP is a recent extension of the

TCP protocol that has the ability to distribute and send data

among the different network interfaces of a device, e.g., the

IEEE 802.3 (“wired”, “Ethernet”) and the 802.11 (“wireless”,

“WiFi”) interfaces of a personal computer. However, MPTCP

neither ensures the use of different physical paths, nor their

diversity, as it was created mostly with performance in mind.

The paths used by a MPTCP connection are imposed by the

network interfaces of the source and destination hosts.

The combination of MPTCP with application-layer routing

is itself a third challenge. Our objective is that MACHETE

works at the application layer, without modifications to lower

layers, but it has to route packets sent at transport layer under

the control of MPTCP. MPTCP is a transport-layer protocol,

so applications provide it source and destination IP addresses

and ports. However, the overlay nodes have their own IP

addresses and ports, unrelated to the previous ones. Therefore

MACHETE has to play with the destination IP addresses and

ports for communication to be possible.

The paper has three main contributions: (1) MACHETE

is a system that improves communication confidentiality by

splitting TCP data streams over diverse physical paths lever-

aging MPTCP, overlay networks, and multihoming; (2) It is

the first work that leverages MPTCP for security and the

first to combine MPTCP with application-layer routing and

overlay networks; (3) Provides an experimental evaluation of

MACHETE over the Internet in a wide-area deployment.

II. BACKGROUND AND RELATED WORK

This section covers background and related work on the

mechanisms used in MACHETE: MultiPath TCP, overlay978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

60

routing, and multihoming.

A. MultiPath TCP

MultiPath TCP (MPTCP) is an extension of the TCP

protocol that enables endpoints to use several IP addresses

and interfaces simultaneously when communicating [2], [3].

The protocol discovers which interfaces are available to use,

establishes a connection, and splits the traffic among them.

It presents the same programming interface as TCP, however

the data is spread across several flows. The option field in

the regular TCP protocol is filled with MPTCP data structures

in order to inform the other end-point about the capability

of implementing this protocol and to add flows to the com-

munication. MPTCP has two important components on its

configuration: path manager and packet scheduler.

The path manager is the module that handles how the flows

are created in an MPTCP connection. The implementation of

the protocol in Linux currently provides four schemes [4]:

default does not create new flows, but accepts incoming;

fullmesh creates a full-mesh of flows with all available

interfaces/addresses in the device; ndiffports takes only

one pair of IP addresses and modifies the source port to create

the number of flows set by the user; binder uses the loose

source routing algorithm of the Binder system [9].

The scheduler handles the distribution of the TCP packets

(segments) over the flows, in close collaboration with TCP’s

congestion control mechanism [10]. MPTCP does not use a

single congestion window as TCP, but one per flow. Similarly

to TCP, the congestion control mechanism manages the size

of each congestion window based on the round-trip time

(RTT) of the flow and other factors (timeouts, reception of

acknowledgments). The implementation of MPTCP for Linux

by default fills the flow congestion window before starting

to schedule packets on the next flow. Although in terms of

performance it is important to take advantage of the throughput

of the channels, in terms of splitting data for confidentiality it

may be a disadvantage. In a communication composed by two

flows where one has twice the throughput of the other, that

flow will tend to send twice the amount of data of the other,

which leads to a higher amount of data is susceptible to being

spied upon. Linux’s MPTCP implementation provides three

scheduling modes: default, the one we just presented and

the one with best performance; only uses another flow if the

window of the flow in use does not allow sending data that is

pending; starts sending using the flows with lower RTT; fast
round-robin which uses sequentially all flows but fills the

congestion window of a flow before starting with the next;

strict round-robin, does real round-robin by sending

the same amount of data through all the flows in sequence;

waits for a flow to have free space to send a packet before

scheduling the next one.

MPTCP is very similar to TCP in terms of security. Specifi-

cally, the RFC says that “The basic security goal of Multipath

TCP (...) can be stated as: provide a solution that is no worse

than standard TCP” [2]. There are a few works concerned with

the security of MPTCP [11], [12].

B. Path Diversity

Path diversity can be achieved in multiple ways in a

Multipath Communication. Overlay Routing and Multihoming
are among some of the options.

Overlay routing allows the creation of a virtual network (an

overlay network) on top of an already existing network in-

frastructure, like the Internet, without modifying it. The nodes

of the network are hosts, i.e., machines that implement the

network stack up to the OSI application layer. An overlay link

may connect two nodes either directly or indirectly, through

other nodes. These nodes route (forward) the packets at the

application layer to the next or final node of the link. This

adds a level of indirection in relation to the underlying OSI

network layer topology. At the network layer the packets travel

through the routes imposed by the Internet routing protocols,

namely the Border Gateway Protocol v4 (BGPv4) [13]. At

application layer the traffic may be deviated from these routes

by sending it through overlay nodes in other locations. The

original motivation for overlay routing is resilience [5], [6]. In

case a network layer route is congested or faulty, routing done

at the application layer may allow passing the traffic through

other routes.

Another method of achieving path diversity is to use multi-
homing. This approach consists simply in having a customer

network linked to two or more ISPs. Resilience and perfor-

mance are the main advantages of this approach [14]. Different

providers offer different performance levels to different parts

of the network, so choosing the “right” provider will result in a

performance increase [7], [8]. Akella et al. [8] evaluate the use

of multihoming, using Hand-shake Round Trip Time (HRTT)

as a measurement unit for data centers and enterprises. These

studies [7], [8] conclude that simply by using two providers

the performance is increased by at least 25% and that the

improvements are very small beyond four providers.

III. MACHETE

MACHETE is an application-layer mechanism for improv-

ing communication confidentiality by splitting packets in dif-

ferent paths. It uses MPTCP over an overlay network to create

multi-path communication. By setting up a network composed

by several nodes it is possible to implement an overlay

network, which consists of several links between the source

and destination of a communication. MPTCP will use these

overlay links to split the data to be transferred. Path diversity is

sought by exploiting diversity between Autonomous Systems

(ASs). MACHETE uses single-hop overlay routing as there

seems to be no gain in using more hops, both in terms of

performance and diversity [15].

The architecture of MACHETE is represented in Figure 1

and has three main components: Multi-path devices which

communicate using MACHETE, that also can play the role

of server (wait for connections) or client (start connections),

similarly to TCP; Overlay nodes which are the nodes of the

overlay network that forward messages on behalf of multi-path

devices and create alternative communication paths; Multi-

61

Overlay
Node

Overlay
Node

Overlay
Node

Overlay
Node

Client:
Multi-path

Device

Server:
Multi-path

Device

Multi-path
Manager

Fig. 1. The architecture of MACHETE. The solid lines represent data
communication flows and the dashed lines control communication (e.g., node
registration in the overlay network).

path manager which is the component in charge of keeping

track of the nodes that compose the overlay network.

This section presents MACHETE abstractly but in some

places delves into the details of its implementation in Linux.

A. Threat Model

MACHETE is concerned about attacks against the confiden-

tiality of data exchanged, so it considers passive attackers that

eavesdrop on communication at certain physical locations. We

assume that the attackers can eavesdrop on all packets at those

locations, so confidentiality has to be achieved by reducing the

locations where all traffic passes.

We assume that communications between the manager

and each other component of MACHETE use default secure

channels with a configuration which maximizes security, e.g.,

TLS using a 2048 bit key with elliptic curve Diffie-Hellman

key exchange. Therefore the attackers can not compromise the

manager’s communication integrity and confidentiality.

We assume that the devices and nodes of the system are

trustworthy, i.e., that they follow the protocol. This assumption

has to be assured using proper security mechanisms, such

as hardening, sandboxing, and access control. MACHETE is,

however, prepared to recover from node crashes.

The multi-path manager might be a single-point of failure of

the architecture, so it is replicated. We assume that a subset of

the replicas can be compromised by an attacker or crash and

we use a specific scheme to make overall multi-path manager

tolerate these issues.

It is also important to notice that MACHETE has the

objective of dealing with the most resourceful adversaries such

as a nation-states. An adversary this resourceful can acquire

control over several ASs in his area. Therefore it is important

that the nodes are placed in a wide geographic area. Beyond

that, it can also be stated that the closer an attacker is to the

source or destination of the communication, the easier it is to

find a single point of interception1. This being, multihoming

1In this case, a autonomous system routing many or all of the data streams
in a multi-path communication is considered a single point of failure

Application

MACHETE

Sending
Handler

Receiving
Handler

MPTCP

netfilter

User
Mode

Kernel
Mode

send

send

receive

send

send

receive

receive

receive

setup

network

Device

Fig. 2. MACHETE multi-path device architecture. MACHETE proper is a
user level process running in a computer, which connects the application to the
communication stack in the kernel (MPTCP) and netfilter (using iptables).
MACHETE only establishes new rules when it creates a new connection
(essentially an MPTCP connection).

is a very important component of MACHETE’s deployment

as it is discussed further ahead in this document.

B. Multi-path Manager

The multi-path manager is the component that contains

information about every entity in the network. Its function

is to register every node and device addresses and to provide

that information to devices that aim to communicate.

The multi-path manager was not developed from scratch but

instead is a tuple space that implements Linda’s generative

coordination model [16]. A tuple space is a repository of data

items called tuples and provides mainly three operations: insert

tuple (out), read tuple (rd), and remove tuple (in).

MACHETE uses a specific tuple space called DepSpace

[17], [18]. DepSpace is replicated in order to tolerate faults

in some of the replicas. Specifically, it continues to operate

correctly despite the failure of up to f out of 3f + 1 replicas

(typically 1 out of 4). DepSpace is Byzantine fault-tolerant,

so it provides its service correctly even if f replicas are

compromised or fail arbitrarily. Whenever server multi-path

devices and overlay nodes start to run, they register with the

multi-path manager by inserting a tuple on the tuple space.

C. Multi-path Device

A multi-path device is designated as a computer that uses

MACHETE to communicate. The architecture of such a de-

vice is represented in Figure 2. This component dynamically

establishes paths and splits the packets among them.

After a device registers itself on the multi-path manager, the

process of transferring a stream of data (e.g., sending a file)

is composed of three steps: path setup, data transfer and path
tear down. Figure 3 represents this process. Next we describe

each of these steps, dividing the first in two substeps.

MPTCP requires devices to have several network addresses

to create more than one flow. If the device has several physical

62

interfaces, possibly connected to more than one provider –

multihoming –, each one has an IP address. If that is not the

case or that number of addresses is not enough, more than one

address can be assigned to each interface, e.g., using Linux’s

virtual network interfaces [19]. Having two addresses (in total)

on each device is enough to establish a network composed of

four paths, which in general is enough to achieve the objective.

1) Path setup – choosing overlay nodes: The process

starts by querying the multi-path manager about the available

overlay nodes. Although the manager replies with all nodes

available in the network, the number of nodes to be used by

a certain connection, Nn, is a configuration parameter.

The overlay nodes are chosen taking into consideration the

path diversity they provide. If there are several paths with the

same diversity, the path with best performance (e.g., lowest

RTT) is chosen. In the current version of MACHETE, the

metric of diversity among two paths used is the number

common ASs on both paths (higher number means worse

diversity). For a path, the ASs are obtained using layer-

4 traceroute [20], which provides precisely the ASs of the

nodes along a path. The metric of performance is the RTT,

measured using the tokyo-ping tool, which avoids some

anomalies in ping [21]. When available, multihoming tends

to improve diversity as the first ASs along the path will already

be different, whereas with single-homming the opposite is true.

In MACHETE the path manager is set to fullmesh, to al-

low defining the number of flows in a way that makes MPTCP

use the number of overlay nodes defined (Nn). This manager

will create a network mesh composed by all the available

interfaces/addresses in both the source and destination.

To balance the data among all nodes and obtain the ex-

pected confidentiality, the best packet scheduler is strict
round-robin. This scheduler is configured with the number

of packets sent in each flow before passing the turn to the next

flow. To reduce the information sent in each flow (thus in each

path), this parameter is set to 1. The fast round-robin
scheduler can also be used if the communication is encrypted

and the amount of bytes sent is high enough to ensure that

not all communication passes in the same node, as it is not

possible to decrypt data if it is not complete. The amount of

bytes sent being enough or not to make the communication

pass in more than one node is analyzed in Section IV-C2.

2) Path setup – managing addresses and ports: As already

pointed out, the combination of MPTCP with application-layer

routing is challenging. MACHETE works at application layer

but it has to route packets sent by, and under the control of,

a lower layer protocol: MPTCP, at transport layer.

Similarly to what happens with TCP, in MPTCP all packets

sent over a connection take two pairs of IP addresses and

port numbers, one for the source device, another for the

destination (the difference in relation to TCP is that source

and destination may have more than one address/port pair).

However, in MACHETE the destination address and port may

have to be different: (1) if the packet is leaving the sender

device, the destination address/port should be those of the

overlay node for the packet’s flow; (2) if the packet is leaving

Client ServerMulti-path
Manager

Overlay
Node

Request active nodes()

Send nodes()

Set NAT rules()

Update node list()

Create new interfaces()

Send NAT rules()

Send data()
Send data()

Acknowledge()
Acknowledge()

Clean NAT rules()

Send clean NAT rules()

Lo
op

Fig. 3. MACHETE communication setup and data transfer example with a
single overlay node.

an overlay node, the destination address/port should be those

of the destination device and the source address/port should be

those of the overlay node; (3) if the packet is returning to the

overlay node, the destination address/port should be those of

the source device and the source address/port should be those

of the overlay node.

The application requires MACHETE, thus also MPTCP, to

send packets to the destination address and port. When a

device does the setup of a path, it has to force these alternative

addresses and ports to be used. To do it MACHETE leverages

Linux’s netfilter framework and the iptables command

[22]. This framework allows doing network address translation

(NAT), packet filtering, and other forms of packet handling.

MACHETE uses it for network address translation.

When a path is setup, the iptables command is used

to tell netfilter to change the destination IP address and port

by those of an overlay node, depending on the flow (case (1)

above; arrow setup in Figure 2). MPTCP inserts the destination

IP address/port in the packets, but netfilter exchanges them

before they are transmitted into the network. The iptables
command inserts NAT rules for that purpose in the output
chain, which is the set of rules applied to traffic being sent by

a computer. For each link, a NAT rule is set2.

Once this is done, the device informs each node about the

rules they have to establish. In the overlay node it is necessary

to route the traffic in both directions: when forwarding to the

server (case (2) above) and when returning to the client (case

(3) above). As soon as all nodes confirm that the rules are set,

the data transfer may begin.

Figure 3 shows a time diagram that represents this process

with a single overlay node.

2The format of the iptables rule is: iptables -t nat -A -p
tcp -s <source address> -d <destination address> -j
DNAT --to-destination <new destination address>

63

3) Data transfer: MACHETE uses MPTCP to establish a

connection to the destination device. The client application

will create a socket and provide it one of the server’s ad-

dress/port pairs; the MPTCP protocol will handle the passive

creation of the flows. Despite the fact that netfilter modifies

the destination addresses to deviate the connection’s packets

through the overlay nodes, the connection and each of its flows

end up established similarly to what would normally happen

with MPTCP.

This connection has two data streams, one in each direction,

so that the client and server can send data to each other. This

is represented in Figure 2 through the send and receive arrows.

Notice again that the scheduler should be set to strict
round-robin, otherwise MPTCP will fill each flow until

its congestion window is full instead of sending packets using

all flows, which is not desirable from the confidentiality point

of view.

Each packet will suffer changes on its source and destination

address twice: first in the source device, second in the overlay

node. The same will happen to the acknowledgement packets.

4) Path tear down: To terminate a connection, the client

device notifies the nodes that compose the overlay paths to

remove the rules. The overlay device is listening on a specific

port for receiving this indication, so that the packets destined to

the node itself are never re-routed. Again, this device waits for

all nodes to reply before removing its own rules. After all the

steps are done the communication can be declared as finished.

If the client fails to inform the nodes about the rules removal,

the rules can stay established, since it is specific for a pair

of source and destination addresses and, therefore, does not

modify other connection’s correct behavior or the possibility

for the same source to create an identical connection.

D. Overlay Node

The overlay node is the component that plays the role

of application-layer router, i.e., which forwards the packets

received from the client device to the server device and vice-

versa.

Overlay nodes receive from clients NAT rules and

add/remove them from netfilter. These rules are set, again, with

the iptables tool, this time using the prerouting and

postrouting chains. The first chain leverages the changes

on the traffic immediately after it was received by and interface

and the second leverages the changes right before it leaves that

interface. For each overlay network, four rules are established,

two to change the source and destination when forwarding to

the destination and two when forwarding to the source, as

mentioned above in cases (2) and (3).

IV. EXPERIMENTAL EVALUATION

This section presents the evaluation of MACHETE. We

placed hosts in the Amazon AWS EC2 service [23] in nine

different regions (Ireland, Frankfurt, North Virginia, Califor-

nia, Oregon, Tokyo, Seoul, Singapore and Sydney) and one

in Portugal. We used up to 8 overlay nodes, one in each of

the AWS regions, except for Ireland that contains the server.

TABLE I
LEAST DIVERSE PAIR OF PATHS IN TERMS OF NUMBER OF COMMON ASS

WITH THE SINGLE-HOME CONFIGURATION. THE PATHS ARE DESIGNATED

BY THE LOCATION OF THE OVERLAY NODE.

Pair of paths Common ASs Common ASs
(except first 7)

Singapore, Tokyo 13 6

Frankfurt, Seoul 12 5

Frankfurt, Tokyo 12 5

California, Seoul 12 5

California, Tokyo 12 5

Oregon, Tokyo 12 5

Seoul, Tokyo 12 5

TABLE II
LEAST DIVERSE PAIR OF PATHS IN TERMS OF NUMBER OF COMMON ASS

WITH THE DUAL-HOME CONFIGURATION, IN COMPARISON TO THE

SINGLE-HOME CONFIGURATION. THE PATHS ARE AGAIN DESIGNATED BY

THE LOCATION OF THE OVERLAY NODE. IN THE DUAL-HOME

CONFIGURATION THE LEFT PATH USES THE ORIGINAL CONNECTION AND

THE RIGHT THE 4G CONNECTION.

Pair of paths Common ASs
single-homed

Common ASs
dual-homed

Oregon, Sydney 10 3

Oregon, Tokyo 12 3

Oregon, Seoul 11 2

Sydney, Tokyo 10 2

Frankfurt, California 9 1

Frankfurt, Oregon 10 1

Frankfurt, Seoul 12 1

Moreover we placed the client in the Portugal node. Therefore,

between the client and server there are 8 single-hop overlay

paths: one per overlay node.

Recall that the objective is to provide confidentiality by

splitting communication over physically diverse paths with

an acceptable performance. Therefore, the evaluation provides

an assessment of the diversity in our scenario, presents a

performance benchmark of the system, and analyses the con-

fidentiality achieved.

A. Diversity

As stated before, confidentiality is only achieved if the paths

are topologically disjoint, as attackers eavesdrop on traffic at

certain locations (Section III-A). The approach used to verify

the topology of the paths is to trace each route’s chain of ASs

from the source device to each node and from that same node

to the destination. For that purpose we use layer-4 traceroute

(i.e., the lft tool).

Table I shows the number of common ASs in the pairs of

paths with highest value, between the 8 single-hop overlay

paths, where each is designate by the location of the overlay

node. There are at least 7 ASs in common in all paths leaving

the client (Portugal). The reason for this lack of diversity is

the fact that we did not use multihoming. Moreover, several

ASs belong to Amazon, as also expected.

64

Client
Lisbon

Server
Ireland

Node
Frankfurt

Node
N.Virginia

Node
California

Node
Oregon

Node
Tokyo

Node
Seoul

Node
Singapore

Node
Sydney

44
m

s

128ms

195ms

204ms

312ms

330ms
365ms393m

s 31
0m

s198ms242ms

223ms

312ms

194ms

81ms

22m
s

Fig. 4. Latencies between the Portugal host and the EC2 hosts used for the
experimental evaluation.

We did an additional experiment to confirm that multihom-

ing is beneficial in terms of diversity. We connected a second

interface of the client device to a public provider of 4G service

through a smartphone, then we used lft to obtain the ASs

traversed by the paths. As shown in Table II, using multi-

homing provides an evident diversity, where the common

nodes are again part of AWS’s network. Notice that we used

this multihoming configuration only for this test; the single-

home configuration was used in all the experiments presented

in the following sections. Multihoming is revealed to be a key

component for MACHETE to achieve path diversity.

B. Performance

The performance evaluation considers three different as-

pects: the impact of adding paths on the delay of transferring

files, the performance with diverse paths when transferring

files, and the performance of path set up and tear down.

Figure 4 provides some insight on the network by showing

the latencies between the hosts in the different locations,

obtained with the tokyo-ping tool.

MACHETE forced MPTCP to use all the paths defined for

every experiment by changing the number of IP addresses at

the client (i.e., Portugal): 2 addresses for 2 paths, 3 addresses

for 3 paths, etc. The client had a single network interface;

the server had a single interface and a single IP address. All

measurements were repeated 30 times.

1) Impact of adding paths: The evaluation consisted in

observing the performance when paths (equivalently, nodes)

were added one by one based on latency to the cluster: first

in Frankfurt, next in N. Virginia, California, Oregon, Tokyo,

Seoul, Singapore and finally Sydney (that has a the highest

latency, as observed in Figure 4). The size of the files varied

from 1 Byte to 1 GByte. In this experiment we used the fast

Fig. 5. Time to transfer a file versus number of paths. 0 paths means a normal
TCP connection.

TABLE III
AVERAGE TIME OF SENDING FILES USING TWO NODES WITH TWO TYPES

OF ROUND-ROBIN SCHEDULERS, COMPARED TO A NORMAL TCP
CONNECTION. ALL VALUES ARE PRESENTED IN MILLISECONDS. EACH

EVALUATION WAS REPEATED 30 TIMES.

File size TCP Fast r.-r. Strict r.-r.
1 B 49 81 97

10 B 49 95 94

100 B 49 87 98

1 KB 49 94 90

10 KB 49 181 122

100 KB 49 265 201

1 MB 304 382 409

10 MB 1644 2295 3106

100 MB 11556 18836 23452

1 GB 121069 172215 218332

round-robin scheduler to improve performance (and the

fullmesh path manager which is fixed for MACHETE).

Figure 5 shows the values obtained for the time to transfer

files of all sizes and from 2 to 8 paths, plus using a standard

TCP connection (with no overlay nodes), and includes 95%

confidence intervals, although most are too small to be visible.

The figure shows that splitting the packets in up to four

different paths does not generate considerable overhead on

the communication. From the fifth the duration increases due

to the overlay nodes that compose the network at that point

being farther away from both the source and destination.

It is important to note that to achieve a physically disjoint

network, using more nodes in the overlay network will result

in selecting these further away from the source and destination.

2) Performance with diverse paths: Considering the di-

versity achieved in each of the eight regions used on the

previous tests, this evaluation considers the two paths with

highest diversity, i.e., those with overlay nodes at Frankfurt

and California.

Table III, shows the overhead of using these two

nodes, in comparison to a normal TCP stream. As shown,

there is an overhead of 42% when using the fast
round-robin scheduler and of 80% when using the

strict round-robin scheduler. This overhead is the

result of sending traffic through a node that is geographi-

65

cally distant from the source and the destination, California.

When using a round-robin packet scheduler the whole multi-

path connection is conditioned to each path’s throughput. In

fact, for the strict round-robin scheduler, the whole

throughput is highly dependent of the path with the smallest

bandwidth or highest congestion, since it waits for this channel

to have free window space before sending to the next one.

3) Path set up and tear down: Figure 6 shows the time

for setting up and tearing down the overlay paths. The current

MACHETE implementation is suboptimal in the sense that

both the setup and tear down phases are executed sequentially.

According to the location of the node, this time will vary,

however, as it can be seen, it always takes longer than one

second, but never more than two in our scenario.

C. Confidentiality

The usual way of considering confidentiality in the security

and cryptography literature is by relying on cryptographic pro-

tocols. For example, in protocols like IPsec AH/ESP or TLS,

confidentiality is guaranteed as far as no vulnerabilities exist in

the protocol design, implementation, and configuration. In this

work we do not aim to provide such guarantees but to improve

confidentiality in case communication is eavesdropped, (1)

either it is not encrypted or (2) if it is encrypted but there is a

vulnerability. This means that confidentiality was not studied

in an absolute perspective, even though it is possible that in the

second scenario, it might mitigate cryptography vulnerabilities

to provide full confidentiality.

This different way of considering confidentiality led us to

transmit a visual intuition of the MACHETE approach: an

image is transmitted over MACHETE where an eavesdropper

has access to one of the flows and reconstructs the image with

that data. For the figures we did the reconstruction assuming

the adversary managed to guess the metadata (figure size, color

depth, etc.) even if the captured flow did not contain it.

When evaluating the confidentiality that MACHETE of-

fers it is necessary to remember the operation of MPTCP.

The most important factor is the scheduling that is used.

MPTCP implements different types of scheduling, however,

splitting data in packets in a round-robin fashion is the best

approach to achieve confidentiality. The multi-path protocol

implements two types of round-robin: fast round-robin,

which takes advantage of the whole throughput of that channel,

Fig. 6. Time for setting up and tearing down the overlay paths versus number
of overlay nodes used.

and strict round-robin, that waits for the next channel

to have window space before sending the packet. The former

is expected to perform faster, but the second to provide access

to less data to an eavesdropper.

We evaluate two aspects of confidentiality: the effect of the

scheduling algorithm, and the effect of the file size.

1) Effect of the scheduling algorithm: Figures 7b and 7c

show the different amount of data captured by two of four

channels when sending the bitmap picture (the Linux penguin)

shown in Figure 7a, with both types of round-robin scheduling.

The channels shown in each figure are the ones that receive

the most distinct amount of data, i.e., the one that receives the

most (on the left) and the one that receives the least (on the

right).

As shown on Figure 7b, using strict round-robin it

is possible to notice that both channels receive approximately

the same amount of data, resulting of the even distribution

of packets. However, a pattern can also be noticed on its

reconstruction.

Figure 7c shows the results of capturing the data when the

fast round-robin scheduler is used. As expected, the

flow where less data was transferred was the one passing

through Sydney’s node, the one with lowest throughput. As

mentioned before, this scheduler depends on the throughput

of each channel when distributing data, since a channel with

better throughput has a larger congestion window to be filled.

In the standard MACHETE configuration, the result is the

balance between flows observed in Figure 7b. The perfor-

mance in the two cases was different, though. By filling the

congestion windows with fast round-robin scheduling,

the file that had 17MB was sent in 4 seconds. By using the

strict round-robin the file took 88 seconds to be transferred,

which is much slower. The first mode achieves a throughput

of 34 Mb/s, whereas the second a mere 1.9 Mb/s.

In short both approaches have their advantages and disad-

vantages: the first one takes longer and might be susceptible

to easier data reconstruction, but provides a good control on

how the packets are distributed; the second has its packet

distribution dependent of each flows’ throughput, but transfers

the files faster.

2) Effect of the file size: Another factor to take into account

is the size of the files sent. At this point it is important to

remember MPTCP’s behavior when creating new flows. The

first flow does not wait for the creation of new flows to start

transferring data. This means that for very small files (<10KB)

MPTCP does not split the packets through any new flows,

since this data is sent before any new flow can be established

for the stream. Regarding larger files, it is only necessary to

experiment with the fast round-robin mode, since the strict

round-robin is not influenced by congestion window sizes and,

therefore, the sizes are not a factor to take into account.

Figure 8 shows the results of capturing the data transferred

in the flow with highest throughput (which is the same as

mentioned above of 34 Mb/s), when sending the same image

with different sizes: from 1 MB to 17 MB. As it can be

66

(a) The origi-
nal image sent.

(b) The data sent over the flows is
balanced (strict round robin).

(c) The data sent over the flows is
unbalanced (fast round robin).

Fig. 7. Original image and two reconstructions considering the eavesdropper has access to 2 of the 4 flows in each case.

Fig. 8. Results of capturing the data transferred by the flow with most throughput. The same image was sent with different sizes.

observed, larger files have stronger resistance to eavesdropping

as data is better split among the paths.

V. CONCLUSIONS

MACHETE is a first effort on providing confidentiality to

communications by splitting the packet flows among different

physical paths. By establishing dynamic overlay networks,

composed by several paths with a single overlay node it was

possible to provide physical path diversity. Using MPTCP it

was possible to develop a system that transfer data streams

(instead of isolated packets) without compromising perfor-

mance. We evaluated the performance and confidentiality

achieved by our implementation, showing that, not only it

prevents the attacker from accessing considerable amounts of

data, in the case it is trying to spy on the communication,

but also provides different tradeoffs between confidentiality

and performance. We believe, that efficiently splitting the

communication over physically disjoint channels is the key

to maintain confidentiality.

ACKNOWLEDGEMENTS

This work was supported by the European Commission

through project H2020-653884 (SafeCloud) and by national

funds through Fundação para a Ciência e a Tecnologia (FCT)

with reference UID/CEC/50021/2013 (INESC-ID).

REFERENCES

[1] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A.
Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta, B. Van-
dersloot, E. Wustrow, and S. Z. Paul, “Imperfect forward secrecy:
How Diffie-Hellman fails in practice,” Proceedings of the 22nd ACM
Conference on Computer and Communications Security, 2015.

[2] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar, “Architectural
guidelines for multipath TCP development, IETF RFC 6182,” 2011.

[3] S. Barré, C. Paasch, and O. Bonaventure, “Multipath TCP: from theory
to practice,” in Networking 2011. Springer, 2011, pp. 444–457.

[4] C. Paasch, S. Barre et al., “Multipath TCP in the Linux kernel, available
from http://www.multipath-tcp.org.”

[5] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient
overlay networks,” in Proceedings of the 18th ACM Symposium on
Operating Systems Principles, 2001, pp. 131–145.

[6] Y. Amir and C. Danilov, “Reliable communication in overlay networks,”
Proceedings of the IEEE/IFIP International Conference on Dependable
Systems and Networks, pp. 511–520, 2003.

[7] A. Akella, B. Maggs, S. Seshan, and A. Shaikh, “On the Performance
Benefits of Multihoming Route Control,” IEEE/ACM Transactions on
Networking, vol. 16, no. 1, pp. 91–104, 2008.

[8] A. Akella, B. Maggs, S. Seshan, A. Shaikh, and R. Sitaraman, “A
measurement-based analysis of multihoming,” in Proceedings of the
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, 2003, pp. 353–364.

[9] L. Boccassi, M. M. Fayed, and M. K. Marina, “Binder: a system
to aggregate multiple Internet gateways in community networks,” in
Proceedings of the 2013 ACM MobiCom Workshop on Lowest Cost
Denominator Networking for Universal Access, 2013, pp. 3–8.

[10] D. Wischik and C. Raiciu, “Design, implementation and evaluation
of congestion control for multipath TCP,” in Proceedings of the 8th
USENIX Conference on Networked Systems Design and Implementation,
2011, pp. 99–112.

[11] J. Dı́ez, M. Bagnulo, F. Valera, and I. Vidal, “Security for multipath TCP:
a constructive approach,” International Journal of Internet Protocol
Technology, vol. 6, no. 3, pp. 146–155, 2011.

[12] O. Bonaventure, “MPTLS: Making TLS and multipath TCP stronger to-
gether,” IETF, Individual Submission, Internet Draft draft-bonaventure-
mptcp-tls-00, 2014.

[13] Y. Rekhter and T. Li, “A border gateway protocol 4 (BGP-4), RFC
1771,” 1995.

[14] J. He and J. Rexford, “Toward Internet-wide multipath routing,” IEEE
Network, vol. 22, no. 2, pp. 16–21, 2008.

[15] J. Han, D. Watson, and F. Jahanian, “Topology aware overlay networks,”
Proceedings of the IEEE INFOCOM, vol. 4, pp. 2554–2565, 2005.

[16] D. Gelernter, “Generative communication in Linda,” ACM Transactions
on Programing Languages and Systems, vol. 7, no. 1, pp. 80–112, Jan.
1985.

[17] A. N. Bessani, E. P. Alchieri, M. Correia, and J. S. Fraga, “DepSpace:
a Byzantine fault-tolerant coordination service,” in Proceedings of the
3rd ACM SIGOPS/EuroSys European Conference on Computer Systems,
Apr. 2008, pp. 163–176.

[18] “DepSpace.” [Online]. Available: https://github.com/bft-smart/depspace
[19] J.-S. Kim, K. Kim, and S.-I. Jung, “Building a high-performance

communication layer over virtual interface architecture on Linux clus-
ters,” in Proceedings of the 15th ACM International Conference on
Supercomputing, 2001, pp. 335–347.

[20] “Layer four traceroute (lft) project.” [Online]. Available:
http://pwhois.org/lft/index.who

[21] C. Pelsser, L. Cittadini, S. Vissicchio, and R. Bush, “From Paris to
Tokyo: On the suitability of ping to measure latency,” in Proceedings of
the 2013 ACM Internet Measurement Conference, 2013, pp. 427–432.

[22] R. Russell, “Linux 2.4 packet filtering howto, revision 1.26,” Jan. 2002.
[23] “Amazon Web Services.” [Online]. Available: https://aws.amazon.com/

67

Feature Set Tuning in Statistical Learning Network
Intrusion Detection

Arnaldo Gouveia1,2 Miguel Correia2
1Portugal Telecom 2INESC-ID, Instituto Superior Técnico, Universidade de Lisboa – Lisboa, Portugal

Abstract—The detection of security-related events using ma-
chine learning approaches has been extensively investigated.
In particular, machine learning applied to network intrusion
detection systems (NIDS) has attracted a lot of attention due to its
good generalization and unknown attack detection capabilities.
A number of classification techniques have been used for this
purpose, revealing good generalization properties. In this paper
we go one step further by evaluating the performance of NIDSs
when feature set tuning and reduction are realized. We evaluate
a number of state of the art learning algorithms that are raising
much interest but have not been used for intrusion detection
yet. We compare a representative set of algorithms: Ada, ROC-
based learners, two types of Classification Trees, Boosted Logistic
Regression, Generalized Linear Models, Gradient Boosting Ma-
chines, and Neural Networks. The main objective is to reduce the
number of features used – thus also the size of the data processed
– to improve speed while maintaining adequate accuracy.

I. INTRODUCTION

With the continuous growth in number and impact of
network attacks, network intrusion detection systems (NIDS)
are increasingly becoming critical security elements. From
a research standpoint, although investigated for many years
[16], NIDSs continue to get a lot of attention due to their
practical interest regarding effective detection of malicious
attacks, while processing large data volumes with machine
learning algorithms [17], [30].

Anomaly-based network intrusion detection is a particularly
promising approach as it allows detecting previously unknown
attacks. This approach resorts to machine learning to create
models of normal behavior, then detecting deviations. In such
IDSs, attacks are detected when anomalies are identified.
The generalization machine learning algorithms achieve in the
learning phase allows the identification of anomalies even if
the normal traffic observed in runtime is not identical to the
traffic of the learning phase. False positives and false negatives
are the cost of this generalization capability.

Deep learning is currently a hot topic in machine learn-
ing [1], [2]. Deep learning techniques have been achieving
excellent results in recognition of speech, faces, and images
in general, to name just a few examples [1], [22]. Although
initially the term deep learning referred to neural networks
with many layers (“deep”), today other algorithms apparently
very different are known to have similar behavior and also put
under the term. This paper also explores the use of other algo-
rithms seldom employed in NIDSs: Generalized Linear Models
(GLM) and Gradient Boosting Machines (GBM). Other more
commonly referenced algorithms are also compared, namely
Classification Trees and Neural Networks.

The goal of this comparison is evaluating the potential of
feature set tuning to improve detection speed while maintain-
ing accuracy at acceptable levels. This is especially important
in times in which NIDSs have to process the high traffic loads
that travel our networks. Feature selection is an important part
of the process of dataset tuning. Therefore it is important for
machine learning-based NIDS development in order to save
time while providing an insight into the underlying feature
details relevant to the classification process. It is a well-known
fact that not all traffic features (or attributes) are equally
useful to detect attacks/intrusions [14], [27]. Therefore feature
set tuning allows reducing the feature set, improving the
training dataset with the goal of obtaining speed gains while
maintaining an acceptable accuracy [27].

Our results show that after tuning all algorithms present
similar metrics, although the number of features reduced
depends on the algorithm. GBM has achieved the highest
feature reduction, closely followed by RPART.

The main contributions of this paper are: (1) a comparison
of intrusion detection performance with a set of relevant
machine learning algorithms; (2) a study showing how feature
set tuning allows reducing datasets and maintaining accuracy
at similar acceptable levels. In this paper, we test tune the UNB
ISCX Intrusion Detection Evaluation Dataset while validating
a number of representative machine learning algorithms from
the literature.

II. THE DATASET

The UNB ISCX Intrusion Detection Evaluation Dataset
was developed in an attempt to provide a quality dataset for
network intrusion detection research [23]. The approach for
defining this dataset involved identifying features that would
allow effective detection, while minimizing processing costs.

Cost-based models have often been used regarding feature
definition in fraud based detection. Stolfo et al. [25] have
shown that cost-based assertions developed for fraud detection
can be generalized and applied to network intrusion detection
as a criteria for feature finding. With this approach in mind,
the authors defined a set of features intrinsically related to
specific classes of traffic anomalies like Probing, Remote to
Local, Denial of Service, and User to Remote attacks. By
maximizing cost in specific cost models, a number of features
have been identified by the authors and used in the UNB ISCX
Intrusion Detection Evaluation Dataset. In this context the
features chosen were the best candidates for maximizing the
types of cost characteristic to intrusions: (1) damage cost: the
amount of damage caused by an attack if intrusion detection is
not attained. (2) challenge cost: the cost to act upon a potential978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

68

Class Train dataset attacks Test dataset only attacks

Probing portsweep, ipsweep, satan,
guesspasswd, spy, nmap

snmpguess, saint, mscan,
xsnoop

DoS back, smurf, neptune, land,
pod, teardrop, buffer over-
flow, warezclient, warez-
master

apache2, worm, udpstorm,
xterm

R2L imap, phf, multihop snmpget, httptunnel, xlock,
sendmail, ps,

U2R loadmodule, ftp write,
rootkit

sqlattack , mailbomb, pro-
cesstable, perl

TABLE I. ATTACKS IN THE UNB ISCX TRAIN / TEST DATASETS (ALL

ATTACKS FROM THE FIRST EXIST ALSO IN THE SECOND)

intrusion when it is detected; and (3) operational cost: the
resources needed identify the attacks.

The UNB ISCX dataset is composed of sequences of
entries in the form of records labeled as either normal or
attack. Each entry contains a set of characteristics of a flow,
i.e., of a sequence of IP packets starting at a time instant
and ending at another, between which data flows between
two IP addresses using a transport-layer protocol (TCP, UDP)
and an application-layer protocol (HTTP, SMTP, SSH, IMAP,
POP3, or FTP). The dataset is fairly balanced with prior class
probabilities of 0.465736 for the normal class and 0.534264
for the anomaly class.

The attacks represented in the UNB ISCX dataset fall into
four classes:

Denial of Service Attacks (Dos). In this class of attacks the
attacker renders computing or memory resources too busy or
too full to handle legitimate requests or denies legitimate users
access to a machine, e.g., land, syn flood, etc.

User to Root Attacks (U2R). This is a class of attacks in which
the attacker starts out with access to a normal user account on
the system and is able to exploit some vulnerability to gain
unauthorized root access to the system. e.g., loadmodule or
perl.

Remote to Login Attacks (R2L). This type of attack occurs
when an external attacker exploits some vulnerability to gain
local access as a user in that machine, e.g., ftp write, http
tunnel, password guess, etc.

Probing Attacks. These are attempts to gather information
about any systems for the purpose of circumventing its security
controls, e.g., network scans, port sweep, nmap, satan, mscan,
etc.

The UNB ISCX dataset is composed of two sub-datasets: a
train dataset, used for training a NIDS, and a test dataset, used
for testing. Both have the same structure and contain all four
types of attacks. However, the test dataset has more attacks as
shown in Table I, to allow evaluating the ability of algorithms
to generalize. The train dataset has around 2.2 GB of data,
whereas the test dataset has 0.8 GB.

Each record of the dataset is characterized by features that
fall into three categories: basic, content, and traffic. These
features are represented in Table II.

Feature Detail

duration length of the flow in seconds
protocol-type type of the protocol, e.g., TCP, UDP, ICMP
service network service, e.g., HTTP, telnet
src-bytes num. of data bytes from source to destination
dst-bytes num. of data bytes from destination to source
flag status of the flow, normal or error
lang 1 if flow is for the same host/port; 0 otherwise
wrong-fragment num. of erroneous fragments
urgent num. of urgent packets

hot num. of hot indicators
num-failed-logins num. of failed login attempts
logged-in 1 if successfully logged in; 0 otherwise
num-compromised num. of compromised conditions
root-shell 1 if root shell is obtained; 0 otherwise
su-attempted 1 if su root command attempted; 0 otherwise
num-root num. of root accesses
num-file-creations num. of file creation operations
num-shells num. of shell prompt
num-access-files num. of operations on access control files
num-outbound-cmds num. of outbound commands in a ftp session
is-host-login 1 if the login belongs to the hot list; 0 otherwise
is-guest-login 1 if the login is a guest login; 0 otherwise

count num. of connections to the same host as current
serror-rate % of connections that have SYN errors
rerror-rate % of connections that have REJ errors
same-srv-rate % of connections to the same service
diff-srv-rate % of connections to different services
srv-count num. of connections to the same service as current
srv-serror-rate % of connections that have SYN errors
srv-rerror-rate % of connections that have REJ errors
srv-diff-host-rate % of connections to different hosts
dst-host-count num. of connections to the same destination host
dst-host-srv-count num. of connections to the same service as current
dst-host-same-srv-rate % of connections to the same service
dst-host-diff-srv-rate % of connections to different services
dst-host-same-src-port-rate % of connections from same source and port
dst-host-srv-diff-host-rate % of connections to different services
dst-host-serror-rate % of connections that have SYN errors
dst-host-srv-serror-rate % of connections that have SYN errors per service
dst-host-rerror-rate % of connections that have REJ errors
dst-host-srv-rerror-rate % of connections that have REJ errors per service

TABLE II. FEATURES USED TO CHARACTERIZE EACH FLOW IN THE

DATASET: BASIC (TOP), CONTENT (MIDDLE), TRAFFIC (BOTTOM).

Actual Normal Actual Anomaly

Predicted Normal TP FN

Predicted Anomaly FP TN

TABLE III. CONFUSION TABLE MODEL FOR METRICS

III. PERFORMANCE METRICS

We use a set of metrics to compare the algorithms and
the effect of feature tuning. These metrics are mostly obtained
from the confusion matrix (see Table III). A positive is the
detection of a malicious flow, and a negative a non-detection.
The detection of lack of detection can be right (true) or wrong
(false).

Accuracy. Accuracy measures how well a classification test
identifies an event class. The accuracy is the sum of true
results (both true positives and true negatives) divided by
the total number of observations (sum of all true positives,
true negatives, false positives and false negatives): Acc =
(TP + TN)/(TP + TN + FP + FN). Accuracy ranges from
0 to 1, being the 1 the most favourable for a strictly balanced
dataset.

No information rate. The no-information rate metric is the
proportion of the most common class.

Kappa. The kappa statistic is a measure of agreement between

69

observations, where an observation is a validation round. We
use this metric as defined by Cohen [6]: κ = (Po − Pe)(1 −
Pe), where Po is the observed accuracy and Pe the expected
accuracy under random agreement [29]. The most favourable
case for kappa is perfect agreement, which would equate to a
kappa value of 1.

Sensitivity (or True Positive Rate). Sensitivity is the probability
that a test will indicate a positive condition among the set of
positives: TPR = TP /(TP +FN). Sensitivity ranges from 0 to
1 with 1 being the most favorable case for a strictly balanced
dataset.

Specificity (or True Negative Rate). Specificity measures the
proportion of negatives that are correctly identified as such:
TNR = TN/(TN + FP). Specificity ranges from 0 to 1, with
1 being the most favorable case for a strictly balanced dataset.

Positive Predicted Value. The Positive Predicted Value (PRV)
is the proportion of true positive results referenced to the sum
of true positives and false positives results: PPV = TP /(TP +
FP). PRV ranges from 0 to 1, with 1 being the most favorable
case for a strictly balanced dataset.

Negative Predicted Value. The Negative Predicted Value (NPV)
is the proportion of true negative results referenced to the
sum of true negatives and false negative results: NPV =
TN/(TN + FN). NPV ranges from 0 to 1, with 1 being 1
the most favorable case for a strictly balanced dataset.

Positive Likelihood Ratio. In medicine, likelihood ratios are
used for confirming a diagnostic test. They use the sensitivity
and specificity of the test to determine whether a test result
confirms the probability that a condition (such as a disease
state) exists [28]. In intrusion detection this metric can be
used as a confirmation that positive indicators are supported by
malicious and intentional activity and it has been used in IDS
related research [12]. It is given by LR+ = Sensitivity/(1−
Specificity). Values greater than 1 and greater confirm the
existence of intentional malicious behaviour activity with ever
increasing probability as LR+ grows.

Balanced Accuracy. Balanced accuracy is given by cTP /(TP+
FP)+ (1− c)TN/(TN +FN), where c belongs to the interval
[0, 1] translating the imbalance (c and 1 − c are in practice
the priors). If the classifier performs equally well on either
class, this term reduces to the conventional accuracy (number
of correct predictions divided by number of predictions):
TP /(2(TP + FP)) + TN/(2(TN + FN)). Balanced Accuracy
ranges from 0 to 1, with 1 being the most favorable case for
a strictly balanced dataset.

IV. THE METHOD

The core of the experiment is a comparison of a set of
representative machine learning algorithms in the context of
network intrusion detection. The steps followed were:

• Selection of a dataset of network traffic designed for
network intrusion detection evaluation;

• Tune the training of the algorithms and extract the
subset of the most relevant features using the R

caret package varImp() function. When no tun-
ing parameters are provided by caret, default values
are used;

• Train and test with a feature reduced dataset.

We start with the first and leave the rest for Section V.

A. Feature Importance Determination

From an optimization perspective it is relevant to know
what is the importance of the various features (or variables)
used in the learners in terms of their contribution to the final
performance result. A number of approaches have been used
in the past for this purpose, namely Correlation-based Feature
Selection, Information Gain, Gain Ratio, and the ROC based
variable importance [3]. In this paper we investigate the use of
the area under curve (AUC) of the receiver operating character-
istic (ROC) curve as a performance measure for NIDS based on
some machine learning learners. The variable importance list
has been obtained with the varImp() function of the caret
R package, which uses a ROC AUC maximization approach.
Feature #15 of the original dataset was discarded because it
was constant in both train and test datasets. The importance
scale is presented in a percentual relative range for the 20 most
relevant features in each algorithm.

B. Model Independent Feature Importance Selection

If there is no model-specific way to estimate feature
importance (or the argument useModel = FALSE is used
in varImp()), the importance of each feature is evalu-
ated individually using a metric-based approach. This ap-
proach is model-independent. In face of this argument the
useModel = FALSE option has been the choice for running
the varImp() function in the models in which this option
applies, namely Classification Trees and Random Forests.

ROC curve analysis is the approach used for reducing
the feature set. For 2-class problems like intrusion detection
(classes attack/no-attack), a series of cutoffs is applied to
the algorithm data to predict the class. The sensitivity and
specificity are computed for each cutoff and the ROC curve
area is computed as the measure of variable importance. For
a specific class, the maximum area under the curve across the
relevant pair-wise AUCs is used as the variable importance
metric. The model selected as the best is the candidate with
the highest accuracy. If more than one tuning parameter is
optimal then the function will try to choose the combination
that corresponds to the least complex model [15].

C. Computational Environment

The data preparation phase, involving feature pre-
processing, has been done using WEKA 3.6. WEKA stands
for the Waikato Environment for Knowledge Analysis, which
was developed at the University of Waikato of New Zealand.
All the remaining experiments were performed with the R
environment for statistical computing supported by the R
Foundation for Statistical Computing [19]. R is widely used
among statisticians and data miners for developing statistical
software and data analysis. We used the following R packages:
caret 6.0-68, rpart 4.1-10, neural net 1.32, C50 0.1.0-24, gbm
2.1.1, pROC 1.8 and rooc 1.2.

70

V. THE ALGORITHMS

The list of learners we considered is not exhaustive, but it
contains a representative subset of good performance learners.
This section presents the study itself. For each algorithm we
explain briefly how it works and how it was tuned in order to
obtain results as good as possible. The implementations of the
algorithms used were those in R and its packages.

A. Ada (Boosted Classification Trees)

Ada is used in conjunction with other (weak) learning
algorithms to improve their performance using boosting [10].
In this case we employ Ada as a booster of classification trees,
used as weak learners.

In Boosted Classification Trees the training events that are
misclassified (a signal event fell on a background leaf or vice-
versa) have their weights increased (boosted), and a new tree
is formed. This procedure is then repeated for the new tree.
In this way many trees are built up. The score from the mth

individual tree Tm is taken as +1 if the event falls on a signal
leaf and −1 if the event falls on a background leaf. The final
score is taken as a weighted sum of the scores of the individual
leaves [20].

Tuning. Cross-Validated (10 fold) re-sampling (also 10 fold)
has been used. For classification using package ada the tun-
ing parameters are: Number of Trees (iter), Max Tree
Depth (maxdepth) and nu (learning rate). The Tuning param-
eter nu was held constant at a value of 0.1. Accuracy was used
to select the optimal model using the largest value. The final
values used for the model were iter = 150, maxdepth
= 3 and nu = 0.1.

B. Ranking Classifier

This is a classification method based on receiver operat-
ing characteristics (ROC). The method value rocc is chosen
by caret from package rocc with the tuning parameter
xgenes. Briefly speaking, features are selected according to
their contribution to the ranked AUC value using the training
set. The function performs classification by leave-one-out-
cross-validation (LOOCV) using the ROC based classifier:
features are combined to a group by the mean ROC value
expression. Afterwards these samples are ranked according to
their contribution to the AUC value. The feature group that
yields optimal accuracy in the training samples is then used to
classify new samples.

Tuning. The only tuning parameter available in caret is the
number of variables retained in each LOOCV cycle: xgenes.
Accuracy was used to select the optimal model using the
largest value. The final value used for the model was xgenes
= 2.

C. Classification Trees

Classification and regression trees were first described by
by Brieman et al. [5]. Classification or Decision Trees (DTs)
are a non-parametric supervised learning method used for
classification and regression. Decision trees create a model
that predicts the value of a target variable by learning simple
decision rules inferred from the data features. The deeper the

tree, the more complex the decision rules and the fitter the
model [5]. We considered two algorithms: C5.0 and Rpart.

C5.0. This is a classification tree model that works by splitting
the sample based on the field that provides the maximum
information gain. The C5.0 model can split samples based on
the largest information gain. The sample subset that is get from
the former split is split after. The process will continue until
the sample subset cannot be split. Finally a pruning process
is executed examining the lowest level split upwards. Those
sample subsets that do not have a significant contribution to
the model information gain will be dropped.

Tuning. Cross-Validation (10 fold) has been used. The op-
tion for method definition in caret has been method =
C5.0Tree. This method has no available tuning parameters
in caret.

Rpart. Rpart can be generated through the rpart package.
Rpart builds classification or regression models of a very
general structure using a two stage procedure; the resulting
models can be represented as binary trees. One of the decision
trees implementation used was the one in R’s rpart package.

Tuning. Cross-Validated (10 fold) re-sampling (3 fold) has been
used. The option for caret has been method = rpart2.
This method in caret has only available as tuning parameters
maxdepth (maximum tree depth). Accuracy was used to
select the optimal model using the largest value. The final
value used for the model was maxdepth = 3.

D. Boosted Logistic Regression

Logistic regression was developed by Duncan and Walker
[26] and Cox [7]. The Boosted Logistic regression learner has
been described first hand by Friedman et al. [10]. Logistic
regression measures the relationship between the categorical
dependent variable and one or more independent variables by
estimating the classes using a logistic function, which is the
cumulative logistic distribution. Boosting sequentially applies
a classification algorithm to weighted versions of the training
data and then takes a weighted majority vote of the sequence
of classifiers thus produced. In the context of caret package
it can be used as a classifier.

Tuning. Cross-Validated (10 fold) re-sampling (also 10 fold)
has been used. The method LogitBoost in caret admits
nIter (number of boosting terations) as tuning parameter.
The optimal number of iterations found for optimizing the
accuracy figure was 31.

E. Generalized Linear Models

Generalized linear models (GLM) are a generalization of
linear regression. Linear regression models the dependency of
a response y on a vector of features x(y ∼ xTβ + β − 0).
These models are built with the assumptions that y has a
Gaussian distribution with a variance of σ2 and the mean
is a linear function of x with an offset of some constant
β − 0, i.e., y = N (xTβ + β − 0;σ2). These assumptions
can be overly restrictive for real-world data that does not
necessarily have a Gaussian distribution. GLM generalizes
linear regression in the following way: it adds a non-linear link

71

function that transforms the expectation of response variable,
so that link (y) = xTβ + β − 0 and allows variance to
depend on the predicted value by specifying the conditional
distribution of the response variable or the family argument.

Tuning. Cross-Validated (10 fold) re-sampling (also 10 fold)
has been used. The GLM model, specified by ”method =
glm”, offers no tuning parameters in caret.

F. Gradient Boosting Machines

Gradient Boosting Machines (GBM) is an algorithm de-
signed to produce a model built by an ensemble of weak
prediction models. It builds the model in a stage-wise fashion
and is generalized by allowing an arbitrarily differentiable loss
function. GBM fits consecutive trees as weak predictors where
each solves for the net error of the prior. The idea of gradient
boosting originated in Breiman’s observation that boosting can
be interpreted as an optimization algorithm using a suitable
cost function [4].

Tuning. Cross-Validated (10 fold) re-sampling (also 10 fold)
has been used. The tuning parameters offered by the caret
package are: n.trees (number of boosting iterations),
interaction.depth (maximum tree depth), shrinkage
(shrinkage), n.minobsinnode (minimum terminal node
size). The maximum depth of a tree is a tree specific parameter
used to control over-fitting as higher depth will allow the model
to learn algorithmic rules very specific to a particular sample.
In the tuning phase a set of maximum depth of 2, 3 and 4
have been used.

A non-negative integer that defines the number of trees,
(trees) has been tested with two values: 5 and 10. The
learning rate, as a boosting parameter, has been set to 0.1.
This determines the impact of each tree on the final out-
come. Lower values are generally preferred as they make
the model robust to the specific characteristics of the tree
allowing it to generalize well, although with a cost in terms of
processing time. Several good and approximate models have
been obtained. We presented the results for one with number
of trees=10, mean depth=4, min leaves=15 and
max leaves=16.

G. Neural Networks

The variety of deep learning architectures is vast and in-
cludes examples such as Autoencoders, Multilayer Perceptron,
Recurrent Neural Networks (RNNs), Restricted Boltzmann
Machines (RBMs), Self Organizing Maps (SOMs) and Con-
volutional Neural Networks. In the scope of this category of
classifiers a more shallow option of an one hidden layer neural
net has been used, namely the nnet model of the caret
package.

Tuning. Ten fold cross-validation was used. Tuning parameter
size was tuned with values of 8 and 16. The value for decay
was tuned with values of 1e-04 and 1e-03. Accuracy values
were used to select the optimal model using their largest value
after 500 iterations. The final values chosen for the model were
size = 16 and decay = 1e-04.

VI. RESULT ANALYSIS AND DISCUSSION

The results for all algorithms are presented in Table IV for
the case of no feature selection, and Table V for the case of
a reduced set of features. The values for accuracy, balanced
accuracy, kappa and positive likelihood ratio are shown in
Figures 1, 2, 3 and 4. As the dataset has class priors near
50%, the balanced accuracy exhibits the same behaviour as
the accuracy. It is commonly accepted that a good model has
to have low training error and low generalization error (or
test error). However the need for generalization often leads to
accuracy levels that are not near 1 for most algorithms, for a
balanced dataset.

Overall speaking the accuracy and balanced accuracy ex-
hibit reasonably good values, although in bands that potentially
preclude the onus of overfitting. On the other hand, the values
of kappa fall in ranges that are considered moderate (range
0.41 to 0.60) to substantial agreement (range 0.61 to 0.80)
[29].

Domingos [8] states a number of conditions for learners to
produce useful results. Among others we have the following:
(1) Overfitting is to be avoided. For instance the presence of
noise may aggravate overfitting, i.e., existence of mislabeled
instances contradicting the class labels of another similar
record may be a liability in this sense. (2) Representativeness
does not imply learnability. Lack of representative instances in
the training data may be useless but at the same time there may
be representative data that may not be learnable. Therefore,
features have to aid learnability. (3) Feature engineering is a
key factor for obtaining good results.

As in our case the learner models do not overfit and the
number of features is reduced, we may conclude that either
the discarded features do not contribute to representativeness
or they do not impact significantly the learner’s performance
because they do not contribute enough to learnability. As the
features were engineered with specific cost-related criteria the
latter seems to be a better candidate to explain the results. Also
one may raise the question on how these set of classifiers may
behave with other datasets. From our perspective the answer is
already given by Domingos [8] when he states the conditions
for a classifier to be useful.

There is an obvious similitude in the set of features and
their relative importance concerning the Ada and ROC learners
as seen in Table VI. This behaviour is most likely due to the
known equivalence between Ada boosted learners and rank
based learners (which use the same ROC AUC criteria) [21].
Although similarity verifies as expressed in Tables IV and
V, performance results are not identical which is a direct
consequence of the dissimilitude of the learners themselves.

It also noteworthy that there is virtually no difference
between the results regarding Tables IV and V for the Boosted
Logistic Regression (used as a classifier as remarked before),
certainly due to specific properties of boosting. In this context
Duchi et al. [9] have shown that for some types of Logistic
Boosting the selective elimination of features had only a
marginal effect on the test error.

Table VII shows in detail the performance differential
from the complete feature set case to the reduced feature set
case. For decision trees algorithms RPART and C5.0 there

72

RPART

C50

ADA

ROC

0.7892

0.7453

0.7908

0.7527

0.7937

0.7453

0.7982

0.7526

Full set of features

Reduced set of features

NN

GBM

GLM

BLR
0.7544

0.7525

0.7827

0.7670

0.7544

0.7560

0.7808

0.7715

Fig. 1. Accuracy values.

RPART

C50

ADA

ROC

0.8116

0.7733

0.8124

0.7794

0.8155

0.7733

0.8185

0.7794

Full set of features

Reduced set of features

NN

GBM

GLM

BLR
0.7813

0.7809

0.8060

0.7923

0.7813

0.7779

0.8041

0.7963

Fig. 2. Balanced accuracy values.

is clearly a lack of significantive change from the full set
case to the reduced feature set case, with the exception of
Neg Pred Value for RPART. This is likely due to the
efficiency characteristics of decision trees, already noticed for
small datasets and for the C4.5 classifier (predecessor of the
C5.0 used here) [13].

In the case of neural networks (NN) feature reduction did
not affect significantly the metrics obtained. It is known that
neural networks are sensitive to the variety of train features
used [11], [18], [24]. This relates to the setting of the internal
network weights that are directly influenced by the input
information. In our case as the number of features was reduced,
the information for training is also less. As such this is not an
expected result, although admittedly possible if the discarded
features have brought no information.

The values for the Positive Likelihood Ratio, as illustrated

RPART

C50

ADA

ROC

0.5915

0.5126

0.5940

0.5254

0.5997

0.5126

0.6074

0.5254

Kappa

Full set of features

Reduced set of features

NN

GBM

GLM

BLR
0.5288

0.5266

0.5799

0.5514

0.5288

0.5273

0.5762

0.5595

Fig. 3. Kappa values.

RPART

C50

ADA

ROC

2.79

2.27

2.83

2.36

2.86

2.28

2.96

2.36

Full set of features

Reduced set of features

NN

GBM

GLM

BLR
2.38

2.34

2.71

2.51

2.38

2.48

2.69

2.57

Fig. 4. Positive Likelihood Ratio values.

in Figure 4 are of the same order of magnitude in all cases.
This magnitude of the Likelihood Ratio validates the feature
reduced dataset as well as the starting dataset in what concerns
the positive assertion that this feature set was the result of
malicious activity.

The effect of feature tuning was a reduction of the number
of features. The number of features reduced for each algorithm
is shown in the last row of Table VI. It is clear that similar
results for similar performance metrics can be obtained at
savings of a variable number of features (see also Tables IV
and V). GBM has come up as the most feature-efficient learner,
closely followed by RPART.

One common criteria for model acceptance is that the
overall accuracy shall be higher than the no-information rate.

73

This latter metric was equal to 0.5709 in all algorithms (so
it was omitted from the tables). It is remarkable that in any
tested case the p-value or, equivalently, the probability that the
accuracy results are obtained by chance are nearly null. This
means that there is a significative relation between the features
and their attributed class. In all cases the overall accuracy
validates at over a 90% significance level with a p-value nearly
null: 2.2−16.

VII. CONCLUSIONS

Several conclusions can be extracted from the comparative
analysis of the algorithms. A number of metrics have been
used for this comparison, as seen in Tables IV and V. The
set of algorithms tested proved to convey equivalent learn-
ing models and results under the same test conditions. This
supports the conclusion of Shiravi at al. [23] regarding the
quality of the UNB ISCX dataset. One of the main objections
raised to this dataset was related to the disparity of results
obtained. However, our results with the dataset seem to indicate
similar results given the same experimental conditions with an
extended variety of machine learning algorithms.

We have confirmed the validity of the ROC criteria for
feature reduction. In this regard comparing the performance
of classifiers with and without feature reduction proved
favourable for the feature reduction case where performance
metrics have shown to remain stable without loosing general-
ization power due to an eventual marked increase in accuracy.
Examining the results from the feature reduction we observed
that the resulting set of features and their importance varies
considerably from learner to learner.

Our results show that feature optimality is classifier-
dependent, at least for the ROC selection criteria. GBM has
come up as the most feature-efficient learner, closely followed
by RPART. Despite the disparity of results regarding features to
discard, the learners have show substantial similitude regarding
the metrics observed. This fact may hint at the value of ROC
based ranking learners in choosing the best features case to
case, learner to learner.

ACKNOWLEDGEMENTS

This work was supported by national funds through Fun-
dação para a Ciência e a Tecnologia (FCT) with reference
UID/CEC/50021/2013 (INESC-ID).

REFERENCES

[1] G. Anthes. Deep learning comes of age. Communications of the ACM,
56(6):13–15, 2013.

[2] I. Arel, D. C. Rose, and T. P. Karnowski. Deep machine learning:
A new frontier in artificial intelligence research. IEEE Computational
Intelligence Magazine, 5(4):13–18, 2010.

[3] A. P. Bradley. The use of the area under the roc curve in the evaluation
of machine learning algorithms. Pattern Recognition, 30(7):1145–1159,
July 1997.

[4] L. Breiman. Arcing the Edge. Technical report, Statistics Department,
University of California, Berkeley, June 1997.

[5] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and
Regression Trees. Wadsworth and Brooks, Monterey, CA, 1984.

[6] J. Cohen. A coefficient of agreement for nominal scales. Educational
and Psychological Measurement, 20(1):37 – 46, 1960.

[7] D. R. Cox. The regression analysis of binary sequences. Journal of the
Royal Statistical Society. Series B (Methodological), pages 215–242,
1958.

[8] P. Domingos. A few useful things to know about machine learning.
Commun. ACM, 55(10):78–87, Oct. 2012.

[9] J. Duchi and Y. Singer. Boosting with structural sparsity. In Proceedings
of the 26th Annual International Conference on Machine Learning,
pages 297–304. ACM, 2009.

[10] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression:
a statistical view of boosting. The Annals of Statistics, 28(2):337–407,
2000.

[11] G. D. Garson. Interpreting neural-network connection weights. AI
Expert, 6(4):46–51, Apr. 1991.

[12] J. Grana, D. Wolpert, J. Neil, D. Xie, T. Bhattacharya, and R. Bent.
A likelihood ratio anomaly detector for identifying within-perimeter
computer network attacks. J. Netw. Comput. Appl., 66(C):166–179,
May 2016.

[13] L. B. Holder. Intermediate decision trees. In Proceedings of the 14th
International Joint Conference on Artificial Intelligence - Volume 2,
pages 1056–1062, 1995.

[14] N. Kayacik and M. Heywood. Selecting Features for Intrusion De-
tection: A Feature Relevance Analysis on KDD 99 Intrusion Detection
Datasets. In The 3rd Annual Conference on Privacy, Security and Trust,
2005.

[15] M. Kuhn. Building predictive models in R using the caret package. R
Project, 2008.

[16] B. Mukherjee, L. T. Heberlein, and K. N. Levitt. Network intrusion
detection. IEEE Network, 8(3):26–41, 1994.

[17] H. A. Nguyen and D. Choi. Application of data mining to network
intrusion detection: Classifier selection model. In 11th Asia-Pacific
Network Operations and Management Symposium, pages 399–408,
2008.

[18] J. D. Olden and D. A. Jackson. Illuminating the “black box”: a
randomization approach for understanding variable contributions in
artificial neural networks. Ecological modelling, 154(1):135–150, 2002.

[19] R Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2012.

[20] B. P. Roe, H.-J. Yang, and J. Zhu. Boosted decision trees, a powerful
event classifier. In Statistical problems in particle physics, astrophysics
and cosmology. Proceedings, Conference, pages 139–142, 2005.

[21] C. Rudin and R. E. Schapire. Margin-based ranking and an equiva-
lence between adaboost and rankboost. Journal of Machine Learning
Research, 10:2193–2232, Dec. 2009.

[22] J. Schmidhuber. Deep learning in neural networks: An overview. Neural
Networks, 61:85–117, 2015.

[23] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani. Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection. Computers & Security, 31(3):357–374, May 2012.

[24] M. Stevenson, R. Winter, and B. Widrow. Sensitivity of feedforward
neural networks to weight errors. IEEE Transactions on Neural
Networks, 1(1):71–80, Mar 1990.

[25] S. J. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. K. Chan. Cost-
based modeling for fraud and intrusion detection: Results from the jam
project. In Proceedings of the 2000 DARPA Information Survivability
Conference and Exposition, pages 130–144, 2000.

[26] D. B. D. Strother H. Walker. Estimation of the probability of an event
as a function of several independent variables. Biometrika, 54(1/2):167–
179, 1967.

[27] S. Suthaharan and T. Panchagnula. Relevance feature selection with
data cleaning for intrusion detection system. In Southeastcon, 2012
Proceedings of IEEE, pages 1–6, March 2012.

[28] J. A. Swets. The relative operating characteristic in psychology. Science,
182(4116):990–1000, 1973.

[29] A. Viera and J. Garrett. Understanding interobserver agreement: The
kappa statistic. Family Medicine, 37, 5 2005.

[30] T.-F. Yen, A. Oprea, K. Onarlioglu, T. Leetham, W. Robertson, A. Juels,
and E. Kirda. Beehive: large-scale log analysis for detecting suspicious
activity in enterprise networks. In Proceedings of the 29th ACM Annual
Computer Security Applications Conference, 2013.

74

Regression Metrics ADA ROC C5.0 RPART BLR GLM GBM NN

Accuracy 0.7892 0.7453 0.7908 0.7526 0.7544 0.7525 0.7827 0.7670
Kappa 0.5915 0.5126 0.5940 0.5254 0.5288 0.5266 0.5799 0.5514
Specificity 0.6533 0.5756 0.6602 0.5906 0.5922 0.5806 0.6415 0.6135
Sensitivity 0.9699 0.9711 0.9646 0.9682 0.9703 0.9812 0.9706 0.9712
Neg Pred Value 0.9665 0.9636 0.9612 0.9611 0.9637 0.9763 0.9667 0.9659
Pos Pred Valuee 0.6777 0.6323 0.6809 0.6399 0.6414 0.6375 0.6705 0.6538
Likelihood Ratio(+) 2.79 2.27 2.83 2.36 2.38 2.34 2.71 2.51
Balanced Accuracy 0.8116 0.7733 0.8124 0.7794 0.7813 0.7809 0.8060 0.7923

TABLE IV. PERFORMANCE WITHOUT REDUCTION BY FEATURE SELECTION.

Regression Metrics vs. learner ADA ROC C5.0 RPART BLR GLM GBM NN

Accuracy 0.7937 0.7453 0.7982 0.7527 0.7544 0.7560 0.7808 0.7715
Kappa 0.5997 0.5126 0.6074 0.5254 0.5288 0.5273 0.5762 0.5595
Specificity 0.6614 0.5756 0.6753 0.5906 0.5922 0.6234 0.6398 0.6216
Sensitivity 0.9696 0.9711 0.9617 0.9682 0.9703 0.9324 0.9684 0.9709
Neg Pred Value 0.9666 0.9636 0.9592 0.9612 0.9637 0.9246 0.9642 0.9660
Pos Pred Valuee 0.6828 0.6323 0.6900 0.6400 0.6414 0.6504 0.6689 0.6585
Likelihood Ratio(+) 2.86 2.28 2.96 2.36 2.38 2.48 2.69 2.57
Balanced Accuracy 0.8155 0.7733 0.8185 0.7794 0.7813 0.7779 0.8041 0.7963

TABLE V. SUMMARY PERFORMANCE WITH A REDUCED FEATURE SET DETERMINED BY FEATURE SELECTION.

Feature vs. Learner ADA ROC C5.0 RPART GLM GBM BLR NN

dst-host-count 60.05 60.05 0 1.89 30.62 0 60.05 20.73
dst-bytes 100.00 100.00 46.67 0 0 26.50 100.00 0
count 83.64 83.64 41.89 15.61 67.87 7.56 83.64 55.17
src-bytes 99.92 99.92 100.00 100.00 0 100.00 99.92 63.93
dst-bytes 0 0 0 92.04 0 0 0 54.91
duration 0 0 1.35 0 15.57 0.82 0 20.10
srv-count 0 0 0 8.68 0 1.48 0 34.79
logged-in 87.21 87.21 45.44 0 0 0 87.21 24.64
num-shells 0 0 43.88 0 0 0 0 0
num-compromised 0 0 53.64 0 42.17 0 0 0
dst-host-srv-rerror-rate 0 0 0 0 0 0 0 0
dst-host-same-srv-rate 93.00 93.00 45.55 0 0 0.62 93.00 16.34
srv-serror-rate 77.25 77.25 0 0 34.93 0 77.25 11.17
wrong-fragment 0 0 0 0 100.00 0 0 13.70
hot 0 0 48.22 0 69.71 2.80 0 0
service 44.62 44.62 7.14 0 0 0 44.62 100.00
rerror-rate 0 0 0 0 0 0 0 13.59
serror-rate 80.78 80.78 0 0 0 0 80.78 11.57
urgent 0 0 0 0 0 0 0 0
dst-host-same-src-port-rate 44.34 44.34 55.57 0 63.76 4.11 44.34 34.36
is-guest-login 0 0 0 0 77.82 0 0 0
dst-host-srv-count 98.55 98.55 49.73 5.91 72.05 5.96 98.55 36.81
protocol-type 40.28 40.28 52.98 6.70 64.45 5.32 40.28 29.51
num-root 0 0 0 0 42.43 0 0 0
srv-rerror-rate 0 0 0 0 38.99 0 0 0
dst-host-rerror-rate 0 0 47.93 0 28.79 0 0 0
srv-diff-host-rate 45.80 45.80 0 0 27.78 0 45.80 0
num-file-creations 0 0 0 0 21.26 0 0 0
dst-host-srv-serror-rate 76.06 76.06 2.52 0 17.25 0 76.06 0
dst-host-serror-rate 81.80 81.80 0 0 16.59 0 81.80 11.07
same-srv-rate 94.68 94.68 43.92 81.85 15.27 0 94.68 0
diff-srv-rate 88.63 88.63 0 80.33 0 0 88.63 0
dst-host-srv-diff-host-rate 54.95 54.95 49.74 4.95 0 0 54.95 15.90
dst-host-diff-srv-rate 84.92 84.92 5.33 0 0 0 84.92 17.33
num-failed-logins 0 0 49.36 0 0 0 0 0
flag 91.11 91.11 47.75 75.56 47.30 0 91.11 88.48

Number of discarded features 20 20 20 29 20 30 20 20

TABLE VI. RELATIVE IMPORTANCE FOR EACH FEATURE BY LEARNER REPRESENTED IN A RELATIVE PERCENTUAL SCALE.

Regression Metrics vs. learner ADA ROC C5.0 RPART BLR GLM GBM NN

Accuracy 1 0 1 0 0 0 0 0
Kappa 1 0 2 0 0 0 -1 0
Specificity 1 0 2 0 0 7 0 1
Sensitivity 0 0 0 0 0 -5 0 0
Neg Pred Value 0 0 0 0 0 -6 0 0
Pos Pred Value 1 0 1 0 0 2 0 0
Balanced Accuracy 0 0 1 0 0 0 0 0

TABLE VII. SUMMARY OF DIFFERENCES BETWEEN ORIGINAL AND FEATURE REDUCED DATASETS. VALUES ARE EXPRESSED IN PERCENTAGE. VALUES

LESS THAN ONE ARE REPRESENTED AS NULLS.

75

A Security Policy Query Engine for Fully
Automated Resolution of Anomalies in Firewall

Configurations

Ahmed Bouhoula
Lycée Louis le Grand – 123 Rue Saint-Jacques

75005 Paris, France

Email: ahmed.bouhoula@gmail.com

Anis Yazidi
Department of Computer Science – Oslo and Akershus

University College – Oslo, Norway

Email: anis.yazidi@hioa.no

Abstract—Legacy work on correcting firewall anomalies oper-
ate with the premise of creating totally disjunctive rules. Unfortu-
nately, such solutions are impractical from implementation point
of view as they lead to an explosion of the number of firewall
rules. In a related previous work, we proposed a new approach
for performing assisted corrective actions, which in contrast to
the-state-of-the-art family of radically disjunctive approaches,
does not lead to a prohibitive increase of the configuration size.
In this sense, we allow relaxation in the correction process by
clearly distinguishing between constructive anomalies that can be
tolerated and destructive anomalies that should be systematically
fixed.

However, a main disadvantage of the latter approach was its
dependency on the guided input from the administrator which
controversially introduces a new risk for human errors. In order
to circumvent the latter disadvantage, we present in this paper
a Firewall Policy Query Engine (FPQE) that renders the whole
process of anomaly resolution a fully automated one and which
does not require any human intervention. In this sense, instead
of prompting the administrator for inserting the proper order
corrective actions, FPQE executes those queries against a high
level firewall policy. We have implemented the FPQE and the
first results of integrating it with our legacy anomaly resolver
are promising.

I. INTRODUCTION

With the dramatic growth of the Internet, network security

has become a focal concern during this last decade. Firewalls

are widely deployed in private networks as an inherent part

of their security. However, the effectiveness of a firewall is

dramatically jeopardized by the presence of anomalies within

its filtering rules. In fact, the filtering rules may include anoma-

lies resulting in critical security vulnerabilities. The analysis

of filtering rules and anomalies discovery have gained a lot of

attention. A significant work was reported in this area [1]–[9].

Most of the emphasis has been given to the classification and

discovery of firewall anomalies. Other studies have focused

on optimizing the filtering process time [10]–[12]. However,

few studies have been performed to resolve these anomalies.

The most notable of these studies are [1] and [13] which

only focused on one of the conflict problems, namely, rule

correlation in filtering policies. Other remarkable studies [14],

[15] have defined a set of recommendations for correcting

policy anomalies. However [14] and [15] did not develop a

concrete approach to resolve packet filter conflicts. Another

study that tried to probe into the conflict resolution issue is

reported in [16]. The main shortcoming of [16] is that the pro-

posed corrective actions do not handle the correlation anomaly.

In [17], [18], a set of algorithms for rewriting firewall rules

were presented. The new rewritten rules are completely free

of errors and equivalent to the initial misconfigured firewall

rules. However, the complexity of a rule re-writing algorithm

is very high and leads to an explosion in the number of the

firewall rules. Dealing with an assisted correction of policy

anomalies seems to be a captivating and challenging task. In

fact the correction is a highly complicated task that threatens to

overwhelm human attention as the number of rules increases.

Moreover, this task is prone to errors. In fact, modifying the

rules order may create new anomalies instead of correcting the

existent ones. Hence, a special attention has to be paid when

ordering the rules. From this perspective raises the need of an

automatic system to correct anomalies within filtering rules.

In our recent work reported in [19], we prove that ordering

does not always work to correct the anomalies defined in [14].

We should underline that our corrective system presented in

[19] is not fully automatic. Our claim was that corrective

system is guided by the administrator choices in order to reflect

exactly the desired policy. However, paradoxically, this claim

is questionable since by querying the administrator, we might

introduce a new level of error during the correction phase. In

this paper, we present a Firewall Policy Query Engine (FPQE)

which stores the high level network policy. The FPQE can

be assimilated to an Oracle that replaces the administrator in

answering to queries about the relative order of correlated

rules or conflicting rules [19]. The FPQE query engine is

integrated with the resolver presented in [19] so that to guide

the correction process whenever there is ambiguity concerning

the relative order of conflicting rules.

II. MODELLING THE FPQE

FPQE receives as input the Security Policy (SP) which is

a set SP of directives which are formulae defining whether978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

76

packets are accepted or denied.

SP is called consistent if the domain of accepted packets

and the domain of denied packets are disjoint.

An SP is presented as a finite set of directives1:

SP ={(si, di, ai) Except {(sij, dij)|1 ≤ j ≤ ki and

sij ⊆ si and dij ⊆ di}|1 ≤ i ≤ m}
For each i, si is the source address of the directive, di is

the destination address and ai is the action of the directive

(Accept or Deny). m denotes the number of directives and ki
is the number of exceptions from the ith directive. A directive

may include a set of exceptions in the form (sij, dij).
Representing a Security Policy with a Boolean Formula:
A security policy SP can be transformed into a Boolean

formula BSP such as BSP evaluates to True with an assignment

which corresponds to a packet p if and only if SP accepts the

packet p [20].

∀p, SP accepts p ⇔ p � BSP

For each i, let Bi(p) be the Boolean formula corresponding

to directive ri = (si, di, ai). Let D be the default action

which has to be used if no directive in SP contains the domain

of the input packet p. In more formal terms, this is expressed

as:

BSP(p) =

(
m∨
i=1

Bi (p)

)
∨ (D ∧ ∀i ∈ [1..m] dom (p) /∈ dom (Bi))

For each i, and each packet p = (sp, dp), if the action

equals Accept (ai=Accept), then the input packet is accepted

if its domain is included in the domain of the directive and not

included in the domain of all the exceptions. Formally, this is

given by:

Bi(p) = ((sp ⊆ si) ∧ (dp ⊆ di)) ∧ (

ki∧
j=1

(sp � sij) ∨ (dp � dij))

If the action equals Deny (ai=Deny) then the input packet

is accepted if its domain is included in the domain of one of

the exceptions. Formally, this is given by:

Bi (p) =

ki∨
j=1

(
(
sp ⊆ sij

) ∧ (dp ⊆ dij))

Filtering rules:
We will consider the access list syntax used in Cisco routers

(see [21]). Here an example of such syntax:

access-list 100 permit tcp host 10.11.1.2 host 170.16.10.6

This rule permits tcp traffic from 10.11.1.2 host machine to

170.16.10.6 host machine. In the following and for simplicity

issues we will represent a firewall filtering rule as a triplet

1For the sake of simplicity issues and without loss of generality, we will not
consider the source port, the destination port and the protocol of the directives.

(si, di, ai) where si is the source address of the rule, di is the

destination address and ai is the action (Accept or Deny).

Representing Filtering rules with a Boolean Formula:
A list of filtering rules FR can be transformed into a Boolean

formula BFR such as BFR evaluates to True with an assignment

which corresponds to a packet p if and only if FR accepts the

packet p.

∀p, FR accepts p ⇔ p � BFR

Let FR be a list of filtering rules and an input packet p =
(sp, dp), the following inference system returns the Boolean

formula which corresponds to FR: BFR(p)

Accept Rule
(si, di, accept) :: rest

((sp ⊆ si) ∧ (dp ⊆ di))
∨

Brest(p)

The Accept Rule applies if the action of the first rule in

FR is accept. The packet is accepted if it is matched with the

domain of the rule OR it is accepted by the rest of the filtering

rules.

Denied Rule
(si, di, deny) :: rest

((sp � si) ∨ (dp � di))
∧

Brest(p)

The Denied Rule applies if the action of the first rule in FR

is deny. The packet is accepted if it is not matched with the

domain of the rule AND the rest of the rules accept it.

Default Action
[]

V
where V = False

If rest becomes empty list, we return False since we assume

that the default action is deny.

At this juncture, we shall explain how to check whether a
set of rules are correct and complete with respect to a security
policy. Let FR be a set of filtering rules, SP a security policy,

BFR and BSP the corresponding Boolean formulae.

FR is correct with respect to SP iff:

∀p, BFR(p) ⇔ BSP(p)

If BFR(p) � BSP(p) is not satisfiable, then FR is correct

with respect to SP, otherwise it is not correct with respect to

SP. We use MinSAT solver [22] to check satisfiability.

�p, BFR (p) � BSP (p)

If FR is not correct with respect to SP, we give a packet

which is a counter-example and the first rule in FR which is

not correct with respect to SP.

A. Issuing the queries in FPQE with a pair of anomalous rules

In the previous section, we have explained how to check the

validity of the whole firewall filtering rules with respect to the

security policy. However, as explained in [19], the resolution

of anomalies relies on checking the validity of the order of

a pair of correlated rules, as well as checking which rule

should apply in case of contradiction. It is important to note

77

that generally, if we consider the validity of two rules Rx

and Ry with respect to the SP, then Boolean formula for the

equivalence with the SP must be modified to accommodate the

fact that we are considering the subset of the FR composed of

Rx and Ry and not the whole list of filtering rules FR. Hence,

the correct expression that accommodate this is:

∀p ∈ dom(Rx) ∪ dom(Ry), BFR(p) ⇔ BSP(p)

At this juncture, we give the expression of the query that we

issue given two rules Rx and Ry that are either correlated or

in contradiction, where Rx precedes Ry:

�p ∈ dom(Rx) ∪ dom(Ry), BFR(p) � BSP(p) (1)

We shall now consider two cases relevant for the correction

of anomalies, namely, correlation and contradiction:

Case 1: Rx and Ry are correlated: If the above expression

is verified (Eq. 1), and if Rx and Ry present the correlation

anomaly, then their order must be inverted. In fact, as ex-

plained in [19], this means that we found a counter-example

packet that both matches Rx and Ry and that has wrong action

which does not comply with the SP. Thus, the relative order

of Rx and Ry is wrong. Hence, by inverting the order of Rx

and Ry , the packets that are matched in same time by Rx

and Ry will be assigned the right action that complies with

the SP. If the above expression is not verified (Eq. 1), and if

Rx and Ry present the correlation anomaly, then the order of

the correlated rules Rx and Ry complies with the policy and

should be preserved.

Case 2: Rx and Ry are in contradiction: If Eq. 1 is verified,

then a counter-example is found and thus the filtering rules do

not comply with SP. In this case, rule Ry shall be removed.

Otherwise, rule Rx should be removed.

III. INTEGRATION OF THE FPQE WITH THE FIREWALL

POLICY RESOLVER

In this section, we shall explain how the FPQE is integrated

with our recent firewall policy resolver presented in [19]. We

propose a set of corrective actions which are based on our

previous work and which involve the FPQE:

Automatic rule removal: In the case of redundancy it is

recommended to remove the specific rule which is included in

the general rule.

Automatic rule permutation: In the case of shadowing it

is recommended to permute the conflicting rules in order to

obtain the anomaly generalization which is tolerated.

Automatic rule removal using FPQE: This action is

applied in the case of contradiction anomaly. The FPQE query

engine is invoked so that to choose the rule to be deleted

depending on the security policy requirements2.

Automatic rule permutation using FPQE: In the case

of correlation the FPQE query engine chooses the proper

order that complies with the adopted policy by issuing a

query that determines the action for the set of packets lying

2Please note that in [19] we rely on administrator while in this paper we
resort to the FPQE query engine instead.

at the intersection of the correlated rules. The resolver [19]

tolerates the existence of the generalization anomaly and we

will consider the rest of anomalies as policy errors to resolve.

In fact, generalization is often used to exclude a specific part

of the traffic from a general filtering action. Therefore, we

tolerate the existence of this anomaly. Shadowing is considered

as a critical error in the firewall policy as the shadowed

rule never applies, resulting in an unexpected filter response

for the packets that match the shadowed rule. Shadowing

can be resolved by reversing the relative order of the two

involved rules. In the case of correlation, a packet whose

header matches the intersection of the headers of the two

filtering rules causes ambiguity in packet classification because

the adopted policy depends on the order of the two conflicting

rules. In this case, the FPQE is queried with pair of rules to

determine the order of the rules that complies with his desired

policy. In the case of contradiction, the shadowed rule will

never be activated. Therefore, the FPQE is used to choose

which of the two conflicting rules should apply. The other rule

will be removed from the filtering rules list since it increases

unnecessarily the number of filtering rules.

The FPQE works in interaction with the resolver [19]. The

resolver analyses the filtering rules and reports the detected

anomalies. It will interact the FPQE whenever there is an

ambiguity in the order of the rules. FPQE is written in

C++. After interaction with the FPQE, the correction of the

anomalies proceeds as described in [19] by topologically

sorting the rules based on the precedence relationships and

eventual cycle breaking. Thus, the only difference between

[19] and the advocated approach in this paper is the fact

that we rather rely on the FPQE query engine instead of

prompting the administrator for decisions concerning the order

of conflicting rules. Since the aim of this paper is to shed

light on the FPQE query engine, details about the correction

process described in [19] are omitted here. Fig. 1 illustrates

the interaction between the FPQE and the anomaly resolver

system described in [19].

Fig. 1. Reporting the detected anomalies

78

IV. EXAMPLE: CHECKING FR WITH RESPECT TO SP

In order to transform the security policy SP and the filtering

rules FR into Boolean formulae, the source and destination IP

addresses will be converted into 32 Boolean variables (each

address can be written in 32 bits). Thus, checking whether the

domain of a packet p is included in the domain of a filtering

rule reduces to verifying the satisfiability of some Boolean

expression. For example let us consider the addresses Src1 =
120.∗.∗.∗ and Src2 = 120.127.∗.∗. In order to check whether

Src2 ⊂ Src1, we have to consider the 32 variables assigned

to source addresses. Note that since 120 = 011110002, then

the Boolean forumla for checking the inclusion within Src1
is given by:

¬a1 ∧ a2 ∧ a3 ∧ a4 ∧ a5 ∧ ¬a6 ∧ ¬a7 ∧ ¬a8
In order to illustrate the possibility of correcting the order

of the FR filtering rules automatically without interaction with

the network administrator, we consider a simple example.

We suppose a university has it own internal network with

three domains. D0 denotes the whole network domain of the

university. D1 is a sub-domain including the students and

professors. D2 is a sub-domain including the Professors and

Administration. For the sake of simplicity we suppose that

D0 contains ip addresses that are integers and we assume that

D0 = [1, 7], D1 = [1, 4] and D2 = [4, 7].
We suppose that security policy SP is defined by the

following directive:

(D0, any, accept) Except (Students, facebook)

The above directive states that all users in D0 can access any

website except the students can not access Facebook.

In addition, we suppose that the filtering rules FR are

composed of R1 and R2 given by:

R1 : (D1, Facebook, deny)

R2 : (D2, Facebook, accept)

Note that by definition, D1 = [1, 4] can be expressed as:

D1 = ¬a1 ∨ (a1 ∧ ¬a2 ∧ ¬a3)

Similarly, D2 = [4, 7] can be expressed as:

D2 = a1

Thus, the security policy SP is given by:

BSP(p) = ¬D1 ∨ D2 = [a1 ∧ (¬a1 ∨ a2 ∨ a3)] ∨ a1

= (a1 ∨ a1) ∧ (a1 ∨ ¬a1 ∨ a2 ∨ a3)

= a1 ∧ (T ∨ a2 ∨ a3)

= a1

On the other hand, the filtering rules FR are given by:

BFR(p) = ¬D1 ∧ D2 = [a1 ∨ (¬a1 ∨ a2 ∨ a3)] ∧ a1

= a1 ∨ (¬a1 ∨ a2 ∨ a3)

Now, we are ready to check whether the FR is equivalent

to SP using the following Boolean formula.

BFR(p) � BSP(p) = ¬a1 ⇔ [a1 ∨ (¬a1 ∨ a2 ∨ a3)]

= [¬a1 ⇒ (¬a1 ∨ a2 ∨ a3)]︸ ︷︷ ︸
S1

∧ [(¬a1 ∨ a2 ∨ a3) ⇒ ¬a1]︸ ︷︷ ︸
S2

We compute S1 as:

S1 = ¬a1 ⇒ (¬a1 ∨ a2 ∨ a3)

= a1 ∨ (¬a1 ∨ a2 ∨ a3)

= a1

Similarly, we compute S2 as:

S2 = (¬a1 ∨ a2 ∨ a3) ⇒ ¬a1
= ¬a1 ∨ (a1 ∧ ¬a2 ∧ ¬a3) ∨ ¬a1
= (a1 ∨ ¬a1) ∧ (¬a2 ∧ ¬a1) ∧ (¬a3 ∧ ¬a1)
= (¬a2 ∧ ¬a1) ∧ (¬a3 ∧ ¬a1)

Thus, we finally obtain:

BFR(p) � BSP(p) = a1 ∧ (¬a2 ∧ ¬a1) ∧ (¬a3 ∧ ¬a1) (2)

We deploy a MiniSAT SAT Solver in order to obtain a

counter example, i.e, a packet p that satisfies BFR � BSP.

The MiniSat SAT solver expects input to be in Conjunctive

Normal Form (CNF) in the DIMACS format [23].

The input of the MiniSAT SAT Solver corresponding to Eq.

2 is given by:

p cnf 3 3

1 0

-1 -2 0

-1 -3 0

As seen in Fig. 2, the output returns a counter-example:

a1 = T , a2 = F , and a3 = F .

Therefore the FR and the SP are not equivalent, which

means that the order of the two correlated rules R1 and R2

must be inverted.

V. CONCLUSION

Firewall rules misconfiguration is a substantial issue in the

area of network security. Valuable studies in this field have

provided an answer to the anomalies discovery issue. However,

the correction of these anomalies is still a rich axis of research.

This task is extremely delicate and poses serious challenges

with regards to the importance of rules order. In this paper,

we have proposed a fully automated approach and set of tools

for correcting anomalies within filtering rules. The correction

is guided by the FPQE engine to yield a required precision

while reflecting the adopted security policy without requiring

any intervention from the administrator.

79

Fig. 2. Screenshot illustrating the execution of MiniSAT SAT Solver and
showing the output in DIMACS format.

As we mentioned previously, the MiniSat SAT solver ex-

pects input to be in conjunctive normal form. The transfor-

mation of Boolean formulas into CNF format will increase

their size exponentially. However, the Tseitin technique [24]

allows a translation to equi-satisfiable CNF formulas with

linear increase of the size but it needs to add new variables.

Currently, we are working on using Limboole [25] instead of

the MiniSat Sat solver, which allows to check satisfiability

on arbitrary formulas, and not just satisfiability for formulas

in conjunctive normal form, like the DIMACS format. This

allows us to handle large set of security policy and filtering

rules, in reasonably good time. Furthermore, we plan to

integrate the FPQE with other security equipments that are

prone to policy configuration errors such as intrusion detection

systems.

REFERENCES

[1] A. Hari, S. Suri, and G. Parulkar, “Detecting and resolving packet filter
conflicts,” in Proceedings of INFOCOM 2000, vol. 3. IEEE, 2000, pp.
1203–1212.

[2] Y. Bartal, A. Mayer, K. Nissim, and A. Wool, “Firmato: A novel firewall
management toolkit,” in Proceedings of the 1999 IEEE Symposium on
Security and Privacy. IEEE, 1999, pp. 17–31.

[3] J. D. Guttman, “Filtering postures: Local enforcement for global poli-
cies,” in Proceedings of the 1997 IEEE Symposium on Security and
Privacy. IEEE, 1997, pp. 120–129.

[4] S. Hinrichs, “Policy-based management: Bridging the gap,” in Proceed-
ings of the 15th Annual Conference on Computer Security Applications
(ACSAC’99). IEEE, 1999, pp. 209–218.

[5] A. Mayer, A. Wool, and E. Ziskind, “Fang: A firewall analysis engine,”
in Proceedings of the 2000 IEEE Symposium on Security and Privacy.
IEEE, 2000, pp. 177–187.

[6] A. Wool, “Architecting the lumeta firewall analyzer.” in USENIX Secu-
rity Symposium, 2001, pp. 85–97.

[7] P. Eronen and J. Zitting, “An expert system for analyzing firewall
rules,” in Proceedings of the 6th Nordic Workshop on Secure IT Systems
(NordSec 2001), 2001, pp. 100–107.

[8] C. Pornavalai and T. Chomsiri, “Firewall policy analyzing by rela-
tional algebra,” in The 2004 International Technical Conference on
Circuits/Systems, Computers and Communications, 2004.

[9] L. Yuan, H. Chen, J. Mai, C.-N. Chuah, Z. Su, and P. Mohapatra,
“Fireman: A toolkit for firewall modeling and analysis,” in 2006 IEEE
Symposium on Security and Privacy. IEEE, 2006, pp. 15–pp.

[10] C. Benecke, “A parallel packet screen for high speed networks,” in
Proceedings of the 15th Annual Conference on Computer Security
Applications (ACSAC’99). IEEE, 1999, pp. 67–74.

[11] H. Hamed, A. El-Atawy, and E. Al-Shaer, “Adaptive statistical op-
timization techniques for firewall packet filtering,” in Proceedings of
INFOCOM 2006, 2006, pp. 1–12.

[12] ——, “On dynamic optimization of packet matching in high-speed
firewalls,” IEEE Journal on Selected Areas in Communications, vol. 24,
no. 10, pp. 1817–1830, 2006.

[13] D. Eppstein and S. Muthukrishnan, “Internet packet filter management
and rectangle geometry,” in Proceedings of the 2001 ACM-SIAM sym-
posium on Discrete algorithms. Society for Industrial and Applied
Mathematics, 2001, pp. 827–835.

[14] E. S. Al-Shaer and H. H. Hamed, “Firewall policy advisor for anomaly
discovery and rule editing,” in IFIP/IEEE Eighth International Sympo-
sium on Integrated Network Management. IEEE, 2003, pp. 17–30.

[15] C. Basile, D. Canavese, A. Lioy, C. Pitscheider, and F. Valenza, “Inter-
function anomaly analysis for correct sdn/nfv deployment,” International
Journal of Network Management, vol. 26, no. 1, pp. 25–43, 2016.

[16] A. K. Bandara, A. Kakas, E. C. Lupu, and A. Russo, “Using argumenta-
tion logic for firewall policy specification and analysis,” in Large Scale
Management of Distributed Systems. Springer, 2006, pp. 185–196.

[17] F. Cuppens, N. Cuppens-Boulahia, and J. G. Alfaro, “Detection of net-
work security component misconfiguration by rewriting and correlation,”
in Joint Conference on Security in Network Architectures and Security
of Information Systems, 2006.

[18] J. Garcı́a-Alfaro, F. Cuppens, and N. Cuppens-Boulahia, “Towards
filtering and alerting rule rewriting on single-component policies,” in
Computer Safety, Reliability, and Security. Springer, 2006, pp. 182–
194.

[19] A. Yazidi and A. Bouhoula, “On assisted packet filter conflicts resolu-
tion: An iterative relaxed approach,” in Proceedings of the 41st Annual
IEEE Conference on Local Computer Networks (To appear). LCN 2016.
IEEE, 2016.

[20] S. Hazelhurst, “Algorithms for analysing firewall and router access lists,”
arXiv preprint cs/0008006, 2000.

[21] C. S. Inc, “Configuring IP Access Lists,”
http://www.cisco.com/c/en/us/support/docs/security/ios-firewall/23602-
confaccesslists.html, 2007, [Online; accessed 04-August-2016].

[22] C. M. Li, Z. Zhu, F. Manyà, and L. Simon, “Optimizing with minimum
satisfiability,” Artificial Intelligence, vol. 190, pp. 32–44, 2012.

[23] “Minisat sat solver,” http://www.dwheeler.com/essays/minisat-user-
guide.html, 2006, [Online; accessed 04-August-2016].

[24] G. S. Tseitin, On the Complexity of Derivation in Propositional Calcu-
lus. Berlin, Heidelberg: Springer Berlin Heidelberg, 1983, pp. 466–483.

[25] “Limboole,” http://fmv.jku.at/limboole, 2006, [Online; accessed 28-
September-2016].

80

Enforcement of Global Security Policies in
Federated Cloud Networks with Virtual Network

Functions

Philippe Massonet, Sébastien Dupont, Arnaud Michot
CETIC Research Center, Charleroi, Belgium

Email: philippe.massonet@cetic.be

Anna Levin
IBM Research Lab, Haifa, Israel

Email: lanna@il.ibm.com

Massimo Villari
University of Messina, Italy

Email:mvillari@unime.it

Abstract—Federated cloud networks are formed by federating
virtual network segments from different clouds, e.g. in a hybrid
cloud, into a single federated network. Such networks should
be protected with a global federated cloud network security
policy. The availability of network function virtualisation and
service function chaining in cloud platforms offers an opportunity
for implementing and enforcing global federated cloud network
security policies. In this paper we describe an approach for
enforcing global security policies in federated cloud networks.
The approach relies on a service manifest that specifies the global
network security policy. From this manifest configurations of the
security functions for the different clouds of the federation are
generated. This enables automated deployment and configuration
of network security functions across the different clouds. The
approach is illustrated with a case study where communications
between trusted and untrusted clouds, e.g. public clouds, are
encrypted. The paper discusses future work on implementing this
architecture for the OpenStack cloud platform with the service
function chaining API.

I. INTRODUCTION

With a the growing number of infrastructure cloud services

becoming available there are many benefits to interconnecting

several cloud services. In hybrid clouds for example one or

more private clouds needs to be connected with one or more

public clouds so that virtual machines from the private and

public clouds can communicate. The hybrid cloud is one ex-

ample of a cloud federation. Different Cloud federation types

such as cloud bursting, cloud brokering or cloud aggregation

have been proposed to provide the necessary mechanisms for

sharing compute, storage and networking resources.

Federated cloud networking techniques provide mechanisms

to federate cloud network resources, and to define an integrated

cloud management layer to deploy applications securely and

efficiently within the cloud federation. One approach for

customising network security is to use network virtualisation

technologies such as VLANs in conjunction with Network

Function Virtualisation (NFV) and Service Function Chaining

(SFC). By combining NFV/SFC with network virtualisation

it is possible for cloud tenants to tailor the security of

each of their individual virtual networks. In this way the

security virtual network functions (VNF) can be tailored to

the specific needs of each application. Many different VNF

are available such as deep packet inspection, encryption,

decryption, intrusion detection or firewalls. SFC can be used to

compose the required VNF to meet a tenant’s network security

requirements.

In this paper, we argue that the deployment and config-

uration of security VNF across the different clouds of a

network federation should be managed by a network federation

manager. This component should be responsible for enforcing

a coherent global network security policy across the network

federation. The approach is illustrated with a motivating ex-

ample for encrypting and decrypting traffic using SSL with

untrusted cloud platforms. The global network security policy

is defined in a service manifest. This work builds on a cloud

architecture for federating network overlay segments into a

federated cloud network [1]. Future work will implement our

approach in an OpenStack cloud federation. This is described

briefly at the end of the paper.

The paper is organized as follows: Section II describes

the motivations for coordinating the deployment of security

VNF across the different federated cloud network segments.

Section III presents our approach by describing the network

service manifest and showing how VNF configurations and

deployment are generated. It also illustrates our approach with

a motivating example. Section IV presents related work and

discuses future work for implementing our approach in an

OpenStack cloud federation.

II. MOTIVATIONS

Federated cloud networks are created by connecting network

segments from different clouds [1]. Federated cloud networks

must deal with heterogeneous clouds, because they may con-

nect different cloud platforms such as OpenStack, OpenNebula

or public clouds such as Amazon AWS or Microsoft Azure.

The main benefits of federated cloud networks are the flex-

ibility they provide to customize and manage the federated

network according to the specific needs of an application or a

tenant. From a security perspective the isolation they provide

makes them easier to protect than multi-tenant networks.

This paper shows how to define and enforce global network

security policies on federated cloud networks. The security

policy is defined in a single service manifest and is then

deployed in the different federation clouds using VNF and

SFC. The main benefit of this approach is that the deployment,

2016 IEEE 15th International Symposium on Network Computing and Applications

978-1-5090-3216-7/16/$31.00 ©2016 IEEE

81

configuration and chaining of the security VNF may be auto-

mated and can be verified once they are deployed across the

different clouds. Performing this manually across the different

clouds by different network administrators would take time

and be error prone if the federated cloud network is large

and/or the network topology or the security policy change

often. The deployment of the security VNF and their chaining

across the different cloud network segments is coordinated by

a component called the Federated Cloud Network Manager.

The approach is illustrated with a case study that encrypts

network flows if the destination is untrusted, and does not

encrypt it if the destination cloud is trusted.

III. APPROACH

Fig. 1. A Federated Cloud Network Federation

The approach begins with specifying a global network

security policy, the generating the VNF configurations for each

cloud, and then deploying the VNF in each cloud. Figure 1

shows a federated cloud network distributed across two clouds.

The bottom part of the figure shows that each of the two clouds

has as physical compute, storage and network resources that

are managed by a system administrator and are protected with

specific network security policies. The network resources of

the two clouds are connected using the internet. The upper part

of the figure shows the federated cloud network. In each of the

two clouds there is a virtual network segment on which several

virtual machines are running. The two network segments

are connected by an overlay network [1]. The inbound and

outbound flows are routed through an SFC of VNF on each

side of the federated network. The top of the figure shows

that the administrator of the network federation defines a

global network security policy and that VNF configurations

are generated to configure the VNF that are deployed as SFC.

Figure 2 shows an encryption/decryption case study with

three clouds. The first two clouds are trusted and can commu-

nicate without encryption. The third cloud is a public cloud

and is untrusted: communications between the first two clouds

and the third cloud must be encrypted. Encryption must be

done with the public key of the destination cloud. Decryption

must be done with the private key of the destination cloud.

Fig. 2. Cloud case study: trusted and untrusted clouds

The global security policy may be specified as follows and

can later be translated into a network program:

if destination cloud X is untrusted then
encrypt network flow with public key of X

else if destination cloud Y is untrusted then
encrypt network flow with public key of Y

else if ... then
...

else if destination cloud Z is trusted then
do not encrypt network flow

else if source cloud is untrusted then
decrypt the network flow using the private key

else
destination or source cloud is not part of the federation

end if
Figure 2 shows the resulting implementation of the above

global security policy where communications between the

three clouds of the federation have been secured according

to the federated network security policy. Communications be-

tween cloud 1 and cloud 2 are not encrypted since both clouds

are trusted. On the other hand, communications with public

cloud 3 need to be encrypted because cloud 3 is untrusted.

The figure shows how the encryption and decryption Virtual

Network Functions have been deployed to secure communi-

cations. For example, when VM1 communicates with VM3

all network traffic is encrypted in cloud 1 and systematically

decrypted by public cloud 3. All outgoing traffic from VM3

to VM1 is encrypted by cloud 3 and decrypted by cloud 1. In

this case the service chaining on each cloud site amounts to

an ”if ... then .. else”: if the traffic destination is an untrusted

cloud, then the traffic has to be encrypted.

Figure 3 shows a fragment of a YAML based service

manifest (OpenStack HEAT template) and the Python VNF

configuration code that is generated. The left part of the

figure shows the fragment of the service manifest that defines

the encryption VNF from cloud 1 to cloud 3. Encryption is

required because cloud3 is an untrusted cloud. The incoming

flows are coming from cloud1 virtual machines is unencrypted:

this is why the incomingPrivateKey and incomingPublicKey

82

Fig. 3. Service Manifest Fragment and generated VNF Python code

fields are left blank. The incoming traffic is is on incoming

IP ip1 and port1. Outgoing traffic to cloud 3 at IP address

ip3 and port port2 needs to be encrypted with the public key

of cloud 3 ”server.crt”. The right side of the figure shows the

corresponding Python code to configure and start the encryp-

tion VNF ENCRYPT 1 to 3. The encryption parameters from

the service manifest are translated to Python variables. The

encryption VNF encrypts all incoming traffic by creating an

instance of the SSL writer class and passing it as a parameter

to the SSL listener instance. This way all incoming data that

is sent to cloud3 is encrypted.

Fig. 4. Ordering and timing constraints for correct startup of VNF

Figure 4 shows the resulting deployment of the encryption

and decryption VNF between cloud 1 and cloud3. The figure

shows the IP addresses and ports that are used for socket based

communication. There are ordering and timing constraints that

have to be respected for starting these VNF correctly. The ba-

sic constraints come from the use of sockets: listeners must be

started before writers because an IP and port must be allocated

to listening sockets before writers can connect. The first VNF

to be started can be Listener 3 from 1 or listener 1 from 3.

If Listener 3 from 1 is started first, then Decrypt 3 from 1,

Encrypt 1 to 3 and Writer 1 to 3 must be started in that

order. The same must then be done for listener 1 from 3. In

addition to the ordering constraint there is a timing constraint:

listening sockets must be up and running before writers can

connect. This means for example that Decrypt 3 from 1 can

only be started once Listener 3 from 1 is up and running.

The VNF start up scripts that are generated from the service

manifest take into account the ordering and timing constraints.

IV. DISCUSSION AND RELATED WORK

A. Discussion

Fig. 5. SFC and security groups

The encryption VNF case study presented above illustrates

our approach but remains simple. In reality multiple VNF

must be combined using SFC in each cloud. Figure 5 shows

a more complex example of security policy. The left part of

the figure shows a security policy template that combines a

firewall, decryption and DPI VNF for incoming traffic, and a

DPI, Firewall and encryption VNF for outbound traffic. This

security policy template can then be instantiated into a service

manifest on the right side of the figure. The right side of the

figure shows the service manifest where the configurations of

the DPI and firewall are defined, and where the outbound and

inbound chaining is defined. It states that the encryption VNF

should be placed at the end of the outgoing service chain and

specifies which key to use based on the destination address.

Conversely it specifies that the decryption VNF should be

placed after the firewall of the incoming service chain and

specifies the private key to be used. The lower part of the figure

shows how the service manifest can be used to define security

groups for the federated network. Security groups are sets of

IP filter rules that are applied to a VM instance’s networking.

The traditional use of security groups is to ensure security

between tenants in the cloud. However, it is also possible to

use this mechanism to secure traffic in the tenant’s network

between clouds. Security groups applied to VM’s ports by

means of OpenFlow filtering rules can be used to protect VM

from unauthorized access from untrusted clouds. The default

security group denies all incoming traffic.

Figure 6 how access to virtual machines can be controlled

with security groups. The left part of the figure shows that

VM 3 from the public cloud can only communicate with

83

Fig. 6. Security groups example

VM 1.1 in cloud 1 and VM 2.2 in cloud 2. In cloud 1

VM 1.2 can only communicate with VM 1.1. Similarly in

cloud 2 VM 2.2 can only communicate with VM 2.1. All

other communications are forbidden are indicated by red lines.

The right part of the figure shows the resulting definition of

security groups that define permitted communications.

The encryption case study is implemented using YAML

HEAT templates, and Python code is generated to configure

and start up the VNF. The more complex case study presented

in this section will be implemented in the future. The case

study will be integrated in OpenStack according to the general

architecture defined in [2] and the OpenStack specific archi-

tecture defined in [3]. The network federation manager will be

integrated into OpenStack to manage the network federations.

It will configure the different clouds by generating cloud

specific HEAT templates from the general service manifest.

The OpenStack service function chaining API will be used to

configure and deploy the VNF.

B. Related Work

There are standardization efforts on SFC. IETF SFC work-

ing group [4] developed a framework for SFC operation and

administration. The Open Network Foundation proposed a

Service function chaining (SFC) architecture [5]. The archi-

tecture includes an SFC network controller responsible for

setting up the service chaining; Classifier responsible for

classifying traffic flows and Service function forwarder, which

is responsible for forwarding packets to the service functions

defined in the policy table. The proposed general architecture

can be applied to any network. However, in order to implement

this architecture in federated heterogeneous networks, there is

a need to coordinate SFC network controllers and classifiers,

so they will speak the same language and deploy and control

NFVs in an efficient way.

In addition to a general architecture definition, there are

more detailed SFC issues addressed in the literature. For exam-

ple, [6] and [7] address VNF service-chain placement issues

in different cloud network scenarios. However, they do not

address federated network scenario with its specific issues of

coordinating SFCs across heterogeneous networks empowered

by different virtualization technologies. The authors of [8]

propose a design of a resource orchestrator that steers the

control of SFCs in a scalable way. Their orchestrator map

network functions of a requested SFC to infrastructure network

and compute resources. While scalability is an important issue

in federated cloud, there are additional issues that have to be

addressed, such as securing heterogeneous environments with

different levels of trust between them.

V. CONCLUSION

Federating cloud virtual networks across different clouds

provides much needed mechanisms to create customized and

isolated networks for applications. Federated cloud networks

can be integrated into existing cloud federation mechanisms

such as cloud bursting, cloud brokering or cloud aggregation.

This paper described an approach for customising federated

cloud network security with VNF and SFC. It was argued

that the deployment and configuration of security VNF and

their chaining across the different federated cloud networks

should be automated. The approach was illustrated with a

motivating case study of encryption and decryption VNF.

Future work involves developing a network federation manager

and experimenting with a service chaining API in OpenStack.

ACKNOWLEDGMENT

This work has been supported by the BEACON project,

grant agreement number 644048, funded by the European

Unions Horizon 2020 Programme under topic ICT-07-2014.

REFERENCES

[1] A. Levin, K. Barabash, Y. Ben-Itzhak, S. Guenender, and L. Schour,
“Networking architecture for seamless cloud interoperability,” in 8th IEEE
International Conference on Cloud Computing, CLOUD 2015, New York
City, NY, USA, June 27 - July 2, 2015, pp. 1021–1024, 2015.

[2] R. Moreno-Vozmediano, E. Huedo, I. M. Llorente, R. S. Montero,
P. Massonet, M. Villari, G. Merlino, A. Celesti, A. Levin, L. Schour,
C. Vázquez, J. Melis, S. Spahr, and D. Whigham, “BEACON: A
cloud network federation framework,” in Advances in Service-Oriented
and Cloud Computing - Workshops of ESOCC 2015, Taormina, Italy,
September 15-17, 2015, Revised Selected Papers, pp. 325–337, 2015.

[3] A. Celesti, A. Levin, P. Massonet, L. Schour, and M. Villari, “Fed-
erated networking services in multiple openstack clouds,” in Advances
in Service-Oriented and Cloud Computing - Workshops of ESOCC
2015, Taormina, Italy, September 15-17, 2015, Revised Selected Papers,
pp. 338–352, 2015.

[4] S. Aldrin, R. Krishnan, N. A. C. Pignataro, and A. Ghanwani, “Service
function chaining operation, administration and maintenance framework,”
in IETF RFC, Feb 2016.

[5] “L4-l7 service function chaining solution architecture,” in ONF TS-027.
Version 1.0, June 2015.

[6] A. Gupta, M. F. Habib, P. Chowdhury, M. Tornatore, and B. Mukherjee,
“On service chaining using virtual network functions in network-enabled
cloud systems,” in 2015 IEEE International Conference on Advanced
Networks and Telecommuncations Systems (ANTS), pp. 1–3, Dec 2015.

[7] S. Mehraghdam and H. Karl, “Specification of complex structures in
distributed service function chaining using a YANG data model,” CoRR,
vol. abs/1503.02442, 2015.

[8] S. Sahhaf, W. Tavernier, J. Czentye, B. Sonkoly, P. Skldstrm, D. Jocha,
and J. Garay, “Scalable architecture for service function chain orchestra-
tion,” in 2015 Fourth European Workshop on Software Defined Networks,
pp. 19–24, Sept 2015.

84

Neutralizing Interest Flooding Attacks in Named
Data Networks using Cryptographic Route Tokens

Aubrey Alston
The MITRE Corporation, Columbia University

Bedford, MA, New York, NY

aalston@mitre.org, ada2145@columbia.edu

Tamer Refaei
The MITRE Corporation

McLean, VA

mrefaei@mitre.org

Abstract—Named Data Networking (NDN) is considered to be
a viable candidate to replace the host- centric IP model in the
next generation of the Internet. Although NDN is known to be
resistant to classical DoS and spoofing attacks, vulnerability to
NDN-specific attacks nevertheless arises from the use of stateful
routing to satisfy requests (Interests). Prime among these attacks,
Interest flooding attacks on Named Data Networks induce denial
of service by maliciously occupying memory kept to maintain
state of outstanding Interests. While previous work has focused
on developing reactive Interest flooding detection and mitigation
strategies, we contribute with this an in-packet cryptographic
mechanism called the route token which proactively provides
named data networks a quantifiable degree of security against
Interest flooding without relying on a stateful forwarding plane.

I. INTRODUCTION

Named Data Networking (NDN) is an architecture currently

being explored as a basis for the next generation of the Internet

[1]. NDN is designed to retrieve resources from within the

network as identified by their names rather than a host address

as a response to the observation that most traffic is centered

around dissemination of the same data to many consumers [2]

[1]. This paradigm shift alone solves long- standing challenges

facing the IP Internet architecture including but not limited to

address space exhaustion, NAT traversal, address management,

address spoofing detection, and various content distribution

and control problems [1].

An outlying question preventing widespread use of NDN

concerns the vulnerability of NDN to denial of service (DoS)

attacks [3]; NDN networks are especially vulnerable to Interest

flooding attacks, a specific form of DoS attack where an

attacker exhausts network resources [4] by issuing a large

number of requests.

This work contributes and analyzes the first mechanism of

its kind in NDN to address this problem: a structural, protected

data segment called a route token contained in packets propa-

gated through the network. Route tokens utilize cryptographic

primatives to eliminate the ability of an attacker to consume

network memory resources, in doing so removing the upper

limit on outstanding requests in the network. Our presentation

is organized as follows: we first provide an overview of

NDN routing and forwarding, discuss vulnerability introduced

by stateful routing, prove the security of our solution, and

conclude with a discussion of benefits, limitations, and future

work.

II. BACKGROUND

A. NDN Routing and Forwarding Overview

The NDN architecture is decentralized, with communication

and routing being driven under the semantics of consumers
and producers: consumer processes originate Interest packets,

specifying requested named data items, which are propagated

towards a producer process, which then provides data which

the network propagates back to the consumer along the same

path [1].

More specifically, after a consumer constructs an Interest

packet [5] which specifies the name of a named data resource,

the packet is forwarded towards the producer as follows

[1]: The consumer consults a local data structure called a

Forwarding Information Base (FIB) to determine an outgoing

interface based upon the resource name. All intermediary

forwarding routers then eventually receive the Interest and

forward it towards the producer by (1) consulting a local data

structure called a Content Store (CS) to serve from a local

cache if possible, (2) modifying Pending Interest Table to

record the Interest and the interface on which it was received,

and then (3) forwarding the Interest to the next hop according

to the local FIB.

Once a producer or router able to respond from its cache

receives the Interest packet, a data packet is constructed

and forwarded along the original path of the Interest to the

consumer using the PITs of each intermediary router [1].

B. Overview of Interest Flooding Vulnerability

The previous discussion of routing of Interest and data

packets in NDN networks showcases per-request state kept

by intermediary routers in the PIT. As the size of the PIT

grows at a rate effectively linear in the number of outstanding

requests, NDN networks without protection may be crippled

by even the smallest scale of Interest flooding attacks.

The mechanics of an Interest flooding attacks are sim-

ple: by generating a large number of Interests per second,

an adversary may occupy the PITs of intermediary routers,

causing increased latency. Worse, persistent traffic, benign or

malicious, may come to completely saturate or overflow the978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

85

PITs of network routers, disabling the network from servicing

legitimate requests.

Under these circumstances and the relative ease of issuing

an attack, the open problem [4] [1] of removing vulnerability

to Interest flooding attacks must be addressed before NDN

may be relied on as the basis of the Internet.

C. Related Work

Interest flooding attacks have been long-identified as a prob-

lem in NDN [3]. All previously available work on the subject

approaches the problem of Interest flooding attacks from the

perspective of reactive intrusion detection through heuristic

means of determining maximum bandwidth or cooperative

methods of filtering malicious traffic [4], [6], [7].

This work differs from previous work in that it provides

proactive in-network protection while remaining generally

applicable to all forms of information-centric networks. In

comparison, previous works are largely reactive, making use

of NDN-specific qualities. [4].

III. ROUTE TOKENS

A. Preliminaries

We define a route token as any data structure included within

an NDN packet holding information that may be used to route

a data packet along a path to a consumer.

1) Notation and Shorthand: In our discussion and analysis

of route tokens, we make use of a limited set of well-defined

notation. A
(P)
B is shorthand referring to some function or

value AB associated to party P . B may hold the significance

of a qualitative label, an identifier, or any other signifier.

FK(X) refers to some function, keyed under K, applied to

X . A||B signifies the concatenation of B onto the end of A.

truncate(A, x) is a function which evaluates to the first x
symbols of A; unless explicitly mentioned, A is interpreted as

a binary string.

2) Mechanics of Route Tokens: A route token grows in

information as the Interest is propagated towards a producer

and is utilized as the data packet is propagated towards a

consumer. In general terms, we illustrate the use and function

of a route token:

(a) A consumer C constructs an Interest packet I and appends

to it an empty route token X0.

(b) C forwards (I,X0) to the next-hop router on the path to

the producer P .

(c) Router i receives (I,Xi−1) and obtains Xi by computing

some function add(Xi−1, information) to add the in-

formation required to route a corresponding data packet

back towards the consumer.

(d) Router i forwards (I,Xi) to the next-hop router on the

path to the producer P .

(e) The Interest eventually reaches P . P constructs a data

packet D and appends to it XN−1 received.

(f) P forwards (D,XN−1) to router N − 1.

(g) Router i uses the information contained in Xi to de-

termine the interface on which to forward (D,X ′
i−1 =

remove(Xi, information)).

(h) The previous step is repeated (forwarding (D,X ′
i−1 to

router i−1 from router i), determining the next hop from

X until C receives D.

We note that route tokens eliminate the necessity to rely on

the PIT but may simply be used only after the PIT has reached

a threshold size.

3) Information Contained by Route Tokens: A route token

which contains all information required to route a data packet

from a producer to consumer independently suffices for the

fulfillment of an Interest; a route token must independently

suffice to remove PIT state at any one hop.

The information required by each individual router to route

data to a consumer the interface on which the corresponding

Interest packet was received [1]. By modeling the incoming

interfaces along the path as independent random variables,

and by making the assumption that there is no consistent

distribution among interfaces receiving Interest packets, the

lower bound on the size of a independently sufficient route

token is b =
N−1∑
i=1

�log2(|I(Ri)|)� (where N is the number of

routers along the path and I(Ri) is the incoming interface at

router i) by the Shannon source coding theorem [8].

Using the above bound, we distinguish between lossy route

tokens and lossless route tokens. Lossy route tokens are route

tokens which do not adhere the bound b, having a necessary

loss of information; lossless route tokens are route tokens

which adhere to b.

4) Security Goals: In addition to the stated goal of prevent-

ing malicious memory consumption, we identify two security

goals for any route token; Confidentiality: route information

should only be visible to concerned routers. Formally, an

attacker may recover the incoming interface at a router with

only negligible probability as a function of the number of

bits k required to represent an interface. Integrity: Valid route

tokens should not allow tampering. More specifically, an

attacker may successfully modify one or more hops of the

route stored by the route token with only negligible probability

as a function of some configurable security parameter s.

B. Symmetric Key-Authenticated Cryptographic Route Tokens

We propose a form of low-overhead lossless route tokens

which rely only on symmetric-key operations to perform

authentication. This section is organized as follows: (1) an

enumeration of the setup and requirements for the application

of these tokens, (2) a description of the application of these

tokens, and (3) an analysis of security and overhead.

1) Setup and Requirements: In order to make use of

these symmetric-key-authenticated route tokens, each network

member A must first obtain or choose (1) a number of bits

to dedicate to authenticity security, sA, (2) a keyed pseu-

dorandom secret function SK , (3) a keyed collision-resistant

hash function HK , (4) a symmetric key used to self-assure

confidentiality, K
(A)
Conf , valid under S, (5) a symmetric key

used to self-assure token authenticity, K
(A)
Auth, valid under H ,

(6) a function g(x1, ...) which may be used to normalize and

combine bit strings xi, perhaps a collision-resistant hash of

86

hashes, and (7) a window of validity w for generated route

tokens.

2) Use: We now describe how symmetric-key-

authenticated route tokens are used in the context of

the previously discussed mechanics of route tokens.

When a consumer C constructs an Interest packet, the con-

sumer constructs the empty route token as X0 = (nonce, a0 =
∅, T0 = ∅).

When a router Ri, configured to use n interfaces, receives an

Interest packet and token (I,Xi−1) on an interface identified

by f , Ri adds information by computing an authenticity
component ai with respect to the current time t measured to

the nearest unit of w and the name of the interest name(I),

ai = ai−1||
H

K
(Ri)

Auth

(g(t, name(I), f, ai−1, nonce))mod 2sRi

(1)

generates a mask used to ensure confidentiality of f ,

mask = S
K

(Ri)

Conf

(t, name(I), ai−1, nonce)mod 2�log2(n)�,

constructs the next-hop route token Xi = (nonce, ai, Ti =
Ti−1||mask ⊕ f) and forwards (I,Xi) as usual.

When a router Ri then later receives a data packet and token

(D,Xi+1), Ri first obtains the apparent interface f ′ contained

by the token, on which to forward the packet by recalculating

the mask and using it in conjunction with the last �log2(n)�
bits of ti+1. Ri then verifies the authenticity of f ′ by verifying

whether or not H
K

(Ri)

Auth

(g(t, name(I), f ′, nonce))mod 2sRi

is equivalent to the last sA bits of ai+1. If verification fails,

this f ′ is not accepted, and the router drops the packet and

does nothing; otherwise, the router computes

Xi = (nonce, ai = truncate(ai+1, |ai+1| − sRi
),

Ti = truncate(Ti+1, |Ti+1| − �log2(n)�))
(2)

and forwards (D,Xi) on the interface f ′.
3) Security Analysis: Confidentiality. We first demonstrate

that these lossless route tokens satisfy our formal definition of

confidentiality.

Consider a computationally capable attacker who receives

a symmetric key- authenticated route token Xi and attempts

to recover the incoming interface added at router j along the

path encoded within the token. Additionally grant the attacker

the ability to determine which sequence of k bits corresponds

to the masked incoming interface at router j.

If such an attacker who does not already know f may

reliably determine f given mask ⊕ f , where mask =
S
K

(Ri)

Conf

(t, name(I), ai−1, nonce)mod 2k, she is thus able to

predict mask, contradicting the choice of S as pseudorandom.

We thus have that the probability of an attacker determining f ,

P [A] is negligible in k so long as S guarantees at least k bits

of pseudorandomness. Under the same contingency, symmetric

key-authenticated route tokens guarantee confidentiality as

stated.

Integrity. We now demonstrate that these lossless route

tokens also satisfy our formal goal of integrity.

Consider a computationally capable attacker who receives

a symmetric key- authenticated route token Xi and attempts

to modify the incoming interface at router j encoded. Ad-

ditionally grant the attacker the capability of modifying the

route token to make the apparent interface f ′ with certain

probability and the capability of determining which sRj bits of

ai correspond to the authenticity component placed by router

j.

If such an attacker attempts to independently produce

H
K

(Rj)

Auth

(g(t, name(I), f ′, aj−1, nonce))mod 2sRj for f ′,

such an attacker may only do so with probability P [A] less

than or equal to that with which she may produce a collision

in H in sRj
bits. Thus, so long as H provides at least sRj

bits of collision resistance, P [A] ≤ 1
2sRj

Note also, that the events of successful route modification

are independent across all hops. Thus, if we assume a constant

s bits of authenticity security for each router, the security

of the entire path is cooperative among routers: P [An] ≤∏m
n=1

1
2s ≤ 1

2ms .

4) Overhead Analysis: We now analyze these lossless

signature-authenticated route tokens with respect to transmis-

sion overhead, computation overhead, and storage overhead.

Transmission Overhead. Interest and data packets contain-

ing these route tokens take on a small to moderate amount of

additional transmission cost due to the inclusion of the token.

At each hop from the consumer to the producer, the Interest

packet takes on sRi
+ p bits of additional space; note that the

maximum degree of additional space is seen only at the last

hop from consumer to producer: the route token grows as it

moves towards the producer and shrinks as it passes back to

the consumer.

Computation Overhead. Routers making use of these route

tokens take on low to moderate computation overhead. Each

time a router encounters a route token, it must perform a small

number of hash operations, requiring on the order of one-

thousand additional cycles total [9].

Storage Overhead. Because each router needs to store only a

fixed amount of data to service all requests, the associated stor-

age overhead is negligible when compared to PIT-dependent

forwarding.

IV. EVALUATION

In order to evaluate the performance of route tokens, we

have implemented and measured their cost and overhead

through discrete-event simulation.

A. Method

Our evaluation was constrained to a series of simulations

performed on an Internet-like network topology consisting of

thirty consumers, twelve attackers, ten backbone routers, and

seven gateways.

All links were simulated full duplex at 300 Mbps capacity;

consumers produce a constant rate of traffic of 0.5 Mbps

consisting of 100-byte Interests; producers generate 500-byte

87

Fig. 1. Interest Drop Ratio

Fig. 2. Interest Fulfillment Latency

data packets. We simulated attacks on the following strate-

gies: (1) PITs having a maximum size of ten-million records

(standard NDN forwarding), (2) symmetric-key authenticated

tokens with per-hop security of 15 bits, and (3) a form of lossy

route tokens called asymmetric-key authenticated tokens (not

outlined in this paper) which make use of anonymous bloom

filters signed using standard 512-bit RSA.

The target metrics in these simulations were the interest
drop ratio, the fraction of legitimate interests which are

dropped by the network, and the Interest fulfillment latency,

the time that passes between the generation of an Interest and

the arrival of the corresponding data.

B. Results

In this section, we present and discuss the performance of

route tokens as measured through simulation.

Figure 1 shows a plot of the portion of legitimate Interests

dropped as a function of the configured attack volume. This

plot shows that legitimate Interests are never dropped when

route tokens are used.

Figure 2 shows a plot of Interest fulfillment latencies as

a function of the configured attack volume. For attack rates

above 50 Mbps, the latency experienced when relying on

standard NDN routing vastly exceeds that for either form of

route token.

The result in 3 implies that the only remaining problem

is congestion control, since we see significant increases in

latency only at link capacity.

C. Limitations

The scope of our solution is limited solely to vulnerability

to malicious memory consumption; as such, our solution does

not address the more elementary issues represented by denial

of service: congestion control. The route token proposed also

Fig. 3. Interest Fulfillment Latency

has a slight limitation in that it imposes a necessary but small

transmission and computation overhead.

V. FUTURE WORK

The next step in continuing this work could include explor-

ing means to reduce the overhead associated with route tokens,

exploring new means of achieving low-overhead lossy route

tokens, or evaluating the benefits of route tokens when used

in tandem with conventional network intrusion detection.

VI. CONCLUSION

NDN is a protocol being considered as a basis for the

next generation of the Internet. While NDN’s use of stateful

forwarding offers powerful capabilities, it also exposes vulner-

ability to Interest flooding, a DoS attack unique to NDN. While

previous work has focused on developing reactive Interest

flooding detection and mitigation strategies, we have outlined

and contributed an in- packet data structure called the route

token which invalidates the risk of memory saturation as a

result of Interest flooding. We have analyzed and evaluated

this mechanism through simulation to verify that it offers a

verifiable degree of security and visibly neutralizes the effect

of Interest flooding attacks.

REFERENCES

[1] L. Zhang, K. Claffy, P. Crowley, C. Papadopoulos, L.Wang, and B.Zhang,
“Named data networking,” ACM SIGCOMM Computer Communicaiton
Review, vol. 44, pp. 66–73, Jul. 2014.

[2] V. Jacobson, “A new way to look at networking,” YouTube, Google, 2006.
[Online]. Available: https://www.youtube.com/watch?v=oCZMoY3q2uM

[3] M. Wahlisch, T. C. Schmidt, and M. Vahlenkamp, “Backscatter from the
data plane - threats to stability and security in information-centric network
infrastructure,” Computer Networks, vol. 57, no. 16, pp. 3192–3206, Nov.
2013.

[4] A. Afanasyev, P. Mahadevan, I. Moiseenko, E. Uzun, and L. Zhang,
“Interest flooding attack and countermeasures in named data networking,”
in IFIP Networking Conference, Brooklyn, NY, May 2013, pp. 1–9.

[5] (2016, Jul.) Named data networking: Motivation and details. Web. Named
Data Networking (NDN). [Online]. Available: https://named-data.net/
project/archoverview/

[6] K. Wang, H. Zhou, Y. Qin, and H. Zhang, “Cooperative-filter: Countering
interest flooding attacks in named data networking,” Soft Computing,
vol. 18, no. 9, pp. 1803–1813, Apr. 2014.

[7] K. Ding, Y. Liu, H. H. Cho, H. C. Chao, and T. K. Shih, “Cooperative
detection and protection for interest flooding attacks in named data
networking,” International Journal of Communication Systems, Oct. 2014.

[8] C. E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, no. 3, pp. 379–423, Jul. 1948.

[9] “Speed comparison of popular crypto algorithms,” Web, 2016. [Online].
Available: https://www.cryptopp.com/benchmarks.html

88

Evaluation of Distributed Denial of Service Threat
in the Internet of Things

Luis Alberto B. Pacheco, João J. C. Gondim, Priscila A. Solis Barreto and Eduardo Alchieri
Computer Science Department

Universidade de Brası́lia

Brası́lia, Brazil

Email: luisbelem@aluno.unb.br,{pris,gondim,alchieri}@unb.br

Abstract—There is a concern about possible threats deriving
from the widespread adoption of IoT (Internet of Things). The
number of devices connected to the Internet is going to increase
dramatically, potentiating their security risks. A Distributed
Denial of Service (DDoS) attack is a good candidate to explore
IoT security vulnerabilities, because of the enormous number of
new devices connected to the Internet there is also an increase
in the number of possible compromised devices. This study
aims to analyze the efficiency of a DDoS attack in a typical
IoT environment, by using simulations that, in the best of our
knowledge, have not been conducted yet.

I. INTRODUCTION

The new wireless communication technologies that were

consolidated in the last decade have been increasing the

connection of a great variety of devices. Smart environment,

extended to smart cities, defines automated urban environ-

ments using interconnected sensor devices. This technology

enables a life style with greater quality and safety, besides the

optimization of resources such as energy, water, transport, etc.

The union of the presented concepts is called Internet of

Things (IoT), it needs to use trustworthy information sources,

represented by several distinct sensors incorporated in an

ubiquitous manner in the environments.

Automation applications have been an interesting start point

in the IoT concept development. Such applications enable

precise control over desired environments (houses, offices,

etc.), regardless of the distance to the user. This includes

the automation of door locks, doors, lamps, moving sensors,

thermometers, cameras and other similar devices. The obvious

implications of privacy and security of users allow to infer that

those applications are very attractive for malicious activities.

As can be historically observed, new applications and

softwares can bring huge security treats. New systems and

protocols, usually developed in a rapid manner, normally does

not predict those treats. An IoT environment can have even

more treats due to the large scale of deployment and the

integration with the physical world. For instance, security

systems in houses and neighborhoods can be disabled, and

critical applications in hospitals can be disrupted.

The simplicity of a Denial of Service (DoS) attack [1] makes

it an increasing security treat. The characteristics of devices

of an IoT environment makes it vulnerable to DoS attacks.

Those devices are not only potential targets but can also act

as relays, generating illegitimate traffic to disrupt other service.

The growth of IoT environments is supposed to propitiate and

increase its use in botnets used in Distributed Denial of Service

(DDoS) [2] attacks.

Considering the security treats in IoT, the main contribu-

tion of this study is the experimental evaluation (through a

simulated environment) of the impact of a DDoS attack in a

typical IoT environment. In particular, a network stack with

the Constrained Application Protocol (COAP) [3] was used to

simulated a reflexion attack.

The remaining of this text is organized as follows. Section 2

details the IEEE 802.15.4 standard and the other protocols

utilized in the simulated IoT environment. Section 3 presents

related studies. Section 4 describes the simulation scenario and

analyses the results obtained. Finally, Section 5 concludes this

study and presents future works.

II. INTERNET OF THINGS

This section describes the protocol stack utilized in the

IoT environment simulated in this work, including the IEEE

802.15.4 standard and the COAP.

A. Protocols and IoT stack

The IoT scale factor, the detection restriction of platforms

and the need for solutions that work in cooperation with

existing security solutions of the Internet, are guidelines that

have been used by the working groups created to define

standards, such as the Institute of Electrical and Electronics

Engineers (IEEE) and Internet Engineering Task Force (IETF).

Those guidelines drive the working groups in the conception

of new communication and security protocols that will be

essential for future IoT applications.

Such solutions are being designed in alignment with the

restrictions and characteristics of sensor devices of low energy,

low wireless data rate communication and low processing

power. Although such characteristics influenced past projects

that make use of WSNs (wireless sensor networks) isolated

from the Internet, the new standardized solutions are conceived

to ensure the interoperability with the existing Internet stan-

dards. It also enables the devices to communicate with external

entities in the Internet, in the context of IoT [4].978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

89

Fig. 1. IoT protocol stack

The protocol stack shown in Figure 1 was conceived with

communication standards provided (released or in develop-

ment) by the cited working groups. The UDP protocol is

used in the transport layer, since it has a small overhead

when compared with the TCP protocol. The TCP protocol

offers several features that incur an higher number f message

exchange and size of packet header. The CoAP, 6LoWPAN

and 802.15.4 standards are described in the next sections.

B. IEEE 802.15.4

The IEEE 802.15.4 [5] standard specifies the physical

(PHY) and medium access control (MAC) layers (layers 1 and

2 of the OSI model [6], respectively) for Low Rate Wireless

Personal Area Networks (LRWPANs).

The MAC layer has to provide communication between two

devices, which is achieved by a contention mechanism. The

IEEE 802.15.4 standard implements the Carrier Sense Mul-

tiple Access with Collision Avoidance (CSMA/CA) scheme

together with a deterministic mechanism.

The PHY layer transmits the frame that came from the MAC

layer through the medium. In order to handle different country

regulations, the IEEE 802.15.4 standard defines several work-

ing frequency bands. A compliant device must support at least

one of them.

The standard has security features, providing confidentiality,

authenticity and replication protection to data transmission.

The several security levels enables the devices to choose the

cryptography with an authentication code of varying size.

When this scheme is used the authentication code validates

the header (which is sent without encryption) and the payload,

that can be encrypted.

C. 6LoWPAN

Specified by the RFC 4944 [7], IPv6 Over Low Power

Wireless Personal Area Network (6LoWPAN) is a standard

that compresses IPv6 packets in 802.15.4 frames. Its advan-

tages includes easy connectivity with IP devices, enabling the

opportunity of using the existing network infrastructure and

an API widely used. 6LoWPAN has its features presented in

several RFCs, such as the RFC 4944, that defines the frame

format that adapts the IPv6 frame to 802.15.4 frames (that can

have only up to 127 bytes). The RFC 4944 was updated by

the RFC 6282 [8], enabling multicast transmissions and IPv6

extensions. The RFC 6568 [9] presents deployment scenarios.

The most recent updated is contained in the RFC 6775 [10].

D. CoAP

The RFC 7252 [3], released in June of 2014, specifies

the Constrained Application Protocol (CoAP), a message ex-

change application layer protocol for low energy, low process-

ing power devices and constrained networks. It was designed

for machine-to-machine (M2M) applications, a paradigm used

in residential automation. It defines 4 message types: Con-

firmable, Non-confirmable, Acknowledgment and Reset.

Messages of the Confirmable (CON) type must be ac-

knowledged. On receiving a CON message, a node sends an

Acknowledgment or a Reset message. The Non-confirmable

(NON) messages do not require an acknowledgment, which

is useful when an eventual message loss does not disrupt the

application operation. Reset messages indicates that a CON

or NON message was received but could not be properly

processed. The CoAP protocol was designed to interact with

the Hyper Text Transfer Protocol (HTTP), simplifying the

integration with the Internet. It is based on compact message

exchange over the UDP transport layer protocol. Messages

have a header of 4 bytes followed by a token with up to 8

bytes.

The CoAP protocol does not include security features,

instead it uses the Datagram Transport Layer Security

(DTLS) [11]. DTLS is analogous to the TLS, but for the UDP

protocol. It provides integrity, authenticity, confidentiality, key

management and several cryptography algorithms. However

DTLS was not designed for IoT, for instance it does not

support multicast, which is an advantage of the CoAP in

comparison with others application layer protocols.

III. RELATED WORKS

Although the 6LoWPAN and CoAP protocols bring ad-

vancements in reducing the difference between Internet and

IoT protocols, those protocols still does not achieve specifica-

tions identical to the ones of Internet, mainly for performance

reasons. In this regard, it is expected that small differences

will remain existing among the protocols of these technologies.

Although those differences could be mitigated by translators

at the network gateway, they continue to be an obstacle for

implementing security between IoT and Internet devices [8].

Several security requirements must be considered in an IoT

environment, in particular the communication among sensor

devices. For instance, WSNs can be exposed to Internet

originated attacks, such as Denial of Service (DoS). A DoS

attack is a malicious attempt to consume bandwidth resource

of legitimate users [1]. Such attack, when occur from several

compromised nodes, are called Distributed DoS (DDoS).

A reflection attack is a DDoS attack that utilizes interme-

diary hosts. The attacker floods reflectors with the source IP

address set as the victim’s address. A reflector is any device

that when receives a message sends a response. The difference

between the request and the response sizes is explored: as

90

the reflection factor increase, more effective is the attack,

amplifying the attacker’s generated traffic [2].

There are some studies that address DoS attacks in IoT.

Perakovic et al. [12] analyses the availability of services by

flood attacks. Tendencies of those attacks where analyzed

with data from 2013 to 2015. The analysis shows that it is

increasing the number of attacks in the IP and transport layer,

in comparison with attacks in the application layer. Within

this context, the emerging number of IoT devices could be

potential reflectors for illegitimate traffic generation. The study

shows that it is increasing the rate of attacks through the

Simple Service Discovery Protocol (SSDP), which is utilized

in many IoT devices.

Raymond et al.[13] discuss several defense schemes against

DDoS attacks in a WSN. This type of attack and its impact

in the Quality of Service (QoS) of WSNs based on IP is

conducted by [14]. Yu et al. [15] present a review of the main

security treats in IoT, displaying a possible roadmap to deal

with them. Elkhodr, Shahrestani and Cheung [16] reviewed

some of the main concerns to the wide adoption of IoT, such

as interoperability, management, security and privacy. Cvitić,

Vujić and Husnjak [17] take into account the layers of an IoT

stack and discuss the treats of each one of them. Other attacks

and defense strategies are discussed in [18] and [19].

IV. EXPERIMENTAL EVALUATION OF DDOS ATTACK IN

IOT

This section presents an experimental evaluation of the

impact of a DDoS attack in the IoT context. The DDoS attack

aims to explore a network stack with the CoAP protocol,

performing an amplified reflection attack. The next sections

present a description of the experimental scenarios, followed

by the results and its analysis.

A. Simulation scenarios

The simulation scenarios are designed to evaluate the effects

of a amplified reflection DDoS attack in a WSN. A common

WSN network was deployed, where there is an infiltrated

malicious node that sends service discovery request for all

sensors with the source address as the victim, which is outside

the WSN.

The simulation deploys a WSN in star topology with 5, 25,

50, 75, and 100 nodes. The devices are displayed in grid with

2 meters spacing. The coordinator is the first node of the grid,

the attacker is the second and the victim is the last one. The

WSN has a throughput of 96 bps for each node, since each

one sends a 12 bytes packet every minute.

The simulation was conducted in the NS-3 [20] simulator,

an open-source, C++, community driven, network simulator.

Each sensor device was deployed with the network protocol

stack shown in Figure 1. The IEEE 802.15.4 standard was

utilized as the layers 1 (PHY) and 2 (MAC). The MAC

operational mode is unslotted CSMA with nodes always

listening for the medium when not sending a packet, this mode

was chosen in order to maximize the network throughput.

The layer 3 (Network) utilizes the 6LoWPAN protocol, which

translates IPv6 headers to fit the 802.15.4 packet size limit of

127 bytes. The application layer deploys the CoAP protocol,

which utilizes UDP as the transport layer.

B. Results and Analysis

The simulated reflection attack exploits CoAP’s resource

discovery feature. The attacker sends a resource discovery

request packet in multicast (for all network members). The

request packet has the “/.well-known/” URI path prefix, which

renders a 20 byte packet size. The source IP address of

the packet is changed to the victim’s one. As the network

sensors receive the request packet they must send a response

indicating which service they support. In this experiment the

devices contain only a temperature sensor, and thus only one

service, which is expected from small, low capacity devices.

The response message contains 61 bytes, rendering a reflection

rate of 3.05 for each device that receives the request packet.

The attacker’s data generation rate was varied to find the

most optimal injection rate. Traffic was generated at 0.16 bps,

1.6 kbps, 3.2 kbps, 4.0 kbps, 8.0 kbps and 16.0 kbps.

0 5 10 15

0

5

10

15

Injected traffic (kbps)

R
efl

ec
te

d
tr

af
fi

c
b

y
n

o
d

e
(k

b
p

s)
5

25

50

75

100

Fig. 2. Average reflection rate

Figures 2, 3 and 4 show the average generated traffic for

each node, the total amplification rate and the total generated

traffic, respectively. The analysis shows that the reflection

occurs with amplification, validating the concerns about using

IoT for a DDoS attack. Figure 3 shows that the maximum

achieved amplification rate is about 20, for scenarios with

more than 5 nodes. The maximum expected amplification rate

is 3.05 times the number of devices in the network, rendering

76.25 for 25 nodes, which is much higher than the maximum

amplification rate achieved. This difference can be explained

by the low data rate characteristic of the network, the IEEE

802.15.4 supports only 250 kbps.

In all scenarios the amplification rate decreases when the

injection rate goes above 2 kbps. In the attacker’s view, this

could be compensated by increasing the number of reflectors

in the attack, which is a valid action, since IoT should provide

millions of connected devices.

The network saturation, which is characterized by the de-

creasing in the amplification rate, is caused by the bandwidth

91

saturation. The maximum injected traffic occurs in the scenario

with 5 nodes, decreasing as the number of sensors increase.

In order to achieve a higher amplification rate, more WSNs

should be used at the same time.

0 5 10 15

5

10

15

20

Injected traffic (kbps)

T
o

ta
l

am
p

li
fi

ca
ti

o
n

ra
te 5

25

50

75

100

Fig. 3. Total amplification rate

The graphs also show that the WSN network used as

reflection starts to receive a DOS attack itself from the attacker,

as is shown in the scenario with 100 devices. The involved

protocols do not impose a limit in the number of devices

deployed in the network. This behavior, although determined

by the proposed protocol stack, is expected to persist in other

similar IoT scenarios.

0 5 10 15

0

20

40

60

Injected traffic (kbps)

T
o

ta
l

tr
af

fi
c

g
en

er
at

ed
(k

b
p

s)

5 25

50 75

100

Fig. 4. Total reflection rate

Considering the obtained results, for a successful real DDoS

attack using WSNs (as the one deployed in these experiments),

it is necessary to use a high number of networks.

Finally, the attack was considered viable, however demands

a high number of involved networks. An attacker could have

more efficient options to perform a DDoS attack. However the

attack’s easiness automation can be attractive, even if it may

demand fine adjustment and coordination by the attacker.

V. CONCLUSION

This work studied the viability of using an IoT environment

in an amplified reflection DDoS attack. To the best of our

knowledge this was the first experimental analysis of this

subject that considers the full network stack. A simulation

scenario was deployed utilizing the following network protocol

stack : IEEE 802.15.4, 6LoWPAN, UDP and CoAP. The

simulations analysis shows that a DDoS attack can indeed

explore IoT environments. Furthermore, the IoT environment

itself can become a target, since its bandwidth and computing

resources rapidly depletes.

Although viable, the attack requires a high number of IoT

networks to be effective. Some future work is the quantifica-

tion of the compromise scale. In the attacker’s point of view, it

is needed to decide if the coordination and fine tune efforts in

order to avoid the IoT network saturation are profitable against

other attack forms. As future work we also intend to explore

other possible risks arising from IoT dissemination.

REFERENCES

[1] M. McDowell, “Understanding denial-of-service attacks,” Department
of Homeland Security United States, Tech. Rep., 2009.

[2] V. Paxson, “An analysis of using reflectors for distributed denial-of-
service attacks,” 2001, aT&T Center for Internet Research at ICSI.

[3] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application
protocol (coap)(rfc 7252),” 2014.

[4] J. Granjal, E. Monteiro, and J. S. Silva, “Security for the internet of
things: a survey of existing protocols and open research issues,” IEEE
Communications Surveys & Tutorials, vol. 17, no. 3, pp. 1294–1312,
2015.

[5] IEEE, Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Networks
(WPANs), IEEE Standard for Information Technology, 2011.

[6] “Information technology – Open Systems Interconnection – Basic Ref-
erence Model: The Basic Model,” 1994.

[7] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Rfc 4944,”
Transmission of IPv6 packets over IEEE, vol. 802, no. 4, 2007.

[8] J. Hui and P. Thubert, “Compression format for ipv6 datagrams over
ieee 802.15. 4-based networks,” 2011.

[9] E. Kim and D. Kaspar, “Design and application spaces for ipv6 over
low-power wireless personal area networks (6lowpans),” 2012.

[10] Z. Shelby, S. Chakrabarti, E. Nordmark, and C. Bormann, “Neighbor
discovery optimization for ipv6 over low-power wireless personal area
networks (6lowpans),” Tech. Rep., 2012.

[11] E. Rescorla and N. Modadugu, “Rfc 4347-dtls: datagram transport layer
security,” 2006.

[12] D. Peraković, M. Periša, and I. Cvitić, “Analysis of the iot impact on
volume of ddos attacks,” in PosTel 2015, 2015.

[13] D. R. Raymond and S. F. Midkiff, “Denial-of-service in wireless sensor
networks: Attacks and defenses,” IEEE Pervasive Computing, vol. 7,
no. 1, pp. 74–81, 2008.

[14] A. Le, J. Loo, A. Lasebae, M. Aiash, and Y. Luo, “6lowpan: a study
on qos security threats and countermeasures using intrusion detection
system approach,” International Journal of Communication Systems,
vol. 25, no. 9, pp. 1189–1212, 2012.

[15] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu, “Handling a
trillion (unfixable) flaws on a billion devices: Rethinking network
security for the internet-of-things,” in Proceedings of the 14th ACM
Workshop on Hot Topics in Networks, ser. HotNets-XIV. New
York, NY, USA: ACM, 2015, pp. 5:1–5:7. [Online]. Available:
http://doi.acm.org/10.1145/2834050.2834095

[16] M. Elkhodr, S. Shahrestani, and H. Cheung, “The internet of things: New
interoperability, management and security challenges,” arXiv preprint
arXiv:1604.04824, 2016.

[17] I. Cvitić, M. Vujić, and S. Husnjak, “Classification of security risks in
the iot environment,” in 26TH DAAAM INTERNATIONAL SYMPOSIUM
ON INTELLIGENT MANUFACTURING AND AUTOMATION, 2016.

[18] O. Garcia-Morchon, S. Kumar, R. Struik, S. Keoh, and R. Hummen,
“Security considerations in the ip-based internet of things,” 2013.

[19] T. Heer, O. Garcia-Morchon, R. Hummen, S. L. Keoh, S. S. Kumar,
and K. Wehrle, “Security challenges in the ip-based internet of things,”
Wireless Personal Communications, vol. 61, no. 3, pp. 527–542, 2011.

[20] ns 3 project, “ns-3 network simulator,” http://www.nsnam.org/.

92

A Continuous Enhancement Routing Solution aware
of Data Aggregation for Wireless Sensor Networks

Edson Ticona Zegarra, Rafael C. S. Schouery, Flávio K. Miyazawa and Leandro A. Villas

Institute of Computing, University of Campinas, Brazil

Email: edson@lrc.ic.unicamp.br, {rafael, fkm, leandro}@ic.unicamp.br

Abstract—Wireless sensor networks consist of hundreds or
thousands of nodes with limited energy resources. Due to the high
density of nodes in this kind of network, redundant data will be
detected by nearby nodes. Since the network lifetime is a key
issue in wireless sensor networks, in-network data aggregation
can be exploited in order to reduce the number of messages
exchanged and consequently reduce the energy consumption.
Although there are many data aggregation solutions in wireless
sensor networks, most of them leads to low quality routing
trees and does not address the load balancing problem, since
the same tree is used throughout the network life. To tackle
these challenges we propose a Continuous Enhancement Routing
Solution named as CER, an approach for computing increasingly
better routing trees. CER was extensively compared to three
other known solutions: the Shortest Path Tree (SPT), Data
Aggregation Aware Routing Protocol (DAARP) and Dynamic
Data Aggregation Aware Routing Protocol (DDAARP). The
obtained results show that CER outperforms these solutions in
all evaluations performed.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are a special kind of

ad-hoc networks that rely on spatially distributed autonomous

devices which measure many types of physical quantities

like temperature, pressure, pollutants, etc. WSNs are used for

defense purposes [1], environmental monitoring, communica-

tions, industry [2], agriculture [3], among others that can be

critical to save lives and assets.
Devices not only sense but also have to transmit, in a multi-

hop fashion, the gathered data to a sink node that works as a

gateway between the network and the application. The most

expensive operation, in terms of energy, is transmission, but

nodes are limited by the battery capacity. For that reason, WSN

routing algorithms should take into consideration the energy

consumption.
A proactive routing constantly maintains a routing infras-

tructure [4], thereby, when an event is detected, the data is

immediately dispatched reducing latency times, which may

be suitable for high traffic networks. Nonetheless, keeping the

routing infrastructure takes more overhead, augmenting the

energy consumption on the network nodes. On the other hand,

to build a routing infrastructure only when necessary, i.e. when

an event happens, is known as reactive routing. This kind of

routing reduces the amount of transmission by adding some

latency and is more appropriate for event-driven networks.
Considering that the devices have a limited processing

capacity, we take advantage of what is called in-network data

aggregation. The relaying devices, instead of just retransmit-

ting the raw data, can aggregate the data reducing the number

of transmitted packets. This scheme often reduces the energy

consumption.

With that in mind, we have proposed CER, a hybrid routing

algorithm: a proactive part, which gathers some network infor-

mation such as node position and centralizes into the sink; and

a reactive part, which computes the routing tree as the events

occur. Relay nodes that have more than one child are able to

perform data aggregation. Hence, when multiple packets are

received by the relay node, they are aggregated into one single

output packet. Moreover, we do not impose restrictions on the

computational power of the sink so that it is allowed to perform

regular computations. Note that the sink could be connected to

a computer with high computing capabilities or to the cloud,

so this is not an unrealistic assumption. For computing the

routing tree, we use a Biased Random Key Genetic Algorithm

(BRKGA) on the sink that returns a low-cost routing tree. This

general configuration is depicted in Figure 1.

Figure 1. General scenario where the sensor nodes are connected to the sink
which computes the routing tree and serves as a gateway with the application.

This paper is organized as follows. On the following section

we present current approaches to the problem. On Section III

we describe CER; Section IV describes the algorithm we

used to compute the routing trees and in Section V we show

our results of simulations and compare them with existing

solutions. Finally, in Section VI we present our conclusions

and present some insights for future work.

II. RELATED WORK

In WSN, data aggregation is an approach to aggregate the

data sensed by the nodes due to its inherent redundancy, thus

reducing the number of transmissions and minimizing the

energy consumption. For that reason, we must attempt to find

an optimal aggregation tree to extend the network lifetime.

The problem of finding an optimal aggregation tree is NP-

hard [5], and is equivalent to Steiner Tree problem [6].978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

93

The (rooted) Steiner Tree problem can be defined as follows:

given a graph G = (V,E), a set of terminal nodes S ⊆ V
and a vertex node t ∈ V , where each edge of E has a non-

negative associated cost; must be found a minimum cost tree

that connects all the nodes in S to t. The nodes that are part

of the solution tree are called steiner nodes.

The Shortest Path Tree, SPT [6], is a fairly simple approach

to the problem in which every node that detects an event

reports its data to the sink by using the shortest path. Data

aggregation takes place when there are overlapping paths.

However, a main disadvantage on SPT is that it is not dynamic

and it is highly dependent on the order on which the events

occur; the route setup for the first event predisposes the

following routes. Moreover, the approach does not consider

the end of events to reconstruct the routing tree.

The Information-Fusion Routing Algorithm, InFRA [7],

tackles the problem by building event based clusters. That is,

whenever an event is detected, all the nodes that detected the

event are grouped together into a cluster. For each cluster,

a node that works as a cluster-head is chosen and will be

responsible for aggregate the data in that cluster. Then, cluster-

heads send the sensed data to the sink by using the shortest

path. InFRA defines the metric aggregate distance that is

maintained for all the nodes in the network. Each time an

event takes places, all the network has to be flooded to update

the aggregate distance, allowing it to build dynamic routes.

However, constantly maintaining a parameter for the whole

network turns the algorithm unscalable. Moreover, InFRA

also does not consider the end of events to reconstruct the

routing tree.

The Data Aggregation Aware Routing Protocol, DAARP [8],

is a similar approach to InFRA but the election of cluster-heads

is not arbitrary; the nodes chosen for being cluster-heads are

the ones closer (in hops) to the sink node. DAARP measures

the distance, in hops, to the existing routing tree. When the first

event occurs, DAARP sets up the route by using the shortest

path to the sink; when the following events occur, DAARP

updates the path by choosing a route that leads to nodes closer

to the current existing routing tree. To achieve that, each node

stores two parameters: its distance, in hops, to the existing

routing tree and the next node that has to be followed to reach

the mentioned routing tree. A disadvantage on the design is

that the routing tree highly depends on the order on which the

events appear. DAARP’s approach also builds a non-dynamic

routing tree; so the first event may build a routing tree that is

disadvantageous for the following events. Moreover, DAARP

also does not consider the end of events to reconstruct the

routing tree.

The Dynamic Data Aggregation Aware Routing Protocol,

DDAARP [9], in opposition to the previous algorithms, is

a centralized approach to the problem. It improves DAARP

by creating dynamic routes, as its name suggests, so it is

not dependent on the order on which events take place.

DDAARP collects the information about the whole network

in its configuration phase; then the information is centralized

in the sink node. When a new event happens, DDAARP uses

a greedy approach to select a route by inserting the smaller

number of steiner nodes into the route. However, DDAARP

also does not consider the end of events to reconstruct the

routing tree.

Our proposal is designed to continuously update and im-

prove the quality of the routing tree. We opted for the usage of

BRKGA to generate those trees since it is highly parallelizable

and have better performance than simpler approaches like a

greedy one. BRKGA has been used in other applications [10],

[11] showing promising results in comparison with other ap-

proaches for optimization problems. Our proposal guarantees a

broader search in order to avoid falling into a local minimum.

Thus, the order of events does not predisposes the routing tree

for future events. Lastly, in the best of our knowledge, CER is

the only solution that considers the end of events to reconstruct

the routing tree.

III. CER: CONTINUOUS ENHANCEMENT ROUTING

CER aims to find near-optimal routing trees, thus, maxi-

mizing data aggregation as long as possible. The solution is

composed of four phases: i) configuration phase, described in

Subsection III-A, to gather the network configuration and to

send it to the sink node; ii) Request/Set Route phase, described

in Subsection III-B, handles new events in the network;

iii) data transmission, described in Subsection III-C, that is

responsible for collecting and sending the data to the sink and

finally, iv) Event Ending, described in Subsection III-D, that

notifies the sink of an event ending.

A. Configuration phase

In the configuration phase, the sink node broadcasts the

Initial Configuration Message (ICM), as shown in Line 1 of

Algorithm 1, indicating the distance, in hops, and the next
node that has to be followed in order to reach the sink. When

a node receives an ICM, it verifies whether its distance in hops

to the sink is bigger than the one contained by the message,

which is shown in Line 3 of Algorithm 1. In such a case, the

node updates its values with the ones indicated in the message;

updates the ICM by increasing the distance in one and setting

the next node to itself; and finally, broadcasts the updated ICM,

as shown in Lines 4-8 of Algorithm 1. Otherwise, the node

just drops the packet. Note that at initialization, all nodes are

initialized with distance value to the sink equal to 10000,

meaning that they have not been yet configured.

Algorithm 1 Initialization

1: Sink node broadcasts ICM
2: for u ∈ V do
3: if HopsToSink(u) > HopsToSink(ICM) then
4: HopsToSink(u) ← HopsToSink(ICM)
5: NextHop(u) ← SenderID(ICM)
6: HopsToSink(ICM) ← HopsToSink(ICM) + 1
7: SenderID(ICM) ← ID(u)
8: Node u Broadcasts ICM
9: end if

10: end for

We define a border node as a node that has no neighbors

whose distance in hops to the sink is greater than his own.

94

When all the nodes have received an ICM, the border nodes

start broadcasting a Border Message (BM) which is a message

that carries the adjacency list of the node that generated the

message. The management of the BMs is performed in each

node by storing the list of neighbors and the list of neighbors

that have greater distance to the sink. So, when a BM is

received, the receiving node verifies if the BM is coming from

a node that is in list of neighbors that have greater distance to

the sink; Line 3 of Algorithm 2 shows that validation. In such

a case, the receiving node stores the ID of the BM’s sender

(Line 4 of Algorithm 2) and verifies if all it has received a BM

from all its neighbors with greater distance to the sink, in order

to broadcast the BM (Line 5 and 6 of Algorithm 2); otherwise,

it will wait for the remaining BMs to arrive.

Once the sink receives all the BMs from its neighbors, the

sink is ready to accept requests for routing.

Algorithm 2 Border Feedback

1: Border nodes broadcast BM
2: for u ∈ V do
3: if NeighborHopBigger(u) ∈ SenderID(BM) then
4: RxNeighborHopBigger(u).add(SenderID(BM))
5: if RxNeighborHopBigger(u) == NeighborHopBigger(u) then
6: Broadcast BM
7: end if
8: end if
9: end for

B. Request/Set Route Phase

When an event occurs, the node that become aware of

the event sends a Request Route Message (RRM) to the sink

by using the next node parameter that was setup during the

configuration phase. After a small delay time, the node starts

sending the sensed data, so we give a time to the sink to

construct a routing tree. When the sink receives the RRM, it

computes a route and sends a Set Route Message (SRM) to the

nodes that are part of the route so that they update their next

node parameter.

The SRM includes the tree ID parameter to handle multiple

events, as explained in Section III-C. When a node receives an

SRM, it validates if the tree ID of the SRM is greater than its

tree ID, as shown in Line 2 of Algorithm 3, so the parameters

of the node are updated (Lines 3-5 of Algorithm 3) and the

SRM is transmitted to the following node in the routing tree

(Line 6 of Algorithm 3).

Algorithm 3 SetRoute

1: for u ∈ R do � R is the set of nodes in the tree
2: if TreeID(SRM) > TreeID(u) then
3: HopsToSink(u) ← HopsToSink(SRM)
4: NextHop(u) ← SenderID(SRM)
5: TreeID(u) ← TreeID(SRM)
6: u.send(SRM) � to the next node in the tree
7: end if
8: end for

C. Data transmission

The sink is in charge to compute improved routing trees, so

when the sink finds a better solution than the current one, the

sink sends an SRM to the network.

Meanwhile, more than one event can be detected so it may

be possible that some RRMs are received at the sink while it is

still processing the previous request. When an RRM arrives to

the sink, the computing process at the sink is reset including

the new node that requested the route.

In addition, it is also possible that an SRM travelling in the

network overrides a configuration on a node that has already

been configured with a better route. To handle that occurrence,

nodes store the routing tree ID and the SRM has the new

tree ID it is aiming to set, then a node will only overwrite

its routing table if the SRM’s tree ID is greater than the

one recorded on the node, which can be seen in line 2 of

Algorithm 3.

These three characteristics allow the routes to be changed

according to the needs of the network, always improving the

routing tree; hence, the routing trees generated by CER are

dynamic. Furthermore, the data collection is independent of

the routing configuration, so the relay nodes always retransmit

the data packets using the last configured routing tree.

The network shown in Figure 2 illustrates how our proposal

works. Given a routing tree that can be improved, as shown

in Figure 2(a) the sink will keep computing routing trees with

better cost. Once found, it will setup the network with the

enhanced tree, as shown in Figure 2(b). Even more, a routing

tree with size 7, as shown in Figure 2(c) is found so the

network is reconfigured again.

D. Event ending

When an event ends, the routing infrastructure no longer

needs to consider the nodes that were reporting such an event.

In fact, maintaining that same routing tree affects the overall

performance of the network. For that reason, the node that

was reporting the data from the culminated event send Remove
Message (RM) to the sink using the existing routing tree. Upon

receiving the RM, the sink resets the algorithm by taking off

the node that sent message. After computing a routing tree,

the sink sends an SRM to the corresponding nodes.

IV. BIASED RANDOM-KEY GENETIC ALGORITHM

A Genetic Algorithm (GA) is a metaheuristic, inspired on

the evolution mechanism, used for optimization problems. A

feasible solution is a solution that complies all the restrictions

of an optimization problem. A chromosome encodes a feasible

solution. A chromosome is modeled as an array of numbers or

a string. Each element of the chromosome receives the name

of allele. The fitness value of a chromosome is the value of the

objective function of the solution the chromosome represents.

The decoder is the function that associates a chromosome

with a solution and computes its fitness value. A set of

chromosomes is called a population.

A GA starts by generating a random population, then

evolves it generating a new one. The new generation is the

result of combining and mutating the chromosomes of the pre-

vious one. The combination or crossover of two chromosomes

can be done, for instance, by randomly selecting an index, then

taking the alleles from the first chromosome before the index

95

(a) Routing tree with size 9 (b) Routing tree with size 8 (c) Routing tree with size 7

Figure 2. When the sink finds a better routing tree, it delivers control packets to the nodes that are part of the new routing tree so that they update their
routing table, establishing the new routing tree. The proposed solution keeps improving the solution for the current nodes that reported themselves as terminal
nodes and sets the network configuration.

and the alleles from the second chromosome after the index

resulting in a new chromosome. Mutation may be done by

randomly changing some elements of the chromosome. The

algorithm must be aware that when combining two chromo-

somes the new chromosome might not represent a feasible

solution, so special care must be taken at this step.

Bean [12] proposed the Random Key Genetic Algorithm
(RKGA) which takes a uniformly distributed random number

in the range of [0, 1] that is used as a key to codify the

chromosomes as an array of these random numbers. The

advantage of the RKGA is that, by using the random numbers

as sort keys, at the time of making the crossover between two

chromosomes, the resulting chromosome always encodes into

a feasible solution.

Gonçalves and Resende [13] introduced the Biased Random
Key Genetic Algorithm. A BRKGA ranks the chromosomes in

a generation and selects the subset of chromosomes with the

best fitness, which is denoted as the elite set. Then, in order

to combine two chromosomes, we choose one chromosome

from the elite set and the other one from the remaining

chromosomes. In contrast with a normal Genetic Algorithm,

BRKGA introduces mutants as a set of random chromosomes

instead of performing mutations.

The initial population is a random set of p chromosomes.

The following generations are generated as follows. The

elite set, which is a subset of pe chromosomes with better

fitness, is directly copied into the following generation; this is

called an elitist strategy. The mutants, is a set of pm random

chromosomes introduced into the following generation; their

function is to avoid getting stuck into a local minimum. The

p− pe − pm remaining chromosomes come from the uniform

crossover of an elite chromosome and a non-elite one with

probability ρe > 0.5 of inherit each allele from its elite father.

Figure 3 depicts this process.

The algorithm finishes after a given number of generations

or when the reached solution is not significantly improved

after a while. Since each chromosome is independent, the

calculation to get its fitness value can be performed in a

parallelized fashion. The API we use [14] let us define the

number of threads for parallel decoding. Furthermore, the

API offers the advantage of setting a number of independent

populations which allows us to have a broader search.

Figure 3. The BRKGA generates a new generation by directly copying the
pe chromosomes from the elite set; then generating pm random chromosomes
and finally combining an elite and a non-elite chromosome for the remaining
p− pe − pm chromosomes.

The parameters used in our algorithm are shown in Table I.

Table I
BRKGA PARAMETER SETTINGS

Parameter Description Value
p Population Size 2n
pe Elite Set Size 10%
pm Number of Mutants 10%
ρe Elite Crossover probability 0.6
K Number of independent populations 3

MAXT Number of threads for parallel decoding 4
MAXGEN Maximum number of generations 100

A. Decoder

The decoder receives as input a chromosome and returns

its fitness value. Each chromosome is an array of m random

numbers in [0, 1], where m is the number of edges in the

network. Each random key, i.e. an allele, represents an edge in

the graph. For each chromosome, a variation of the Kruskal’s

96

algorithm [15] is executed. First, we perform a sort based on

the random numbers assigned to each edge. Then, in a greedy

fashion, we iterate over the sorted edges and add the current

edge to the solution only if it does not form a cycle; thus

forming a tree. Finally, we prune the tree by taking out the

nodes that are not necessary, i.e., the ones not present in any

path from the sink to any terminal node. The fitness value of

the chromosome is the number of edges in this resulting tree.

When the first event occurs, the solution is the shortest path

between the sink and the terminal node; when subsequent

terminal nodes request for a routing tree, be either because

of a new event appeared or because it also perceived the

same event, the sink calculates the shortest path between

the requesting node and the existing routing tree and it is

codified into a chromosome that is considered part of the first

generation of the BRKGA. In that way, the initial solution

found by BRKGA is not much different than the current

solution; hence generating fewer set messages and making

BRKGA converge faster.

At the notification of an event ending, the BRKGA removes

the notifying node from the set of terminal nodes. The pruning

will erase the unneeded nodes from the solution.

The reason why we chose to use a BRKGA is, as mentioned

above, it allows parallel decoding taking advantage of today’s

hardware. In addition, the algorithm will always keep improv-

ing the routing tree until, eventually, reaching the optimal tree.

In case we do not have a hardware restriction we could let the

algorithm run without stopping conditions.

V. PERFORMANCE EVALUATION

In this section we present the comparisons of our proposal

made against SPT, DAARP and DDAARP. We evaluate the al-

gorithm by using the simulator SinalGo version v.0.75.3 [16].

In all results, curves represent confidence intervals for 95

percent of confidence for 33 different instances. Table II shows

the scenario parameters used in the simulation. According

to the metric, some parameters will vary as described in

each subsection. The first event starts at time 2.000s and the

following events start at a uniformly distributed random time

between [2.000, 4.000] seconds. The events occur in random

positions. For each simulation in which the number of nodes

is varied, the sensor field dimension is adjusted to keep the

density the same. We consider the network density as the

relation nπr2c/A where A is the area of the sensor field, rc
the communication radius and n the number of nodes. Sensors

nodes are also randomly distributed.

The following metrics were used for the evaluation:

• Overhead: is the quantity of packets needed to setup

the routing tree. These include the packets used in the

Configuration Phase and the packets used at Request/Set

Phase.

• Number of transmissions: are the totality of transmitted

packets, that is, the overhead plus the data packets.

• Tree cost: is the number of Steiner Nodes in the routing

tree.

Table II
GENERAL PARAMETERS USED FOR THE SIMULATION

Parameter Value
Sink node 1

Network size 1024
Communication radius (m) 80

of events 3
Events radius (m) 50

Event duration (hours) 3
Loss probability (%) 0

Simulation duration (hours) 4
Notification interval (sec) 60

Sensor area (m2) 700×700

• Network Timelife: is the time, in seconds, when a first

node spent all its energy leaving it unable to function

anymore.

A. Overhead

In this simulation scenario, we present the overhead as

function of the number of events for network sizes of 256, 512,

1024 and 2048. Figure 4 shows that for setting up the routing

tree, CER needs fewer packets than DAARP and DDAARP,

about 39% and 41%, correspondingly. That is due to the fact

that DAARP stores in each node a parameter that measures

the distance to the routing tree and has to be updated each

time a new event arrives, flooding many nodes with control

packets. DDAARP needs control packets for each node that

was selected as cluster-head.

In contrast, CER uses the shortest path to the sink for

requesting a route and then only spends control packets on

the nodes that are part of the routing tree. SPT has a constant

overhead since it only performs the configuration once.

Figure 4. Overhead

As long as the network scales in the number of nodes, the

difference gets bigger between DDAARP and CER; due to

the fact that DDAARP needs to update many nodes in the

network and CER only needs to update the ones that are part

of the new routing tree. We can see that the growth rate in the

97

overhead for CER related to the number of events is very low,

almost keeping constant, so our proposal has a good response

when scaling the network.

Despite of the fact that SPT presents a low overhead, the

routing trees generated by SPT have poor performance. The

following metrics show that the data packets and the tree size

are much bigger when compared to our results.

B. Number of transmissions

In this simulation scenario, we present the number of

transmissions as function of the number of events for network

sizes of 256, 512, 1024 and 2048. Figure 5 shows that

CER generates fewer data packets; thus performing a better

aggregation rate. Notice the difference between the algorithms

is in the order of thousands of packets; hence having a positive

impact on the batteries life. The impact of reducing the number

of transmissions can be seen in energy consumption of the

network, presented later.

For instance, for 6 events, CER has an improve of ap-

proximately 21% compared to DDAARP; 25% compared to

DAARP and 33% compared to SPT. Depending on time the

network operates; these savings on the packets will endure the

networks life.

Figure 5. Datapackets

This metric also shows that CER, despite of generating

more overhead than SPT, reduces the number of transmission

for the same instances, consequently performing better data

aggregation. This fact can be explained by the quality of the

generated routing trees.

C. Tree Cost

In this simulation scenario, we present the size of the

routing tree as function of the number of events for network

sizes of 256, 512, 1024 and 2048. Because of CER keeps

improving the routing tree; the tree cost presented here is the

cost of the last tree computed by the sink using the BRKGA.

Figure 6 shows that our proposal outperforms SPT, DAARP

and DDAARP. This is due to the fact that all of them are

heuristics that may be suitable for some kind of instances;

however, in general there may exist instances on which they

perform really bad. On the other hand, CER uses BRKGA

to perform a broader search, independent of the instance. As

discussed in Section IV, the BRKGA has many features to

achieve a broad search and avoid failing to local minimum, so

it is expected to have better routing trees.

Figure 6. Tree Cost

For 6 events, CER is 37%, 25% and 17% more efficient

than SPT, DAARP and DDAARP, respectively. This proves

that the BRKGA is finding better quality trees and CER is

configuring the network with those trees, having a positive

impact on the energy consumption. As discussed earlier, CER

generates more overhead than SPT, but this is countered by

the good quality of the routing trees, which finally leads to a

higher data aggregation rate.

D. Energy consumption
In this section we compare the total energy consumption.

Figure 7 represents a map for the battery usage on the sensor

field for instances of 1024 nodes. The color scale represents

the mean of the battery usage. Table III shows the stats of the

energy map. It is considered that each node spends a constant

quantity of energy for each transmission and reception for the

communication radius specified in Table II.
CER expends a total energy, i.e. the sum of the energy

used by all the nodes, of 1991.03J, which represents an

improvement of 16% when compared to DDAARP, 24% when

compared to DAARP and 32% when compared to SPT. The

second column of the table shows the mean of the energy

spent by each sensor for a simulation time of 4 hours. This

result reflects what was expected, a minor battery usage of

the network mainly because of the good quality of the routing

trees generated by the BRKGA.
Observe that Figure 7 present some isolated points. The

reason why this happens is that this result presents the mean

of instances with differing positions of nodes and events.

98

Figure 7. Mean of energy consumption for 1024 nodes

Table III
ENERGY MAP STATS

Algorithm Total battery usage (J) Battery usage mean (J)
SPT 2913.19 2.84

DAARP 2609.94 2.54
DDAARP 2356.40 2.30

CER 1991.03 1.94

E. Network Time Life

In this section we present the network timelife as a function

of the data rate which is varied from 1 to 9. The size of the

network, number of events and the other parameters are the

ones presented in Table II. Figure 8 shows that CER has a

greater timelife than other approaches, hence extending the

network’s timelife. In this metric we are just presenting the

time on which appears the first node without energy, without

evaluating the mechanisms each algorithm has to handle the

disconnected node. With that in mind, it is clear that CER

spends the node’s energy in a more homogeneous way. For

instance, for a data rate of nine, CER extends the network

timelife by 28% and 100% compared to SPT and DAARP

respectively.

Figure 8. Network Time Life

VI. CONCLUSIONS AND FUTURE WORK

The main advantage of the presented solution combined

with BRKGA is that the routing tree is closer to the optimal

than existing approaches, consequently, leading to better rout-

ing paths. In addition, the algorithm is designed to avoid falling

into local minimum which tends to extend the search domain

getting better solutions. Also, our solution is independent

of how the trees are computed. In fact, one could possibly

develop other variants of the BRKGA proposed here or even

consider other heuristics that improves the solution found over

time and use it with our framework.

As future work, we are going to consider the battery use

for building the routing tree. Therefore, the routing tree would

change when a node has a considerable energy consumption,

replacing it with another node that has more energy available.

In all the presented schemes, we consider the nodes do not

change their position. We also plan to consider scenarios where

the nodes are moving, thus constantly changing the network

structure.

ACKNOWLEDGMENT

This research was partially supported by grant

#2013/21744-8, São Paulo Research Foundation (FAPESP)

and grant #311499/2014-7, National Council for Scientific

and Technological Development (CNPq).

REFERENCES

[1] M. P. urii, Z. Tafa, G. Dimi, and V. Milutinovi, “A survey of military
applications of wireless sensor networks,” in 2012 Mediterranean Con-
ference on Embedded Computing (MECO), June 2012, pp. 196–199.

[2] X. Lu, S. Wang, W. Li, P. Jiang, and C. Zhang, “Development of a wsn
based real time energy monitoring platform for industrial applications,”
in Computer Supported Cooperative Work in Design (CSCWD), 2015
IEEE 19th International Conference on, May 2015, pp. 337–342.

[3] “Environmental parameters monitoring in precision agriculture using
wireless sensor networks,” Journal of Cleaner Production, vol. 88, pp.
297 – 307, 2015.

[4] N. A. Pantazis, S. A. Nikolidakis, and D. D. Vergados, “Energy-
efficient routing protocols in wireless sensor networks: A survey,” IEEE
Communications Surveys Tutorials, vol. 15, no. 2, pp. 551–591, Second
2013.

[5] J. N. Al-Karaki, R. Ul-Mustafa, and A. E. Kamal, “Data aggregation in
wireless sensor networks - exact and approximate algorithms,” in High
Performance Switching and Routing, 2004. HPSR. 2004 Workshop on,
2004, pp. 241–245.

99

[6] B. Krishnamachari, D. Estrin, and S. Wicker, “The impact of data
aggregation in wireless sensor networks,” in Distributed Computing
Systems Workshops, 2002. Proceedings. 22nd International Conference
on, 2002, pp. 575–578.

[7] E. Nakamura, H. de Oliveira, L. Pontello, and A. Loureiro, “On
demand role assignment for event-detection in sensor networks,” in
Computers and Communications, 2006. ISCC ’06. Proceedings. 11th
IEEE Symposium on, June 2006, pp. 941–947.

[8] L. A. Villas, A. Boukerche, R. B. Araujo, and A. A. Loureiro, “A
reliable and data aggregation aware routing protocol for wireless sensor
networks,” in Proceedings of the 12th ACM International Conference
on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
ser. MSWiM 0́9. New York, NY, USA: ACM, 2009, pp. 245–252.

[9] L. Villas, A. Boukerche, R. de Araujo, and A. Loureiro, “Highly
dynamic routing protocol for data aggregation in sensor networks,” in
Computers and Communications (ISCC), 2010 IEEE Symposium on,
June 2010, pp. 496–502.

[10] E. Lalla-Ruiz, C. Expósito-Izquierdo, B. Melián-Batista, and J. M.
Moreno-Vega, “A hybrid biased random key genetic algorithm for the
quadratic assignment problem,” Information Processing Letters, vol.

116, no. 8, pp. 513 – 520, 2016.

[11] J. S. Brando, T. F. Noronha, M. G. C. Resende, and C. C. Ribeiro,
“A biased random-key genetic algorithm for single-round divisible
load scheduling,” International Transactions in Operational Research,
vol. 22, no. 5, pp. 823–839, 2015.

[12] J. C. Bean, “Genetic algorithms and random keys for sequencing and
optimization.” INFORMS Journal on Computing, vol. 6, no. 2, pp. 154–
160, 1994.

[13] J. F. Gonçalves and M. G. Resende, “Biased random-key genetic algo-
rithms for combinatorial optimization,” Journal of Heuristics, vol. 17,
no. 5, pp. 487–525, Oct. 2011.

[14] R. F. Toso and M. G. C. Resende, “A c++ application programming inter-
face for biased random-key genetic algorithms,” Optimization Methods
and Software, vol. 30, no. 1, pp. 81–93, 2015.

[15] J. B. Kruskal, “On the shortest spanning subtree of a graph and the
traveling salesman problem,” Proceedings of the American Mathematical
Society, vol. 7, no. 1, pp. 48–50, 1956.

[16] (2008) Sinalgo. simulator for network algorithms. Distributed Comput-
ing Group - ETH-Zurich. Last visited in October, 2008.

100

Fast Hybrid Network Reconfiguration for
Large-Scale Lossless Interconnection Networks

Evangelos Tasoulas∗, Ernst Gunnar Gran∗, Tor Skeie∗‡ and Bjørn Dag Johnsen†
∗Simula Research Laboratory ‡University of Oslo †Oracle Corporation

{vangelis, ernstgr, tskeie}@simula.no bjorn-dag.johnsen@oracle.com

Abstract—Reconfiguration of high performance lossless in-
terconnection networks is a cumbersome and time-consuming
task. For that reason reconfiguration in large networks are
typically limited to situations where it is absolutely necessary,
for instance when severe faults occur. On the contrary, due to
the shared and dynamic nature of modern cloud infrastructures,
performance-driven reconfigurations are necessary to ensure
efficient utilization of resources. In this work we present a scheme
that allows for fast reconfigurations by limiting the task to sub-
parts of the network that can benefit from a local reconfiguration.
Moreover, our method is able to use different routing algorithms
for different sub-parts within the same subnet. We also present
a Fat-Tree routing algorithm that reconfigures a network given
a user-provided node ordering. Hardware experiments and large
scale simulation results show that we are able to significantly
reduce reconfiguration times from 50% to as much as 98.7% for
very large topologies, while improving performance.

I. INTRODUCTION

High Performance Computing (HPC) clusters are massively

parallel systems that consist of thousands of nodes and millions

of cores. Traditionally, such systems are associated with the

scientific community needs to run complex and high granularity

computations. However, with the emergence of the cloud

computing paradigm and Big-Data analytics, the computer

science society tends to agree that there will be a convergence

of HPC and Big-Data, with the Cloud being the vehicle for

delivering the associated services to a broader audience [1],

[2]. Large conventional HPC clusters are environments usually

shared between users that run diversified, but predictable

workloads. When exposed to the cloud and the more dynamic

pay-as-you-go model however, the workload and utilization of

the system can become very unpredictable, leading to the need

for performance optimizations during runtime.

One of the components that can be tuned and reconfigured

in order to improve performance is the underlying intercon-

nection network. The interconnection network is a critical

part in massively parallel architectures due to the intensive

communication between nodes. As such, high performance

network technologies that typically employ lossless layer-two

flow control are used, as these technologies provide significantly

better performance [3], [4]. Nevertheless, the performance

comes at a cost of added complexity and management cost, and

reconfiguring the network can be challenging [5]. Since packets

are not getting dropped in lossless networks, deadlocks may

occur if loops are allowed to form by the routing function. A

Subnet Manager (SM) software is committed to administer the

network. Among other tasks, this SM is responsible to compute

deadlock-free communication paths between nodes in the

network, and distribute the corresponding Linear Forwarding

Tables (LFTs) to the switches. When a reconfiguration is

needed, the SM must recalculate a new set of deadlock-free

routes. During the transition phase, however, when distributing

the new LFTs, a new routing function Rnew coexists with

the old routing function Rold. Although Rold and Rnew are

both deadlock-free, the combination of both might be not [6].

Moreover, the path computation is the costlier phase of a

reconfiguration and can take up to several minutes, depending

on the topology and the chosen routing function [7], introducing

an obstacle that renders the reconfiguration to an extravagant

operation that is avoided unless severe faults occur. In the

case of faults, the reconfiguration is kept minimal in order to

reestablish deadlock-free connectivity quickly, at the cost of

degrading the performance [8].

In this paper we focus on the challenges of performance-

driven reconfiguration in large-scale lossless networks. We

introduce a hybrid reconfiguration scheme that allows for

very fast partial network reconfiguration with different routing

algorithms of choice in different subparts of the network. It is

shown that our partial reconfigurations can be orders of mag-

nitude faster than the initial full configuration, thus, we make

it possible to consider performance-driven reconfigurations

in lossless networks. The proposed scheme takes advantage

of the fact that large HPC systems and clouds are shared

by multiple tenants running isolated tasks. In such scenarios

tenant inter-communication is not allowed [9], [10], thus the

workload deployment and placement scheduler should try to

avoid fragmentation to ensure efficient resource utilization [11],

[12]. That is, the majority of the traffic per tenant can be

contained within consolidated subparts of the network, subparts

we can reconfigure in order to improve the overall performance.

We use the Fat-Tree topology [13] and the Fat-Tree routing

algorithm [14], [15] to demonstrate our work. We show that we

are able to successfully reconfigure and improve performance

within sub-trees by using a custom Fat-Tree routing algorithm

that uses a provided node ordering to reconfigure the network.

When we want to reconfigure the whole network, we use the

default Fat-Tree routing algorithm, effectively exhibiting the

combination of two different routing algorithms for different

use-cases in a single subnet.

Our work is based on InfiniBand (IB) [16]. IB is a lossless

interconnection network technology offering high bandwidth

and low latency, thus making it very well suited for HPC and978-1-5090-3216-7/16 $31.00 ©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

101

communication intensive workloads. IB is the most popular

interconnect in the TOP500 supercomputers list, accelerating

40.8% of the systems in the list as of June 2016 [17].
The rest of the paper is organized as follows: Section II

presents necessary background information, followed by related

work in Section III. In Section IV we explain the working

principles of our Fast Hybrid Reconfiguration, as well as our

custom Fat-Tree routing algorithm that enables reconfiguration

based on user-provided node-ordering. We evaluate a prototype

implementation both on real hardware and by using simulations

in Section V. In Section VI we conclude.

II. BACKGROUND

A. InfiniBand Addressing Schemes

IB uses three different types of addresses [16]. First is the

16 bits Local Identifier (LID) which is a layer-two address.

At least one unique LID is assigned to each Host Channel

Adapter (HCA) port and each switch by the SM. The LIDs

are used to route traffic within a subnet. Since the LID is

16 bits long, 65536 unique address combinations can be

made, of which only 49151 (0x0001-0xBFFF) can be used

as unicast addresses. Consequently, the number of available

unicast addresses defines the maximum size of an IB subnet.

Second is the 64 bits Global Unique Identifier (GUID) assigned

by the manufacturer to each device (e.g. HCAs and switches)

and each HCA port. Finally, the 128 bits Global Identifier (GID)

is a valid IPv6 layer-three unicast address, and at least one GID

is assigned to each HCA port and each switch. The GID is

formed by combining a globally unique 64 bits prefix, assigned

by the fabric administrator, and the corresponding GUID.

B. InfiniBand Subnet Management

IB is one of the first industry standard specifications

implementing Software Defined Networking (SDN) principles,

i.e. separating the control and the data plane [18]. An SM

entity is running in one of the nodes in an IB fabric, and is

responsible to discover and administer the subnet [16]. The SM

assigns LID addresses to the HCA ports and switches, calculates

deadlock free routes between all possible communicating pairs,

and distributes the corresponding LFTs to each switch in

the fabric. IB employees destination-based forwarding, so the

information distributed in the LFTs is a mapping of destination

LIDs to corresponding output ports used for forwarding at the

switches. Once the LFTs have been distributed the network is

operational, while the SM periodically sweeps the fabric for

faults/changes and serves as a path-characteristics resolution

service. A reconfiguration can be triggered either on demand

by the fabric administrator, or forced when a fault or change

is detected by a sweep. When the size of the fabric grows, the

number of possible communication pairs increase polynomially.

Consequently, the path computation increases polynomially as

well, and depending on the topology and routing algorithm, the

path computation can be in the order of several minutes [7].

OpenFabrics’ OpenSM1 is the most popular SM used on IB

subnets, and the one that this work is based on.

1https://www.openfabrics.org/

C. The Fat-Tree Topology

The Fat-Tree is a scalable hierarchical network topology [19],

[20], easy to build using commodity switches placed on

different levels of the hierarchy [21]. The main idea behind the

Fat-Trees is to employ fatter links between nodes, with more

available bandwidth, towards the roots of the topology. The

fatter links help to avoid congestion in the upper-level switches

of the topology, and the bisection bandwidth is maintained.

Different variations of Fat-Trees are presented in the literature,

including k-ary-n-trees [19], Extended Generalized Fat-Trees

(XGFTs) [20], Parallel Ports Generalized Fat-Trees (PGFTs)

and Real Life Fat-Trees (RLFTs) [14].

A k-ary-n-tree [19] is an n level Fat-Tree with kn end nodes

and n · kn−1 switches, each with 2k ports. Each switch has

an equal number of up and down connections in the tree. The

XGFT Fat-Tree extends the k-ary-n-trees by allowing both

different number of up and down connections for the switches,

and different number of connections at each level in the tree.

The PGFT definition further broadens the XGFT topologies

and permits multiple connections between switches. A large

variety of topologies can be defined using XGFTs and PGFTs.

However, for practical purposes, RLFTs, a restricted version of

PGFTs, are introduced to define Fat-Trees commonly found in

today’s HPC clusters [15]. An RLFT uses the same port-count

switches at all levels in the Fat-Tree.

D. Fat-Tree Routing

The Fat-Tree routing algorithm (FTree) is a topology-aware

routing algorithm for Fat-Tree topologies. For details on the

FTree principles the reader may consult [14], [15], [22]. In

this section we are going to briefly explain how the routing

algorithm has been implemented in OpenSM; FTree first

discovers the network topology and each switch is marked

with a tuple that identifies its location in the topology. Each

tuple is a vector of values in the form of (l, ah, ..., a1), where

l represents the level where the switch is located. The ah
represents the switch index within the top-most sub-tree, and

recursively the digits ah−1 until a1 represent the index of the

sub-tree within that first sub-tree and so on. For a Fat-Tree

with n levels, the root-level (topmost or core) switches are

located in level l = 0, whereas the leaf switches (where nodes

are connected to), are located in level l = n − 1. The tuple

assignment for an example 2-ary-4-tree is shown in Fig. 1.

Once the tuples have been assigned, FTree iterates through

each leaf-switch in an ascending tuple order, and for each

downward switch port where nodes are connected in an

ascending port-order the algorithm routes the selected nodes

based on their LID. In Fig. 2 we show different phases of how

node a is routed. Switches in Fig. 2 are marked with numbers

from 1−12. FTree keeps port-usage counters for balancing the

routes and starts by traversing the fabric upwards from the least

loaded port while choosing the routes downwards, as shown

in Fig. 2(a) with the red and green arrows respectively. In the

first iteration all port counters are zero, so the first available

upward port is chosen. For each level up, the newly reached

switch (switch 5 in Fig. 2(a)) is selected as the switch to route

102

Fig. 1. k-ary-n-tree switch tuples assignment, where k = 2, n = 4. The nodes
that are located at level 4 are omitted from this figure.

all the traffic downwards towards the selected node (node a),

from the incoming port which through the switch was reached.

Then the algorithm traverses the fabric downwards and assigns

routes upwards towards that switch in a similar way as shown

in Fig. 2(b). The same recursive operation continues until route

entries for the selected node have been added to all of the

necessary switches in the fabric, as depicted in Fig. 2(c) and

2(d). Next the algorithm will continue with the second node,

node b in our case, as shown in 2(e), and so on until all nodes

have been routed. With the resulting routing in Fig. 2(e), if

node f sends a packet towards a, path P1 through switches

3 → 7 → 9 → 5 → 1 → a will be used, while path P2
through switches 3 → 8 → 10 → 6 → 1 → b will be used if f

sends a packet to b. Note that in Fig. 2(d) the routing towards

node a has been completed, but there are some blank switches

without routes towards node a; the switches 6, 8, 10, 11, 12. In

reality, FTree add routes in these blank switches as well. If a

packet towards a arrives for example in switch 12, this switch

knows that it has to forward the received packet down towards

switch 6, while switch 6 knows that the received packet from

12 has to be forwarded to switch 1 to reach its destination a.

However, the switches in the lower levels will never forward

traffic towards node a to switch 12 because the routes upward

will always push the packets towards switch 9. Note that the

use of a single root switch per destination node counters the

growth of wide congestion trees [23].

III. RELATED WORK

When a lossless network is reconfigured, routes have to be

recalculated and distributed to all switches, while avoiding

deadlocks. Note that the coexistence of two deadlock free

routing functions, Rold and Rnew, during the transition phase

from the old to the new one, might not be deadlock free [6].

Zafar et al. [24] discuss the tools and applicable methods on

the IB architecture (IBA), that would allow the implementation

of the Double Scheme [25] reconfiguration method. Double

Scheme is using Virtual Lanes (VLs) to separate the new and

the old routing functions. Lysne et al. [26] use a token that

is propagated through the network to mark a reconfiguration

event. Before the token arrives at a switch, traffic is routed with

the old routing algorithm. After the token has arrived and been

forwarded through the output ports of the switch, the traffic is

flowing with the new routing algorithm. The Skyline by Lysne

et al. [27], speeds up the reconfiguration process by providing

a method for identifying the minimum part of the network

that needs to be reconfigured. Sem-Jacobsen et al. [8] use

the channel dependency graph to create a channel list that is

rearranged when traffic needs to be rerouted. The rearranging is

happening in such a way, that no deadlocks can occur. Robles-

Gómez et al. [28] use close up*/down* graphs to compute a new

routing algorithm which is close to the old one, and guarantees

that the combination of old and new routing during transition

does not allow deadlocks to be introduced. Bermúdez et al. [29]

are concerned with the long time it takes to compute optimal

routing tables in large networks and the corresponding delay

in the subnet becoming operational. They use some quickly

calculated, but not optimal, provisional routes, and calculate

the optimal routes offline. Since the provisional and the optimal

routes are calculated based on the same acyclic graph, deadlock

freedom is guaranteed. Zahid et al. [30] compares the old and

the new routing in an attempt to minimize the reconfiguration

cost by limiting the number of modifications. The result is

less LFTs being distributed. The path-computation utilizes a

meta-base generated during the initial path-computation phase

in order to speed-up subsequent reconfigurations.

The above works either target quick, but not optimized,

reconfiguration due to faults, or reconfigure the whole network

based on a single routing algorithm. Due to the long path-

computation time required by a full reconfiguration, offline

calculation of paths with subsequent deployment is suggested

by some. This paper differs by proposing a fast hybrid

reconfiguration method that could be run often and online,

for optimizing smaller parts of a shared network with the

option to use multiple routing algorithms within a subnet.

IV. FAST HYBRID RECONFIGURATION SCHEME

Our proposed reconfiguration scheme is based on the fact that

HPC systems and cloud environments are shared by multiple

tenants that run isolated tasks, i.e. tenant inter-communication is

not allowed [9], [10]. To achieve better resource utilization, the

workload deployment or virtual machine placement scheduler

tries to avoid resource fragmentation to the extent possible.

Consequently, per-tenant workloads are mapped onto physical

machines that are close-by with regards to physical network

connectivity, in order to avoid unnecessary network traffic

and cross-tenant network interference [11], [12]. For Fat-Tree

topologies with more than two levels2, this means that the

per-tenant traffic can usually be contained within a sub-tree of

the multi-level Fat-Tree, as highlighted in Fig. 3.

Note that the traffic in the highlighted sub-tree in Fig. 3

is not flowing to and from the rest of the network. That is,

we can apply a partial reconfiguration and optimize locally

2For two-level Fat-Trees, even when using the largest port-count switches
available to build the topology, reconfiguring the whole fabric is still fast
enough not to pose any real reconfiguration challenges [7]. Thus, in this paper
we only consider larger Fat-Trees.

103

(a) Route down by going up (b) Route up by going down (c) Route down by going up (d) Route up by going down (e) a and b nodes routed

Fig. 2. Fat-Tree (FTree) Routing Phases

within the sub-tree based on the internal traffic pattern only.

By applying such a partial reconfiguration, we effectively treat

the reconfiguration as a Fat-Tree with less levels, and as we

show in the evaluation Section V, the path-computation and

overall reconfiguration cost can be substantially reduced (Fast

Reconfiguration). In effect, performance-driven reconfiguration

becomes attractive even in shared and highly dynamic envi-

ronments. Moreover, when applying partial reconfiguration,

we only need to alter the forwarding entries of the nodes

within the sub-tree. Given that the initial routing algorithm

used to route the fabric was FTree (Section II-D) or similar,

that guarantees deadlock freedom by applying a variant of

up/down routing without using Virtual Lanes [22], we can use

any best-fit routing algorithm to reroute the given sub-tree as

isolated (Hybrid Reconfiguration).

Note that once a sub-tree of a Fat-Tree is reconfigured,

the connectivity between all end nodes, even those outside

of the reconfigured sub-tree, is still maintained. As explained

in Section II-D, all switches know where to forward traffic

towards any destination. That is, every switch S has a valid

forwarding entry in the LFT for every destination x, even if

other nodes will never actually forward packets destined for x

through S. Now, consider the case in Fig. 4 where the sub-tree

highlighted with the dashed box has been reconfigured. The

initial routing selected switch 5 to route traffic downwards

towards node a and switch 6 to use towards node b (Fig. 2(e)).

After the reconfiguration of the sub-tree, switch 5 is now used

to route traffic towards node b and switch 6 towards node a,

as presented in Fig. 4. In this case, if nodes c and d, located

inside the sub-tree, send traffic towards nodes a or b, the newly

calculated paths will be used. However, if the nodes e, f, g, h,

located outside of the sub-tree, send traffic to a and b, the

old paths will be used; the traffic towards a and b will enter

the sub-tree at the switches 5 and 6, respectively, and not the

other way around. Note that this behaviour external to the sub-

tree could disturb the purpose of the sub-tree reconfiguration,

e.g. by interfering with any sub-tree internal load balancing.

Nonetheless, with no or very limited communication crossing

the sub-tree boundary, such interference is of minor concern.

A. Choosing the Subset that will be Reconfigured

To apply our partial reconfiguration, we first need to choose

all the nodes and switches in a sub-tree that have to be

reconfigured. The method we use to identify the sub-tree uses

the switch-tuples that have been discussed in Section II-D as

a basis for comparison, and selects all nodes and switches

in the sub-tree that needs to be reconfigured. The selection

and consideration of all nodes in the sub-tree is necessary.

Otherwise we may end up with imbalanced routing. The

selection process of all entities in a sub-tree goes through

the following steps:

1) The administrator (or an automated solution that monitors

the fabric utilization) provides a list of nodes that must

participate in the reconfiguration.

2) The tuples of the leaf switches of the nodes from step 1

are compared and the common ancestor sub-tree selected.

3) All the switches that belong to the sub-tree that was

selected in step 2 will be marked for reconfiguration.

4) From the list of switches in step 3, the leaf switches will

be picked and all of the nodes connected to the picked leaf

switches will participate in the reconfiguration process.

5) Last, a routing algorithm has to calculate a new set of

routes only for the nodes selected in step 4, and distribute

the LFTs only to the switches selected in step 3.

B. Fat-Tree Routing with Custom Node-Ordering

As shown in [31], in multistage switch topologies like Fat-

Trees, the effective bisection bandwidth is usually less than

the theoretical bisection bandwidth for different traffic patterns.

The reason is that depending on which node pairs have been

selected for communication, there might be links that are

shared in the upward direction. An example is illustrated

in Fig. 5. In Fig. 5 nodes communicate within a two-level

sub-part of a three-level Fat-Tree globally routed with the

FTree routing algorithm. FTree routing chooses the switches

with the corresponding color to route traffic downwards to

the nodes with the same color. Although this sub-tree has a

full theoretical bisection bandwidth3, the effective bisection

bandwidth in the illustrated communication pattern where nodes

b, c and d send traffic to nodes e, i and m respectively, is 1/3

of the full bandwidth. All the destinations are routed through

the same switch in the second level, switch 5, and the thick

dashed link pointed by the arrow is shared by all three flows

and becomes the bottleneck, although there are enough empty

3If there are enough links to avoid link sharing and obtain maximum speed
when we split the network into two parts and each node from the first part
communicates with only one node from the second part, the topology is said
to have full bisection bandwidth.

104

Fig. 3. A three-level Fat-Tree where
workload from a single tenant is
mapped within a two-level sub-tree.

Fig. 4. Fat-Tree Routing multipathing
after reconfiguring highlighted sub-
tree.

Fig. 5. Known pattern that degrades
performance due to upward direction
link sharing when source nodes b, c,
d send traffic to destinations e, i, m.

Fig. 6. NoFTree routing with node
order e, i,m.

links to avoid link sharing and provide full bandwidth. Zahavi

proposes and proves in [15] that if the MPI node ordering

follows the node order that the FTree routing algorithm uses to

route the nodes, full bisection bandwidth can be obtained for

most of the MPI collective operations. Yet in dynamic cloud

environments the provider may not be aware of the workload

executed by different tenants, and cannot force users to use

specific node orderings for communication. Furthermore, the

users may need to run non-MPI-based programs as well. To

allow for flexible reconfigurations that are not always bound

to the same routing order that is based in the port order, we

propose a new Fat-Tree routing algorithm, NoFTree, that uses

a user-defined Node ordering to route a Fat-Tree network. As

we show in the Evaluation Section V having the ability to route

a network with a given node order can be very effective, and

one strategy to obtain better performance is to route nodes in

the order of the amount of traffic each node receives. A simple

way to determine the receiving traffic per node is to read the

IB port counters [16]. In such a way the administrator doesn’t

have to know details about the jobs executed by tenants.

NoFTree is used in this work in the context of our Fast

Hybrid Reconfiguration Scheme, and routes a sub-tree after

the switches and nodes have been selected as described in

Section IV-A. NoFTree works as follows:

1) An ordered list of nodes to be routed is provided by the

user or by a monitoring solution.

2) NoFTree re-orders the nodes per leaf-switch.

Then each ordered node is placed in the

n % max nodes per leaf sw + 1 slot to be routed in

the given leaf-switch, where n is the global position of

the node in the re-ordered list of nodes.

3) Remaining nodes that are connected to each leaf-switch,

but not present in the provided node ordering list are filling

the remaining leaf-switch routing slots based on the port

order that nodes are connected to. If no port ordering is

provided by the user, NoFTree will work exactly as the

FTree routing algorithm.

4) NoFTree iterates through each leaf-switch again and

routes each node based on the node order that has been

constructed throughout the previous steps.

Fig. 6 illustrates how NoFTree can improve the performance

in the example communication presented in Fig. 5 if the node

order of the nodes that receive traffic is provided to the routing

algorithm. In this case the node order is e, i,m. Since no node

from leaf-switch 1 has been provided in the node ordering,

nodes connected to switch 1 are routed based on the port order.

Node e is the first node in the global node ordering and the

first node to be ordered in leaf switch 2, so node e becomes

the first node to be routed in switch 2 (routed downwards from

switch 5). The rest of the nodes, f, g, h, are following the

port order. Then the algorithm moves to the 3rd leaf switch

where node i from the provided node ordering is connected.

Node i is the second node in the global node ordering and the

first node to be ordered in switch 3, so node i becomes the

second node to be routed in switch 3, as explained on step 2

(routed downwards from switch 6). The nodes connected to

switch 4 are routed in the same fashion. The resulting routing

chooses the switches with the corresponding color to route

traffic downwards to the nodes with the same color in Fig. 6,

and in this scenario we can see a performance gain of 300%

since there is no upward link sharing anymore.

V. EVALUATION

For the evaluation of our Fast Hybrid Reconfiguration we

implemented both our subset-choosing method (IV-A) and

NoFTree (IV-B) based on upstream OpenSM. We used our

testbed with 10 IB QDR (32Gbps max effective speed) switches

and 14 Compute Nodes (CNs) to evaluate our implementation

on real hardware, and we used ibsim and ORCS simulator [32]

to evaluate our methods in large scale subnets.

A. Experiments on Real Hardware

With our testbed we were able to build the PFGT4

(3; 4, 2, 4; 2, 2, 1; 2, 1, 1) that is lacking two CNs from the

rightmost leaf switch as demonstrated in Fig. 7(a). We routed

4PGFTs are defined by the tuple: (h;mh, ...,m1;wh, ..., w1; ph, ..., p1) where
h is the number of levels in the tree; mi is the number of lower level nodes connected
to nodes on level i; wi is the number of upper level nodes connected to nodes on level
i− 1 and pi is the number of parallel links connecting nodes in level i and i− 1 [15].

105

(a) Complete topology

(b) Before refonfiguration (c) After refonfiguration

Fig. 7. Experiments on real hardware.

the topology with FTree and focused on the lower left sub-

tree for our demonstration. We had two flows: CN5 sending

traffic to CN1 and CN7 sending traffic to CN3 using the

perftest utility. As one can see in Fig. 7(b), because FTree

routes downwards both CN1 and CN3 from switch S5, our

hypothesis is that the two flows should be shared and operate at

half speed (∼16Gbps per flow). If we reconfigure only the sub-

tree with NoFTree and the correct node ordering we expect

to get maximum speed (∼32Gbps per flow) for both flows

by routing downwards CN1 from S5 and CN3 from S6 as

shown in 7(c). Moreover, since we only focus on a sub-tree

we expect to get the reconfiguration faster than what if we

reconfigured the whole subnet. We validate our hypothesis with

the results presented in Fig. 8 and Fig. 9. In Fig. 8 we plotted

the measured throughput per flow as measured from CN5 and

CN7 (labeled as Client1 and Client2 respectively in Fig. 8).

First CN5 starts sending traffic to CN1 at full speed. Around

the 6th second and before we reconfigure with NoFTree, CN7
starts sending traffic to CN3 and the speed drops to half, until

the moment we trigger the reconfiguration (marked with the

solid vertical line) where we see that both flows jump back up

to maximum speed. In Fig. 9 we present a stacked barplot with

the times needed for OpenSM to complete different phases of

the (re)configuration for the topology in Fig. 7(a). The left bar

shows the time it took for the initial configuration. The middle

bar shows the time it took to reconfigure only the lower left

two-levels sub-tree from the topology in Fig. 7(a) with our Fast

Hybrid Reconfiguration and NoFTree. The right bar shows the

time needed to reconfigure the whole network with our Fast

Hybrid Reconfiguration and FTree. An observation here is that

most of the time in the initial FTree configuration is spent to

build the necessary data structures (time marked as Build LID

Matrices in the barplot), and every time a full reconfiguration

is triggered with FTree, FTree tears down and rebuilds these

data structures. With our method, even when we reconfigure

16

20

24

28

32

0 10 20
Time (seconds)

B
an

dw
id

th
 (

G
bp

s)

Client 1
throughput

Client 2
throughput

Reconfiguration
trigger point

Fig. 8. Perftest running on topologies in Fig. 7(b) before the reconfiguration is
triggered and Fig. 7(c) after a reconfiguration with NoFTree has been triggered.

Experiment on Real Hardware

0.54

0.24 0.27

0.0

0.2

0.4

0.6

Initial
configuration

2−levels
reconf

Full
reconf

Reconfiguration type

T
im

e
(m

s)

Time breakdown
Build LID Matrices
Route CNs
Route Non−CNs
Set Fwd Tables

Fig. 9. Reconfiguration times for the topology in Fig. 7(a)

Topology

Description

Num Nodes

/Switches

Topology

Description

Num Nodes

/Switches

8-3-1-half 512/192 12-3-2-half 3456/432
8-3-1-full 1024/320 12-3-2-full 6912/720
8-3-2-half 1024/192 16-3-1-half 4096/768
8-3-2-full 2048/320 16-3-1-full 8192/1280
8-3-4-half 2048/192 16-3-2-half 8192/768
8-3-4-full 4096/320 16-3-2-full 16384/1280

12-3-1-half 1728/432 18-3-1-half 5832/972
12-3-1-full 3456/720 18-3-1-full 11664/1620

TABLE I
NUMBER OF NODES/SWITCHES IN THE SIMULATED TOPOLOGIES.

the whole topology with FTree we carefully modify the data

structures instead of rebuilding them from scratch, thus, we

slightly increase the time to Route CNs in this small network,

but overall, we reduce the reconfiguration time considerably. As

such, we even reduce the time it takes to reconfigure the whole

topology by 50%. However, the highlight of our method is

when reconfiguring the sub-part of the topology. As illustrated

by the middle bar in Fig. 9 the time it takes to route the CNs is

reduced, and we reduce the time to reconfigure the network even

further. An important note is that the experiments we did on

real-hardware is just a proof of concept, and since the network

we used is very small, our reconfiguration method doesn’t

make much of a difference. The simulations in the next section

use much larger networks, that are typically used in big data

centers, to show the significance of being able to reconfigure

a topology partially with different routing algorithms.

B. Simulations

Ibsim was used to emulate all of the topologies presented in

Table I, and OpenSM was used to calculate routes, and re-route

the network with our fast reconfiguration method. The results

are shown in Fig. 10, and the reconfiguration procedure and

barplot description is the same as described in Section V-A.

When comparing the results of the large simulated topologies

106

with the results from the real hardware experiments, it is

noticeable that when the topology grows larger, reconfiguring

only a sub-part of the network leads to considerable savings,

and most of the time is spent to set the forwarding tables.

In particular, for the largest network topology we tested, the

18-3-1-full, the savings from our partial reconfiguration when

compared with the initial configuration is 98.7%, and for a full

reconfiguration 56.7%.

ORCS simulator was also used to test NoFTree routing

algorithm when reconfiguring only a sub-part of the network,

and demonstrate that partial reconfiguration can be beneficial

if some bulk isolated communication is contained within a sub-

tree of a Fat-Tree. ORCS simulator was enhanced significantly

for this work, and all contributions have been pushed back to

the project. For the ORCS simulations we implemented a new

receivers5 pattern. The receivers pattern will choose a number

of receivers and will have other non-receiver nodes sending

traffic towards the receivers with a user-provided chance. If

a sender decided to not send traffic towards a receiver node,

based on a second chance the sender will decide to either

stay idle or send traffic to a non-receiver node. We ran the

simulator with 1040 iterations for each unique case, and we

picked hundreds of random sets of receivers while increased

the number of receivers per switch and the number of switches

where we distribute receiver nodes over time for different

topologies. The same simulations were executed twice: once

when the network was routed with the default FTree routing,

and once after we reconfigured with NoFTree. In Fig. 11. we

present the worst case and average case scenario results for

different topologies. The bars indicate the percentage of max

bandwidth achieved by the simulations. As one can observe,

in all cases we achieved better results compared to the original

FTree routing when the network was reconfigured with our

partial reconfiguration method while using NoFTree, and for

the worst case scenario we can see speed-ups of up to ∼25%.

VI. CONCLUSION

In this work we presented a reconfiguration scheme that

allows for fast partial reconfigurations in sub-parts of a

lossless network. Our aim is to make performance-driven

reconfigurations practically usable in shared HPC systems

and dynamic cloud environments, where multiple tenants

share the infrastructure but run isolated tasks. When the bulk

communication for different isolated tasks is contained within

a sub-part of the network, our fast reconfiguration method

optimize locally and speed up the reconfiguration process

up to 98.7% with different routing algorithms of choice. We

also presented a Fat-Tree-based routing algorithm, NoFTree,

that is able to route a network given a user-provided node

ordering. We used NoFTree to reconfigure sub-trees in Fat-

Tree topologies, while we used the original Fat-Tree routing

algorithm to reconfigure the complete topology when necessary,

5The receivers pattern was selected as it is a common pattern (e.g. in server-
client network architectures the servers are receiver nodes) that is easy to
identify in an abstract way, for example, by reading port counters.

effectively demonstrating usage of multiple routing algorithms

within a single subnet.

ACKNOWLEDGEMENTS

We would like to acknowledge Mellanox Technologies for

providing us with IB hardware, and the Norwegian Research

Council for funding the ERAC project (nr. 213283/O70).

REFERENCES

[1] Satoshi Matsuoka, Hitoshi Sato, Osamu Tatebe, Michihiro Koibuchi,
Ikki Fujiwara, Shuji Suzuki, Masanori Kakuta, Takashi Ishida, Yutaka
Akiyama, Toyotaro Suzumura, Koji Ueno, Hiroki Kanezashi, and
Takemasa Miyoshi, “Extreme big data (ebd): Next generation big data
infrastructure technologies towards yottabyte/year,” Supercomputing

frontiers and innovations, vol. 1, no. 2, 2014.
[2] Asim Roy, Plamen Angelov, Adel Alimi, Kumar Venayagamoorthy,

Theodore Trafalis, Jorge L. Reyes-Ortiz, Luca Oneto, and Davide Anguita,
“Inns conference on big data 2015 program san francisco, ca, usa 8-
10 august 2015 big data analytics in the cloud: Spark on hadoop vs
mpi/openmp on beowulf,” Procedia Computer Science, vol. 53, pp. 121
– 130, 2015.

[3] Sven-Arne Reinemo, Tor Skeie, and Manoj K Wadekar, “Ethernet for
high-performance data centers: On the new ieee datacenter bridging
standards,” IEEE micro, vol. 30, no. 4, pp. 42–51, 2010.

[4] Jerome Vienne, Jitong Chen, Md Wasi-Ur-Rahman, Nusrat S Islam,
Hari Subramoni, and Dhabaleswar K Panda, “Performance analysis and
evaluation of infiniband fdr and 40gige roce on hpc and cloud computing
systems,” in 2012 IEEE 20th Annual Symposium on High-Performance

Interconnects. IEEE, 2012, pp. 48–55.
[5] Daniel Lüdtke and Dietmar Tutsch, “Lossless static vs. dynamic

reconfiguration of interconnection networks in parallel and distributed
computer systems,” in Proceedings of the 2007 Summer Computer

Simulation Conference, San Diego, CA, USA, 2007, SCSC ’07, pp.
717–724, Society for Computer Simulation International.

[6] J. Duato, “A necessary and sufficient condition for deadlock-free routing
in cut-through and store-and-forward networks,” IEEE Transactions on

Parallel and Distributed Systems, vol. 7, no. 8, pp. 841–854, Aug 1996.
[7] Evangelos Tasoulas, Ernst Gunnar Gran, Bjorn Dag Johnsen, Kyrre

Begnum, and Tor Skeie, “Towards the InfiniBand SR-IOV vSwitch
Architecture,” in IEEE International Conference on Cluster Computing

(CLUSTER), 2015, Sept 2015, pp. 371–380.
[8] Frank Olaf Sem-Jacobsen and Olav Lysne, “Topology Agnostic Dynamic

Quick Reconfiguration for Large-Scale Interconnection Networks,” in
Proceedings of the 2012 12th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (ccgrid 2012). IEEE Computer
Society, 2012, pp. 228–235.

[9] Feroz Zahid, Ernst Gunnar Gran, Bartosz Bogdański, Bjørn Dag Johnsen,
and Tor Skeie, “Partition-Aware Routing to Improve Network Isolation in
InfiniBand Based Multi-tenant Clusters,” in 15th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2015.,
2015, pp. 189–198.

[10] Eitan Zahavi, Alex Shpiner, Ori Rottenstreich, Avinoam Kolodny, and
Isaac Keslassy, “Links as a Service (LaaS): Feeling Alone in the Shared
Cloud,” arXiv preprint arXiv:1509.07395, 2015.

[11] Weiwei Fang, Xiangmin Liang, Shengxin Li, Luca Chiaraviglio, and
Naixue Xiong, “Vmplanner: Optimizing virtual machine placement and
traffic flow routing to reduce network power costs in cloud data centers,”
Computer Networks, vol. 57, no. 1, pp. 179 – 196, 2013.

[12] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networks with traffic-aware virtual machine placement,” in
INFOCOM, 2010 Proceedings IEEE, March 2010, pp. 1–9.

[13] Charles E Leiserson, “Fat-trees: universal networks for hardware-efficient
supercomputing,” IEEE Transactions on Computers, vol. 100, no. 10,
pp. 892–901, 1985.

[14] Eitan Zahavi, “D-Mod-K routing providing non-blocking traffic for shift
permutations on real life fat trees,” CCIT Report 776, Technion, 2010.

[15] E. Zahavi, “Fat-tree routing and node ordering providing contention free
traffic for MPI global collectives,” Journal of Parallel and Distributed

Computing, vol. 72, no. 11, pp. 1423–1432, 2012.
[16] InfiniBand Trade Association, “InfiniBand Architecture General Specifi-

cations 1.3,” 2015.
[17] TOP500, “Top500.org,” http://www.top500.org/, 2016.

107

0.13

0.01

0.05

0.45

0.02

0.19

0.18

0.01

0.1

0.68

0.03

0.4

0.3

0.02

0.22

1.18

0.05

0.84

1.25

0.04

0.5

5.89

0.13

2.1

1.86

0.07

1.02

8.98

0.24

4.45

7.95

0.18

2.84

35.25

0.45

12.97

12.16

0.26

6.08

56.73

0.91

32.13

16.77

0.29

6

77.98

1

33.77

8−3−1−half 8−3−1−full 8−3−2−half 8−3−2−full 8−3−4−half 8−3−4−full 12−3−1−half 12−3−1−full

12−3−2−half 12−3−2−full 16−3−1−half 16−3−1−full 16−3−2−half 16−3−2−full 18−3−1−half 18−3−1−full
0.00

0.05

0.10

0.0
0.1
0.2
0.3
0.4
0.5

0.00

0.05

0.10

0.15

0.20

0.0

0.2

0.4

0.6

0.0

0.1

0.2

0.3

0.0

0.5

1.0

0.0

0.5

1.0

0

2

4

6

0.0

0.5

1.0

1.5

2.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

0

10

20

30

40

0

5

10

0

20

40

60

0

5

10

15

0

25

50

75

In
iti

al
co

nf
ig

ur
at

io
n

2−
le

ve
ls

re
co

nf Fu
ll

re
co

nf

In
iti

al
co

nf
ig

ur
at

io
n

2−
le

ve
ls

re
co

nf Fu
ll

re
co

nf

In
iti

al
co

nf
ig

ur
at

io
n

2−
le

ve
ls

re
co

nf Fu
ll

re
co

nf

In
iti

al
co

nf
ig

ur
at

io
n

2−
le

ve
ls

re
co

nf Fu
ll

re
co

nf

In
iti

al
co

nf
ig

ur
at

io
n

2−
le

ve
ls

re
co

nf Fu
ll

re
co

nf

In
iti

al
co

nf
ig

ur
at

io
n

2−
le

ve
ls

re
co

nf Fu
ll

re
co

nf

In
iti

al
co

nf
ig

ur
at

io
n

2−
le

ve
ls

re
co

nf Fu
ll

re
co

nf

In
iti

al
co

nf
ig

ur
at

io
n

2−
le

ve
ls

re
co

nf Fu
ll

re
co

nf

Reconfiguration types for different topologies

T
im

e
(s

ec
on

ds
) Time breakdown

Build LID Matrices
Route CNs
Route Non−CNs
Set Fwd Tables

Fig. 10. Reconfiguration times for simulated topologies.

2
R

cv
s

3
R

cv
s

4
R

cv
s

5
R

cv
s

6
R

cv
s

60%
70%
80%
90%

100%

60%
70%
80%
90%

100%

60%
70%
80%
90%

100%

60%
70%
80%
90%

100%

60%
70%
80%
90%

100%

60%
70%
80%
90%

100%

75% to Recv
50% idle

75% to Recv
50% idle

75% to Recv
50% idle

100% to Recv

100% to Recv

100% to Recv

Recvs MAX
 num switches

Recvs MID
 num switches

Recvs MIN
 num switches

Recvs MAX
 num switches

Recvs MID
 num switches

Recvs MIN
 num switches

8−
3−

1
8−

3−
2

12
−3

−1
12

−3
−2

18
−3

−1
8−

3−
1

8−
3−

2
12

−3
−1

12
−3

−2
18

−3
−1

12
−3

−1
12

−3
−2

18
−3

−1
18

−3
−1

18
−3

−1

Receivers per switch on different topologies

B
an

dw
id

th
 (

pe
rc

en
ta

ge
 o

f m
ax

)

FTree
NoFTree

(a) Worst case scenario

2
R

cv
s

3
R

cv
s

4
R

cv
s

5
R

cv
s

6
R

cv
s

70%
80%
90%

100%

70%
80%
90%

100%

70%
80%
90%

100%

70%
80%
90%

100%

70%
80%
90%

100%

70%
80%
90%

100%

75% to Recv
50% idle

75% to Recv
50% idle

75% to Recv
50% idle

100% to Recv

100% to Recv

100% to Recv

Recvs MAX
 num switches

Recvs MID
 num switches

Recvs MIN
 num switches

Recvs MAX
 num switches

Recvs MID
 num switches

Recvs MIN
 num switches

8−
3−

1
8−

3−
2

12
−3

−1
12

−3
−2

18
−3

−1
8−

3−
1

8−
3−

2
12

−3
−1

12
−3

−2
18

−3
−1

12
−3

−1
12

−3
−2

18
−3

−1
18

−3
−1

18
−3

−1

Receivers per switch on different topologies

B
an

dw
id

th
 (

pe
rc

en
ta

ge
 o

f m
ax

)
FTree
NoFTree

(b) Average case

Fig. 11. ORCS simulation results (Higher bars indicate better performance).

[18] M. K. Shin, K. H. Nam, and H. J. Kim, “Software-defined networking
(sdn): A reference architecture and open apis,” in 2012 International

Conference on ICT Convergence (ICTC), Oct 2012, pp. 360–361.
[19] Fabrizio Petrini and Marco Vanneschi, “k-ary n-trees: High performance

networks for massively parallel architectures,” in Proceedings of the

11th International Parallel Processing Symposium, 1997. IEEE, 1997,
pp. 87–93.

[20] Sabine R Ohring, Maximilian Ibel, Sajal K Das, and Mohan J Kumar,
“On generalized fat trees,” in Proceedings of the 9th International Parallel

Processing Symposium, 1995. IEEE, 1995, pp. 37–44.
[21] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat, “A

scalable, commodity data center network architecture,” in ACM

SIGCOMM Computer Communication Review. ACM, 2008, vol. 38,
pp. 63–74.

[22] Eitan Zahavi, Gregory Johnson, Darren J Kerbyson, and Michael Lang,
“Optimized InfiniBand fat-tree routing for shift all-to-all communication
patterns,” Concurrency and Computation: Practice and Experience, vol.
22, no. 2, pp. 217–231, 2010.

[23] Ernst Gunnar Gran, Congestion Management in Lossless Interconnection

Networks, phd, Faculty of Mathematics and Natural Sciences, University
of Oslo, March 2014.

[24] Bilal Zafar, Timothy M Pinkston, Aurelio Bermúdez, and Jose Duato,
“Deadlock-Free Dynamic Reconfiguration Over InfiniBand™ Networks,”
Parallel Algorithms and Applications, vol. 19, no. 2-3, pp. 127–143,
2004.

[25] Ruoming Pang, Timothy Mark Pinkston, and José Duato, “The
Double Scheme: Deadlock-free Dynamic Reconfiguration of Cut-Through
Networks,” in Parallel Processing, 2000. Proceedings. 2000 International

Conference on. IEEE, 2000, pp. 439–448.

uato, Tor Skeie, and José Flich, “Simple Deadlock-Free Dynamic

Network Reconfiguration,” in High Performance Computing-HiPC 2004,
pp. 504–515. Springer, 2005.

[27] Olav Lysne and José Duato, “Fast Dynamic Reconfiguration in Irregular
Networks,” in Parallel Processing, 2000. Proceedings. 2000 International

Conference on. IEEE, 2000, pp. 449–458.
[28] Antonio Robles-Gómez, Aurelio Bermúdez, Rafael Casado, and

Åshild Grønstad Solheim, “Deadlock-Free Dynamic Network Reconfigu-
ration Based on Close Up*/Down* Graphs,” in Euro-Par 2008–Parallel

Processing, pp. 940–949. Springer, 2008.
[29] Aurelio Bermúdez, Rafael Casado, Francisco J Quiles, and Jose Duato,

“Use of Provisional Routes to Speed-up Change Assimilation in
InfiniBand Networks,” in Parallel and Distributed Processing Symposium,

2004. Proceedings. 18th International. IEEE, 2004, p. 186.
[30] Feroz Zahid, Ernst Gunnar Gran, Bartosz Bogdański, Bjørn Dag Johnsen,

Tor Skeie, and Evangelos Tasoulas, “Compact network reconfiguration
in fat-trees,” The Journal of Supercomputing, pp. 1–30, 2016.

[31] T. Hoefler, T. Schneider, and A. Lumsdaine, “Multistage switches are
not crossbars: Effects of static routing in high-performance networks,” in
2008 IEEE International Conference on Cluster Computing, Sept 2008,
pp. 116–125.

[32] Timo Schneider, Torsten Hoefler, and Andrew Lumsdaine, “ORCS: An
oblivious routing congestion simulator,” Indiana University, Computer

Science Department, Tech. Rep, 2009.

[26]

108

An Offset Based Global Sleeping Schedule for Self-
Organizing Wireless Sensor Networks

Stephanie Imelda Pella, Prakash Veeraraghavan, Somnath Ghosh
Department of Comp. Science and Information Technology

La Trobe University
Melbourne, Australia

S.Pella, P.Veera, S.Ghosh @ latrobe.edu.au

Abstract— In wireless sensor networks (WSNs), conserving the
nodes’ energy is one the main motivations in designing the
medium access control (MAC) layer protocols. A common
approach is to allow the nodes to turn their radio modules off
periodically according to certain schedules. The nodes that
operate on a common schedule and located in a common physical
area form a virtual cluster. The nodes in the cluster borders have
more active period to maintain the connectivity between clusters,
thus, have shorter life spans. This work proposes a scheme that
enables cluster merging in a distributed environment to eliminate
the problem. The proposed scheme uses the schedule offset, the
time difference between the starts of the active periods in two
schedules, as the criteria for deciding the direction of the
merging. We evaluate the performance of the proposed protocol
using a mathematical estimation and simulation. The result
shows the proposed scheme has up to 50 times shorter
convergence time and save up to 90% more energy during the
merging process compared to the existing global schedule
protocols.

Keywords— Sensor Network; Energy Efficiency; Duty-Cycle;
Global Sleeping Schedule

I. INTRODUCTION
Energy conservation is one of the central issues in Wireless

Sensor Network (WSN). To prolong the network life, medium
access control (MAC) protocols in WSN are designed to be
energy efficient. The most common approach to conserve
energy is the use of the duty cycle scheme. The scheme allows
the nodes to turn their radio components off and operate in a
sleeping mode to preserve their energy. Periodically the nodes
need to ‘wake up’ by switching on their transceiver to check
the channel activity or transmitting packets. Each node
maintains a schedule that determines when it needs to sleep and
wake up.

The duty cycle-based protocols can be classified into the
synchronized duty cycle protocols [1-4] and the asynchronous
duty cycle protocols. The synchronous scheme requires the
nodes to synchronize their schedules with their neighbors,
instead, nodes in the asynchronous scheme choose their
schedules independent to their neighbors’ schedules.
Asynchronous duty cycle protocols outperform the

synchronous ones in term of energy saving, however, they
yield a much lower throughput [5].

In the synchronous duty cycle-based MAC protocols, the
nodes may randomly create their schedules in the initialization
stage if they fail to discover an existing schedule, hence,
introducing the existence of more than one schedule in the
network. Neighboring nodes that operate on a common
schedule form a virtual cluster. The nodes located near the
border of two or more clusters need to operate on the active
mode of all the bordered clusters to act as the gateways for the
clusters. This causes the nodes to exhaust their energy much
sooner than the rest of the network.

Studies in [6-8] shows that the non-uniform energy
depletion rates of the nodes adversely impact the network
lifespan and performance. In the worst case, it fragments the
network. Since each border node commonly acts as a gateway
between clusters, when it exhausts its energy and is forced to
leave the network, one or more cluster could be isolated from
the rest of the network. This, as a result, shortens the useful
time of the network.

In this study, we propose an energy-efficient scheme to
achieve a single sleeping schedule in WSNs. In our proposed
scheme, in discovering another cluster, a border node uses the
difference between the starting of the active periods in the two
clusters to decide whether or not its cluster needs to merge to
the newly discovered cluster. The merging decision is made
independently, but consistently, for all the nodes in a cluster.
The simulation shows that our proposed scheme outperform the
other existing global schedule protocols [6-8] in term of
merging time, energy consumption and control packet
overhead.

The rest of the paper is organized as follows. In section 2,
we introduce the basic mechanism of our schemes such as the
offset of two schedules and virtual frame. In section 3, we
present the cluster merging algorithm and in section 4, we
analyze the performance of the proposed protocol trough
simulations. Finally, section 5 summarizes the paper.

978-1-5090-3216-7/16/$31.00 ©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

109

II. BASIC OFFSET BASED GLOBAL SCHEDULE SCHEME
In a global schedule protocol, a node that discovers more

than one schedule uses a set of criteria to choose which
schedule it will implement. This section presents a scheme that
uses the offset of two schedules in determining the winning
schedule.

The synchronous duty cycle-based protocols, such as S-
MAC[1, 2], T-MAC[3], and DS-MAC[4], divides the nodes
operational time into frames. A frame constitutes of an
active/wake-up time and a sleeping time as shown in Fig. 1..
Nodes that do not participate in data transmission turn their
radio modules off during sleeping time. In each cycle, which is
a group of 10 frames, each node randomly chooses a SYNC
frame, during which it broadcasts its SYNC to announce its
schedule. In every ten cycles, nodes randomly pick a cycle as
their synchronization cycle. During its synchronization cycle, a
node stays active for the duration of the entire cycle to ensure it
receives any sent SYNC in its neighborhood.

Fig. 1 A Frame in Synchronized Duty Cycle Based Protocols

The proposed protocol requires the nodes to calculate the
offset of its schedule and the newly founded schedule when it
receives a SYNC advertising a schedule of a different cluster.
In equation (1), dS1S2 is the schedule offset between S1 and S2
as seen by the nodes in cluster S1, tS1 and tS2 are the durations
of time until the starts of the next frames in schedule S1 and S2
respectively, and T is the length of a frame.

 (1)

The offset of two schedules S1 and S2, is the minimum
duration of the start of a frame in S2 precedes the start of a
frame in S1 as shown in Fig. 2. Nodes in cluster S1 need to
merge with cluster S2 if schedule S2 precedes S1, i.e. the offset
of S1 and S2 is more than half of the frame length (ds1s2 > ½
T).

Fig. 2 The Offset of Two Schedules

The use of schedule offset as a winning criterion
overcomes two drawbacks in previous proposed global
schedule protocols. Firstly, it avoids a big control overhead
resulted from the using of schedule age as winning criteria as

proposed in [6] since the nodes does not need additional
information for calculating the offset. And, secondly, it
eliminates the problem of having different schedules with the
same schedule ID in a rechargeable sensor network, unlike the
use of ID as winning criterion[7, 8]. However, it creates a
problem when the offset is exactly half of the frame length
(ds1s2 = ½ T) as neither of the schedules precedes the other
one.

In order to solve the problem we introduce a virtual frame
that consists of two frames as shown in Fig. 3.

Fig. 3 A Virtual Frame

In discovering a new schedule, a node calculates the offset
of its schedule and the newly received ones using equation (2).

 (2)

In this scheme, if the offset of two schedules S1 and S2 is
half of the virtual frame, the nodes in the two clusters
essentially wake up and sleep at the same time, hence the
clusters do not need to merge.

Since the propagation delay of SYNC packets affects the
way a node sees the start of the next frame of a schedule, and
consequently the offset of two schedules, we need to consider
the maximum propagation delay of the packets. This could be
obtained by calculating the maximum propagation path in the
network, for example by using Hilbert's space filling curve
algorithm. Let δmax be the maximum propagation delay in the
network, when a node follows the rules listed in TABLE 1 in
receiving SYNC from another cluster

TABLE 1 MERGING RULES

Offset Value Action
[½ L + δmax , L] Merge to the newly discovered cluster

[0, ½ L - δmax] Broadcast SYNC to notify the discovered
cluster of the schedule of the node’s cluster.

[½ L - δmax ,½ L + δmax] Do not need to merge

III. THE CLUSTER MERGING ALGORITHM

A. Synchronization Control Packet Formats
In the proposed protocol, we use two control packets for

schedule synchronization, namely, SYNC and SYNC-M
packets. Similar to the mechanism proposed in S-MAC [1, 2],
each node periodically sends SYNC for announcing its
schedule. When nodes in cluster S1 decides to merge into
cluster S2, cluster S1 is called the merging cluster and cluster S2

110

is called the destination cluster. The nodes in the merging
cluster and in the destination cluster broadcast SYNC-Ms to
notify their neighborhood of the merging.

Fig. 4 Control Packets (a) SYNC (b) SYNC-M

In Fig. 4, a SYNC packet consists of the ID of the node
that sends the packet (NID), cluster ID (CID), the duration
until next virtual frame (NF) and a one-bit flag (F). F is set to
1 when the cluster is in the merging process. A SYNC-M
packet consists of Node ID, the current cluster ID, the duration
until next frame in the current cluster, the newly received
cluster ID, the duration until the next frame in the newly
received cluster and the number of hops (HOP). HOP starts at
1 and is increased every time the packet rebroadcasted.

B. The Merging Scheme
Each node in the network obeys the following steps in

choosing its schedule on receiving a SYNC:

1) If the node receives the SYNC before it has chosen
its schedule, it adopts the advertised schedule and announce
this schedule in its SYNC.

2) If the node receives the SYNC advertising a schedule
of a different cluster after it has chosen a schedule, it
calculates the offset (d) between its schedule and the newly
received schedule and takes an action based on the merging
rules in TABLE 1. There are two cases to consider:

a) If the node decides to merge to the newly discovered
cluster, it creates and broadcast a SYNC-M to notify the
members of its current and destination cluster of its decision.
It then sets a timer twait. At the end of twait, if there is no
interruption (detailed in step 3), it merges to the destination
cluster.

b) If the node does not decide to merge to the newly
discovered cluster, it broadcasts a SYNC advertising its
schedule during the next active time of the other cluster.

3) If the node goes with the condition in step 2(a),
during the waiting period twait, it ignores all received SYNCs
announcing the other clusters and operates on both schedules.
If the node receives a SYNC-M

a) If the SYNC-M packet has the same cluster id, and
advertises that another cluster, with a bigger cluster ID than
CIDNEW decides to merge with its current cluster, it cancels
its timer and redo step 2.

b) Otherwise, the node merges with the destination
cluster at the end of twait.

On receiving a SYNC-M packet, the nodes in both merging
and destination clusters rebroadcast the SYNC-M. Any node
that hears the SYNC-M sets twait timer. During twait, the nodes
in the destination cluster ignore all the SYNC packets from
any other cluster and the nodes in the cluster other than the
merging and the destination cluster do not start a merging

process with the merging cluster. At the end of twait, the nodes
in the merging cluster merge with the destination cluster.

C. Upper Bound of Time and Energy Spent in a Merging
Process
The duration of waiting time, twait, is twice of the maximum

time needed for the SYNC-M to propagate to another furthest
end of the cluster. In every hop the packet has traveled, we
exclude that hop in calculating the waiting time. Each node in
the network uses equation (3) to calculate its specific waiting
time twait, where N is the maximum number of hops in a
network, HOP is the number of hops the packet has been
traveled , T is the duration of a frame and L is the duration a
virtual frame.

 (3)

After receiving a SYNC-M, a node needs to wait until the
next frame to rebroadcast the packet. Therefore, the upper
bound of the time needed to propagate the packet to the whole
cluster equals to the maximum number of hops between two
furthest nodes in the cluster times the duration of a frame. We
then compare it to convergence times of the other two existing
global schedule protocol, S-MACL[7, 8]and GSA[6], where
the node merge individually instead of a cluster at a time. This
means that each node needs to re-discover another cluster
before starting the merging process. Since a node can only
discover another cluster during the synchronization cluster
(which happen once every 100 frames, according to S-MAC
[1, 2]). This causes the convergence time in both SMAC-L
and GSA is up to 50 times bigger than the one in the proposed
protocol with cluster merging scheme.

(4)

=

During the merging process, nodes exchange their control
packets including the periodic SYNCs (in the existing
protocols and our proposed protocol) and SYNC-Ms (in our
proposed protocols). The energy spent for sending the control
packet during the merging process is shown in equation (5),
where [SYNC] and [SYNCM] are the size of SYNC and
SYNCM respectively in bit and e is the energy needed to send
one bit.

(5)

111

IV. THE CLUSTER MERGING ALGORITHM

A. The Simulation Environment
To validate our proposed protocol, we run extensive

simulations in MATLAB 2014 environment. We use the
parameters that are used in the performance evaluation of S-
MAC protocol in [2]. The sizes of SYNC and SYNC-M
packets are asumed to be 2 and 4 bytes based on the
information contained in the packets.

To investigate the worst scenario in the network, we
consider a chain topology network as shown in Fig. 5. We
compare the performance of our proposed protocol with the
performance of ID based global schedule protocol (SMAC-
L[7, 8]).

Fig. 5 Chain Topology

B. Results and Discussion
Fig. 6 shows the convergence time (i.e. the merging time)

of two clusters. It is the duration between the first time a node
in the merging cluster receives the SYNC of the destination
cluster and the time the merging concludes.

Fig. 6 Convergence Time in Chain Topology Network

The solid lines represent the simulation result and the
dashed lines represent the upper bound of the convergence
time as shown in equation (4). The result shows that our
proposed protocol has much smaller convergence time
(roughly 50 times smaller) compared to S-MACL protocol.

Fig. 7 Energy Spent during Convergence Time Chain Topology

In Fig. 7, we plot the energy spent by the network for
sending control packet during a merging process. Similar to
the previous figure, the solid lines represent the simulation
result and the dashed lines represent the expected value as
shown in equation (5). The result shows that even though the
offset based protocol has a bigger control packet size
compared to S-MACL, due to the smaller convergence time,
during the merging process it spends less energy than the id-
based protocol does. On average, in a chain network, the
energy spent for sending the control packets in our proposed
protocol is about 10 % of the one in S-MACL.

V. SUMMARY
This paper has presented the development of a global

sleeping schedule protocols in for a self-organizing WSN. We
proposed the use of the offset between two schedules as
winning criteria in the merging process to overcome the
problems resulted from the use of schedule ID and schedule
age for the winning criteria as proposed by the existing global
schedule protocols. We proposed a cluster merging algorithm,
in which, each time a border node discover a new cluster and
decides to join the cluster, it propagates its decision to its
entire cluster. We measure the performance of the proposed
protocol in term of the convergence time and the energy spent
during the merging process in a . The result shows that the
merging time in our proposed protocol is up to 50 times less
the existing global schedule protocol (S-MAC L [52]).
Moreover, during the merging process, our proposed protocol
saves up to 90% more energy than S-MACL.

[1] W. Ye, J. Heidemann, and D. Estrin, "An energy-efficient MAC

protocol for wireless sensor networks," in INFOCOM 2002. Twenty-
First Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, 2002, pp. 1567-1576.

[2] W. Ye, J. Heidemann, and D. Estrin, "Medium access control with
coordinated adaptive sleeping for wireless sensor networks,"
Networking, IEEE/ACM Transactions on, vol. 12, pp. 493-506, 2004.

[3] T. Van Dam and K. Langendoen, "An adaptive energy-efficient MAC
protocol for wireless sensor networks," in Proceedings of the 1st
international conference on Embedded networked sensor systems, 2003,
pp. 171-180.

[4] P. Lin, C. Qiao, and X. Wang, "Medium access control with a dynamic
duty cycle for sensor networks," in Wireless Communications and
Networking Conference, 2004. WCNC. 2004 IEEE, 2004, pp. 1534-
1539.

[5] P. Huang, L. Xiao, S. Soltani, M. W. Mutka, and N. Xi, "The evolution
of MAC protocols in wireless sensor networks: A survey," IEEE
Communications Surveys & Tutorials, vol. 15, pp. 101-120, 2013.

[6] Y. Li, W. Ye, and J. Heidemann, "Energy and latency control in low
duty cycle MAC protocols," in Wireless Communications and
Networking Conference, 2005 IEEE, 2005, pp. 676-682.

[7] S. Ghosh, P. Veeraraghavan, S. Singh, and L. Zhang, "Performance of a
wireless sensor network mac protocol with a global sleep schedule,"
International Journal of Multimedia and Ubiquitous Engineering, vol. 4,
pp. 99-114, 2009.

[8] L. Zhang, S. Ghosh, P. Veeraraghavan, and S. Singh, "An energy
efficient wireless sensor MAC protocol with global sleeping schedule,"
in Computer Science and its Applications, 2008. CSA'08. International
Symposium on, 2008, pp. 303-308.

10 15 20 25 30
10

1

10
2

10
3

10
4

Numbers of Nodes in the Network

C
on

ve
rg

en
ce

 T
im

e
(s

)

S-MACL
Offset Based

O(2*N*T)= 0(N*L)

O(N*10C)= 0(N*100 T)=0(N*50L)

10 15 20 25 30
10

-5

10
-4

10
-3

10
-2

Number of Nodes in the Network

E
ne

rg
y

fo
r S

en
di

ng
 C

on
tro

l P
ac

ke
t (

J)

Offset Based
S-MACL

112

Label Encoding Algorithm for MPLS Segment
Routing

Rabah Guedrez∗ Olivier Dugeon∗ Samer Lahoud† Géraldine Texier‡
∗Orange Labs, Lannion, France,

rabah.guedrez@orange.com, olivier.dugeon@orange.com
†*IRISA/Université de Rennes 1/Adopnet Team, Rennes, France, samer.lahoud@irisa.fr

‡IRISA/Télécom Bretagne/Adopnet Team, Rennes, France, geraldine.texier@telecom-bretagne.eu

Abstract—Segment Routing is a new architecture that leverages
the source routing mechanism to enhance packet forwarding in
networks. It is designed to operate over either an MPLS (SR-
MPLS) or an IPv6 control plane. SR-MPLS encodes a path as a
stack of labels inserted in the packet header by the ingress node.
This overhead may violate the Maximum SID Depth (MSD), the
equipment hardware limitation which indicates the maximum
number of labels an ingress node can push onto the packet
header. Currently, the MSD varies from 3 to 5 depending on the
equipment manufacturer. Therefore, the MSD value considerably
limits the number of paths that can be implemented with SR-
MPLS, leading to an inefficient network resource utilization
and possibly to congestion. We propose and analyze SR-LEA,
an algorithm for an efficient path label encoding that takes
advantage of the existing IGP shortest paths in the network.
The output of SR-LEA is the minimum label stack to express
SR-MPLS paths according to the MSD constraint. Therefore,
SR-LEA substantially slackens the impact of MSD and restores
the path diversity that MSD forbids in the network.

Index Terms—Segment Routing, MPLS, traffic engineering.

I. INTRODUCTION

Segment Routing (SR) is a new architecture standardized

by IETF SPRING working group [1]. It can be instantiated

over two existing data plane MPLS (SR-MPLS) [2] and IPv6

(SR-IPv6). In SR packet are forwarded using the source

routing mechanism: the path the packet has to go through

is encoded in its header. SR-MPLS is the central focus of

the IETF working groups, mainly because of the important

implications of service providers (SPs). The major advantage

of SR is to eliminate the per-flow states from the SP’s core

routers. In fact, a path is directly usable by any router; no

prior setup/signalization is required, unlike MPLS-TE where

a tunnel has to be signaled and maintained using protocols

such as the Resource Reservation Protocol Traffic Engineering

(RSVP-TE). In SR, only the ingress node has to maintain per-

flow states. Plus, SR architecture extends already deployed

IGP protocols (OSPF, IS-IS and BGP Link State) to exchange

SR information, revoking the need for a label distribution

protocol such as LDP or RSVP-TE for SR-MPLS.

A SR Path (SRP) is encoded as list of segments identifiers

(SIDs), each SID associated with a data plane forwarding

instruction e.g., forward the packet down the IGP shortest path

or forward to a specific exit interface.

In SR-MPLS, a SID is represented by a 20-bit label. The

SID is processed using the three standard MPLS operations

POP, PUSH, and SWAP. A SRP is encoded as a stack of

labels that the ingress router pushes onto the packet header. In

fact, pushing more than one was supported since the early

version of MPLS standards, the label stack has been used

for multiple use cases: hierarchical tunnels, Layer 2 Virtual

Private Network (L2VPN), and Layer 3 VPN. However, those

use cases require a small number of labels, for example, a

scenario of L2VPN or L3VPN requires only simultaneously

two labels: the tunnel’s label and VPN’s label. To take full

advantage of SR’s potential, a router has to be able to push

a larger number of labels. Unfortunately, current hardware

suffers from physical limitation of the number of labels that

can be used simultaneously [3].

In fact, in order to achieve wire-speed packet processing,

hardware vendors use Application-specific integrated circuit

(ASIC)s. They are designed to perform specific tasks very effi-

ciently compared to general purpose processors. Consequently,

they are limited in the size and the type of the operations they

can perform. For example, the PUSH operation is implemented

using dedicated ASICs that limit the number of labels they can

push onto the packet header, this limitation in SR is known

as the Maximum SID Depth (MSD). Therefore, an efficient

label encoding able to reduce the labels stack size is essential

to alleviate the MSD impact. In addition, reducing the label

stack saves space and enables to carry other types of labels.

In this paper, we propose two label encoding algorithms

for SR-MPLS paths. Both algorithms compute the minimum

number of labels to express a SRP. We evaluate their

performances over several real-world network topologies.

The results are presented in term of the average number of

labels to express a set network paths. In addition, we study

their efficiency in alleviating the impact of the MSD limitation.

II. RELATED WORKS

In [4], Giorgetti et al. propose two SRP encoding algorithms

that produce two label stacks of the equal size for the same

SRP. Both algorithms use only Node-SIDs to encode a SRP.

Unfortunately, in some cases, the resulting label stack may not

correspond to the initial path. In fact, the proposed algorithms

work well in a network where the shortest path between two978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

113

neighbors is their direct common link, however in reality, a

network administrator may attribute higher costs to particular

links resulting in the direct link not being the shortest path

between two nodes. In [5], the network graph is augmented by

inserting a virtual link for every pair of nodes in addition to the

existing physical links. The virtual links represent the Equal-

Cost Multiple Paths (ECMP)s between two nodes. The path

computation is performed over this new graph. The proposed

label encoding algorithm replaces a virtual link by the tail’s

end node Node-SID whilst the physical link is replaced by

an Adj-SID. This proposition suffers mainly from scalability

issues due to the size of the new graph (a 1000 nodes graph

results in a new graph with approximately half million links).

III. SEGMENT IDENTIFICATION (SID)

A SRP can be encoded using any combination of SIDs (i.e.,
local or global) as long as the nodes that the packet traverses

own a forwarding instruction to reach the egress node. In

SR-MPLS, a node advertises a Segment Routing Global Bloc

(SRGB). The SRGB is the range of labels allocated for SR

(e.g., [1000, 2000]). A global SID takes its value within the

SRGB (e.g., 1100), all the SR nodes install a forwarding

instruction associated with each global SIDs. A local SID takes

its value outside the SRGB (e.g., 3000); it is advertised in

the SR domain but only the node advertising it possesses an

associated forwarding instruction. In this work, we focus on

two SIDs types: Node-SID and Adj-SID, we do not consider

other SID types such as service SID, BGP peering SIDs, etc.

We propose two SRP encoding algorithms to produce a

label stack composed of two SID types: Node-SID and Adj-

SID. Each SID has a pre-installed forwarding plane instruction

associated with it. ANode-SID is a label associated with the

SR node i.e., attached to the loopback address. When a SR

node receives a packet with a Node-SID as a top label, it

forwards it on the IGP shortest path to reach the node that

owns that Node-SID, the node owning the Node-SID pops

the label before inspecting the next label in the stack. An

Adjacency SID (Adj-SID) is the label attached to an IGP

adjacency i.e., the interface to reach the neighbor router. It

is used to enforce packet forwarding through a specific exit

interface. By default, an Adj-SID is advertised as a local

segment, it can also be advertised as global if desired.

IV. SEGMENT ROUTING PATH ENCODING

The SRP length varies depending on the network diam-

eter, QoS requirements, and network resources availability.

Accordingly, the label stack to express a SRP can be very

big, resulting in a label stack size that may exceed the ingress

MSD. This not only inhibits the use of such paths, but also

the use of other label types. Therefore, an efficient encoding

algorithm is required to minimize the size of the label stack.

A source routed path is said to be strict if all the links and

nodes the packet will go through are listed in the its header.

On the contrary, a path is said to be loose if its header contains

only a subset of the links and nodes the packet will pass

through. SRPs can be expressed exclusively with Node-SIDs,

local Adj-SIDs, Global Adj-SIDs or a combination of those

SID types. In this paper, a SRP is strict if it is encoded using

only Adj-SIDs, loose otherwise. A SRP encoded with local

Adj-SID is a strict path, because the Adj-SIDs are local to the

nodes advertising them have the forwarding entries associated

with them. Therefore, the packet has to go through only the

nodes that own the Adj-SIDs. A SRP encoded exclusively with

Node-SID or a combination of Node-SIDs and Adj-SIDs is a

loose path. Two successive Node-SIDs in the label stack can

be separated by one or more network nodes. The label stack

expresses the initial path in the current state of the network.

However, if the IGP metric between two SR nodes changes, the

label stack will not represent the initial path anymore. A SRP

encoded with global Adj-SIDs can be either strict or loose: it

is strict if all the links that the packet has to go through are

listed in the label stack, loose otherwise.

We propose two SRP path encoding algorithms that com-

putes label stack as a combination of Node-SIDs and Adj-

SIDs. In current SR deployments, Adj-SIDs are advertised

as local segments. In that case, we use the SR paths Label

Encoding Algorithm (SR-LEA) to compute the minimum label

stack. However, as stated in the standards, Adj-SIDs can also

be advertised as global segments. Therefore, the minimum

label stack is computed using the SR-LEA-A Algorithm.

Let us consider the topology detailed in Fig. 1. All the nodes

allocate the same SRGB: [1000, 2000]. The computed path

to satisfy the Quality of Service (QoS) requirements for the

traffic sent by CE1 to CE2 is P: PE1 → P2 → P3 → P7 →
P6 → PE5, encoded and pushed as a stack of labels onto

flow’s packets by PE1.

A. Strict Encoding

A strict encoding of the SRP is the worst case scenario, as

it generates the maximum label stack to encode a SRP. Two

approaches may be applied. The first one uses exclusively

Node-SIDs to encode a SRP by replacing each node in the

SRP by its Node-SID. This approach suffers from the same

problem as in [4] and is valid only if the shortest path is

expressed by direct links between all the neighbors in the

path. For example, a strict encoding of path P results in the

following label stack: {Node-SID PE1, Node-SID P2, Node-
SID P3, Node-SID P7, Node-SID P6, Node-SID PE5}. This

label stack does not express path P. The packets at P3 will

not be sent to P7 over the direct link because it is not the

shortest path. The second one uses exclusively Adj-SIDs to

encode a SRP. At each node the exit interface is replaced

with the associated Adj-SID, this produces a label stack that

corresponds to requested path. As shown in Fig. 2, a strict

encoding of path P results in the following label stack: {Adj-
SID PE1-P2, Adj-SID P2-P3, Adj-SID P3-P7, Adj-SID P7-
P6, Adj-SID P6-PE5} = [5012, 5023, 5037, 5076, 5065]. Each

node pops the Adj-SID that it owns before forwarding the

packet through the chosen interface.

Strict encoding can be essential to accomplish certain tasks

such as Operations, Administration, and Maintenance (OAM).

However, a SP network can be composed of hundreds or even

114

thousands of nodes. Using strict encoding especially for long

paths is not always possible as it violates the MSD constraint,

also it adds a considerable overhead to packets.

B. SR-LEA Algorithm

We propose the SR-LEA algorithm to compute the min-

imum label stack to encode a SRP when the Adj-SID are

advertised as local segments. Its input is the initial path

expressed as a list of IP addresses manually or computed by a

centralized entity such as a Software Defined Network (SDN)

controller [6] or by a Path Computation Element (PCE)[7].

SR-LEA makes use of existing IGP shortest paths, which are

installed as forwarding instructions by the SR-MPLS control

plane. The resulting label stack is a combination of Node-SIDs

and local Adj-SIDs. It represents exactly the initially computed

path in the current state of the network.

SR-LEA has two main steps detailed by the pseudocode

in Algorithm 1. First, the SRP is spliced into a succession

of shortest paths (subpaths), the container A holds the SRP

splices, whereas B will hold the potential SRP splice. Second,

each subpath composed of three or more nodes is replaced by

its tail’s end node Node-SID, whilst each two nodes subpath

is replaced by the Adj-SID between those two nodes. The best

case is that the requested SRP follows the shortest path SPF.

Consequently, SR-LEA outputs a label stack composed of one

label: the egress node’s Node-SID.

In order to encode the path P using SR-LEA, we

follow the two steps of the algorithm. First, the sub-

paths that compose the path P are computed and saved

in A: {(PE1, P2, P3), (P3, P7), (P7, P6, PE5)}. Finally

each subpath in A is replaced with the appropriate SID.

{PE1, P2, P3} is composed of three nodes, it is replaced

by P3’s Node-SID (1003). (P3, P7) is composed of two

nodes and is replaced by the Adj-SID P3-P7 (5037).

{P7, P6, PE5} is composed of three nodes. Therefore, it is

replaced by PE5’s Node-SID (1005).

The resulting label stack is [1003, 5037, 1005]. As shown

in Fig. 3, a packet follows the IGP shortest path to reach P3
using label 1003 (i.e., P3’s Node-SID). At P3, the Adj-SID

5037 is used to enforce the packet through the link P3-P7.

At P7, label 1005 (i.e., PE5’s Node-SID) is used to forward

the packet down the IGP shortest path to reach PE5. At PE5,

label 1005 is popped and the IP packet is forwarded to CE2.

C. SR-LEA-A

In the segment routing architecture, it is possible to advertise

an adjacency (i.e., an interface) as a global segment, rather than

advertising it as a local segment. Accordingly, the adjacency

becomes routable in the SR domain. In comparison to the

local Adj-SID, all the SR nodes forward the packet using the

IGP shortest path to reach the node that advertises the global

Adj-SID, then the node that owns the adjacency forwards the

packet to the exit interface associated with the global Adj-SID.

To take advantage of this possibility, we propose SR-LEA with

global Adj-SIDs (SR-LEA-A). When Adj-SIDs are advertised

as global segments it is the SR-LEA-A that computes the

Algorithm 1 Efficient Label Encoding algorithm

INPUT: The SRP expressed as a list of IP addresses

OUTPUT: labelStack the SRP minimum label stack.

Initialization:
G: Graph of the network topology

A = { }: Holds the list of the SRP subpaths.

B = []: Used to construct a subpath, when no IP addresses

can be added it is moved to A.

SPF = Dijkstra(SRP [1], SRP [end]): The shortest path

between the source and destination of the SRP.

labelStack = []

STEP 1: Computation of the SRP subpaths.

1: i = 1: Points to the current node of the SRP.

2: k = length(SRP) : Points to the last node of the

candidate subpath.

3: while i <= length(SRP) do
4: push(B, SRP [i])
5: if i == length(SRP) then
6: push(A, B)
7: else if B � SPF then
8: if length(B) == 2 then
9: if k > i then

10: k −−
11: B = B[1]
12: SPF = Dijkstra(G, B[1], SRP [k])
13: continue
14: else
15: push(A, B)
16: B = B[end]
17: SPF = Djikstra(G, B[1], SRP [k])
18: end if
19: else
20: push(A, B[1 : end− 1])
21: SPF = Djikstra(G, B[end− 1], SRP [k])
22: B = []
23: i−−
24: continue
25: end if
26: end if
27: i++
28: k = length(SRP)
29: end while

STEP 2: The construction of the label stack.

30: for i ← 1 To Size(A) do
31: if length(A[i]) > 2 then
32: push(labelStack, NodeSID(A[i][end]))
33: else
34: push(labelStack, AdjSID(A[i]))
35: end if
36: end for

115

Fig. 1: Reference network topology, all the links costs is

10 except the link P3-P7 is attributed cost 100.

Fig. 2: The SRP to connect CE1 and CE2 is expressed

as a label stack using the strict algorithm.

Fig. 3: The SRP to connect CE1 and CE2 is expressed

as a label stack computed using the SR-LEA algorithm.

Fig. 4: The SRP to connect CE1 and CE2 is expressed as

a label stack computed using the SR-LEA-A algorithm.

minimum label stack. In SR-LEA-A, we suppose that the Adj-

SIDs are advertised as global segments, the resulting label

stack is either smaller or equal to the SR-LEA’s one. Both

algorithms share step 1 detailed in Algorithm 1. In SR-LEA-

A, as detailed by the pseudocode in Algorithm 2: a subpath

of size � 3 followed by one of size = 2 are encoded using

one label: the global Adj-SID between the last node in the

first path and the first node in the second one. Compared to

SR-LEA, two labels are used to encode the two subpaths.

Algorithm 2 Efficient Label Encoding with global Adj-SIDs

STEP 1 Same as for SR-LEA

STEP 2
1: for i ← 1 To Size(A) do
2: if length(A[i]) > 2 then
3: if length(A[i+ 1]) == 2 then
4: push(labelStack, GlobalAdjSID(

A[i][end], A[i+ 1][1]))
5: p+ = 2
6: continue
7: end if
8: push(labelStack,NodeSID(A[i][end]))
9: else

10: push(labelStack,AdjSID(A[i]))
11: end if
12: end for

In the example described in Fig. 4, P3 advertises

its adjacency with P7 as the global SID 1037, the

list A contains the following subpaths: {(PE1, P2, P3),
(P3, P7), (P7, P6, PE5)}. Accordingly, the two subpaths

{(PE1, P2, P3), (P3, P7)} are encoded using the global Adj-

SID P3 − P7 : 1037. Consequently, the label stack for the

path P is [1037, 1004]. At PE1 and P2, based on 1037 the

packet is forwarded down the shortest path to reach P3. At

P3, the top label 1037 is popped and the packet forwarded

through the interface that connects P3 to P7. At P7, based

on the PE5’s Node-SID (i.e., 1005) the packet is forwarded

through the shortest path to reach PE5.

V. SIMULATION RESULTS

In order to better evaluate the performance of the pro-

posed algorithms, we experimented on several SNDlib network

topologies [8]. To get a representative set of paths, for each

topology, we consider a sample bandwidth demand matrix D.

As detailed in Table I, we solve the multicommodity flow

problem.The result is the optimal set of paths to satisfy the

demand matrix. The paths are then encoded using the strict

Adj-SID, SR-LEA and SR-LEA-A.

Both of our algorithms compute the minimum label stack to

express a SRP, SR-LEA when the Adj-SIDs are local segments

and SR-LEA-A when they are global. The comparison is made

between the strict encoding, the SR-LEA and the SR-LEA-

A algorithms. For each topology, using the three encoding

116

Topology # vertices # edges # demands
Geant 22 36 431
Albilene 12 18 131
Brain 161 166 9045
Germany50 50 80 1270
Nobel-germany 17 26 248

TABLE I: Parameters for each topology

Fig. 5: Comparison of the average label stack size generated

using a strict encoding, SR-LEA and SR-LEA-A algorithms.

algorithms detailed previously, we compute the average label

stack size and the percentage of network paths encoded with

a label stack size ≤ MSD.

Fig. 5 illustrates the per-topology average label stack size

variation depending on the topology and the encoding algo-

rithm. We observe that the strict encoding always produces a

large label stack. This was expected because no optimization

on the label stack size is performed, rather a one to one

mapping of the physical links to the label stack. We note that

for some paths the label stack reaches up to 14 labels. SR-LEA

reduces the size of the label stack by 52% to 65% compared

to the strict encoding; the observed gain varies depending on

the network design and diameter. SR-LEA-A gives the best

results. Notably, compared to the strict encoding, the average

label stack size is reduced by 57% to 67%.

The MSD is a local characteristic of a router, it varies

from one equipment vendor to another. In an architecture

where the path computation is delegated by the SR node to a

centralized entity such as a SDN controller or a PCE [3]. This

limitation makes long paths in the network unusable and forces

the network traffic to follow only short paths which cause

inefficient traffic distribution or worse: network congestion.

For this study, we fixed the MSD to 5 labels, which is the

value announced currently by the major equipment vendors.

Fig. 6, illustrates the variation of the percentage of the

useable paths in each topology. With a strict encoding, the

percentage of useable paths can be very low e.g., 37% for

Germany50 topology. Using SR-LEA, increases considerably

the amount of useable paths e.g., from 37% to 97% for

Germany50 topology. However, encoding the label stack

using SR-LEA-A gives the best results, as it increases the

number of usable paths from 37% to 99%, a gain of 2% to

4% more than SR-LEA. We expect the difference to be more

Fig. 6: Paths with a label stack size ≤ MSD (MSD = 5).

considerable on topologies with bigger diameters.
The proposed algorithms are very efficient to reduce the

label stack size, but also they limit considerably the impact of

the MSD limitation. However, they do not eliminate the MSD

problem, as we still have paths that can not be expressed with

a label stack smaller than the MSD.

VI. CONCLUSION

In this work, we proposed two SR-MPLS paths label

encoding algorithms, namely SR-LEA and SR-LEA-A. Both

algorithms compute the minimum label stack to express a

segment routing path. Their performance has been evaluated

over real topologies. In addition, we prove that they are

efficient in alleviating the impact of the MSD. For future

work, a PCE implementation of the proposed algorithms is

underdevelopment. We are considering the possibility to use

the two algorithms to encode Topology Independent Loop-Free

Alternate (TI-LFA) Fast Reroute post-convergence paths.

REFERENCES

[1] C. Filsfils, S. Previdi, B. Decraene, S. Litkowski, and R. Shakir,
“Segment Routing Architecture,” Internet Engineering Task Force,
Internet-Draft draft-ietf-spring-segment-routing-09, Jul. 2016, work in
Progress. [Online]. Available: https://tools.ietf.org/html/draft-ietf-spring-
segment-routing-09

[2] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Francois,
“The segment routing architecture,” in 2015 IEEE Global Communica-
tions Conference (GLOBECOM). IEEE, 2015, pp. 1–6.

[3] S. Sivabalan, J. Medved, C. Filsfils, V. Lopez, J. Tantsura, W. Henderickx,
E. Crabbe, and J. Hardwick, “PCEP Extensions for Segment
Routing,” Internet Engineering Task Force, Internet-Draft draft-ietf-pce-
segment-routing-07, Mar. 2016, work in Progress. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-pce-segment-routing-07

[4] A. Giorgetti, P. Castoldi, F. Cugini, J. Nijhof, F. Lazzeri, and G. Bruno,
“Path encoding in segment routing,” in 2015 IEEE Global Communica-
tions Conference (GLOBECOM). IEEE, 2015, pp. 1–6.

[5] F. Lazzeri, G. Bruno, J. Nijhof, A. Giorgetti, and P. Castoldi, “Efficient
label encoding in segment-routing enabled optical networks,” in Optical
Network Design and Modeling (ONDM), 2015 International Conference
on. IEEE, 2015, pp. 34–38.

[6] A. Sgambelluri, A. Giorgetti, F. Cugini, G. Bruno, F. Lazzeri, and P. Cas-
toldi, “First demonstration of sdn-based segment routing in multi-layer
networks,” in Optical Fiber Communications Conference and Exhibition
(OFC), 2015. IEEE, 2015, pp. 1–3.

[7] A. Sgambelluri, F. Paolucci, A. Giorgetti, F. Cugini, and P. Castoldi, “Sdn
and pce implementations for segment routing,” in Networks and Optical
Communications-(NOC), 2015 20th European Conference on. IEEE,
2015, pp. 1–4.

[8] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly,
“SNDlib 1.0–Survivable Network Design Library,” Networks,
vol. 55, no. 3, pp. 276–286, 2010. [Online]. Available:
http://www3.interscience.wiley.com/journal/122653325/abstract

117

Named Data Networking for Tactical
Communication Environments

M. Tamer Refaei, Sean Ha, Zac Cavallero, Creighton Hager
The MITRE Corporation

Abstract—Tactical communication environments are charac-
terized by frequent disruptions, intermittent connectivity, and
low bandwidth (DIL) due to the unfavorable, unfriendly, and
sometimes very dynamic network conditions. Nevertheless, there
is still an expectation that tactical applications can communicate
seamlessly despite the challenging communication environment.
In this paper, we propose and evaluate the use of Named
Data Networking (NDN) in tactical communication environments.
NDN has inherent functionalities that makes it more robust in a
DIL environment in comparison to IP. In this work, we consider a
notional tactical environment and compare network performance
under IP versus NDN. In our evaluation, we consider different
levels of network disruption and different data dissemination
mechanisms. Our results show that NDN can provide significant
improvement gains in network performance that is superior to
IP, under similar network conditions.

I. INTRODUCTION

The IP communication model has been shown to perform

poorly in DIL environments, like Military tactical networks

[1]. By design, IP assumes a conversational communication

model, which requires the creation and maintenance of end-

to-end routes between senders and receivers. In a DIL environ-

ment, these assumptions do not hold. End-to-end connectivity

may not exist at all or may not exist long enough to form

reliable end-to-end routes. In this paper, we consider the use of

a data-centric communication model for DIL environments. In

particular, we use Named Data Networking (NDN) [2]. NDN

is a proposed architecture for the next generation Internet that

shifts the network focus away from addressing and onto data.

NDN’s objective is to move away from IP’s host-centric

model and towards a more dynamic and intelligent distribution

network. This is accomplished through in-network caching,

data naming, stateful forwarding and securing content. These

built in functionalities can enhance network efficiency and

robustness in DIL environments. Caching in NDN is a built-in

network service (as opposed to an overlay service in Content

Distribution Networks). Data requested by a consumer can

be delivered from the closest cache as opposed to from its

original producer. This brings content closer to the consumer,

improves network performance, and enables robustness in the

face of disruption. Moreover, NDN looks at separating data

from its physical network location by assigning unique names

to data. A client requests a specific piece of data by name

instead of specifying a content provider address where the

data resides. This eliminates the need to maintain end-to-end

routes, which can be a significant source of overhead in DIL

environments (considering the low-bandwidth and frequently

disrupted links). Since NDN is data centric, the routing and

forwarding functionalities in NDN are performed on data

names rather than host-specific IP addresses. Forwarding in

NDN is stateful, which enables NDN to perform much more

intelligent forwarding decisions than IP (which is stateless).

This functionality can be used to enable access control (only

allow data with certain names to be forwarded), intelligent

caching (cache and forward data based on its priority, which

can be name-driven), as well as robustness to disruption (cache

data based on known delay/disruption on the incoming link).

Finally, NDN makes security a built-in service by having

producers of data sign their data. This eliminates the need

for securing channels, ensures that data cannot be forged, and

securely attributes data to its source.

In this paper, we consider the use of NDN in a DIL

environment represented in a notional tactical communication

environment. We compare the performance of IP to that

of NDN under different levels of network disruption and

using different types of data dissemination models (unicast

and multicast). We show how NDN can provide significant

robustness against network disruption in comparison to IP.

We also show how NDN can mix the unicast and multicast

data dissemination models to achieve localized robustness to

disruption.

This paper is organized as follows. In section II, we provide

an overview of NDN and a summary of related work. In

section III, we describe our network environment, traffic

model, and evaluation metrics. We discuss the results of our

evaluation in section IV and the impact of the size of NDN’s

cache store on network performance. We conclude in section

V.

II. NAMED DATA NETWORKS

NDN is a relatively new approach to disseminating data

across a network. It provides an architectural approach to

requesting data across a network without specifying a fixed

network endpoint. There are three main network components

in an NDN environment: producers, consumers, and for-

warders. Producers of data objects are responsible for giving

each a unique name that identifies it. A consumer requests any

data object by its given name. Forwarders forward requests and

data objects between consumers and producers. A data object

can be cached within the network while being forwarded. This

enables subsequent requests for the same data to be served

from the network rather than the data’s producer.978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

118

NDN implements two types of packets: interest packets and

data packets. Consumers request data by name by sending

interest packets. An interest packet includes the name of

the data object requested and possibly some information for

filtering against the data to match. A forwarder that receives

an interest packet, and has a corresponding data object cached,

can respond with a data packet that includes this data object. If

not, it forwards the interest packet to other NDN forwarder(s)

that may know how to get the data. If the data is not

cached anywhere, the interest packet will eventually reach

its producer, which generates a data packet in response. The

data packet is routed along the reverse route traversed by

the interest packet. Each forwarder along the path may cache

the data packet in its local store. Caching allows subsequent

requests of the same data object to be served from caches

rather than by the data producer.

There has been a number of research efforts on resilient

communication for DIL environments. Some approaches at-

tempted to adapt IP protocols and services to disruption.

A number of research efforts leveraged overlay protocols

such as Disruption Tolerant Networking (DTN) [3], which is

specifically designed to handle network disruption. There were

also some efforts that explored the use of Information Centric

Networks in DIL environments [4] [5] [6]. An NDN-based

architecture was introduced for vehicular ad-hoc networks

(VANETs) in [7], which shares some of the characteristics

of DIL environments. Our primary focus in this paper is to

evaluate NDN in particular in a DIL environment.

III. NDN VS. IP IN DISRUPTED ENVIRONMENTS

In this section, we compare NDN’s performance against that

of IP. We discuss the characteristics of the evaluation network

environment in the following subsections.

A. Network Components

We utilized the notional tactical communication network

that is shown in Figure 1. We emulated this network using

CORE (Common Open Research Emulator) [8]. The topology

includes the following network components:

• Two shore nodes and two ships (shown inside squares)

that function as consumers of information.

• Five High Mobility Multipurpose Wheeled Vehicle

(HMMWV) that function as producers. The vehicles will

produce traffic and send it to the shore nodes.

• Two relay ships deployed close to the producers. They

will function as static relays for traffic.

• Two UAVs that move in a circular path (shown as

a dashed circle) to provide connectivity between the

HMMWVs and the ships (and eventually, an end-to-end

path between consumers and producers).

B. Network Connectivity

In the network environment used, the shore nodes and the

relay ships are interconnected by a satellite. The data rate on

all links to the satellite is 512Kbps and the delay is 250ms.

To account for the environmental/adversarial effects typically

Fig. 1: Network Topology

experienced in tactical networks, the links from the satellite

to the ship relay nodes have a 10% loss. The UAVs provide

disrupted end-to-end connectivity between the HMMWVs and

the ship relay nodes through their circular mobility path shown

in Figure 1.

To realize different levels of disruption, we use 2 different

UAV mobility models.

• Slightly Disrupted: The UAVs are reliably connected to

the relay ships but their layer 1 and 2 connectivity to the

HMMWVs is disrupted 10% of the time. Note that the

layer 3 connectivity is expected to be worse due to the

time needed for routing to converge.

• Moderately Disrupted: The connectivity between the

UAVs and both the relay ships and the HMMWVs is

disrupted. Layer 1 and 2 connectivity between the relay

ships and the HMMWVs through the UAVs is disrupted

70% of the time. Layer 3 end-to-end routes between

consumers and producers never converge in this model.

The consumers were set up to have the satellite as their

gateway. The rest of the nodes in the network run the Opti-

mized Link State Routing (OLSR) [9] protocol. For multicast

scenarios, the Simplified Multicast Forwarding (SMF) mech-

anism was used for forwarding [10].

C. Traffic Model

For the IP environments, we use Advanced Trivial File

Transfer Protocol (ATFTP). Each HMMWV runs an ATFTP

server that hosts 30 files (a total of 150 files), 15KBytes each.

Each shore node runs an ATFTP client and attempts to get

as many of the 150 files from the HMMWVs as possible in

random order within 30 minutes. The ATFTP data chunk size

was set to 1400 bytes.

For the NDN environments, we use the same 150 files but

utilized NDN for retrieval. Each file is named uniquely as

/ndn/node-name/file-number. The NDN chunk size was set to

1400 bytes (i.e. 11 chunks per file).

For both the IP and the NDN environments, we utilized two

data dissemination models:

119

TABLE I: Data Dissemination Configurations

Model Traffic
Scenario IP NDN Unicast Multicast

SC.1 X X
SC.2 X X
SC.3 X X
SC.4 X X

• Unicast: In the IP environment, all ATFTP traffic is

sent as unicast traffic. In the NDN environment, we

utilized unicast transports (i.e. faces) between all the

NDN routers.

• Multicast: Using multicast for dissemination of data

eliminates the dependency on the state of layer 3 routing.

In the IP environment, all ATFTP traffic is sent as

multicast traffic. In the NDN environment, layer 2 and

multicast transports were utilized in the disrupted portions

of the network (between the relay nodes, UAVs, and the

HMMWVs).

The list of all scenarios considered is shown in Table I.

D. Evaluation Metrics

We utilized 3 metrics to assess and compare the perfor-

mance of all scenarios considered:

• Delivery Delay: This metric measures the delay of re-

trieving files from producers at the consumers.

• Delivery Ratio: This metric assesses the ratio of files that

were received successfully at the consumers.

• Link Utilization: This metric assesses how much data

was sent over some of the challenged/critical links within

the network. This includes the links from the satellite to

the relay ships (Sat-R1, Sat-R2), from the relay ships to

the UAVs (R1-UAV, R2-UAV), and from the UAVs to the

HMMWVs (UAV1-HMV, UAV2-HMV). We ignored both

NDN interest packets and ATFTP control traffic in the

assessment of link utilization since both result in roughly

the same amount of traffic.

We ran each scenario 30 times, with each run having a

duration of 30 minutes. All of the results discussed will be

based on averages over the 30 runs.

IV. EVALUATION

In this section, we introduce the results of our evaluation

from the two scenarios discussed in section III-B.

A. Slightly Disrupted

In this connectivity environment, we only considered SC.1

and SC.3 since the network is relatively stable compared to

the moderate mobility model. In SC.1, the delivery ratio was

limited to 30%. The disruption in layer 1 and 2 was significant

enough to reduce the ability of OLSR to establish stable end-

to-end routes. End-to-end routes were possible about 5% of

the time, which had a significant impact on the operation of

ATFTP. SC.3 on the other hand had a 99.4% delivery ratio.

NDN’s in-network caching allows for serving data that was

Fig. 2: SC.1 and SC.2 Delivery Delay

Fig. 3: SC.3 and SC.4 Delivery Delay

previously retrieved and cached, which improved robustness

to disruption.

The delivery delay for SC.1 is shown in Figure 2. Each

series corresponds to the average delivery delay of files as

they get delivered at the consumers. Note that the series are

shown as a stacked area graph and that for files that were never

retrieved (within the 30 minute bound) the graph did not show

any value (e.g. files with indices higher than 21). The figure

shows an average of 135 seconds delivery delay (63 second

standard deviation). The delivery delay for SC.3 (shown in

Figure 3) averaged 23 seconds (22 second standard deviation).

A good portion on the files (about 1
3) were delivered from

caches, which significantly reduced delivery delay. In fact, the

delivery delay for the first 1
3 of the files averaged 50 seconds

with an 18 second standard deviation. For the second 1
3 , it

dropped to 14 seconds with a 5 second standard deviation.

For the final 1
3 , it was 6 seconds with a 1 second standard

deviation.

B. Moderately Disrupted

In this connectivity environment, we only considered SC.2

and SC.4 since layer routes failed to converge. The delivery

ratio was 30% for SC.2 and about 88% for SC.4. The average

delay for SC.2 was 137 seconds, while SC.4 scored 33

seconds. Once again, the disrupted network was able to benefit

from NDN’s in-network caching. In addition, NDN’s data

120

Fig. 4: Link Utilization/File Delivery Ratio

TABLE II: Impact of Cache Size

CacheSize
TotalDataSize

Avg. Delivery Delay (sec) File Delivery Ratio

>100% 23 99.6%
50% 46 99.4 %
25% 64 80 %

centric model allowed for using unicast between NDN nodes

in the relatively stable portion of the network (between shore,

satellite, and ship relays) while using multicast in the disrupted

portion (ship relays, UAV, and HMMWV nodes). This reduced

link utilization as shown in Figure 4 without compromising

delivery ratio.

Finally, Figure 4 shows the link utilization on some of the

challenged links together with file delivery ratios. It is clear

from the figure that using NDN reduces the amount of data

moved across links (by fetching data from caches) without

compromising file delivery ratio, which reflects NDN’s effi-

ciency. In the unicast scenarios, NDN resulted in reducing the

data moved on the links between the satellite and the relay

nodes by about 35%. In the multicast scenario, that reduction

was about 40%. The delivery ratio in both was more than 88%,

more than double the delivery ratio in the IP environments.

C. Impact of Cache Size

In the scenarios considered so far, we used a cache size

of about 500MB, which is much larger than the total data

generated (about 2.25MB). To assess the impact of the cache

size on NDN’s performance, we re-ran SC.3 with smaller

cache sizes: half of the total data that is generated and a quarter

of the data generated. The results (shown in Table II) show that

even with the cache store size set to 25% of the total generated

data, NDN still beats IP delivering 80% of all files within 30

minutes with an average delivery delay of 64 seconds per file.

V. CONCLUSION AND FUTURE WORK

In this work, we evaluated the use of NDN in tactical com-

munication networks. The in-network caching functionality of

NDN can provide significant robustness against disruption in

an incremental manner. This can be done by using unicast

for data dissemination in the stable portions of the network

and selectively utilizing multicast data dissemination for more

disrupted portions of the network. In the future, we plan to

explore the use of Software Defined Networks with NDN for

tactical network environments where mobility is predictable

or scheduled. In these environments, a priori knowledge of

disruptions can be leveraged synchronously between NDN and

SDN to improve resiliency to disruption.

ACKNOWLEDGMENT

This work was sponsored by the MITRE Technology Pro-

gram as a MITRE Sponsored Research (MSR) Project.

REFERENCES

[1] K. Scott et al. “Robust communications for dis-

connected, intermittent, low-bandwidth (DIL) environ-

ments”. In: Military Communications Conference, 2011
- MILCOM 2011. Nov. 2011, pp. 1009–1014. DOI: 10.

1109/MILCOM.2011.6127428.

[2] Lixia Zhang et al. “Named Data Networking”. In:

SIGCOMM Comput. Commun. Rev. 44.3 (July 2014),

pp. 66–73. ISSN: 0146-4833. DOI: 10.1145/2656877.

2656887. URL: http://doi.acm.org/10.1145/2656877.

2656887.

[3] Kevin Fall. “A Delay-tolerant Network Architecture

for Challenged Internets”. In: Proceedings of the 2003
Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications.

SIGCOMM ’03. Karlsruhe, Germany: ACM, 2003,

pp. 27–34. ISBN: 1-58113-735-4. DOI: 10.1145/863955.

863960. URL: http : / / doi . acm . org / 10 . 1145 / 863955 .

863960.

[4] J. Seedorf et al. “The Benefit of Information Centric

Networking for Enabling Communications in Disas-

ter Scenarios”. In: 2015 IEEE Globecom Workshops
(GC Wkshps). Dec. 2015, pp. 1–7. DOI: 10 . 1109 /

GLOCOMW.2015.7414086.

[5] You Lu et al. “Information-centric delay-tolerant mobile

ad-hoc networks”. In: Computer Communications Work-
shops (INFOCOM WKSHPS), 2014 IEEE Conference
on. IEEE. 2014, pp. 428–433.

[6] S. Y. Oh, D. Lau, and M. Gerla. “Content Centric

Networking in tactical and emergency MANETs”. In:

Wireless Days (WD), 2010 IFIP. Oct. 2010, pp. 1–5.

DOI: 10.1109/WD.2010.5657708.

[7] Giulio Grassi et al. “ACM HotMobile 2013 poster:

vehicular inter-networking via named data”. In: ACM
SIGMOBILE Mobile Computing and Communications
Review 17.3 (2013), pp. 23–24.

[8] Common Open Research Emulator (CORE). URL: http:

//www.nrl.navy.mil/itd/ncs/products/core.

[9] Optimized Link State Routing. URL: https://tools.ietf.

org/html/rfc7181.

[10] Simplified Multicast Forwarding. URL: https://tools.ietf.

org/html/rfc6621.

121

Reducing the Latency-Tail of Short-Lived Flows:
Adding Forward Error Correction in Data Centers

Klaus-Tycho Foerster, Demian Jaeger, David Stolz, and Roger Wattenhofer
ETH Zurich, Switzerland

{foklaus, jaegerde, stolzda, wattenhofer}@ethz.ch

Abstract—TCP handles packet loss in the network by re-
transmitting lost packets, which in turn increases latency. Many
connections in data centers are short-lived and consist only of
a few packets (e.g., RPCs). Such connections suffer dispropor-
tionately from packet retransmissions. We address this issue by
introducing a new transport layer protocol called ATP: ATP
uses ample forward error correction at the beginning of a
connection, allowing short-lived flows to recover from packet loss
without retransmissions – but at the same time not congesting
long-lived flows. Our experiments show that in an environment
with background traffic, the latency’s 99th percentile can be
reduced by a factor of almost 20 while being fair to other TCP
connections.

Index Terms—FEC, Latency Tail, TCP, Data Centers

I. INTRODUCTION

When Microsoft Research examined the traffic of 1500

servers in a cluster for data mining [1], they found that while

more than 50 % of all the flows did not last for more than

100 ms, they did not contribute to more than 1 % of the

transferred data. Many flows were transmitting at a small rate,

50 % at 10 kB/s or less (cf. also [2], [3]). Even though such

little flows do not contribute significantly to the overall traffic

volume, they are important and especially affected by a lost

packet. The added latency of an additional RTT due to the

retransmission is proportionately larger for a small flow than

a large one. The authors of [1] state: “We do believe that TCP’s
inability to recover from even a few packet drops without
resorting to timeouts in low bandwidth delay product settings
is a fundamental problem that needs to be solved.” [1]

Similarly, a review of Facebook’s data center network

architecture showed that a single HTTP request can result in

dozens of cache and database lookups and almost 400 remote

procedure calls (RPCs) [4]. We assume that the vast amount

of small flows discovered is at least partially caused by RPCs.

As thus, we aim to reduce the latency of small flows within

data centers by introducing a new transport layer protocol

called Another Transport Protocol (ATP). Our goal is to reduce

the latency of small flows that is caused by packet loss. While

TCP always needs to perform a retransmission in the case of

a packet loss and the data transfer thus takes an additional

Round-trip Time (RTT), our protocol uses Forward Error

Correction (FEC) in order to avoid this latency.

Organisation of our short paper. We start by describing

the design of ATP in Section II, before providing a positive

performance evaluation of ATP in Section III. We then discuss

related work in Section IV, and lastly conclude in Section V.

II. DESIGN OF ATP: ANOTHER TRANSPORT PROTOCOL

In this section, we will describe the two most important

features of ATP, packet loss handling and congestion control.

A. ATP’s Packet Loss Handling

ATP has three different measures to handle lost packets:

Sender Timeouts. A timeout on the sender side occurs if

a byte of the stream does not get acknowledged within a

specified time. The timeout duration depends on the RTT. If

a byte times out, it will be retransmitted by the sender. The

protocol tries to avoid these timeouts when possible, as such

timeouts are comparatively large and so is the added latency.

Receiver Timeouts. If the receiver receives out-of-order pack-

ets, the received data stream will have gaps. If these gaps exist

for too long, they will trigger a timeout and the receiver sends a

retransmission request to the sender which then retransmits the

missing data. Subfigures 1a and 1b illustrate the two different

types of timeouts.

Forward Error Correction. In order to avoid timeouts even

in the case of packet loss, the protocol uses a simple systematic

block coding. Systematic codes contain the input data in the

output. This leads to no decoding overhead if all data is

received correctly. After sending multiple packets with plain

data, the protocol will insert a FEC packet which contains

the XOR of the previously sent data packets as illustrated in

Subigure 1c. If one of these packets is lost, the receiver can

restore the missing packet. These additional packets result in

an overhead leading to higher bandwidth requirement for the

same goodput. To minimize the overhead, the rate of the FEC

is adjusted by the protocol. At the start of a connection the

rate will be high, but it is decreased as the transfer speeds up

and there is no loss.

B. Congestion Control

An important feature of a reliable transport layer protocol

is its congestion control algorithm. If there is congestion in

the network, the protocol must adjust its send rate. The basic

principle is illustrated in Figure 2 and is the same for ATP

and TCP. The window size is the amount of unacknowledged978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

122

{
acked

{sent long ago{sent recently

Sender

(a) If a packet does not get acknowledged within
a certain time period, it will trigger a timeout and
the sender will send it again.

{
received

{ gap {received
Receiver

(b) If a gap in the receiver stream persists for a
specified timeout period, the receiver will ask the
sender to resend the packet.

DATA FECDATA DATA DATA DATA FEC

(c) The FEC packets contain the bitwise XOR of
the plain data packets sent before.

Fig. 1. Timeouts can either happen at the sender or the receiver.

acked ready{ {sent, not acked {1 2 3 4 5

(a) Packet 1 is already acknowledged, while 2 and
3 are not. Even though the sender has additional
data in its buffer, it is not allowed to send it.

acked ready

{sent, not acked{1 2 3 4 5
ACK 2{

(b) The sender now receives an acknowledgment
for segment 2. It now has only one unacknowl-
edged packet, while its window size is 2.

a c k e d
e

r y{sn tsr n,
 os12341524r y{sn

(c) The sender now sends packet 4, as there is
still space in the window. After sending the fourth
packet, all allowed packets have been sent.

Fig. 2. In this example the window size is the length of two packets. The sender is only allowed to send two packets and must wait until an acknowledgment
of a packet is received before the next packet can be sent.

bytes the sender is allowed to transmit. Adjustment of this

window allows control of the transmission speed.

ATP’s Congestion Control. Our protocol increases its win-

dow based on a RTT without any congestion events. If during

a whole RTT no such event occurs and at least some data gets

acknowledged, the window will be increased by a constant

value corresponding to the maximum packet size. Since this

increase might not be fast enough for links with high latency,

at the start of a new connection the window is increased

with each newly acknowledged segment. However, in data

centers the RTT is usually very small, and an increase of the

RTT is most probably due to increased buffer latency. Since

Another Transport Protocol (ATP) then increases its window

size slower, the buffer will not fill up too fast. In the case

of a lost packet, there are, as mentioned in Section II-A,

three possible ways to get the data to the receiver: Either

by using the FEC information, by sending a retransmission

request to the sender, or if the sender experiences a timeout.

If the receiver needs to use a FEC packet due to a lost packet,

it will inform the sender about this event – the sender then

decreases its window by a small factor. If the receiver sends

a retransmission request or the sender has a local timeout, it

will decrease its window by a larger factor.

As the window is increased, the protocol will simultane-

ously reduce the FEC rate – since the network is not in a

congested state with losses. Conversely, if the window size is

decreased, the FEC rate is increased.

We note that the specific implementation details of ATP (in

C) are omitted in this short paper due to space constraints.

The main difference of ATP to TCP is the included forward

error correction, which is our central focus in this short paper.

III. PERFORMANCE EVALUATION

In this section, we first describe our testbed setup, before

comparing the performance of ATP and TCP for small flows

under various background traffic settings in Subsection III-A.

We analyze a large number of connections, showing that ATP

indeed reduces the tail latency of small flows. Lastly, we also

briefly show the fairness of ATP to TCP in Subsection III-B.

Testbed Setup. We evaluated the implementation of ATP on

a small testbed using up to four laptops and a single desktop

machine, depicted in Figure 3. All machines ran on Ubuntu

15.10 and had a Gigabit Ethernet interface. In each experiment,

the Ethernet pause frame functionality was disabled. When

comparing TCP with ATP, all the hardware helpers of the

NIC to support TCP were disabled.

ATP relies on a mechanism called Random Early Detection
(RED), which is a widely available in high performance

switches used in data centers. RED detects if a queue in

a switch gets larger and starts to drop packets before it is

completely full. This results in a fairer packet drop distribution

across multiple flows, and does usually not result in a drop

of consecutive packets – an essential property for ATP. The

testbed’s switches (Planet GSD-805) do not support RED,

hence the desktop machine is used to provide RED.

Fig. 3. Depiction of the testbed we used for our experiments. One 100 Mbps
link is added between all tested connection for congestion control effects.

A. Comparison of ATP and TCP

The main goal of our design of ATP is to reduce the

latency of small flows, in the presence of larger flows. In

this subsection, we compare several small ATP connections

to TCP on different background traffic scenarios. We will see

that, especially in a slightly congested network, ATP often can

omit retransmissions and thus additional latency.

For each background traffic scenario, 1000 connections

were subsequently completed, each transferring 8.5 kB data

from 192.168.1.11 to 192.168.1.21. Background traffic was

sent permanently from 192.168.1.12 to 192.168.1.22. For each

connection the time for its completion was measured. Note that

for TCP connections, the time for the three-way handshake

123

(a) No other traffic in the network. (b) Background traffic of 192.168.1.12
permanently sending a large stream of
TCP data to 192.168.1.22.

(c) Link loss of 1% on the Linux
machine acting as a switch. The loss
was introduced only in the direction
in which the data was sent, and not in
the acknowledgment direction.

(d) Background traffic of 192.168.1.12
permanently sending a large stream
of UDP data to 192.168.1.22; Of all
the UDP packets sent, 1.5% were
dropped in the network.

Fig. 4. Comparison of the cumulative distribution functions of the connection completion times of ATP and TCP in various settings of background traffic.
ATP is depicted in blue, TCP in green. In these experiments, the sender sent a data stream of 8.5 kB 1000 times from 192.168.1.11 to 192.168.1.21 in
the network depicted in Figure 3. While TCP slightly outperforms ATP in cases of no background traffic, the latency tail of the completion times grows
considerably with heavy background traffic and data loss, letting ATP complete considerably faster than TCP. E.g., already in Subfigure 4c, ATP finishes a
bit after 10ms, while TCP takes about 1000ms to complete for the last flows.

was subtracted from the measured time, in order to have a

direct comparison to ATP, which does not perform such a

handshake.

No Background Traffic. In the first experiment, there is no

background traffic at all. The results shown in Subfigure 4a

demonstrate that TCP and ATP behave very alike. The median

and the mean of the flow duration is slightly lower for

TCP than for ATP, which is expected since ATP transmits

2 additional FEC packets for each connection.

TCP Background Traffic. In the second experiment, there is

background traffic originating from a large TCP stream. The

results are displayed in Subfigure 4b. Since TCP implements

a congestion control algorithm, the network will not be exces-

sively congested. Nevertheless, due to the small buffer size set

in the desktop machine (acting as a switch), some connections

experience packet loss. ATP can reconstruct the stream on

the receiver side and – apart from one single connection in

the whole sample – does not need to retransmit data at all.

This leads to a significantly lower 99th percentile of the flow

duration. TCP’s 99th percentile is at 210 ms while ATP’s is

at 11 ms. However, TCP’s 95th percentile is only 2% higher.

Lossy Link In Subfigure 4c the desktop machine introduces

a loss rate of 1%. In such a case ATP will usually be able to

reconstruct the lost packets immediately. The 99th percentile

is at 2 ms, which is the same as in the case of no loss at all.

However, the 99th percentile of TCP is at over one second!

The reason for this is mainly due to the problem TCP has

when the last data packet is lost. The sender waits until a

timeout occurs. ATP’s last packet sent is a FEC packet, and

the second last is the stream’s last data packet. As long as both

of these last packets are not lost in the network, the worst that

can happen is a receiver timeout, which is significantly faster

than a sender timeout.

UDP Background Traffic The massive injection of UDP

packets into the network with a speed slightly above the

maximum link capacity congests the network heavily. It results

in a network that experiences 1.5% packet loss on average.

Additionally, all buffers are full, which makes retransmis-

sions more expensive. In contrast to experiments with TCP

background traffic, where the 95th percentile did not differ

extremely between TCP and ATP, the 95th percentile in this

experiment differs vastly: While with ATP 95 % of all flows

finish within 50 ms, TCP needs 340 ms. The 99th percentile

is at 53 ms for ATP and at 1134 ms for TCP. These results

are shown in Subfigure 4d.

Tail Latency Subfigures 4a to 4d show the cumulative distri-

bution of the latencies in different environments. Since the tails

of the distributions are not clearly visible, Figure 5 shows the

last percentiles. We see again, that in case there is congestion,

or if packet loss occurs in the network, ATP can reduce the

tail latency successfully.

Fig. 5. Tail latencies of ATP and TCP compared in different background
traffic scenarios. The different scenarios are described in Subsection III-A.

B. Fairness of Concurrent Connections
An important feature of a transport layer protocol is that

it does not starve other connections. If two connections are

started in parallel, both connections should use approximately

the same bandwidth. By its similarity in design to TCP, ATP

is fair to both ATP and TCP – which we also evaluated

experimentally in our network testbed.
Due to to space constraints in this short paper, we just briefly

review one experiment for TCP: In Figure 6, a TCP and an

124

Fig. 6. An ATP and a TCP connection transfer 20 MB of data each. ATP
from 192.168.1.11 to 192.168.1.21, TCP from 192.168.1.12 to 192.168.1.22.

ATP stream are started at the same time and both must transmit

20 MB of data. Looking at the whole connection duration the

link is shared in a fair way: the TCP stream finishes after

3.43s, while it takes ATP 1.18% longer to complete.

IV. RELATED WORK

Adding forward error correction (FEC) at the link layer is a

well studied concept in wireless networks, see, e.g., [5]. More

closely related to our work is applying FEC on a packet level

basis. The authors of [6], following an idea of [7], evaluated

the effect of applying FEC on the IP and TCP interface by

running simulations. If their new intermediate layer detects the

loss of the next segment of the TCP stream, it waits some time

for the arrival of an error correction packet and will rebuild

the missing IP packet. Used between two layers, the transport

layer protocol can not directly benefit from the additional

information provided by the applied FEC1. Additionally, their

solution adds latency, since the new intermediate layer waits

for potential correction packets. This and other [8] early

proposals focused on lossy links, rather than on data centers.

Recently, multiple projects have attempted to reduce the la-

tency of flows within a data center. The HULL architecture [9]

trades 10 % of the links’ bandwidth for reduced latency. If the

traffic load on a link arrives at 90 % of the total capacity, a

NetFPGA sets the Explicit Congestion Notification (ECN) flag

and TCP will slow down. This avoids the filling of the switch’s

queues and will thus reduce latency. Fastpass [10] lets each

sender delegate control to a centralized arbiter which decides

when a packet has to be sent and which paths it should take.

This results in a single point of failure, or at least a non trivial

handover from the primary to the secondary controller. Both of

these suggestions need adaption of the intermediate network

infrastructure itself, while our approach has the advantage of

only requiring software adjustments at the endpoints.

Lastly, for a recent discussion of the impact of the latency

tail, also beyond a data center setting, we refer to [11].

V. CONCLUSION AND OUTLOOK

We designed and implemented a transport layer protocol

called ATP, which provides the same functionalities as TCP: A

reliable transfer of a data stream within an IP network without

1This can be addressed by using Explicit Congestion Notification (ECN)
messages, as suggested by the authors.

congesting the network, and with fairness to other ATP, as well

as TCP streams. The design goal was to reduce the latency tail

of small flows within data centers.

The protocol uses a simple systematic block coding. After

sending a variable number of data packets, a FEC packet is

sent, containing the XOR of the previously sent data packets.

This allows the immediate reconstruction of the stream, if

the network dropped a packet and thus reduces the need for

retransmissions. ATP uses a sliding window mechanism to

control its send rate. Whenever a packet loss occurs, the send

rate is decreased and the same time the FEC rate is increased.

In a small testbed, we evaluated the performance of ATP and

verified that it behaves fairly to other connections. In a series

of multiple small data transfers, ATP often outperforms TCP,

since it is able to avoid retransmissions. In an environment

which has TCP background traffic, ATP’s 99th percentile of

the flow completion time is at 11 ms, while TCP’s is at 210 ms.

The additional FEC information induces a small overhead on

the network’s load, but the latency decrease can improve the

user experience. ATP needs no central controller, or changes

to the intermediate hardware, and only relies on software

adjustments on the end-hosts.

A next step of using packet based FEC information to

shrink the latency of small flows would be to include ATP’s

functionality as a TCP extension. This would guarantee back-

ward compatibility with hosts that do not support ATP. It is

furthermore possible to augment ATP’s implementation by a

priority-aware congestion control algorithm.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers

for their helpful comments. Klaus-Tycho Foerster was partially

supported by Microsoft Research.

REFERENCES

[1] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in Internet
measurement conference. ACM, 2009.

[2] A. Feldmann, J. Rexford, and R. Cáceres, “Efficient policies for carrying
web traffic over flow-switched networks,” IEEE/ACM Trans. Netw.,
vol. 6, no. 6, pp. 673–685, Dec. 1998.

[3] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never
than late: Meeting deadlines in datacenter networks,” ACM SIGCOMM
Computer Communication Review, vol. 41, no. 4, pp. 50–61, 2011.

[4] N. Farrington and A. Andreyev, “Facebook’s data center network archi-
tecture,” in IEEE Optical Interconnects Conf. IEEE, 2013.

[5] B. Liu, D. Goeckel, and D. Towsley, “Tcp-cognizant adaptive forward
error correction in wireless networks,” in GLOBECOM. IEEE, 2002.

[6] H. Lundqvist and G. Karlsson, “TCP with end-to-end FEC,” in Com-
munications, 2004 International Zurich Seminar on. IEEE, 2004.

[7] C. Huitema, “The case for packet level fec,” in TC6 WG6.1/6.4 Fifth
International Workshop on Protocols for High-Speed Networks V, 1997.

[8] O. Tickoo, V. Subramanian, S. Kalyanaraman, and K. K. Ramakrishnan,
“LT-TCP: end-to-end framework to improve TCP performance over
networks with lossy channels,” in IWQoS, 2005.

[9] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and
M. Yasuda, “Less is more: trading a little bandwidth for ultra-low latency
in the data center,” in NSDI, 2012.

[10] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal, “Fast-
pass: A centralized zero-queue datacenter network,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 4, pp. 307–318, 2015.

[11] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,
no. 2, pp. 74–80, 2013.

125

The Cardinality-Constrained Paths Problem:
Multicast Data Routing in Heterogeneous

Communication Networks

Alvaro Velasquez1, Piotr Wojciechowski2, K. Subramani3, Steven L. Drager4, Sumit Kumar Jha5

Department of Computer Science, University of Central Florida, Orlando, FL1,5

LCSEE, West Virginia University, Morgantown, WV2,3

Information Directorate, Air Force Research Laboratory, Rome, NY4

{velasquez, jha}@cs.ucf.edu, pwojciec@mix.wvu.edu, ksmani@csee.wvu.edu, steven.drager@us.af.mil

Abstract—In this paper, we present two new problems
and a theoretical framework that can be used to route
information in heterogeneous communication networks.
These problems are the cardinality-constrained and interval-
constrained paths problems and they consist of finding paths
in a network such that cardinality constraints on the number
of nodes belonging to different sets of labels are satisfied.
We propose a novel algorithm for finding said paths and
demonstrate the effectiveness of our approach on networks
of various sizes.

I. INTRODUCTION

One big challenge in securing today’s communication

networks lies in their dynamic nature, with nodes con-

stantly connecting to and disconnecting from other nodes.

This is the case with mobile devices and increasingly

so with vehicle-to-infrastructure (V2I) and vehicle-to-

vehicle (V2V) [5] communication, whose safety is a

significant research focus of the United States Department

of Transportation [7]. In these vehicular ad-hoc networks

(VANETs), road-side units (RSUs) can send information

to vehicles’ on-board units (OBUs), which can then

route information to other OBUs as a multi-hop network

[1]. The topology of vehicle-to-vehicle and vehicle-to-

infrastructure networks changes quickly due to the high

speeds of moving vehicles, which causes nodes to connect

Alvaro Velasquez acknowledges support from the National Science
Foundation Graduate Research Fellowship Program (GRFP). Any opin-
ions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the
views of the Air Force Research Laboratory or the National Science
Foundation. This research was supported in part by the National Science
Foundation through Award CCF-1305054. This work was supported by
the Air Force Research Laboratory under US Air Force contract FA8750-
16-3-6003. The views expressed are those of the authors and do not
reflect the official policy or position of the Department of Defense or the
U.S. Government. 4 Approved for public release: distribution unlimited,
case 88ABW-2016-4285. Cleared August 31, 2016.

to and disconnect from the VANET frequently [8]. The

size of these VANETs can also be quite large in areas of

heavy traffic and dense populations [9]. These challenges

necessitate efficient routing algorithms.

In this paper, we solve the problem of finding paths

in a heterogeneous network where there are upper-bound

constraints on the number of nodes of each type that

can be traversed. We call this the cardinality-constrained

paths problem. We also explore the case where there are

lower and upper bounds on the cardinality constraints. We

call this the interval-constrained paths problem. Such con-

straints arise naturally in delay-tolerant networks (DTNs)

where there is intermittent connectivity and interference

or faults in the data are likely [10]. This is the case

in VANETs and many ad-hoc networks. For dealing

with these precarious domains, carry-and-forward routing

schemes are often used [3]. These protocols store the

message in intermediate nodes which then forward the

message when a connection is available. The intermediate

nodes can also act as verification nodes which ensure the

integrity of the message being sent. Thus, placing a lower

bound on the number of intermediate vertices is sensible

for trustworthy communication.

We make the following contributions:

• The problems of finding cardinality-constrained

paths (CCP) and interval-constrained paths (ICP)

are introduced. These problems entail finding a path

between two nodes in a network such that constraints

on the number of nodes belonging to each label are

satisfied. The CCP problem deals with upper bound

constraints while the ICP problem pertains to upper

and lower bounds.

• We establish the complexity of the CCP and ICP

problems. more specifically, we show that they be-

long to the NP-Hard complexity class.

• For the CCP problem, we propose an efficient solu-

tion whose runtime is polynomial in the number of978-1-5090-3216-7/16/31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

126

nodes in the network when the number of labels is

fixed. For the ICP problem, a similar polynomial-

time algorithm is proposed when the network of

interest is a directed acyclic graph (DAG).

II. PROBLEM DEFINITION AND COMPLEXITY

In order to define the cardinality-constrained path prob-

lem, we need to formalize the notion of labeled graphs.

In untrusted communication networks, this may simply

consist of a graph G = (V,E), where V is the set of

vertices and E is the graph’s adjacency matrix, such that

every vertex v ∈ V belongs to either some set of trusted

or authenticated nodes LT or a set of untrusted nodes

LU . The general case can be formalized as follows. A

labeled graph G = (V,E, {L1, L2, . . . , Lp}), |V | = n, is

a graph whose nodes belong to one of p disjoint labels

L1, L2, . . . , Lp ⊆ V, Li ∩ Lj = ∅, such that L1 ∪ L2 ∪
· · ·∪Lp = V . A path πs→t = {s, vi1 , vi2 , . . . , vik , t} ⊆ V
from source node s ∈ V to destination node t ∈ V
is an ordered set defined by the vertices in the path

such that (πs→t
i , πs→t

i+1) ∈ E. We are interested in the

number of nodes in the path that belong to each label.

Let Lπ
i = πs→t ∩ Li denote the set of nodes belonging

to the path that have label i.
In practice, these labels can be determined in many

ways depending on the domain of the network. For

network security purposes, authenticated nodes and com-

promised nodes could be two labels, with all other hosts

belonging to a third label. In the vehicular domain, on-

board units (OBUs) and road-side units (RSUs) have

their respective labels, which could be augmented by

adding labels to nodes that are vulnerable to malfunctions

via structural damage or malicious hacking. There can

also be labels denoting the performance of a node in

terms of processing power or its reliability in terms

of inherent fault-tolerance. In wireless sensor networks

(WSNs) where resources are scarce [6], labels could be

used to categorize different levels energy consumption or

storage capacity.

Cardinality-Constrained Paths Problem

Definition 1: (Cardinality-Constrained Path)

Given integers k1, k2, . . . , kp, a labeled graph

G = (V,E, {L1, . . . , Lp}), and source and destination

nodes s, t ∈ V , the cardinality-constrained path problem

consists of finding a path πs→t = {s, vi1 , vi2 , . . . , vik , t}
such that |Lπ

1 | ≤ k1, |Lπ
2 | ≤ k2, . . . , |Lπ

p | ≤ kp.

We show, by reduction from 3SAT, that the cardinality-

constrained path problem is NP-Hard. Consider an in-

stance Φ of 3SAT with n variables and m clauses. For

each variable xi in Φ, let k2i be the number of clauses

in which the literal xi appears. Similarly, let k2i+1 be

the number of clauses in which the literal ¬xi appears.

Associated with the variable xi, we create gadget V Gi

shown in Figure 1.

L1

L2i

L2i+1

L2i

L2i+1

L2i

L2i+1

L2i

L2i+1

L2i

L2i+1

L2i

L2i+1

L1
· · ·

· · ·

Fig. 1. Gadget V Gi for variable xi. This gadget is a labeled graph
G = (V,E, {L1, L2i, L2i+1})

In this gadget, the number of vertices along the top

path is k2i. Each of these vertices is assigned the label

L2i. Likewise, the number of vertices along the bottom

path is k2i+1. Each of these vertices is assigned the label

L2i+1.

For each clause φj in Φ, we create the gadget CGj

shown in Figure 2 such that the labels of the three

intermediate vertices depend on the literals in the clause.

If xi is in φj , then an intermediate vertex is assigned

label L2i. Conversely, if ¬xi is in φj , then an intermediate

vertex is assigned label L2i+1.

L1L1

L2i

L2j+1

L2k

Fig. 2. Gadget for clause (xi,¬xj , xk). This gadget is a labeled graph
G = (V,E, {L1, L2i, L2j+1, L2k}).

We construct G by combining the gadgets as shown in

Figure 3. Note that in G, there are (m+ n+ 1) vertices

labeled L1. Also note that all these vertices must appear

on any path from s to t. Thus, we set k1 = (m+ n+ 1)
to ensure that this limit is always satisfied. Now we need

to show that there is a path of the desired type in G if

and only if Φ is satisfiable.

Theorem 1: Cardinality-Constrained Path is NP-Hard
Proof: Using the construction above, we will show that

Φ has a satisfying assignment if and only if there is a path

πs→t in G such that |Lπ
1 | ≤ k1, . . . , |Lπ

p | ≤ kp.

(=⇒) Suppose Φ is satisfiable. For each variable xi

assigned a value of true in the satisfying assignment, the

path will traverse the bottom path of gadget V Gi. This

uses k2i+1 vertices of label L2i+1. Similarly, for each

variable xi assigned a value of false, the path will traverse

the top path of V Gi. This uses k2i vertices of label L2i.

127

s
. . .

. . .

. . .

. . .
t

Fig. 3. Complete graph G = (V,E, {L1, . . . , L2i+1, . . . , L2n, L2n+1}) of the construction for reducing 3SAT to a cardinality-constrained path.

For each clause φj , the path will traverse an interme-

diate vertex of CGj corresponding to a true literal. Let

us focus on the variable xi. If xi is assigned a value of

true, then the following conditions hold.

• We traverse k2i+1 vertices of label L2i+1 in V Gi.

• We do not traverse any vertices of label L2i+1 in the

clause gadgets since ¬xi has a value of false.

• We traverse at most k2i vertices of label L2i since

the literal xi appears in only k2i clauses.

Thus, the satisfying instance of Φ yields a path

πs→t with |Lπ
1 | ≤ k1, . . . , |Lπ

2i| ≤ k2i, |Lπ
2i+1| ≤

k2i+1, . . . , |Lπ
2n| ≤ k2n, |Lπ

2n+1| ≤ k2n+1.

(⇐=) Assume G has a path πs→t with |Lπ
1 | ≤

k1, . . . , |Lπ
p | ≤ kp. For each variable xi in Φ, assign a

value of true if πs→t traverses the bottom of gadget V Gi.

If πs→t traverses the top of gadget V Gi, then assign a

value of false to xi.

For each clause φj in Φ, the following hold.

• If πs→t traverses the intermediate vertex of CGj

corresponding to the literal xi, then πs→t cannot

traverse the top path of gadget V Gi. Otherwise, πs→t

would contain k2i + 1 vertices of label L2i, which

violates the constraint |L2i| ≤ k2i. Thus, xi must be

assigned a value of true and clause φj is satisfied.

• If πs→t traverses the intermediate vertex of CGj

corresponding to the literal ¬xi, then πs→t cannot

traverse the bottom path of gadget V Gi. Otherwise,

πs→t would contain k2i+1 + 1 vertices of label

L2·i+1, which violates the constraint |L2i+1| ≤
k2i+1. Thus, xi must be assigned a value of false
and clause φj is satisfied.

It follows that a path πs→t with |Lπ
1 | ≤ k1, . . . , |Lπ

p | ≤
kp yields a satisfying assignment to Φ. �

Interval-Constrained Paths Problem

Definition 2: (Interval-Constrained Path) Given integer

pairs (k1, k
′
1), (k2, k

′
2), . . . , (kp, k

′
p), a labeled graph G =

(V,E, {L1, . . . , Lp}), and source and destination nodes

s, t ∈ V , the interval-constrained path problem consists

of finding a path πs→t = {s, vi1 , vi2 , . . . , vik , t} such that

k1 ≤ |Lπ
1 | ≤ k′1, k2 ≤ |Lπ

2 | ≤ k′2, . . . , kp ≤ |Lπ
p | ≤ k′p.

We demonstrate that this problem is NP-Hard in the

simplest case where there is only a single label, i.e. p = 1.

Naturally, the problem is at least as hard for p > 1.

Theorem 2: Interval-Constrained Path is NP-Hard
Proof: We will prove this result through a reduction

from the Hamiltonian path problem. Let G = (V,E) be

a directed graph with n vertices and m edges, and let s
and t be vertices in V. We construct G′ = (V ′, E′, {L1})
as shown in Figure 4. Assign the label L1 to all vertices

in G′, and set k1 = n and k′1 = � 3n
2 �. Then there is a

Hamiltonian path in G if and only if there is a path πs→t

in G′ such that k1 ≤ |Lπ
1 | ≤ k′1.

Fig. 4. Graph G′ = (V ′, E′, {L1}) used in our construction.

(=⇒) Assume that G has a Hamiltonian path πs→t

from s to t. Let π′ be the corresponding path in G′.
We have that n ≤ |Lπ′

1 | ≤ � 3n
2 �. Thus, G′ satisfies the

interval-constrained path problem.

(⇐=) Assume that G′ has a path πs→t from s to t
such that k1 ≤ |Lπ

1 | ≤ k′1. Note that the top path in G′

consists of (2 + 2n) > � 3·n
2 � vertices. This path would

violate constraint |Lπ
1 | ≤ k′1. Thus, πs→t must consist

of only vertices originally from G. Since |Lπ
1 | ≥ n,

πs→t must use all n vertices in V . Thus, G must have a

Hamiltonian path from s to t.
Since the Hamiltonian path problem is NP-complete,

the interval-constrained path problem is NP-hard. Note

that G′ has 3n vertices. Thus the bounds chosen n and

� 3n
2 � are non-degenerate. �

III. METHODOLOGY

In this section, we define the dynamic programming

procedures used to solve the cardinality-constrained paths

(CCP) and the interval-constrained paths (ICP) problems.

In terms of complexity, the main difference between the

two problems is that CCP is fixed-parameter tractable

when the number of labels is fixed. Meanwhile, we have

shown that ICP remains NP-Hard even with this fixed

parameter. Consequently, we propose a polynomial-time

algorithm for solving CCP in the general case for a fixed

label size. The extension proposed for ICP is also solvable

in polynomial time, but is only applicable to directed

acyclic graphs.

128

u0
1(t1, t2, . . . , tp−1) =

⎧⎪⎨⎪⎩
1 Ip(v1)

0
∨p−1

i=1 ((ti ≥ 1) ∧ (Ii(v1) = 1))

∞ otherwise

(1)

u0
j (t1, t2, . . . , tp−1) = ∞ j = 2, 3, . . . , |V |, ti = 0, 1, . . . , ki (2)

um
j (t1, . . . , tp−1) = min

{
um−1
j (t1, . . . , tp−1), min

k:(vk,vj)∈E

{
um−1
k (t1 − I1(vj), . . . , tp−1 − Ip−1(vj)) + Ip(vj)

}}
(3)

Cardinality-Constrained Paths

We have devised an algorithm that is exponential only

in the number of labels p and polynomial in the number of

vertices |V | in the graph. Thus, our algorithm is tractable

for a fixed number of labels. To the best of our knowledge,

this is the first such algorithm to tackle this problem. Our

proposed dynamic programming algorithm uses equations

(1), (2), and (3) to populate the dynamic programming

matrix, which is then used to infer the solution path

through a standard backtrack search.

Let um
j (t1, t2, . . . , tp−1) denote the minimal number

of p-labeled nodes in a path from the source node v1 to

vj such that the number of k-labeled nodes is less than or

equal to tk, 1 ≤ k ≤ p−1, and the path consists of at most

m edges. Then we can define a dynamic programming

recurrence as shown in equations (1), (2), and (3), where

Ik(vi) is 1 if vi ∈ Lk and 0 otherwise. The initialization

equation (1) states that the number of p-labeled nodes

from the source node v1 to itself using 0 edges is 1 if

v1 ∈ Lp, 0 if v1 ∈ Li, i �= p and its corresponding

constraint parameter ti is greater than or equal to 1, and

∞ otherwise. Similarly, the number of p-labeled nodes

from v1 to any other vertex vj using 0 edges is initialized

to ∞ (2) since no such path can exist. The recurrence

(3) minimizes the cost (number of p-labeled nodes) of the

path by verifying whether there is a path of smaller cost to

vj and iterating through all incoming edges (vk, vj) ∈ E
to determine whether the minimum-cost path to vk will

yield a minimum-cost path to vj .

Theorem 3 (Optimal Substructure): Let πv1→vn =
πv1→vj ∪ πvj→vn be the path constructed from

(1), (2), (3). Then πv1→vj is the path from v1 to vj
with the minimum number of p-labeled nodes such that

constraints |Lπ
1 | ≤ k1, . . . , |Lπ

p−1| ≤ kp−1 are satisfied.

Proof: Suppose a path σv1→vj from v1 to vj ex-

ists such that |Lσ
p | < u

|σv1→vj |−1
j (t1, . . . , tp−1) and

|Lσ
1 | ≤ t1, . . . , |Lσ

p−1| ≤ tp−1. Then there exists some

path σ′ ⊂ σv1→vj , σ′ ∩ πv1→vj = ∅ not contained in

πv1→vj . Let vα denote the last vertex in path σ′ and

let v∗ ∈ σv1→vj ∩ πv1→vj be the vertex connecting σ′

to πv1→vj (i.e. (vα, v
∗) ∈ E). πv1→v∗ ⊆ πv1→vj is

the path from v1 to v∗ contained in πv1→vj . Similarly,

let σv1→σ′
1 , σσ′

1→v∗ ⊂ σv1→vj represent sub-paths of

σv1→vj . Two cases arise:

• |σv1→σ′
1 ∪ σσ′

1→v∗ | < |πv1→v∗ |: When m =
|σv1→σ′

1 ∪ σσ′
1→v∗ |, the first parameter in the outer

minimization of (3) will set um
j (t1, . . . , tp−1) ≤

|Lσ
p |. This result will then propagate to larger m.

• |σv1→σ′
1 ∪σσ′

1→v∗ | ≥ |πv1→v∗ |: Since (vα, v
∗) ∈ E,

the inner minimization in (3) will check the value

um
α (t1, . . . , tp−1) when m = |σv1→σ′

1 ∪σσ′
1→v∗ | and

set um
j (t1, . . . , tp−1) ≤ |Lσ

p |.
It follows that no such path σv1→vj with |Lσ

p | <

u
|πv1→vj |−1
j (t1, . . . , tp−1) exists. �

It follows from Theorem 3 that our algorithm returns

the path from v1 to vn with the minimum number

of p-labeled nodes such that the constraints |Lπ
1 | ≤

k1, . . . , |Lπ
p | ≤ kp are met. The proof of optimal substruc-

ture in Theorem 4 is similar and is therefore omitted.

Note that (3) iterates through paths of length m. The

maximum length of a path in G = (V,E, {L1, . . . , Lp})
is |V | − 1 and there can be no path of length k1 +
k2 + · · · + kp that satisfies |Lπ

1 | ≤ k1, . . . , |Lπ
p | ≤ kp

since one of the constraints would be violated. Thus,

m = 0, 1, . . . , (
∑p

i=1 ki) − 1, leading to
∑p

i=1 ki ≤
|V | − 1 iterations in (3). In each iteration, (3) must also

process every vertex and check the incoming edges for

said vertex, yielding |V |davg iterations, where davg is

the average degree of the vertices in G. Furthermore, for

every constraint ki (i �= p), we must iterate from 0 to ki,
yielding Πp−1

i=1 (ki+1) iterations. This results in a runtime

complexity of O
(
|V |davg (

∑p
i=1 ki)

(
Πp−1

i=1 ki

))
.

Interval-Constrained Paths

Given a labeled graph G = (V,E, {L1, . . . , Lp})
and constraint pairs (k1, k

′
1), . . . , (kp, k

′
p), we make the

assumption that there is some ki = 0. This assumption

allows us to minimize over the set Li using a similar pro-

cedure to the one used to solve the cardinality-constrained

paths problem. Without loss of generality, we assume that

kp = 0. Thus, the problem that we solve is a special class

of the interval-constrained paths problem.

In order to satisfy the interval constraints introduced by

the ICP problem, we add a simple modification to the pre-

129

vious approach. The only change is to equation (1), which

is now replaced by (4). This change to the initialization

equation causes the constraint parameters t1, . . . , tp−1

to be met exactly as opposed to as upper bounds. Let

ûm
j (t1, t2, . . . , tp−1) denote the minimum number of p-

labeled nodes in a path from the source node v1 to vj
such that the number of k-labeled nodes is exactly tk, 1 ≤
k ≤ p− 1, and the path consists of at most m edges. The

values of ûm
j (t1, t2, . . . , tp−1) can be defined by equations

(2), (3), (4). The addition of (4) causes the entries in

the resulting dynamic programming matrix to match the

constraint parameters t1, . . . , tp−1 with exactitude. It is

easy to see that the runtime of the algorithm given by

(2), (3), (4) is O
(
|V |davg (

∑p
i=1 k

′
i)

(
Πp−1

i=1 k
′
i

))
. That

is, the runtime is the same as that of (1), (2), (3) used

to solve the constrained-paths problem.

û0
1(t1, . . . , tp−1) =⎧⎪⎪⎨⎪⎪⎩

1 (Ip(v1) = 1) ∧ ∧p−1
i=1 (ti = 0)

0
∨p−1

i=1

(
ti = 1 ∧ Ii(v1) = 1 ∧ ∧

j
=i tj = 0
)

∞ otherwise
(4)

The solution to the interval-constrained paths (ICP)

problem given by (2), (3), (4) yields a simple path when

the network of interest is a directed acyclic graph. Oth-

erwise, the solution may yield a path with a cycle as a

solution. This is to be expected due to the complexity

of the problem even when the number of labels is fixed.

Therefore, this problem is believed to be intractable to

solve in the general case.

Theorem 4 (Optimal Substructure): Let πv1→vn =
πv1→vj ∪ πvj→vn be the path constructed from

(2), (3), (4). Then πv1→vj is the path from v1 to vj
with the minimum number of p-labeled nodes such that

constraints |Lπ
1 | = k1, . . . , |Lπ

p−1| = kp−1 are satisfied.

IV. EXPERIMENTAL RESULTS

The average of length of a path in random networks

with varying degrees of connectivity has been studied in

[4]. This length follows the equation λ(n, k) = (ln(n)−
γ)/ln(k) + 1/2, where n is the number of vertices, γ
is the Euler-Mascheroni constant, and k is the average

degree of nodes in the graph. For large networks with one

million nodes, this yields an average path length of 10 for

low-connectivity networks (k = 4) and 5 for the case of

high-connectivity (k = 20). We use λ(n, 4) and λ(n, 20)
to define the constraints used in our runtime results (Fig.

5). These small path lengths have been evidenced in real

complex networks. In an analysis of the Facebook social

network with 721 million user nodes, it was found that

the average path length between two nodes was just 4.74

Fig. 5. Running time, in milliseconds, of our algorithm on random-
ized networks of various sizes. We look at networks whose average
degree and path length are k = 4 and λ(n, 4), respectively, and
k = 20, λ(n, 20), where n is the number of nodes in the network.

[2]. This leads us to believe that cardinality-constrained

paths in G = (V,E, {L1, . . . , Lp}) have the property

|πv1→vn | ≤ ∑p
i=1 ki << |V | in the general case.

REFERENCES

[1] Saif Al-Sultan, Moath M Al-Doori, Ali H Al-Bayatti, and Hussien
Zedan. A comprehensive survey on vehicular ad hoc network.
Journal of network and computer applications, 37:380–392, 2014.

[2] Lars Backstrom, Paolo Boldi, Marco Rosa, Johan Ugander, and
Sebastiano Vigna. Four degrees of separation. In Proceedings of
the 4th Annual ACM Web Science Conference, pages 33–42. ACM,
2012.

[3] Yuh-Shyan Chen and Yun-Wei Lin. A mobicast routing protocol
with carry-and-forward in vehicular ad hoc networks. International
Journal of Communication Systems, 27(10):1416–1440, 2014.

[4] Agata Fronczak, Piotr Fronczak, and Janusz A Hołyst. Average
path length in random networks. Physical Review E, 70(5):056110,
2004.

[5] John Harding, Gregory Powell, Rebecca Yoon, Joshua Fikentscher,
Charlene Doyle, Dana Sade, Mike Lukuc, Jim Simons, and Jing
Wang. Vehicle-to-vehicle communications: Readiness of v2v
technology for application. Technical report, 2014.

[6] Muhammad Adeel Mahmood, Winston KG Seah, and Ian Welch.
Reliability in wireless sensor networks: A survey and challenges
ahead. Computer Networks, 79:166–187, 2015.

[7] Intelligent Transportation Systems Joint Program Office.
Vehicle-to-infrastructure (v2i) communications for safety.
http://www.its.dot.gov/factsheets/pdf/JPO-022%20V2ISAFETY%
20V5.5.2%20F.pdf.

[8] Mukesh Saini, Abdulhameed Alelaiwi, and Abdulmotaleb El Sad-
dik. How close are we to realizing a pragmatic vanet solution? a
meta-survey. ACM Computing Surveys (CSUR), 48(2):29, 2015.

[9] Yasser Toor, Paul Muhlethaler, Anis Laouiti, and Arnaud
De La Fortelle. Vehicle ad hoc networks: applications and
related technical issues. IEEE communications surveys & tutorials,
10(3):74–88, 2008.

[10] Athanasios V Vasilakos, Yan Zhang, and Thrasyvoulos Spyropou-
los. Delay tolerant networks: Protocols and applications. CRC
press, 2016.

130

A Network Service Design and Deployment Process
for NFV Systems

Sadaf Mustafiz∗, Francis Palma∗, Maria Toeroe† and Ferhat Khendek∗
∗Department of Electrical and Computer Engineering

Concordia University, Montreal, Canada.

Email: {sadaf.mustafiz, ferhat.khendek}@concordia.ca, f palma@encs.concordia.ca
†Ericsson Inc., Montreal, Canada

Email: maria.toeroe@ericsson.com

Abstract—Recently, the paradigm of Network Functions Virtu-
alisation (NFV) has emerged for the rapid provisioning and man-
agement of network services. It is based on the cloud paradigm
and the virtualisation technology. The European Telecommuni-
cations Standards Institute (ETSI) has been actively defining the
NFV framework, which includes several functional blocks for
network service provisioning and management. The interfaces
and the roles of these functional blocks are being defined as well
as the artifacts they manipulate. However, the workflow defining
the relations and dependencies between these different blocks
as well as the successive processing of the artifacts throughout
this workflow have not been specified. This is the purpose of
this paper where we define an NFV standard compliant process
for network service design and deployment. The process starts
from the tenant network service requirements all the way to the
network service deployment.

I. INTRODUCTION

Network Functions Virtualisation (NFV) is an emerging

paradigm that builds on cloud computing [1] and the virtu-

alisation technology to eliminate the drawbacks of traditional

physical network infrastructure [2], [3] and enables rapid

provisioning of network services (NSs). There is no need

for the deployment of a wide range of network equipments,

which requires substantial capital and operating expenses.

In contrast, NFV exploits the virtualisation technology and

cloud resources, and remodels the physical devices into vir-

tual entities known as Virtualised Network Functions (VNFs)

implemented as software packages [4].

The NFV reference architectural framework standardised

by ETSI [3] and adopted by TOSCA [5], defines several

functional blocks, i.e., actors, playing different roles in the

various phases of NS and VNF lifecycle management, from

on-boarding to operations and monitoring. The current ETSI

standard [6] specifies the NFV reference framework, its func-

tional blocks, their roles, their interfaces, and some NS and

VNF-related operational flows. An NS and VNF deployment

and management process is implied from these functional

blocks, interfaces, and the operational flows, however the

workflow as such is not defined.

In this paper we propose such a workflow, one possible

chaining of the different functions and operations defined

in the standard. These functions and operations are grouped

into activities. The relations and dependencies between these

activities as well as the dependencies and the relations between

the NFV reference framework functional blocks are explicitly

defined in the workflow. The proposed workflow is compliant

with the NFV reference framework as it obeys to the standard

definitions of the functional blocks, roles, and interfaces.

Moreover, this process goes beyond the reference framework

and proposes the automatic generation of a new NS Descriptor

(NSD) and other artifacts from the tenant’s NS requirements

and the catalogue of VNF Descriptors (VNFDs) upon tenant

request. This workflow is a first step toward the necessary

automation of network service design and deployment process

for NFV systems. To achieve this, we (1) investigate and

identify the different functions and operations in relation to the

functional blocks; (2) identify and capture various interactions

among the functional blocks; (3) identify the limitations and

open issues in the NFV reference framework; (4) determine

how the different artifacts are refined throughout the process;

(5) fill the gaps and define a concrete process, with high-

level activities for grouping together operations and functions

defined in the standard, that is compliant to the NFV reference

framework.

This paper is structured as follows: Section II gives a brief

background on the NFV reference framework, its functional

blocks, and various NFV artifacts. Section III outlines the

underlying process as inferred from the standard, and identifies

its limitations and open issues. Section IV presents the NS

design and deployment workflow and its Process Model (PM).

Section V discusses possible variations in the proposed process

and how it can be adapted and/or extended. In Section VI, we

review the related work. Finally, Section VII concludes with

some future work.

II. BACKGROUND

This section provides a brief introduction to the various

functional blocks in the NFV reference architecture and its

artifacts as proposed in the ETSI standard [3].

A. Main Functional Blocks in the NFV Architecture

As shown in Figure 1, the main functional module in the

architecture is the NFV Management and Orchestration (NFV-

MANO), which is in charge of deployment, management,978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

131

OSS/BSS

NFV MANO

NFV
Orchestrator
(NFVO)

EM 2

Virtual
Computing

Virtualisation Layer Or-Vi

Os-Ma

VNF Catalogue
NS Catalogue

NFV Instances Repo
NFVI Resources Repo

Hardware resources

Virtual
Network

Virtual
Storage

EM 3EM 1

Virtualised
Infrastructure
Manager(s)

(VIM)

VNF
Managers(s)

(VNFM)

NFVI Vi-Vnfm

Or-Vnfm

VNF 2 VNF 3VNF 1

Computing
Hardware

Network
Hardware

Storage
Hardware

Execution reference points Other reference pointsMain NFV reference points

Ve-Vnfm

Vl-Ha

Vn-Nf

Nf-Vi

Fig. 1. The NFV Architecture proposed by ETSI [3].

and orchestration of NSs. The NFV-MANO consists of three

functional blocks: the NFV Orchestrator (NFVO), the VNF

Manager (VNFM), and the Virtualised Infrastructure Manager

(VIM). In the following, we briefly discuss these functional

blocks, which we identify as actors in the rest of the paper.

The main responsibilities of NFV Orchestrator (NFVO)
include the NS orchestration and lifecycle management, e.g.,
(1) on-boarding VNFs and NSs; (2) instantiation of NSs

and VNFMs; and (3) NS policy management related to

affinity/anti-affinity, scaling, fault, and performance.

VNF Manager (VNFM) is in charge of the lifecycle man-

agement of VNF instances. A VNFM is assigned to each

VNF instance. However, a VNFM may also manage multiple

VNF instances of the same type. The main responsibilities

of VNFM include the instantiation, configuration, update and

upgrade management, modification, scaling, and termination

of its VNFs performed in collaboration with the NFVO [3].

Virtualised Infrastructure Manager (VIM) manages and

orchestrates the NFVI resources. The VIM supports the man-

agement of VNF Forwarding Graphs (VNFFGs), which in-

cludes creating and maintaining virtual links (VLs). VIM also

performs the NFVI physical and software resource repository

management [3].

B. Other Functional Blocks in NFV Architecture

The NFV reference architecture includes other functional

blocks, like the VNF, the EM, the NFVI, and the OSS/BSS.

Virtualised Network Functions (VNFs) are the building

blocks of an NS in NFV. VNFs are software pieces with the

same functionality as their corresponding physical network

functions, e.g., a virtual firewall (vFW) vs. a traditional fire-

wall device. A VNF can be composed of multiple internal

components (VNFC). The description of the deployment and

operational behaviour of a VNFC is defined as a Virtual

Deployment Unit (VDU) [4].

Element Management (EM) carries out the fault manage-

ment, configuration, accounting, performance, and security

(FCAPS) functionality for one or multiple VNFs. The EM

works together with the VNFM by exchanging information

on NFVI resources to manage the virtualised resources for a

VNF [3].

Network Functions Virtualisation Infrastructure (NFVI)
is the platform on which the network services are deployed.

The NFVI has the physical layer of devices for computation,

storage, and network; the virtualisation layer, e.g., hypervisor;

and the virtualised resources, e.g., virtual machines. The NFVI

is the totality of physical and virtual resources [3].

Operations Support Systems and Business Support Sys-
tems (OSS/BSS) refer to the operator’s proprietary systems

and management applications supporting their business. The

OSS/BSS systems exchange a lot of information with NFV-

MANO functional blocks to provide the desired network

service [3]. Moreover, in the NFV architecture, the OSS/BSS

provides management and orchestration of legacy systems.

C. NFV Artifacts

During the lifetime of an NS, various artifacts at various

levels of abstractions are used and produced. The artifacts

can be divided into three categories: descriptors, records, and

data repositories (see Figure 2). In the following, we briefly

describe each type of artifacts.

Fig. 2. NFV Artifacts.

Descriptors describe the deployment requirements, opera-

tional behaviour, and policies required by the NSs or VNFs.

The virtual links (VLs) that connect VNFs to form a network

topology also come with their descriptors—VLDs (Virtual

Link Descriptors). Similarly, the VNF Forwarding Graph

(VNFFG) has a descriptor, i.e., VNFFGD, which defines an

end-to-end sequence of VNFs that packets traverse. All these

descriptors, e.g., NSDs, VNFDs, VNFFGDs, and VLDs, are

known as deployment templates.

Records describe individual instances of NSs, VNFFGs, VLs,

and VNFs/PNFs. These records are stored within the NFV

Instances Repository.

Data Repositories that are defined in the NFV architecture

are (1) the NS Catalogue containing all the on-boarded NSDs,

VNFFGDs, and VLDs; (2) the VNF Catalogue containing all

the on-boarded VNFDs; (3) the NFV Instances Repository

containing all the instance records; and (4) the NFVI Re-

sources Repository holding information about the available,

reserved, and allocated NFVI resources as updated by the

VIM.

132

III. THE NS DEPLOYMENT AND MANAGEMENT PROCESS

IMPLIED IN THE STANDARD

In this section, we discuss the underlying NS deployment

process as inferred from the standard functional block descrip-

tions, their interfaces, operational flows, use cases, and case

studies. Then, we identify its limitation and highlight the open

issues.

A. The Implied Process

The ETSI standard includes a discussion on the initiation

and deployment process of NSs and VNFs. As mentioned in

the standard, a network service is requested by a tenant’s

OSS/BSS. The NFVO then on-boards the VNFDs into the

VNF Catalogue and the NSD, the VNFFGDs, and the VLDs

into the NS Catalogue. During on-boarding, the NFVO checks

the integrity of NSD, VNFFGD, VLD, and VNFD/PNFD.

Once the descriptors have been on-boarded the NS can be

instantiated on request.

In the course of the instantiation process, the NFVO re-

ceives additional instantiation parameters from the entity (e.g.,
OSS/BSS) initiating the instantiation process. These instan-

tiation input parameters contain information on deployment

flavours and are used to customise a specific NS instance and

its VNF instances. The deployment flavours specify parameters

for CPU utilisation and other factors related to the virtual

machine on which the VNFs are deployed. The instantiation

process results in various records, namely the Network Service

Records (NSRs), the VNF Records (VNFRs), the Virtual Link

Records (VLRs), and the VNFFG Records (VNFFGRs). This

is followed by the deployment of the NS and the associated

VNFs.

B. Limitations and Open Issues

We have identified some limitations and open issues that

are not addressed in the current NFV standard:

• Although the NFV framework describes three functional

blocks under MANO, they are typically not implemented

separately due to lack of clear segregation of responsibil-

ities during the instantiation and deployment phases [7];

• The standard identifies various orchestration functions

and operations along with operational flows that are part

of the NS and VNF lifecycle management. However, the

standard does not propose any logical grouping of these

functions and operations;

• The standard does not specify explicitly the dependen-
cies among the various functional blocks in the NFV

framework, i.e., how the functions and operations are

interdependent to achieve the NFV goals;

As a consequence, there is no concrete process (or work-

flow) that defines the execution order of the various functions

and operations. A detailed and concrete process model is

required to put the reference framework into practice. It will

enable the automation of network service deployment and

management.

A vendor providing a VNF implementation may not want to

restrict it in the associated VNFD to a particular deployment

option, but allows for the widest possible range of options

appropriate for the deployment. Compared to this, a given

NFVI may limit the deployment options, for example, due

to some policies or available resource of the operator/NFV

provider. Furthermore, an NS may impose further limitations

depending on the tenant’s policies and/or targeted key perfor-

mance indicator (KPI) values. Considering that the same VNF

package may be used to implement different NSs with diverse

policies and KPIs the use of the same VNFD is problematic.

Currently, the specifications do not distinguish these different

stages and define only a single VNFD associated with each

VNF to reflect these scenarios. A detailed process will distin-

guish these different stages and the different tailorings.

In the following section, we propose a process for NS design

and deployment which is compliant to the NFV reference

framework. In this process we identify high-level activities

for grouping the different functions and operations, their

dependencies and relationships. We clearly specify the inputs,

outputs of each activity and the tailoring of the artifacts. In

addition, we go beyond the standard and include an activity

for the automated design of the NSD from the tenant’s NS

requirements (NSReq). We refer to this activity in the rest

of the paper as the NS Design activity. This brings us to an

additional limitation of the current specifications:

• The NFV specifications focus on the virtualisation and

software management aspects of the VNFs, e.g., the

interfaces and KPIs. However, the current specifications

do not define any method that would help in identifying

the functionalities a VNF can provide for its users.

IV. NETWORK SERVICE DESIGN AND DEPLOYMENT

PROCESS

We define a process for the design, configuration and

deployment of network services. We elaborate on the functions

of the OSS/BSS in the context of our process, and propose a

workflow which is a chaining of the various NFV functions

and operations grouped into activities required to carry out

NS deployment. Our work is based on the VNF as a Service
(VNFaaS) model as defined in the standard [3], [4], [6].

We go beyond what is defined in the standard: we bring

the OSS/BSS, the EM, and other external subsystems (NFVI

resources repository, NFV instance repository, NS and VNF

catalogues) into the picture along with the NFV-MANO to

propose an NS design and deployment process.

We identified the activities that are part of the workflow. We

describe each activity (based on the orchestration functions

and operations defined in the ETSI standard) along with the

dependencies (in terms of information elements) between the

activities which sets a well-defined scope for each of them.

We also identify clearly and associate the actor responsible

for each of these activities including the activity of NS design.

The NS design is a complex activity that as mentioned earlier

is outside the scope of the NFV standard. Before presenting

the whole process we describe briefly the NS design activity.

Please note that in our process we have abstracted away

from the policy management (e.g., scaling and threshold) and

133

monitoring aspects of NS that are required to carry out SLA

monitoring, management and dynamic reconfiguration, and

focused on the design and deployment of network services.

A. NS Design

Network service design entails the definition of deployment

templates (namely NSD, VNFFGD, and VLD), which includes

static information elements related to an NS. This NSD is used

by the orchestrator during the deployment.

We propose a method for NSD generation by taking in-

spiration from [8]. A tenant may request a new NS by

specifying the NS Requirements (NSReq), which consists

of functional and non-functional requirements possibly with

some initial decomposition targeting specific VNFs. In our

work, we assume that the OSS/BSS of an NFV provider gets

the NSReq and generates the NSD based on the provider’s

VNF Catalogue. The NSD generation method involves the

decomposition of the NSReq and the selection of proper

network functions, e.g., VNFs (and/or PNFs1) from the VNF
Catalogue. The NSReq decomposition is guided by a

network function ontology (NFO), which captures standard

network function (de)compositions as defined by different

standardisation bodies such as 3GPP as well as knowledge and

experience from previous decompositions. The NFO captures

the decomposition of network functionalities to the level of

granularity where each functionality can be mapped onto some

VNF provided functionality. When the decomposition reaches

that level, VNFs from the VNF Catalogue are matched and

selected to compose the network service. The selection takes

into account the non-functional requirements and the VNFD

of the selected VNFs are tailored accordingly to NS-specific

VNFDs, referred to as NS-VNFDs. During this activity, the

VNF forwarding graph descriptor (VNFFGD) and the virtual

link descriptors (VLD) are also generated.

B. NS Design and Deployment Process Model

In this section, we propose a concrete model-based work-

flow covering the phases from NS design to deployment. With

the process, we have attempted to bridge the gaps between the

various functional blocks and the various activities that are part

of NS design and deployment. Having a model-based process

also allows us to take advantage of the ETSI/TOSCA defined

NFV profiles.

We present a Process Model (PM) that describes the process

of designing and deploying a new network service along with

the complete workflow. The PM clearly shows the control-

flow and object-flow among the actors involved in the process.

The PM language is a variant of the PM which is part of

the FTG+PM language [9]. The PM is modelled using the

UML2.0 Activity Diagram [10] formalism which is typically

used to model software and business processes. The formalism

1NS management typically also involves PNFs on-boarding, PNFs config-
uration generation, and PNFs deployment activities. The lifecycle of PNFs is
similar to that of VNFs. However, the lifecycle of PNFs are not in the scope
of this paper and we have chosen not to explicitly show PNFs.

allows the modelling of concurrent processes and their syn-

chronisation with the use of fork and join nodes. Both control-

flow and object-flow can be depicted in the model. An activity

node can either be a simple action (representing a single step

within an activity) or an activity (representing a decomposable

activity which embeds actions or other activities). An activity

specifies a behaviour that may be reused, i.e., an activity can

be included in other activity diagrams to invoke behaviour. For

representation purpose and to add clarity to the entire process,

we use activity diagram partitions (a.k.a., swimlanes) where

each partition represents one actor (participating functional

block) in the process. Multicasting and multireceiving are used

in conjunction with partitions to model object flows between

activities that are the responsibility of objects determined by a

publish and subscribe facility [10]. Object flows are tagged

with <<multicast>> or <<multireceive>> in this

case. Since UML2.0 Activity Diagrams are given semantics in

terms of Petri Nets [10], the precise formal semantics allow

the activity diagrams to be simulated and analysed.

In our PM, we consider the artifacts discussed in Section II

as models (instances which conform to existing meta-models)

which are either inputs or outputs of activities.

The PM covering the design, configuration generation, and

deployment activities is presented in Figure 3. Along with the

high-level activities, the PM clearly shows the input and output

models associated with each activity via input and output pins

(denoted by the tiny squares on the activity border). In the

PM, thin edges denote object-flow, while thick edges denote

control-flow. The join and the fork constructs are represented

as horizontal bars.

The role of each NFV functional block is shown as par-
titions in the PM. The partitions tagged as <<external>>
denotes blocks and actors outside the NFV-MANO. The parti-

tion labelled as Other Blocks includes blocks in the NFV

architecture that are considered as black-boxes in our work

and which communicate with the other actors via predefined

interfaces. The activities associated with the partitions or

actors are in accordance with the roles of the NFV functional

blocks as specified in the current standard [6].

We now elaborate on the activities, the associations between

the different actors, and the dependencies between the activ-

ities, as depicted in Figure 3. The activities (1) and (3) in

the list below can be carried out concurrently (shown with

the parallel flow coming out of the fork construct in Figure

3). Also, note that the activities in (1) and (2) are continuous

in nature and not part of the process for the NS design and

deployment, which starts with the NS design activity triggered

by a tenant’s request for a new service.

(1) Update VNF Catalogue (actor: OSS/BSS). The vendor,

an external actor, sends a new VNF package (including the

VNFD and the VNF Implementation). This is received

by the OSS/BSS (also an external actor), and the OSS-BSS
VNFCatalogue maintained by the OSS/BSS is updated.

This is a continuous behaviour which accepts a stream of

incoming VNF packages from vendors and updates the internal

134

Fig. 3. NS Design and Deployment Process Model (PM).

135

catalogue. Streaming is shown with the text annotation stream
placed near the (input/output) pin symbol in the PM.

(2) On-boarding VNF (actor: NFVO). The NFVO takes the

VNF specification and configuration data that is part of the in-

coming VNF package from the OSS-BSS VNFCatalogue
to on-board the VNFs. The NFVO validates the VNFD and

updates the VNFCatalogue (maintained by NFV-MANO)

with the Onboarded-VNFD. After that, the NFVO requests

VIM to upload the VNF image (triggering the Upload Image
action). The on-boarding of a VNF is required prior to its

deployment. On-boarding is a continuous behaviour which

periodically receives vendor-provided VNF packages from the

OSS/BSS and streams out the Onboarded-VNFD model for

each incoming VNF. At this point, the VNFDs are generic, as

in they are not associated with any NS. The VNFs are made

NS-specific in the NS Design activity.

(3) NS Design (actor: OSS/BSS). The tenant, an external

actor, requests a new network service by providing a new

network service requirements (NSReq) which triggers the

whole process starting with the NS design activity within the

OSS/BSS. The activity also takes as input the NFV-MANO

VNFCatalogue consisting of on-boarded VNFs, to produce

an NSD according to the available VNFs. The deployment

templates including the NSD, VNFFGD and the VLD to be

deployed are created during this activity as described in

Section IV-A. The VNFDs (from (2)) are specialised for this

NS resulting in NS-VNFDs. An additional model, NS-NFR,

is also generated and contains the non-functional requirements

(NFR) specified in the NSReq that need to be carried forward

and addressed during the configuration generation activity.

(4) On-boarding NS (actor: NFVO). Following NS design,

the NFVO continues with on-boarding the NS. On-boarding

entails validating the NSD, VNFFGD, and VLD to check

for missing elements and updating the NS Catalogue.

This activity tailors the deployment templates resulting in

the artifacts Onboarded-NSD, Onboarded-VNFFGD and

Onboarded-VLD. The NS-specific VNFD(s) and the NFRs

are received from the OSS/BSS and forwarded to the corre-

sponding VNFM through the NFVO.

(5) VNF Configuration Generation (actor: VNFM). Fol-

lowing the NS on-boarding by the NFVO, the NS-specific

VNFs need to be configured with deployment-specific details

(based on their deployment templates) to proceed with deploy-

ment. The internal configuration of each VNF is generated

as part of this activity. The internal connections between

the VNF components (VNFCs) are also configured. A con-

figuration generation request (along with the NS-VNFD and

the NS-NFR) is received from the NFVO by each VNFM.

Each configuration generation includes the generation of the

VNFInternalConfig and the VNFR. The internal config-

uration may determine what the VNF configuration should

be and how the VNFR should be created. The NS-NFR is

used to determine the number of instances of VNFs. The

records created are stored in the NFV Instance Repository.

The VNFMs respond by returning the VNFRs created to the

NFVO, which is done via multireceive, i.e., the objects in the

flow are gathered from respondents to multicasting.

(6) NS Configuration Generation (actor: NFVO). The

deployment-specific details of an NS are now generated to

enable NS deployment. Once the VNFRs are created for the

VNFs, the NS configuration activity is triggered by the NFVO

(once all VNFR input models for the associated VNFs are

available for the activity). The external links (VLs) between

the VNFs are configured during this stage. The instantiation

takes into account the constraints defined in NS-NFR. The

records created (e.g., VNFFGR, VLR, and NSR) representing

the NS instances along with the refined VNFRs are saved in

the NFV Instances Repository.

(7) Initiate NS Deployment (actor: NFVO). The NFVO then

initiates the NS deployment. This begins with the deployment

of the VNFs that are part of the NS. The NFVO checks for

resource availability for each VNF. The resource reservation

for the VNFs can also optionally be carried out by the NFVO

via the VIM. Once the resources are reserved, the NFVO sends

the reservation acknowledgment to the corresponding VNFM

(by multicasting the VNFRs). The VIM identifier is also passed

to inform the VNFM where to deploy the VNF. This triggers

the deployment of the VNFs by the VNFMs. It is also possible
that OSS/BSS controls the deployment and this activity is only
triggered upon its request.

(8) VNF Deployment (actor: VNFM/EM). Once the re-

source reservation is completed in activity (7), each VNFM

communicates with the VIM for resource allocation. The VNF
Resource Provisioning and Interconnection Setup action is

triggered in the VIM. The VNFM then configures the VNF
with deployment-specific parameters (VNF specific lifecycle

parameters), which involves instantiation and configuration

of the VNF components according to the VNFR. The EM

is involved with the configuration of VNF with application-

specific parameters to complete the actual VNF deployment.

At this point the VNFR is updated as well as the NFV

Instances Repository. Once all the VNFs are deployed, the

NFVO continues with the NS deployment.

(9) Complete NS Deployment (actor: NFVO). Following the

deployment of the VNFs, the NFVO continues to deploy the

NSR, VLR, and VNFFGR by requesting the VIM for network

connectivity creation. The NS Resource Provisioning and
Interconnection Setup action is triggered at this point. Upon

confirmation from the VIM of successful creation of network

connectivity, the NFVO requests the VIM to connect the

VNFs to the network (setting up the VLs that are part of the

VNFFG(s)). The deployment parameters in the records are

updated as well as the NFV Instances Repository.

According to the standard, it is possible to initiate resource

allocations in different ways. For this reason, in the standard

there are several variants of the operational flow for VNF and

NS deployment (depending on whether the resource allocation

is initiated by the NFVO or the VNFM). Therefore, it should

136

be noted that it is possible to have variations in the workflow

depicted in the PM depending on the interaction model chosen.
Following deployment, the NS instance management contin-

ues until its decommissioning. The PM discussed in this paper

does not include this part which is left for future investigations.

C. Artifacts Perspective of the Process Model
In the NFV domain, various artifacts are used as discussed

in Section II. However, as we also pointed out with respect

to the VNFD, there could be a substantial shift from what is

initially provided by the vendor and the specific version that is

deployed at the end for a tenant. The current NFV specification

does not clearly state the different specialisations an artifact

goes through during the NS design and deployment process. In

fact, the NFV artifacts, e.g., the VNF and NS, get transformed

through a chain of activities as shown in Figure 4. In this

section, we focus on the VNF and the NS specialisations and

illustrate them from the artifact perspective to complement the

PM in Figure 3. The information elements part of the NS and

VNF artifacts are detailed in [6]. Other artifacts like VLs and

VNFFGs are also tailored, but are not discussed here due to

space constraints.
1) VNF Tailorings: The initial Vendor-provided

VNFD is generic, i.e., open to many deployment options of

the VNF, and includes the VNF identification data (e.g., ID,

vendor, and version), VNF-specific data (e.g., connectivity

requirements, inter-dependencies of VNFCs, and deployment

flavours), VNFC data (e.g., specific VNFC configuration data

and deployment constraints), and virtualised resource require-

ments. The successive tailorings of a VNF as shown in Figure

4 (top) are discussed here.

• Tailoring 1: The orchestrator checks for any missing

mandatory information elements in the generic VNFD

and provides with the default values, thus resulting in an

Onboarded VNFD model instance.

• Tailoring 2: The NS-specific VNFDs are the result

of VNF selection from the VNFCatalogue and the

tailoring of the VNFDs for a specific NS based on

the NSReq from the tenant where various VNF/VNFC

deployment constraints and virtualised network resource

requirements might be added/updated in the VNFD by

the OSS/BSS.

• Tailoring 3: Once the VNFDs are tailored to be NS-

specific, the VNFM/EM configures VNF-specific data for

VNF instantiation. The VNFR is created and the VDU-

level configuration is performed. Additional information

elements are introduced in the VNFR, for instance, the

parent NS, the logging capabilities for audit purpose, the

network address, and the VNFM managing this instance.

• Tailoring 4: A further tailoring of the VNFR is possible

based on the deployment flavour and geographical loca-

tion constraint, which results in NS-specific VNFR.

• Tailoring 5: During the deployment of the VNFs, the

policies, e.g., affinity and anti-affinity rules, are applied

between VMs and hosts, which results in the refinement

of VNFRs to adhere to the policies.

Fig. 4. Successive tailoring of a VNF (top) and an NS (bottom).

2) NS Tailorings: The Generated NSD includes the on-

boarded NS-specific VNFDs, the VNFFGDs, and the VLDs.

The successive tailorings of an NS as shown in Figure 4

(bottom) are as follows:

• Tailoring 1: For the Onboarded NSD, the NFVO

checks for any missing mandatory information elements

in the NSD and provides with the default values, if

required, which is the first tailoring of an NSD.

• Tailoring 2: Later, the NFVO instantiates the NS by

creating an NSR and adds additional information to the

on-boarded NSD, for instance, information on NFVI

resources reserved for this NS instance, the NS status,

and the logging capabilities for audit purpose.

• Tailoring 3: During the deployment of an NS, various

policies (e.g., the NS scaling policy) are provided from

OSS/BSS resulting in a further specialisation of an NSR.

V. DISCUSSION

Our PM may have workflow variations, i.e., the NSD can

be designed from scratch or an existing NSD can be reused

based on the new functional/non-functional requirements from

tenants, which we discuss in the following. We also discuss

how the proposed PM can be enacted using the benefits of

model-driven engineering with the final goal to automate the

workflow for designing and deploying an NS.

A. Variations in the Workflow

The proposed process covers the design, configuration and

deployment of a new network service triggered by a request

from a tenant in the form of a NSReq consisting of functional

and non-functional requirements. The NS Design activity can

include a function for checking the NS Catalogue for a

service that meets the NSReq before starting the design to

reuse what is already available. However, if the non-functional

requirements are taken into account in the design of the

NS, the probability of a matching NSD is low. One can

think of an alternative workflow where the NSReq consists

only of functional requirements to improve NS re-usability.

In this case the NS is designed with multiple versions in

a first step and the non-functional requirements are taken

into account only in a second step where a specific version

that can meet the non-functional requirements is selected

and tailored further to meet the non-functional requirements.

137

Different tenants with different non-functional requirements

may reuse the same NSD. The provider will reuse existing

network services (NSDs) to configure and instantiate network

services based on varying non-functional requirements.

Currently, the process is triggered by a new network service

request from a tenant. From then on, the process can be

executed automatically. It is also possible that the different

phases of the process can be triggered by the OSS/BSS.

Following NS on-boarding, the process can be suspended and

resumes only when the OSS/BSS sends an instantiation and

deployment request.

B. Towards Model-Driven Process Enactment

In model-driven engineering (MDE) and model-based en-

gineering (MBE), software models can play a key role in the

lifecycle management of a system [11]. Having an effective

and efficient way of coordinating these models, maintaining

consistency, and managing the propagation of changes across

the models is crucial. As a step in that direction, it is important

to model our domain and our processes using modelling

languages that are well-established and have well-defined

semantics. In our work, we use UML2.0 Activity Diagrams

for this purpose. While at the moment, the PM is a means

of modelling and documenting our process, the use of a such

modelling language sets the pillars for model-driven process

enactment or execution.

We intend to evolve the PM to a detailed FTG+PM model

as defined in [9]. The FTG+PM language includes a process
model (modelled using a subset of UML 2.0 activity diagrams)

in which each activity is essentially a model transformation,

and the formalism transformation graph (a form of meg-

amodel) to support the PM. The framework is based on the

notion of multi-paradigm modelling and uses metamodelling

and model transformations as enablers. The use of such

PMs or model transformation chains allows the enactment or

automatic execution of the workflow defined in the process.

Having an underlying transformation chain also naturally

leads to ensuring traceability requirements (not just at the

stakeholder level but also at the software management level),

since these chains explicitly model the relations between the

steps of an MDE process [9].

VI. RELATED WORK

We can summarise the contributions in the NFV literature

as follows: (1) Studies of the NFV domain and the dif-

ferent functional modules in the NFV reference framework;

(2) Investigations of research directions and risks associated

with the current NFV framework; (3) Surveys on various

standards, management/orchestration and monitoring tools; (4)

Proprietary prototypes or PoC implementations, some of which

rely on model-based approach; and (5) Solutions to the VNF

placement problem.

For example, the authors in [12], [13], [14] give an overview

of NFV and discuss its relationship with software defined

networking (SDN) and cloud computing. The use of NFV

technology and network slicing for software management at

the network level is discussed in [15]. The main goal of these

studies is to identify key future research directions in the

NFV domain. Han et al. [13] discuss some NFV uses cases.

Moreover, Mijumbi et al. [12] conclude that most of existing

NFV industry solutions share vendor-specific resources hosted

in the cloud without real support for flexibility, interoperability,

orchestration and–or automation, which are the core require-

ments for NFV.

Chen et al. [16] propose to refine and implement the ETSI

specification of NFV-MANO by realising a prototype of the

underlying components and interfaces. As the first step to-

wards realisation, the authors focus on the detailed analysis of

the lifecycle management of the virtualised network functions

(VNFs). The authors adopt a model-based monitoring solution,

e.g., Dell Foglight, for VNF lifecycle management, for exam-

ple, auto-scaling [16]. Using their prototype implementation,

the authors successfully deploy and scale a sample VNF.

However, the authors limit their work only at the VNF-level

and do not propose a process to complement the standards.

In another work, Xilouris et al. [17] outline an integrated

NFV architecture designed and developed under T-NOVA EU

project. The main goal of T-NOVA project is to realise the

NFaaS (Network Functions as a Service) model by designing

and implementing an integrated management architecture for

automatic provision, management, monitoring, and optimisa-

tion of VNFs. However, T-NOVA project is concerned with

VNFs only and a overall process for network service has

not been proposed. Cisco provides guidelines for lifecycle

management of Cisco network functions including registering,

deploying, monitoring, scaling, and healing of VNFs as per-

formed by the Cisco Elastic Services Controller (ESC), similar

to a VNFM in the NFV framework [18]. On the other hand,

Oracle develops a framework called Oracle Communications
Design Studio [19] to design a network service (NS) and to

support the NS orchestration. However, the NS design requires

to create various framework-specific NS constituent resources

and they do not follow the ETSI specifications.

Sahhaf et al. [20] consider different service compositions,

i.e., VNFs arranged in different ways with different VNFFGs

and VLDs, and propose algorithms to select the optimal

composition according to some criteria including resource

demands, QoS, and available infrastructure resources. This

work assumes the different compositions given as input and

basically looks into the deployment as an optimisation problem
as several other papers in the literature [21], [22]. Indeed, VNF

placement is the most active research topic among academia

interested in NFV.

Moreover, there are several white papers from industry that

discuss proprietary proof of concept (PoC) implementation

of their NFV architecture adopted from ETSI. For example,

Intel [23] shows the benefits of having OSS/Orchestrator to

deploy both the service configuration as well as a testing

and assurance solution. Huawei [24] identifies major issues

hindering the NFV. As mentioned in the paper, the major

issue concerns interfaces and interoperability issues in man-

agement and orchestration in NFV. However, Huawei does

138

not discuss its NFV architecture. HP [25] briefly describes

its implementation of the ETSI NFV reference architecture—

HP NFV Director. The key features of HP NFV Director

include its capability of using VNF Manager functionality

and multi-vendor support. Finally, Cisco [26] defines and

develops its proprietary platform to address the management

and orchestration requirements for NFV framework [6].

VII. CONCLUSION AND FUTURE WORK

In this paper, we identified some limitations and open issues

in the NFV reference architecture. We proposed a model-based

design and deployment process by establishing the core activi-

ties required to carry out NS design, configuration, and deploy-

ment along with their inter-dependencies and execution order.

We defined the dependencies and the workflow explicitly in

terms of control-flow and object-flow between these activities

in a Process Model (PM) described using UML2.0 Activity

Diagram. The PM also associates the activities to the relevant

functional blocks in the NFV reference framework to clearly

show the interactions between the various actors participating

in the process and the tailoring and specialisations of the key

NFV artifacts. The proposed process is compliant with the

current standard. Moreover, the process includes an external

activity for the automated generation of deployment templates

which will speed up further network services provisioning.

We are currently working on detailing out the NS instance

lifecycle management activity by including specific activities

for SLA Management and Dynamic Reconfiguration along with

the associated flows. Moreover, we intend to define the Process

Model for each of the activities in our PM by detailing the

actions along with the flow that are part of each activity. As

future work, we plan on working on the automatic execution

of the proposed workflow.

Acknowledgments: This work is partly funded by NSERC

and Ericsson, and carried out within NSERC/Ericsson Indus-

trial Research Chair in Model Based Software Management.

REFERENCES

[1] T. Velte, A. Velte, and R. Elsenpeter, Cloud Computing, A Practical
Approach, 1st ed. New York, NY, USA: McGraw-Hill, Inc., 2010.

[2] M. Chiosi, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bugenhagen,
W. Khan, M. Fargano, C. Cui, H. Deng et al., “Network Functions
Virtualisation: An Introduction, Benefits, Enablers, Challenges and Call
for Action,” in SDN and OpenFlow World Congress, 2012, pp. 22–24.

[3] Network Functions Virtualisation - Architectural Framework: ETSI GS
NFV 002 V1.2.1, ETSI Std., December 2014.

[4] Network Functions Virtualisation (NFV) - Virtual Network Functions
Architecture: ETSI GS NFV-SWA 001 V1.1.1 , ETSI Std., December
2014.

[5] TOSCA Simple Profile for Network Functions Virtualization (NFV)
Version 1.0, OASIS Committee Specification Draft 03, March
2016. [Online]. Available: http://docs.oasis-open.org/tosca/tosca-nfv/v1.
0/tosca-nfv-v1.0.html

[6] Network Functions Virtualisation - Management and Orchestration:
ETSI GS NFV-MAN 001 V1.1.1, ETSI Std., December 2014.

[7] C. Chappell, “NFV MANO: What’s Wrong and How to Fix It,”
February 2015. [Online]. Available: http://getcloudify.org/brochures/
Heavy%20Reading%20NFV%20MANO%20Cloudify%20Snapshot.pdf

[8] M. Abbasipour, M. Sackmann, F. Khendek, and M. Toeroe, “A Model-
Based Approach for User Requirements Decomposition and Compo-
nent Selection,” in Formalisms for Reuse and Systems Integration,
T. Bouabana-Tebibel and H. S. Rubin, Eds. Springer International
Publishing, 2015, pp. 173–202.

[9] L. Lúcio, S. Mustafiz, J. Denil, H. Vangheluwe, and M. Jukss,
“FTG+PM: An Integrated Framework for Investigating Model Trans-
formation Chains,” in SDL 2013: Model-Driven Dependability Engi-
neering: 16th International SDL Forum, Montreal, Canada, June 26-28,
2013. Proceedings, F. Khendek, M. Toeroe, A. Gherbi, and R. Reed, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 182–202.

[10] OMG Unified Modeling Language (OMG UML), Version 2.4.1, Object
Management Group Std., Rev. 2.4.1, August 2011. [Online]. Available:
http://www.omg.org/spec/UML/2.4.1

[11] R. France and B. Rumpe, “Model-based Lifecycle Management of
Software-intensive Systems, Applications, and Services,” Software &
Systems Modeling, vol. 12, no. 3, pp. 439–440, 2013.

[12] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network Function Virtualization: State-of-the-Art and Re-
search Challenges,” IEEE Communications Surveys & Tutorials, vol. 18,
no. 1, pp. 236–262, January 2016.

[13] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network Function
Virtualization: Challenges and Opportunities for Innovations,” IEEE
Communications Magazine, vol. 53, no. 2, pp. 90–97, 2015.

[14] R. Mijumbi, J. Serrat, J.-L. Gorricho, S. Latre, M. Charalambides,
and D. Lopez, “Management and Orchestration Challenges in Network
Functions Virtualization,” IEEE Communications Magazine, vol. 54,
no. 1, pp. 98–105, January 2016.

[15] “Network Functions Virtualization and Software Manage-
ment,” White Paper, Ericsson, December 2014. [Online].
Available: www.ericsson.com/res/docs/whitepapers/network-functions-
virtualization-and-software-management.pdf

[16] Y. Chen, Y. Qin, M. Lambe, and W. Chu, “Realizing Network Function
Virtualization Management and Orchestration with Model-based Open
Architecture,” in 11th International Conference on Network and Service
Management (CNSM ’15). IEEE, 2015, pp. 410–418.

[17] G. Xilouris, E. Trouva, F. Lobillo, J. M. Soares, J. Carapinha, M. Mc-
Grath, G. Gardikis, P. Paglierani, E. Pallis, L. Zuccaro et al., “T-
NOVA: A Marketplace for Virtualized Network Functions,” in European
Conference on Networks and Communications (EuCNC ’14). IEEE,
2014, pp. 1–5.

[18] “Cisco Elastic Services Controller 2.0 User Guide,” White Paper,
CISCO, October 2015. [Online]. Available: http://www.cisco.com/c/en/
us/td/docs/net mgmt/elastic services controller/2-0/user/guide/Cisco-
Elastic-Services-Controller-User-Guide-2-0.html

[19] “Oracle Communications Network Service Orchestration Solution
Implementation Guide, Release 1.1,” White Paper, Oracle, July
2016. [Online]. Available: https://docs.oracle.com/cd/E71075 01/doc.
11/e65331/toc.htm

[20] S. Sahhaf, W. Tavernier, D. Colle, and M. Pickavet, “Network Service
Chaining with Efficient Network Function Mapping Based on Service
Decompositions,” in 1st IEEE Conference on Network Softwarization
(NetSoft), April 2015, pp. 1–5.

[21] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and
R. Boutaba, “Elastic Virtual Network Function Placement,” in IEEE
4th International Conference on Cloud Networking (CloudNet), October
2015, pp. 255–260.

[22] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On Orches-
trating Virtual Network Functions,” in Proceedings of the 2015 11th
International Conference on Network and Service Management (CNSM),
ser. CNSM ’15. Washington, DC, USA: IEEE Computer Society, 2015,
pp. 50–56.

[23] “Using NFV Orchestration to Collapse Service Deployment
and Service Assurance Silos,” White Paper, Intel, December
2015. [Online]. Available: https://networkbuilders.intel.com/docs/ETSI
Netrounds WP 121615.pdf

[24] “Huawei Observation to NFV,” White Paper, Huawei Technologies
Co., 2014. [Online]. Available: www.huawei.com/ilink/en/download/
HW 399662

[25] HP, “HP NFV Director - HP solution for NFV Orchestration and
VNF Management,” White Paper, August 2013. [Online]. Available:
www8.hp.com/h20195/v2/getpdf.aspx/4AA5-1082ENW.pdf?ver=1.0

[26] “NFV Management and Orchestration: Enabling Rapid Service Innova-
tion in the Era of Virtualization,” White Paper, CISCO, 2015. [Online].
Available: www.cisco.com/c/en/us/solutions/collateral/service-provider/
network-functions-virtualization-nfv/white-paper-c11-732123.html

139

ViTeNA: An SDN-Based
Virtual Network Embedding Algorithm for

Multi-Tenant Data Centers

Daniel Caixinha
INESC-ID Lisboa

Instituto Superior Técnico

Universidade de Lisboa, Portugal

daniel.caixinha@tecnico.ulisboa.pt

Pradeeban Kathiravelu
INESC-ID Lisboa

Instituto Superior Técnico

Universidade de Lisboa, Portugal

pradeeban.kathiravelu@tecnico.ulisboa.pt

Luı́s Veiga
INESC-ID Lisboa

Instituto Superior Técnico

Universidade de Lisboa, Portugal

luis.veiga@inesc-id.pt

Abstract—Data centers offer computational resources with
various levels of guaranteed performance to the tenants, through
differentiated Service Level Agreements (SLA). Typically, data
center and cloud providers do not extend these guarantees to
the networking layer. Since communication is carried over a
network shared by all the tenants, the performance that a tenant
application can achieve is unpredictable and depends on factors
often beyond the tenant’s control.

We propose ViTeNA, a Software-Defined Networking-based
virtual network embedding algorithm and approach that aims
to solve these problems by using the abstraction of virtual
networks. Virtual Tenant Networks (VTN) are isolated from
each other, offering virtual networks to each of the tenants, with
bandwidth guarantees. Deployed along with a scalable OpenFlow
controller, ViTeNA allocates virtual tenant networks in a work-
conservative system. Preliminary evaluations on data centers with
tree and fat-tree topologies indicate that ViTeNA achieves both
high consolidation on the allocation of virtual networks and high
data center resource utilization.

I. INTRODUCTION

The creation of data centers allowed global access to huge

computational resources, previously only available to large

companies or governments. By renting the desired computa-

tional power, small companies (or even an individual) avoid

large capital expenses. In current data center environments, a

client can ask for a computational instance of various sizes,

and the service provider assures levels of guaranteed perfor-

mance (through an SLA) for that computational instance. This

guarantee is possible due to the huge evolution of virtualization

technologies. Nowadays, a hypervisor can control the behavior

of the virtual machines (VMs) it hosts, ensuring that a VM

cannot use more CPU than what it was requested (except when

the hypervisor allows). In this way, tenants are not harmed by

the misbehavior of the other tenants.

This simplicity of computational resources on demand has

generated a lot of interest around the world. However, there

are still a lot to improve in this area - considerably, the

lack of network accounting in the renting of resources. Cloud

providers do not offer network performance guarantees to

their tenants. In fact, a tenant’s compute instances or VMs

communicate over the network shared by all tenants. Thus,

the network performance that a certain VM can get depends

on several factors including those outside the tenant’s control,

such as the network load on a given moment or the placement

of that VM in the network. This is further aggravated by the

oversubscribed nature of a data center network.

Lack of guarantees in a shared communication medium

leads to unpredictable application performance often at ten-

ants’ cost. Machine virtualization has a considerable impact

on network performance, where virtualized machines often

present abnormally large packet delay variations, up to hun-

dred times larger than the propagation delay between the

considered two hosts. Moreover, TCP and UDP throughput

can fluctuate rapidly (in the order of tens of milliseconds)

between 1 Gb/s and zero, which shows that applications will

have a very unpredictable performance [1]. Tenant applications

in the cloud and data centers are often data intensive, such

as video processing, scientific computing, or distributed data

analysis. Hence a fluctuation in tenant virtual bandwidth

allocation may severely degrade the performance achieved

by an application. With intermittent network performance,

MapReduce[2] applications will experience harsh issues when

the data to be shuffled amongst mappers and reducers is quite

large.

Software-Defined Networking (SDN) [3] is an abstraction

that decouples the control plane from the data plane consisting

of forwarding hardware such as switches and routers. Hence,

the control mechanism can be extracted from the network

elements and logically centralized in the SDN controller. The

controller creates an abstraction of the underlying network, and

thereby provides an interface to the higher-layer applications.

SDN controllers can be leveraged to create a Virtual Tenant

Network (VTN) on top of the data plane. Each of the tenants

is given isolation guarantees at network level, with an illusion

of a dedicated virtual network. VTN can be leveraged in data

center and cloud networks to ensure that SLAs are met with

Quality of Service (QoS) guarantees from the bottom-most

level.

Virtual network embedding [4] aims to completely vir-978-1-5090-3216-7/16/$31.00 ©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

140

tualize the network, providing performance isolation among

tenants at the network level. So, virtual network embedding

consists in the mapping of virtual networks (consisting of

virtual nodes and links) onto the substrate network (consisting

of physical nodes and links). Virtual network embedding

is considered the main challenge in the implementation of

network virtualization [5]. In the data center context, network

virtualization is advantageous as it allows clients to define the

desired network topology, which will be allocated within the

infrastructure exactly as defined by the client. This enables

seamless migrations of current or legacy networks to a data

center environment, since the client defines the topology and

the required guarantees (such as CPU or bandwidth between

machines), which will be enforced by the embedding algorithm

by placing the virtual network only where the resources are

sufficient.

In this paper, we describe the design, implementation, and

evaluation of ViTeNA virtual network embedding approach.

ViTeNA leverages the global view of the network offered by

SDN controllers for virtual network allocation for tenants in

a data center network. This allows tenants to express their

requirements in terms of bandwidth, which is then enforced

through virtual networks. ViTeNA is designed as a scalable

solution for data center environments. It further achieves high

consolidation within the placement of virtual networks, and

high utilization of the data center’s physical resources - servers

and network.

II. BACKGROUND AND RELATED WORK

OpenFlow [3] is a southbound protocol and core enabler

of SDN. Many SDN controllers such as OpenDaylight [6],

ONOS [7], and Floodlight [8] have developed OpenFlow

implementation in high-level languages. Supported by the

Linux Foundation and many big players in the networking

industry, OpenDaylight and ONOS have grown to be large

and complex SDN projects, with various sub-projects and use

cases. Floodlight remains fairly simple as a compact Java-

based open source SDN controller.

OpenDaylight VTN offers virtual network provisioning,

flow and QoS control over virtual network, and virtual network

monitoring. However, OpenDaylight VTN focuses on network

virtualization function; not on virtual network allocation guar-

antees. MicroTE [9] uses OpenFlow as a framework to have

centralized control over the data center and make routing

decisions based on predictions of the traffic matrix. Current

traffic engineering techniques do not apply well to a data

center, as they are too slow to react to micro-congestions, and

the reaction time must be under 2 seconds to be effective [9].

Hence, MicroTE creates a hierarchical structure to make

traffic measurements scalable with the data center size, having

a centralized controller.

Unpredictability of network performance in data center en-

vironments is damaging to both tenants and service providers,

since the tenant applications suffer from the unpredictability

and the service provider can incur in avoidable revenue

losses [10]. Oktopus [10] facilitates predictable networks,

offering network guarantees to the tenants. SecondNet [11]

utilizes a central unit that receives virtual network requests,

and runs the embedding algorithm to process and allocate

the virtual tenant network requests. But, unlike Oktopus,

the routes calculated by the central node do not translate

into routing rules to the switches, because in SecondNet

the physical machines keep information about the routes of

each VM it owns. Silo enables co-existence of tenants in a

competitive environment for resources, though with a trade-off

of reduced network utilization [12]. EyeQ offers a distributed

transport layer for network performance isolation in multi-

tenant environments [13].

Seawall [14] tackles the problem of fair bandwidth sharing

and network performance isolation in data centers. It over-

comes the lack of performance isolation at the network level

by assigning weights to each entity (such as a VM, or a process

inside a VM). Thus, Seawall devices a solution where the share

of bandwidth obtained by the entity in each network link is

proportional to its weight. Gatekeeper [15] shares some design

ideas and goals with Seawall. However, it provides minimum

bandwidth guarantees, by using Open vSwitch [16] in each

server to control all the VMs within a server. Each VM has

a virtual network interface card (vNIC), that connects to the

Open vSwitch. A minimum receive bandwidth guarantee as

well as a minimum send bandwidth guarantee is assigned

to each VM. Minimum bandwidth guarantees are achieved

using an admission control mechanism that limits the sum of

guarantees to the available physical link bandwidth.

Heuristics based virtual network embedding algorithms have

various specific objectives including low execution time. Sur-

vivable networks [17] aim to make the virtual network embed-

ding with fast failure recovery times. Despite the differences

in goals, all these algorithms focus on delivering bandwidth

guarantees in a data center network. Server locality of the same

virtual network embedding request is exploited and leveraged

by these algorithms, to reduce the search space for a solution,

thus reducing the algorithm execution time.

As virtual network embedding is an NP-hard problem, node

mapping and link mapping phases are separated in typical

heuristic-based algorithms. If the request is smaller than the

VM capacity of the largest available server, upon a virtual

network request, the system first attempts to do the node

mapping by trying to accommodate everything inside a single

server. If not, they try the servers on the same rack, followed

by the adjacent racks, and so on, to minimize the distance. The

choice of the first server rack to analyze varies from work to

work, but it is either random or in a round-robin fashion. The

link mapping phase only starts if the virtual network request

completes the node mapping phase. If it does not, it can be

put into a queue to be processed later or the request discarded

to alert the client there are no resources available for their

request.

This is a greedy approach, since it picks the locally optimal

choice at each branch in the road (i.e. it chooses the best

solution that complies with the virtual network constraints).

With this type of algorithms, the virtual networks also benefit

141

from the reduced number of hops in the substrate network,

which will yield low latency (as low as possible, but with no

guarantees) between the VMs communicating in the virtual

network. Some works [11], [18], [10], [19], [20] follow this

approach. Path splitting (i.e. bifurcated traffic) and migration

of VMs can also be considered for small data centers [19],

as this does not significantly reduce the search space in a

reasonable time for data centers beyond a few hundreds of

nodes. Chowdhury et al [4] formulate the virtual network

embedding as a mixed integer problem and solve it as a linear

program by relaxing the integer constraints. Extending the later

advances in networking and SDN, ViTeNA aims to improve

virtual network embedding, offering a virtual tenant network

for multi-tenant data centers.

III. ViTeNA APPROACH FOR NETWORK ALLOCATION

We will describe ViTeNA virtual tenant network allocation in

this section. Although ViTeNA can be deployed on any network

research topologies, we will limit our focus on the traditional

tree-like topologies (tree and fat-tree) since they are still the

most used data center topologies [21].

Figure 1 depicts a sample deployment of data center net-

work in ViTeNA approach. The OpenFlow controller is the

core of ViTeNA, as it is responsible for running the virtual

network embedding algorithm to map the requests on the

substrate network, and programs the switches to deploy the

requested virtual networks. Each switch acts merely as a

packet forwarder, per the rules dictated by the controller. The

controller has a connection to every switch in the network,

represented by the thinner dotted lines that are from the control

plane in Figure 1. Though the data flows and control flows are

differentiated using different lines in the diagram, the control

plane does not necessarily need dedicated connections; it can

use the same physical links of the data plane.

Fig. 1. Deployment landscape of ViTeNA with a tree topology.

ViTeNA network embedding algorithm tries to allocate the

requests on the smallest available subset of the substrate

network, like the other existing virtual network embedding

approaches. It thus aims to maximize the proximity of VMs

belonging to the same tenant, which results in minimizing the

number of hops between those VMs. This is advantageous for

two reasons: i) with less hops, the delay is generally reduced;

and ii) keeping the VMs close (e.g. in the same rack) relieves

the bandwidth usage in the upper links of the tree, where the

bandwidth is scarcer in a data center [21]. With this approach,

we will be able to accept more virtual network requests, since

the core links will not be so likely to become the bottleneck

of the data center.

Figure 1 shows the placement of three virtual networks in

tree topology with depth equal to 3 and fanout equal to 2.

The virtual network of tenant A (V TNA) represents the best

possible case where all the VMs of the virtual network can

be mapped on the same physical server. In this case, there is

no usage of the network (which saves bandwidth for future

requests), and the bottleneck of the virtual network is only

the speed within the server. In the virtual network of tenant B

(V TNB) the request could not be mapped to a single server,

and hence it uses another server belonging to the same rack to

accommodate the entire request. The virtual network of tenant

C (V TNC) shows a case where the virtual network could not

be mapped in the same rack, and must use a server on the

adjacent rack. As we can see, the bandwidth of the links on

the top of the tree is only used in the worst cases (i.e. when the

request is large or the data center is operating near saturation).

Besides the network embedding algorithm that ensures that

the network can provide the bandwidth guarantees requested

by each tenant, ViTeNA exploits the centralized information

in the controller to provide fair bandwidth sharing (i.e. work-

conservation) among tenants (non-existent in network embed-

ding systems) and incremental consolidation of virtual network

requests. Fair bandwidth sharing is achieved by instructing

every switch used by a virtual network (which is determined

by the embedding algorithm) to create a new queue for

that virtual network. The queues in OpenFlow are used to

provide QoS guarantees (in this case, bandwidth). Incremental

consolidation of virtual network requests is enforced in the

network embedding algorithm itself, choosing the location of

a virtual network according to a best-fit heuristic on the VM

placement. To do this, the algorithm leverages the current

state of the network and the physical servers available to the

OpenFlow controller.

A. Software Architecture

Figure 2 depicts each component of ViTeNA as well as

the most important interactions between them. Mininet [22]

open source network emulator has been used to emulate the

data center networks, as it considered the de facto standard

of OpenFlow emulators [23]. ViTeNA could be ported to a

physical data center with a few or no changes in code, from

the current Mininet-based emulations. The only exception is in

the Linux Process, which in a real scenario would be running

a hypervisor to manage the VMs inside that host. In this paper,

this is simplified to an operating system managing processes,

where each process will simulate a VM. We assume all the

physical servers have equal CPU, so that in a virtual network

request a tenant asks for a percentage of a CPU (instead of a

CPU with a certain frequency).

Information Flow: The tenant expresses its demands

in a virtual network request in an XML configurations file.

This includes defining the number of VMs required (and the

percentage of CPU of each one), as well as the bandwidth

required between the VMs that will be connected (expressed in

142

MBit/s). This request is fed into the virtual network embedding

algorithm that is running in the OpenFlow controller. Upon

receiving the request, the embedding algorithm contacts the

network information manager to get the current state of the

network. Based on this state, the algorithm determines (if

the request is accepted) where this virtual network will be

allocated. As all the requests are processed by the controller,

this updated view of the network involves zero control mes-

sages over the network (both to switches and hosts), since

the controller just should update this information when it

processes a new virtual network request.

Fig. 2. Software architecture of ViTeNA.

The controller then translates the output of the algorithm

(i.e. the affected switches and hosts) to OpenFlow rule(s) to

reprogram the switch(es). Upon receiving this message, the

Open vSwitch manager creates a new queue for this virtual

network, with the assured bandwidth present in the received

message. It further installs a new rule in the switch’s flow

table to forward packets from a certain VM to the newly

created queue. Hence, there will be a queue for each pair of

linked VMs in a virtual network. Thus, a VM can use more

bandwidth than its minimum when the link is not throttled.

Moreover, the sharing of bandwidth between queues is made

fairly according to the minimum bandwidth a queue has (a

queue with a higher minimum bandwidth will use more spare

bandwidth). Thus, the resource usage is maximized, since the

tenants share unused bandwidth fairly, but at the same time

get their minimum bandwidth guarantee when the network is

saturated.

The VMs are represented by and implemented as Linux

processes. To simulate tenant workloads, each process runs

a traffic generator. Upon the necessary configurations, each

process (i.e. VM) can communicate with other processes on

the same virtual network, using either the operating system

(in case the processes are on the same server), or contacting

its adjacent switch, which will use the flow table to check

to which queue it should forward this solicitation (in case

the processes are on different servers). In this paper, we will

only focus on communication inter-server as the intra-server

communication is a responsibility of the hypervisor.

B. Virtual Network Allocation

As the core procedure of ViTeNA, algorithm 1 aims to

guarantee that every VM pair in the virtual network request

gets at least the requested bandwidth; and, to consolidate the

virtual networks on the least amount of physical resources

possible. Instead of making a consolidation algorithm that runs

periodically, ViTeNA performs the consolidation incrementally

at each request, merging the network embedding and the

consolidation algorithms. Hence it avoids heavy migrations of

VMs between servers, which would stop temporarily the work

of those VMs and possibly generate a lot of control and data

traffic. Periodic execution of the algorithm would diminish

the controller performance. ViTeNA thus avoids performance

degradation while processing the virtual network requests.

Algorithm 1 ViTeNA Virtual Network Embedding

1: procedure ISNETWORKREQUESTACCEPTED(V NR)
2: totalVMLoad ← getVMLoadFromVNR(VNR)
3: highestCPUAvailable ← getMostFreeCPU()
4: if (totalVMLoad < highestCPUAvailable) then
5: appropriateList ← findAppropriateList(totalVMLoad)
6: for all (server in appropriateList) do
7: serverCPUAvailable ← getCPUAvailable(server)
8: if (totalVMLoad < serverCPUAvailable) then
9: allocVirtualNetwork(VNR, server)

10: Return True � Request is accepted

11: else
12: server ← getMostFreeServer()
13: firstServer ← server
14: sortedVNR ← sortVNRByBWDemands(VNR)
15: [preAllocatedVMs, remainingVMs] ← splitRequest(sortedVNR, high-

estCPUAvailable)
16: VMsAlreadyAllocated ← (preAllocatedVMs, server)
17: preAlloc(preAllocatedVMs, server)
18: while (True) do
19: server ← getNextServer(server)
20: if server.isF irstServer() then
21: cancelAllPreAllocs()
22: Return False � Request is not accepted

23: CPUAvailable ← getCPUAvailable(server)
24: [preAllocatedVMs, remainingVMs] ← splitRequest(sortedVNR,

CPUAvailable)
25: BWDemands ← calcSumOfDemands(sortedVNR, VMsAlreadyAllo-

cated, preAllocatedVMs, server)
26: linksResidualBW ← calcResidualBW(VMsAlreadyAllocated, server)
27: if (BWDemands > linksResidualBW) then
28: clearLastSplitRequest()
29: continue
30: else
31: preAlloc(preAllocatedVMs, server, BWDemands)
32: VMsAlreadyAllocated ← VMsAlreadyAllocated + (preAllocated-

VMs, server)
33: if (remainingVMs.isEmpty()) then
34: allocAllPreAllocs()
35: Return True � Request is accepted

The algorithm is divided into two base cases depending on

the virtual network request: i) when it fits in one physical

server, and ii) when it needs to be spread across multiple

servers. This is the first check made, comparing the total CPU

load requested with the highest CPU available at the moment

(line 4). If the request fits in one server, we want to find the

server with the least free CPU that fits the request (i.e. best-fit).

Once the server is found, we allocate this request on it (which

includes updating the network state with this new request). To

find the best-fit server, we first find a sub set as the search

space (line 5). We will maintain 10 sets: the first keeps the

servers with 0 to 10 % of CPU free, the second the servers

with 10 to 20 % of CPU free, and so on. This reduces the

search space for the appropriate physical server, which in a

large data center environment can reduce the run time of the

algorithm considerably.

143

If the request does not fit in one server, we sort the request

by decreasing bandwidth (line 14), and allocate as much VMs

as possible in the freest server on the entire data center. In this

way, the most consuming demands are on the same physical

server, which significantly relieves the load on the network

(and thus we can accept more virtual network requests). After

pre-allocating (since the request can be rejected) what is

possible on the freest server, we try to allocate the rest on

adjacent servers. In line 19, the getNextServer(server) function

returns the servers on the same rack of server, then the servers

on an adjacent rack, and so on. Next we check if we already

tried on every server of the data center (line 20), and reject

the request if so, cancelling all the pre-allocations.

In the next lines (23-26), we see if the server we are check-

ing has connection(s) with sufficient bandwidth (as defined

in the request) to the other server(s) already pre-allocated in

previous iteration(s). If it does not have enough bandwidth, we

try on the next server (lines 27-29). If it does, we pre-allocate

the VMs mapped onto this server. Finally, we check if the set

remaining VMs to be allocated is empty (lines 33-35): if it

is, we allocate all the pre-allocations (i.e. commit) and return

True; if it is not, we move on to the next server to allocate

the remaining ones.

We expect to have a high consolidation (and consequently

low fragmentation) of VMs within the servers, since the

algorithm either allocates a whole server (if the request does

not fit one server), or finds the best-fit server (if the request

fits in one server).

IV. IMPLEMENTATION

Floodlight 1.1 has been leveraged as the core SDN platform

for ViTeNA implementation. Mininet 2.2.1 and Open vSwitch

2.3.1 were used in emulating data centers with various topolo-

gies. The Floodlight controller is based on an event driven

architecture. Hence, for a module to receive an OpenFlow

PacketIn message, the module must subscribe for this type of

messages. When the controller receives an OpenFlow message

from a switch it will dispatch that message to all modules that

have subscribed for that specific message type.

If the controller receives multiple messages from one or

more switches, these messages are enqueued for dispatching

because the controller only supports dispatching one message

at a time. This means that the performance of the controller

is dependent on the time it takes to process a message in each

individual module, as the processing time of a single message

is equal to the sum of all the processing time done in each

individual module.

To add a new module to the Floodlight controller, a new

Java package must be created directly in the code base

of the controller. Floodlight default properties file defines

which modules are launched when Floodlight is started. For a

custom-made module to start up, its path should be added to

the properties file. When the controller starts, it will start the

modules, and set references between them per the inter-module

dependencies. These dependencies are defined by implement-

ing the appropriate methods (according to which dependencies

one wants to set) of the IFloodlightProviderService
interface. We modified the link discovery module of Flood-

light. ViTeNA also includes 3 additional modules into Flood-

light - i) Multipath Routing, ii) Queue Pusher, and iii) Virtual

Network Allocator modules. We will now dive into the details

of each of these four modules of ViTeNA.

A. Link Discovery Module

The controller needs to place the VMs of a request in

physical servers that have links with enough bandwidth to

accommodate what is requested in the XML file. Thus, each

link should know how much free bandwidth it possesses.

However, in Floodlight’s original implementation, the Link

object does not have such information. Hence, it was necessary

to extend the link discovery module, so that each link would

be aware of its spare bandwidth. This consisted in adding a

new field to the Link class, and defining the appropriate getters
and setters to configure this field.

The link’s bandwidth isn’t set automatically as one would

expect (i.e. through the LLDP packets this Module sends).

Mininet emulates all the virtual links with a bandwidth of

10 Gb/s, even if we configure it to have a lower bandwidth.

We had to work around this, and we did it by initializing all

link bandwidth when the controller starts, according to what is

defined in a start-up XML file. To ease the process of running

our controller, this XML file is automatically generated when

the Mininet topology is created, according to the parameters

in the Mininet script.

B. Multipath Routing Module

Floodlight’s original routing module provides a Java API

to use. Its getRoute() method calculates the route between

two endpoints by applying the Dijkstra’s algorithm [24] to the

graph that contains the network topology. This means that it

always gives the shortest path between two nodes in the graph.

Since we want to maximize the number of allocated virtual

networks by the controller, we want to test every possible

route between two endpoints. The shortest path between two

endpoints may not have enough bandwidth to accommodate

a certain request, and a longer path may have that required

bandwidth. By choosing to use more than just the shortest

path can turn many otherwise rejected requests into accepted

ones.

As of our implementation, the multipath routing mod-

ule registers itself as a receiver for events of the type

topologyChanged. By receiving these events, the module

builds a graph, adding and removing links or hosts as the

events dictate. This graph represents the network topology.

Having this graph, one must only apply a search algorithm

on top of it to find the paths between two nodes. We use

a Depth-First Search algorithm [25] to compute all possible

paths between a pair of nodes.

C. Queue Pusher Module

ViTeNA queue pusher module is responsible for providing

an API to create queues in Open vSwitches. Queues in Open

vSwitch are created using the OVSDB protocol [26]. The

144

queue pusher module creates queues, with only the Assured

Rate configured (called min-rate in the OVSDB command)

and no Ceil Rate (or max-rate) configured.

The queue pusher module uses the ovs-vsctl utility

that comes pre-installed with the Open vSwitch, to create

a new QoS entry and a new Queue below that QoS entry

for each Queue the controller wants to create. When creating

Queues, each one gets assigned an identifier, which should be

unique per switch. The traffic will be directed to the Queue

by matching this identifier, since the enqueue action receives

it as argument.

D. Virtual Network Allocator Module

The allocation algorithm runs in the virtual network alloca-

tor module. When the request fits in one server, the sum of

CPUs requested can be accommodated in the same physical

server. In this case, this module should merely update the

global data structures, with the information from the local
data structures, that was gathered from the XML file.

When the request does not fit in one server, the request

should be divided among two or more physical servers, and

this module will start by sorting the links of the virtual network

request in descending order (since the tenant can provide the

XML file in any order). Then, it will allocate as much VMs as

possible in the server that has the most CPU available. After

that, it will try to allocate the remaining VMs in the neighbors

of this server. It will start from the server adjacent to this one,

and it will continue this logic until there are no remaining

VMs.

In each iteration of going to the neighbor of the server with

the freest CPU, this module uses the multipath routing module

and the link discovery module. Every time it advances to an

adjacent server, it uses the multipath routing module to get

all paths between this server and the ones that already have

allocated VMs. Upon getting these paths, the virtual network

allocator module will use the link discovery module to check

each link of each path, to make sure that those links have

enough bandwidth to provide the guarantees required by this

tenant’s request.

Once all the VMs have a physical server assigned (assuming

a request where this happens), the module knows this request

is going to be accepted. So, it is necessary to translate this

request’s results into real network rules. This module uses the

queue pusher to create the required queues on each OpenFlow

switch and the necessary OpenFlow rules, returning True
following that.

V. EVALUATION

ViTeNA was evaluated on a computer with Intel® Quad-Core

i7 870 @ 2.93 GHz processor, 12 GB DDR3 @ 1333 MHz

RAM, and 450 GB Serial ATA @ 7200 rpm hard disk, on

Ubuntu 14.04.3 LTS (Linux Kernel 3.13.0). The controller

processes virtual network requests. We stop an experiment

when the controller returns False to an allocation, as that

means it cannot allocate any more virtual networks. Each

experiment is run a thousand times to get the mean and

variation of the results. To generate our dataset, we produced

virtual network requests (XML files) where: a VM asks for a

CPU that is generated randomly (using a uniform distribution)

between 0.1 and 5%; the connections between VMs are also

randomly generated (with a uniform distribution as well)

between 0 and 10 Mbit/s. For each size of the virtual network

requests (i.e. number of VMs in it), which we defined as going

from 2 to 40, we generated 10000 virtual network requests.

A tree topology (depth = 3; fanout = 5) with 125 servers,

which entails 31 switches and 155 links, and a fat-tree topol-

ogy (factor k = 32, i.e. switches consist of 32 ports) with

128 servers, which entails 160 switches and 384 links, were

emulated with Mininet for the evaluations.

A. Scalability to Data Center Environments

First, we evaluated the scalability of ViTeNA in data

center scale. To this end, we measured the time it takes

to process each virtual network request using the method

currentTimeMillis from the controller Java API. Fig-

ure 3 depicts the results obtained with tree topology.

Fig. 3. Allocation for a virtual network request in tree topology.

Processing time less than 5 ms was observed for up to

about 25 VMs in a request. SecondNet [11] achieves 10 ms

in requests with 10 VMs, which is twice the processing time

in requests with less than half of the VMs. ViTeNA consumes

about 10 ms to process requests with 40 VMs. It should be

noted that a request with 40 VMs is almost one third of the

number of physical servers in the network. Even in these

conditions, processing time did not grow abruptly, indicating

the high scalability of ViTeNA.

Figure 4 depicts the allocation time for fat-tree. It can be

noticed that the processing time using fat-tree topology is

higher than the one observed for tree topology. Fat-tree peaks

at around 15 ms, which is 5 ms more than that is observed

with tree topology.

Fig. 4. Allocation for a virtual network request in fat-tree topology.

As fat-tree has a lot more links and switches than the tree

topology, there are more paths between any two endpoints.

Thus, the higher processing time can be explained by the

extra work controller had to perform by checking more routes.

Hence the extra processing time was not wasted, as with the

fat-tree we received a total of 15688 accepted requests, versus
15055 with the tree topology.

145

B. High Consolidation

As ViTeNA takes server locality into account, allocating the

VMs of a virtual network as close as possible, next we mea-

sured how consolidated the virtual networks are. A low number

of hops leads to a low latency in the communication between

the VMs of a virtual network. This metric is calculated by

counting the numbers of physical servers in a virtual network

allocation. The results of using a tree topology are depicted

in Figure 5.

Fig. 5. Avg. number of hops in a virtual network in tree topology.

Figure 5 indicates that ViTeNA offers high consolidation of

the virtual networks, since the average is almost always near

zero. It starts out equal to zero up to 5 VMs per request,

then the average is almost the same but the variance increases,

meaning most of the virtual networks do not have any hop, but

some do. It keeps this behavior along the line, with the average

increasing less than linearly. On 40 VMs per request we get

an average number of hops close to 1. 40 VMs in a request is

significant, because the evaluated data center network has 125

servers, and still the virtual networks only needed one hop on

average.

The average number of hops using a fat-tree topology is

shown in Figure 6. Fat-tree exhibits a similar pattern to the

one observed in tree topology case, and high consolidation

is achieved in fat-tree topology as well. As we process more

requests with this topology, we notice a higher average number

of hops as well as the standard deviation. The extra requests we

get with fat-tree topology are processed when the data center

is near saturation (since we are stopping on the first rejected

request in the tree topology, and with fat-tree topology we go

further). Since the data center is near saturation, each request

will more likely need a high number of hops, which explains

the increase compared to the tree topology.p p gy

Fig. 6. Avg. number of hops in a virtual network in fat-tree topology.

C. High Resource Utilization

Resource utilization within the data center with ViTeNA
was measured, by calculating the server and link utilization.

Resource utilization is computed by calculating the utilization

of the resources when the experiment stops, and dividing it by

the full capacity. The resource utilization results using a tree

topology are portrayed in Figure 7. As ViTeNA does a best-fit

placement of the VMs within the servers, it was observed that

most of the time ViTeNA achieves high server utilization. As

ViTeNA already does an incremental consolidation, it does not

need or have a consolidation algorithm running periodically

in the controller.

Fig. 7. Resource utilization in tree and fat-tree topologies.

The server utilization starts to drop when the number of

VMs in a virtual network is around 20. This happens because

with a request of this size (and larger), some of the VMs must

be placed on different servers, which causes fragmentation of

the CPU utilization by a server. This results in a lower server

utilization. Obviously, the network utilization starts to grow

when this happens, since we have more and more utilized links

across the network. Moreover, the low network utilization is a

result of getting all the servers full before we get some virtual

networks that require link usage, as this is just a matter of

which resource is exhausted first.

The results appear similar for both tree and fat-tree topolo-

gies. However, fat-tree allows the server utilization to remain

high for longer (up to 25 VMs per request), where as in

the tree topology it starts to drop at 15 VMs per request.

This can be explained by higher number of requests served

by fat-tree topology, since more requests allow to decrease

the fragmentation in CPU usage across servers, which in turn

causes the server utilization to increase. Nevertheless, fat-tree

network utilization is significantly lower compared to the tree

topology. This is due to the much higher number of links

that fat-tree topology has (more than double of that of tree

topology), which all add up to the denominator of this metric

and causes it to decrease significantly.

D. Bandwidth Guarantees in a Work-conservative System

To evaluate the bandwidth guarantees in a work-

conservative system, we created a topology with 8 hosts,

where 4 hosts generate traffic towards the other 4. Each host

generates 50 Mbit/s, and we simulate a 100 Mbit/s link using

a queue with the max-rate parameter set to this value. We

used the iperf tool to generate traffic with a constant bit-

rate, each one generating traffic with a rate of 50 Mbit/s. We

used a constant bit-rate to make sure that changes we see in

the rate on the receiver side are due to the network changes

and not from changes in the sending side. Figure 8 shows the

graph generated accordingly.

Fig. 8. Throughput achieved by multiple hosts sharing a single link.

146

In the beginning (t = 0s), only Host 1 is generating traffic

with the bit-rate stated above, and with Host 5 as destination.

As Host 1 is the only one doing so, it gets the full bandwidth

that it requested - 100 Mbit/s. This goes on until t = 20s,

when Host 2 starts to generate traffic towards Host 6, and

there are two hosts generating traffic at 50 Mbit/s, which is

the link capacity (i.e. the max-rate allowed by Switch 2).

Each host on the right gets practically the bandwidth that its

correspondent is generating; but we can already see the action

of Switch 2, portrayed by the irregularities in both lines.
When we reach t = 40s, Host 3 starts to generate traffic

to Host 7. Now, the sum of the traffic generated by the hosts

exceeds the link capacity’, which will cause dropped packets.

However, each host gets more than its assured bandwidth (25

Mbit/s), as the three of them divide the link, each one getting

about 33 Mbit/s. Finally, at t = 60s, Host 4 begins to generate

packets towards Host 8. Now, the 100 Mbit/s link is divided by

the four hosts, and each one gets about its assured bandwidth.

Thus ViTeNA offers bandwidth guarantees to the tenants, while

they utilize more resources when the resources are abundant.

VI. CONCLUSIONS AND FUTURE WORK

Current data centers lack network performance guarantees,

since all tenants interchangeably share the network. This

makes the performance of tenant applications unpredictable,

since it depends on factors outside of its control. This unpre-

dictability severely prevents a wider cloud adoption, as many

cloud use cases require network performance and isolation

guarantees. These problems are solved using the abstraction of

virtual networks. Virtual Tenant Networks (VTN) are isolated

from each other, providing performance guarantees. Virtual

network embedding algorithms attempt to solve this NP-hard

problem of an efficient tenant network resource allocation.
ViTeNA is a virtual network embedding approach that ex-

tends an OpenFlow SDN controller to allocate virtual networks

with bandwidth guarantees in a work-conservative system,

providing a QoS-aware multi-tenanted data center. Evaluation

on tree and fat tree topologies confirm that ViTeNA offers, 1)

low execution time, 2) high consolidation on the allocation of

virtual networks, and 3) high resource utilization of the data

center resources. As a future work, ViTeNA should be extended

for reliability and isolation guarantees, in addition to efficient

network allocation.

Acknowledgements: This work was supported by national funds through Fundação
para a Ciência e a Tecnologia with reference UID/CEC/50021/2013 and a PhD grant
offered by the Erasmus Mundus Joint Doctorate in Distributed Computing (EMJD-DC).

REFERENCES

[1] G. Wang and T. E. Ng, “The impact of virtualization on network per-
formance of amazon ec2 data center,” in INFOCOM, 2010 Proceedings
IEEE. IEEE, 2010, pp. 1–9.

[2] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[4] N. M. K. Chowdhury, M. R. Rahman, and R. Boutaba, “Virtual network
embedding with coordinated node and link mapping,” in INFOCOM
2009, IEEE. IEEE, 2009, pp. 783–791.

[5] A. Fischer, J. F. Botero, M. Till Beck, H. De Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” Communications Surveys &
Tutorials, IEEE, vol. 15, no. 4, pp. 1888–1906, 2013.

[6] J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight: Towards
a model-driven sdn controller architecture,” in 2014 IEEE 15th Interna-
tional Symposium on. IEEE, 2014, pp. 1–6.

[7] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “Onos: towards
an open, distributed sdn os,” in Proceedings of the third workshop on
Hot topics in software defined networking. ACM, 2014, pp. 1–6.

[8] R. Wallner and R. Cannistra, “An sdn approach: quality of service using
big switch’s floodlight open-source controller,” Proceedings of the Asia-
Pacific Advanced Network, vol. 35, pp. 14–19, 2013.

[9] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: fine grained
traffic engineering for data centers,” in Proceedings of the Seventh
Conference on emerging Networking EXperiments and Technologies.
ACM, 2011, p. 8.

[10] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in ACM SIGCOMM Computer Com-
munication Review, vol. 41, no. 4. ACM, 2011, pp. 242–253.

[11] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang, “Secondnet: a data center network virtualization architecture
with bandwidth guarantees,” in Proceedings of the 6th international con-
ference on Emerging networking experiments and technologies. ACM,
2010, p. 15.

[12] K. Jang, J. Sherry, H. Ballani, and T. Moncaster, “Silo: predictable mes-
sage latency in the cloud,” ACM SIGCOMM Computer Communication
Review, vol. 45, no. 4, pp. 435–448, 2015.

[13] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar, A. Greenberg,
and C. Kim, “Eyeq: practical network performance isolation at the edge,”
in Presented as part of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13), 2013, pp. 297–311.

[14] A. Shieh, S. Kandula, A. Greenberg, and C. Kim, “Seawall: performance
isolation for cloud datacenter networks,” in Proceedings of the 2nd
USENIX conference on Hot topics in cloud computing. USENIX
Association, 2010, pp. 1–1.

[15] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. Guedes, “Gate-
keeper: Supporting bandwidth guarantees for multi-tenant datacenter
networks.” in WIOV, 2011.

[16] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker,
“Extending networking into the virtualization layer.” in Hotnets, 2009.

[17] M. R. Rahman, I. Aib, and R. Boutaba, “Survivable virtual network
embedding,” in NETWORKING 2010. Springer, 2010, pp. 40–52.

[18] T. Benson, A. Akella, A. Shaikh, and S. Sahu, “Cloudnaas: a cloud
networking platform for enterprise applications,” in Proceedings of the
2nd ACM Symposium on Cloud Computing. ACM, 2011, p. 8.

[19] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: substrate support for path splitting and migration,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 17–
29, 2008.

[20] M. F. Zhani, Q. Zhang, G. Simona, and R. Boutaba, “Vdc planner:
Dynamic migration-aware virtual data center embedding for clouds,” in
Integrated Network Management (IM 2013), 2013 IFIP/IEEE Interna-
tional Symposium on. IEEE, 2013, pp. 18–25.

[21] K. Bilal, S. U. Khan, J. Kolodziej, L. Zhang, K. Hayat, S. A. Madani,
N. Min-Allah, L. Wang, and D. Chen, “A comparative study of data
center network architectures.” in ECMS, 2012, pp. 526–532.

[22] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010,
p. 19.

[23] A. Lara, A. Kolasani, and B. Ramamurthy, “Network innovation us-
ing openflow: A survey,” IEEE Communications Surveys & Tutorials,
vol. 16, no. 1, pp. 493–512, 2014.

[24] S. Skiena, “Dijkstra’s algorithm,” Implementing Discrete Mathematics:
Combinatorics and Graph Theory with Mathematica, Reading, MA:
Addison-Wesley, pp. 225–227, 1990.

[25] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
journal on computing, vol. 1, no. 2, pp. 146–160, 1972.

[26] D. Palma, J. Goncalves, B. Sousa, L. Cordeiro, P. Simoes, S. Sharma,
and D. Staessens, “The queuepusher: Enabling queue management
in openflow,” in Software Defined Networks (EWSDN), 2014 Third
European Workshop on. IEEE, 2014, pp. 125–126.

147

A Scalable Peer-to-Peer Control Plane Architecture
for Software Defined Networks

Kuldip Singh Atwal
Department of Computer Science

University of Central Florida

Orlando, FL USA

Email: kuldip@cs.ucf.edu

Ajay Guleria
Computer Centre

Panjab University

Chandigarh, India

Email: ag@pu.ac.in

Mostafa Bassiouni
Department of Computer Science

University of Central Florida

Orlando, FL USA

Email: bassi@cs.ucf.edu

Abstract—Control plane scalability is one of the major con-
cerns in Software Defined Networking (SDN) deployment. Al-
though the centralization of the control plane by decoupling it
from the data plane facilitates ease of network management,
however, it introduces new challenges. One of these challenges
is to maintain performance, consistency, and scalability while
minimizing the corresponding overheads. In this paper, we
propose an architecture that allows the control plane to evolve
at a hyper-scale level as well as address important performance
and reliability issues. A hierarchical control plane architecture
with peer-to-peer communication among logically distributed
controllers is designed with the goal of achieving optimum
performance and consistency gains while mitigating overheads.
A root controller is deployed at the top layer of the hierarchy to
maintain global network view. The proposed model is helpful in
improving network robustness against failures and supporting a
desired level of reliability. To evaluate our model, we developed
a realistic emulation platform using ONOS, FlowVisor, Mininet,
and Open vSwitch. The proposed architecture is compared
with earlier solutions and experimental results are presented to
demonstrate the effectiveness of the proposed model.

I. INTRODUCTION

Software Defined Networking (SDN) has gained very much

attention from academia as well as the industry in recent times.

It is envisioned to overcome the existing shortcomings of data

center networks, access networks, and enterprise networks.

Learning from prior experiences [1], separation of the control

plane and the data plane is a crucial aspect for achieving SDN

goals. Furthermore, centralized control, network programma-

bility, and flow-based decision making are some of the other

important features of SDN. Due to its salient features, SDN is

being widely deployed in multi-datacenter and multi-domain

networks by using OpenFlow protocol.

However, there are many challenges still need to be ad-

dressed. The control plane scalability is one of the prominent

challenges among others. The issue of scalability escalates

even further if we consider performance and robustness of the

network, which are generally the prerequisites of any realistic

network. Therefore, it becomes imperative to address the

control plane scalability in a systematic manner by considering

the other important aspects of a pragmatic network. In this

paper, we propose a model to deal with scalability, robustness,

and performance of SDN control plane architecture. Although

a single controller can handle sufficiently large number of re-

quests with an acceptable average response time [2], still there

are other factors that require multiple controllers deployment

[3], such as:

• Geographically wide distribution of the network.

• High availability and low response time requirements for

QoS or real-time services.

• Handling bottleneck of the single point of failure.

• Partitioning large-scale networks (e.g. data center, en-

terprise networks) into many sub-networks, that can be

controlled separately.

• Management of segregated inter-networks by different

proprietary domains.

There are multiple ways to deal with the scalability of

the control plane. First, the performance of the physically

centralized control logic (i.e single controller) can be increased

by deploying more hardware resources or performing some

optimization techniques for performance enhancements up to

a certain level [4]. Second, the overall workload of the control

plane can be alleviated by minimizing the set of operations

performed by it and devolving some functionality to other

components [5]. Third, multiple controllers can be deployed

that form a physically distributed or logically centralized

control plane [6]. Given the earlier reasons for requirements

of multiple controllers, we chose the last option to address the

control plane scalability issue; therefore, other approaches are

out of scope. Further, multiple controllers could be deployed

in a fashion such that the control plane is fully decentralized

and physically distributed [7], or logically centralized [8].

Our approach maintains logically centralized but physically

distributed control plane.

Following are the major contributions of this paper:

• We propose highly scalable control plane architecture for

SDN, that can be adopted to meet optimum performance

demands of enterprise and data center networks.

• Consistency of the network state is handled very effi-

ciently while mitigating the corresponding overheads.

• The proposed model allows the network to be configured

dynamically as per desired level of robustness require-

ments.

• An integrated emulation platform is developed to eval-978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

148

uate the proposed model, and corroborative results are

presented.

Rest of the paper is organized as follows. Related work is

discussed in Section II. Section III presents the system model

of the proposed architecture. Then, evaluation platform for the

proposed scheme is described in Section IV, followed by an

elaboration of results in Section V. Finally, Section VI includes

the conclusion and future scope of the work.

II. RELATED WORK

Our model is motivated from Orion [9], which is a hier-

archical control plane architecture for large-scale networks.

Our proposal differs from Orion in many respects. First,

the top layer of controllers is not distributed. Rather, a root

controller is placed in the hierarchy to maintain the coherent

network view while incurring minimum overheads. Secondly,

communication channels among zone controllers are provided

to serve information requirement of any controller at relatively

local level. Finally, if any zone controller fails, load will be

distributed either to existing neighboring zone controllers or to

newly added controller, depending on the adaptive controller

provisioning mechanism.

Zoning mechanism for hierarchical network optimization is

proposed in [10], that does not consider coherent network ab-

straction at the application layer. Our model utilizes resources

more efficiently by off-loading some functionality to the root

controller at the top layer of the hierarchy. Dynamic controllers

adaptability and controller-switch assignment/reassignment are

proposed in [11], that uses distributed data store to maintain

coherent network view and perform load adaptation among

multiple controllers. However, load balancing can be handled

more efficiently if it is controlled by a physically centralized

entity; therefore, we delegate this functionality to the root

controller. A distributed hierarchical control plane to improve

scalability and service flexibility is proposed in [12]. However,

it does not deal with failures, and our solution is more

robust against failures at multiple layers. HyperFlow [13] is

an event-based, logically centralized but physically distributed

control plane architecture for OpenFlow. Although HyperFlow

is resilient to network partitioning and component failures,

however, it does not consider dynamic controllers adaptation

and load balancing, which are crucial functionalities of data

centers and other similar networks. Kandoo [14] proposes

the two-layer hierarchy of controllers to achieve scalability.

However, it also does not consider failure and adaptability of

controllers. A formal model on SDN control plane is presented

in [15], which shows that the hierarchical organization is

required to achieve scalability and elasticity of any practically

feasible network.

Most of the existing logically distributed control plane

architectures either fall short of robustness against failures

or incur the communication or state management overheads

that directly hampers the performance. Furthermore, the in-

tense demands of data center type networks are not taken

into consideration, such as dynamic resources provisioning

based on user demands, optimum utilization of the existing

infrastructure to save cost. Therefore, contrary to the state of

the art solutions, our proposal uniquely addresses the control

plane scalability while making sure to provide robustness and

handle overheads in a systematic way.

III. SYSTEM MODEL

Following are the main challenges for a logically centralized

control plane architecture of SDN:

• The global network view has to be maintained coherently

across multiple controllers in case of any component

failure and dynamic network topology changes.

• The inconsistency and competing resources issues may

emerge among multiple controllers that need to be re-

solved with the priority to achieve overall optimum state.

• In a multi-controller scenario with a global network view,

it is important to have the state synchronization and

reachability between all controllers.

• The communication overheads are inherently increased in

the deployment of multiple components.

• Dynamic controllers adaptation is required for efficient

resources utilization. For instance, on-demand resources

provisioning is needed in data center networks to fulfill

user demands and meet the Service-Level Agreements

(SLAs).

Other than that, an effective failover mechanism is needed

for resilience and robustness of the network. Considering these

aspects, we designed a logically centralized but physically

distributed control plane architecture for SDN. By virtue

of its design, the proposed model is not strictly physically

distributed, since some functionality of the control logic is

handled by the physically centralized controller. Figure 1

depicts the hierarchical model of our proposed system. The

hierarchy is formed in such a way that the relatively local

events are handled by the zone controllers and global events

are handled by the root controller. The idea is to distribute the

load among controllers, along with maintaining the coherent

network state, while minimizing the communication and other

overheads that contributes towards performance gains.

The root controller is mainly responsible for managing the

global network view and some other network-wide functional-

ities, while the zone controllers directly control the underlying

physical devices (i.e forwarding plane) via OpenFlow proto-

col. Furthermore, the communication channels are established

between zone controllers for peer-to-peer communication.

These channels are used to share any kind of information

among zone controllers that is not available to a particular

controller. Fetching the required information from neighboring

controllers contributes to minimizing the latency that can be

higher if the information is requested from the root controller

at the top layer. Also, due to localized information sharing, the

peer-to-peer interaction reduces the communication overheads

in the network.

As shown in the diagram, the forwarding plane is formed

by partitioning physical resources in zones. The zones can

either be created as per segregation requirements of geograph-

ically distributed sub-networks, or as per multiple proprietary

149

Fig. 1. Hierarchical SDN architecture.

domain management services. The zones can also be config-

ured for the purpose of evenly distributed load management

and optimum resources utilization of a large enterprise. The

reliable TCP connections are employed for peer-to-peer com-

munication among zone controllers as well as interaction with

the root controller at the top layer. The solid arrows in the

diagram represent the established connections among various

components, while the dotted arrows highlight the provision

to add multiple connections for backup purpose.

The next major task is to categorize the roles and respon-

sibilities of the root controller and the zone controllers. In

this aspect, our main focus is to delegate functionalities so

that the consistent network view is maintained without many

overheads, and service requests are served as per proximity of

the components. With these goals, the following subsections

elaborate functionalities of the control layers and describe the

modules defined to implement such functionalities.

A. Root Controller

Below are the main responsibilities of the root controller:

• Maintain the globally consistent network view and share

it to the zone controllers, application layer, and other

services.

• Configuration of network components, such as zone con-

trollers, switches.

• Dynamic provisioning of the zone controllers for average

resources utilization, and failover mechanism enforce-

ment in case of failures.

• Perform controller-switch assignment/mapping and initi-

ate the switch migration when needed.

• Network statistics collection via zone controllers.

• Rules generation for network-wide policies enforcement.

Following are the modules defined to implement these tasks

of the root controller:

Storage module: The network state information is stored in

the storage module. The physical centralization of the network

topology information alleviates the overheads of the distributed

data stores or shared file systems.

Monitor module: The desired level of consistency in the

network state is dependent on the real time topology changes

and other events in the network. To achieve this objective,

the monitoring module is carefully defined to continuously

observe the network state and find a ”sweet spot” or an optimal

point having sufficient level of accuracy while minimizing the

corresponding overheads.

Load adaption module: Optimum resources utilization is an

important priority of the data center networks and enterprise

networks. By getting the real time usage updates from the

monitoring module, the load adaptation module provides dy-

namic provisioning of the network resources. It implements the

load balancing methods that make sure to efficiently utilize the

capacity of the zone controllers.

Partitioning module: The logically centralized but physically

distributed control plane implies segregation of workload

among multiple controllers. It closely resembles the multi-

tenant and multi-domain model of the modern data centers. By

implementing the clustering techniques, the partitioning mod-

ule creates slices of the network as per specific requirements

and assign the slices to the zone controllers in an optimized

way.

B. Zone controllers

Below are the major responsibilities of the zone controllers:

• Flow management of the switches that belong to their

respective zones.

• Computation, selection, and installation of the routes for

the relevant flows.

• Network topology discovery and maintenance with coor-

dination of the root controller.

• Handling host and switch management issues, such as

path failover, traffic engineering, quality of service, host

specific updates etc.

Following are the modules that define these tasks of the

zone controllers:

Path computation module: In SDN design philosophy, the

complexity of the forwarding devices is significantly reduced

by shifting the decision-making capability to the controller.

The main objective behind this structural change is to let

the control logic and forwarding logic evolve and innovate

separately. Therefore, path computation and selection are

performed by the controller, and the routes are installed in

the switches either proactively or reactively by employing

OpenFlow or any other similar protocol.

Events processing module: Events triggering is a very fre-

quent activity in networks. The events processing module is

implemented to handle the events generated by either users or

other network components. It also coordinates with the root

controller to notify the events in respective zones.

Application module: Users and network administrators imple-

ment network logic in the form of applications and submit to

the controller for eventually deploying the sought functionality

in the forwarding devices. The application module exposes

sufficient set of APIs to let the intended functionality gets

quickly deployed without any hassle.

Communication module: One of our design objectives is

to provide the required information to various components

of the network without incurring much overheads and delay.

To this end, the communication module is defined to manage

150

the peer-to-peer interaction among zone controllers, as well as

communications with the root controller at the top layer and

switches at the bottom layer (via southbound channels).

Failover module: In case of any zone controller failure, the

affected switches are either assigned to the other available

controllers or a new controller is deployed in case of the

insufficient capability of the running controllers. The recovery

mechanism tries to stabilize the network without much loss,

and the steady degradation strategy is applied in worst case.
Robustness: As explained earlier, the provision fo alter-

native connections is provided at the multiple layers of the

proposed design. Zone controllers failure is handled by the log-

ically distributed control plane. Similarly, the root controller

can be replicated to a backup controller much easily due to its

physical centralization. Furthermore, the timeout or heartbeat

strategy can be used to decide any component failure, and the

preemption can be enforced to migrate the affected devices

back to their original source. Therefore, the proposed model

provides sufficient opportunities to get the desired level of

robustness against failures.

IV. EVALUATION PLATFORM

To validate the potential of our proposed model, we use

ONOS, FlowVisor, Open vSwitch, and Mininet to build an

integrated emulation platform. By default, the global network

topology state is cached in memory of each instance of

ONOS. And, the joining and leaving nodes are managed

by the cluster membership management, that is implemented

using Hazelcast’s distributed structure. However, these tasks

do not conform with our proposal. Therefore, we accordingly

customized ONOS and FlowVisor for global network view and

nodes management. Figure 2 shows the evaluation scenario of

the proposed reference model. As in the diagram, ONOS in-

stances are deployed as the zone controllers that communicate

with each other to share the required information; however,

the global topology management is handled by FlowVisor.

Fig. 2. The evaluation platform for the proposed model

V. RESULTS

We used Intel (R) Xeon (R) CPU E5-2603, running at 1.60

GHz, with six cores, 64 GB RAM, 2 TB hard disk, and Ubuntu

14.04.1 LTS 64-bit operating system. Cbench and iperf tools

are used for benchmarking the results. Each experiment is

averaged by 20 runs. The number of hosts and switches ranges

from 20 to 120 per zone for all experiments.
For the comparative analysis, we benchmarked our model

with Orion. The topology configuration parameters are equally

chosen for accordance of both models. In the first experiment,

flow setup rates of both models are compared. Figure 3 shows

the relative results of the time required by both models. As

shown in the diagram, the flow setup time is lower in our

model mainly due to centralized control at the root controller.

With only one zone, the controller of our model can handle

17279 new flows per second, while the Orion area controller

handles 8126 flows per second. Furthermore, the rate of flow

setup growth is stable while increasing the number of zone

controllers.

1 2 3 4 5 6

20,000

40,000

60,000

80,000

Number of zones

F
lo

w
se

t-
u

p
ra

te
s/

s

Orion

Our model

Fig. 3. Comparison of the flow setup rate

The second experiment compares the delay time incurred in

Orion and our model. Again, the testing parameters are same

for comparing the two models. From Figure 4 we can see that

our model experiences less delay as compared to Orion. The

delay time of Orion is 14 ms in 5 number of areas and 20

switches, whereas our model has 12.3 ms delay with an equal

number of zones and switches. The major factor for the lower

average delay time of our model is the communication among

zone controllers to share the topology state and other relevant

information. Improvement of few milliseconds is crucial for

the time-sensitive services and applications.
To measure scalability, we performed experiments to eval-

uate the effect of increasing the number of zone controllers

deployment. Figure 5 shows the time required to setup and tear

down a topology with respect to zone controllers. We observe

that the time grows relatively steadily given that the multi-

fold addition of switches and hosts for each zone controller

(120 switches, hosts per controller). It shows the large-scale

capability of the proposed model.
We measured CPU utilization to assess the overheads in-

curred by our proposed model. As in previous experiments, the

number of switches and hosts were varied to get the relative

performance metric of the architecture. Figure 6 shows the

graph of CPU consumption. It indicates that the rate of growth

is fairly low corresponding to an increment in the number

151

1 2 3 4 5 6

5

10

15

20

Number of zones

D
el

ay
(m

s)

Orion

Our model

Fig. 4. Comparison of the average delay time

1 2 3 4 5 6

20

40

60

80

100

120

Number of zones

T
im

e
(s

ec
o
n
d
s)

Fig. 5. Topology setup and tear down time

of zone controllers. Therefore, we can infer that the control

plane carries out intended operations while minimizing the

corresponding overheads.

1 2 3 4 5 6

15

20

25

30

35

40

Number of zones

C
P

U
u
ti

li
za

ti
o
n

(%
)

Fig. 6. CPU utilization

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a logically centralized but physi-

cally distributed control plane architecture for SDN, that aims

to be highly scalable as well performance and robustness inten-

sive while minimizing the overheads. Our model eliminates the

need of the distributed data store, distributed protocols or any

similar mechanism to maintain coherent network view. And,

the modular approach with the layered architecture makes it

suitable to deploy in the data center and enterprise networks.

Comparative results are also presented to demonstrate the

potential usefulness of the model. Components migration

algorithms and events registration techniques are the future

scope of the work.

REFERENCES

[1] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang, “A clean slate 4d approach
to network control and management,” ACM SIGCOMM Computer
Communication Review, vol. 35, no. 5, pp. 41–54, 2005.

[2] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,
“On controller performance in software-defined networks,” in Presented
as part of the 2nd USENIX Workshop on Hot Topics in Management of
Internet, Cloud, and Enterprise Networks and Services, 2012.

[3] J. Xie, D. Guo, Z. Hu, T. Qu, and P. Lv, “Control plane of software
defined networks: A survey,” Computer Communications, vol. 67, pp.
1–10, 2015.

[4] D. Erickson, “The beacon openflow controller,” in Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software defined
networking. ACM, 2013, pp. 13–18.

[5] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: scaling flow management for high-performance
networks,” ACM SIGCOMM Computer Communication Review, vol. 41,
no. 4, pp. 254–265, 2011.

[6] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann,
“Logically centralized?: state distribution trade-offs in software defined
networks,” in Proceedings of the first workshop on Hot topics in software
defined networks. ACM, 2012, pp. 1–6.

[7] A. S.-W. Tam, K. Xi, and H. J. Chao, “Use of devolved controllers
in data center networks,” in Computer Communications Workshops
(INFOCOM WKSHPS), 2011 IEEE Conference on. IEEE, 2011, pp.
596–601.

[8] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama et al., “Onix: A distributed
control platform for large-scale production networks.” in OSDI, vol. 10,
2010, pp. 1–6.

[9] Y. Fu, J. Bi, Z. Chen, K. Gao, B. Zhang, G. Chen, and J. Wu, “A hybrid
hierarchical control plane for flow-based large-scale software-defined
networks,” IEEE Transactions on Network and Service Management,
vol. 12, no. 2, pp. 117–131, 2015.

[10] X. Li, P. Djukic, and H. Zhang, “Zoning for hierarchical network
optimization in software defined networks,” in 2014 IEEE Network
Operations and Management Symposium (NOMS). IEEE, 2014, pp.
1–8.

[11] A. A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,
“Elasticon: an elastic distributed sdn controller,” in Proceedings of
the tenth ACM/IEEE symposium on Architectures for networking and
communications systems. ACM, 2014, pp. 17–28.

[12] A. Koshibe, A. Baid, and I. Seskar, “Towards distributed hierarchical
sdn control plane,” in Science and Technology Conference (Modern
Networking Technologies)(MoNeTeC), 2014 International. IEEE, 2014,
pp. 1–5.

[13] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane
for openflow,” in Proceedings of the 2010 internet network management
conference on Research on enterprise networking, 2010, pp. 3–3.

[14] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient
and scalable offloading of control applications,” in Proceedings of the
first workshop on Hot topics in software defined networks. ACM, 2012,
pp. 19–24.

[15] Y. Liu, A. Hecker, R. Guerzoni, Z. Despotovic, and S. Beker, “On
optimal hierarchical sdn,” in 2015 IEEE International Conference on
Communications (ICC). IEEE, 2015, pp. 5374–5379.

152

Enabling Software-Defined Networking for Wireless
Mesh Networks in Smart Environments

Prithviraj Patil∗, Akram Hakiri†‡, Yogesh Barve ∗ and Aniruddha Gokhale∗
∗Dept of EECS, Vanderbilt University, Nashville, TN, USA.

† CNRS, LAAS, 7 Avenue du colonel Roche, F-31400 Toulouse, France
‡Univ de Carthage, SYSCOM ENIT, ISSAT Mateur, Tunisia.

Email: {prithviraj.p.patil,yogesh.d.barve, a.gokhale}@vanderbilt.edu, hakiri@laas.fr

Abstract—Wireless Mesh Networks (WMNs) serve as a key
enabling technology for various smart initiatives, such as Smart
Power Grids, by virtue of providing a self-organized wireless
communication superhighway that is capable of monitoring the
health and performance of system assets as well as enabling
efficient trouble shooting notifications. Despite this promise, the
current routing protocols in WMNs are fairly limited, particu-
larly in the context of smart initiatives. Additionally, managing
and upgrading these protocols is a difficult and error-prone
task since the configuration must be enforced individually at
each router. Software-Defined Networking (SDN) shows promise
in this regard since it enables creating a customizable and
programmable network data plane. However, SDN research to
date has focused predominantly on wired networks, e.g., in
cloud computing, but seldom on wireless communications and
specifically WMNs. This paper addresses the limitations in SDN
for WMNs by allowing the refactoring of the wireless protocol
stack so as to provide modular and flexible routing decisions as
well as fine-grained flow control. To that end, we describe an
intelligent network architecture comprising a three-stage routing
approach suitable for WMNs in uses cases, such as Smart
Grids, that provides an efficient and affordable coverage as
well as scalable high bandwidth capacity. Experimental results
evaluating our approach for various QoS metrics like latency and
bandwidth utilization show that our solution is suitable for the
requirements of mission-critical WMNs.

Index Terms—SDN, Wireless Mesh Networks, Smart Grids,
Home Area Network.

I. INTRODUCTION

Wireless networks, and in particular, Wireless Mesh Net-

works (WMNs) have been actively considered as one of

the most promising wireless technologies to build highly

scalable wireless backhaul networks [1] for Smart Grid power

systems [2], renewable energy sources [3] and solar energy

harvesting base stations [4]. These WMNs assume a hierar-

chical structure composed of Home Area Networks (HANs)

and Neighbor Area Networks (NANs), which are plugged to

a Network Gateway (NG) to access the wide area networks

(WANs). A HAN connects a group of sensing devices in a

home to smart meters that record the energy consumption

for a given home and transmit the collected data to Meter

Controlling Systems (MCS). NANs connect multiple MCSs

of the HANs that are geographically in close proximity and

interact with cloud services in the WAN for various kinds of

data collection and analytics.

Despite the promise, current wireless routing protocols for

WMNs are fairly limited and their extensions to power grid

systems are very difficult. For example, in traditional WMNs,

the nodes (i.e., mesh switches and routers) communicate with

each other using routing protocols like AODV (Ad hoc On

Demand Distance Vector) and OLSR (Optimized Link State

Routing Protocol), which are inherently distributed because

each node broadcasts information about its directly connected

end devices to all other nodes. Using this information, each

node will derive its own routing path to all the other nodes

independently and in a distributed fashion. As a result, they

reflect a partial visibility of the network without paying

attention to the real network conditions. This local visibility

limits the ability of WMNs to perform network engineering

in large-scale wireless networks. Additionally, WMNs are

difficult to manage and upgrade because their configuration

must be enforced manually at each mesh router, which is both

difficult and error-prone.

Software-Defined Networking (SDN) [5], [6] shows signif-

icant promise in meeting the networking needs of Smart Grid

systems [7] due to the separation of the control and forwarding

plane. Recent trends in Smart Grids reveal that SDN has been

used to implement a multi-rate, multicast network for Phasor

Measurement Unit (PMU) data [8]. Similarly, Rinaldi et al. [9]

investigated a wired SDN controller to manage the network

infrastructure of smart grid and provide a resilient Smart Grid

systems [10]. Despite these advances, all these efforts have

used SDN only in wired networks, which make their solutions

unusable in smart environments due to their distributed and

often wireless nature.

Addressing these needs is challenging for the following rea-

sons. Since SDN was initially conceived for wired networks,

the controller in the traditional case statically establishes paths

to every switch so that it can then run centralized routing

algorithms. In wireless networks, however, the controller has

to discover all the switches before it can run the centralized

routing algorithms. This can be achieved by installing wireless

routing algorithms like AODV and OLSR in switches, but this

means that the switches lose the simplicity that is envisioned

by the SDN paradigm, which calls for no intelligence to reside

in the switches. In other words, the SDN requirements of a

centralized routing control and simple switch design contra-

dict with the distributed routing algorithms and sophisticated978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

153

switch design of the wireless network architecture.

Consequently, we need an approach that enhances SDN for

WMNs such that the new approach can centralize the control

decisions – a trait of SDN – over distributed wireless mesh

networks. To realize such a capability, we present a novel

approach for creating an intelligent Software-Defined Wireless

Mesh Network suitable for use cases, such as Smart Grids.

Our approach proposes a novel way of performing routing

in three stages in SDN-based WMNs by using a modified

OpenFlow protocol, which allows us to remain faithful to the

SDN philosophy of keeping the switch design simple and

of a logically centralized control plane while also allowing

flexibility and mobility that is inherent in distributed wireless

mesh networks. The rest of the paper delves into the details

and evaluation of our proposed approach.

II. RELATED WORK

This section compares related work along two dimensions

with our work.

A. SDN and Routing in Wireless Mesh Networks

Wm-SDN [11] attempts to address the routing challenge

in SDN-based WMNs described in Section I by using a

hybrid protocol. It uses the traditional AODV distributed

protocol for switch-controller connection. Subsequently, when

the controller-switch connection is established, it then uses

SDN-based centralized protocols for switch-switch routing

decisions. In this architecture each switch must support both

SDN OpenFlow and also legacy routing protocols. Conse-

quently, this approach is technically not a pure SDN-based

approach since the switch is involved during the first part of

routing decisions (i.e. during AODV). Moreover, it requires the

switch to support complex hardware and software than what

SDN envisions.

Some other efforts [12] [13] have also proposed hybrid

approaches for routing though of a different kind. They pro-

pose to combine SDN-enabled switches and legacy switches

(or routers) in a wireless mesh router , where SDN-enabled

switches form the SDN network while traditional switches

form the legacy network. In this architecture, the legacy

switches run traditional routing algorithms (OSPF in this case)

while every SDN enabled switch has to be in direct contact

(wireless or wired) with one such legacy switch. This allows

SDN-enabled switches to not support any complex hardware

and software. However it requires each SDN-enabled switch

to communicate with at least one legacy switch.

B. SDN-enabled Smart Grids

There are some research initiatives to leverage the potential

of SDN in Smart Grid communication. Jianchao et al. [14]

discussed opportunities that bring SDN to support the potential

use cases in Smart Grid. Similarly, Dong et al. [10] studied

the benefits of SDN to improve network resilience in Smart

Grid. Rinaldi et al. [9] proposed using a wired SDN con-

troller to simplify and automate the network management in

power grids. Cahn et al. [15] presented a Software-Defined

Energy Communication Network (SDECN) framework for

self-configuring IEDs for substation automation. Likewise,

Dorsch et al. [7] presented fast recovery and load management

algorithms for the distribution and transmission in power grids.

Additionally, multicast Phasor Measurement Unit (PMU) has

been investigated [8]. Thomas et al. [16] proposed using a

SDN-enabled multicast scheme to support flexible and fault-

tolerant group communications in power systems.

Although the previous works enabled SDN in smart grids,

they consider only wired communications. In contrast to wired

networks which are known to be stable and robust, our

contribution addresses wireless mesh smart grid networks so

as to extend power systems to rural and disaster regions. Our

solution provides an efficient and affordable coverage as well

as low-latency, and flexible and network-aware communica-

tions.

III. THREE-STAGE ROUTING ARCHITECTURE AND DESIGN

CONSIDERATIONS

This section delves into the details of our three-stage routing

approach for SDN-enabled wireless mesh networks.

A. Three-Stage Routing in SDN-enabled WMNs

In this section, we describe our 3-stage routing approach for

SDN-enabled WMNs. Our work is realized as an extension to

the OpenFlow protocol for the wireless mesh networks, where

the new three-level routing strategy enables existing OpenFlow

protocol to adapt to the dynamic nature of the WMNs. Below

we describe the three stages of this routing strategy.

• Stage 1: Initial Controller-Switch Connection: As

shown in Figure 1, in the SDN-based wireless mesh net-

works, only a few switches are directly connected to the

controller. The first task is to connect all the switches to

(at least one) controller by setting up initial/basic routing.

We propose an initial (i.e., non-permanent) routing stage

where a SDN controller will find all the switches by

flooding the network without considering whether the

path it finds is best or not. To achieve this, we use an

OpenFlow-based routing algorithm for initial controller-

switch connection by adapting OLSR in two ways. First,

instead of the switches broadcasting their link state (i.e.

information about directly connected end devices), the

controller will broadcast information about its directly

connected switch. Second, instead of running a pure

wireless mesh routing protocol like AODV or OLSR

in the switches, we modify the OpenFlow client in the

switch such that it finds the initial path to the controller

without requiring any additional software.

• Stage 2: Controller-Switch Path Optimization: Once

the initial connection is established, the routing paths set

up in this stage will be used to install new alternatives

(i.e., shortest, optimum or load balanced) paths. The

controller can decide to choose a path among these

alternative paths between itself and a switch since at

this point, the controller has a global view of the net-

work. Thereafter, it installs the corresponding rule to

154

Fig. 1: Example SDN Mesh Scenario

route packets from the switches to itself in the switches

by propagating the information using the original non-

optimized paths.

• Stage 3: Routing among Switches: After the second

step, the controller will derive the shortest path routing

among switches themselves and it will then install these

routing paths and corresponding forwarding rules using

the shortest paths set-up in the previous stage. As de-

scribed above, to achieve the above routing strategy, we

had to modify the OpenFlow client.

B. Implementation Details

We now present the details of our implementation and the

message types we created for the three stages of our approach.

1) OF_Initial_Path_Request: Initially, the controller will

send the OF_Initial_Path_Request messages to all its di-

rectly connected switches. As described in Figure 1, the

switches could be either connected via wired interface

or wireless interface to the controller. Additionally, the

controller could be at the same location as that of the

switch or could be situated in the cloud data center.

Once a switch receives those messages, it updates the

controller path destination with the source id found in

the received OF_Initial_Path_Request message. Then,

the switch creates a new OF_Initial_Path_Request mes-

sage with its own source id and broadcasts it to the

other switches. This step is performed periodically by

every switch. Thereafter, every switch that receives the

OF_Initial_Path_Request message establishes an initial

path to the controller. This path may not provide shortest

paths but only be used as a first step for obtaining the

shortest path in the next stage. Also, since every switch

broadcasts this message periodically, this helps to handle

the mobility in the network.

2) OF_Initial_Path_Response: The switch sends this mes-

sage to the controller on finding the initial path in stage

I. This message is directed towards the controller and

is only sent to that neighbor from which the switch

received OF_Initial_Path_Request message first, i.e. this

message is sent via the initial path between switch

and controller. However, this response message con-

tains SSIDs of all the neighboring switches. i.e. all the

neighboring switches from whom this switch received

OF_Initial_Path_Request message.

3) OF_Controller_Shortest_Path: This OpenFlow message

is used to optimize the initial connection path between

the controller and the switch. The Controller sends this

message to the switches to update the path towards the

controller with the shortest path. This message is sent

only when the initial path differs from the shortest path

between controller and switch. Moreover, this message

is always sent using the initial path. When the switch

receives this message, it installs the new path to the

controller, which is shorter than the previous path. More-

over, the switch gives this new path higher preference

by installing the rule for this path before the rule of the

initial path. So from that point onward, whenever the

switch sends any message to the controller, it takes the

shortest path. Only when the shortest path fails to deliver

a message, the initial path is used as a backup.

C. Demonstrating the Approach in a Use Case

We now demonstrate how our approach works for a topol-

ogy shown in Figure 1. Each switch is connected to a single

edge device while only the first switch is connected to the

controller directly.

Figure 2 shows the interactions in all the three stages. In

Stage-I, the controller sends the OF_Initial_Path_Request to

Switch-1 using flooding. Switch-1 then duplicates this message

and sends it to Switch-2 and Switch-4. This allows each

switch to find an initial path to the controller. In Stage-II,

each switch sends OF_Initial_Path_Response message to the

controller via the initial path found in Stage-I. This message

contains information about neighboring switches.

Fig. 2: Three-Stage Routing Interactions

In our example, Switch-3 has received

OF_Initial_Path_Request from two switches (Switch-2

and Switch-4). However, it has received the message from

155

Switch-2 first. Hence, for Switch-3, the initial path to the

controller is via Switch-2. However, when the Switch-3

replies to the Controller using OF_Initial_Path_Response

message via initial path (i.e. via Switch-2), it includes

the SSID of Switch-2 and Switch-4 in it. This allows the

Controller to deduce the neighbors of each switch and hence

the topology of the entire network. Using the knowledge

about the topology of the network, the controller now installs

the shortest path routes in switches as shown in Figure 2

where Switch-3 now has a shorter path to the Controller via

Switch-4 instead of via Switch-2.

Finally in Stage-III (Figure 2), the controller installs routing

paths among switches using the shortest path from Stage-II.

As shown in Figure 2, the Controller installs OpenFlow rules

such that Switch-3 can reach Switch-5 via Switch-4.

IV. EXPERIMENTAL EVALUATION

We have implemented our three-stage routing strategy using

the SDN emulation framework called Mininet. The basic

Mininet does not provide wireless link support. An extension

called Mininet-WiFi provides basic support for simulating

wireless links but lacks support for essential wireless network

based algorithms like shortest path or AODV or OLSR, which

are normally supported by other network simulators like NS2

or NS3. Hence, we have used NS3 which is a network

simulator with support for wired and wireless links. NS3

also provides support for OpenFlow client, which is required

for SDN based switched. Thus, in order to bridge NS3 with

Mininet, we have used OpenNet. The OpenNet simulator

bridges NS3 and Mininet to provide wireless simulation in

the SDN based network settings.

Once the wireless mesh network (of mobile switches and

mobile hosts) is created using Mininet and NS3, the SDN

controller is connected to one or more of the wireless switches.

For this purpose we have used the POX controller. The three

stage routing strategy is implemented on top of the POX

controller as a network application. This strategy also makes

use of shortest-path algorithms supported by the NS3 simulator

under the hood.

We have evaluated our approach by comparing its perfor-

mance with the hybrid approach in [11]. For comparison we

used three metrics (1) controller-switch connection latency, (2)

controller-switch reconnection latency, and (3) switch-switch

connection latency.

In the beginning, the controller will try to connect to all

the switches using messages OF_Initial_Path_Request and

OF_Initial_Path_Response for finding the initial path in Stage-

I, which in turn will be used to install the shortest path in

Stage-II. We measure the latency to perform Stage-I and Stage-

II, and compare it with the hybrid approach. Figure 3 plots

this controller-switch connection latency against the number

of hops between the controller and switch. We measure this

latency for the hybrid approach, Stage-I and Stage-II. As can

be seen from the figure, our approach basically breaks down

the latency required by the hybrid approach into two stages

(Stage I and Stage-II). The latency incurred by the hybrid

approach is approximately the sum of the latency incurred by

Stage-I and Stage-II.

Fig. 3: Controller Switch Connection Latency

We observed the same behavior when we measured the

latency for re-connecting the controller-switch link during

failure. We measured this latency against the number of broken

links between controller-switch as seen in Figure 4. Here also

we can see the Stage-I and Stage-II reconnection latency adds

up to the reconnection latency in the hybrid approach.

It is evident that our approach breaks up routing into two

stages where the first stage finds a potentially inefficient route

to the controller but takes lesser time while the second stage

tries to optimize the route found in the first stage but takes

more time. This helps overall performance of actual routing

between switch-switch connection in Stage-III as seen in

Figure 5. This figure shows the connection latency among

switches against number of hops between them. It is seen that

the stage-III of our approach outperforms the hybrid approach

as the number of hops increase between switches. The reason

for this result is that the switch has better connection to the

controller in our approach than in the hybrid approach as

shown in Figures 3 and 4.

Fig. 4: Controller Switch Re-Connection Latency

156

Fig. 5: Switch-Switch Connection Latency

In SDN, whenever a switch wants to connect to another

switch, it requests the controller to install the routing rules.

Hence, the connection to the controller plays a big role in

the switch-switch connection latency. In wired networks, there

is almost no mobility of nodes and hence once a controller

installs rules in switches, these rules may not need to be

changed frequently. Hence, routing among switches is not

impacted by the controller-switch latency in wired networks.

However in wireless mesh networks, as nodes can move more

frequently, the switch needs to establish a reliable connection

to the controller in order to improve the switch-switch routing.

This is the advantage of our approach over the hybrid

approach. The hybrid approach always tries to find the best

route to the controller, which in turn incurs higher latency and

hence the controller-switch connection becomes unavailable

for longer durations. Our three-stage approach, however, tries

to find the first available route to the controller incurring

smaller latency in Stage-I which helps to keep controller-

switch connection alive for longer durations and thereby

improving system availability as well as helping in reducing

the latency in Stage-III.

V. CONCLUSIONS

In this paper, we proposed a three-stage routing strategy to

efficiently use SDN in wireless mesh networks. In this regard,

we proposed extensions to the existing OpenFlow protocol

with three new type of messages which facilitates the three

stage routing. We then evaluated the three-stage routing ap-

proach using latency metrics: one for the connections between

the controller and switch, and another for connection between

switches. The code for the prototype simulation can be found

at 1. In this work, we used a centralized controller in this

work. However, in wireless scenarios, distributed controllers

are more realistic. We plan to extend our work to centralized

controllers and compare the performance.

ACKNOWLEDGMENTS

This work was funded by the Fulbright Visiting Scholars

Program, NSF CNS US Ignite 1531079 and by AFOSR

1https://github.com/prithviraj6116/sdn-wireless-mesh

DDDAS FA9550-13-1-0227. Any opinions, findings, and con-

clusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views

of Fulbright, NSF and AFOSR.

REFERENCES

[1] IEEE Std 1646-2004, “Ieee standard communication delivery time
performance requirements for electric power substation automation,”
IEEE Std 1646-2004, pp. 1–24, 2005.

[2] Y. Xu and W. Wang, “Wireless mesh network in smart grid: Modeling
and analysis for time critical communications,” Wireless Communica-
tions, IEEE Transactions on, vol. 12, no. 7, pp. 3360–3371, July 2013.

[3] L. Cai, Y. Liu, T. Luan, X. Shen, J. Mark, and H. Poor, “Sustainability
analysis and resource management for wireless mesh networks with
renewable energy supplies,” Selected Areas in Communications, IEEE
Journal on, vol. 32, no. 2, pp. 345–355, February 2014.

[4] Z. Fadlullah, T. Nakajo, H. Nishiyama, Y. Owada, K. Hamaguchi, and
N. Kato, “Field measurement of an implemented solar powered bs-based
wireless mesh network,” Wireless Communications, IEEE, vol. 22, no. 3,
pp. 137–143, June 2015.

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[6] A. Hakiri, A. Gokhale, P. Berthou, D. C. Schmidt, and T. Gayraud,
“Software-defined networking: challenges and research opportunities for
future internet,” Computer Networks, vol. 75, pp. 453–471, 2014.

[7] N. Dorsch, F. Kurtz, H. Georg, C. Hagerling, and C. Wietfeld, “Software-
defined networking for smart grid communications: Applications, chal-
lenges and advantages,” in Smart Grid Communications (SmartGrid-
Comm), 2014 IEEE International Conference on, Nov 2014, pp. 422–
427.

[8] A. Goodney, S. Kumar, A. Ravi, and Y. Cho, “Efficient pmu network-
ing with software defined networks,” in Smart Grid Communications
(SmartGridComm), 2013 IEEE International Conference on, Oct 2013,
pp. 378–383.

[9] S. Rinaldi, P. Ferrari, D. Brandao, and S. Sulis, “Software defined
networking applied to the heterogeneous infrastructure of smart grid,” in
Factory Communication Systems (WFCS), 2015 IEEE World Conference
on, May 2015, pp. 1–4.

[10] X. Dong, H. Lin, R. Tan, R. K. Iyer, and Z. Kalbarczyk, “Software-
defined networking for smart grid resilience: Opportunities and chal-
lenges,” in Proceedings of the 1st ACM Workshop on Cyber-Physical
System Security, ser. CPSS ’15, 2015.

[11] A. Detti, C. Pisa, S. Salsano, and N. Blefari-Melazzi, “Wireless mesh
software defined networks (wmsdn),” in 2013 IEEE 9th international
conference on wireless and mobile computing, networking and commu-
nications (WiMob). IEEE, 2013, pp. 89–95.

[12] Y. Peng, L. Guo, Q. Deng, Z. Ning, and L. Zhang, “A novel hybrid
routing forwarding algorithm in sdn enabled wireless mesh networks,”
in High Performance Computing and Communications (HPCC), 2015
IEEE 7th International Symposium on Cyberspace Safety and Security
(CSS), 2015 IEEE 12th International Conferen on Embedded Software
and Systems (ICESS), 2015 IEEE 17th International Conference on.
IEEE, 2015, pp. 1806–1811.

[13] A. Abujoda, D. Dietrich, P. Papadimitriou, and A. Sathiaseelan,
“Software-defined wireless mesh networks for internet access sharing,”
Computer Networks, vol. 93, pp. 359–372, 2015.

[14] J. Zhang, B.-C. Seet, T.-T. Lie, and C. H. Foh, “Opportunities for
software-defined networking in smart grid,” in Information, Communica-
tions and Signal Processing (ICICS) 2013 9th International Conference
on, Dec 2013, pp. 1–5.

[15] A. Cahn, J. Hoyos, M. Hulse, and E. Keller, “Software-defined energy
communication networks: From substation automation to future smart
grids,” in Smart Grid Communications (SmartGridComm), 2013 IEEE
International Conference on, Oct 2013, pp. 558–563.

[16] T. Pfeiffenberger, J. L. Du, P. Bittencourt Arruda, and A. Anzaloni,
“Reliable and flexible communications for power systems: Fault-tolerant
multicast with sdn/openflow,” in New Technologies, Mobility and Secu-
rity (NTMS), 2015 7th International Conference on, July 2015, pp. 1–6.

157

SDAR: Software Defined Intra-Domain Routing in
Named Data Networks

Yaoqing Liu
Clarkson Univesity

Hitesh Wadekar
Clarkson Univesity

Abstract—Named Data Networking (NDN) is a newly pro-
posed content-centric network architecture that naturally sup-
ports efficient content distribution by routing data names instead
of conventional IP prefixes. Taking advantage of the unique
feature-adaptive forwarding in NDN and the centralized man-
agement and control in Software Defined Networking (SDN),
we design and develop SDAR, a Software Defined Intra-Domain
Routing Control Platform in NDN, that can manage network-
wide routers and various dynamics effectively. To the best of our
knowledge, it is the first time that we combine SDN and NDN
ideas to implement adaptive forwarding via intra-domain multi-
path routing algorithms. More specifically, we made the following
contributions: (1) Designed an efficient communication model
between routers and the controller within a single administrative
domain; (2) Prototyped a centralized platform for handling
different types of network dynamics, such as link failures and
cost changes; (3) Ported multiple existing single-path and multi-
path routing algorithms to the platform for robust and adaptive
intra-domain routing; (4) Evaluated the effectiveness of SDAR
through NS3/ndnSIM simulation with realistic settings.

I. INTRODUCTION

In NDN, routers forward Interest packets and maintain
state information for the corresponding Data packets to take
the reverse path. The feature that NDN routers keep state-
ful forwarding information through symmetric Interest-Data
exchange enables that the forwarding plane can detect and
recover from network failures or changes through exploring
multiple alternative paths without assistance from the control
plane. As a result, this adaptive forwarding capability relaxes
the requirement of routing protocols that were originally
designed to react to short-term dynamics of peer participa-
tion, and thus significantly improves network scalability and
stability. Meanwhile, the unique feature opens doors for other
routing protocols that were previously considered infeasible
or ineffective for IP networks [1], such as centralized intra-
domain routing protocols. Software Defined Network (SDN)
architecture [2] decouples the network control and forwarding
functions enabling flexible, manageable, cost-effective and
adaptable network control over underlying infrastructure and
network services. It features logically centralized management
maintaining a global view of the network topology and opti-
mizing dynamic network resources. SDN and related standards
were created to solve the limitations of current networks:
Complexity that leads to stasis, inconsistent policies, inability
to scale and vendor dependence. Note that the SDN here is a
broder definition rather than the traditional OpenFlow oriented
SDN. Actually, one of our primary contributions is to use
an non-OpenFlow approach to implement centralized routing
managment.

We encountered three major challenges when implementing
SDAR as follows: (1) Communication Model Design: SDAR
framework was motivated by SDN in IP networks, but SDAR
communication model, which will be within NDN context,
cannot be directly transformed from traditional IP push-based
communication model. (2) Routing Platform Integration: The
second challenge is to design and develop a generic and
centralized routing platform from the ground up. The platform
will be able to handle both incoming and outgoing routing
traffic, to store network-wide routing information in various
efficient data structures, to provide uniform interfaces for
different routing algorithms, and to quickly compute single
and multiple paths upon topology and link changes. Although
existing work has tried to integrate NDN to IP-based Open-
Flow framework, these centralized functionalities have not
been implemented from pure data-centric perspective in NDN
research communities, e.g., ndnSIM package ([3]). (3) Link
Detection and Network Dynamics Handling: There is neither
a centralized NDN-oriented link layer discovery protocol,
like Link Layer Discovery Protocol (LLDP) in SDN & IP
world [4], to detect whether a link to its neighbor is alive or
not, nor a protococl that can deal with topology changes and
link cost changes dynamically and intelligently in a centralized
manner. Therefore, the third challenge is how to obtain the
status of links between neighbors and how to handle various
network dynamics from scratch. As such, we implemented a
link detection protocol that can identify link or node failures
regularly.

The rest of this paper structured as follows: Section II
presents a high-level overview of SDAR routing platform;
Section III articulates detailed design and implementation;
Section IV shows evalution results; Section V states related
work; and Section VI concludes the paper with future work.

II. OVERVIEW

SDAR system consists of two types of components: con-
troller and node. A node could be either an NDN router or
an end system. An NDN router is responsible for forwarding
packets to destinations and registering its directly connected
links and name prefixes to the controller. The controller’s
role is three-fold: (1) Collecting link information, such as
costs, adjacencies, status changes and name prefixes, as well
as generating network-wide topology; (2) Calculating single-
path or multi-path routes for individual nodes based on the
generated network topology; (3) Dispatching the computed
prefix-level routes to individual routers. These components
run on top of NDN protocol stack and use NDN packets
to communicate with each other. In our SDAR platform, we
manually configured static routes for nodes to reach each
other during the bootstrap stage. Note that the configured978-1-5090-3216-7/16/31.00 c©201

2016 IEEE 15th International Symposium on Network Computing and Applications

158

Fig. 1: SDAR Naming Format and Usage

routes are merely used to achieve reachability, rather than for
best performance or shortest paths, which will be done by
the controller. The reachability routes can also be installed
dynamically through broadcasting discovery Interests, where
the first ingress face that receives the broadcasting Interest on
a node can be the next-hop face toward the destination node.

III. DESIGN

A. Naming Scheme

In NDN, content is identified by hierarchical structured
names with varying numbers of components. Based on cur-
rent network structures and operations, a hierarchical naming
scheme will well depict relationship among various compo-
nents in the system. Figure 1 describes eight types of Interests
that will be used to fulfill the needs for intra-domain routing.
SDAR is designed mainly for intra-domain routing, each node
can be uniquely identifed by its name and thus for simplicity
the node name is used for its NDN name. For example, the
controller can be named as /controller, and a node with name
consumer has a NDN name of /consumer. If the name is
used in inter-domain routing eventually, a network and site
name can be appended in front of the node name.

B. Communication Model

SDAR is motivated by SDN and designed to decouple
routing control from forwarding and move routing decision
processes to a centralized controller. Under SDAR architecture,
routing traffic will be flowing from nodes to the SDAR
controller and vice versa. The SDAR controller’s tasks include
creating routing topology and calculating routes. One question
is that which end is in a better position to initiate the request to
pull link adjancency or change information. There are a few
tradeoffs: if the controller initiates the request, then it only
needs to establish a two-way communication (one Interest to
a node and one Data back) to obtain this information. But
the problem is that the controller does not know when such
information will be ready to be retrieved, thus it needs to
periodically send Interests to each individual node. Tracking
all of the nodes in the network by the controller leads to high
computational and traffic overhead as the controller has to send
tracking Interests to individual nodes continuously irrespective
of topology changes. As such, we adopt another demand-driven
approach, where each node initiates the communication to

Fig. 2: Communication Model

notify the controller to pull data by sending a request Interest.
Once the controller receives the notification, it acknowledges
the request with an empty Data packet to satisfy the Interest
and meanwhile issues its own Interest to pull the data from
the node. This four-way communication model, although may
incur additional traffic overhead, will be more efficient if the
network does not suffer from highly frequent link changes
and topology updates. Figure 2 illustrates the communication
model for both topology and update processing.

C. Routing Platform Integration

The most challenging part for SDAR framework turns out
to be the implementation and integration of different system
components from the ground up. Current ndnSIM package
only provides a lower-layer support of NDN protocol stack,
including FIB, PIT, CS and forwarding strategies. However,
it does not offer any dynamic routing protocol for our refer-
ence, nor other necessary functional support for uppper-level
routing-related applications. Therefore, we strive to design and
develop these functionalities from scratch. These components
include Routing Traffic Management, Topology Management,
Path Computation, Event Management, and Configuration
Management. Path computation is strongly connected by other
components as shown in Figure 3. Routing Traffic Man-
agement module is mainly responsible for parsing incoming
Interest and Data packets for further processing as well as
pushing application packets out to the network. The main
responsibility of Topology Management module is to maintain
a global topology of all routers and their links in the network
for different routing algorithms to use. In Path Management
Module, we have successfully ported single-path Dijkstra’s al-
gorithm, multi-path Dijkstra’s algorithm, and Yen’s K-shortest
path algorithm to SDAR routing platform. The configuration
management is in charge of configuring different features
for the SDAR controller, such as configuring NS3/ndnSIM
libraries, selecting different algorithms for routing, logging,
and data structures initialization. Network Dynamics Handling
module, as shown in Figure 4, is mainly responsible for han-
dling various network dynamics, including link cost changes
and link failures.

159

Fig. 3: SDAR Routing Platform

Fig. 4: Network Dynamics Handling

IV. EVALUATION

This section we introduce the experiment environment and
evaluate the effectiveness of multi-path routing on SDAR
platform. We also make a comparison between single-path and
multi-path routing algorithms on a centralized controller in
terms of efficiency and traffic overhead.

A. Methodology

We conducted our simulation and evaluation on an Intel(R)
Core(TM)2 Duo CPU E7500 @2.93GHz, 4GB memory server.

Fig. 5: Network Topology

We used ndnSIM simulator [5] to design, implement our
SDAR routing platform. We use the ’topologyReader’ module
in ndnSIM to generate a six-node topology, as shown in
Figure 5, for testing and evalution. Each link in the topology
has a bandwidth 1Mbps, delay 10ms and the number of
maximum packets in the transmission queue is 10. Face id
(rectangle box) and link cost between two nodes are also
shown in the topology. We configured ndnSIM as follows:
we implemented and installed our SDAR controller applica-
tion at ndnSIM application layer on controller. We installed
customized version of consumer and producer applications on
Consumer and Producer nodes. Based on our design, each
node in the topology initially uses our developed applications
to communicate with the controller to announce its adjacency
information, and afterwards obtains multiple routes to reach
other nodes in the network. We set three paths for each
destination while calculating paths using multi path algorithm.
We configured forwarding strategy as ’BestRoute’ on each
node. Namely, NDN forwarding engine is able to dynamically
select the best route, e.g., lowest-cost route, among all available
routes to the same destination and switch the traffic to the
new route. The ’Consumer’ node generates Interest towards
’Producer’ node with frequency of 10 Interests per second. For
all experiments we used the same topology and traffic rate.

B. Effectiveness of SDAR Routing Multi-Path

In order to demonstrate the effectiveness of multi-path
routing in SDAR architecture, we design a particular scenario:
At the beginning of the simulation, each node sends link
information to the controller, which calculates three shortest
paths between any pair of nodes and installs the corresponding
routes to the forward information base (FIB) of every node.
Subsequently, we schedule to increase the cost to a very
large value on the link between Consumer and Node2.
Thereafter, we observe what path the traffic flows will take
toward its destination. At the beginning of the experiment, We
observe that three next hops are available in the FIB on the
consumer node with a preferred face number based on the
BestRoute stragety. Then we changed the link cost between
the consumer and an internal node and we found the change
triggerred the controller to calculate a new path that was used
afterwards. Therefore, we demonstrate the effectiveness of
SDAR multi-path routing by leveraging the feature of NDN
adaptive forwarding. Due to space constraints, we skip the
figures to show the changes of paths and FIB entries.

160

Fig. 6: Traffic Overhead Comparison

C. Single-Path and Multi-Path Comparison

If there is only one single path from a source to a destina-
tion, controller will be interrupted for every occurance of link
changes on the path. However, if multiple paths are available,
then an alternative path will be selected for use temporarily by
NDN forwarding engine and only persistent changes need to
interrupt the controller for path re-computation. We designed
two experiments to show the strengths of mutli-path routing
compared with single-path routing under SDAR in terms of
traffic overhead. Both experiments schedule exactly the same
events of link changes, but the controller uses a single-path
(Dijkstra’s) algorithm in the first experiment and a multi-
path (Yen’s K-shortest) algorithm in the other one. Figure 6
demonstrates the accumulative number of Interest packets that
interrupted the controller obtained from the two simulations.
From the figure, we can notice that bootstrap process finished
at 140s when all routes are collected, calculated and installed
to individual nodes by the controller. From then on, a link
is scheduled up and down every 40s and the change stays
since 500s. The line with a Triangle represents the results
of single-path scenario and the other line denotes the results
of multi-path scenario. We can observe that every 40s, the
controller receives a cluster of Interests that were issued by
the affected node of the link change, because of no alternative
paths available; however, the controller was not interrupted
until 560s, when the change has been lasting more than the
assigned threshold (60s) since last link change at 500s. During
the entire simulation, 64 Interests interrupted the controller
under the single-path settings and only 16 Interests in the
multi-path settings. As such, we verified that multi-path routing
in SDAR can greatly reduce traffic overhead to both the
network and the controller. Most importantly, it will enhance
response speed for traffic redirecting upon link changes and
failures.

V. RELATED WORK

Torres et al. proposed a Controller-based Routing Strategy
(CRoS) [6] for NDN and has centralized architecture similar
to our SDAR design but it differs from SDAR in a couple
of ways. First, they did mention about routing algorithms,
but we provided detailed implementation of two multi-path
algorithms and their effectiveness on ndnSIM. Second, they
did not take advantage of NDN features for handling network
failures intelligently, like we did with the help of adaptive

and multi-path forwarding. Hoque et al. proposed a Named-
data Link State Routing protocol (NLSR) [7], for NDN.
Although they offered efficient update dissemination, built-
in update authentication, and native support of multi path
forwarding, but every routers in the networks are involved for
path calculation. Soliman et al. discussed about link failure in
source routed forwarding with Software Defined Control, but
those are IP based OpenFlow protocol solutions [8]. We took
their work as reference to implement it in SDAR. Other work
such as [9], proposed adaptive forwarding in NDN and opens
a door for centralized routing. As compared to their work,
SDAR has been proved to be a good application of adaptive
forwarding. Tortelli et al. discussed about a bloom-filter based
intra-domain routing algorithm for NDN (COBRA) [10]. They
handle link failures and detection using a bloom-filter, but in
our case, we use adaptive forwarding, multi-path routing and
a link detection protocol.

VI. CONCLUSION

Through SDAR, we demonstrate how SDN concepts could
feasibly and efficiently be applied to the NDN context to man-
age and control the networks. To the best of our knowledge, it
is the first time that we combine SDN and NDN ideas to imple-
ment adaptive forwarding via intra-domain multi-path routing
algorithms. Designing and implementing a centralized routing
system on a centralized controller in NDN can greatly reduce
the complexity and overhead in network management and
routing configurations rather than on all participating routers.
We hope the SDAR routing platform will help researchers
better understand the role of routing protocols in NDN and
also gain insights to improve current IP routing architecture.

REFERENCES

[1] C. Yi, J. Abraham, A. Afanasyev, L. Wang, B. Zhang, and L. Zhang,
“On the role of routing in named data networking,” 2013. [Online].
Available: http://named-data.net/techreports.html

[2] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A. Ghodsi,
and S. Shenker, “Software-defined internet architecture: decoupling
architecture from infrastructure,” in Proceedings of the 11th ACM
Workshop on Hot Topics in Networks. ACM, 2012, pp. 43–48.

[3] S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM
2.0: A new version of the NDN simulator for NS-3,” NDN, Technical
Report NDN-0028, January 2015.

[4] D. in Software-Defined Networks,
“http://vlkan.com/blog/post/2013/08/06/sdn-discovery/.”

[5] A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM: NDN simulator
for NS-3,” NDN, Technical Report NDN-0005, October 2012. [Online].
Available: http://named-data.net/techreports.html

[6] J. V. Torres and O. C. M. Duarte, “Cros-ndn: Controller-based routing
strategy for named data networking.”

[7] A. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and L. Wang,
“Nlsr: named-data link state routing protocol,” in Proceedings of the 3rd
ACM SIGCOMM workshop on Information-centric networking. ACM,
2013, pp. 15–20.

[8] P. A.-S. Mourad Soliman, Biswajit Nandy, “Source routed forwarding
with software defined control, considerations and implications,” in
Proceedings of CoNEXT 2012 and Co-located Workshops. ACM, 2012,
pp. 15–20.

[9] A. Yi, B. Lan Wang, and L. Zhang, “Adaptive forwarding in named data
networking,” in ACM SIGCOMM Computer Communication Review,
vol. 32, no. 4. ACM, 2002, pp. 133–145.

[10] G. B. M. Tortelli, L. A. Grieco and K. Pentikousis, “Cobra: Lean intra-
domain routing in ndn,” in Proceedings of IEEE CCNC. IEEE, 2014,
pp. 839–844.

161

Cost-effective Processing for Delay-sensitive
Applications in Cloud of Things Systems

Yucen Nan1, Wei Li1, Wei Bao1, Flavia C. Delicato2, Paulo F. Pires2, Albert Y. Zomaya1
1The Centre for Distributed and High Performance Computing, School of Information Technologies, The University of Sydney, Australia

2Department of Computer Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

ynan2995@uni.sydney.edu.au, liwei@it.usyd.edu.au, {wei.bao, albert.zomaya}@sydney.edu.au,

fdelicato@gmail.com, paulo.f.pires@gmail.com

Abstract—The steep rise of Internet of Things (IoT) applications
along with the limitations of Cloud Computing to address all IoT
requirements promotes a new distributed computing paradigm
called Fog Computing, which aims to process data at the edge of
the network. With the help of Fog Computing, the transmission
latency and monetary spending caused by Cloud Computing can
be effectively reduced. However, executing all applications in fog
nodes will increase the average response time since the processing
capabilities of fog is not as powerful as cloud. A tradeoff issue
needs to be addressed within such systems in terms of average
response time and average cost. In this paper, we develop an
online algorithm, unit-slot optimization, based on the technique
of Lyapunov optimization. It is a quantified near optimal solution
and can online adjust the tradeoff between average response time
and average cost. We evaluate the performance of our proposed
algorithm by a number of experiments. The experimental results
not only match up the theoretical analyses properly, but also
demonstrate that our proposed algorithm can provide cost-
effective processing while guaranteeing average response time.

I. INTRODUCTION

Nowadays, an increasing number of objects and physical

devices are connecting to Internet, significantly impacting the

global volume of generated traffic and ushering in a world of

interconnected smart devices, thus giving rise to the Internet

of Things (IoT) paradigm [1]. The ever-increasing number of

IoT devices will inevitably produce a huge amount of data,

which has to be processed, stored and properly accessed by

end users and/or client applications. The IoT devices often

have limited computing and energy resources, and are not able

to perform sophisticated processing and storing large amounts

of data. In this context, Cloud Computing seems to be the

best candidate to meet the requirements of IoT scenarios.

The theoretically unlimited resources of clouds allow efficient

processing and storage of massive amounts of data generated by

the IoT devices. The combination of IoT and Cloud Computing

brought about a new paradigm of pervasive and ubiquitous

computing, called Cloud of Things (CoT) [2], [3]. CoT denotes

the synergetic integration of Cloud Computing and IoT, in

order to provide sophisticated services in a ubiquitous way,

for a multitude of application domains. A CoT, as a two-tier

IoT system, is composed of virtual things built on top of the

networked physical objects and provides on-demand provision

of sensing, computational and actuation services, allowing users

to pull the data from the physical things by using a pay per use,

flexible and service-oriented approach.

Fig. 1: The system architecture of the three-tier CoT

However, despite all the benefits provided by the integration

of cloud and IoT, recent works [4], [5] raised several concerns

of the two-tier CoT model. In particular, the unpredictable

communication delay to the cloud data centres can become a

high risk factor for the time sensitive IoT applications. Besides,

the network bandwidth may be over-utilized to transfer raw data

to the cloud, while most of such data could be locally processed

and discarded right away. For addressing such issues, a novel

and promising computing paradigm called Edge Computing

[6] has recently been advocated. Fog Computing [7] as a

representative paradigm of Edge Computing still retains the

core advantages of using clouds as a support infrastructure,

but it keeps the data and computation close to end users

thus reducing the communication delay over the Internet and

minimizing the bandwidth burden by wisely deciding about

which data needs to be sent to the cloud. By including the fog

devices in the CoT scenario, it becomes a three-tier system.

As shown in Fig. 1, the Things tier (leftmost tier) includes the

various physical devices such as wireless sensor and actuators

networks (WSAN), RFID tags, mobile devices and several other

real-world objects instrumented by sensors and/or actuators.

The Cloud tier (rightmost tier) comprises the data centres.

The Fog tier (intermediate tier) contains fog nodes, which are

connected to the Internet and interact with the cloud and the

IoT devices. In many cases, the fog nodes can perform the

processing of data collected by the sensors, without resorting

to the cloud. On the other hand, many applications require

complex processing and/or rely on historical data stored for978-1-5090-3216-7/16 $31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

162

a long period of time, which typically will not be available

in fog nodes. Therefore, there is an important decision-making

process to be managed, which refers to when to send data from

the fog tier to the cloud. Several factors must be taken into

account in this decision-making process, such as the availability

of fog nodes, the average response time of the applications and

the monetary cost, since processing the data at the fog nodes

generally has zero cost while outsourcing the processing to the

cloud requires payment for the services.

In this paper, we present a comprehensive analytic framework

for the three-tier CoT system to prevent the fog devices to

be overloaded so that the users within that area would not

experience a poor quality of service. In general, such problem

can be converted into a constrained stochastic optimization

problem. Using the technique of Lyapunov optimization [8]

over renewals, we designed an adaptive decision-making algo-

rithm called unit-slot optimization for distributing the incoming

data to the corresponding tiers without a priori knowledge

of the status of users and system. The main goal of this

algorithm is to ensure the data is processed within a certain

amount of time, meanwhile the availability of the fog servers

is still guaranteed, and the cost spending on renting the cloud

services is minimized. In addition, our proposed algorithm

achieves the average response time arbitrarily close to the

theoretical optimum. The performed discrete-event simulation

demonstrates that, under the three-tier CoT scenario, our pro-

posed mechanism outperforms the selected benchmarks and

provides the best overall performance for the users.

The rest of the paper is organized as follows: Section II

introduces the system analysis. Section III presents the theoret-

ical solution and the proposed algorithm. Section IV evaluates

the performance of the proposed algorithm. Related work is

provided in Section V followed by a conclusion in Section VI.

II. SYSTEM ANALYSIS

A. The Overview of the Three-tier Cloud of Things

As shown in the Fig. 1, our theoretical system model involves

three tiers, namely Things tier, Fog tier and Cloud tier. In the

Things tier, IoT devices send out the applications to the system

backend for further processing and these applications could be

processed in either the Fog or Cloud tier. If the Fog tier is

selected to process applications, the applications will be directly

sent to the fog node. Since fog nodes have limited resources,

the application arrival rate may be higher than the node capacity

to serve the application requests (we call this the service rate).

Therefore, there will be a growth of queueing length in the

fog node. Otherwise, the applications will be processed at the

Cloud tier. Unlike sending the applications straight to the Fog

tier, the applications will then be sent to the Cloud tier via

the corresponding communication channel. The service rates

of communication channels and cloud nodes are both higher

than those of the fog nodes, but their usage incur in a certain

monetary cost for renting the required resources from external

stakeholders. To provide a cost-effective service with a shorter

response time in a better way, we implement a decision maker

located at the front of the Fog tier to make online decisions

regarding if the applications will be sent to the Fog tier or to the

Fig. 2: Application processing flow

Cloud tier. Fig. 2 shows the application processing flow in our

system. Table I provides definitions of the important parameters

used in our system modeling. For the sake of the simplicity of

analysis, we use only one fog node to demonstrate how our

proposed algorithm can optimize the system performance, but

the approach applies also in the case of multiple fog nodes.

Please note that, the cooperation between fog nodes is out of

the scope of this paper.

B. Fog Node

During the tth time slot, the arrival rate of applications in the

fog node is λ(t) and the service rate is μ(F)(t). Since the fog

node has limited computation capacity, λ(t) may be greater

than μ(F)(t), we allow a portion of the applications to be

offloaded to the Cloud tier. Let η(F)(t) denote the portion of the

applications processed locally, and η
(C)
j (t) denote the portion

offloaded to the jth cloud node. Let λ(F)(t) = η(F)(t)λ(t)
denote the equivalent local arrival rate of the applications at the

processor of the fog node, and λ
(C)
j (t) = η

(C)
j (t)λ(t) denote

the equivalent arrival rate of the communication channel to the

jth cloud. We have

λ(t) = λ(F)(t) +
J∑

j=1

λ
(C)
j (t)xj(t). (1)

In this work, we assume that the fog node can only offload its

applications to one of the clouds in each time slot, so that at

most one of λ
(C)
j (t), ∀j ∈ J can be positive during the tth time

slot. Let xj(t) indicates if cloud j is in use. There is one and

only one xj∗(t) = 1
(
λ
(C)
j∗ (t) > 0

)
and all other xj(t) equal

zero.

We model the processor at the fog node as an M/M/1 queue

[9], and the average local response time is

τ (F)(t) =
1

μ(F)(t)− λ(F)(t)
, (2)

note that we must satisfy

μ(F)(t) > λ(F)(t). (3)

C. Communication Channel from Fog to Cloud

During the tth time slot, the arrival rate to the jth commu-

nication channel equals the arrival rate to the jth cloud node,

which is denoted as λ
(C)
j (t). The service rate in communication

channel from fog node to cloud node is μ
(X)
j (t). We model the

163

TABLE I: Key Parameters

Notation Definition
t The tth time slot for a long-term period (for short, we use t in the rest of the paper).
λ(t) Arrival rate of applications at the fog node in consideration at t.

λ(F)(t) Arrival rate of applications processing in the processor of the fog node at t.

λ
(C)
j (t) Arrival rate of applications in jth cloud node at t.

μ(F)(t) Service rate of the fog node at t.

μ
(X)
j (t) Service rate of the communication channel to the jth cloud node at t.

μ
(C)
j (t) Service rate of the jth cloud node at t.

τ (F)(t) Average response time of processing applications in the fog node at t.

τ
(X)
j (t) Average response time of transmitting applications to jth cloud via communication channel at t.

τ
(C)
j (t) Average response time of processing applications in jth cloud node at t.

τj(t) A propagation delay for sending applications to the jth cloud node via communication channel at t.
τ j(t) Overall average response time of processing applications at t.
xj(t) Indicator of using jth channel and cloud node at t.

P
(X)
j (t) The cost of using the communication channel to the jth cloud node at t.

P
(C)
j (t) The cost of using the jth cloud node at t.

D Required mean response time

communication channel as an M/M/1 queue if the jth channel

is used, i.e., xj(t) = 1, and the average transmission time in

the channel is

τ
(X)
j (t) =

1

μ
(X)
j (t)− λ

(C)
j (t)

. (4)

Furthermore, if the jth communication channel is used, there

will be a propagation delay τj(t). In summary, if the jth cloud

is used, the average response time for sending applications to

the jth cloud node is

τ
(X)
j (t) =

1

μ
(X)
j (t)− λ

(C)
j (t)

+ τj(t), (5)

we must have

μ
(X)
j (t) > λ

(C)
j (t). (6)

Using the communication channel from the fog node to the

jth cloud node introduces a cost P
(X)
j (t).

D. Processing at Cloud

The arrival rate at the cloud node is the same as that in the

communication channel, so that the arrival rate to the cloud

node is λ
(C)
j (t). The service rate is μ(C)(t). Still we model the

jth cloud as M/M/1 queue.

Therefore, if the jth cloud node is used, the average process-

ing time at the cloud node is

τ
(C)
j (t) =

1

μ
(C)
j (t)− λ

(C)
j (t)

, (7)

note that we must have

μ
(C)
j (t) > λ

(C)
j (t). (8)

We also assume that using the cloud node introduces a cost

P
(C)
j (t).

E. Data Offloading for Cost-Effective Processing

The decision maker which involved in the system needs

to decide which application to be offloaded to the cloud,

and which cloud node should be used, in order to balance

the response time and cost. As we introduced previously, we

presume that there is no cost if the applications are processed

in the fog node since the fog node are generally owned by the

service providers. However, as discussed in Section II-C and

II-D, if the applications are processed in the Cloud tier, it will

introduce communication cost and processing cost. The overall

cost at t is

P (t) =

J∑
j=1

xj(t)
(
P

(X)
j (t) + P

(C)
j (t)

)
. (9)

On the other hand, as discussed in Section II-B, II-C and

II-D, the average response time at t is

τ(t) =
λ(F)(t)

λ(t)
τ (F)(t)

+
J∑

j=1

xj(t)λ
(C)
j (t)

λ(t)

[
τ
(X)
j (t) + τ

(C)
j (t)

]
. (10)

Our aim is to minimize the long-term average cost

lim sup
T→∞

1

T

T−1∑
t=0

E [P (t)] (11)

and satisfy the following requirement about response time

lim sup
T→∞

1

T

T−1∑
t=0

E [τ(t)] ≤ D. (12)

III. PROBLEM SOLUTION BASED ON LYAPUNOV

OPTIMIZATION

In order to satisfy the response time constraint (12), we need

to introduce a virtual queue Q(t), which is used to accumulate

the part of the response time that exceeds the expected finish

time, and we define Q(0) = 0. Q(t) evolves as follows

Q(t+ 1) = max[Q(t)−D, 0] + τ(t) (13)

164

Lemma 1. If Q(t) is mean rate stable, then (12) is satisfied

Proof. Due to the definition of Q(t), we have

Q(t+ 1) ≥ Q(t)−D + τ(t). (14)

Then taking expectation of the above inequality, we have

E [Q(t+ 1)]− E [Q(t)] ≥ −D + E [τ(t)] .

Summing up both sides of the above inequality over t ∈
[0, T − 1] for some positive integer T yields and using the

law of iterated, we have

E [Q(T)]− E [Q(0)] ≥ −TD +

T−1∑
t=0

E [τ(t)] .

Then through dividing by T , we have

E [Q(T)]− E [Q(0)]

T
≥ −D +

1

T

T−1∑
t=0

E [τ(t)] .

Applying Q(0) = 0 to the above inequality, we have

E [Q(T)]

T
≥ −D +

1

T

T−1∑
t=0

E [τ(t)] .

Finally, letting T→∞ , we have

lim sup
T→∞

E [Q(T)]

T
≥ −D + lim sup

T→∞
1

T

T−1∑
t=0

E [τ(t)] .

If Q(t) is mean rate stable, then lim supT→∞
E[Q(T)]

T = 0

0 ≥ −D + lim sup
T→∞

1

T

T−1∑
t=0

E [τ(t)] .

Rearranging terms in the above, we have

lim sup
T→∞

1

T

T−1∑
t=0

E [τ(t)] ≤ D.

By introducing the virtual queue Q(t), we are able to convert

the constraint (12) into a queue stable problem. If we can

guarantee that Q(t) is mean rate stable, we are able to satisfy

(12).

A. Lyapunov Optimization Formulation

Next, we define a Lyapunov function as a scalar measure of

response time in the system as follows

L (Q(t)) � 1

2
Q2(t). (15)

Then we define the conditional unit-slot Lyapunov drift as

follows

Δ(Q(t)) � E [L (Q(t+ 1))− L (Q(t)) |Q(t)] . (16)

B. Bounding Unit-slot Lyapunov Drift

Our primary aim is to optimize the upper bound of the overall

response time which is the upper bound of Δ(Q(t)).

Lemma 2. For any t ∈ {0, T −1}, given any possible control

decision, the Lyapunov drift Δ(Q(t)) can be deterministically

bounded as follows

Δ(Q(t)) ≤ H +Q(t)E [−D + τ(t)|Q(t)] , (17)

where H = 1
2

[
maxE

(
τ(t)2

)
+D2

]
.

Proof.

Δ(Q(t)) = E [L (Q(t+ 1))− L (Q(t)) |Q(t)]

=
1

2
E

[
Q2(t+ 1)−Q2(t)|Q(t)

]
.

Applying equation (13), we have

Δ(Q(t)) =
1

2
E

[
[max [Q(t)−D, 0] + τ(t)]

2 −Q(t)
2|Q(t)

]
.

For any Q(t) ≥ 0, D ≥ 0, τ(t) ≥ 0, we have

[max[Q(t)−D, 0] + τ(t)]
2 ≤ Q(t)

2
+ τ(t)

2
+D2

+ 2Q(t)(τ(t)−D),

then we have

Δ(Q(t)) ≤ 1

2
E

[
τ(t)

2
+D2 + 2Q(t)(τ(t)−D)|Q(t)

]
≤ E

[
τ(t)

2
+D2

2
|Q(t)

]
+ E [Q(t)τ(t)−Q(t)D|Q(t)] .

Defining H as a finite constant that bounds the first term on

the right-hand-side of the above drift inequality, so that for all

t, all possible Q(t), we have

H =
1

2

[
maxE(τ(t)2) +D2

]
.

C. Minimizing the Drift-Plus-Cost Performance

Defining the same Lyapunov function L (Q(t)) as in (15),

and letting Δ(Q(t)) represents the conditional Lyapunov drift

at t. While taking actions to minimize a bound on Δ(Q(t))
every time slot would stabilize the system, the resulting cost

might be unnecessarily large. In order to avoid this, we min-

imize a bound on the following drift-plus-penalty expression

instead of minimizing a bound on Δ(Q(t))

Δ (Q(t)) + V E [P (t)|Q(t)] , (18)

where V ≥ 0 is a parameter that represents an "important

weight" on how much we emphasize cost minimization. We

add a penalty term to both sides of (17) yields a bound on the

drift-plus-penalty

Δ(Q(t)) + V E [P (t)|Q(t)] ≤ H + E [Q(t)τ(t)|Q(t)]

−DQ(t) + V E [P (t)|Q(t)] . (19)

165

At each time slot, we are motivated to minimize the following

term.

min
λ(F)(t),λ

(C)
j (t),xj(t),∀j∈J

E [Q(t)τ(t)|Q(t)]

+ V E [P (t)|Q(t)] , (20)

substituting (20), we have the following one-time slot optimiza-

tion problem P1. (20) is minimized if we opportunistically

minimize (21) as follows at each step [8].

min
λ(F)(t),λ

(C)
j (t),xj(t),∀j∈J

Q(t)

(
λ(F)(t)

λ(t)
τ (F)(t)

+
J∑

j=1

xj(t)
(
λ(t)− λ(F)(t)

)
λ(t)

(τ
(X)
j (t) + τ

(C)
j (t))

⎞⎠
+ V

J∑
j=1

xj(t)
(
P

(X)
j (t) + P

(C)
j (t)

)
, (21)

subject to xj(t) ∈ {0, 1}, (22)

J∑
j=1

xj(t) = 1, (23)

λ(F)(t) ≤ μ(F)(t), (24)

λ
(C)
j (t) ≤ min(μ

(C)
j (t), μ

(X)
j (t)). (25)

In the next subsection, we show that if (20) is minimized at

each time slot, we can achieve quantified near optimal solution.

D. Optimality Analysis

Let † denote any S-only offloading policy1, and τ †(t) and

P †(t) denote the average response time and average cost at t
based on policy †.

Δ(Q(t)) + V E [P (t)|Q(t)]

≤ H +Q(t)E [τ(t)−D|Q(t)] + V E [P (t)|Q(t)] (26)

≤ H +Q(t)E
[
τ †(t)−D|Q(t)

]
+ V E

[
P †(t)|Q(t)

]
(27)

= H +Q(t)E
[
τ †(t)−D

]
+ V E

[
P †(t)

]
. (28)

Now we assume that there exists δ > 0 such that E
[
τ †(t)

]
≤

D − δ can be achieved by an S-only policy [10], and among

all feasible S-only policies, P
∗
(δ) is the optimal average cost.

We have

(27) ≤ H −Q(t)δ + V P
∗
(δ). (29)

Taking expectations of (29), we have

T−1∑
t=0

E [Δ(Q(t))] + V

T−1∑
t=0

E [E(P (t)|Q(t))] ≤

TH −
T−1∑
t=0

E [Q(t)] δ + V TP
∗
(δ).

1S-only offloading policy means that the decision on

λ(F)(t), λ
(C)
j (t), xj(t),∀j ∈ J depends only on the system state at t

(i.e., λ(t), μ(F)(t), μ
(X)
j (t), μ

(C)
j (t), τj(t), P

(X)
j (t), P

(C)
j (t), ∀j ∈ J),

but does not depend on Q(t).

Using the law of iterated expectations as before yield and

summing the above over t ∈ [0, T−1] for some positive integer

T yield, we have

E [L(Q(T))]− E [L(Q(0))] + V

T−1∑
t=0

E [P (t)] ≤

TH −
T−1∑
t=0

E [Q(t)] δ + V TP
∗
(δ). (30)

Rearranging the terms in the above and neglecting non-negative

quantities where appropriate yields the following two inequal-

ities

1

T

T−1∑
t=0

E [Q(t)] ≤ H

δ
+

V P
∗
(δ)− V

T

∑T−1
t=0 E [P (t)]

δ

+
E [L(Q(0))]

Tδ
(31)

and

1

T

T−1∑
t=0

E [P (t)] ≤ H

V
+ P

∗
(δ) +

E [L(Q(0))]

V T
, (32)

where the first inequality follows by dividing (30) by V T and

the second follows by dividing (30) by Tδ. Taking limits as

T → ∞ shows that

lim sup
T→∞

1

T

T−1∑
t=0

E [Q(t)] ≤
H + V

[
P

∗
(δ)− P

∗]
δ

, (33)

where P
∗

is the optimal long-term average cost achieved by

any policy. We also have

lim sup
T→∞

1

T

T−1∑
Tk=0

E [P (t)] ≤ H

V
+ P

∗
(δ). (34)

The bounds (33) and (34) demonstrate an [O(V), O(1/V)]
tradeoff between average response time and average cost. We

can use an arbitrarily large V to make H
V arbitrarily small, so

that the inequality (34) illustrates that with the increasing of

parameter V , the money cost is closer to the P ∗. However,

when V is too large, the data queue is not stable, which means

the response time will exceeded the predefined system expected

finish time and it’s not satisfy the constraint (12) anymore. It is

obvious that tuning the parameter V can minimize the response

time and money cost at the same time. This comes with a

tradeoff: the average response time bound in inequality (33) is

O(V).

E. Unit-slot Optimization

In this subsection, we need to further solve the problem P1
in (21)–(25) and the pseudo code of our proposed algorithm

Unit-slot Optimization is given in Algorithm 1. First, we have

to traverse j, to find xj(t) = 1. Our aim is to optimize

λ(F)(t)
(
λ
(C)
j (t) = λ(t)− λ(F)(t)

)
when xj(t) = 1. This

optimization is a simple optimization problem. To solve this

problem, we just need to examine all feasible solutions whether

satisfy that the value of the first derivate is zero. In other

words, the first derivate of (21) with respect to λ(f)(t) is zero

guarantees the value of (21) is the minimal one.

166

Algorithm 1 Unit-slot Optimization Algorithm

1: Set Fopt = ∞
2: for each j ∈ J do
3: Set xj(t) = 1. Set xi(t) = 0, ∀j ∈ J and j 	= i
4: Given the above xj(t), ∀j ∈ J , optimize (21) under

the constraints (23), (24) and (25). Derive optimal the

λ(F)(t), and the optimal value of (21) is denoted by F
5: if F ≤ Fopt then
6: Set Fopt = F ,

7: set x∗
j = xj(t), ∀j ∈ J

8: Set λ(F)∗ = λ(F)(t)
9: end if

10: end for
11: The optimal solution is xj(t) = x∗

j , ∀j ∈ J , and λ(F)(t) =

λ(F)∗

IV. PERFORMANCE EVALUATION

In this section, we first provide the details of our simulation

studies, then we investigate the performance of our proposed

algorithm by evaluating several performance metrics, e.g. aver-

age response time, cost and backlogs under different settings.

Besides the proposed algorithm, We implemented two extra

algorithms, one called Fog-First, and the other is called Cloud-

First as the performance benchmarks in our experiments.

A. Simulation Environment Setting

In order to evaluate the performance of our proposed algo-

rithm, we carried out a discrete event simulation (DES) making

use of the SimPy [11]. We first established the three-tier CoT

system as shown in Fig. 2 in our simulations. There were

totally 200 things (this number is indicated as N) generated

in the things tier by default and each of them connected to

the fog node which with a relatively low but fixed service

rate in the Fog tier. We also created 10 different level of

communication channels connected to 10 different clouds, each

level of communication channel has different transmitting rate

while the corresponding cloud have various service rates. Due

to the different service rate of the communication channel

and cloud, the rental price of them are different (the higher

service rate, the more expensive the rental price). In order to

balance the distribution of processing application, we preset

10 as the maximum number of queueing length in fog node

or in communication channel. What’s more, regarding to our

proposed algorithm, there is a penalty term V to show how

much we emphasize on the average cost.

To evaluate the performance of our proposed unit-slot op-

timization algorithm, we also implement the "Fog-First" al-

gorithm and the "Cloud-First" algorithm as our performance

benchmarks. In the "Fog-First" algorithm, each newly arrival

application is sent to fog node for processing by default until

the preset queueing length on the fog node is reached. After

that, The remaining applications will be sent to the cloud for

processing until the queueing length on the fog node reduces. In

"Cloud-First" algorithm, the applications distribution strategy

is opposite to the "Fog-First" algorithm. The newly arrival

applications are tend to send to cloud for their processing in the

Fig. 3: The performance of processing applications in

unit-slot optimization algorithms

first place. Due to the factors of monetary cost and the preset

backlog limitation, Some of the applications will be sent to fog

node for processing.

B. Performance Evaluation of Different Algorithms

In Fig. 3, the variation of average cost and average response

time of three different algorithms are shown in upper and

lower parts separately with different limitation of the backlog

in the waiting queue. For the "Fog-First" algorithm, the upper

part of the figure demonstrates that the average cost decreases

when the limitation of the backlog in the waiting queue (the

maximum allowed number of applications waiting in fog nodes

for processing) increases, and the lower part of the figure shows

that the average response time increases when the limitation

of the backlog in the waiting queue (the maximum allowed

number of applications waiting in cloud center for processing)

increases. This is because more and more applications are

allocated to the fog node for their processing. With the free

but relatively slow services on the fog nodes, the average cost

is thus decreased while the average response time is increased.

Our proposed unit-slot optimization algorithm represents the

same cost spending trend and average response time trend as

the "Fog-First" algorithm, this is due to our algorithm is capable

of finding an optimized tradeoff online in terms of average

cost and average response time. However, the cost spending of

"Cloud-First" algorithm is increasing while the response time

is decreasing due to more and more applications are attempted

to be processed at the remote cloud node with much higher

service rate, which is spontaneously caused the increment

of cost spending and decrement of response time. Regarding

to the balancing of average cost and average response time,

we can clearly draw from Fig. 3 that our proposed unit-

slot optimization algorithm is the best choice among three

mentioned algorithms.

C. The Impact of Different Penalty Terms on the Performance
of the proposed Algorithm

To investigate the effects of the penalty term V in our

proposed unit-slot optimization algorithm, we varied its value

and observed how the average cost and average response

time change accordingly. In this experiment, the value of V

167

represents the importance of the average cost spending will

impact the system performance. As depicted in Fig. 4, by

setting the value of V to a small one, we observed that the

average response time remains small while the average total

cost remains large. This is due to the penalty of cost spending is

low in the system, so that the applications are sent to cloud for

their processing in order to get a better response time. However,

by setting V to a large value, the significant decrement of the

average total cost and increment of the average response time

can be observed. Furthermore, when the average response time

drops, the average cost grows remarkably.

Fig. 4: The performance tradeoff on processing applications

in different algorithms

Apart from studying the impact of the change of V on

average cost and average response time, we also study how

the backlog of the queue in the system is affected. In Fig.

5, the upper part depicts the number of backlog in fog node

and communication channel on a smaller V, and the lower part

depicts the number of backlog in fog node and communication

channel on a larger V with time increasing by using the unit-slot

optimization algorithm. As shown in the Figure, the backlog in

Fog tier is increasing from 0 to the preset limit of the backlog

(set as 10 in our experiment) very quickly. After that, the

applications will be sent to cloud for processing until space

becomes available in the fog node. In addition, the larger V is

given, the shorter time of reaching the limitation of the queue

backlog in fog node is observed.

D. The Impact of Different Length of Time Slot on the Perfor-
mance of the Proposed Algorithm

Fig. 6 depicts the changes of both average response time

and average total cost of the unit-slot optimization algorithm

according to the increase of the length of time slot. In this

experiment, we use how many applications are expected to be

processed to set the length of time slot. As shown in the Figure,

the average response time of our proposed algorithm increases

almost linearly since more applications need to be processed

but the processing capacities of the system remain the same.

Meanwhile, the average cost grows more smoothly since once

the backend service providers are determined, the cost rate is

also fixed.

Fig. 5: The backlog number of processing applications by

unit-slot optimization algorithm

Fig. 6: The performance of processing applications by using

unit-slot optimization algorithm

V. RELATED WORK

A. IoT with Fog Computing

The integration of Cloud Computing and IoT has drawn

quite some attention from different aspects, such as cloud

support for the IoT [12], devices virtualization and service

provisioning [13], and computation offloading in mobile clouds

[14]. Along with the introduction of Fog Computing, three-tier

CoT systems start becoming a hot spot recently. There was a

theoretical model of three-tier CoT systems proposed in [15].

With the aim of minimizing the system resource usage while

meeting the defined QoS requirements, the authors studied

the joint optimization problem of service provisioning, data

offloading and task scheduling. In [16], the authors focused

on studying the interactions between fog layer and cloud layer

in such systems. They mathematically characterized a Fog

Computing network in terms of power consumption, service

latency, CO2 emission, and cost. The authors in [17] modeled

the Fog Computing system as a Markov decision process, and

provided a method to minimize operational costs while provid-

ing required QoS. In [18], the authors aimed to minimize the

task completion time while providing a better user experiences

by utilizing the knowledge of task scheduling and resource

management in Fog Computing system. The above works did

not consider the propagation delay incurred by the transmission

168

in communication channels and make processing decision in a

distributed way. To the best of our knowledge, this work is

the first one to address the Delay-sensitive applications in the

three-tier CoT systems in an online distributed control manner.

B. Lyapunov Optimization Approach in Fog and Cloud Com-
puting

In dynamic systems, Lyapunov optimization is a promis-

ing approach to solve resource allocation, traffic routing, and

scheduling problems. It has been applied to the works of

traffic routing and scheduling in wireless ad hoc networks [19],

[20], but they did not consider processing applications in the

processing network environment.

In processing networks, [21] proposed a method on how

to offload one application from a mobile device to a cloud

datacentre for its processing. [10], [22], [23] studied processing

networks with limited numbers of network nodes, while we

allow arbitrarily large numbers of things, nodes and datacentres

in the system. In [24], the authors focused on studying task pro-

cessing and offloading in a wired network, but they overlooked

to address the potential conflict of performance requirements

between them.

VI. CONCLUSION

Three-tier Cloud of Things is a promising model that if well

exploited can provide efficient data processing for IoT applica-

tions. An increasing number of smart devices are emerging and

joining the Internet, thus giving rise to a huge amount of data.

Those data has to be processed in either Fog or Cloud tier as

fast as possible with a reasonable cost. In this paper, we studied

the problem of providing cost-effective data processing service,

and proposed an efficient and effective online algorithm for

balancing the tradeoff between data processing time and cost.

Simulation results demonstrated that the proposed algorithm

successfully achieves its goals. In the future, we plan to

investigate the uncertainties of the communication among the

components within the three-tier Cloud of Things systems.

Particularly, the communication between the things and the fog

can be constructed in a much more reliable, safe, real-time,

secure, way than between the fog and the cloud.

VII. ACKNOWLEDGE

Dr. Wei Li’s work is supported by Faculty of Engineering

and IT Early Career Researcher scheme, The University of

Sydney, and the Faculty of Engineering & Information Tech-

nologies, The University of Sydney, under the Faculty Research

Cluster Program. Professor Zomaya’s work is supported by an

Australian Research Council Discovery Grant (DP130104591).

Flavia C. Delicato and Paulo F. Pires as CNPq fellows.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787 – 2805, 2010.

[2] M. Aazam, I. Khan, A. A. Alsaffar, and E. N. Huh, “Cloud of things:
Integrating internet of things and cloud computing and the issues in-
volved,” in Proceedings of 2014 11th International Bhurban Conference
on Applied Sciences Technology (IBCAST) Islamabad, Pakistan, 14th -
18th January, 2014, Jan 2014, pp. 414–419.

[3] S. Distefano, G. Merlino, and A. Puliafito, “Enabling the cloud of things,”
in Innovative Mobile and Internet Services in Ubiquitous Computing
(IMIS), 2012 Sixth International Conference on, July 2012, pp. 858–863.

[4] M. Aazam and E. N. Huh, “Fog computing and smart gateway based
communication for cloud of things,” in Future Internet of Things and
Cloud (FiCloud), 2014 International Conference on, Aug 2014, pp. 464–
470.

[5] B. Zhang, N. Mor, J. Kolb, D. S. Chan, K. Lutz, E. Allman, J. Wawrzynek,
E. Lee, and J. Kubiatowicz, “The cloud is not enough: Saving iot from
the cloud,” in 7th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 15). Santa Clara, CA: USENIX Association, 2015.

[6] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric
computing: Vision and challenges,” SIGCOMM Comput. Commun. Rev.,
vol. 45, no. 5, pp. 37–42, Sep. 2015.

[7] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the First Edition of the
MCC Workshop on Mobile Cloud Computing, ser. MCC ’12. New York,
NY, USA: ACM, 2012, pp. 13–16.

[8] M. J. Neely, “Stochastic network optimization with application to com-
munication and queueing systems,” Synthesis Lectures on Communication
Networks, vol. 3, no. 1, pp. 1–211, 2010.

[9] P. Bocharov, Queueing Theory, ser. Modern probability and statistics.
VSP, 2004.

[10] Y. Niu, B. Luo, F. Liu, J. Liu, and B. Li, “When hybrid cloud meets
flash crowd: Towards cost-effective service provisioning,” in 2015 IEEE
Conference on Computer Communications (INFOCOM), April 2015, pp.
1044–1052.

[11] N. Matloff, “Introduction to discrete-event simulation and the simpy
language,” Davis, CA. Dept of Computer Science. University of California
at Davis. Retrieved on August, vol. 2, p. 2009, 2008.

[12] C. M. D. Farias, W. Li, F. C. Delicato, L. Pirmez, A. Y. Zomaya,
P. F. Pires, and J. N. D. Souza, “A systematic review of shared sensor
networks,” ACM Comput. Surv., vol. 48, no. 4, pp. 51:1–51:50, Feb. 2016.

[13] A. Botta, W. de Donato, V. Persico, and A. Pescape, “Integration of cloud
computing and internet of things: A survey,” Future Generation Computer
Systems, vol. 56, pp. 684 – 700, 2016.

[14] S. Deng, L. Huang, J. Taheri, and A. Y. Zomaya, “Computation offloading
for service workflow in mobile cloud computing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 26, no. 12, pp. 3317–3329, Dec
2015.

[15] W. Li, I. Santos, F. C. Delicato, P. F. Pires, L. Pirmez, W. Wei, H. Song,
A. Zomaya, and S. Khan, “System modelling and performance evaluation
of a three-tier cloud of things,” Future Generation Computer Systems,
pp. –, 2016.

[16] S. Sarkar, S. Chatterjee, and S. Misra, “Assessment of the suitability of
fog computing in the context of internet of things,” IEEE Transactions
on Cloud Computing, vol. PP, no. 99, pp. 1–1, 2015.

[17] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and K. K. Leung,
“Dynamic service migration and workload scheduling in edge-clouds,”
Performance Evaluation, vol. 91, pp. 205 – 228, 2015, special Issue:
Performance 2015.

[18] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, “Joint optimization of task
scheduling and image placement in fog computing supported software-
defined embedded system,” IEEE Transactions on Computers, vol. PP,
no. 99, pp. 1–1, 2016.

[19] M. J. Neely, E. Modiano, and C. P. Li, “Fairness and optimal stochastic
control for heterogeneous networks,” IEEE/ACM Transactions on Net-
working, vol. 16, no. 2, pp. 396–409, April 2008.

[20] M. J. Neely, “Energy optimal control for time-varying wireless networks,”
IEEE Transactions on Information Theory, vol. 52, no. 7, pp. 2915–2934,
July 2006.

[21] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm
for mobile computing,” IEEE Transactions on Wireless Communications,
vol. 11, no. 6, pp. 1991–1995, June 2012.

[22] S. Li, Y. Zhou, L. Jiao, X. Yan, X. Wang, and M. R. T. Lyu, “Towards
operational cost minimization in hybrid clouds for dynamic resource pro-
visioning with delay-aware optimization,” IEEE Transactions on Services
Computing, vol. 8, no. 3, pp. 398–409, May 2015.

[23] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading for
mobile-edge computing with energy harvesting devices,” arXiv preprint
arXiv:1605.05488, 2016.

[24] A. Destounis, G. S. Paschos, and I. Koutsopoulos, “Streaming big data
meets backpressure in distributed network computation,” CoRR, vol.
abs/1601.03876, 2016.

169

Smart Scene Management for IoT-based
Constrained Devices Using Checkpointing

François Aı̈ssaoui1, Gene Cooperman1,2, Thierry Monteil1, Saı̈d Tazi1
1LAAS-CNRS, Université de Toulouse, CNRS, INSA, UT1 Capitole, Toulouse, France

2College of Computer and Information Science Northeastern University, Boston, MA / USA

Emails: aissaoui@laas.fr, gene@ccs.neu.edu, {monteil, tazi}@laas.fr

Abstract—Typical devices of the Internet of Things are usually
under-powered, and have limited RAM. This is due to energy
and cost concerns. Yet, IoT applications require increasingly
complex programs with increasingly large amounts of data. In
principle, an application could manage the increasing data within
the limited RAM by saving and loading data from the file system
as needed. But managing the use of RAM in this way is both time-
consuming and error-prone for the code developer. We propose
instead a novel architecture in which different semantic scenes are
implemented as independent operating system processes. As the
need arises to switch from one scene to another, the currently run-
ning process, which represents the current scene, is checkpointed
and a process representing the new scene is restarted from a
checkpoint image. This solution employs checkpointing to provide
a simpler framework for the end programmer, while at the same
time resulting in higher performance. For example, experiments
show that restarting an old process from a checkpoint image is
about 25 times faster than starting a new process. When using
an mmap-based optimization (deferring the paging in of virtual
memory pages until runtime), restarting an old process is about
500 times faster. Overall, checkpoint and restart each execute in
less than 0.2 seconds on a Raspberry Pi B.

Index Terms—Semantics, Scene Management, Advances Driver
Assistance System, Internet of Things, Checkpointing, Con-
strained Devices

I. INTRODUCTION

The Internet of Things (IoT) is fast becoming a critical

technology in the evolution toward a “connected world”.

However, IoT faces some challenges in terms of optimization

on performance-constrained devices and gateways. The CPUs

are of low performance, with minimal associated RAM. This

is intrinsic to many IoT scenarios, such as Advanced Driver

Assistance Systems (ADAS: “smart cars”), drones, etc., which

are constrained by limited battery size and by cost concerns.

In many applications, IoT software is consuming increasing

amounts of memory, due in part to increasingly complex

behavior with increasingly complex semantics as software

requirements continue to evolve. Virtual memory is usually

not available, since IoT devices involve real-time computation,

and paging in virtual memory makes running times difficult

to predict. So, the central question is:

how to write a large program with large data that
does not naturally fit in the small RAM available.

We propose a novel software architecture that is well-

adapted to RAM-constrained devices for IoT. Specifically, we

will target a simplistic model of Advanced Driver Assistance

System (ADAS) in order to illustrate the architectural benefits

of easier scene-management for the end programmer and

improved performance through efficient checkpoint-restart.

We implement this model on the ARM-based Raspberry Pi

Model B computer, as an example of a low-performance CPU

configuration with limited RAM.

The proposed software architecture consists of smart scene

management, using semantic modelling and rule-based reason-

ing. Each scene is represented by an operating system process,

and a checkpointing mechanism is applied to save the state of

the process in a checkpoint image file.

Such a scene represents a partial view of the context.

It contains information about the spatial context, the road

conditions, the participants, etc. Since the memory for a single

scene can be huge, one typically does not have sufficient RAM

to load two scenes at the same time within small or embedded

computers such as the Raspberry Pi. The novelty here consists

of using checkpoint-restart to manage RAM by saving the

old scene and restore a new scene. This performs better than

writing a monolithic program that includes all scenes, which

would have to rely on the random memory access of virtual

memory to page in the memory of scenes on demand.

Semantic web technologies such as the Web Ontology

Language (OWL) formalism allow one to represent knowledge

using a description logic. It allows for the creation of vocabu-

laries that can be shared, along with a set of rules to apply to

the model using semantic reasoners. We propose a new model

for Scene management, with a specific set of properties and a

possible link to application model such as ADAS.

The remainder of the paper is organized as follows. Sec-

tion II presents a brief overview of semantic web principles

and technologies in the context of the IoT and some back-

ground on checkpointing. In Section III, the presentation of a

Ideal Global Architecture of our Scene system is provided,

presenting the models and rules used. Section IV presents

the specific contributions of our work. Section V analyzes the

experiment results. Then we conclude this paper in Section VI.

II. BACKGROUND

This section provides an overview of the literature for

the technologies employed in this paper. A brief overview

of IoT is provided first. This is followed by a discussion978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

170

of the requirements for semantics for IoT. Finally, we dis-

cuss checkpointing and introduce Distributed Multi Threaded

CheckPointing (DMTCP).

A. IoT Overview

The IoT is an important area for innovation due to the

large numbers of possible applications [1]. This presents a

vision of a world-wide network of interconnecting physical

(sensors, activators, complex objects like cars). The vision

also includes virtual objects able to interact and affect the real

world create a significant number of challenges [2]. In most

cases, these objects have strong constraints in term of energy,

communication and/or processing [3].

B. Semantic Web Technologies for IoT

Semantic computing [4] is an emerging and rapidly evolving

interdisciplinary field that originated from artificial intelli-

gence. It consists of applying models and standardized tech-

nology describing the semantics of the linked objects to enable

interactions and interoperability between different components

(software or hardware). It is a recommended best practice in

the domain of IoT [5]. However, one of the problems facing

users of semantic technologies is that the semantic information

increases the complexity and processing time, and is therefore

unsuitable for dynamic and responsive environments such as

IoT. Complex models require greater CPU processing and

therefore are not suitable for constrained environments such as

IoT. The earlier proposal of the W3C [6] takes this difficulty

into account by providing a lightweight ontology specially

adapted for IoT.

We use the OWL formalism to represent the data and the

associated knowledge. OWL is a description language based

on linked data and share vocabularies. Semantic Web Rule

Language (SWRL) is a rule-based language that describes

what could happen when the knowledge base changes, or when

an event happens. It allows one to express abstract rules to be

applied in the model.

C. Checkpointing using DMTCP

A checkpointing mechanism consists in creating images

(snapshots) of a process and being able to recreate the process

from this image.

Checkpointing has a long history in HPC [7]–[10]. In

2012, a cluster of ARM CPUs was tested with respect to

checkpointing as a basis for power-efficient HPC [11]. This

used the more powerful ARM Cortex-A9 CPU, whereas the

current Raspberry Pi Model B uses the less powerful ARM

Cortex-A7. In those earlier experiments, checkpoint times

from 3.4 to 138 seconds were observed on various NAS

parallel benchmarks for MPI — a standard test suite for

parallel applications. In comparison, the experiments of this

work apply checkpointing only to a single process.

In Section V, DMTCP [12] is used to create checkpoint im-

age files from running processes. DMTCP-style checkpointing

is transparent, in that the original application binary is not

modified, and the target process is not aware of DMTCP.

In this work, the latter approach is used to allow the

application to change scenes on demand. The application

program can be further modified through the use of DMTCP

plugins [13]. Plugins are used to virtualize resources, so

that the application can be restarted in a new environment,

independently of changing physical names such as pathnames,

process ids (PIDs), etc.

DMTCP also supports options for two well-known opti-

mizations that enhance the speed of checkpoint and restart.

The first is “Forked Checkpointing”. DMTCP forks a child

process, which executes the checkpoint. This takes advantage

of the well-known operating system support for copy-on-write

between the parent and child processes. The parent process

continues to execute without blocking, while the child process

writes memory and other state into the checkpoint image file.

The second optimization option is “Fast restart”, based

on the Linux mmap system call. The mmap call maps the

checkpoint image file to RAM, but the data is not actually

copied to RAM until the virtual memory subsystem pages it

in. Thus, execution begins early after restart, paging in only

the actively used pages, and without waiting for all of the

checkpoint image file to be loaded.

III. IDEAL GLOBAL ARCHITECTURE: SCENES AND

SEMANTICS

This section presents the semantic concepts associated with

the Scene concept, along with the rules used to manage the

Scenes.

A. Semantic Models Used

A Scene is defined as a partial view of the context. Several

scenes are created according to the needs of the application.

Only one Scene is loaded at any given time. The Scene

includes the destination of the vehicle, along with a possible

path. It also contains a partial representation of the map

ontology used in [14]. Since the entire map is split among

different scenes, this lowers the system complexity through

rules to navigate from one scene to another.

Figure 1 shows a semantic model with some example

relations in the semantic class Scene. The last relation of the

Scene is its Specificity. This relation represents, for example, a

location specificity, or a time-of-day specificity (e.g., day and

night). This associates with the Scene specific characteristics

that enable the reasoner to choose the best target scene to

switch to.

correspondingSpecificity

Interest

Scene CkptImage Process

restarts

checkpointsTo

hasCkptImage

hasValueOfInterest

Specificity

hasSpecificity

Value of

Fig. 1. Overview of Scene representation and link between Scenes and
Checkpointing Mechanism

A second model that is linked to the Scene is used to guide

the Checkpointing. Figure 1 shows the link to the Check-

171

pointing model classes. The class ValueOfInterest is used to

characterize the values that are important for other Scenes.

They are linked to the Specificity class by a corresponding-
Specificity property for that class. This property links a value

to a specific type of scene. Thus, the Scene is linked to a

CkptImage class by the hasCkptImage object property. This

allows the reasoner to identify the available checkpoint images

for a Scene. The checkpoint image is then linked to a process.

Two types of relations are possible: 1) the process has been

checkpointed into a CkptImage (shown via checkpointsTo); or

2) a CkptImage is used to restart a process (a restarts relation

is created between the CkptImage and the restarted process).

B. Scene Hierarchy

Since each scene represents a partial view of the global

state, a classification of the scenes is needed. A hierarchy is

used in which each scene (except for the root scene) has a

parent scene.

A “child” scene inherits parameters and rules from its parent

scene and adds additional, more specialized information. That

information might be, for example, information about the

type of location (e.g., what city, or what neighborhood in a

vehicular context) and is considered to be static in the sense

that it does not change over time. In contrast, each specialized

scene also has dynamic information. An example is the specific

road conditions, which might depend on road work in progress.

A hierarchical classification of this type allows one to

create lightweight scenes, each of which has more specialized

information than the parent in the hierarchy.

C. Rules for Scene Management

Two models are considered in Section III-A. Specific rules

for each model are used and will be described.

The first model includes a set of rules that affects the

vehicle and its actions. This model is used to analyze the car

sensor data (e.g., its position). It will allow the system to react

according to the current context.

The second rule-based model from Section III-A is used

to guide the checkpointing mechanism for the scene manage-

ment. This model is in charge of gathering enough information

from the system to infer that a change of scene is required. In

this case, the rules cause the process in charge of the scene

management to checkpoint the current scene and then to load

the second one.

D. Shared Information

The checkpointing mechanism allows the state of a running

process to be serialized into a file. But some information and

knowledge acquired by the first scene must then be passed to

the second scene.

As described in Section III-B, the scenes are derived from a

hierarchical classification. This classification allows the system

to provide relevant information to the next scene. For instance,

the whole system shares information from the car sensors and

geographical location. This general information is stored and

defined by the root scene of the system, which will be shared

by all sub-scenes.

With such a mechanism, the system is able to share infor-

mation between different scenes, according to the relevance

of the data for the next scene. Such a mechanism allows one

to reduce the amount of information handled by the system

and the reasoner. This mechanism is implemented using the

DMTCP plugins discussed in Section II-C.

The information to share can be retrieved from the model

using the property hasValueOfInterest of the Scene. This

relation is shown in Figure 1.

IV. EFFICIENT RAM MANAGEMENT FOR IOT AND

EMBEDDED SYSTEMS

In principle, the use of scenes within a large, global

hierarchy can be implemented as a single large process.

However, typical IoT-based embedded systems are restricted

to small RAM without any virtual memory. For this reason,

we represent each scene of the global hierarchy as a separate

operating system process. Only one process (the current scene)

runs at a time. We demonstrate that switching between scenes

can be made efficient through the use of checkpointing. The

original scene (with all of its internal state) is checkpointed,

and a new scene is restarted from a previous checkpoint image.

RAM

Manager
Ckpt Scene 1
to ckpt image

Restarts Scene 2
from ckpt image

Scene 2

Manager

Scene 1

RAM

Fig. 2. Proposal of new architecture for Scene Management. Each rectangle
represents a process.

Figure 2 illustrates the proposed architecture. The data

to be handled is split into multiples scenes, which contain

information and rules as described in Section III-A. Each scene

is represented as an individual process. A Scene Manager is

used to checkpoint and restart the process that represents a

scene.

This enhancement provides a simpler way for the end

programmer to design the architecture and the data handling

of its program and is evaluated in the next section. We

demonstrate the efficiency of such a system compared to a

standard initialization of a process.

V. EXPERIMENTAL EVALUATION

In this section we evaluate the system presented in Sec-

tion III and Section V. Here, we discuss the additional time

needed when a checkpoint is invoked, and the time needed to

restart a scene from a checkpoint image file. Then we compare

this restart time to a traditional approach, which consists of

dynamically reading the data files. Finally, we discuss the

runtime overhead introduced when the process is executed

under the control of DMTCP, as opposed to executing the

process natively.

172

A. Experimental Environment

These experiments use a Raspberry Pi 2 Model B with

one GB of RAM. In these experiments, we emphasize the

limited RAM of a constrained embedded system by restricting

ourselves to a more limited 256 MB of RAM. This was also

the RAM provided with the earlier Pi 1 Model A+. The files

containing the scenes and the images files for the experiment

are stored in the file system of the SD card of the Raspberry Pi.

For the checkpointing software, DMTCP version 3.0.0 was

used, available at its github repository.

B. Checkpoint and Restart

As a first case for evaluation, we analyze the checkpoint

and restart times on the Raspberry Pi. The size of the input

files is varied in order to find the relation between the size of

the files and the checkpoint-restart time.

Fig. 3. Checkpoint and restart time

Two sets of experiments are discussed. First the standard

checkpointing and restart mechanism is used. In Figure 3, the

two lines at the top of the graph show the time needed for

a standard checkpoint and restart the Java program with the

Jena library and the data files loaded. The “standard” times

refer to the case when the DMTCP optimizations of forked

checkpoint and mmap-based fast restart (see Section II-C) are

not used. The times vary as the size of the scene file is varied.

Note that a logarithmic y-axis is used for the checkpoint and

restart times. The largest file used is about 20 MB, which

serves as a placeholder for the actual scene-related data that

would be used in a realistic ADAS application. It is assumed

that the operating system must execute in RAM along with

the application in a real-time system. Recall that the goal of

these experiments is to simulate a low-cost embedded device,

with only 256 MB of RAM.

The time to checkpoint and restart grows slightly when the

size of the scene-related data increases. This is expected, since

DMTCP must map the process image to the checkpoint file

(or reverse for restart operation) and this operation is slower

if there is more data to save to a file (or to load from a file).

The unoptimized checkpointing times of Figure 3 vary from

1.5 s to about 2 s. This is reasonable for energy-constrained

devices such as the Raspberry Pi, but it can be improved to

be more responsive. Similarly, the unoptimized restart times

vary from about 600 ms to 1.5 s.

In order to further improve responsiveness, a second ex-

periment (also presented in Figure 3) shows the impact of

using the two DMTCP optimizations discussed in Section II-C:

forked checkpointing and mmap-based fast restart. These

optimizations improve the checkpoint/restart times (and hence

the responsiveness) by a further factor of ten.

The first line from the bottom of Figure 3 shows the time

for the Forked Checkpointing. This Forked Checkpointing

operation is about 5 to 10 times faster than the Standard

Checkpointing and allows the running process to be available

more time — since the Checkpointing operation freezes all

threads to avoid any error in the memory of the process.

The checkpoint operation is done by the child process and

the time to make this operation is equivalent to the Standard

Checkpointing. The times are reduced to about 150 ms to

200 ms for the running process. Since the times are close to

the minimum quantum of times given to the thread, we expect

some variations in the checkpoint time, as exemplified by the

slightly higher checkpoint time for a file size of 15 MB.

The Fast Restart time is the second curve from the bottom

in Figure 3. The time for fast restart operation is nearly

constant as the file size varies. This is the mmap optimization

defers loading of most of the virtual memory pages. From our

experiment, we see that the Fast Restart operation is about 3

to 10 times faster than the Standard Restart.

TABLE I
SIZE OF CKPT IMAGE DEPENDING ON INPUT FILE

Input file (MB) 2.0 5.1 10.2 15.4 20.5
Ckpt image (MB) 86.8 98.4 143.5 157.1 179.7

Table I shows the checkpoint image size as a function of

the input file size. The checkpoint image size increases with

the size of the input file, since the file data has been loaded

into RAM during initialization. The image is large compared

to the 2 MB input file, since the process is Java-based. The

JVM must be checkpointed along with the loaded classes. The

checkpoint image file size is also large because of the large

Java classes running in the JVM. The size of the checkpoint

image file increases more in absolute terms than the increase

in size of the input file. This is because the data loaded are

submitted to a semantic reasoner. This reasoner infers new

knowledge that has been stored into the RAM and then must

be saved as part of the checkpoint image.

C. Startup Times

In the second experiment, we discuss the difference in

execution times between a restart and launching a fresh, new

process that need to load data from a file.

Figure 4 shows the execution times in different situations.

The diamond-shaped and square plotted points represent the

restart times for a checkpoint image. The square plot uses the

173

Fig. 4. Initialization of a new process versus restart of a previously
checkpointed process. This compares the time for restarting a new process
using the techniques of this work, versus the traditional alternative of starting
(initializing) a new process for each new scene. Restarting an old process is
about 25 times faster (and 500 times faster when using the mmap-based fast
restart optimization). This is because restart avoids any data initialization that
is executed by the Scene framework itself before it gives control to the end
programmer.

mmap-based Fast-Restart option. The round plot represents

the initialization time of the process when reading the data

from the file. The initialization and restart times grow with the

size of the input file that is loaded. Of the total initialization

time, about 2 to 4 seconds is required solely to start the JVM

before reaching the “main” method of the ADAS framework.

The remaining time is used to load the Java-based semantic

libraries and the input data.

Collecting together JVM startup, semantic library startup

and loading the initial data, Figure 4 shows that “Restarting

an Old Process” is about 25 times faster than the standard

execution startup of a new process in the ADAS framework.

Further, the Fast Restart method is about 500 times faster than

the standard initialization.

VI. CONCLUSION AND FUTURE WORK

A new software architecture was presented that allows

one to manage the RAM usage efficiently for Internet of

Things (IoT) devices, and more generally for performance-

constrained devices. A mechanism is used to checkpoint a

process in order to make RAM available for a new process,

which will be restarted from a checkpoint image file. A large,

monolithic process would not be a good alternative, since the

delays due to virtual memory paging are not consistent with

real-time programming. We demonstrated that the proposed

architecture is about 25 times faster than the standard startup

of a new process (see Figure 4). When used with mmap-based

fast restart (thus deferring paging in of virtual memory until

runtime), the proposed architecture can even be 500 times

faster. This work has been applied to an Advanced Driver

Assistance Systems (ADAS) domain as an example, but the

scene concept is generic and can be equally well applied to

other problems in the Internet of Things.

This work has simulated the operating system characteristics

and expected performance of an example scene-based archi-

tecture for ADAS as a proof-of-principle. The ADAS example

itself is not intended as a realistic system for production. In

future work, we will apply this to a full-fledged domain in the

Internet of Things integrating management of the connectivity

of multiple devices and real time constraints.

ACKNOWLEDGMENTS

This work has been supported by a “Chaire d’Attractivité”

of the IDEX Program of the Université Fédérale de Toulouse

Midi-Pyrénées under Grant 2014-345, and by the National

Science Foundation under Grant ACI-1440788.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[2] A. Whitmore, A. Agarwal, and L. Da Xu, “The Internet of Things —
a survey of topics and trends,” Information Systems Frontiers, vol. 17,
no. 2, pp. 261–274, 2015.

[3] K.-C. Chen and S.-Y. Lien, “Machine-to-machine communications:
Technologies and challenges,” Ad Hoc Networks, vol. 18, pp. 3–23,
2014.

[4] P. C. Y. Sheu, H. Yu, C. V. Ramamoorthy, A. K. Joshi, and L. A. Zadeh,
Semantic Computing. John Wiley and Sons, 2010.

[5] M. Serrano, P. Barnaghi, F. Carrez, P. Cousin, O. Vermesan, and
P. Friess, “Internet of Things IoT semantic interoperability: Re-
search challenges, best practices, recommendations and next steps,”
IERC: European Research Cluster on the Internet of Things,
Tech. Rep., 2015, http://www.internet-of-things-research.eu/pdf/IERC
Position Paper IoT Semantic Interoperability Final.pdf.

[6] M. Bermudez-Edu et al., “IoT-lite ontology, a submission to
the W3C,” Nov. 2015, https://www.w3.org/Submission/2015/
SUBM-iot-lite-20151126/.

[7] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny, “Checkpoint
and migration of UNIX processes in the Condor distributed processing
system,” Technical Report, Tech. Rep., 1997.

[8] P. Hargrove and J. Duell, “Berkeley Lab Checkpoint/Restart (BLCR)
for Linux clusters,” Journal of Physics Conference Series, vol. 46, pp.
494–499, Sep. 2006.

[9] J. Cao, G. Kerr, K. Arya, and G. Cooperman, “Transparent checkpoint-
restart over InfiniBand,” in Proc. of the 23rd Int. Symp. on High-
performance Parallel and Distributed Computing. ACM Press, 2014,
pp. 13–24.

[10] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir,
“Toward exascale resilience: 2014 update,” Supercomputing Frontiers
and Innovations, vol. 1, no. 1, pp. 5–28, 2014.

[11] K. L. Keville, R. Garg, D. J. Yates, K. Arya, and G. Cooperman,
“Towards fault-tolerant energy-efficient high performance computing
in the cloud,” in 2012 IEEE International Conference on Cluster
Computing. IEEE, 2012, pp. 622–626.

[12] J. Ansel, K. Aryay, and G. Cooperman, “DMTCP: Transparent check-
pointing for cluster computations and the desktop,” in 2009 IEEE
International Symposium on Parallel & Distributed Processing. IEEE,
may 2009, pp. 1–12.

[13] K. Arya, R. Garg, A. Y. Polyakov, and G. Cooperman, “Design and
implementation for checkpointing of distributed resources using process-
level virtualization,” in Proc. of 2016 IEEE Computer Society Interna-
tional Conference on Cluster Computing. IEEE Press, 2016, to appear.

[14] L. Zhao, R. Ichise, S. Mita, and Y. Sasaki, “Ontologies for Advanced
Driver Assistance Systems,” in The 35th Semantic Web & Ontology
Workshop (SWO), Mar. 2015, pp. 1–6, http://www.ei.sanken.osaka-u.ac.
jp/sigswo/papers/SIG-SWO-035/SIG-SWO-035-03.pdf or http://sigswo.
org/papers/SIG-SWO-035/SIG-SWO-035-03.pdf.

174

Byzantine Reliable Broadcast in Sparse Networks

Sisi Duan
Oak Ridge National Laboratory

Email: duans@ornl.gov

Lucas Nicely
University of Tennessee, Knoxville

Email: lnicely@vols.utk.edu

Haibin Zhang
University of Connecticut

Email: haibin.zhang@uconn.edu

Abstract—Modern large-scale networks require the ability to
withstand arbitrary failures (i.e., Byzantine failures). Byzantine
reliable broadcast algorithms can be used to reliably disseminate
information in the presence of Byzantine failures.

We design a novel Byzantine reliable broadcast protocol for
loosely connected and synchronous networks. While previous
such protocols all assume correct senders, our protocol is the
first to handle Byzantine senders. To achieve this goal, we have
developed new techniques for fault detection and fault tolerance.
Our protocol is efficient, and under normal circumstances, no
expensive public-key cryptographic operations are used.

We implement and evaluate our protocol, demonstrating that
our protocol has high throughput and is superior to the existing
protocols in uncivil executions.

Index Terms—Byzantine broadcast, reliable broadcast, fault
detection, fault tolerance, sparse networks.

I. INTRODUCTION

Byzantine failures occur when a participant in a distributed

system deviates arbitrarily from the protocol specification, e.g.,
due to a software bug or a cyber attack. Protocols detecting or

tolerating such failures are particularly appealing for modern

distributed systems and network applications that increasingly

grow larger (e.g., clouds, cryptocurrency systems).

We study how to efficiently achieve reliable broadcast in

sparse networks that are subject to Byzantine failures. A sparse

network is a network with a low number of links. Examples of

sparse networks include sensor, robotic, and most real-world

networks [19], [27].

Previous Byzantine broadcast protocols for sparse net-

works [23]–[25] assume that senders (i.e., source nodes) who

broadcast messages are correct, while a fraction of non-

source nodes can be Byzantine. These protocols are essentially

Byzantine variants of best-effort broadcast protocols, which

guarantee that all correct processes deliver the same set of

messages only if the senders are correct. If the sender is faulty

or behaves maliciously, some nodes may deliver the message

while others may not. Our goal is to build stronger broadcast

protocols in the customary sense of reliable broadcast, one

that handles Byzantine senders.

Before proceeding to our protocol properties, we will review

and clarify models of distributed systems in terms of channel

and graph connectivity.

Channel. When considering Byzantine failures, we need

methods to provide correct sender identification. One may

generally assume authenticated channels: if a correct process

delivers a message with a correct sender, the message was

previously sent by the sender. This model is also known as

the full Byzantine model. Basing protocols on this model

is desirable because it maximizes the fault models. One

may choose either cryptographic techniques (such as message

authentication codes (MACs) and digital signatures), or non-

cryptographic techniques [33].
A number of works (e.g., [23]–[25]) regard protocols de-

signed in the full Byzantine model as “cryptography-free

protocols.” This view is slightly problematic, because authenti-

cated channels using digital signatures, message authentication

codes, or a combination of both (e.g., SSL, TLS) dominate

Internet communication. (But the view is correct in the sense

that it does not rely on any specific cryptographic primitive

such as digital signatures.)
It is more efficient to implement the protocols using au-

thenticated channels with MACs because MACs are much less

expensive than digital signatures. Therefore, while maximizing

the number of fault models to which the protocols can be

applied, it is desirable to design Byzantine resilient protocols

assuming authenticated channels due to efficiency concerns.

It is less convincing to argue that protocols in full Byzan-

tine model “do not require a trusted infrastructure,” because

authentication requires an extensive setup—there must be an

agreed upon setup for the authentication model.
Lastly, we must clarify four points. First, most Byzantine

resilient protocols that explicitly use MACs, such as PBFT [9]

“[c]an be modified easily to rely only on point-to-point au-

thenticated channels,” as commented in [9, pp. 402]. Second,

it is unnecessarily true that all Byzantine resilient protocols

using MACs also work in the full Byzantine model, because

it is difficult, if not impossible, to transform a handful of

protocols which use MACs in a more complex manner [2],

[16], [35] into ones assuming only authenticated channels.

Third, many protocols that claim to be “cryptography-free” are

the most efficient cryptographic solutions in practice because

they can be implemented simply using MACs. For instance,

the broadcast protocol that tolerates Byzantine non-source

nodes in sparse networks [25] leads to the most efficient MAC

based protocol. Four, if MACs are inadequate for designing

a cryptographic solution, another design choice (see, e.g.,
[2], [21]) is to optimize the gracious execution (i.e., the

case without failures) and to use signatures only for uncivil

executions (i.e., the case with failures).

Graph connectivity. We briefly review the graph model for

the Byzantine broadcast case. Most of these protocols are

designed for completely connected graphs [6], [9], [22], which978-1-5090-3216-7/16/31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

175

attempt to tolerate a maximum number of Byzantine failures.

Dolev [13] was the first to show that in order to tolerate k
Byzantine failures, it is necessary and sufficient that the

network is (2k + 1)-connected, given that there is at least

3k + 1 nodes. Later, Nesterenko and Tixeuil [26] generalized

the result in a manner that the topology is unknown and the

environment is asynchronous.
Other groups have considered the density of Byzantine

failures. These cases can be divided into two categories—

those for dense networks [5], [20], [28] and those for sparse

networks [23]–[25]. The protocols for dense networks are not

adaptable for use in sparse networks, because if they were, the

number failures that they can tolerate would be very small. In

sparse networks, the failures are best measured as the distance

between any two Byzantine nodes. A significant drawback of

the protocols in sparse networks is that they all consider only

non-faulty senders, and thereby are not secure in the customary
sense of reliable broadcast. Assuming that the sender is always

correct apparently limits the scope of deployment of these

broadcast protocols in practice. Our primary goal is to build

a reliable broadcast protocol that also tolerates Byzantine

senders in an efficient manner.

Our contributions can be summarized as follows:
1) We present the first Byzantine reliable broadcast protocol

in sparse networks that also handles Byzantine senders in

synchronous environments. Our protocol is based on Maurer

and Tixeuil (MT) [25], and has the following features:

• Our protocol provides multi-tiered security. Namely,

when the networks are synchronous, it tolerates Byzan-

tine senders; in settings where the networks may be

asynchronous and senders are correct, our protocol still

provides meaningful consistency guarantees.

• Our protocol is optimal in its gracious execution where

there are no failures. Even in its uncivil execution, our

protocol remains more efficient than the existing proto-

cols with similar goals.

2) We develop novel techniques in both fault tolerance and

fault detection, which are of independent interests and may

be applicable to some other scenarios such as secure routing.

3) We implement and evaluate our protocol. Our experimental

evaluation shows that our protocol has high throughput and

high failure resilience.

II. RELATED WORK

Byzantine broadcast: Additional related work. In the con-

text of Byzantine failures, two classic broadcast notions are

consistent broadcast and reliable broadcast. The notion of

consistent broadcast was implicit in earlier papers on the

topic [6], [7], [34]. Byzantine consistent broadcast ensures

only that the delivered requests are the same for all receivers.

Byzantine reliable broadcast, also known as the “Byzantine

generals problem” [22], additionally guarantees that either

all correct parties deliver some request or none delivers any.

For instance, Bracha’s broadcast [6], one that assumes only

authenticated channels, is a well-known implementation of

Byzantine reliable broadcast for complete graphs.

For sparse graphs, previous works [23]–[25] all assume

correct senders. They fail to provide any meaningful reliability

properties if senders become faulty: these protocols are not

consistent broadcast, let alone reliable broadcast. One should

be aware, however, that the problem of broadcast in the

presence of Byzantine non-source nodes is still highly non-

trivial, as Byzantine non-source nodes can disseminate fake

messages and lie to the network.

Byzantine fault detection. Our protocol developed new

techniques of Byzantine fault detection. In contrast to crash

failures, Byzantine failures are not context-free, and therefore

it is impossible to define a general failure detector in Byzantine

environments, independently of the algorithm itself [15].

Almost all protocols for Byzantine fault detection (and fault

diagnosis) [1], [18], [29]–[32], [37] use the idea of collecting a

proof of misbehavior by executing modified Byzantine resilient

protocols. However, the approach requires a (large) number

of rounds and a huge volume of exchanged messages to

collect the necessary information to provide such a proof.

An adversary can easily render the system even less prac-

tical by intermittently following and violating the protocol

specification. Similarly, PeerReview [17] can detect and deter

failures by exploiting accountability. It also uses a “sufficient”

number of witnesses to discover faulty replicas. An exception

is BChain [16] which does not need to regularly collect

evidence. However, BChain is an atomic broadcast protocol

for a complete graph. The technique developed in our protocol

deviates significantly from that of BChain.

Self-stabilizing Byzantine broadcast. Self-stabilization [14]

is a powerful approach to obtaining correct behavior re-

gardless of the consistency of initial states. Specifically in

sparse networks, Maurer and Tixeuil [25] combine Byzantine

tolerance and self-stabilization to deal with both a fraction

of permanent Byzantine failures and an arbitrary number of

transient Byzantine failures. This generalizes the traditional

Byzantine broadcast. As our experimental evaluation shows,

if the senders are Byzantine, the time needed to recover from

transient failures may be prohibitively long. Our protocol,

instead, can be well applied to this scenario, yielding a more

robust and efficient protocol.

III. PRELIMINARIES

We represent the network using an undirected graph G =
(V,E), where V is the set of nodes and E is the set of edges.

Let D be the network diameter (i.e., the maximal distance

between any two nodes). Let Δ be the maximum degree of

G. We begin by describing several definitions.

Definition 1. (Path). A sequence of nodes X =
(p1, p2, · · · , pn) is a path if ∀i ∈ {1, 2, · · · , n − 1}, pi and

pi+1 are neighbors.

Definition 2. (Same source disjoint paths). Two paths X =
(p1, p2, · · · , pn1) and X ′ = (q1, q2, · · · , qn2) are same source

disjoint if p1 = q1 and (X\p1) ∩ (X ′\q1) = ∅; we write

DP(p1, X,X ′) = 1 to denote two paths X and X ′ with the

same source p1. Generally, for n paths X1, X2, · · · , Xn, if

176

they share the same source node p and every two paths are

same source disjoint, we write DP(p,X1, · · · , Xn) = 1.

Definition 3. (Distance). The distance between two nodes pi
and pj , denoted distance(pi, pj), is the smallest number of

edges between them.

The following definition is novel and vital to this work.

Definition 4. (Neighbor zone) Given an integer Z, the neigh-

bor zone of a node p, denoted as NZ(p), is a set of connected

nodes {p1, · · · , pn}, where p ∈ NZ(p) and ∀i, j ∈ {1, · · · , n}
and i 	= j, distance(pi, pj) ≤ 2Z.

We consider the problem of reliable broadcast in a sparse

network that can be decomposed into cycles. We borrow the

following definitions from MT [25].

Definition 5. (Cycle). A set of nodes is a cycle if there exists

a path X = (p1, p2, · · · , pn) that contains all the nodes in the

set and p1 and pn are neighbors. The diameter of a cycle is

n/2 if n is even, and (n− 1)/2 if n is odd.

Definition 6. (Connected set of cycles). A set of cycles S
is connected if, ∀{C,C ′} ⊆ S, there exists a sequence of

cycles (C1, · · · , Cn) such that C = C1, C
′ = Cn and,

∀i ∈ {1, · · · , n − 1}, Ci and Ci+1 have at least two nodes

in common.

Definition 7. (Resilient decomposition). An arbitrary set of

cycles S of the network is a resilient decomposition if, for each

pair of nodes p and q, there exists a connected set S(p, q) ⊆ S
of at most Δ cycles such that 1) Each cycle contains p and

not q; 2) Each neighbor of p (distinct from q) belongs to a

cycle of S(p, q).

Definition 8. (Z-resilient network). A network is Z-resilient

if there exists an arbitrary set of cycles S of the network such

that S is a resilient decomposition, and the diameter of the

cycles of S is at most Z.

Definition 9. ((p, q)-valid set of sequences). Let Ω be a set

of sequences, where a sequence (p1, · · · , pn) is a valid path

and n ≤ 4DΔ2Z. Let G(Ω) represent a subgraph (V,E) of

G such that: 1) V is the set of node identifiers in Ω; 2) For

any sequence (p1, · · · , pn) and i ∈ {1, · · ·n}, there exists an

edge in G such that p = pi and q = pi+1. We say that Ω
is (p, q)-valid if: 1) ∀(p1, · · · , pn) ∈ Ω, p1 = p and pn = q;

2) The graph G(Ω) can be decomposed into a connected set

of cycles (C1, · · · , Cm) such that ∀i ∈ {1, · · · ,m}, Ci and

Ci+1 has at least two nodes in common.

IV. OUR PROTOCOL

System model. We assume a Z-resilient network where

the minimum distance between any two Byzantine nodes is

strictly greater than 2Z. A key property is that in any neighbor

zone of any sender, there is at most one faulty node. If, for

instance, the sender is faulty, all the other nodes in its neighbor

zone must be correct. We use both MACs and signatures, but

signatures are only needed in case of failures. Let 〈M〉i denote

an authenticated message for M using signatures, signed by

a node pi. Let [M] denote an authenticated message for M
using MACs.

Property 1. Validity: If a correct node broadcasts

a message m, then every correct node eventually

delivers m.

Property 2. No Duplication: No message is delivered

more than once.

Property 3. No Creation: If a correct node delivers

a message m with sender ps, then m was previously

broadcast by ps.

Property 4. Agreement: If a message m is delivered by

some correct nodes, then m is eventually delivered by

every correct node.

Fig. 1: Byzantine reliable broadcast specification.

Definition of Byzantine reliable broadcast. A Byzantine

reliable broadcast algorithm ensures that the correct nodes

agree on the set of messages, even when the senders of these

messages behave arbitrarily. It is characterized by the four

properties in Fig. 1 (see also [8]).

00 on receiving m0 = [s,m, (p1, p2, · · · , pn)]
01 if n ≥ Z then discard m0 ⇐ [MT1]

02 if pn is a neighbor of pi then add m0 to pi.Rec, multicast m0

03-1 pred ← ∃X,X′ s.t. DP(ps, X,X′) = 1 for m ⇐ [MT1]

03-2 pred ← ∃(ps, pi)-valid set for m ⇐ [MT2]

04 if pred then accept m from ps, remove (s,m′, X′) from pi.Rec

Fig. 2: The MT algorithms.

The underlying MT algorithms. MT [25] presented two

simple and elegant Byzantine broadcast algorithms for sparse

networks—MT1 (a broadcast protocol) and MT2 (a self-

stabilizing broadcast protocol), as depicted in Fig. 2 in pseu-

docode. Neither of them can tolerate faulty senders.

For both algorithms, a sender ps multicasts a message m
to all its neighbors which then multicast the message to their

neighbors, and so forth. When multicasting a message, each

node appends its identity to the message and the nodes form

a travel path X .

For MT1, a node delivers a message, if it receives a

matching message from two disjoint paths and the number of

nodes in each path does not exceed Z. MT2 removes the limit

of Z nodes identifiers. A node q waits until it receives a same

message from ps with several different paths. If the fusion of

the paths form a (ps, q)-valid set of sequences, q accepts the

message from p. As a self-stabilizing broadcast protocol, MT2

does not terminate: A node q that have already accepted any

message from a node ps, can accept another message from ps,

and so forth.

Overview. Our protocol trades network environments for

stronger reliability, while preserving high throughput for both

fault-free and failure scenarios. To handle sender equivocation,

we combine fault detection and fault tolerance techniques. If

a sender fails to send any message to some nodes in time,

177

it is convenient to regard that the sender sends an “empty”

message ε that is different from any messages in the usual

message space M, i.e., we consider an extended message

space M ∪ {ε}. We divide sender equivocation into three

types such that no matter what the graph connectivity is, any

equivocation behavior falls into one of them:

Type I: The source node sends at least three different messages

to three neighbors.

Type II: The source node sends only two different messages

and each such message reaches at least two neighbors.

Type III: The source node sends only two different messages

and one of the messages reaches only one neighbor.

10 cond:{∃(pi, pj , pk) ∈ {Xi, Xj , Xk} & DP(ps, Xi, Xj , Xk) = 1 &

NZ(ps, pi, pj , pk)&M.pi
= M.pj
= M.pk} or {∃(pi, pj , pk, pl) ∈
{Xi, Xj , Xk, Xl} & DP(ps, Xi, Xj , Xk, Xl) = 1 & NZ(ps, pi, pj ,

pk, pl) &M.pi = M.pj = m & M.pk
= m & M.pl
= m}
20 on receiving [MSG, ps,m,X]

21 add [MSG, ps,m,X] to pi.Rec

22 if pi = p̃s&m is new or pi
= p̃s then
23 forward [MSG, ps,m,X] to neighbors

24 if m is new then start timer T2

25 if m is new & pi = p̃s then start timer T1

26 if X = ps & run(T1) then cancel timer T1

27 if ∃(Xi, Xj) ∈ pi.Rec &DP(ps, Xi, Xj) & M.Xi
= M.Xj then
28 send 〈ALERT, ps, pi, pi.Rec〉i
30 on receiving 〈ACCUSE, ps, pj , pj .Rec〉j
31 add 〈ACCUSE, ps, pj , pj .Rec〉j to pi.Acc(ps)

32 if ∃(pj , pk) ∈ pi.Acc(ps) s.t. NZ(ps, pi, pj) then
33 cancel timers, block ps

34 forward 〈ACCUSE, ps, pj , pj .Rec〉j and 〈ACCUSE, ps, pk, pk.Rec〉k
35 if cond then send 〈ACCUSE, ps, pi, pi.Rec〉i, cancel timers

40 on receiving 〈ALERT, ps, pi, pj .Rec〉j
41 add 〈ALERT, ps, pi, pj .Rec〉j to pi.Ale

42 if cond then
43 send 〈ACCUSE, ps, pi, pi.Rec〉i, cancel timers

44 remove 〈ALERT〉 from pi.Ale and 〈ACCUSE〉 from pi.Acc

50 on timeout T1 & pi = p̃s

51 add [MSG, ps, ε, ps] to pi.Rec, send 〈ALERT, ps, pi, pi.Rec〉i
60 on timeout T2

61 if pred then deliver m, remove [MSG, ps,m,X] from pi.Rec

Fig. 3: Our protocol.

Our protocol can be based on either MT1 or MT2, leading

to a Byzantine reliable broadcast protocol or self-stabilizing

broadcast protocol. Under normal circumstances, nodes run

MT1 or MT2 with MACs based authenticated messages [MSG].
We use two types of signed messages—〈ALERT〉 and 〈ACCUSE〉
to cope with failures. An 〈ALERT〉 message is triggered if

a node receives mismatching messages from disjoint paths.

However, a faulty node might issue an 〈ALERT〉 to frame the

sender. A correct node thus needs to rely on 〈ALERT〉 messages

in the same neighbor zone to rule out this possibility. After a

node is certain that the source node is faulty, it generates an

〈ACCUSE〉 message. A node discards all the messages related to

ps if it already generates an 〈ACCUSE〉 message or receives two

〈ACCUSE〉 messages from nodes in the same neighbor zone.

Our protocol. The protocol is depicted in Fig. 3. Security

of our protocol is multi-tiered: when the networks are syn-

chronous, it satisfies the definitions in Fig. 1; when the net-

works are asynchronous but senders are correct, our protocol

meets all the definitions except validity, in which case correct

nodes still always agree on the same set of messages.

Let X be the travel path of the message, M.pi denote the

message that pi receives from a source node ps, M.X be

the message pi receives from a path X , M.Xi = M.Xj

be the case where the messages from path Xi and Xj are

matching, run(Ti) represent if the timer Ti has been started,

and p̃s be a neighbor of ps. Each node stores three sets

of messages, including pi.Rec for the [MSG], pi.Ale for the

〈ALERT〉 messages, and pi.Acc for the 〈ACCUSE〉 messages.

The algorithm proceeds as follows. A sender ps multicasts

a message [MSG, ps,m,X] to its neighbors. When a node pi
receives the message, it appends its id pi to X and forwards

the message to its neighbors, as shown in lines 22-23. Note

that if a neighbor pi receives a message from a source node

ps, it forwards the message only if the message is new. After

receiving a [MSG], pi may start two fixed timers T1 and T2.

T1 is used for the neighbors of ps to monitor if they have

received the [MSG] from ps. The timer will be canceled if the

neighbor of ps receives the [MSG] from ps. Instead, T2 is a

timer used for any nodes to see if a desired condition pred
can be met before the timer expires (see lines 60-61). Recall

that we used the same notation pred when we describe MT1

and MT2 in Fig. 2. If our protocol is instantiated using, say,

MT1, then pred is defined as in Fig. 2, i.e., pred returns 1 if

a node receives matching messages from two disjoint paths.

Line 10 specifies a condition, which is used by nodes to

verify if the source node is faulty based on their own 〈ALERT〉
and 〈ACCUSE〉 sets. The first and second OR clauses match

Type I and Type II equivocation, respectively. The first clause

aims to check if there exists at least three nodes in some

NZ(ps) such that their 〈ALERT〉 and 〈ACCUSE〉 sets contain

three inconsistent messages. Note that there exists at most one

faulty node in any neighbor zone of ps. If ps sent consistent

messages to all its neighbors, it would be impossible that three

of its neighbors (two of which must be correct) claim they

received inconsistent messages. The second clause checks if

there exists at least four nodes in some NZ(ps) such that two

of them received m while another two of them received a

different message m′. Similarly, if the source node is correct,

the condition will not be satisfied.

We do not need to worry about the Type III sender failures,

because this type of failures are effectively masked by our

protocol (an example coming shortly.)

When cond is satisfied, a node sends a message

〈ACCUSE, ps, pi, pi.Rec〉i to all the neighbors. When a node

receives two 〈ACCUSE〉 messages from two nodes in the same

neighbor zone, it can also confirm that the source node is

faulty. From then on, it ignores any messages which are from

178

ps and 〈ALERT〉 and 〈ACCUSE〉 messages related to ps, and

discards the corresponding 〈ALERT〉 and 〈ACCUSE〉 sets.

p1

p2
p4p3
p5

p7

p8
p9

m
m'

m''

(a) An example for Type I
equivocation.

p1

p2
p4p3
p5

p6

p7

p8
p9

m
m m'

m'

(b) An example for Type II
equivocation.

Fig. 4: Examples for Type I and Type II failures.

Examples. Consider an example in Fig. 4 and suppose that

all the nodes are in NZ(p1). Fig. 4a illustrates Type I equiv-

ocation, where p1 sends m to p2, m′ to p4, and m′′ to p7.

All the nodes will send an 〈ALERT〉 message, because they

will all receive inconsistent messages from disjoint paths, and

all the nodes will receive 〈ALERT〉 messages satisfying the

first clause in cond. Thus, all the correct nodes can confirm

that p1 is faulty and generate an 〈ACCUSE〉 message. Fig. 4b

illustrates Type II equivocation, where p1 sends m to two of

its neighbors and m′ to two other neighbors. Likewise, all

the nodes will receive conflicting messages and generate an

〈ALERT〉 message. For instance, p2 receives m from X = {p1}
and m′ from the path X = {p1, p6, p5, p3}. After the nodes

receive the 〈ALERT〉 messages, they can all verify cond and

generate 〈ACCUSE〉 messages.

p1

p2
p4p3
p5

p6

p7

p8
p9

m
m

m

(a) The source p1 is faulty.

p1

p2
p4p3
p5

p6

p7

p8
p9

m
m

m
m

m'

(b) Node p6 is faulty.

Fig. 5: Example for a Type III failure.

We point out that it is “impossible” to detect a Type III

faulty sender, if we consider the case where source nodes

multicast messages without using signatures. The reason is that

Type III is indistinguishable from the case with a faulty non-

source node. Let’s consider an example in Fig. 5. In Fig. 5a,

we assume that the source node p1 is faulty. It sends m to

nodes p2, p4, and p7, and sends m′ to p6. In Fig. 5b, we

assume that p1 is correct and but one of its neighbors p6 is

faulty. If p6 changes m to m′ and sends m′ to other nodes,

then no one can discover if conflicting messages are due to

p1 or p6. Fortunately, this type of failures can be effectively

tolerated by MT protocols and also our protocol.

V. CORRECTNESS PROOF

We begin by recalling several lemmas in MT. Lemma V.1

and Lemma V.2 are the properties of the Z-resilient networks,

while Lemma V.3 are the properties of MT1 and MT2.

Lemma V.1. Let ps be a Byzantine node. Let pi and pj be
two neighbors of ps. There exists a correct path of at most
α = ΔZ hops connecting pi and pj .
Lemma V.2. Let pi and pj be two correct nodes. There exists
a correct path of at most β=2DΔ hops connecting pi and pj.
Lemma V.3. Let pi and pj be two non-neighbors correct
nodes. Node pj accepts message m from pi within at most
γ time and never accepts another message from pi. For MT1,
γ = 8DΔ2ZT and for MT2, γ = 12DΔ2ZT , where T is the
upper bound on the channel transmission time.

Our protocol can be based on either MT1 or MT2. We focus on

the case of MT1 and the other case is similar. The validity, no

duplication, and no creation properties essentially follow from

MT. The crux is to prove the correctness of the agreement

property.

Theorem V.4. (Agreement) If a message m is delivered by
some correct nodes, then m is eventually delivered by every
correct node.

Proof. MT shows that agreement is satisfied if the sender is

correct. We demonstrate that any sender equivocation behavior

can be either eventually and accurately detected by all the

correct nodes or tolerated by our protocol.

To this end, we prove the following claims in the rest of

the section: 1) Type I and Type II failures can be eventually

identified by all the nodes; 2) Correct nodes never accept

any messages from senders who exhibit Type I or Type II

failures; 3) If the sender is correct, it will never be accused by

correct nodes; and 4) Type III failures do not introduce any

inconsistency. The agreement property of our protocol will

then easily follow from the above claims and the agreement

property of MT. �
Below we prove the four claims for Theorem V.4.

Theorem V.5. Type I and Type II Byzantine senders can be
always detected by at least two correct nodes in some neighbor
zone. After at most (3α+β)T +T1 time, all the correct nodes
learn that the sender ps is faulty.

Proof. We first prove in Lemma V.6 that Type I and Type II

failures can be effectively detected by nodes in some neighbor

zone. Then we show that eventually all the correct nodes learn

the fact and we upper bound the time in Lemma V.7.

Lemma V.6. Type I and Type II Byzantine senders can
be always detected by at least two correct nodes in some
neighbor zone NZ(ps). Nodes in the network will all receive
the 〈ACCUSE〉 messages.

Proof. We first show that in the presence of Type I and

Type II Byzantine senders, all the correct nodes in NZ(ps) will

generate 〈ALERT〉 messages and we distinguish two cases:

1) Assume that none of messages which the faulty source node

sends is an empty message. We claim that correct nodes will

receive conflicting messages from disjoint paths in NZ(ps).

Indeed, according to Lemma V.1, there exists a correct path

179

between any two correct nodes. Therefore, correct nodes will

then generate 〈ALERT〉 messages.

2) Assume otherwise there exists at least one correct node (say,

pi) which the sender sent an empty message. Recall that if pi
learns a non-empty message from any other node in NZ(ps), it

starts a timer T1. If p1 does not receive any message from ps
before the timer expires, it sends an 〈ALERT〉 message. This

additional step allows pi to know if ps sent some message to

other neighbors but did not send any message to it. (The rest

of the scenario is now the same as the above one.)

We now show that correct nodes in NZ(ps) will generate

〈ACCUSE〉 messages. Note that 〈ALERT〉 messages contain the

[MSG] received from ps and their travel paths. For Type I

senders, there exist three correct nodes whose 〈ALERT〉 mes-

sages contain three inconsistent messages from three disjoint

paths in NZ(ps). This will satisfy the first clause of cond and

these nodes will generate 〈ACCUSE〉 messages. Likewise, for

Type II senders, there exist at least two correct nodes which

generate 〈ACCUSE〉 messages. Since there exists a correct path

between any two correct nodes, it is easy to see that all correct

nodes in the network will receive 〈ACCUSE〉 messages.

Lemma V.7. All the correct nodes learn that ps is faulty after
at most (3α+ β)T + T1 time.

Proof. We consider the worst case where some nodes in

NZ(ps) need to wait for the timer T1 to verify if the source

node sends an empty message. In this case, a node pi in

NZ(ps) needs at most 1©αT time to learn that another node

pj in NZ(ps) receive at least a message, say m (according to

Lemma V.1), and then waits for 2©T1 time before pi send an

〈ALERT〉 message. For those nodes in NZ(ps) that have already

received m, it takes another 3©αT time for them to receive

the 〈ALERT〉 message and generate their 〈ALERT〉 messages.

After the nodes in NZ(ps) generate 〈ALERT〉 messages, it takes
4©αT time for the nodes to receive the 〈ALERT〉 messages

and generate 〈ACCUSE〉 messages. For the rest of nodes in

the graph, according to Lemma V.2, there exists a correct

path of at most β hops connecting any two correct nodes,

so it takes at most 5©βT time for the rest of nodes to learn

that ps is faulty after receiving two 〈ACCUSE〉 messages.

Notice that since T represents the transmission time in the

network, T1 can be set to T for a neighbor node to detect the

failure of the source. Summing up 1© to 5©, the maximum

time is (3α + β)T + T1 = (3α + β + 1)T . As shown in

Lemma V.3, nodes will not accept any other messages after

γ time. Therefore, the timer T2 can be set to be max(γ,

(3α + β + 1)T). This guarantees that before T2 times out,

all the correct nodes can receive 〈ACCUSE〉 messages. �
The theorem now follows. �

Theorem V.8. Correct nodes never accept any messages from
senders who exhibit Type I or Type II failures.

Proof. Setting the timer T2 as the upper bound in the above

lemma, the theorem trivially follows, as our protocol requires

each node to wait for T2 time to deliver the messages. �

Theorem V.9. If the source ps is correct, it will never be
accused by correct nodes.

Proof. Suppose a correct node accused a source node ps.

According to our protocol, this node either received messages

that satisfy cond (type I) or received two 〈ACCUSE〉 messages

from nodes in the same neighbor zone (type II). For type II,

since there is one faulty in NZ(ps), one of the two nodes that

sent 〈ACCUSE〉 messages must be correct. This indicates that

the correct node either received messages that satisfy cond,

or received two 〈ACCUSE〉 messages from some other nodes

in the zone. Inductively, we can prove that for type II, there

exists some correct node that received messages that satisfy

cond. Therefore, in both cases, there exists some correct node

that received messages that satisfy cond and for this reason it

sent an 〈ACCUSE〉 message.

For this correct node, if the first clause of cond was satisfied,

there exist three nodes whose 〈ALERT〉 messages contain three

inconsistent messages from three disjoint paths in NZ(ps). In

this case, either ps sent three inconsistent messages or at least

two of them are faulty. As there is at most one faulty node in

each NZ(ps), we know that ps is faulty. On the other hand,

if the second clause of cond was satisfeid, either ps sent two

messages and each of them reached at least two nodes or at

least two of them are faulty. Likewise, we can conclude that

ps is faulty. The theorem now follows. �

Theorem V.10. Type III failures do not introduce inconsis-
tency.

Proof. If ps only sends a message m′ to one neighbor and

m to all other neighbors, a correct node will not receive a

message from two disjoint paths. This is because there is at

most one correct node in NZ(ps) and the message is sent to

at least two neighbors so that a node can accept m′. �

VI. IMPLEMENTATION AND EVALUATION

We used the OMNeT++ Discrete Event Simulator [36]

to model our algorithm. Each simulation begins with an

initialization stage, during which the nodes send initialization

messages in order to set up the network topology and to detect

their neighbors.

We implemented the following algorithms and compared

them with our algorithm. 1) Baseline-MAC: A MAC-based

multicast protocol where nodes use MACs for message authen-

tication in authenticated channels; 2) Baseline-DS: A digital

signature-based multicast protocol, where nodes use digital

signatures for message authentication; 3) MT algorithms.

For Baseline-MAC and Baseline-DS, we implemented the

conventional gossip algorithm. Namely, both protocols are

based on a multicast protocol, where a source node will

send a message to each of its neighbors, which in turn will

forward that message to each of their neighbors until all nodes

have received the message. Baseline-MAC is efficient but

does not provide meaningful fault tolerant guarantees. Instead,

Baseline-DS is more robust and can detect sender equivoca-

tion, but still it fails to handle cases such as sender crashes.

180

0 200 400 600 800 1,0001,2001,400

10

20

30

40

50

Time (SimTime)

A
v
g
.

T
h
ro

u
g
h
p
u
t

(m
sg

s/
S

im
T

im
e) Baseline-DS

Baseline-MAC

MT2

Proposed Algorithm

(a) Faulty source node detection overhead.

0 200 400 600 800 1,0001,2001,400

10

20

30

40

Time (SimTime)

A
v
g
.

T
h
ro

u
g
h
p
u
t

(m
sg

s/
S

im
T

im
e) Proposed Algorithm

MT2

(b) Throughput for faulty non-source nodes.

100 200 300 400 500 600

60

70

80

90

74.26

64.59
66.1

58.35
55.96

53.86

90.18

83.77

78.3

73.26

68.71

64.77

Sending Frequency Benchmarks

A
v
er

ag
e

T
h
ro

u
g
h
p
u
t

(m
sg

s/
S

im
T

im
e)

Proposed Algorithm MT2

(c) Throughput of various benchmarks.

Fig. 6: Protocol evaluation.

We utilized HMAC [3] and RSA-FDH [4] to implement the

underlying MAC and digital signature, respectively.

We implemented our protocol on top of MT1 and compare

with MT2 in failure scenarios. Indeed, both our protocol and

MT2 can deal with faulty senders, though via very different

perspectives and with different properties. We implemented

a failure injection mechanism where a number of random

nodes are selected during each simulation. The faulty nodes

can be further specified as either faulty source nodes or faulty

non-source nodes or both. If a node is the source node, it

simply equivocates to the neighbors by generating inconsistent

messages with the same timestamp. If a node is a non-source

node, it tampers with or falsifies the content of the messages

and forwards to the neighbors.

We generate a random cyclic topology with a minimum of 3
nodes in each cycle. We use several benchmarks to evaluate a

cyclic network with different traffic. For the x benchmark,

each node multicasts a message to its neighbors every x
ms. We evaluate throughput as the number of messages per

simulation time (SimTime), and delivery rate as the percentage

of messages received versus messages sent. Messages sent by

the source node to the network are considered meaningful

messages. All other invalid messages that correct nodes will

not deliver are considered meaningless.

Faulty source node detection overhead. We compare failure-

free cases for the Baseline-MAC and Baseline-DS algorithms

with the faulty source node case for our algorithm. We

compare Baseline-MAC and our algorithm to evaluate the

overhead for our algorithm. Although Baseline-MAC does

not handle any failures, we can compare Baseline-MAC in

the failure-free case and our algorithm in the failure case

to evaluate the overhead of our faulty source node detection

algorithm. We then compare Baseline-DS and our algorithm to

show our algorithm’s efficiency in utilizing digital signatures,

where in Baseline-DS, nodes are able to detect a faulty source

node due to receiving mismatched messages.

We evaluate the three algorithms using a 200 benchmark

and a single faulty source node. The benchmark determines

the frequency that a faulty node sends false messages. Fig. 6a

shows that our algorithm has a consistently higher throughput

than Baseline-DS. This is caused by the fact that digital

signatures are more expensive than MACs and our algorithm

uses digital signatures when failures occur. The introduction of

〈ALERT〉 and 〈ACCUSE〉 messages in the presence of the faulty

node also introduces more network traffic. Our algorithm

achieves similar throughput, however, with Baseline-MAC.

This shows that in the case where there are fewer failures,

our algorithm generates low overhead for failure detection.

0 1 2 3

20

25

30

35

40

45

19.68

33.23

43.95 43.4

31.25 31.25 31.25 31.25

Number of Faults

A
v
er

ag
e

T
h
ro

u
g
h
p
u
t

(m
sg

/S
im

T
im

e)

Proposed Algorithm MT2

Fig. 7: Average throughput vs. number of faults.

Throughput. We compare MT and our algorithm in both the

case where source nodes are faulty and non-source nodes are

faulty. We use 200 benchmark and one failure in the network.

Fig. 6a shows the case where the source node is faulty. Our

algorithm achieves lower throughput than MT in the beginning

and higher throughput later in the experiment. This is due to

the 〈ALERT〉 and 〈ACCUSE〉 messages that are introduced into

the network. As the faulty nodes begin to send false messages

with an increased frequency, more 〈ALERT〉 and 〈ACCUSE〉
messages are generated. The lower the frequency, the faster

we can confirm that there is a failure which results in a lower

throughput initially. We also compare the performance where

non-source nodes are faulty. Notice that the non-source nodes

can ”frame” correct source nodes by altering the content of

once correct messages. It can be observed in Fig. 6b that our

algorithm achieves lower throughput in this situation.

Additionally, we evaluate the case with various benchmarks

that represent faulty node sending frequency. We randomly

select 3 faulty nodes in a network of 12 nodes. As shown

in Fig. 6c, the average throughput of our algorithm in each

181

benchmark is lower than MT. This is due to there being more

false messages in the network as the frequency increases. Our

algorithm detects the faulty node and alerts other nodes, which

in turn do not forward any of the false messages. This results in

a lower average throughput. We later test the case where nodes

behave as faulty source nodes and multicast false messages. As

shown in Fig. 7, our algorithm has a higher throughput in the

presence of failures. The throughput is lower when there are

no failures because our algorithm does not repetitively send

the same message. We observe that our algorithm allows nodes

perform more efficiently after a failure has been detected.

0 1 2 3

0.85

0.9

0.95
0.95

0.83

0.93

0.83

0.82 0.82 0.82 0.82

Number of Faults

A
v
er

ag
e

D
el

iv
er

y
R

at
e

Proposed Algorithm MT2

Fig. 8: Delivery rate vs. number of faults.

Delivery rate. As shown in Fig. 8, our algorithm consistently

achieves a higher delivery rate than MT. This is because any

decrease in delivery rate caused by a faulty node is balanced

by the introduction of 〈ALERT〉 and 〈ACCUSE〉 messages.

VII. CONCLUSION

We presented the first Byzantine reliable broadcast protocol

for sparse networks that can tolerate Byzantine senders in

synchronous environments. We developed new techniques for

fault detection. Our protocol is efficient for both fault-free and

failure scenarios; in particular within gracious executions no

public key cryptographic operations are needed. Finally, we

implemented and evaluated our protocol. Our experimental

evaluation shows that our protocol has high throughput and

high failure resilience.

VIII. ACKNOWLEDGMENTS

Sisi Duan was supported in part by UT-Battelle, LLC under

Contract No. DE-AC05-00OR22725 with the Department of

Energy. Lucas Nicely was supported in part by the U.S.

Department of Energy, Office of Science, Office of Workforce

Development for Teachers and Scientists (WDTS) under the

Science Undergraduate Laboratory Internship program. Haibin

was supported in part by NSF grant CNS-1413996 for the

MACS project.

REFERENCES

[1] J. Adams and K. Ramarao. Distributed diagnosis of Byzantine processors
and links. ICDCS, pp. 562–569, 1989.

[2] P-L. Aublin, R. Guerraoui, N. Knezevic, V. Quema, and M. Vukolic. The
next 700 BFT protocols. TOCS, vol. 32, issue 4, 2015.

[3] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for
message authentication. CRYPTO 1996.

[4] M. Bellare and P. Rogaway. The exact security of digital signatures —
How to sign with RSA and Rabin. EUROCRYPT 1996, pp. 399–416.

[5] V. Bhandari and N. Vaidya. On reliable broadcast in a radio network.
PODC, pp. 138–147, 2005.

[6] G. Bracha. Asynchronous Byzantine agreement protocols. Information
and Computation 75, pp. 130–143, 1987.

[7] G. Bracha and S. Toueg. Asynchronous consensus and broadcast proto-
cols. Journal of the ACM 32(4), 824–840, 1985.

[8] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to reliable and
secure distributed programming. Springer, 2011.

[9] M. Castro and B. Liskov. Practical Byzantine fault tolerance. ACM Trans.
Comput. Syst, 20(4): 398–461, 2002.

[10] T. Chandra and S. Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of ACM, 43(2):225–267, 1996.

[11] S. Chaudhuri. Agreement is harder than consensus: set consensus
problems in totally asynchronous systems. PODC, pp. 311–324, 1990.

[12] S. Chaudhuri, M. Herlihy, N. A. Lynch, and M. R. Tuttle. A tight lower
bound for k-set agreement. FOCS, 1993.

[13] D. Dolev. The Byzantine generals strike again. Journal of Algorithms,
3(1):14–30, 1982.

[14] S. Dolev. Self-Stabilization. MIT Press, 2000.
[15] A. Doudou, B. Garbinato, R. Guerraoui, and A. Schiper. Muteness

failure detectors: Specification and implementation. EDCC, 1999.
[16] S. Duan, H. Meling, S. Peisert, and H. Zhang. BChain: Byzantine

replication with high throughput and embedded reconfiguration. OPODIS
2014.

[17] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview: practical
accountability for distributed systems. SOSP, pp. 175–188, ACM, 2007.

[18] H. Hsiao, Y. Chin, and W. Yang. Reaching fault diagnosis agreement un-
der a hybrid fault model. IEEE Trans. on Computers, vol. 49, no. 9, 2000.

[19] M. Humphries and K. Gurney. Network ‘small-world-ness’: A quanti-
tative method for determining canonical network equivalence. PLoS One
3(4): e2051, 2008.

[20] C.-Y. Koo. Broadcast in radio networks tolerating Byzantine adversarial
behavior. PODC, pp. 275–282, ACM, 2004.

[21] K. Kursawe and V. Shoup. Optimistic asynchronous atomic broadcast.
ICALP 2005, pp. 204–215, 2005.

[22] L. Lamport, R. E. Shostak, and M. C. Pease. The Byzantine generals
problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[23] A. Maurer and S. Tixeuil. Limiting Byzantine influence in multihop
asynchronous networks. ICDCS, pp. 183–192, 2012.

[24] A. Maurer and S. Tixeuil. On Byzantine broadcast in loosely connected
networks. In DISC, pp. 253–266, 2012.

[25] A. Maurer and S. Tixeuil. Self-stabilizing Byzantine broadcast. SRDS,
2014.

[26] M. Nesterenko and S. Tixeuil. Discovering network topology in the
presence of Byzantine nodes. IEEE TPDS, 20(12):1777–1789, 2009.

[27] M. Newman. The structure and function of complex networks. SIAM
Review 45, pp. 67–256, 2003.

[28] A. Pelc and D. Peleg. Broadcasting with locally bounded Byzantine
faults. Inf. Process. Lett., 93(3):109–115, 2005.

[29] F. Preperata, G. Metze, and R. Chien. On the connection asssignment
problem of diagnosable systems. IEEE Trans. on Elec. Comp., 16(6):
848–854, 1967.

[30] K. Ramarao and J. Adams. On the diagnosis of Byzantine faults. Proc.
Symp. Reliable Distributed Systems, pp. 144–153, 1988.

[31] M. Serafini, A. Bondavalli, and N. Suri. Online diagnosis and recovery:
on the choice and impact of tuning parameters. IEEE TDSC, 4(4): 295–
312, 2007.

[32] K. Shin and P. Ramanathan. Diagnosis of processors with Byzantine
faults in a distributed computing system. Proc. Symp. Fault-Tolerant
Computing, pp. 55–60, July 1987.

[33] G. J. Simmons. A survey of information authentication. Contemporary
Cryptology, The Science of Information Integrity, IEEE Press, 1999.

[34] S. Toueg. Randomized Byzantine agreements. PODC 1984, 1984.
[35] R. van Renesse, C. Ho, and N. Schiper. Byzantine chain replication.

OPODIS 2012.
[36] A. Varge. OMNeT++. In Modeling and Tools for Network Simulation,

91–104, 2010.
[37] C. Walter, P. Lincoln, and N. Suri. Formally verified on-line diagnosis.

IEEE Trans. Software Eng, 23(11): 684–721, 1997.

182

Evaluating Reliability Techniques in the
Master-Worker Paradigm

Evgenia Christoforou∗†, Antonio Fernández Anta∗, Kishori M. Konwar‡, Nicolas Nicolaou∗
† Universidad Carlos III, Madrid, Spain. evgenia.christoforou@imdea.org

∗ IMDEA Networks Institute, Madrid, Spain. antonio.fernandez@imdea.org, nicolas.nicolaou@imdea.org
‡ MIT, Cambridge MA, USA. kishori@csail.mit.edu

Abstract—A distributed system is considered that carries out
computational tasks according to the master-worker paradigm.
A master has a set of computational tasks to resolve. She assigns
each task to a set of workers over the Internet, instead of
computing the task locally. For each task each worker reply to
the master with the task result. Since the task was not computed
locally, the master can not trust the result for two main reasons:
(i) workers might deliberately provide an incorrect result, (ii)
the result is corrupted due to some hardware or software failure
during the execution of the task. Given the above, we can model
our workers as either “altruistic”, always willing to provide the
correct result to each task, or “troll” that are trying to provide
an incorrect result to each task. Moreover we model the failure
of the worker to comply with her intended behavior, as an error
probability ε. The goal of the master is to compute the correct
result of all the tasks with high probability. In the literature
two techniques have been used to achieve this goal: (i) “voting”,
that determines the correct result of a task given multiple replies
of distinct workers; (ii)“challenges”, that are tasks whose result
is known and can be used to detect altruistic workers. What
separates our work from the current literature is the realistic
modelling of the worker’s behavior and the fact that we do not
restrict the task result to a binary set of answers; the domain of
possible replies for a task can have multiple correct and multiple
incorrect results. Given the above we evaluate the performance
of the two techniques described in the literature in the scenario
where ε = 0 and when ε > 0. Performance is measured in
terms of: (1) time, i.e., the number of rounds performed by an
algorithm for the computation of all the tasks, and (2) work,
i.e., the number of total task computations performed by the
workers. The case where ε = 0 is used as a best case scenario
that provides the optimal time and work bounds of the problem.
In the case where ε > 0 we propose two “natural” algorithms:
one using a combination of both voting and challenges, and a
second one using only voting. Both algorithms assume that certain
system parameters are known. Since this might not always be
the case we also provide an algorithm that estimates correctly
these parameters with high probability.

I. INTRODUCTION

Distributed computing systems following the master-worker

paradigm are increasing in popularity over the past decades.

In the literature, this paradigm is encountered under several

names like: volunteer computing, desktop grid computing,

Supported in part by FP7-PEOPLE-2013-IEF grant ATOMICDFS
No:629088, Ministerio de Economia y Competitividad grant TEC2014-
55713-R, Regional Government of Madrid (CM) grant Cloud4BigData
(S2013/ICE-2894, co-funded by FSE & FEDER), NSF of China grant
61520106005 and Spanish Ministry of Education grant FPU2013-03792 .

public resource computing and so on. This work focuses on

master-worker task computations, where a master entity has

a set of tasks to be computed that is unable or unwilling

to compute locally. Hence, she assigns these tasks over the

Internet to worker entities willing to perform the task and

reply back to the master with a result. The inherent limitation

of this load distribution scheme is the unreliable nature of

the workers. We assume that there is no mean of verifying

an answer provided by a worker unless we know the set of

solutions for the particular task.

One classical example of the master-worker paradigm is

SETI@home [13] that uses the BOINC [1], [3] infrastructure.

In the case of SETI@home, the project is collecting and

analysing signals from space in a search for extraterrestrial

forms of life. Volunteers willing to help the search register

their machines, receive tasks to be executed (when available),

and report the results back to the master.

Evidence exist though that volunteers might actually mis-

report values [1], [2], [10], [11]. The most straight forward

explanation is that workers might have ulterior motives for

misreporting a result. Another reason might be that actually a

hardware or software failures happened during the computa-

tion of the task that was not detected.

Drawing from the above example and the work of Kondo

et al. [11], where they have characterized errors in BOINC

systems, we can infer the existence of two type of workers. (i)
Altruistic1 workers: This type of worker is positive towards

executing the task, and willing to provide the correct result. In

the case of a BOINC system, a “positive” worker will let its

machine execute the task and report back the result. (ii) Troll2
workers: This type of worker is negative towards executing

a task and wants to convey an incorrect result to the master.

Hence, it can miscalculate a task on purpose and tries to report

an incorrect result. In this work we do not assume any type of

intelligent strategy to fool the system, nor that a troll has any

information on the actions taken by the master or the other

workers.

We can safely assume that both types of workers can be

susceptible to a small error probability ε that is related to

1For historical reasons, to match with original work in the field of master-
worker task computing.

2Historically they are called malicious workers, but since we are not
assuming any intelligent behavior to harm the system here we call them troll
workers.978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

183

hardware or software failures or to any other factor that would

force them to deviate from their intended behavior. Thus an

altruistic worker, will have a high probability of reporting a

correct result, while a troll will have a low probability of

reporting a correct result.

The goal of the master is to identify the correct result

for each task assigned with high probability. As far as we

know, two techniques are used (individually or combined) for

increasing reliability. (i) Voting: The master uses redundancy

by assigning the same task to multiple workers. After all the

task replies are collected, the master uses a voting scheme [4],

[15], [14] to decide on the correct result. This may fail

to provide optimal reliability since a high concentration of

incorrect results reported may lead to a decision on the task

result that is incorrect. (ii) Challenges: The master uses a set

of tasks with known solutions to identify the workers that are

replying correctly. Again this approach can not guarantee op-

timal reliability if the same workers in different time intervals

provides correct and incorrect results due to an error during

the computation of the task (as we discussed above). Similar

or identical concepts to this approach are encountered by the

name of spot-checking, auditing or quiz [16], [18].

Both techniques add an extra load on the computation of the

task. On the one hand, with voting the same task needs to be

executed by multiple workers, thus the resources of the system

are not used in an optimal way. On the other hand, challenges

require that the workers compute tasks with known solutions,

thus not only resources are not used in an optimal way but

also the execution time of a task increases.

An added difficulty when using these techniques is related

to the nature of the task. If you have tasks that can have

multiple correct and multiple incorrect results, maybe you can

not guarantee that the result of each task will be correct with

high probability. The common assumption in the literature is

that tasks have a binary set of solutions (i.e. only one correct

and one incorrect solution are feasible).

Voting and challenges have been widely used either alone

or in combination to provide the correct task result for each

task with high probability. What is yet unclear is the advantage

of one technique over the other or the combination of these

techniques in terms of time and work complexity, given tasks

with multiple correct and multiple incorrect results.

Related Work: In this section we review a few of the

most representative works that use voting and challenges in

the master-worker paradigm. In the work of Fernández et

al. [9], [8] two voting mechanisms are presented under the

assumption of a binary set of possible responses to the master.

Targeting at a high reliability while minimizing redundancy,

the authors provide analytical results assuming that the number

of malicious workers or the probability of a worker acting

maliciously is known. In the work of Konwar et al. [12]

these last assumptions on having information on the malice

are removed and new algorithms are proposed to approximate

these probabilities. The lower bounds on the amount of work

necessary, when the set of responses is binary, are comparable

to the work complexity of our proposed algorithms. These

works assume that all workers might fail in every round with

a certain probability. In our work we take a more realistic

assumption, considering that workers might reply incorrectly

with a different probability related to their nature (that is, we

assume two types of workers’ failures).

In his work, Sarmenta [16] assumed the presence of mali-

cious and altruistic workers, with only the malicious workers

having a constant probability of submitting an erroneous result

and binary set of response. Based on these assumptions he

introduced sabotage-tolerance mechanisms that used voting

and a spot checking technique (what we are calling chal-

lenges). Given the assumption that altruistic workers will

always reply with the correct task result, the mechanisms

combine voting with challenges to create a reputation for each

worker and increase the systems’ reliability while trying to

keep redundancy low.

In their work, Zhao and Lo [18] compare voting to chal-

lenges (called Quiz) under two assumptions: that all malicious

workers return the same incorrect result or that malicious

workers return distinct results. They use as performance met-

rics the accuracy and overhead, and through simulations they

show the trade-off among these performance metrics and the

two reliability techniques. Their work is mostly experimental

and does not provide any complexity analysis. Additionally

they do not assume a density of solutions nor an error

probability on the altruistic workers.

Finally, Sonnek et al. [17] design algorithms for efficient

task allocation based on the reputation of each worker. Hence

the reliability of each worker is a statistical property that

depends on the results submitted by each worker. Each task

is being redundantly assigned to a group of workers with

a targeted reliability. These groups are formed based on

different algorithms. Their algorithms are evaluated through

simulations. In contrast, we provide analytical bounds on the

performance metrics of our proposed algorithms.

Contributions: Our contributions can be summarized as

follows:

• We model the master-worker paradigm in the presence of al-

truistic and troll workers using five parameters 〈ε, fa, s, r, T 〉
(Section II): (i) ε is the probability that an altruistic worker

may reply with an incorrect result or a troll worker with

a correct result, (ii) fa is the fraction of altruistic workers

over the set of workers, (iii) s, r are the number of correct

and incorrect answers for a task respectively, leading to the

more realistic assumption that tasks are not only binary but

rather may have solutions in a broader domain, and (iv)

T ⊆ {C, V } the set of reported result evaluation techniques,

i.e., challenges and voting. Additionally we define two

measures: (i) “time” and (ii) “work”, for evaluating the

complexity of the proposed algorithms.

• We fix ε = 0 in Section III, i.e., the simple case where

altruistic workers always reply with a correct result and troll

workers always with an incorrect result. Given this idealistic

scenario, we identify asymptotically optimal bounds on the

time and work complexity when challenges and voting are

184

used separately. While it is clear that when challenges are

used the master can receive the correct task result with

probability one, this is not always the case when voting is

used alone. In the case of voting, we were able to show

a negative result giving conditions on the parameters of

s, r, na and nt, where the master will not always be deciding

on the correct task result with probability one. This result

reveals that the domain of reported results is important even

in the simple case where ε = 0.

• We then make the realistic assumption that ε > 0 (Section

IV) and we provide two algorithms MWMIX and MWVOTE

that solve correctly all the tasks whp. Both algorithms

assume that s, ε and fa are known. Algorithm MWMIX

uses both challenges and voting, and can be applied if

1 − ε > s
s+1 . Algorithm MWVOTE uses only voting, and

can be applied if fa(1 − ε) + (1 − fa)ε > s
s+1 . What is

interesting to observe is that these algorithms have a log

factor overhead compared to the case where ε = 0, which

as shown in [12], is a necessary price to pay when voting

is used.

• Finally, in the case where ε and fa are not known, in Section

V we provide algorithm E1 that estimates these parameters

within tight bounds whp.

II. MODEL

Our setting consists of a master process M and a set

W = {w1, . . . , wn} of n worker processes. Workers might

be unreliable and produce an incorrect result.

Definition 2.1 (Problem statement.): The master must

guarantee with high probability (see below) the correct

result for each task ti where ti ∈ T = {t1 · · · tn}, without

computing the task locally.

To keep the pseudocode simple for the purpose of exposition

we assume that |T | = n. (The algorithms presented in this

paper can be easily extended to run for |T | = O(poly(log n))
without violating the statements of correctness.)

Computation and Communication model: Processes in

the system communicate by exchanging messages via reli-

able communication channels. Computation proceeds in syn-

chronous rounds. For a process p a round consists of the

following steps: (i) receive incoming messages, (ii) perform

computation on the received messages and produce a set of

outgoing messages, and (iii) send the produced messages.

During a round each worker can compute only one task

from the master, and report back the result of the task. A

synchronous algorithm A is a collection of processes, and its

state is defined over the vector of the states of each process in

that collection. An execution ξ of A is an (infinite) sequence

of states. We denote by execs(A) the set of executions of A.

Performance Measures: An algorithm A is evaluated in
terms of: (i) time, and (ii) work. Time is defined as the number
of rounds that an algorithm A requires in order to determine
the result of all n tasks in T . Work represents the number
of aggregated results computed by each worker in algorithm
A. More formally, let compξ(w, t) be the number of times a
worker w computes task t during an execution ξ of algorithm

A. The task t can be one the tasks in T or a task chosen from
a set C of challenge tasks available to the master M . Then,

workξ =
n∑

i=1

(
n∑

j=1

compξ(wi, tj) +
∑
t∈C

compξ(wi, t)

)

is the work of all the workers in ξ. Thus, the work of an

algorithm A is defined as Work(A) = maxξ∈execs(A)(workξ)
over all executions of A. The work captures the redundancy

used by an algorithm (i.e., the number of workers that compute

the same task), as well as the computation performed on

challenges.

Density of Solutions: A reported result v for a task t may

take values from a domain D(t). Let S(t) ⊂ D(t) be the set of

correct solutions and R(t) = D(t)\S(t), the set of reported

results that are incorrect solutions for task t. We only consider

tasks t that have at least one correct solution, i.e., |S(t)| ≥ 1.

Given D(t) and S(t) we define the density of solutions for

task t as
|S(t)|
|D(t)| . The density of solutions affects the techniques

used to determine the correct task result. For simplicity of

presentation, we will assume that the size of the domain d =
|D(t)|, the number of correct solutions s = |S(t)|, and the

number of incorrect solutions r = |R(t)| are the same for

every t ∈ T . Hence, the density of solutions is the same for

all tasks t.
Worker Types: We assume that each worker wi ∈ W is

either altruistic or a troll and its type remains the same

throughout the execution of the algorithm. Let Wa ⊆ W
be the set of altruistic and Wt ⊆ W the set of trolls. We

use na = |Wa| and nt = |Wt| to denote the sizes of these

sets. We assume that na ≥ 1. Observe that W = Wa ∪ Wt

and n = na + nt. We also use fa = na

n , to denote the

fraction of altruistic workers. Altruistic workers are “positive”

towards executing a task, always aiming at returning a correct

result. Trolls are “negative” towards the task, always trying

to provide an answer from the set of incorrect solutions. All

workers are subject to an error probability ε that deviates a

worker from its specification. For simplicity of presentation we

will assume that ε is the same for all workers. In particular, an

altruistic worker replies with a correct result with probability

1 − ε and with an incorrect result with probability ε, while

for a troll holds the contrary. For all workers, the correct and

incorrect results are selected uniformly at random from the

respective sets S(t) and R(t) for a task t. When ε = 0 an

altruistic worker always replies with the correct result and a

troll always replies with an incorrect result.

Result Evaluation: We assume that the master can use two

techniques to determine the correct task result: challenges (C)

and voting (V) . A challenge is a task of which the master

knows the correct result. When a challenge is used, the master

knows if a worker replied with a correct or an incorrect result.

This information can help the master determine the correct

result for each task in T . When voting is used, the same task

is assigned to multiple workers, and the master uses some

voting technique to decide upon the correct task result.

Definition 2.2 (Environmental Parameters.): A master-

worker system environment can be characterized by the

185

parameters (ε, s, r, fa, T) where: (i) ε is the worker error

probability, (ii) s is the set of correct replies for each task t,
(iii) r is the set of incorrect replies for each task t (iv) fa
the fraction of altruistic workers, and (v) T ⊆ {C, V } the

technique used for the evaluation of the reported results.

Probabilities: We use the common definition of an event E
occurring with high probability (whp) to mean that Pr[E] =
1−O(n−α) for some constant α > 0.

III. EXACT WORKER BEHAVIOR (ε = 0)

In this section we examine the simple case where it is

given that the error probability of each worker is ε = 0.

Hence, altruistic workers always reply with a correct result

and trolls always reply with an incorrect result. This scenario

is somewhat idealistic in practical master-worker systems, but

it is used here to provide the best case analysis of our problem.

The results of this section will be used as a reference from

the next section, in order to evaluate the performance of

the proposed algorithms compared to this optimistic scenario.

Notice that any algorithm requires at least n
na

rounds to

complete the computation of all the |T | = n tasks, and needs

to perform n work, if all tasks have to be computed correctly

with full reliability.

Algorithm 1 Simple algorithm MWSIMPLE 0 where ε = 0
and T = {C}.

1: Send challenge task t to all workers in W
2: R[j] ← result received from wj ∈ W , j ∈ [1, |W |]
3: Ua ← {wi|R[i] is correct}
4: for i = 1 : |Ua| : n do � for loop increments i by |Ua|
5: Send task ti+k−1 to kth worker in Ua, k ∈ [1, |Ua|]
6: Add received result for ti+k−1 into Results[i+ k]
7: end for
8: return Results

In the simple algorithm MWSIMPLE 0 that appears in

Algorithm 1, the set of altruistic workers is not known and

thus we use challenges (T = {C}) to determine it in a single

round. Once the altruistic workers are identified the master

makes unique task assignments to each of them. Hence the

master needs 1+ n
na

rounds to decide for n tasks, and requires

2n amount of work.

Theorem 3.1: Algorithm MWSIMPLE 0 has asymptoti-

cally optimal time Θ(n
na

) and optimal work Θ(n), and com-

pute all the n tasks with probability 1, when ε = 0.

Looking more closely at the general case of algorithms that

only use voting (T = {V }) we have found that it is possible

to solve all the tasks efficiently if na > s · nt. The algorithm

MWVOTE 0 that solves the problem is given in Algorithm 2.

In this algorithm the master sends the first task t1 to all the

workers. No incorrect returned value can appear more than nt

times, while from the pigeonhole principle at least one correct

value appears at least na/s > nt times. Then, the workers that

return values with multiplicity larger than nt are all altruistic.

These workers are stored in Ua and used to solve the rest of

tasks. The size of Ua is at least na − nt(s − 1) > nt, and

hence the master needs at most 1 + n−1
na−nt(s−1) rounds and

2n− 1 work.

Algorithm 2 Simple algorithm MWVOTE 0 where ε = 0,

na > s · nt, and T = {V }.

1: Send task t1 to all workers in W
2: Add worker wj to set R[v] if it replied with value v
3: Ua ← ⋃v:|R[v]|>nt

R[v]
4: Results[1] ← any value v : |R[v]| > nt

5: for i = 2 : |Ua| : n do � loop increments i by |Ua|
6: Send task ti+k−1 to kth worker in Ua, k ∈ [1, |Ua|]
7: Add received result for ti+k−1 into Results[i+ k − 1]
8: end for
9: return Results

From the above we have the following theorem:

Theorem 3.2: The algorithm MWVOTE 0 compute all the

n tasks with probability 1 when ε = 0 and na > s · nt. It has

time O(n
nt
) and optimal work Θ(n).

In the case that na = s · nt we have a negative result.

Theorem 3.3: If ε = 0 and na = s · nt, then for any r > 0
there exists no algorithm that allows the master node to returns

the correct result of a task t with probability greater than s
s+1

in any execution.

Proof: Lets assume that there exists such an algorithm

Am. The master M assigns the task t to a subset W ′ of the

set of workers W . We assume w.l.o.g. that it sends the task to

all the workers in W , since Am can disregard the replies from

the workers not in W ′. Note that the master does not have any

prior information on the correct answers or the answers that

each worker returns. So we can examine possible executions

for the same task t, where the incorrect results and the troll

workers are different. Since ε = 0, an altruistic worker always

returns a correct answer and a troll returns an incorrect answer.

We assume that the same worker returns the same answer if

asked to compute the task more than once.

Consider now an execution ξ1 of Am constructed as follows.

Let D(t) = {a1, . . . , as, as+1, . . . , as+r} be the domain of

possible replies for t, where S(t) = {a1, . . . , as} is the

set of correct results for t and the rest of the answers are

incorrect. Since ε = 0 then the master receives na correct

answers and nt incorrect answers. Let us assume, that the

troll workers are the set {wna+1, . . . , wna+nt
}. Furthermore

in ξ1, let each answer ai ∈ S(t) be returned by na

s workers.

W.l.o.g assume that workers {w(i−1)na
s +1, . . . , wina

s
} reply

with answer ai ∈ S(t). Observe that all the trolls reply with

the same incorrect answer as+1. Since, na = s ·nt, it follows

that nt =
na

s troll workers reply with as+1. Since, according

to our assumption, algorithm Am returns a correct answer

with probability pc > s
s+1 , then it follows by the pigeonhole

principle, that Am will return some answer ai ∈ S(t) with

probability Pr[ai] >
s

(s+1)s = 1
s+1 , in ξ1. Let w.l.o.g. a1 be

that answer.

Assume now a second execution ξ2 which is similar

with ξ1 with the difference that the troll workers are

the set {w1, . . . , wna
s
} and the correct answers is the set

186

S(t) = {a2, . . . , as+1}. Each answer is returned by the

same set of workers as in ξ1. Note that correct workers

{wna+1, . . . , wna+nt} all reply with as+1. Also the troll

workers in ξ2 all reply with a1. Since all the workers reply

with the same answers to the master in both ξ1 and ξ2,

and since the master does not have any prior info on the

correct answers, then M will not be able to distinguish ξ1
from ξ2. Thus, if according to Am, M returned a1 with

probability Pr[a1] >
1

s+1 in ξ1 then M will return a1 with

the same probability in ξ2 as well. Since a1 is an incorrect

answer in ξ2, then M returns a correct answer with probability

Pr[return ai ∈ S(t)] = 1 − Pr[a1] < 1 − 1
s+1 = s

s+1 . This

however contradicts our initial assumption that Am returns a

correct answer with probability greater than s
s+1 in ξ2 and

completes our proof.

Looking at the above two results one may conjecture that

na = s · nt is in fact the boundary between solvability and

unsolvability. However, this is not the case, since, for instance,

if r = 1 and na is not a multiple of nt, even if na < s · nt it

is possible to solve all tasks efficiently. Using the opposite

logic the incorrect value will appear nt times, while from

the pigeonhole principle at worst one correct value appears

na mod nt times. Then, the workers that return values with

cardinality smaller than nt are all altruistic. These workers

like in Algorithm 2 can be stored in Ua and used to solve

the rest of tasks following an analogous algorithm. The size

of Ua is at least na −
⌊
na

nt

⌋
· nt, and hence the master needs

at most 1 + n−1

na−�na
nt
�·nt

< n rounds and 2n− 1 work. Thus,

an algorithm analogous to Algorithm 2 has time O(n) and

optimal work Θ(n).

IV. PROBABILISTIC WORKER BEHAVIOR (ε > 0)

We are now moving to the case where the error probability

of each worker is 0 < ε < 1
2 . In this case an altruistic worker

may reply with an incorrect result, or a troll with a correct

result with probability ε. Note that we do not consider the

case when ε ≥ 1
2 , because in that case essentially the roles are

switched. We provide algorithms that cover the full spectrum

of values for the density of solutions ρ ∈ (0, 1) and the fraction

of altruistic workers fa ∈ (0, 1]. Notice that the algorithms

presented here also apply in the case where ε = 0, but they

may induce extra performance overhead.

Under this model the master receives the correct result from

a randomly selected worker with probability at least fa(1 −
ε). We provide two different algorithms for this setting: (i)

algorithm MWMIX that uses both challenges and voting, i.e.

T = {C, V }, and (ii) algorithm A2 that uses only voting, i.e.

T = {V }, which is possible only when the density of solutions

satisfy a given bound.

Note that in this section we do not present an algorithm

that only relies on challenges to compute all tasks in T with

high probability. This is so, because even if the set Wa of

altruistic workers is known, and only these workers are used,

the value returned by the execution of a task is correct only

with constant 1−ε probability. An algorithm that does not use

Algorithm 3 The pseudo-code for algorithm MWMIX, at the

master, with n workers W computing the results of n tasks in

T , where s
s+1 < 1− ε and T = {C, V }.

Phase 1
1: R[1..n] ← ∅n � R[j] is the list of results from worker wj

2: for i = 1 : �c log n� do
3: Send challenge task t to all workers in W
4: Add received result from worker wj to R[j]
5: end for
6: for i = 1 : n do
7: if # correct results in R[i] ≥ ⌈ 1

2
c log n
⌉

then
8: Ua ← Ua ∪ {wi}
9: end if

10: end for
Phase 2

11: F [i] ← ∅ � initially empty for all 1 ≤ i ≤ n
12: for j = 1 : �k log n� do
13: for i = 1 : |Ua| : n do � loop increments i by |Ua|
14: Send task ti+k−1 to kth worker in Ua, k ∈ [1, |Ua|]
15: Add received result for ti+k−1 to F [i+ k − 1]
16: end for
17: end for
18: for i = 1 : n do
19: Results[i] ← plurality(F [i])
20: end for
21: return Results

some form of voting will not execute a task more than once,

and cannot improve this probability.

In this section we assume that the algorithms know the

parameters s, fa and ε. For the case that this is not true, we

provide algorithm E1 in the next section, that uses challenges

to estimate them. Due to lack of space the proofs of correctness

and performance of the algorithms are omitted.

A. Algorithm MWMIX: Challenges and Voting

In this section we present algorithm MWMIX, that uses a

combination of challenges and voting. The general idea of the

algorithm is to identify the workers in Wa, correctly whp and

then use the estimated set Ua to compute all the tasks correctly

whp. Below we describe algorithm MWMIX, with the pseudo

code in Algorithm 3, using this strategy. As explained earlier,

it is preferable to avoid using challenge method (T = {C})

because challenges imply computational burden on the master.

Therefore, the algorithm uses challenges only to estimate Ua,

and afterwards it uses voting (T = {V }) to determine the

correct result for each task, i.e. T = {C, V }.

Description of algorithm MWMIX: Algorithm MWMIX

consists of two phases. During the first phase, MWMIX

computes an estimate of the set Wa, denoted by Ua, by

using the challenge method. Phase 1 has c log n rounds, for a

constant c > 0 that depends on ε (L:2). During each round the

master sends out a distinct challenge task to every worker in

W (L:3), and upon receiving the reponses from the workers

stores the results in an array of lists R[1], R[2], · · · , R[n],
where R[i] denotes the list of results received from process

wi ∈ W (L:4). Next based on the results in R[], the ID of

187

Algorithm 4 Algorithm MWVOTE, at the master process,

performs n tasks using n workers for the case s
s+1 < fa(1−

ε) + (1− fa)ε and T = {V }.

1: F [i] ← ∅ � initially empty for all 1 ≤ i ≤ n
2: for i = 1 to �k log n� do � for some constant k > 0
3: Choose a random permutation π ∈ Πn

4: Send each task tj ∈ T to worker wπ(j)

5: Add received result from worker wπ(j) to F [j]
6: end for
7: for i = 1 : n do
8: Results[i] ← plurality(F [i])
9: end for

10: return Results

any worker that answered the majority of the challenge tasks

correctly is included in the set Ua (L:8).

During the Phase 2, only the workers in Ua are used to

compute the n tasks. Each task is executed �k log n� times.

The results sent back by the workers in Ua are stored in the

array of lists F [1], F [2], · · · , F [n] (L:15), where the results for

task ti are stored in list F [i]. Finally, the master decides for

every task ti the plurality of results in F [i] to be the correct

result. The results of the tasks in T are hence stored in the

array variable Results , where Results[i] is the result of task

ti (L:19).

Correctness and Performance Analysis: Now, we prove the

correctness of all the tasks whp and the complexity of results.

In Lemma 4.1, we show that at the end of Phase 1 every

altruistic worker and only altrusitic workers are included in

Ua. Using this lemma, we prove Theorem 4.1 which states

that every task in T is computed correctly whp.

Lemma 4.1: In any execution of MWMIX, at the end of

Phase 1 we have Ua = Wa, whp.

Theorem 4.1: If s
s+1 < 1 − ε, then Algorithm MWMIX

computes all n tasks correctly, whp.

Theorem 4.2: Algorithm MWMIX runs in Θ(n
na

log n) syn-

chronous rounds and performs Θ(n log n) work.

B. Algorithm MWVOTE: Use Voting Alone

In this section, we present algorithm MWVOTE that uses

voting mechanism alone (i.e., when T = V) to compute all the

n tasks whp. Algorithm MWVOTE can be used when s
s+1 <

fa(1 − ε) + (1 − fa)ε. Note here that, without identifying

the altruistic workers, the probability that a randomly selected

worker will reply with the correct answer for a task t is fa(1−
ε)+(1−fa)ε; i.e. receive the correct answer from an altruistic

worker with probability 1− ε or to receive the correct answer

from a troll with probability ε.

Description of algorithm MWVOTE: Below we present our

algorithm MWVOTE, and the pseudo-code for the algorithm

is in Algorithm 4. The basic idea of MWVOTE is to exploit

the fact that if a troll worker picks an answer for a task t
randomly from R(t) and s

d is small, then the likelihood of

an incorrect result being a majority or plurality among all the

results is small. To apply this idea, the master distributes the

n tasks according to a random permutation from Πn, which

is the set of all permutations over [n] = {1, 2, . . . , n}. In

other words, if the random permutation is π then the jth task

tj is delegated to worker wπ(j) (L:4). The whole process is

repeated �k log n� rounds (L:2-6). The constant k is used to

tune the exponent > 0 in the denominator of 1
n� , required

for the high probability guarantee. The results for each task

tj is accumulated in the multiset R[j]. When the for loop in

lines 2–6 terminates, the result for each task tj ∈ T is chosen

to be the one that forms a plurality of results in R[j] (L:8).

Correctness and Performance Analysis: The following the-

orems state that algorithm MWVOTE computes all tasks

correctly whp under the assumed case.

Theorem 4.3: If s
s+1 < fa(1 − ε) + (1 − fa)ε, Algorithm

MWVOTE computes all n tasks correctly whp.

Theorem 4.4: Algorithm MWVOTE runs in Θ(log n) syn-

chronous rounds and performs Θ(n log n) work.

Remark 4.1: Note that the algorithms presented in this sec-

tion have a log factor overhead on the optimal work (Theorem

3.1). According to [12] a factor of log work overhead is

the least amount of work required per task when voting is

used. Thus, we can safely conclude on the optimality of both

algorithms MWMIX and MWVOTE.

V. ALGORITHM E1: TIGHTLY ESTIMATING fa AND ε

As shown in Section IV, algorithms MWMIX and

MWVOTE are possible only if we know parameters of the

system, like the probability of error ε, the fraction of altruistic

workers fa, and the number of correct results s, to check

applicability. In this section, we assume s is known, but that

neither the value of fa and ε are known a priori. (Note that it

is reasonable to assume that the number of correct answers

s is known.) Hence, we provide an algorithm to estimate

fa and ε, whp. As a byproduct, the algorithm also estimates

fa(1− ε) + (1− fa)ε, whp. Our goal is to estimate all these

values, with user defined bounds, in a manner called (ε, δ)-
approximation. By choosing ε, δ ∈ O(1

nc) for some c > 0 we

can provide a tight estimate of the value within a ±ε factor

and with high probability (greater than 1− δ).

Formally, let Z be a random variable distributed in the

interval [0, 1] with mean μZ . Let Z1, Z2, . . . be independently

and identically distributed according to the Z variable. We

say that an estimate μ̃Z is an (ε, δ)-approximation of μZ if

Pr[μZ(1 − ε) ≤ μ̃Z ≤ μZ(1 + ε)] > 1 − δ. Estimating

the value of μZ may be done by collecting sufficient samples

and selecting the majority as the outcome. However, such a

solution is not feasible if the number of samples are not known

a priori.
The Stopping Rule Algorithm: Algorithm 6 is an algorithm

for calculating an (ε, δ)-approximation of the desired parame-

ters, where the error tolerance bounds δ and ε are O(1
nc), for

some c > 0. The core idea behind E1 is based on the Stopping

Rule Algorithm (SRA) of Dagum et al. [6]. For completeness

we reproduce in Algorithm 5 the SRA for estimating the

mean of a random variable with support in [0, 1], with (ε, δ)-
approximation. SRA computes an (ε, δ)-approximation with an

188

Algorithm 5 The Stopping Rule Algorithm (SRA) for estimat-

ing μZ .

input parameters: (ε, δ) with 0 < ε < 1, δ > 0
1: Let Γ = 4λ log (2

δ
)/ε2 � λ = (e− 2) ≈ 0.72

2: Let Γ1 = 1 + (1 + ε)Γ
3: initialize N ← 0, S ← 0
4: while S < Γ1 do
5: N ← N + 1
6: S ← S + ZN

7: end while
8: return μ̃Z ← Γ1

N

optimal number of samplings, within a constant factor [6].

Thus SRA-based method provides substantial computational

savings. Let us define λ = (e − 2) ≈ 0.72 and Γ =
4λ log (2δ)/ε

2. Now, Theorem 5.1 (slightly modified, from [6])

tells us that SRA provides us with an (ε, δ)-approximation with

the number of trials within Γ1

μZ
whp, where Γ1 = 1+(1+ε)Γ.

Theorem 5.1: [Stopping Rule Theorem] Let Z be a random

variable in [0, 1] with μZ = E[Z] > 0. Let μ̃Z be the estimate

produced and let NZ be the number of experiments that SRA
runs with respect to Z on inputs ε and δ. Then, (i) Pr[μZ(1−
ε) ≤ μ̃Z ≤ μZ(1 + ε)] > 1 − δ; (ii) E[NZ] ≤ Γ1

μZ
, and

(iii) Pr[NZ > (1 + ε) Γ1

μZ
] ≤ δ

2 .

Description of algorithm E1: The idea behind algorithm E1

is to sample two binary random variables: (i) Z1 ∈ {0, 1},

whose mean is “close” to fa; and (ii) Z2 ∈ {0, 1}, whose

mean is fa(1 − ε) + (1 − fa)ε. Then E1 creates (ε, δ)-
approximation estimates for both of these means, using the

SRA algorithm for δ, ε ∈ O(1
nc), for some c > 0. Using these

estimates, it solves for a (ε, δ)-approximation for the different

parameters. Below we explain the sampling process.

Z1 is defined as follows: the master randomly picks a
worker w from W , sends (a positive integer, explained later)
challenges to w, and collects and verifies the results. If the
majority of the results R are correct then Z1 = 1, otherwise
Z1 = 0. We use CorrMaj (R) to denote that the majority of
the results in R are correct. Clearly,

E[Z1] = Pr[w ∈ Wa] ·Pr[CorrMaj (R)|w ∈ Wa]

+ Pr[w /∈ Wa] ·Pr[CorrMaj (R)|w /∈ Wa]

= fa ·Pr[CorrMaj (R)|w ∈ Wa]

+ (1− fa) ·Pr[CorrMaj (R)|w /∈ Wa]

Next, by exploiting the fact that ε < 1
2 − ζ, where

ζ > 0 is a constant, we choose appropriately, such that,

Pr[CorrMaj (R)|w ∈ Wa] ≈ 1 (i.e., 1 − O(1
nc), for some

c > 0) and Pr[CorrMaj (R)|w /∈ Wa] becomes very small

(i.e., O(1
nc), for some c > 0). Hence E[Z1] approximated

suitably enough fa = Pr[w ∈ Wa]. Lines 4–15 for algorithm

E1 implements the SRA algorithm to estimate E[Z1].

Z2 is defined as follows: the master randomly picks a
worker w from W , assigns a challenge to w, and verifies the
reported result. If the result is correct then Z2 = 1, otherwise

Z2 = 0. Note that

E[Z2] = Pr[w ∈ Wa] ·Pr[result is correct|w ∈ Wa]

+ Pr[w /∈ Wa] ·Pr[result is correct|w /∈ Wa]

= fa(1− ε) + (1− fa)ε.

Lines 16–24 for algorithm E1 implement the SRA algorithm

to estimate E[Z2].

Algorithm 6 Algorithm E1 to estimate fa, ε, and fa(1− ε)+
(1− fa)ε.

1: Let δ = 1
nc and ε = 1

nc for c > 0
2: Let Γ = (4λ log (2

δ
))/ε2 and Γ1 = 1 + (1 + ε)Γ

3: Let � = �k log n�, for some k > 0
4: N ← 0, S ← 0
5: while S < Γ1 do
6: N ← N + 1
7: pick a worker w randomly uniformly from W
8: for i = 1 to � do
9: send challenge task ti to w

10: R[i] ← result received from w
11: end for
12: if CorrMaj (R) then Z1

N ← 1 else Z1
N ← 0 end if

13: S ← S + Z1
N

14: end while
15: p̃ ← Γ1

N
16: N ← 0, S ← 0
17: while S < Γ1 do
18: N ← N + 1
19: pick a worker w randomly uniformly from W
20: send challenge task to w
21: if result received from w is correct then Z2

N ← 1 else Z2
N ←

0 end if
22: S ← S + Z2

N

23: end while
24: q̃ ← Γ1

N

25: return
(
p̃, q̃−p̃

1−2p̃
, q̃
)

Analysis of the algorithm: In the following theorem we

state that E1 provides suitable approximation for the different

parameters of the system.

Theorem 5.2: The estimates p̃, q̃−p̃
1−2p̃ , and q̃ returned by E1

are (ε, δ)-approximations of the parameters fa, ε, and fa(1−
ε) + (1 − fa)ε, respectively, where ε, δ ∈ O(1

nγ), for some

γ > 0.

Theorem 5.3: The number of rounds or the work for algo-

rithm E1 is nc log n for c > 0 whp.

Proof: The number of times the while loop iterates is

the value of N at the end of the looping. The value of N
at the end of any of the while loop is nc log n whp, which

can be proved by substituting 1
nc for δ and ε in the Γ1 (see

Algorithm 6) and applying Theorem 5.1(iii). Now, in the first

while the for loop runs for Θ(log n) iterations. Therefore, the

rounds and work are O(nc log2 n), whp.

VI. CONCLUSIONS AND FUTURE WORK

This work considers the master-worker paradigm for

Internet-based computation of tasks, in the presence of al-

truistic and troll workers subject to an error probability that

189

can alter their intended behavior. A generic model capturing

the parameters of the master-worker paradigm is presented;

deviating from the usual conventions made in the literature.

The error probability that workers might have and moving

away from the usual assumption that a task can only have one

correct and one incorrect result made also our modelling more

realistic.

There are still many aspects of the system that are not cap-

tured by our proposed model. For example, we do not consider

the possibility that workers might be unavailable at stages in

the execution, or that they may express dynamic behavior by

experiencing different error probability over time. Moreover, it

would be interesting to study algorithms that adapt when each

task has a different number of correct and incorrect results. We

have assumed for simplicity of presentation that ε is the same

for all workers, this assumption also helped to gain a better

understanding of our master-worker setting. In the future we

plan to remove this assumption and consider that each worker

has it’s own error probability that can even change over time.

Thus, we will adapt our algorithms to reputation techniques

designed to help us estimate the reliability of each worker.

Such additional considerations will allow our model to capture

more complex environments like, for example, the behavior of

crowdsourcing systems.

REFERENCES

[1] D. P. Anderson. Boinc: A system for public-resource computing and
storage. In Grid Computing, 2004. Proceedings. Fifth IEEE/ACM
International Workshop on, pages 4–10. IEEE, 2004.

[2] D. P. Anderson. Volunteer computing: the ultimate cloud. ACM
Crossroads, 16(3):7–10, 2010.

[3] D. P. Anderson. BOINC, 2016. http://boinc.berkeley.edu/.

[4] D. M. Blough and G. F. Sullivan. A comparison of voting strategies for
fault-tolerant distributed systems. In Proc. of RDS’90, pages 136–145,
1990.

[5] G. Casella and R. L. Berger. Statistical Inference. Duxbury Advanced
Series, second edition, 2001.

[6] P. Dagum, R.M. Karp, M. Luby, and S. Ross. An optimal algorithm for
monte carlo estimation. In Proceedings of the Foundations of Computer
Science, pages 142–149, 1995.

[7] W. de Zutter. BOINC stats, 2016. http://boincstats.com/en/forum/10/
4597.

[8] A. Fernández, C. Georgiou, L. López, and A. Santos. Reliably executing
tasks in the presence of malicious processors. In Distributed Computing,
pages 490–492. Springer, 2005.

[9] A. Fernández Anta, C. Georgiou, L. López, and A. Santos. Reliable
internet-based master-worker computing in the presence of malicious
workers. Parallel Processing Letters, 22(01), 2012.

[10] E. M. Heien, D. P Anderson, and K. Hagihara. Computing low latency
batches with unreliable workers in volunteer computing environments.
Journal of Grid Computing, 7(4):501–518, 2009.

[11] D. Kondo, F. Araujo, P. Malecot, P. Domingues, L. M. Silva, G. Fedak,
and F. Cappello. Characterizing result errors in internet desktop grids.
In Euro-Par 2007 Parallel Processing, pages 361–371. Springer, 2007.

[12] K. M. Konwar, S. Rajasekaran, and A. A. Shvartsman. Robust network
supercomputing with unreliable workers. J. Parallel Distrib. Comput.,
75:81–92, 2015.

[13] E. Korpela, D. Werthimer, D. P Anderson, J. Cobb, and M. Lebofsky.
Seti@ homemassively distributed computing for seti. Computing in
science & engineering, 3(1):78–83, 2001.

[14] A. Kumar and K. Malik. Voting mechanisms in distributed systems.
Reliability, IEEE Transactions on, 40(5):593–600, 1991.

[15] M. Paquette and A. Pelc. Optimal decision strategies in byzantine en-
vironments. Journal of Parallel and Distributed Computing, 66(3):419–
427, 2006.

[16] L. FG Sarmenta. Sabotage-tolerance mechanisms for volunteer com-
puting systems. Future Generation Computer Systems, 18(4):561–572,
2002.

[17] J. Sonnek, M. Nathan, A. Chandra, and J. Weissman. Reputation-based
scheduling on unreliable distributed infrastructures. In IEEE ICDCS06,
pages 30–30, 2006.

[18] S. Zhao, V. Lo, and C G. Dickey. Result verification and trust-based
scheduling in peer-to-peer grids. In IEEE P2P05, 2005.

190

NoSQL Undo: Recovering NoSQL Databases
by Undoing Operations

David Matos Miguel Correia
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

Abstract—NoSQL databases offer high throughput, support
for huge data structures, and capacity to scale horizontally at
the expense of not supporting relational data, ACID consistency
and a standard SQL syntax. Due to their simplicity and flex-
ibility, NoSQL databases are becoming very popular among
web application developers. However, most NoSQL databases
only provide basic backup and restore mechanisms, which allow
recovering databases from a crash, but not to remove undesired
operations caused by accidental or malicious actions. To solve
this problem we propose NOSQL UNDO, a recovery approach
and tool that allows database administrators to remove the effect
of undesirable actions by undoing operations, leading the system
to a consistent state. NOSQL UNDO leverages the logging and
snapshot mechanisms built-in NoSQL databases, and is able to
undo operations as long as they are present in the logs. This is,
as far as we know, the first recovery service that offers these
capabilities for NoSQL databases. The experimental results with
MongoDB show that it is possible to undo a single operation in
a log with 1,000,000 entries in around one second and to undo
10,000 incorrect operations in less than 200 seconds.

I. INTRODUCTION

Most NoSQL databases aim to provide high performance

for large-scale applications [1], [2]. Their ability to split

records and scale-out horizontally allows them to maintain

performance when dealing with high traffic loads and peaks.

In comparison with traditional relational databases, NoSQL

databases offer better performance and availability, over strong

consistency, relational data and ACID properties [1]. These

characteristics make NoSQL databases a good choice for ap-

plications with high availability and scalability requirements,

but no need of strong consistency and complex transactions.

Currently there are many NoSQL databases.1 Some of

the best known are: Cassandra [3], MongoDB [4], Hadoop

HBase [5], Couchbase [6], DynamoDB [7], and Google

BigTable [8]. These databases vary mainly in the format of

stored data, which can be key-value [7], columnar [3], [8],

[9], or document oriented [4]. In terms of scalability, all these

systems can be deployed in large clusters and have the ability

to easily extend to new machines and to cope with failures.

Most NoSQL databases offer simple recovery mechanisms

based in local logs and snapshots that support data recovery

when a server crashes. They also use global logs that keep data

consistency across replicas. These mechanisms are useful but

not sufficient to remove the effect of faulty operations from

the system state, e.g., of an exploit to a website vulnerability

1We use “databases” for short to mean database management systems.

or an incorrect update command by a database administrator

that changes or deletes the wrong document. If an incorrect

operation is executed and corrupts the database, an adminis-

trator may restore an old snapshot that does not include the

faulty operation. However, although this solution removes the

faulty operation from the database it also discards correct state

changes. Even worse, if the faulty operation is detected late,

the amount of data lost may be huge. A better solution is to

manually execute a command, such as an update or a delete,

that removes the effects of the incorrect operation, but this is

difficult and time consuming for the administrator. The time it

takes to recover a database is critical; if a recovery takes too

long it could be impossible to successfully recover the data

without collateral damage.

This paper presents NOSQL UNDO, a recovery approach

and tool that allows database administrators to automatically

remove the effect (“undo”) of faulty operations. NOSQL

UNDO is a client-side tool in the sense that it does not need

to be installed in the database server, but runs similarly to

other clients. Unlike recovery tools in the literature [10]–[12],

NOSQL UNDO does not require an extra server to act as proxy

since it uses the built-in log and snapshots of the database to

perform recovery. It also does not require extra meta-data or

modifications to the database distribution or to the application

using the database. The tool offers two different methods to

recover a database: Full Recovery that performs better when

removing a large amount of incorrect operations; and Focused
Recovery that requires less database writes when there are just

a few incorrect operations to undo. NOSQL UNDO supports

the replicated (primary-secondary) and sharded architecture of

NoSQL databases. The tool provides a graphical user interface

so that a database administrator is able to easily and quickly

find faulty operations and perform a recovery.

To evaluate NOSQL UNDO, we integrated it with Mon-

goDB and conducted several experiments using YCSB [13].

The latter is a benchmark framework for data-servicing ser-

vices that provides realistic workloads that represent real-

world applications. It allows configuring the amount of op-

erations, records, threads and clients using the database. With

the experimental evaluation we wanted to compare both ap-

proaches to undo incorrect operations (Focused Recovery and

Full Recovery), and how both methods perform with different

sets of operations. The experimental results show that it is

possible to undo a single operation in a log with 1,000,000

entries in around one second and to undo 10,000 incorrect

operations in less than 200 seconds.978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

191

Fig. 1: Example of NoSQL instance with two shards.

This work provides the following contributions. First, a

novel recovery approach and tool that supports the distributed

– replicated and sharded – architecture of NoSQL databases,

with two recovery methods, that does not require a proxy to log

operations, and does not require modifications to the service.

This is the first system combining these characteristics. It

is also the first that supports such a replicated and sharded

architecture, that does not require a proxy, and that does

not require modifications to the service to support recovery.

Second, a detailed experimental evaluation of the tool and

comparison of the two recovery methods using YCSB.

II. NOSQL DATABASES

Most NoSQL databases provide replication, horizontal scal-

ing, unstructured data storage and simple backup and restore

capabilities. There are different NoSQL databases, but there

are many common elements in their architectures. In some

databases several elements can be incorporated in the same

server [6], whereas others require that each component of

the system is placed in a dedicated server [3], [4]. Some

databases [3], [9] may require additional components, such as

Zookeeper [14] to manage group membership. Despite their

differences, NoSQL databases that provide replication and

horizontal scaling tend to have a similar architecture.

A. Architecture

Figure 1 represents the architecture of a common NoSQL

database instance with two shards. In this configuration each

piece of data is divided into slices that are stored in the shards.

Each shard is a collection of servers that store the same data,

i.e., that are replicas. This redundancy provides fault tolerance

(no data is lost in case a replica fails) and more performance

(any of the servers can respond to read operations). In each

replica a server acts as primary and coordinates the replication

actions of the remaining, secondary, servers. The primary

server is responsible for keeping data consistent inside a shard.

In order to correctly split data in shards, a special server

(or a collection of servers, depending on the complexity of

the instance) is responsible for redirecting the requests to

the correct shards and divide the records. These servers are

usually called routers. The routers are the components of the

system that interact with the application. If there are no routers

alive then the database is inaccessible. To prevent this usually

there are several routers. Besides increasing availability of the

database, having several routers also increases the performance

since if reduces the bottleneck of having a single server

responding to every request of the application.

Some NoSQL databases have extra servers that are respon-

sible for recording configuration information of the instance

(configuration servers in the figure). This allows separation

of concerns: while some server are only responsible for

storing data, other are responsible for storing metadata and

configuration parameters of the instance.

This architecture is very similar to a distributed MongoDB

instance. The main difference is that the configuration servers

in a Mongo database are grouped in a replica set (primary with

a set of secondary servers) which means that all the configura-

tion servers store the exact same information. Cassandra also

has a similar architecture except that the configuration servers

are not present. The metadata and configuration parameters

are stored in the data servers. HBase has a slightly different

architecture. Master servers are in a group and manage how

data is partitioned to the slave servers (also called region

servers). This approach does not separate the servers by data

partitions, but instead separates the servers in two groups:

master servers and region servers. In Couchbase it is possible

to aggregate every component in every server. This way all

the servers perform the same tasks. It is also possible to

deploy a Couchbase database having each server responsible

for a specific task. This way the architecture of a Couchbase

database would be like the one in Figure 1.

B. Logging Mechanisms

Most databases have a logging mechanism that records

database requests and take periodic snapshots, allowing the

recovery of the system in case of failure. NoSQL databases

also have logging mechanisms and take snapshots to allow

the recovery of an individual server. However, these logs

are specific to an individual server, so if the entire database

(all servers) fails it is difficult to recover it using the local

logs of each server. Besides the local log of each server,

most NoSQL databases also have a global log that is used to

maintain consistency across all the servers. This global log is

not intended to recover the database, but instead to guarantee

that all the servers receive the same set of operation in the

correct order.

1) Local logs: Any cluster should be prepared for single

servers failing unexpectedly. After a failure, a server has to

perform fail-over, i.e., to take the required actions to come

back to work without interfering with the remaining servers.

In order to do that the server must have a diary in which it

records every operation it writes to disk, so in case of failure

the server only needs to repeat every operation and it should

reach the state right before the failure. In some cases this diary

is not sufficient since it only contains recent operations, so it

is necessary to use a snapshot (a full copy of the server in

192

a previous moment in time) of the server and complete the

missing information with the entries in the diary. The diary

in which the server stores the operations is a local log and

the information it contains is usually non human readable and

specific to the server itself. A simple query can be decomposed

in several local log entries corresponding to all the disk writes

necessary to execute that query.

2) Global logs: In order to keep data consistent across

servers the requests have to be delivered in total order, i.e.,

all requests delivered in the same order to all servers. On the

contrary, simply sending the requests to all the servers might

not work since some messages could be lost in the network

or delivered out of order. To prevent this most databases use a

global log in which they store every request they receive. This

log is then used to propagate the operations to all the servers.

If a server fails to receive an operation it can later consult the

global log and execute it. Some databases have a fixed storage

limit for this global log, i.e., it is implemented as a circular

array (older operations are overwritten by new ones to prevent

the log from growing indefinitely). The way the operations are

stored in the global log is usually similar to the way data is

stored in the database, meaning that is is possible and fairly

easy to perform normal queries over the global log. Random

values are converted into deterministic values to guarantee

that every operation in the log is idempotent. Besides the

operation itself, each log entry contains also a numeric value

that allows ordering the executed operations. This numeric

value guarantees that every server in the instance is able to

reach the same state, since they all execute the operations in

the same order.

In most NoSQL databases the global log has a format that

is close to the format of the requests, contains the executed

queries, is in a human readable form, and stores the operations

in the order they were executed. Therefore, in NOSQL UNDO

we use this log to perform recovery.

III. NOSQL UNDO

NOSQL UNDO is a client side tool that only accesses a

NoSQL database instance when the database administrator

wants to remove the effect of some operations from the

database, e.g., because they are malicious. The client does not

need to be connected to the server in run time since it uses

the database built-in logs to do recovery.

A. Undo vs Rollback

Every database provides rollback capabilities, meaning that

if an incorrect operation is detected and needs to be removed

then it is possible to revert the entire database to a previous

point in time prior to the execution of that incorrect operation.

The problem with this approach is that every single correct

operation executed after the point in time to recover is lost.

Figure 2 represents the state of a database with three different

documents (D1, D2 and D3). All three documents were

updated 6 times, i.e., there are 6 versions of each of these

documents in the log of the database. Two of these documents

(D1 and D2) were corrupted by malicious operations (red

dots). D1 is later updated with valid operations meaning that

part of the document may be corrupted while the other part is

valid. To use a traditional rollback, the administrator needs to

select a point in time prior to any malicious operation, which

in this case is when all documents were in version 2. After the

rollback the database is clean, however all the documents were

reverted to older versions. Every correct operation executed

after version 2 is then lost. By using any of the algorithms

of NOSQL UNDO, the administrator is able to clean both D1

and D2 and still keep every correct operation that was executed

after, since both algorithms correct the corrupted documents

by removing the effects of the malicious operations, instead

of replacing them with older versions.

Fig. 2: Comparison of using rollback to recover a corrupted

database with using undo to revert incorrect operations.

B. Architecture
Figure 3 presents an example of a NoSQL instance with

NOSQL UNDO. The architecture is logically divided in two

layers: the database layer in which the database runs without

any modification to the configuration or to the software;

and the support layer, which includes optional modules that

can also be deployed to improve the capabilities of NOSQL

UNDO.
In order to undo undesired operations there has to be a log

with every executed operation and snapshots with previous

versions of the database. Most recovery systems, such as

Operator Undo [10] and Shuttle [15], implement a proxy

that intercepts every request to the database and saves these

requests in a specific log, independent from the DBMS.

That approach may impact performance since every operation

must pass through a single server [15]. The proxy may also

be a single point of failure; if it fails, the clients become

unable to contact the DBMS. It is possible to circumvent this

limitation by replicating the proxy, however this introduces

more complexity in the system. NOSQL UNDO handles this

issue using the built-in logs and snapshots to do recovery, so

it does not require an additional server (proxy).
Since NOSQL UNDO only accesses the built-in log to

perform recovery it does not have control of when log entries

193

Fig. 3: A NoSQL database with NOSQL UNDO.

are discarded. A database administrator may define a high

storage threshold for the log, but an unpredictable peak of

traffic may be enough to exhaust that limit. To guarantee

that any operation can be undone, the log has to be saved

regularly. NOSQL UNDO does this using a service that runs

along with the database instance and listens to changes in the

log, the Global Log Backup Service (Figure 3). This service

is a daemon that is constantly listening to the database for

changes and keeping a copy of every log entry in an external

database. Every time an operation is executed in the database

instance, a new log entry is created and the global log backup

service is notified, then it copies the global log record to

another database that should be stored in a different server

for availability purposes. This backup operation executes con-

currently with the clients’ operations and does not require the

database to lock until the record was successfully stored, so it

does not interfere with the original database functioning.

The last component of the architecture is the Intrusion

Detector, which provides assistance with the process of iden-

tifying operations that need to be undone. We postpone the

explanation of this component to Section III-D.

C. Recovery Mechanisms

NOSQL UNDO uses two methods to undo the effects of

incorrect operations leaving the database in a correct state: full

recovery and focused recovery. Both methods take as input a

list with operations to undo.

1) Full recovery: The full recovery algorithm is the sim-

plest recovery method among the two. It works by loading the

most recent snapshot of the database, then it updates the state

by executing the remaining operations, which were previously

recorded in a log. The algorithm takes as input a list of

incorrect operations that it is suppose to ignore when it is

executing the log operations.

Algorithm 1 shows the full recovery procedure. The algo-

rithm takes as input the most recent snapshot before the first

incorrect operation and a list with the incorrect operations

to undo. In line 1 a new database instance is created using

Algorithm 1 Full recovery algorithm.

1: recoveredDatabase ← snapshot
2: logEntries ← getLogEntries(snapshot)
3: for logEntry ∈ logEntries do
4: if logEntry
∈ incorrectLogEntries then
5: recoveredDatabase.execute(logEntry)
6: end if
7: end for
8: return recoveredDatabase

that snapshot. The log entries are fetched from the global log

(line 2) using the getLogEntries method. This method returns

an ordered list with every log entry after snapshot. Correct

operations are executed in line 5. When the algorithm finishes

(line 8), recoveredDatabase is a clean copy of the database

without the effects of incorrect operations. This algorithm is

simple and effective, but is not efficient when there are a small

number of operations to undo, since it requires every correct

operation in the log after the snapshot to be re-executed.

2) Focused recovery: The idea behind Focused Recovery is

that instead of recovering the entire database just to erase the

effects of a small set of incorrect operations, only compensa-

tion operations are executed. A compensation operation is an

operation that corrects the effects of a faulty operation. The

algorithm works basically the following way. For each faulty

operation the affected record is reconstructed in memory by

NOSQL UNDO. When the record is updated, NOSQL UNDO

removes the incorrect record and inserts the correct one in the

database. On the contrary of Algorithm 1, this algorithm only

requires two write operations in the database for each faulty

operation.

Algorithm 2 describes the process of erasing the effect

of incorrect operations. The algorithm iterates through every

incorrect operation (line 1). For each incorrect document it

fetches every log entry that affected this record (line 3). For

simplicity the pseudo-code assumes that there is no older

snapshot and that every operation executed is in the log,

therefore the recovered document is initialized empty (line 4).

If there was a snapshot, then the recovered document would

be initialized as a copy of the incorrect document in the

snapshot. Then the reconstruction begins and every correct

operation is executed in memory in the recovered record, not

in the database (lines 4 to 6). Once every correct operation is

executed, the record is ready to be inserted in the database.

First the incorrect record is deleted (line 10) and finally the

correct one is inserted (line 11).

3) Comparison of the two recovery schemes: Both methods

are capable of removing the effects of undesirable operations,

but there are differences. Focused Recovery does not require

a new database to be created (recoveredDatabase) because

it does compensation operations in the existing database. For

each record affected by incorrect operations, it does two write

operations in the database: one to remove the corrupted record,

and another to insert the fixed record. On the contrary, with

Full Recovery every correct operation executed after the last

correct snapshot is executed in a new database instance. In

terms of writes in the database, Focused Recovery is much

194

Algorithm 2 Focused recovery algorithm.

1: for incorrectOperation ∈ incorrectOperations do
2: corruptedRecord ← incorrectOperation.getRecord()
3: documentLogEntries ←

getRecordLogEntries(corruptedRecord)
4: recoveredRecord ← {}
5: for recordLogEntry ∈ recordLogEntries do
6: if recordLogEntry
= incorrectOperation then
7: recoveredRecord ←

updateRecord(recoveredRecord, recordLogEntry)
8: end if
9: end for

10: database.remove(corruptedRecord)
11: database.insert(recoveredRecord)
12: end for

lighter if the number of incorrect operations is reasonably

small. On the contrary, if the number of incorrect operations

is greater than the number of correct operations in the log,

then using the Full Recovery will be more efficient because

there are less write operations to execute in the database (see

Section V-B).

Although the algorithms leave the database in a consistent

state, a user that has read a corrupted document and suddenly

reads the corrected document may believe that the state is

inconsistent. To solve this problem, the tool can be configured

to leave a message to the users so that they understand why

the state suddenly changed [10].

Both algorithms are able to remove the effects of faulty

operations but they require the database to be paused, i.e., not

executing operations while recovering. If the database keeps

serving clients, then data consistency after recovery cannot be

guaranteed.

D. Detecting Incorrect Operations

NOSQL UNDO provides an interface for administrators to

select which operations should be discarded during recovery.

This interface provides searching capabilities making it easier

to find incorrect operations. An interesting case to use this tool

is to do recovery from intrusions.

One of the problems in recovering faulty databases is to

detect when the database became corrupted in the first place.

Detecting the incorrect operations in a log with millions of

operations can be a difficult and error prone task. Searching for

regular expressions of possible attacks may not be sufficient

since a database administrator may not remember every search

pattern to all possible malicious operations.

To cope with this, it is possible to deploy alongside with the

NoSQL database an Intrusion Detection System (IDS). This

IDS permanently listens to the requests to the database and

if they match a certain signature, it logs this operation as

suspicious. The most conspicuous case of requests that match

signatures are attempts of doing NoSQL injection attacks,

which are similar to SQL injection attacks but target NoSQL

databases [16], [17]. Later, when NOSQL UNDO is being

used it first consults all the suspicious operations and suggests

them to the database administrator who then decides if they

should be removed from the database. This automates the

identification process and reduces the time to recovery, which

can be critical in a highly accessible database. An example

of an IDS that can be deployed in this manner is Snort [18].

Different solutions to detect malicious operations in the log

can be used, such as [19]–[21].

E. Recovery Without Configuration

An interesting feature of NOSQL UNDO is that it does

not have to be configured a priori to be able to recover a

database. If an incorrect operation is detected soon enough,

i.e., while it is still present in the log, then it is possible to

remove the effects of this faulty operation without any previous

configuration of NOSQL UNDO. This is interesting as many

organizations do not take preventive measures to allow later

recovery.

This approach however has some limitations in comparison

to the full-fledged recovery scheme presented in the previ-

ous sections. When a recovery service uses specific logging

mechanism it is able to store additional information useful for

later recovery (e.g., dependencies between operations, origin

of the operations and versions of the affected documents). With

this extra information it is possible to improve the recovery

process as well as provide more information to the database

administrator to help him find the faulty operations.

IV. IMPLEMENTATION WITH MONGODB

To evaluate the proposed algorithms, a version of NOSQL

UNDO was implemented in Java. This instance of the tool

allows recovering MongoDB databases.

A. MongoDB

MongoDB supports replication to guarantee availability if

servers fail, and horizontal scaling to maintain performance

when the traffic load increases [22], [23]. A set of servers

with replicated data is called a replica set. In each replica

set there is a server that coordinates the replication process

called primary, while the remaining servers are called sec-
ondary. Each secondary server synchronizes its state with the

primary. It is possible to fragment data records into MongoDB

instances, called shards, to balance load. A shard can be either

a single server or a replica set. Data in MongoDB is structured

in documents. Each document contains a set of key-value pairs.

A set of related documents is a collection. The documents in

a collection do not need to have the same set of key-value

pairs nor the same type, as opposed to relational DBMSs that

impose a strict structure to the records (rows) of a table.

MongoDB uses two logging mechanisms: journaling, which

is the local log used to recover from data loss when a single

server crashes; and oplog, which is the global log that ensures

data consistency across replicas of a replica set. From time to

time a database copy, a snapshot, is saved in external storage

and the journal logs are discarded, otherwise they would grow

indefinitely.

In relation to journaling, MongoDB uses a local log called

journal to recover a single server that failed unexpectedly.

Every time MongoDB is about to write to disk it first logs the

195

write to a journal file. The journal is then used to recover a

single replica that failed without intervention by other servers.

The journal file contains non-human readable, binary, data so

it is hard to process.

Oplog is the global log used by MongoDB. The primary

server uses it to log every operation that changes the database.

The oplog collection has limited capacity, so MongoDB re-

moves older log entries. The oplog is stored in a (MongoDB)

database, not in a file as logs usually are.

B. NoSQL Undo with MongoDB

The integration of NOSQL UNDO with MongoDB is pretty

straightforward and follows the architecture in Figure 3. We

installed the Global Log Backup Service in the same network

of the database. NOSQL UNDO accesses both the database

and the backup of the log in order to perform recovery and

undo operations.

We used two scenarios in the experiments. Scenario 1
corresponds to Figure 3. It is a fully distributed instance

of MongoDB that was installed in 10 EC2 machines of

Amazon AWS. The database is divided in two shards, each

one containing 3 servers (one primary and two secondary).

The configuration servers are grouped in a replica set since

that is how MongoDB uses the configuration servers. Finally

there is a single router (unlike the 2 in the figure), which

is a MongoDB server that is responsible for redirecting the

requests to the correct servers. All the servers have the exact

same configuration: t2.small instances with a 1 vCPU and 2GB

of memory and running Ubuntu 14.04LTS.

We also used a second configuration in our experimental

evaluation for diversity: Scenario 2. In that scenario NOSQL

UNDO was deployed in Google Compute Engine. The deploy-

ment was composed by a single replica set with 4 machines:

1 primary and 3 secondaries. Each machine had 1 vCPU and

4GB of memory. The OS used was Debian 8.

V. EXPERIMENTAL EVALUATION

The objective of the experimental evaluation was to answer

the following questions using the implementation of NOSQL

UNDO for MongoDB: (1) what is the performance trade-off

between Focused Recovery and the Full Recovery mechanism?

(2) How long does it take to undo different numbers of

operations? (3) How does the number of versions of a file

affects the time to recover?

To inject realistic workloads we used YCSB [13]. YCSB is

a framework to evaluate the performance of different DBMSs

using realistic workloads. Some examples of DBMSs sup-

ported by YCSB are MongoDB, Cassandra [3], Couchbase [6],

DynamoDB [7], and Hadoop HBase [5]. We choose this

framework because it is widely adopted for benchmarking

NoSQL DBMSs, it provides realistic workloads, and has

several configuration options (number of operations, amount of

records to be inserted, distribution between reads and writes).

The YCSB workloads used in the experiments were: (A)

update heavy, composed by 50% reads and 50% writes; (B)

read mostly, with 95% reads and 5% writes; (C) only read,

Fig. 4: Overhead of using the Global Log Backup Service with

a confidence level of 95%.

without write operations; (D) new records inserted and the

most read, simulating social networks and forums where users

consult the most recent records; (E) short ranges, where read

operations fetch a short range of records at a time, like a

conversation application, blogs and forums; and (F) records

updated right after read, simulating social networks when users

update their profile.

MongoDB offers two different interfaces: synchronous,

where only one operation can be submitted at a time, and

asynchronous, where operations can be executed in parallel.

A. Global Log Backup Service Overhead

The Global Log Backup Service runs alongside with the

database. It listens for changes in the log, so when an operation

is executed in the database server, the Global Log Backup

Service is notified and saves the operation in external storage.

To evaluate the throughput overhead of using this backup

service we executed several workloads of YCSB 10 times each

using Scenario 2.

Figure 4 presents the average throughput (operations per

second) of 10 executions of several workloads of YCSB using

both the asynchronous and the synchronous driver with a

confidence level of 95%. The cost of having this additional

service varies from 6% to 8% when using the asynchronous

driver, and from 20% to 30% when using the synchronous

driver. The overall throughput seems acceptable given the

advantages of storing every executed operation in the database.

In terms of storage, after executing every workload of YCSB

the database occupied 100MBs in disk while the global log

backup occupied 120MBs. The overhead in terms of storage

is considerable (120%), but this is an unavoidable cost of

supporting state recovery.

B. Focused Recovery versus Full Recovery

To evaluate how Focused Recovery performs in comparison

with Full Recovery a set of operations were undone from the

database using both algorithms in Scenario 1. The size of this

set varied from 1 to 10,000. Each case was repeated 10 times.

The goal of using different sets of incorrect operations to undo

was to understand how both algorithms perform when they

196

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 2000 4000 6000 8000 10000

T
im

e
to

 R
ec

ov
er

 (
s)

Number of operations to undo

Full Recovery
Undo Recovery

Fig. 5: Focused Recovery performance vs Full Recovery time

with a confidence level of 95%.

undo from just a few operations to almost every operation in

the database.

Figure 5 shows the average time to recover using both

methods, with a confidence level of 95%. The Full Recovery

method performs better as the number of operations to remove

increases, which makes sense as less operations have to be

executed. On the other hand, the Focused Recovery method

performs a lot better when there are just a few operations

to be removed and it degrades the performance linearly as

the number of operations increases. Focused Recovery takes

almost a second to remove 1 operation, whereas Full Recovery

takes around 700 seconds. Both methods achieve a similar

performance around 5,000 operations to be removed. This

result shows that for a small number of operations to be

removed Focused Recovery is a better choice, but if more than

60% of the operations are incorrect than the Full Recovery

method should be used.

C. Recovery with Different Versions

The focused recovery method reconstructs every document

affected by incorrect operations, meaning that if a document

has a thousand versions and one of them is incorrect, then the

focused recovery method needs to re-execute the remaining

999 operations in order to reconstruct the document correctly.

To evaluate how focused recovery is able to remove incorrect

operations in documents with different number of versions,

we executed both the focused and the full recovery methods

in a document varying the number of versions from 1 to

100,000 in steps of 10. Each recovery execution was repeated

10 times. These experiments were conducted in Scenario 1.

The average recovery time of each execution can be seen

in Figure 6. The time to recover increases exponentially for

the Focused Recovery, while it remains almost constant for

the Full Recovery. This result was expected since the Full

Recovery needs to undo one incorrect operations in every

case. Focused Recovery has more work to do if the number

of versions of a document increases. This is because it needs

to reconstruct the affected record.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 10 100 1000 10000 100000

T
im

e
to

 R
ec

ov
er

 (
s)

Number of versions of the document

Full Recovery
Undo Recovery

Fig. 6: Focused and Full recovery a document with different

versions with 95% confidence level.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

A B C D E F

T
hr

ou
gh

pu
t (

op
s/

s)

Workloads

Async without IDS
Async with IDS

Sync without IDS
Sync with IDS

Fig. 7: Overhead of using Snort to detect incorrect operations

in a MongoDB Cluster.

D. Intrusion Detection Overhead

Using an IDS to tag incorrect operations facilitates the

database administrator job. When an alarm is triggered the

administrator consults the IDS log and can immediately undo

incorrect operations, instead of browsing the entire database

log for incorrect operations. To evaluate the cost of using an

IDS to detect incorrect operations, we set up an extra machine

(with the same characteristics of the others) running Snort in

Scenario 1. We then added 10 rules to Snort and executed

every YCSB workload.

Figure 7 shows the overhead of using Snort. The throughput

is degraded by 10 to 30%. It is a considerable cost given the

benefits of allowing the database administrator to recover a

database immediately without loosing time searching in the

database log for incorrect operations.

VI. RELATED WORK

The use of logs and snapshots to recover databases after

a crash is far from new and is covered in textbooks in the

area, e.g., [24]. This work follows a more recent line of work

on recovering databases [11], [25], operating systems [12],

web applications [15] and other services [10] by eliminating

the effect of undesirable operations, but not of the rest of the

operations. We discuss some of these works next.

197

Operator Undo seems to be the first work in this line [10]. It
is an architecture that aims to provide administrators the ability
to undo operations. The authors argue it is generic, but it has
been applied specifically to email servers. To remove the effect
of an operation –a verb– from the state, the system is rollback
to the moment immediately before that verb (Rewind), the
verb is removed (Repair), then every entry in the log after
that point is re-executed until the present moment (Replay).

ITDB is a self-healing database built on top of a commercial
DBMS [25]. It detects intrusions and is able to isolate the
effect of attacks. It also provides recovery mechanisms that
repair the effects of intrusions in useful time. ITDB provides
a repair mechanism that removes the effect of intrusions
similarly to NOSQL UNDO.

Phoenix is another recovery system for databases [11]. The
operations executed on a database may depend on each other,
e.g., a write operation may modify record a using values
read from record b. Phoenix tracks these dependencies and
considers them during recovery. It consists in a PostgreSQL-

based database that gathers record dependencies while logging
requests.

Shuttle is a recent recovery system form applications de-

ployed in Platform-as-a-Service clouds [15]. It combines the
use of snapshots with selective re-execution of log operations
to recover a web application and undo the effects of intrusions.
It considers the existence of more than one server (application
servers) and a back-end database, unlike the previous systems.

NOSQL UNDO is inspired in these systems but has several
crucial differences. Firstly, it is the first to support a distributed
DBMS, that can be replicated for fault tolerance (replica set)
and performance (sharding), where most of the other systems
consider a single server. Secondly, it is the only system of
the kind that does not require a proxy or modifications to
the service to support recovery (MongoDB in this case).
Instead, it takes advantage of the built-in log and uses an
external component to guarantee that no log operations are
lost. Thirdly, except for Shuttle it is the only system that
supports two modes of recovery and NoSQL databases.

VII. CONCLUSION

This paper presents a tool that allows the database ad-

ministrator to remove incorrect operations from a MongoDB
database. It runs as a client of the DBMS and uses its built-

in log and snapshots to do recovery. The tool provides two
different approaches to recover a database: Focused and Full
Recovery. Both methods are capable of recovering databases,
but there is a trade-off between performance and number of
operations to undo.

Acknowledgements This work was supported by the European Com-

mission through project H2020-653884 (SafeCloud) and by national
funds through Fundação para a Ciência e a Tecnologia (FCT) with
reference UID/CEC/50021/2013 (INESC-ID).

[1] R. Cattell, “Scalable SQL and NoSQL data stores,” ACM SIGMOD
Record, vol. 39, no. 4, pp. 12–27, 2011.

[2] Y. Li and S. Manoharan, “A performance comparison of SQL and
NoSQL databases,” in Proceedings of the IEEE Pacific Rim Conference
on Communications, Computers and Signal Processing, 2013, pp. 15–
19.

[3] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2,
pp. 35–40, 2010.

[4] “MongoDB.” [Online]. Available: http://www.mongodb.org
[5] T. White, Hadoop: The Definitive Guide. O’Reilly, 2009.
[6] M. Brown, Getting Started with Couchbase Server. O’Reilly, 2012.
[7] S. Sivasubramanian, “Amazon DynamoDB: a seamlessly scalable non-

relational database service,” in Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, 2012, pp. 729–730.

[8] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. Gruber, “Bigtable: A distributed storage
system for structured data,” ACM Transactions on Computer Systems,
vol. 26, no. 2, p. 4, 2008.

[9] M. Vora, “Hadoop-HBase for large-scale data,” in Proceedings of the
2011 IEEE International Conference on Computer Science and Network
Technology, 2011, pp. 601–605.

[10] A. Brown and D. Patterson, “Undo for operators: Building an undoable
e-mail store,” in Proceedings of the USENIX Annual Technical Confer-
ence, 2003, pp. 1–14.

[11] T. Chiueh and D. Pilania, “Design, implementation, and evaluation of
a repairable database management system,” in Proceedings of the 21st
IEEE International Conference on Data Engineering, 2005, pp. 1024–
1035.

[12] T. Kim, X. Wang, N. Zeldovich, and M. Kaashoek, “Intrusion recovery
using selective re-execution,” in Proceedings of the 9th USENIX Sym-
posium on Operating Systems Design and Implementation, 2010, pp.
89–104.

[13] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proceedings of
the 1st ACM Symposium on Cloud Computing, 2010, pp. 143–154.

[14] P. Hunt, M. Konar, F. Junqueira, and B. Reed, “Zookeeper: Wait-free
coordination for internet-scale systems.” in USENIX Annual Technical
Conference, vol. 8, 2010, p. 9.

[15] D. Nascimento and M. Correia, “Shuttle: Intrusion recovery for PaaS,”
in Proceedings of the 2015 IEEE 35th International Conference on
Distributed Computing Systems, 2015, pp. 653–663.

[16] OWASP, “Testing for NoSQL injection,”
https://www.owasp.org/index.php/Testing for NoSQL injection.

[17] J. Scambray, V. Lui, and C. Sima, Hacking Exposed Web Applications:
Web Application Security Secrets and Solutions. Mc Graw Hill, 2011.

[18] M. Roesch, “Snort: Lightweight intrusion detection for networks.” in
Proceedings of LISA’99: 13th Systems Administration Conference, 1999,
pp. 229–238.

[19] S. Lee, W. Low, and P. Wong, “Learning fingerprints for a database
intrusion detection system,” in Computer Security – ESORICS 2002.
Springer, 2002, pp. 264–279.

[20] Y. Hu and B. Panda, “A data mining approach for database intrusion
detection,” in Proceedings of the 2004 ACM Symposium on Applied
Computing, 2004, pp. 711–716.

[21] ——, “Identification of malicious transactions in database systems,”
in Proceedings of the 7th International Database Engineering and
Applications Symposium, 2003, pp. 329–335.

[22] K. Chodorow, MongoDB: The Definitive Guide. O’Reilly, 2013.
[23] “MongoDB Manual.” [Online]. Available:

https://docs.mongodb.org/manual/
[24] H. Garcia-Molina, J. D. Ullman, and J. Widom, Database Systems: The

Complete Book, 2nd ed. Pearson, 2008.
[25] P. Liu, J. Jing, P. Luenam, Y. Wang, L. Li, and S. Ingsriswang, “The

design and implementation of a self-healing database system,” Journal
of Intelligent Information Systems, vol. 23, no. 3, pp. 247–269, 2004.

198

REFERENCES

Exploiting Universal Redundancy

Ali Shoker
HASLab, INESC TEC & University of Minho

Braga, Portugal

Email: ali.shoker@inesctec.pt

Abstract—Fault tolerance is essential for building reliable
services; however, it comes at the price of redundancy, mainly the
“replication factor” and “diversity”. With the increasing reliance
on Internet-based services, more machines (mainly servers) are
needed to scale out, multiplied with the extra expense of replica-
tion. This paper revisits the very fundamentals of fault tolerance
and presents “artificial redundancy”: a formal generalization of
“exact copy” redundancy in which new sources of redundancy
are exploited to build fault tolerant systems. On this concept, we
show how to build “artificial replication” and design “artificial
fault tolerance” (AFT). We discuss the properties of these new
techniques showing that AFT extends current fault tolerant
approaches to use other forms of redundancy aiming at reduced
cost and high diversity1.

Index Terms—Artificial fault tolerance, redundancy, replica-
tion.

I. INTRODUCTION

Fault tolerance (FT) is the central pillar of reliable ser-

vices [1], [2]. A fault tolerant system must employ some form

of redundancy in space or time [2]. Redundancy in space is

widely used nowadys through consensus protocols and fault

detectors [1], [3], [4]. Unfortunately, these techniques are

costly and their effectiveness are sometimes questionable due

to the replication factor and diversity.

In particular, in order to tolerate f faults, a FT protocol

requires a minimum number of redundant components (i.e.,

replicas), called the replication factor, which is often 2f + 1
or more [5]–[7]. On the other hand, FT protocols assume

independence of failures between replicas. This is usually

mitigated by introducing some software and hardware diversity
in the replicated components on different axes and levels [8]–

[11]. Although these approaches improve the reliability of

systems through diversity, they are costly and not always effec-

tive [9], [11], [12]. For instance, N-version programming [1],

[9] introduces diversity through coding multiple versions by

independent teams and programming languages which is very

costly and not always effective since versions originate from a

common specification [9], [12]. Other approaches like proac-
tive recovery between diverse obfuscated components (gener-

ated to be semantically equivalent using a secret key) [10],

[13] are only effective in transient failures and when the key

1Project ”TEC4Growth - Pervasive Intelligence, Enhancers and Proofs of
Concept with Industrial Impact/NORTE-01-0145-FEDER-000020” is financed
by the North Portugal Regional Operational Programme (NORTE 2020), under
the PORTUGAL 2020 Partnership Agreement, and through the European
Regional Development Fund (ERDF).

is kept secret [8], [14]. BASE [11] introduces design diversity

using different Components Off-The-Shelf (COTS) that have

similar behavior, and then uses software wrappers to mimic

the state machine behavior. This approach is however limited

to the existence of COTS in various programming languages.

In this paper, we revisit the very fundamentals of fault

tolerance and introduce artificial redundancy considering the

“redundant information” inferred through the “action on a

component” rather than the “component” itself: a component

is artificially redundant to another one if there is a strong

correlation between them, even if they are non similar in

behavior or semantics. For example, two always opposite

buffers A = −B are artificially redundant since there is a

perfect (though negative) correlation between them; whereas,

“the presence of ice” is artificially redundant, with some

uncertainty, to “the atmospheric temperature is low” since they

are strongly (but not perfectly) correlated.

Artificial replication can then be achieved by making an

artificially redundant component an artificial replica, artira for

short. The idea is to wrap the component by an adapter to

code (resp., decode) the input (resp., output) of an artira as

needed using component-specific (mathematical or probabilis-

tic) transformation functions. Adapters are similar to the con-
formance wrappers used in BASE [11]; however, we apply it

to completely independent, but correlated, components instead

of those of similar behaviors allowing for some uncertainty (if

needed). Artificial fault tolerance (AFT) is therefore achieved

using replicas and artira, e.g., using voting or agreement, in

a similar fashion to current FT protocols. When artira are

perfectly correlated, existing FT protocols can be used with

higher reliability due to the increased diversity of artiras. On

the other hand, if artiras include some uncertainty (bounded

or unbounded), new variants of AFT protocols are needed as

we show in Section III.

Our approach has many benefits: (1) it exploits new forms

of redundancy to reduce the cost of replication; (2) it achieves

equivalent or better tolerance to faults than classical FT being

built on highly diverse components in terms of behavior,

providers, location, etc.; and (3) it makes it possible to achieve

lower levels of fault tolerance, e.g., detection, if some uncer-

tainty is accepted by the application and when extra “exact

copy” replicas do not exist or are not affordable. This is not

uncommon as uncertainty in fault tolerance do exist in practice

in areas like automotive systems, clock synchronization, and

Byzantine approximate agreement [15]–[17]. We believe that

these concepts can be generalized to a wider spectrum of978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

199

distributed applications and services where even new forms

of redundancy can be exploited as we do here. We discuss

the feasibility of our approach in Section II-E we explain

how AFT can be applied to a large span of applications as in

webservices, multithreading, HPC, etc., in the accompanying

report [18].

II. ARTIFICIAL REDUNDANCY AND REPLICATION

A. Notations

Consider a component X that is associated with a set of

possible actions in A. In general, an action can modify X;

however, for ease of presentation, we assume that actions are

read-only and we explicitly mention writes when needed. We

denote by a(x) the output of an action a ∈ A on a state

x ∈ X , and by Xa the range of a on any state in X; we read

this “X subject to action a”. We also assume that (Xa, d) is

a metric space with a defined distance d. We say that x ∈ S
is in the neighborhood of y ∈ S if there is a distance r such

that: d(x, y) ≤ r.

B. Artificial Redundancy

Definition 1 (Artificial Redundancy). A component X subject

to action a (i.e., Xa) is artificially redundant to component Y
subject to action b (i.e., Y b), denoted Xa � Y b, iff there is a

correlation ζ ∈]0, 1] between them.

The above definition is very relaxed as it makes any two

components redundant to each other regardless of their behav-

ior or semantics provided that there is a correlation between

them. For instance, the atmospheric “temperature forecast”

component on action getTemperature() is strongly correlated

to the “snow forecast” component on action isFalling(), and

hence, they are artificially redundant. Although, artificial re-

dundancy often makes sense when there is strong or perfect

correlation (whether +ve or –ve), we do not explicitly mention

the strength of correlation ζ to keep the definition general

to any correlation method, e.g., Pearson, Spearman, Support

Vector Machines, etc [19]. Definition 1 is fine-grained to an

individual action of a component (e.g., a function in a service

API); however, in practice, services may not be equivalent

(i.e., have different APIs); consequently, only parts of a service

might be artificially redundant; please refer to [18] for more

artificial redundancy properties.

C. Artificial Replication

Artificial redundancy remains useless without the ability to

transform artificially redundant components to replicas that

can be used in practice. We make this possible by introducing

artificial replication:

Definition 2 (Artificial Replication). A component Xa is said

to be an artificial replica (artira for short) of Y b iff there exists

α ∈ [0, 1], ε ∈ Y b, and a transformation function F : Xa −→
Y b such that ∀y ∈ Y b, ∃x ∈ Xa such that P (d(x̂, y) < ε) ≥
α, where x̂ = F(x).

Informally, this means that a component X, subject to an

action a, is an artira of Y, subject to an action b, if we can

X

X

co
d
e
r

d
e
co
d
e
r

Y

Y

ReplicaArtira

Adapter

Fig. 1: Artira vs. Replica.

find a function F such that for every state y ∈ Y b there is

a state x ∈ Xa such that F(x) is in the neighborhood of y
with some accuracy ε (i.e., the error is bounded) and certainty

α (i.e., the bound is precise). An artira is defined in a triple

(F , α, ε) whose values must be defined a priori. Notice that, X
is an artira of Y means that Y is a reference replica and need

not to be an artira of X . In principle, F is used to transform

the output a(x) to a value x̂ = F(a(x)) ∈ Y b such that x̂
is close, with distance ε, to some y ∈ Y b with certainty α.

The two metrics α and ε are strongly related and should be

adjusted together: ε = 0 reflects 100% accuracy of F whereas

α tells if this is correct all the time. Increasing ε makes the

accuracy of F lower but with better certainty α. We show in

Section II-E how tuning α and ε can bring interesting benefits.

D. Building an Artira

Building an artira Xa of an existing replica Y b starts

by defining the accepted accuracy ε and certainty α by the

application. If some strong correlation between Xa and Y b

exists Xa can likely be an artira of Y b; this is possible if a

transformation F can be defined with some accuracy ε′ and

certainty α′. ε′ and α′ can then be adjusted (by incrementing

ε′) to get a higher certainty α′. Finally, Xa is accepted as an

artira of Y b with the triple (F , α′, ε′) if: α′ ≥ α and ε′ ≤ ε.
The transformation logic is then implemented in a wrapper

on top of Xa, called adapter. Fig. 1 shows the architecture

of an artira with an adapter versus a replica. An adapter

can be state-full or stateless as conformance wrappers which

were explained thoroughly in BASE [11], and therefore we

skip this discussion here. Read operations use a decoder that

implements F to transform outgoing values from the artira.

Update operations, however, use a coder to write into the

artira, which requires an inverse function F−1 to be defined. In

this case, the parameters ε′ and α′ must be adjusted to consider

the uncertainty of F−1 if it is not a “perfect” inverse of F
(since a read value will be affected twice by the uncertainty

of both F and F−1). However, this is not required when F−1

is a perfect inverse (e.g., mathematical inverse function) of F ,

since a value will be read exactly as it was previously written

via the adapter (e.g., if F(x) = 1/x and F−1(x) = 1/x,

then F(F−1(x)) = x). A reasonable cost must be paid while

building an artira as discussed in the extended version [18].

E. Artificial Redundancy and Replication Models

We discuss the different artificial redundancy and replication

models and their theoretical feasibility by considering a simple

abstraction Ai in Table I. More complex abstractions can

intuitively be built on top of it, but this is enough to serve

200

TABLE I: An abstraction of a simple component and the

relation between two possible components.

Component: Ai

val: a value of any type.
expose(val): a read-only function that exposes the value of val.
modify(val): an update function that modifies the value of val.

Relation Ai and Aj

τ : Correlation threshold above which ζ ≥ τ is accepted.
T (vali, valj): a relation to define a transformation function F .

A: Exact copy B: Perfect +ve correlation

C: Perfect -ve correlation D: +ve correlation

E: -ve correlation F: No correlation

Fig. 2: Feasibility space of artificial redundancy.

for explanation. Ai is composed of a single value val that rep-

resents the state of Ai; whereas expose and modify represent

the read and write actions, respectively, that are accessible

by any other abstraction Aj (which may have different val
type and actions). We also represent the relation between Ai

and Aj by the correlation threshold τ and the relation T ,

where τ is the minimum correlation coefficient above which

(inclusive) a service accepts components to be artificially

redundant, whereas T materializes the correlation between

two components by defining a transformation function F that

may comprise some uncertainty as described. Based on this,

we distinguish between interesting artificial replication and

redundancy models summarized in Table II.

For ease of presentation, we explain the different models

and feasibility with the help of an “imaginary” feasibility

spectrum depicted in Fig. 2. Since the ultimate goal is to build

fault tolerant systems, which is often the basic defense layer in

a service, critical services are likely to adopt very strong cor-

relation (e.g., τ is close to 1) and, gradually, fewer ones accept

lower correlation coefficients. Therefore, our conjecture argues

that the number of applications decreases (resp., increases)

exponentially to τ (resp., −τ) as the correlation coefficient ζ
approaches zero. Notice that, theoretically, τ can be close to

zero; however, it is merely meaningful only when τ > 0. 5,

i.e., when a strong correlation exists. Now, we discuss the

different models.

F. Perfect Artificial Redundancy and Replication (PAR)

Perfect artificial redundancy refers to the case in which

application FT requirements only accept perfect positive cor-

relations between components, i.e., τ = ±1; meaning that the

information inferred by one component through the adapter

is the exact information of the other with zero error. Conse-

quently, PAR is the most interesting and desirable model to

achieve fault tolerance. The feasibility is depicted in locations

A, B, and C on Fig. 2. This is mapped to Table II. A

refers to EC case which is the unique acceptable case in

current FT. Artificial redundancy expands this case to use other

redundancy sources as in PC+ (corr., B) and PC– (corr., C)

with the same confidence as if they were exact replicas, as

in A. From the perspective of artificial replication, this case

refers to the configuration: (F , α = 1, ε = 0). As shown in

the use-cases of settings EC, PC+, and PC–, the function F
transforms vali to valj without any error (ε = 0) and with

100% certainty (α = 1).

G. Strong Artificial Redundancy and Replication (SAR)

Strong artificial redundancy (SAR) refers to the case in

which a small bounded error is tolerable as in BSC case in

Table II. Though SAR is weaker than PAR, it is useful for

some applications to avoid high costs of exact copies when

high certainty is acceptable. Of course, such applications are

much fewer than those of PAR; however, they do exist in

practice as we explain in [18]. In Fig. 2, this is depicted in

the gradient color regions D and E. The dense color indicates

more applications, showing that the more interesting cases are

those when τ is closer to 1. In general, artificial replication

is represented by (F , α 	= 1, ε 	= 0) in SAR case; however,

the parameters α and ε can be tuned since the inaccuracy is

bounded. Thus, it may be suitable to increase ε so that a greater

certainty α = 1 can be achieved and thus SAR becomes

(F , α = 1, ε 	= 0). To explain this, consider the use-case in

BSC settings in Table II. In this case, the medical instruments

Ai and Aj can infer slightly different cardiac pulse val that is

bounded by δ. Then, setting ε := δ such that α = 1 can be a

good choice to get high certainty. This actually means that, the

artificial replication is 100% accurate with an allowed error of

δ cardiac pulses. We show how this is useful in Section III.

III. ARTIFICIAL FAULT TOLERANCE (AFT)

Artificial fault tolerance (AFT) is the approach used to

achieve fault tolerance in a system where at least one artira is

used. Without loss of generality, we only address consensus

protocols that are the dominant FT protocols used in practice.

In particular, we draw an analogy to show how current FT

protocols can be adjusted to support artiras, which are the

building blocks of AFT protocols. Given the size limits,

pedantic details and more fault models can be found in [18].

a) Recalling FT Protocols.: Consider a system of n
nodes (e.g., replicas) where f of them can be faulty (regardless

of the fault model). To ensure correctness, consensus (or

agreement) between nodes must be achieved. To ensure correct

Write and Read requests, the intersection of a Read quorum

and a Write quorum must be correct (non-faulty). A common

approach is to choose the quorum q to be the majority of nodes

(also called majority consensus), e.g., n
2 + 1. An FT protocol

is often designed in three main phases: Propose, Accept, and

Learn.

• Propose: a value is proposed to agree upon.

201

TABLE II: The different models, settings, an use-cases of artificial replication and based on Table I.

Model Correlation Description Use-case

PAR
EC Exact Copy. A replicated process having T = {F(vali) = valj}.

PC+ Perfect +ve
Corr. τ = +1

Two weather forecast processes where Ai returns temperature in Celsius vali = C◦ and Aj in Fahrenheit
valj = F ◦; then T = {F(vali) = (valj −32)× 5/9}.

PC– Perfect –ve
Corr. τ = −1

Two processes Ai and Aj having a shared buffer or token and using val as a flag; thus T = {F(vali) =
− valj}.

SAR BSC Bounded
Strong Corr.
| τ |≥ 0. 5

Two medical diagnosis instruments: cardiac pulse meter Ai and Electrocardiogram Aj with sensors vali and
valj (resp.); since both monitor heart activity, vali and valj are strongly correlated with some acceptable error
e bounded by δ; therefore, T = {F(vali) = valj ±e | e ≤ δ}.

• Accept: a proposed value is accepted by nodes if a

quorum q of nodes agree on it.

• Learn: the learner (often the requester) accepts the request

if a quorum q of replies match, and learns the matching

value.

This notation is analogous to the phases used in the well-

known protocols in literature as Paxos and PBFT [4], [20].

We do not discuss message exchange patterns and delivery

assumptions of an FT protocol since they are often the same

as in AFT protocols (explained next). Committing a request is

also protocol-dependent as it can occur in the Accept or Learn

phases. The matching logic ftmatch to approve a request by

the acceptors and the requester simply requires a quorum q of

responses rk to be equal:

ftmatch = card(Rq) ≥ q; Rq = {i 	= j | ri = rj} (1)

Obviously, since all the quorum’s responses are equal, the

committed value ftvalue by the acceptors, as well as the

learned value by the learner (or requester), is a single value

which corresponds to any response in the quorum:

ftvalue = rand(ri) where i ∈ Rq (2)

A. Designing AFT Protocols

Designing an AFT protocol starting from a FT protocol is

reasonably not hard since the mechanics of the three phases

is almost the same. The only sensitive parts are those which

require deterministic behavior. Since in AFT at least one node

will be an artira, this can incur some inaccuracy in the response

returned by the decoder (as explained in Section II-C) which

can induce indeterminism in some cases. This can require

modifications in the three phases depending on the artificial

replication model used. In general, the phases in an AFT

protocol are defined as follows:

• Propose: one value is proposed to agree upon.

• Accept: one or more proposed values are accepted by

nodes if a quorum q of nodes agree on them after

following some message exchange pattern.

• Learn: the learner (often the requester) accepts the request

if a quorum q of replies match with some uncertainty, and

learns a chosen value according to some policy.

The uncertainty induced by the artiras require different

matching logic to that in Eq. 1 as well since responses may

not always be equal. For an AFT model defined by (F , α, ε),
the general matching criteria is as follows:

aftmatch = card(R′
q) ≥ q; R′

q = {i 	= j | P(d(ri, rj) ≤ ε) ≥ α}
(3)

Equation 3 says that if the distance d (defined in the metric

space) between two responses is bounded by ε with probability

α then these responses are considered matching. On the other

hand, choosing a value by the requester in AFT follows an

application-dependent policy (e.g., priority, mean value, etc.):

aftvalue = policy(R′
q) (4)

Depending on the artificial replication model (i.e., PAR or

SAR), the properties of the system and aftmatch and aftvalue
may change. For instance, in benign (non-Byzantine or ma-

licious) fault models, we distinguish between the following

cases:

- In the PAR replication model, an AFT protocol has the

same design as a FT protocol. This is the most desired case

since it is at least as robust as the existing FT case. (Additional

robustness follows from the higher diversity of artiras). In

PAR, ε = 0 and α = 1; thus, the adapter’s coding/decoding is

perfect which makes the artiras deterministic, and equivalent

to replicas in behavior. Therefore, the matching logic and the

learned value become as follows:

aftmatch = card(R′′
q) ≥ q; R′′

q = {i 	= j | d(ri, rj) = 0}
aftvalue = rand(ri) where ri ∈ R′′

q

Notice that the above equations are exactly equivalent to

ftmatch and ftvalue in Eq. 1 and 2. This makes the AFT

protocol phases (Propose, Accept, and Learn) exactly the same

as those defined the FT case in Section III-0a. Therefore, in

PAR replication model, existing FT protocols can be used.

- In the SAR replication model, the AFT system is defined

by Fα
ε where ε 	= 0 and α = 1. This means that the error

induced by the adapter’s coding/decoding is bounded by ε with

probability 1. Consequently, the matching logic becomes as

follows:

aftmatch = card(Rq) ≥ q;R′′′
q = {i 	= j | d(ri, rj) ≤ ε}

Due to this bounded indeterminism, we distinguish between

Read and Write requests. In Write requests, the proposer node,

in the Propose phase, proposes a request value reqp. In the

Accept phase, a quorum q of nodes accept reqp (regardless

202

of the messaging patterns); the request is then committed by

having all non-faulty nodes execute reqp in the same order.

However, since artiras are indeterministic, the local state of

artiras can vary upon execution of reqp within the bound

defined by ε. This does not affect the Learn phase since an

ACK is enough to be sent to the requester. The problem is

however reduced to a Vector Consensus [21] or Approximate
Agreement [17] problem as we describe in more details in [18].

Executing Read requests is similar to those of Write requests

case. In some protocols, however, the requester directly sends

its Read request to all nodes, which reply back with their

local values to the client, without passing through the phases

of the protocol described above. In this case, the received

values can be treated as a vector, and then a value is chosen

depending on the policy. A policy is application-dependent. In

some cases, it is enough to choose: one value randomly, based

on some criteria (like max or min), or even an aggregate value

(e.g., sum, mean). We show in [18] that these policies are

sometimes more interesting than choosing a single value.

IV. CONCLUDING REMARKS

This paper introduces a new form of artificial redundancy
that is based on the correlations among components rather

than on exact copies or similar behaviors. This allows to

exploit new sorts of redundancy aiming at reducing the cost

of replication and improving independence of failures. In this

approach, artificial replicas (artiras) can be used as classical

replicas when some uncertainty is tolerated by the application.

Additional cost must be paid to find the suitable correlated

replica and to build the wrapper. However, this cost will

only be paid once which remains less costly than using

extra replicas. Artificial fault tolerance (AFT) protocols are

similar to classical FT protocols when the correlation between

an artira and replica is deterministic; however, the diversity

induced by the artira can improve independence of failures

and lead better reliability. If the correlation is not perfect,

the relation between an artira and replica will no longer be

deterministic, but statistical. If the correlation is strong enough,

classical FT protocols will need some modifications to take

this inaccuracy into consideration.

We argue that this model can be applied in situations where

different components are likely to correlate. For instance, the

leading Web API directory in [22] shows that dozens of web-

services exist in each API category (e.g., currency, weather,

dictionaries, BigData, etc.). Given this, it would be interesting

to exploit these redundant sources and use them as PAR artiras

to design other more reliable services. On a lower level, this

approach can also be applied in distributed programming as

in Erlang which allows processes to monitor each other for

error handling [23]. A similar application can be observed in

High Performance Computing when different processes are

strongly correlated. A simple example is the multiplication

of huge matrices in which Map processes are assigned parts

of a matrix like rows/columns/blocks. If there are patterns in

the matrix (e.g., sorting), it is not difficult to detect a failure

of a Map process if the values emitted by the adjacent Map

processes are captured. (Please refer to the extended technical

report [18] for more details.) Finally, we believe that it is

interesting to derive an empirically study on the feasibility of

this approach and the tradeoffs between FT and AFT in terms

of fault tolerance, efficiency, and cost in the future.

REFERENCES

[1] J. Gray and D. P. Siewiorek, “High-availability computer systems,”
Computer, vol. 24, no. 9, pp. 39–48, Sep. 1991.

[2] F. C. Gärtner, “Fundamentals of fault-tolerant distributed computing in
asynchronous environments,” ACM Comput. Surv., vol. 31, no. 1, pp.
1–26, Mar. 1999.

[3] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” J. ACM, vol. 43, no. 2, pp. 225–267, Mar. 1996.

[4] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
vol. 16, no. 2, pp. 133–169, May 1998.

[5] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: An
engineering perspective,” in Proceedings of the Twenty-sixth Annual
ACM Symposium on Principles of Distributed Computing, ser. PODC
’07. New York,NY,USA: ACM, 2007, pp. 398–407.

[6] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
Speculative byzantine fault tolerance,” SIGOPS Oper. Syst. Rev., vol. 41,
no. 6, pp. 45–58, Oct. 2007.

[7] Jean-Paul Bahsoun, Rachid Guerraoui, and Ali Shoker, “Making BFT
Protocols Really Adaptive,” in In the Proceedings of the 29th IEEE Inter-
national Parallel & Distributed Processing Symposium, ser. IPDPS’15.
IEEE-CS, May 2015.

[8] R. R. Obelheiro, A. N. Bessani, L. C. Lung, and M. Correia, “How
practical are intrusion-tolerant distributed systems?” 2006.

[9] L. Chen and A. Avizienis, “N-version programming: A fault-tolerance
approach to reliability of software operation,” in Digest of Papers FTCS-
8: Eighth Annual International Conference on Fault Tolerant Computing,
1978, pp. 3–9.

[10] T. Roeder and F. B. Schneider, “Proactive obfuscation,” ACM Trans.
Comput. Syst., vol. 28, no. 2, pp. 4:1–4:54, Jul. 2010.

[11] M. Castro, R. Rodrigues, and B. Liskov, “Base: Using abstraction to
improve fault tolerance,” ACM Trans. Comput. Syst., vol. 21, no. 3, pp.
236–269, Aug. 2003.

[12] J. C. Knight and N. G. Leveson, “An experimental evaluation of the
assumption of independence in multiversion programming,” IEEE Trans.
Softw. Eng., vol. 12, no. 1, pp. 96–109, Jan. 1986.

[13] F. B. Schneider and L. Zhou, “Distributed trust: Supporting fault-
tolerance and attack-tolerance,” Cornell University, Tech. Rep., 2004.

[14] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight,
A. Nguyen-Tuong, and J. Hiser, “N-variant systems: A secretless
framework for security through diversity,” in Proceedings of the 15th
Conference on USENIX Security Symposium - Volume 15, ser. USENIX-
SS’06. Berkeley,CA,USA: USENIX Association, 2006.

[15] W. Ren and R. W. Beard, Distributed consensus in multi-vehicle coop-
erative control. Springer, 2008.

[16] L. Lamport and P. M. Melliar-Smith, “Synchronizing clocks in the
presence of faults,” Journal of the ACM (JACM), vol. 32, no. 1, pp.
52–78, 1985.

[17] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl,
“Reaching approximate agreement in the presence of faults,” J. ACM,
vol. 33, no. 3, pp. 499–516, May 1986.

[18] A. Shoker, “Exploiting universal redundancy,” CoRR, Tech. Rep.,
September 2016. [Online]. Available: https://arxiv.org/corr/home

[19] J. Cohen, P. Cohen, S. G. West, and L. S. Aiken, Applied multiple
regression/correlation analysis for the behavioral sciences. Routledge,
2013.

[20] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in
Proceedings of the Third Symposium on Operating Systems Design
and Implementation, ser. OSDI ’99. Berkeley,CA,USA: USENIX
Association, 1999, pp. 173–186.

[21] M. Correia, N. F. Neves, and P. Verı́ssimo, “From consensus to atomic
broadcast: Time-free byzantine-resistant protocols without signatures,”
The Computer Journal, vol. 49, no. 1, pp. 82–96, 2006.

[22] ProgrammableWeb, “Programmableweb website,” 2015. [Online].
Available: http://www.programmableweb.com

[23] F. Cesarini and S. Thompson, Erlang programming. ” O’Reilly Media,
Inc.”, 2009.

203

Towards Designing Reliable Messaging Patterns
Naghmeh Ivaki, Nuno Laranjeiro, Filipe Araujo

CISUC, Department of Informatics Engineering

University of Coimbra, Portugal

naghmeh@dei.uc.pt, cnl@dei.uc.pt, filipius@uc.pt

Abstract—Reliable communication is nowadays pervasively
supported by TCP, which is poorly adapted for message-based
communications, because it offers a streaming channel with no
mechanisms to encapsulate messages. Moreover, TCP does not
tolerate connection crashes. Thus, whenever reliable message-
based communication is needed, developers either use heavy-
weight middleware, like Java Message Service (JMS), or develop
their own custom error-prone solutions for recovering from
crashes. In this paper, we introduce two TCP-based design
patterns that address these limitations, and facilitate the devel-
opment of light-weight and reliable message-based applications.
Our design solutions are modular, in the sense that they build
on top of each other.

Index Terms—Message-Based Communication, Reliable Com-
munication, Connection Crashes, Design Patterns

I. INTRODUCTION

Reliable messaging lies at the heart of many distributed

systems, and is often found in two basic forms: one-way and

request-response. One-way messaging, which is the simplest

form of communication, is extremely useful in event-based

systems, where the information flows in one single direction

and does not require any response. Email and chat applica-

tions [1], multi-player games [2], social networks [3], group

communication systems [4], and complex event processing

systems [5] are some of the examples that conceptually need

this messaging paradigm.

Over the last few decades, the stream-based Transmission

Control Protocol (TCP) [6] has been the most common option

for providing reliable communication over the Internet, even

for message-based applications. Despite its advantages, TCP

has several limitations for reliable message-based communi-

cation. TCP is a stream-based protocol, which means that it

has no built-in means to place application layer data into an

envelope, to be sent and received as a “Message”. Also, TCP’s

reliability guarantees are unfit for one-way messaging, because

they do not provide any means for applications to know if

application-layer messages are received or processed correctly.

Thus, despite being inherently one-way, many applications

(e.g., chat) use request-response protocols (e.g., HTTP [10]),

to ensure that their messages reach the destination. Using a

request-response paradigm in one-way applications, to imple-

ment confirmations over TCP, actually changes the interaction

pattern from one-way to request-response, which slows down

performance due to the waiting time needed for each response.

Finally, TCP does not provide means for applications to

recover from connection crashes, as they cannot determine

which messages did or did not reach the destination, should

the TCP connection fail [7].

A large number of middleware solutions, like Java Message

Service [15] or Microsoft MSMQ [16] can overcome these

limitations, to provide one-way and other forms of commu-

nication. However, these are heavyweight solutions, offering

a vast range of services, but targeting very specific platforms

and requiring a service provider.

Since reliable communication and message communication

are recurring needs in distributed systems, in this paper, we

present two messaging design patterns, called “Messenger”

and “Reliable Messenger”. These patterns should help pro-

grammers in the implementation of reliable and very light-

weight message-based communication. The Messenger design

pattern, in Section II, presents a general design of a message-

based application, in which the distributed peers use enveloped

messages for communication in a TCP full-duplex channel.

This design includes a session-based component that not only

sends and receives messages, but also implements the actions

required to build (on send) and rebuild (on receive) messages.

The Reliable Messenger, in Section III, extends the Mes-

senger’s functionalities, by applying the Connection Handler

design pattern [8], to provide the ability for recovering from

connection crashes. Thus, besides providing a full-duplex

message-oriented communication (implemented in the Mes-

senger), the Reliable Messenger tolerates connection crashes,

thus enabling reliable communication across TCP connections.

II. MESSENGER DESIGN PATTERN

In message-based communication, peers exchange data in

discrete chunks, known as “messages”. A message, which

usually includes a header and a body, is placed into an

envelope in a predefined format when sent, and it should

be exactly the same when read [9]. Since the most popular

transport protocols are stream-based (e.g., TCP), it is up to

the application layer to determine whether a message has been

completely received or not. There are various message-based

protocols (e.g., HTTP, SMTP) that define their own messaging

format, which besides achieving the functional goal of the

protocol, restricts applications to build messages that conform

to some format. This format agreement allows the peers to

rebuild the messages, after being received, from the stream of

bytes.

In this section, we present the Messenger design pattern

for synchronous message-based applications. This pattern is978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

204

+ send(Message message)
+ receive() : Message
- serialize(Message message) : byte[]
- deserialize(byte[] data) : Message
- writeSize(int size)
- readSize() : int
+ set_message_listener (MessageListener ml)
+ close()

- message_listener : MessageListener
Messenger

Service Handler A Service Handler B

+ activate(Messenger m)
Service Handler

+ read(byte[] data)
+ write(byte[] data)
+ close()

Transport Handle

Transport Layer

<<owns>> 1 <<owns>>1

1 1

+ main(String[] args) : void
Server

<<owns>>

1

1

<<activates>>

1

*

<<creates>>

1*
+ accept() : TransportHandle
+ close()

- local_address
Passive Transport Handle

+ main(String[] args) : void
Client

<<creates>>

*

1

<<activates>>
1 *

+ accept() : Messenger
+ close()

Passive Messenger
<<owns>>*<<creates>>

1*

<<owns>>

Session Layer

<<uses>> *

<<uses>>

Application Layer

+ set_body(Object body)
+ get_body() : Object
+ add_header(String attribute, Object value)
+ get_header(String attribute): Object
+ remove_header(String attribute) : Object
+ set_header(HashMap <String,Object> h)
+ get_headers() : HashMap <String,Object>

- header : HashMap <String,Object>
- body : Object

<<Serializable>>
Message

1

public void send(Message message){
 byte[] data = serialize(message)
 writeSize(data.length)
 handle.write(data)
}

public Message receive(){
 int off = 0, size = readSize()
 byte[] data = new byte[size]
 while(not closed){
 int read = handle.read(data,off,size-off)
 if (read == size-off)

break
 off = read
 }
 return deselialize(data)
}

private void writeSize(int size){
 handle.write((s >>> 24) & 0xFF)
 handle.write((s >>> 16) & 0xFF)
 handle.write((s >>> 8) & 0xFF)
 handle.write((s >>> 0) & 0xFF)
}

private int readSize(){
 int ch1 = handle.read()
 int ch2 = handle.read()
 int ch3 = handle.read()
 int ch4 = handle.read()
 if ((ch1 | ch2 | ch3 | ch4) >= 0)
 return ((ch1 << 24) + (ch2 << 16) +
 (ch3 << 8) + (ch4 << 0)
}

1

1

+ on_message(Message message)

<<interface>>
Message Listener

<<uses>>

1

1

public void set_message_listener (MessageListener ml){
 message_listener = ml
 (new Thread(new Runnable() {
 public void run() {

 while(!closed){
 Message msg = receive()
 message_listener.onMessage(msg)
 }

 })).start()}

Fig. 1: Messenger Design Pattern for Synchronous Message-Based Applications

independent of the application layer protocol, programming

language (as with design patterns in general, it targets object-

oriented programming languages), and underlying platform

(e.g., operating system).

Figure 1 presents the Messenger design pattern and its

partial implementation details as pseudocode. This design

includes three layers: application, session and transport. The

application layer includes Service Handlers to imple-

ment the business logic of the application, and a Client
and a Server, to initialize and activate the application

peers. The transport layer includes a Transport Handle
for transmitting byte streams and a Passive Transport
Handle for receiving connections on the server.

The session layer includes a Message, which is a serial-

izable data structure encapsulating application data and any

associated meta-data. A message can be interpreted as data,

as the description of a command to be invoked, or as the

description of an event that occurred (e.g., a mouse click).

Each Message includes two parts, a header to carry meta-

data and a body to carry data. The header of a message

contains meta-data about the message (e.g., identifier, size)

and any information required for communication, many times

depending on the protocol used between the application peers.

This information is stored into a structure comprised of various

fields and their corresponding values. While the header can be

used by the application and session layer, the body contains

the application’s data and is ignored by the session layer.

The Messenger is dedicated to take the necessary ac-

tions for sending and receiving the application’s messages

through the Transport Handle. Indeed, the Messenger
is responsible for sending a Message as an array of bytes

through the stream-based Transport Handle, and also

for delivering an array of bytes, read from the Transport
Handle, to the Service Handlers as a Message.

When a Message is given to the Messenger through

the method send(), the messenger converts (or serializes) the

message to an array of bytes, writes the size of the message,

and then sends the serialized message. On the receiver side,

when the method receive() is invoked by the application, the

receiver reads the size of the incoming message, receives the

message completely, deserializes it from an array of bytes to

the Message, and delivers it to the Service Handler.

Messages can also be delivered to the application us-

ing a callback method defined in Message Listener.

To enable the automatic delivery of messages, rather than

having explicit requests for read (through the method re-
ceive()), the Service Handlers must implement the

method on_message() of the Message Listener and pass

the reference of this method to the Messenger through

the method set_message_listener(). When this happens, the

Messenger internally dedicates a new thread for reading the

messages and delivering them to the service handler through

the method on_message().

III. RELIABLE MESSENGER DESIGN PATTERN

In this section, we advance the Messenger’s design to

tolerate connection crashes. To this end, the Connection

Handler design pattern [8] is used. The resulting design

is presented in Figure 2. As shown, the Reliable Mes-

senger extends the functionalities of the Messenger and

the Connection Handler. Here, we explain how the

Connection Handler design pattern is incorporated and

integrated with the Messenger, to ensure recovery from con-

nection crashes.

The Connection Handler provides an interface to

implement all actions required to establish a connection

and reestablish a failed one. Each Connection Handler
has a unique server-generated identifier. Peers exchange this

identifier in the method handshake(), once a connection is

successfully created. The actions to reconnect and resend

the lost data must be implemented in method reconnect().
The most challenging part of the recovery process in the

server side is to replace a failed connection with a new

one. The Handlers Synchronizer solves this problem,

205

Service Handler A Service Handler B

Application Layer

+ activate(ReliableMessenger m)
Service Handler

+ read(byte[] data)
+ write(byte[] data)
+ close()

Transport HandleTransport Layer

<<owns>> 1 <<owns>>1

1 1

+ main(String[] args) : void
Server

<<owns>>

1

1

<<activates>>

1

*

<<creates>> 1*
+ accept() : TransportHandle
+ close()

- local_address
Passive Transport Handle

+ main(String[] args) : void
Client

<<creates>> *

1 <<activates>>

1

*

+ accept() : Reliable Messenger
+ close()

Passive Reliable Messenger
<<owns>>*

<<creates>> 1*

<<owns>>

Session Layer

+ set_body(Object body)
+ get_body() : Object
+ add_header(String attribute, Object value)
+ get_header(String attribute): Object
+ remove_header(String attribute) : Object
+ set_header(HashMap <String,Object> h)
+ get_headers() : HashMap <String,Object>

- header : HashMap <String,Object>
- body : Object

<<Serializable>>
Message<<uses>>

1

1

+ on_message(Message message)

<<interface>>
Message Listener

<<uses>>

1

1

+ send(Message message)
+ receive() : Message
- serialize(Message message) : byte[]
- deserialize(byte[] data) : Message
- writeSize(int size)
- readSize() : int
+ set_message_listener(MessageListener ml)
+ close()

- message_listener : MessageListener
Messenger

1

<<uses>> 1*

+ get_handlerId() : int
+ get_max_reconn_time() : int
+ set_max_reconn_time(int t)
handshake()
reconnect()
+ close()

+ enum ConnectionType {NEW, RECOVERY}
type : ConnectionType
handlerId : int
MAX_RECONN_TIME : int

Connection Handler

+ register_handler(ConnectionHandler h) : int
+ deregister_handler(int handlerid)
+ get_event(int handlerid, int timeout) : Event
+ put_event(int handlerId, Event event)
+ get_handler(int handlerId) : ConnectionHandler
- generate_identi er() : int
+ clear() : void

- handlers: <Integer handlerId, ConnectionHandler h> collection
- events : <Integer handlerId ,Event event> collection

Handlers Synchronizer

+ put(Message m)
+ get(int n): Message
+ remove(int n)
+ clear()

- buffer: list<int mid, Message m>
Message Buffer

<<owns>>1

1

- handle : TransportHandle
- data_read : int

Event

+ send(Message message)
+ receive() : Message
+ acknowledge()
+ close()

- data_written_id: int
- data_read : int
- acknowledged_id : int
- acknowledgement_timer

Reliable Messenger

<<uses>>

Fig. 2: Reliable Messenger Design Pattern

by allowing Connection Handlers to: 1) register and

deregister themselves into/from the list of the handlers; 2) put

an event for a new handler owning a failed connection; and

3) wait and get the event coming from another connection

handler with a recovered connection.

We also need a reliable endpoint, called Reliable
Messenger, which inherits the properties of the

Connection Handler, and implements its handshake

and reconnection processes. The Reliable Messenger
also extends the functionalities of the Messenger, to enable

exchange of Messages. Each Reliable Messenger
owns one Message Buffer that implements the Buffer
interface of the Connection Handler design pattern.

The Reliable Messenger must modify the send() and

receive() operations, to interact with this buffer. Upon creation

of a connection and after initialization of both client and

server, the Service Handlers start exchanging messages,

using the Reliable Messenger.

Figure 3 presents the recovery process in detail. When

a connection fails, both client and server Reliable
Messengers, try to reconnect by invoking the

reconnect() method of the Connection Handler
class.

The initiative to reestablish a connection always belongs to

the client’s messenger, while the server’s messenger (rm1)

waits for a recovery connection to arrive. In order to dis-

tinguish new connections from the recovery connections

(created for recovery purposes), each connection requires

Transport
Handle

h=accept()

Reliable
Messenger

Reliable
Messenger

Message
Buffer

Handlers
Synchronizer

reconnect()

h=TranportHandle(remote_address) get_event(handler_id, timeout)

event

messages=get(data_written- data_read)

write(messages) write(messages)

wait()

Server

reconnect()

Passive Reliable
Messenger

 rm2 = ReliableMessenger(h)

write (handshake request)

 rm2.read (handshake request)
put_event(handler_id, event)

 rm1.write (handshake response)

read (handshake response) // event is returned to the reliable
messenger with the failed connection
as a result of get_event()

// this is done by the
new reliable
messenger created for
recovery purposes

// rm1 does

reconnect

// write all messages one by one

Fig. 3: Recovery from Crashes with the Reliable Messenger

a unique identifier (handler_id), which is defined in the

Connection Handler. To generate this identifier, the

Reliable Messengers need to perform a handshake be-

fore starting the exchange of data messages, when the connec-

tion is created for the very first time. When a crash occurs, and

after a successful reconnection, the client sends a handshake

request, including this identifier, to the server, to let the server

know that the connection is created for recovery purposes.

In addition to the connection’s identifier (handler_id), the

identifier of the last message received (data_read) is also ex-

changed between the peers through the handshake procedure.

This allows the Reliable Messengers to re-transmit the

messages that were lost in transit due to the connection crash.

The replacement of the failed connection with the new

one occurs using the Handlers Synchronizer. The

Connection Handler, created for recovery purposes

206

(rm2), asks the Handlers Synchronizer to deliver an

Event, which includes the new transport handle and the id

of the last message received, to the appropriate Connection
Handler (rm1). Once the failed handle is replaced with the

new one, a handshake response is sent back to the client.

At this point, both Reliable Messengers get the lost

messages from the Message Buffer and retransmit them.

IV. RELATED WORK

Reliable messaging often works in two ways: either in direct

request-response protocols, or using an intermediate message

broker. On top of the request-response group, we find the

immensely popular HTTP [10]. HTTPR [11] leverages on

HTTP, to provide reliable transport of messages between peers,

even in the presence of network or endpoint crashes. It uses

logging and retransmission, to ensure delivery of each mes-

sage to the application. CoRAL [12] is another HTTP-based

solution that handles server crashes, in web-based services.

CoRAL uses connection replication and application-level log-

ging mechanisms. Still in the request-response paradigm,

WS-Reliability [13] and WS-ReliableMessaging [14] aim to

guarantee delivery of SOAP messages.

The second group of solutions includes the presence of

a broker that decouples communication between peers. Java

Message Service (JMS) [15] is a messaging standard that

provides an API for Java. JMS uses a broker between pro-

ducers and consumers of messages, to enable loosely-coupled

communication. Microsoft MSMQ [16] is another message

queuing technology for the Windows operating systems. IBM

WebSphere MQ [17] is also a queue-based message ori-

ented middleware that enables reliable messaging, by using

acknowledgments, negative acknowledgments, and sequence

numbers. Oracle Advanced Queuing [18] is maintained by the

Oracle Corporation and integrated into its Oracle database,

as a repository to provide message queuing for asynchronous

communications.

The Advanced Message Queueing Protocol (AMQP) [19]

is also designed to support loosely-coupled and asynchronous

communication patterns. While the above queue-based solu-

tions (JMS, MSMQ, WebSphere MQ, and OracleAQ) provide

a standard API for a specific platform, AMQP provides a

standard messaging protocol across all platforms. ZeroMQ

[20] is a high-performance messaging library aimed for scal-

able distributed applications. It provides a message queue,

but unlike message-oriented middleware, a ZeroMQ system

can run without a standalone message broker. The library is

designed to have a familiar socket-style API.

V. CONCLUSION

This paper presented design solutions for message-based

communication. These solutions target two limitations of TCP

for reliable messaging. The Messenger facilitates sending

and receiving enveloped messages and is independent of the

application-layer protocol. The Reliable Messenger provides

transparent recovery, should a connection failure occur. By

being reliable, light-weight and independent from the plat-

form, our designs close the gap between heavyweight reliable

message-oriented solutions, and many simple applications

requiring one-way communication.

ACKNOWLEDGMENT

This work was carried out under the project PTDC/EEI-

ESS/1189/2014 — Data Science for Non-Programmers, sup-

ported by COMPETE 2020, Portugal 2020-POCI, UE-FEDER

and FCT.

REFERENCES

[1] S. Herring, D. Stein, and T. Virtanen, Pragmatics of computer-mediated
communication. Walter de Gruyter, 2013, vol. 9.

[2] N. Veljkovic, M. Punt, M. Z. Bjelica, and N. Crvenkovic, “Tv-centric
multiplayer gaming over the cloud for consumer electronic devices,” in
Third IEEE International Conference on Consumer Electronics (ICCE-
Berlin), 2013, pp. 1–3.

[3] R. Canning, Real-Time Web Technologies in the Networked Performance
Environment. Ann Arbor, MI: Michigan Publishing, University of
Michigan Library, 2012.

[4] K. P. Birman, “Group communication systems,” in Guide to Reliable
Distributed Systems. Springer, 2012, pp. 369–405.

[5] G. Gharbi, M. B. Alaya, C. Diop, and E. Exposito, “Aoda: an autonomic
and ontology-driven architecture for service-oriented and event-driven
systems,” International Journal of Collaborative Enterprise, vol. 3, no.
2/3, pp. 167–188, 2013.

[6] J. Postel, “Rfc793: Transmission control protocol.” Information Sciences
Institute, vol. 27, pp. 123–150, 1981.

[7] N. Ivaki, F. Araujo, and F. Barros, “Session-based fault-tolerant design
patterns,” in The 20th International Conference on Parallel and Dis-
tributed Systems (ICPADS), 2014.

[8] N. Ivaki and F. Araujo, “Connection handler: A design pattern
for recovery from connection crashes.” [Online]. Available: https:
//eden.dei.uc.pt/~naghmeh/papers/chdp.pdf

[9] G. Hohpe and B. Woolf, Enterprise Integration Patterns — Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley Pro-
fessional, 2003.

[10] B. Krishnamurthy and J. Rexford, Web Protocols and Practice:
HTTP/1.1, Networking Protocols, Caching, and Traffic Measurement,
1st ed. Addison-Wesley Professional, May 2001.

[11] A. Banks, J. Challenger, P. Clarke, D. Davis, R. King, K. Witting,
A. Donoho, T. Holloway, J. Ibbotson, and S. Todd, “Httpr specification,”
IBM Software Group., vol. 10, 2002.

[12] N. Aghdaie and Y. Tamir, “Coral: A transparent fault-tolerant web
service,” Journal of Systems and Software, vol. 82, no. 1, 2009.

[13] C. Evans, D. Chappell, D. Bunting, G. Tharakan, H. Shimamura,
J. Durand, J. Mischkinsky, K. Nihei, K. Iwasa, M. Chapman et al.,
“Web services reliability (ws-reliability), ver. 1.0,” joint specification by
Fujitsu, NEC, Oracle, Sonic Software, and Sun Microsystems, 2003.

[14] R. Bilorusets, D. Box, L. F. Cabrera, D. Davis, D. Ferguson, C. Ferris,
T. Freund, M. A. Hondo, J. Ibbotson, L. Jin et al., “Web services reliable
messaging protocol (ws-reliablemessaging),” Specification, BEA, IBM,
Microsoft and TIBCO, 2005.

[15] M. Richards, R. Monson-Haefel, and D. A. Chappell, Java message
service. " O’Reilly Media, Inc.", 2009.

[16] S. Horrell, “Microsoft message queue,” Enterprise Middleware, 1999.
[17] J. Hart, “Web sphere mq: connecting your applications without complex

programming,” IBM WebSphere Software White Papers, 2003.
[18] D. Gawlick, “Messaging/queuing in oracle8,” in IEEE 29th International

Conference on Data Engineering (ICDE). IEEE Computer Society,
1998, pp. 66–66.

[19] S. Vinoski, “Advanced message queuing protocol,” IEEE Internet Com-
puting, no. 6, pp. 87–89, 2006.

[20] P. Hintjens, ZeroMQ: Messaging for Many Applications. " O’Reilly
Media, Inc.", 2013.

207

Traffic Engineering based on Shortest Path Routing
Algorithms for FTV (Free-Viewpoint Television)

Applications

Priscila Solis and Henrique Domingues Garcia
Computer Science Department, Universidade de Brası́lia

Prédio CIC/EST, Campus Darcy Ribeiro, Asa Norte, Caixa Postal 4466 CEP 70910-900, Brası́lia, Brazil

Email: pris@unb.br, henriquedgarcia@gmail.com

Abstract—This paper proposes a traffic engineering method-
ology based on the self-similarity parameter of video traffic
as a restriction on an Integer Linear Programming problem
(ILP) for the definition of link costs for routing optimization
in the OSPF (Open Shortest Path First) routing protocol. The
goal is to optimize video routing considering QoS constraints
and to identify the maximum delay and link load parameters
for transmission between video sources and middleboxes for
FTV (Free Viewpoint Television) applications. The proposal was
evaluated in a simulation environment and the results show
that the routing optimization procedure based on the self-
similar parameter of video traffic for defining link weights, can
significantly reduce the delay in the network and allow the
identification of more accurate threshold values for link loads
and delays for video transmission on the Internet.

I. INTRODUCTION

With the increasing demands of bandwidth and data rates for

multimedia applications, it is estimated that until 2018 more

than 80% of the traffic on the Internet will be video. Also, the

research of the last 20 years has the consensus on the statistic

properties of multimedia traffic. which are defined as self-

similar or multifractal [1] [2] [3], increases the difficulty to

guarantee QoS (Quality of Service) metrics for applications

on a best effort based architecture, such as TCP/IP. Several

research works have addressed traffic engineering and routing

optimization with traditional protocols [4] [5] [6]. Altin [7]

presents a survey of the most relevant research related to

optimization shortest path protocols. In this scope, Fortz et

al.[6] proposed a model of Integer Linear Programming (ILP),

which is used as a comparison reference in our research. Later,

in [5] implements the heuristics proposed by Fortz in the

TOTEM simulator (ToolBox for Traffic Engineering Methods)

and Balon in [5] compared several objective functions for

engineering traffic, in which the model has the best results. On

the other hand, some authors as [4] search for new techniques

for solving optimization problems related to the discovery of

the best costs, since most of these problems are NP-complete.

When middleboxes are virtualized, they generate an NFV

(Network Functions Virtualization) that can be initialized or

deactivated as needed, increasing the efficiency and dynamism

of the network. This paper proposes a method to optimize

routing in a traditional IP network with an architecture based

Variable Description
i, j, s, t Network nodes
N Set of network nodes
(i, j) A link with source in node i and destination in node j
A Set of all network links
φ(i,j) Link cost (i,j)
(s, t) source,destination
δ(s,t) Traffic from s to t

f
(s,t)

(i,j) Flow from s to t, going though (i,j)

l(i,j) Total traffic load in (i,j)
c(i,j) Link capacity (i,j)

TABLE I
VARIABLES AND NOTATION FOR THE MCNFP.

on the use of middleboxes for FTV applications, still in

development and standardization by MPEG (Moving Picture

Experts Group) [8] [9].

II. RELATED WORK

A. FTV, Traffic Engineering and Routing Optimization

A FTV (Free viewpoint TeleVision) is a live video ap-

plication that allows the viewer to choose from a video

scene one or more viewing angles of interest, in order to

produce a viewing experience closer to reality [9]. A possible

improvement, already discussed by Rexford et al.[10] is to

select the routing parameters on a wide variety of performance

and reliability constraints. But nevertheless, the IP routing

protocols have various tunable parameters that may be adjusted

to change or optimize the paths the routers use to forward data

packets, identifying a a good setting of these parameters in a

large network is a challenging and non trivial procedure.The

discovery of optimal weights can be treated as an Integer

Linear Programming problem (ILP). Sub-optimal solutions

can be computed in polynomial time using heuristics such as

Branch and Cut, Local Search or Tabu Search [11]. The routing

optimization problem, known as MCNFP (Multi-Commodity

Network Flow Problem) [12] is described as an ILP problem

in Eqs.1 to 5. The notation used in the equations is described

in Table I.

Min Φ =
∑

(i,j)∈A

φ(i,j) (1)
978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

208

subject to:
∑
j∈N

f
(s,t)
(i,j) −

∑
j∈N

f
(s,t)
(j,i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δ(s, t) if i = s
−δ(s, t) if i = t
0 otherwise

s, t ∈ N , (i, j) ∈ A
(2)

l(i,j)=
∑

(s,t)∈N

f
(s,t)

(i,j) (3)

l(i,j) ≤ c(i,j) (i, j) ∈ A (4)

φ ≥ αzl(i,j) − βzc(i,j) (i, j) ∈ A, z ∈ Z (5)

Eq. 1 is the objective function used to minimize the link

costs considering the cost function φ. Eq. 2 is the continuity

restriction that allows that each node that has traffic inputs

and outputs (s, t) are in matrix δ. Eq. 3 defines the load as the

addition of all flows traversing links (i, j). Eq. 4 limits the link

load to its capacity and Eq. 5 is the cost function defined by a

set of linear equations. The coefficients α and β are associated

to the behavior of the cost function. In our proposal, these

coefficients are calculated by a linear regression procedure in

specific intervals to optimize the objective function.

B. Traffic Characterization for FTV Appplications

Norros in [13] describes a autossimilar stochastic process

called Fractal Envelope Process (FEP) characterized by the

Hurst parameter, the standard deviation and the network

load when considering the traffic fraction encapsulation of

1− epsilon generated by a fBm (fractional Brownian Motion)

process, where epsilon is the packet loss due to buffer size

and equals the probability that the fBm exceeds the FEP, which

is a practical way to define the upper limit of the queue. Thus,

the maximum number of elements in a FEP queue is given

by Eq.6, where k = −2lnε and qmax is the maximum queue

size. Considering the above concepts, it is possible to estimate

the effective data rate of self-similar traffic trace using the

maximum queue delay, defined by Eqs. 7 and 8 respectively,

as proposed by Fonseca et al.[14]. When the traffic results

from the aggregation of several self-similar flows in a link, it

is necessary to calculate the resulting H parameter Hg [1].

qmax = (c− ā)
H

H−1 (κσ)
1

1−H (H)
H

1−H (1−H) (6)

ĉ = ā+K
H−1
H (κσ)

1
H H(1−H)

1−H
H (7)

tmax = (κσHc− ā)
1

1−H (8)

The FTV applications aggregate hundreds or thousands

of video flows, being transmitted simultaneously with their

depths maps. Since the standard has not been totally defined,

we consider in this research that the video flows are coded

using H.265. The transmission of FTV applications has not yet

a well defined standard and some proposals have been done

for this purpose [9]. In Figure 1, based on the proposal of

Scandarolli et al.[9], we describe an architecture, in which the

Fig. 1. Adopted FTV Architecture [9]

video transmissor can send all the flows to a middlebox, physi-

cally closer to the final user, that will execute the interpolation.

This server will transmit to final users that may want to watch

different video angles that must be interpolated, coded and

delivered using a distribution system such as P2P or DASH.

To verify the statistical properties of a FTV application, we

used the video trace from Tears of Steel in 4K (4096 x 1744)

coded with H.265 [15]. We consider that the video flow will

be transmitted from the sender to the cloud, in which is the

interpolation server and can be implemented in a real network

by a middlebox. The mean data rate for this flow is 5,67 Mbps.

To simulate an hypothetical FTV application, the resulting

flow was configured considering the aggregation of 10 video

flows, for a total data rate of 56,7 Mbps. The resulting flow

is self-similar, with an H parameter of 0.87, which confirms

the need to consider this property in the routing optimization

procedures.

III. OPTIMIZATION MODEL

The results of this work raise the discussion that despite the

advantages of the more advanced routing protocols, that simple

approach of adjusting the static link weights may remain

viable for many operating IP networks. Based on that work,

our research developed an enhanced proposal to optimize

the cost function, described in Eqs.1 to 5. We propose an

ILP system, described by Eq.9, called by LPM-FEP (Linear

Program Model - Fractal Envelope Process).

ϕ′ =

1 0 ≤ l/c < 2, 5/100
5 2, 5/100 ≤ l/c < 5/100
20 5/100 ≤ l/c < 8, 5/100
150 8, 5/100 ≤ l/c < 15/100
1300 15/100 ≤ l/c < 20/100
17000 20/100 ≤ l/c < ∞

(9)

φ(i,j) ≥ l(i,j)
φ(i,j) ≥ 5l(i,j)H(i,j) − 1

10
c(i,j)

φ(i,j) ≥ 20l(i,j)H(i,j) − 17
20
c(i,j)

φ(i,j) ≥ 150l(i,j)H(i,j) − 119
10

c(i,j)
φ(i,j) ≥ 1300(i, j)H(i,j) − 922

5
c(i,j)

φ(i,j) ≥ 17000l(i,j)H(i,j) − 3325c(i,j)

(10)

To perform the optimization procedures based on the above

mentioned models, we propose the framework which is de-

scribed in the next steps:

• Step 1: Define the maximum queue size using Eq. 6;

209

Fig. 2. Network Topology for simulation: Ipe Network

• Step 2: Extract network information : topology and total

traffic (background traffic and FTV traffic);

• Step 3: Calculate Hg , σ2
g and the effective band for all

the network links using 7

• Step 4: Create a traffic matrix with the data collected in

step 3;

• Step 5: Solve the PLI model and calculte links weights;

• Step 6: Insert the new weights in the network links and

calculate new routes;

• Step 7: Monitor the QoS metrics.

We will validete our proposal through the comparison with the

Fortz Model[6] hereby called as LPM-Fortz and the standard

Cisco cost model which is a static and the inverse of the link

capacity [16], i.e. φ(i,j) = 1/ci,j , hereby called as Invcap.

IV. EXPERIMENTAL RESULTS

To perform the simulation we used the TOTEM (TOolbox

for Trafic Engineering Methods),which implements several

algorithms for traffic engineering with shortest path protocols

[5], which was also used in related previous works [6].The

network topology chosen to perform the evaluation was the

RNP (Rede Nacional de Pesquisa), available in [17] and

described in Figure 2. The network connects 27 cities in Brazil

with links varying from 100 Mbps to 20 Gbps. We used in

our evaluations the OSPFv2 protocol, as defined in the RFC

2328 [18], which uses the ECMP (Equal-Cost Multi-Path)

technique. In our proposal,the evaluated metric is defined as

the mean maximum network delay is the ratio between the

addition of the maximum delays of all the links and the number

of links. This value shows the mean upper limit that a packet

waits in the buffer before being forwarded to the next hop

or discarded until arriving to the middlebox. Accordingly to

Szigeti [19] the mean delay has to be lower than 5 seconds

for video transmission. Considering the architecture described

in Figure 1, we simulated a FTV transmission between Porto

Alegre and Belem (see Fig2), varying from 100 Mbps to 2500

Mbps. The resulting traffic showed an Hg = 0,87, consistent

with the results obtained on a real video traffic trace, as

shown in Section 3. Also, we defined for all the links a

set of background traffic, varying from 5% until 20% of

the link capacity. with a random H parameter between 0,5

e 0,85, uniformly distributed. Figure 3 shows the maximum

mean network delay versus the traffic load, with a background

traffic of 5%. The traffic rate varies between 100 Mbps and

2500 Mbps. As can be seen, with the LPM-FEP was used

to optimize the link weights, the delay is lower than the

LPM-Fortz, even with higher traffic loads. The limit of 5

seconds was reached with 2300 Mbps of traffic load for

our model, 75% more than the load reached with the LPM-

Fortz and the Invcap for the same delay, which indicates a

better route selection for the different flows. Altogether with

the background traffic, this load equals to 28% of the mean

network capacity.

Fig. 3. Maximum Mean Delay, with background traffic equal to 5%

Figure 4 shows the results for background traffic equal to

10%. As can be seen in 4 there is a burst for the maxi-

mum mean delay with the LPM-FEP at 200 Mbps, however,

suddenly the delay stabilizes and remains lower than the

other models for higher loads, with the 5 seconds upper limit

between 1100 Mbps and 1200 Mbps, while the LPM-Fortz

and Invcap reach that limit at 900 Mbps and 1000 Mbps. The

total network load with the background traffic achieves 22%

of the average network capacity.

Fig. 4. Maximum Mean Delay with background traffic = 10%

With a load of 15% for background traffic, the results are

shown in Figure 5. As can be seen, the LPM-FEP has very

good performance for this scenario, provides a more uniform

distribution of traffic in the network and the delay grows

more softly. The value remains under 5 seconds for all the

simulation interval. The FTV application plus the background

traffic corresponds to 30% of the average network capacity.

In this scenario the Invcap model presents the greatest delays

and hits the 5 seconds limit (at 700 Mbps, 53% less than the

LPM-FEP and very close to the LPM-Fortz model.

Figure 6 shows the results for background traffic equal to

20 %. The first metric for the FEP-LPM LPM was superior to

210

Fig. 5. Maximum Mean Delay with background traffic equal to 15%

the one calculated with the LPM-Fortz model at 400 Mbs, and

from this point the delays were inferior for our model when

comparing to the other models. However, for this scenario,

the delay is higher that the upper limit, reaching more than 10

seconds throughout the whole simulation.

Fig. 6. Maximum Mean Delay with background traffic equal to 20%

The results of the previous scenarios indicate that to keep

the average delay below 5 seconds for FTV applications, it is

necessary to maintain the average network load below 25%.

This result is based on the assumption that video traffic is

autossimilar and results in an aggregated self-similar traffic

with background traffic from other applications.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a traffic engineering methodology for

routing optimization for FTV applications using traditional

protocols. The idea considers that, according to other related

works, for emerging applications a good setting using tra-

ditional IP routing protocols appears to be faster and less

costly than deploying or enabling new protocols that may

adapt automatically to the prevailing traffic. Using a real

operational network topology, the experimental results show

that the routing optimization methodology proposed in our

work has the potential to reduce the delay compared to other

methods.

One important conclusion of our work is that the aver-

age network load should not exceed 25% to meet the QoS

requirements of live digital video streams on the Internet.

This value, although low, is now found in several operational

networks. However, the strong increase of applications that

consume large bandwidth may change this in the near future

and this value may be used as a interesting reference for

network managers.The future work of this research will focus

on improving the model and extend its evaluation to other

application scenarios that may extend the ideas for new routing

protocols in the Future Internet.

REFERENCES

[1] P. Solis Barreto, “Uma metodologia de engenharia de trafego baseada
na abordagem auto-similar para a caracterizacao de parametros e a
otimizacao de redes multimidia,” Tese, Universidade de Brasilia, 2007.

[2] Z. Sahinoglu and S. Tekinay, “On multimedia networks: self-similar
traffic and network performance,” Communications Magazine, IEEE,
vol. 37, no. 1, pp. 48–52, Jan 1999.

[3] I. Reljin, A. Samčović, and B. Reljin, “H.264/avc video compressed
traces: Multifractal and fractal analysis,” EURASIP J. Appl. Signal
Process., vol. 2006, pp. 123–123, jan 2006. [Online]. Available:
http://dx.doi.org/10.1155/ASP/2006/75217

[4] D. Papadimitriou, B. Fortz, and E. Gorgone, “Lagrangian relaxation for
the time-dependent combined network design and routing problem,” in
Communications (ICC), 2015 IEEE International Conference on, June
2015, pp. 6030–6036.

[5] G. Leduc, H. Abrahamsson, S. Balon et al., “An
open source traffic engineering toolbox,” Comput. Commun.,
vol. 29, no. 5, pp. 593–610, Mar. 2006, Available
at http://totem.run.montefiore.ulg.ac.be/. [Online].
Available: http://dx.doi.org/10.1016/j.comcom.2005.06.010

[6] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional
ip routing protocols,” Communications Magazine, IEEE, vol. 40, no. 10,
pp. 118–124, Oct 2002.

[7] A. Altin, B. Fortz, M. Thorup, and H. Umit, “Intra-domain traffic
engineering with shortest path routing protocols,” Annals of Operations
Research, vol. 204, no. 1, pp. 65–95, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s10479-012-1270-7

[8] M. Tanimoto, M. Tehrani, T. Fujii, and T. Yendo, “Free-viewpoint TV
- a review of the ultimate 3DTV and its related technologies,” Signal
Processing Magazine, IEEE, vol. 28, no. 1, pp. 67–76, Jan. 2011.

[9] T. Scandarolli, R. de Queiroz, and D. Florencio, “Attention-weighted
rate allocation in free-viewpoint television,” Signal Processing Letters,
IEEE, vol. 20, no. 4, pp. 359–362, Apr. 2013.

[10] J. He, J. Rexford, and M. Chiang, “Design for optimizability: Traffic
management of a future internet,” in Algorithms for Next Generation
Networks, ser. Computer Communications and Networks, G. Cormode
and M. Thottan, Eds. Springer London, 2010, pp. 3–18. [Online].
Available: http://dx.doi.org/10.1007/978-1-84882-765-3 1

[11] B. Fortz and D. Papadimitriou, “Branch-and-cut strategies for a multi-
period network design and routing problem,” in Control, Decision and
Information Technologies (CoDIT), 2014 International Conference on,
Nov 2014, pp. 128–133.

[12] D. P. Bertsekas and R. G. Gallager, Data networks. London:
Prentice-Hall International, 1992, 1Ã¨re Ã c©dition publiÃ c©e en
1987. International student edition en 1992. [Online]. Available:
http://opac.inria.fr/record=b1082477

[13] I. Norros, “A storage model with self-similar input,” Queueing
Systems, vol. 16, no. 3-4, pp. 387–396, 1994. [Online]. Available:
http://dx.doi.org/10.1007/BF01158964

[14] N. L. S. Fonseca, G. S. Mayor, and C. A. V. Neto, “On the
equivalent bandwidth of self-similar sources,” ACM Trans. Model.
Comput. Simul., vol. 10, no. 2, pp. 104–124, Apr. 2000. [Online].
Available: http://doi.acm.org/10.1145/364996.365003

[15] P. Seeling and M. Reisslein, “Video traffic characteristics of mod-
ern encoding standards: H.264/avc with svc and mvc extensions and
h.265/hevc,” The Scientific World Journal, vol. 2014, p. 16, 2014.

[16] Cisco, “Ios quality of service solutions config-
uration guide, release 12.2,” Tech. Rep., 2015,
www.cisco.com/c/en/us/td/docs/ios/12/2/qos/configuration/guide/fqos/c.

[17] RNP, “Topologia,” na Internet, 07 2015, available at
http://www.rnp.br/servicos/conectividade/rede-ipe.

[18] J. Moy, “Ospf version 2,” RFC 2328 (INTERNET STANDARD),
Internet Engineering Task Force, apr 1998, updated by RFCs 5709, 6549,
6845, 6860. [Online]. Available: http://www.ietf.org/rfc/rfc2328.txt

[19] T. Szigeti and C. Hattingh, End-to-End QoS Network Design: Quality
of Service in LANs, WANs, and VPNs (Networking Technology). Cisco
Press, 2004.

211

vtTLS: A Vulnerability-Tolerant
Communication Protocol

André Joaquim Miguel L. Pardal Miguel Correia
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa – Lisbon, Portugal

{andre.joaquim, miguel.pardal, miguel.p.correia}@tecnico.ulisboa.pt

Abstract—We present VTTLS, a vulnerability-tolerant com-
munication protocol. There are often concerns about the strength
of some of the encryption mechanisms used in SSL/TLS channels,
with some regarded as insecure at some point in time. VTTLS is
our solution to mitigate the problem of secure communication
channels being vulnerable to attacks due to unexpected vul-
nerabilities in encryption mechanisms. It is based on diversity
and redundancy of cryptographic mechanisms and certificates to
provide a secure communication channel even when one or more
mechanisms are vulnerable. VTTLS relies on a combination of k
cipher suites. Even if k−1 cipher suites are insecure or vulnerable,
VTTLS relies on the remaining cipher suites to maintain the
channel secure. We evaluated the performance of VTTLS by
comparing it to an OpenSSL channel.

Keywords—network protocol, secure communication channels,
diversity, redundancy, vulnerability-tolerance.

I. INTRODUCTION

Secure communication protocols are fundamental building
blocks of the current digital economy. Transport Layer Security
(TLS) alone is responsible for protecting most economic
transactions done using the web, with a value so high that it is
hard to estimate. These protocols allow entities to exchange
messages or data over a secure channel on the Internet,
that provides confidentiality and integrity of communications.
However, vulnerabilities may exist in the specification, the
cryptographic mechanisms used, or in the implementation.

VTTLS is a new protocol proposed in this paper that
provides vulnerability-tolerant communication channels. These
channels do not rely on individual cryptographic mechanisms,
so if one of them is found vulnerable (or possibly a few of
them), the channels remain secure. The idea is to leverage di-
versity and redundancy of cryptographic mechanisms and keys,
i.e., the use of different and multiple sets of mechanisms/keys,
respectively. More specifically, diversity is employed in pair
certificate/private key, key exchange mechanism, authentica-
tion mechanism, encryption mechanism and message authen-
tication code (MAC). This use of diversity and redundancy
is inspired by previous works on computer immunology [1],
diversity in security [2], [3], and moving-target defenses [4].

VTTLS is configured with a parameter k, the diversity
factor (k > 1). This parameter indicates the number of differ-
ent cipher suites and different mechanisms for key exchange,
authentication, encryption, and signing. This parameter means
also that VTTLS remains secure as long as only k − 1 vul-
nerabilities exist. We expect k to be usually small, e.g., k = 2

or k = 3, because vulnerabilities, even if unknown (zero-day),
do not appear in large numbers in the same components [5].

The main contribution of this paper is the VTTLS protocol
and an experimental evaluation that shows that it has an accept-
able overhead when compared with the TLS implementation
in which our prototype is based: OpenSSL [6].

II. BACKGROUND AND RELATED WORK

This section presents related work on diversity (and redun-
dancy) in security, provides background on TLS, and discusses
vulnerabilities in cryptographic mechanisms.

A. Diversity in Security

The term diversity is used to describe multi-version soft-
ware in which redundant versions are deliberately created and
made different between themselves [2]. Without diversity, all
instances are the same, with the same implementation vulner-
abilities. Using diversity it is possible totw present different
versions to the attacker, hopefully with different vulnerabilities.
Software diversity targets mostly software implementation and
the ability of the attacker to replicate the user’s environment.
Diversity does not change the program’s logic, so it is not
helpful if a program is badly designed. According to Little-
wood and Strigini [2], multi-version systems on average are
more reliable. They also state that the key to achieving effective
diversity is that the dependence between the different programs
needs to be as low as possible.

B. SSL/TLS Protocol Vulnerabilities

TLS is composed by the Handshake Protocol and the
Record Protocol. The Handshake Protocol is used to establish
or resume a secure session between two communicating parties
– client and server. The Record protocol is responsible for
processing all the messages to sent and received.

TLS vulnerabilities discovered in the past can be classified
in two types: specification vulnerabilities that concern the
protocol itself and can only be fixed by a new protocol version
or an extension; and implementation vulnerabilities that exist
in the code of some of the implementations of SSL/TLS.

One of the most recent attacks against a specification
vulnerability is Logjam, a man-in-the-middle attack exploiting
several Diffie-Hellman key exchange weaknesses [7]. Heart-
bleed is one of the most recent implementation vulnerabilities.
It was a bug in OpenSSL 1.0.1 through 1.0.1f, when the
heartbeat extension was introduced and enabled by default
which allowed an attacker to perform a buffer over-read [8].978-1-5090-3216 /16/$31.00 c© 2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

212

C. Vulnerabilities in Cryptographic Schemes

The Advanced Encryption Standard (AES) is the current
American standard for symmetric encryption [9]. AES can be
employed with different key sizes – 128, 192 or 256 bits.
The number of rounds corresponding to each key size is,
respectively, 10, 12 and 14. The most successful cryptanalysis
of AES was published by Bogdanov et al. in 2011, using a
biclique attack. Ferguson et al. [10] presented the first known
attacks on the first seven and eight rounds of AES.

Regarding public-key cryptography, Kleinjung et al. [11]
performed the factorization of RSA-768, a number with 232
digits. The researchers spent almost two years in the whole
process, which is clearly a non-feasible time for most attacks.

Some generic attacks to hash function include brute force
attacks, birthday attacks, and side-channel attacks. SHA-1 is a
cryptographic hash function which produces a 160-bit message
digest. Although there is no public knowledge of collisions
for SHA-1, it is no longer recommended for use [12]. Stevens
et al. [13] presented a freestart collision attack for SHA-1’s
internal compression function, where the attacker can choose
the initial chaining value, known as initialization vector (IV).
Regarding SHA-2 and its security, Khovratovich et al. [14] pre-
sented a biclique attack against SHA-2’s preimage resistance.
For several years, other researchers have also tried differential
attacks for finding collisions and pseudo-collisions [15], [16].

III. VULNERABILITY-TOLERANT TLS

VTTLS is a protocol for diverse and redundant vulnerabi-
lity-tolerant secure communication channels. Unlike TLS, it
negotiates more than one cipher suite between client and
server. Diversity and redundancy appear firstly in VTTLS in
the Handshake protocol, in which client and server negotiate
the k cipher suites to be used in the communication. The server
chooses the best combination of k cipher suites according
to the cipher suites server and client have, and the available
certificates. VTTLS uses a subset of the k cipher suites to
encrypt the messages.

A. Protocol Specification

The VTTLS Handshake Protocol is similar to the TLS
Handshake Protocol. The first message to be sent is CLIEN-
THELLO containing a list of the client’s available cipher
suites. The server responds with a SERVERHELLO message
containing the k cipher suites to be used in the communication.
The server proceeds to send a (SERVER) CERTIFICATE mes-
sage containing its k certificates. The SERVERKEYEXCHANGE

message is then sent to the client. For every k cipher suites
using ECDHE or DHE, the server sends a SERVERKEYEX-
CHANGE messages containing the server’s DH ephemeral
parameters for that cipher suite. Instead of computing all the
ephemeral parameters and sending them all on a single larger
message, the server sends each one immediately.

After sending its certificates, the client sends k CLIEN-
TKEYEXCHANGE messages to the server. The content of
these messages is based on the k cipher suites chosen. Client
and server now exchange CHANGECIPHERSPEC messages.
Just like in the Cipher Spec Protocol of TLS 1.2, from that
moment on, they use the previously negotiated cipher suites

for encrypting messages. In order to finish the Handshake, the
client and server send each other a FINISHED message. These
are the first encrypted messages sent using the k cipher suites.

B. Combining Diverse Cipher Suites

Regarding integrity, all of VTTLS’ cipher suites use ei-
ther AEAD (Authenticated Encryption with Associated Data)
(MAC-then-Encrypt mode), SHA-2 (SHA-256 or SHA-384),
SHA-1 or MD5. The choice starts from the current security
status of each hash function. While AEAD (which is not an
hash function) and SHA-2 are considered secure, SHA-1 is
being deprecated and MD5 is considered insecure. Therefore,
we excluded SHA-1 and MD5 from the possible combinations
of hash functions. Our choice for creating maximum diversity
relies on AEAD plus a variant of SHA-2. As AEAD is a
different approach to MACs, it is expected to be vulnerable to
different attacks than the ones targeting hash functions, such
as SHA-2. Using a combination of two SHA-2 variants would
not create maximum diversity, because even though they have
different digest sizes and rounds, their structure is identical. If
SHA-3 was available in TLS, it could also be used.

As we want to increase diversity in order to increase
security, we prioritize mechanisms which grant perfect forward
secrecy (PFS) instead of mechanisms with disjoint mathe-
matical hard problems. After comparing several public-key
encryption mechanisms, we concluded that the best three com-
binations are: RSA + ECDH(E), ECDSA + ECDH(E) and ECDSA

+ RSA. VTTLS uses public-key encryption mechanisms for
key exchange and authentication. Regarding authentication,
the preferred combination is ECDSA + RSA. Regarding key
exchange, the preferred is RSA + ECDH(E).

The symmetric mechanisms chosen for comparison were
AES, Camellia, SEED, and 3DES EDE. We also included ARIA

in our comparison, even though it is not available in VTTLS.
Symmetric-key encryption mechanisms’ three most important
metrics are structure, mode of operation and common known
attacks. In a certain sense, these metrics are related: attacks
target a specific structure or mode of operation. Therefore,
the combinations of symmetric encryption mechanisms we
consider to be the most diverse are: AES + CAMELLIA (using
a different mode of operation and key size), and AES256-GCM

+ SEED128-CBC. We consider the most diverse combination to
be AES256-GCM + CAMELLIA128-CBC due to the fact that their
structure is different, as its mode of operation and the set of
known attacks is disjoint. Although, using a cipher suite that
contains Camellia or SEED, in order to maximize diversity
in symmetric encryption would force reduced diversity and
security essentially in MAC. In the end, the best combination
is AES256-GCM + AES128-CBC which can be considered diverse,
although it is not the most diverse of all the ones considered.

Concluding, the best combination of cipher suites is
arguably: TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 and
TLS_RSA_WITH_AES_128_CBC_SHA256. The least diverse mech-
anisms are MAC and symmetric encryption, due to the fact
that TLS 1.2 does not support SHA-3 and OpenSSL does
not support Camellia keyed-hash message authentication code
(HMAC) based cipher suites.

213

Fig. 1: First four steps regarding the ordering of the encryption
and signing of VTTLS using a diversity factor k = 2.

IV. IMPLEMENTATION

VTTLS’ implementation is a modified version of OpenSSL
v1.0.2g. Existing software such as OpenSSL has the advantage
of being extensively tested. Furthermore, creating a new secure
communication channel, and consequently a new API, would
create adoption barriers to programmers otherwise willing to
use our protocol. Therefore, we chose to implement VTTLS
based on OpenSSL and keeping the same API. Nevertheless,
OpenSSL is a huge code base (currently 438,841 lines of code)
and modifying it so support diversity was quite a challenge.
VTTLS adds a few functions to the OpenSSL API. They allow
defining additional certificates, keys, cipher suites, etc. The
signing and encryption ordering is very important for VTTLS.
Figure 1 shows the ordering for one cipher and one MAC in
the OpenSSL implementation.

The approach taken was the following, ordered from first
to last: apply the first MAC to the plaintext; encrypt the first
message and its MAC with the first encryption mechanism;
apply the second MAC to the ciphertext; encrypt the ciphertext
and its MAC with the second encryption mechanism. Figure
2 shows the final ordering of VTTLS communication data.

In relation to the Record Protocol, signing and encrypting k
times has a cost in terms of message size. Figures 1 and 2 show
also the expected increase of the message size due to the use of
a second MAC and a second encryption function (for k = 2).
For OpenSSL, the expected size of a message is first len =
eivlen+msg length+ padding +mac size, where eivlen
is the size of the initialization vector (IV), msg length the
original message size, padding the size of the padding in case
a block cipher is used, and mac size the size of the MAC.
For VTTLS, the additional size of the message is eivlen sec+

Fig. 2: Final three steps regarding the ordering of the encryp-
tion and signing of VTTLS using a diversity factor k = 2.

first len+padding sec+mac size sec, where eivlen sec
is the size of the IV associated with the second cipher and
mac size sec the size of the second MAC.

In the best case, the number of packets is the same for
OpenSSL and VTTLS. In the worst case, one additional packet
may be sent if the encryption function requires a fixed block
size and the maximum size of the packet is exceeded by,
at least, one byte after the second MAC and the second
encryption. In this case, an additional full packet is needed
due to the constraint of having fixed block size.

V. EXPERIMENTAL EVALUATION

Implementing diversity has performance costs as it creates
overhead in the communication. Every message sent needs
to be ciphered and signed k − 1 times more than using a
TLS implementation and every message received needs to be
deciphered and verified also k − 1 times more. In the worst
case, users should experience a connection k times slower than
using OpenSSL. We considered k = 2 in all experiments, as
this is the value we expect to be used in practice (we expect
vulnerabilities to appear rarely, so the ability to tolerate one
vulnerability per mechanism is sufficient). All the tests were
done in the same controlled environment and same geographic
locations in order to maintain the evaluation valid, exact
and precise. We evaluated VTTLS’s performance and costs
and considered the OpenSSL implementation of TLS as the
baseline.

A. Performance

In order to evaluate VTTLS performance, we exe-
cuted several tests in order to understand if the overhead
of VTTLS is lower, equal, or bigger than k comparing
to OpenSSL. We configured VTTLS to use the follow-
ing cipher suites: TLS_RSA_WITH_AES_256_GCM_SHA384 and
TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384. The suite used
with OpenSSL was the latter.

To evaluate the performance of the handshake, we exe-
cuted 100 times the Handshake Protocol of both VTTLS and

214

Fig. 3: Comparison between the time it takes to send and
receive a message using VTTLS and OpenSSL.

OpenSSL. In average, the VTTLS handshake took 3.909 mil-
liseconds to conclude whereas the OpenSSL handshake took
2.345 milliseconds. Therefore, the VTTLS handshake takes
66.7% longer than the OpenSSL handshake which is better
than the worst case (that would be 100% longer).

B. Data Communication

We also performed data communication tests to assess the
overhead generated by the diversity and redundancy of mech-
anisms. The communication is expected to be, at most, k = 2
times slower than using TLS. For this test, we considered a
sample of 100 messages sent and received using VTTLS, and
other 100 messages sent and received using OpenSSL. Figure
3 shows the comparison between the time it takes to send and
receive a message using VTTLS and OpenSSL.

In average, a message sent through a VTTLS channel
takes 22.88% longer than a message sent with OpenSSL. For
example, a 50 MB message takes, in average 534.55 ms to be
sent with VTTLS. Using OpenSSL, the same message takes
435.01 ms to be sent. The overhead generated is much smaller
than the worst case.

We evaluated the message size increase of the ciphertext
of several plaintexts with different sizes. A 1 MB plaintext
message corresponds to a ciphertext of 1, 029, 054 bytes using
VTTLS, while using OpenSSL the same message converts into
a message of 1, 025, 856 bytes i.e. sending 1 MB through a
VTTLS channel costs an additional 3, 198 bytes over using an
OpenSSL channel.

VI. CONCLUSIONS

VTTLS is a diverse and redundant vulnerability-tolerant
secure communication protocol designed for communication
on the Internet. It aims at increasing security using diverse
cipher suites to tolerate vulnerabilities in the encryption mech-
anisms used in the communication channel. In order to evaluate
our solution, we compared it to an OpenSSL communication
channel. While expected to be k = 2 times slower than an
OpenSSL channel, the evaluation showed that using diversity
and redundancy of cryptographic mechanisms in VTTLS does
not generate such a high overhead. VTTLS takes, in average,

22.88% longer to send a message than TLS/OpenSSL, but con-
sidering the increase in security, this overhead is acceptable.
Overall, considering the additional costs of having an extra
certificate, the time increase, and potential management costs,
VTTLS provides an interesting trade-off for a set of critical
security applications.

Acknowledgements This work was supported by the European Com-

mission through project H2020-653884 (SafeCloud) and by national

funds through Fundação para a Ciência e a Tecnologia (FCT) with

reference UID/CEC/50021/2013 (INESC-ID).

REFERENCES

[1] S. Forrest, S. A. Hofmeyr, and A. Somayaji, “Computer immunology,”
Communications of the ACM, vol. 40, no. 10, pp. 88–96, Oct. 1997.

[2] B. Littlewood and L. Strigini, “Redundancy and diversity in security,”
in Computer Security – ESORICS 2004, 9th European Symposium on
Research Computer Security, 2004, pp. 227–246.

[3] M. Garcia, A. Bessani, I. Gashi, N. Neves, and R. Obelheiro, “OS
diversity for intrusion tolerance: Myth or reality?” in Proceedings of
the IEEE/IFIP 41st International Conference on Dependable Systems
and Networks, 27–30 June 2011, pp. 383 –394.

[4] M. Carvalho and R. Ford, “Moving-target defenses for computer
networks,” IEEE Security and Privacy, vol. 12, no. 2, pp. 73–76, 2014.

[5] L. Bilge and T. Dumitras, “Before we knew it: an empirical study
of zero-day attacks in the real world,” in Proceedings of the ACM
Conference on Computer and Communications Security, 2012, pp. 833–
844.

[6] J. Viega, M. Messier, and P. Chandra, Network Security with OpenSSL:
Cryptography for Secure Communications. O’Reilly, 2002.

[7] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green,
J. Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta,
B. Vandersloot, E. Wustrow, and S. Paul, “Imperfect forward secrecy:
How Diffie-Hellman fails in practice,” in Proceedings of the 22nd ACM
Conference on Computer and Communications Security, October 2015.
[Online]. Available: https://weakdh.org/imperfect-forward-secrecy.pdf

[8] M. Carvalho, J. DeMott, R. Ford, and D. A. Wheeler, “Heartbleed 101,”
IEEE Security Privacy, vol. 12, no. 4, pp. 63–67, July 2014.

[9] V. Rijmen and J. Daemen, “Advanced Encryption Standard,” U.S.
National Institute of Standards and Technology (NIST), vol. 2009, pp.
8–12, 2001.

[10] N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner, and
D. Whiting, “Improved cryptanalysis of Rijndael,” in Proceedings of
Fast Software Encryption, G. Goos, J. Hartmanis, J. van Leeuwen, and
B. Schneier, Eds. Springer, 2001, vol. LNCS 1978, pp. 213–230.

[11] T. Kleinjung, K. Aoki, J. Franke, A. Lenstra, E. Thomé, J. Bos,
P. Gaudry, A. Kruppa, P. Montgomery, D. Osvik, H. Te Riele, A. Timo-
feev, and P. Zimmermann, “Factorization of a 768-bit RSA modulus,” in
Proceedings of the 30th Annual Conference on Advances in Cryptology,
vol. LNCS 6223, 2010, pp. 333–350.

[12] ENISA, “Algorithms, key size and parameters report – 2014,” nov 2014.

[13] M. Stevens, P. Karpman, and T. Peyrin, “Freestart collision on full
SHA-1,” Cryptology ePrint Archive, Report 2015/967, 2015.

[14] D. Khovratovich, C. Rechberger, and A. Savelieva, “Bicliques for
Preimages: Attacks on Skein-512 and the SHA-2 family,” Cryptology
ePrint Archive, Report 2011/286, 2011, http://eprint.iacr.org/.

[15] C. Dobraunig, M. Eichlseder, and F. Mendel, “Analysis of SHA-512/224
and SHA-512/256,” Cryptology ePrint Archive, Report 2016/374, 2016,
http://eprint.iacr.org/.

[16] M. Eichlseder, F. Mendel, and M. Schlffer, “Branching Heuristics in
Differential Collision Search with Applications to SHA-512,” Cryptol-
ogy ePrint Archive, Report 2014/302, 2014, http://eprint.iacr.org/.

215

Optimal Proportion Computation with
Population Protocols

Yves Mocquard
yves.mocquard@irisa.fr

IRISA / Université de Rennes 1, France

Emmanuelle Anceaume
emmanuelle.anceaume@irisa.fr

IRISA / CNRS, France

Bruno Sericola
bruno.sericola@inria.fr

Inria Rennes - Bretagne Atlantique, France

Abstract—The computational model of population protocols is
a formalism that allows the analysis of properties emerging from
simple and pairwise interactions among a very large number of
anonymous finite-state agents. Significant work has been done so
far to determine which problems are solvable in this model and at
which cost in terms of states used by the agents and time needed
to converge. The problem tackled in this paper is the population
proportion problem: each agent starts independently from each
other in one of two states, say A or B, and the objective is for each
agent to determine the proportion of agents that initially started
in state A, assuming that each agent only uses a finite set of states,
and does not know the number n of agents. We propose a solution
which guarantees that in presence of a uniform probabilistic
scheduler every agent outputs the population proportion with
any precision ε ∈ (0, 1) with any high probability after having
interacted O(log n) times. The number of states maintained by
every agent is optimal and is equal to 2�3/(4ε)�+1. Finally, we
show that our solution is optimal in time and space to solve the
counting problem, a generalization of the proportion problem.
Finally, simulation results illustrate our theoretical analysis.

Keywords Population protocols; Proportion; Majority; Count-
ing; Performance evaluation.

I. INTRODUCTION

In 2004, Angluin et al. [4] have proposed a model that
allows the analysis of emergent global properties based on pair-
wise interactions. This model, named the population protocol,
provides minimalist assumptions on the computational power
of the agents: agents are finite-state automata, identically
programmed, with no identity, unaware of the population size
n, and they progress in their computation through random
pairwise interactions. The objective of this model is to ulti-
mately converge to a state from which the sought property
can be derived from any agent [8]. Examples of systems
whose behavior can be modeled by population protocols range
from molecule interactions of a chemical process to sensor
networks in which agents, which are small devices embedded
on animals, interact each time two animals are in the same
radio range. A considerable amount of work has been done
so far to determine which properties can emerge from pair-
wise interactions between finite-state agents, together with the
derivation of lower bounds on the time and space needed to
reach such properties (e.g., [2], [6], [12], [14], [18]). Among
them, is majority. Briefly, each agent starts independently from

This work was partially funded by the French ANR project SocioPlug
(ANR-13-INFR-0003), and by the DeSceNt project granted by the Labex
CominLabs excellence laboratory (ANR-10-LABX-07-01).

each other in one of two input states, say A and B, and
the objective for each agent is to eventually output yes if a
majority of agents started their execution in input state A and
no otherwise. Section IV provides an overview of the results
recently obtained for the majority task.

In this paper, we focus on a related but more general
question. Namely, instead of having each agent answer yes
if a majority of agents initially started their execution in input
state A, one may ask the following question:

"Is it feasible for each agent to compute quickly and with
any high precision the proportion of agents that started in the
input state A?".

Answering such a question is very important in the con-
text of, for example, infectious-disease surveillance of large-
scale animal populations. In this context, different kinds of
alerts could be triggered according to the infected population
proportion (e.g., Alert 1 is triggered if less than 0.05% of
the population is infected, Alert 2 if this proportion lies in
[0.05%, 3.0%), Alert 3 if it lies in [3.0%, 10.0%), and so
on . . .). Input state A would manifest an excessive tem-
perature of an animal while input state B would indicate
a safe temperature. By relying on the properties exhibited
by our population protocol (convergence time logarithmic in
the population size and memory space proportional to the
sought precision), one can easily implement a regular and self-
autonomous monitoring of large-scale populations.

We answer affirmatively to this question, and we propose
a population protocol that allows each agent to converge to a
state which, when queried, provides the proportion of agents
that started in a given input state. Specifically, each agent is a
(2m + 1)-finite state machine, m ≥ 1, where m is the value
associated to input state A and −m is the one associated to
input state B. Each agent starts its execution with m or −m,
and each pair of agents that meet, adopt the average of their
values (or as close as they can get when values are restricted
to integers, as will be clarified in Section V). The rationale of
this method [3], [16], [1] is to preserve the sum of the initial
values, and after a small number of pairwise interactions, to
ensure that every agent converges with high probability to a
state from which it derives the proportion of agents that started
in a given state. Technically, our protocol guarantees that each
agent is capable of computing with any precision ε ∈ (0, 1)
the proportion of agents that initially started in a specific
input state by using 2�3/(4ε)� + 1 states. This is achieved
in no more than (−2 ln ε+ 8.47 lnn− 13.29 ln δ − 2.88) in-
teractions with probability at least 1− δ, for any δ ∈ (0, 1).978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

216

Our second contribution relates to the counting problem.
The counting problem generalizes the majority problem by
requiring, for each agent, to converge to a state in which each
agent is capable of, assuming the knowledge of n, computing
nA or nB , where nA and nB represent respectively the number
of agents that started in state A and B. In the present paper,
we prove that the counting problem can be solved using O(n)
states per agent. This significantly improves upon a previous
analysis [16] that shows that O(n3/2/δ1/2) states allow each
agent to converge to the exact solution in no more than a
logarithmic number in n of interactions, with δ ∈ (0, 1). What
is very important to notice is that this drastic improvement
is due to an original convergence analysis that allows us
to refine previous results. Indeed, both [16] and the present
paper rely on the same interaction rules, however by precisely
characterizing the evolution of the interacting agents, our
present analysis is highly tighter. We also demonstrate that any
protocol that solves the counting problem requires Ω(log n)
parallel interactions to converge and Ω(n) local states. As will
be detailed, this shows that our algorithm is an optimal solution
both in space and time to solve the counting problem and
optimal in space to solve the proportion one.

The remainder of this paper is organized as follows.
Section II presents the population protocol model. Section III
specifies the problem addressed in this work. Section IV
provides an overview of the most recent population protocols.
The protocol to compute the population proportion is presented
in Section V. Analysis of the protocol is detailed in Section VI.
We show in Section VII, that our protocol is optimal both in
space and time. We have simulated our protocol to illustrate
our theoretical analysis. Section VIII presents a summary of
these simulation results. Finally, Section IX concludes.

II. POPULATION PROTOCOLS MODEL

The population protocol model has been introduced by
Angluin et al. [4]. This model describes the behavior of
a collection of agents that interact pairwise. The following
definition is from Angluin et al [7]. A population protocol is
characterized by a 6-tuple (Q,Σ, Y, ι, ω, f), over a complete
interaction graph linking the set of n agents, where Q is a finite
set of states, Σ is a finite set of input symbols, Y is a finite
set of output symbols, ι : Σ → Q is the input function that de-
termines the initial state of an agent, ω : Q → Y is the output
function that determines the output symbol of an agent, and f
: Q×Q → Q×Q is the transition function that describes how
any two distinct agents interact and locally update their states.
Initially all the agents start with a initial symbol from Σ, and
upon interactions update their state according to the transition
function f . Interactions between agents are orchestrated by a
random scheduler: at each discrete time, any two agents are
randomly chosen to interact with a given distribution. Note
that the random scheduler is fair, meaning that any possible
interaction cannot be avoided forever. The notion of time in
population protocols refers to as the successive steps at which
interactions occur, while the parallel time is equal to the total
number of interactions averaged by n [8]. Agents do not
maintain nor use identifiers (agents are anonymous and cannot
determine whether any two interactions have occurred with the
same agents or not). However, for ease of presentation, the

agents are numbered 1, 2, . . . , n. We denote by C
(i)
t the state

of agent i at time t. The stochastic process C = {Ct, t ≥ 0},

where Ct = (C
(1)
t , . . . , C

(n)
t), represents the evolution of the

population protocol. The state space of C is thus Qn and a
state of this process is also called a protocol configuration.

III. THE PROPORTION PROBLEM

We consider a set of n agents, interconnected by a complete
graph, that start their execution in one of two input states of
Σ = {A,B}. Let nA be the number of agents whose input
state is A and nB be the number of agents that start in input
state B. The quantity γA = nA/n (resp. γB = nB/n) is the
proportion of the agents that initially started in state A (resp.
in state B). The output set Y is the set of all possible values
of γA, that is a subset of [0, 1]. In the following we introduce

the notation γ = γA−γB . Let ωA(C
(i)
t) be the approximation

of γA by agent i at time t.

A population protocol solves the proportion problem within
τ steps (with preferably τ in O(log n)) if for all δ ∈ (0, 1),
for all ε ∈ (0, 1) and for all t ≥ τ , we have

�{|ωA(C
(i)
t)− γA| < ε for all i = 1, . . . , n} ≥ 1− δ.

IV. RELATED WORK

In 2004, Angluin et al. [4] have formalized the population
protocol model, and have shown how to express and compute
predicates in this model. Then in [5] the authors have com-
pletely characterized the computational power of the model by
establishing the equivalence between predicates computable in
the population model and those that can be defined in the
Presburger arithmetic. Since then, there has been a lot of work
on population protocols including the majority problem [12],
[14], [6], [18], [2], the leader election problem [9], [15], in
presence of faults [11], and on variants of the model [13],
[10].

The closest problem to the one we address is the compu-
tation of the majority. In this problem, all the agents start in
one of two distinguished states and they eventually converge
to 1 if γ > 0 (i.e. nA > nB), and to 0 if γ < 0 (i.e.
nA < nB). In [12], [14] the authors propose a four-state
protocol that solves the majority problem with a conver-
gence parallel time logarithmic in n but only in expectation.
Moreover, the expected convergence time is infinite when nA

and nB are close to each other (that is γ approaches 0).
The authors in [6], [18] propose a three-state protocol that
converges with high probability after a convergence parallel
time logarithmic in n but only if γ is large enough, i.e when
|nA−nB | ≥

√
n log n. Alistarh et al. [2] propose a population

protocol based on an average-and-conquer method to exactly
solve the majority problem. Their algorithm uses two types of
interactions, namely, averaging interactions and conquer ones.
The first type of interaction is close to the one used in our
protocol while the second one is used to diffuse the result of
the computation to the zero state agents. Actually, to show their
convergence time, they need to assume a rather large number
of intermediate states (i.e. 2d states, with d = 1, 000). This is
essentially due to the fact that they need to prove that all the
agents with maximum positive values and minimal negative
values will have sufficiently enough time to halve their values.
Note that in practice, their algorithm does not require more

2217

than n state to converge to the majority, however their proof
necessitates m+1, 000 logm log n with log n logm ≤ m ≤ n
states, and at least 432 logm log n interactions per agent to
converge to the majority, where m is the initial value associated
to state A.

In [16], the authors have presented a solution to the
counting problem. As previously said, the counting problem
generalizes the majority problem by requiring, for each agent,
to converge to a state in which each agent is capable of,
assuming the knowledge of n, computing nA or nB , where nA

and nB represent respectively the number of agents that started
in state A and B. Both [16] and the present paper use the same
interaction rules, but of course the output functions in both
papers are different. The originality of [16], beyond tackling
a new problem, was a proof of convergence based on tracking
the euclidean distance between the random vector of all agents’
values and the limiting distribution. In the present paper,
we provide a highly tighter analysis which shows that the
interaction rules together with the "counting" and "proportion"
output functions are optimal solutions to solve both problems.

V. COMPUTING THE PROPORTION

Our protocol uses the average technique to compute the
proportion of agents that started their execution in a given
state A. The set of input of the protocol is Σ = {A,B}, and
the input function ι is defined by ι(A) = m and ι(B) =
−m, with m a positive integer. This means that, for every i =

1, . . . , n, we have C
(i)
0 ∈ {−m,m}. At each discrete instant

t, two distinct indices i and j are chosen among 1, . . . , n with
probability pi,j(t). Once chosen, the couple (i, j) interacts, and

both agents update their respective local state C
(i)
t and C

(j)
t

by applying the transition function f , leading to state Ct+1,

given by f(C
(i)
t , C

(j)
t) = (C

(i)
t+1, C

(j)
t+1), with(

C
(i)
t+1, C

(j)
t+1

)
=

(⌊
C

(i)
t + C

(j)
t

2

⌋
,

⌈
C

(i)
t + C

(j)
t

2

⌉)
and

C
(m)
t+1 = C

(m)
t for m 	= i, j. (1)

The set Q of states is {−m,−m + 1, . . . ,m − 1,m}. The
output function is given, for all x ∈ Q by,

ωA(x) = (m+ x)/2m.

Finally, the set of output Y is the set of all possible values of
ωA, i.e.

Y =

{
0,

1

2m
,

2

2m
, . . . ,

2m− 2

2m
,
2m− 1

2m
, 1

}
.

VI. ANALYSIS OF THE PROPORTION PROTOCOL

We denote by Xt the random variable representing the
choice at time t of two distinct indices i and j among 1, . . . , n
with probability pi,j(t), that is �{Xt = (i, j)} = pi,j(t). We
suppose that the sequence {Xt, t ≥ 0} is a sequence of inde-
pendent and identically distributed random variables. Since Ct

is entirely determined by the values of C0, X0, X1, . . . , Xt−1,
this means in particular that the random variables Xt and Ct

are independent and that the stochastic process C is a discrete-
time homogeneous Markov chain. As usual in population

protocols, we suppose that Xt is uniformly distributed, i.e.
that is

pi,j(t) =
1

n(n− 1)
.

We will use in the sequel the Euclidean norm denoted simply
by ‖.‖ and the infinite norm denoted by ‖.‖∞ defined for all
x = (x1, . . . , xn) ∈ �n by

‖x‖ =

(
n∑

i=1

x2
i

)1/2

and ‖x‖∞ = max
i=1,...,n

|xi|.

It is well-known that these norms satisfy ‖x‖∞ ≤ ‖x‖ ≤√
n‖x‖∞.

Lemma 1: For every t ≥ 0, we have

n∑
i=1

C
(i)
t =

n∑
i=1

C
(i)
0 .

Proof: The proof is immediate since the transformation
from Ct to Ct+1 described in Relation (1) does not change
the sum of the entries of Ct+1. Indeed, from Relation (1), we

have C
(i)
t+1 +C

(j)
t+1 = C

(i)
t +C

(j)
t and the other entries do not

change their values.

We denote by the mean value of the sum of the entries
of Ct and by L the row vector of �n with all its entries equal
to , that is

 =
1

n

n∑
i=1

C
(i)
t and L = (, . . . ,).

Our analysis is orchestrated as follows. By relying on
the mathematical tool derived in Theorem 2, we show in
Theorem 5 that the stochastic process Ct belongs to the ball
of radius

√
n/2 and center L in the 2-norm, with any high

probability, after no more than O(log n) parallel time. Then,
assuming that the stochastic process Ct belongs to the ball of
radius

√
n/2 and that −�� 	= 1/2, we demonstrate that the

stochastic process Ct belongs to the open ball of radius 3/2
and center L in the infinite norm, with any high probability
after no more than O(log n) parallel time (Theorem 6). In
practice this means that all the entries of the subsequent
configurations will be among the three closest integer val-
ues of . Then by applying Theorem 5 and Theorem 6 (if
−�� 	= 1/2) or Theorem 4 (otherwise), we derive our main
theorem (see Theorem 7) which shows that in both cases the
stochastic process Ct belongs to an open ball of radius 3/2
and center L in the infinite norm, with any high probability in
O(log n) parallel time. Finally, we have all the necessary tools
to construct an output function which solves the proportion
problem in O (log n− log ε− log δ) parallel time, and with
O(1/ε) states, for any ε, δ ∈ (0, 1) (see Theorem 8). The
detailed proofs of all the results are given in [17].

In order to simplify the writing we will use the notation
Yt = ‖Ct − L‖2 when needed and we denote by 1{A} the
indicator function which is equal to 1 if condition A is satisfied
and 0 otherwise.

The following Theorem is a conditional version of Theorem
6 of [16].

3218

Theorem 2: For every 0 ≤ s ≤ t and y ≥ 0, we have

� (Yt | Ys ≥ y) ≤
(
1− 1

n− 1

)t−s

� (Ys | Ys ≥ y) +
n

4
.

(2)

Proof: See [17].

Lemma 3: The sequence Yt = ‖Ct − L‖2 is decreasing
with t.

Proof: See [16].

Theorem 4: For all δ ∈ (0, 1), if − �� = 1/2 and if
there exists a constant K such that ‖C0 − L‖∞ ≤ K, then,
for every t ≥ (n− 1) (2 lnK + lnn− ln δ), we have

�{‖Ct − L‖∞ 	= 1/2} ≤ δ.

Sketch of the Proof: If − �� = 1/2 then, since all the

C
(i)
t are integers, we have ‖Ct−L‖2 ≥ n/4. From Theorem 2

in which we set s = 0 and y = 0, we obtain

�(‖Ct − L‖2 − n/4) ≤
(
1− 1

n− 1

)t

�(‖C0 − L‖2).

Let τ = (n− 1) (2 lnK + lnn− ln δ). For t ≥ τ , the Markov
inequality leads to

�{‖Ct − L‖2 − n/4 ≥ 1} ≤ δ.

We then conclude by observing that

�{‖Ct − L‖∞ 	= 1

2
} = �{‖Ct − L‖2 − n/4 ≥ 1} ≤ δ.

The reader is invited to read the detailed proof in [17].

Theorem 5: For all δ ∈ (0, 4/5), if there exists a constant

K such that K ≥
√

n/2 and ‖C0 − L‖ ≤ K then, for all
t ≥ nθ, we have

�{‖Ct − L‖2 ≥ n/2} ≤ δ

where

θ = 2 lnK − lnn+ 3 ln 2− 2 ln 2

2 ln 2− ln 3
ln δ.

Sketch of the Proof: Let (Tk)k≥0 be the sequence of
instants defined by T0 = 0 and

Tk+1 = Tk +

⌈
(n− 1) ln

(
8�(YTk

| YTk
≥ n/2)

n

)⌉
. (3)

From Theorem 2 and Formula 3 we get

�
(
YTk+1

| YTk
≥ n/2

)
≤ 3n/8. (4)

Using the conditional Markov inequality, we deduce that

�{YTk+1
≥ n/2 | YTk

≥ n/2} ≤ 3/4.

We introduce the sequence αk defined by α0 = 3n/(8K2)
and, for k ≥ 1,

αk = max
{
�{YTk

≥ n/2 | YTk−1
≥ n/2}, 3n/(8K2)

}
.

We then obtain for every k ≥ 0,

�(YTk
| YTk

≥ n/2) ≤ 3n/(8αk).

Summing the differences Ti+1 − Ti for i from 0 to k− 1, we
obtain, for k ≥ 1,

Tk ≤ (n− 1)

(
k ln(3)− ln

(
k−1∏
i=0

αi

))
+ k, (5)

and we have

�{YTk
≥ n/2} ≤

k∏
i=1

αi. (6)

Now, for all δ ∈ (0, 4/5), there exists k ≥ 1 such that

k∏
i=1

αi < δ ≤
k−1∏
i=1

αi ≤ (3/4)
k−1

.

From Relation (6) and using the fact that Yt is decreasing (see
Lemma 3) we get, for t ≥ nθ,

�{Yt ≥ n/2} ≤ �{Ynθ ≥ n/2}
≤ �{YTk

≥ n/2}

≤
k∏

i=1

αi ≤ δ.

The reader is invited to read the detailed proof in [17].

Theorem 6: For all δ ∈ (0, 1), if ‖C0 − L‖ ≤
√
n/2

and − �� 	= 1/2 we have, for every t ≥ 1600(n −
1) (lnn− ln δ − 4 ln 2 + ln 3) /189,

�{‖Ct − L‖∞ ≥ 3/2} ≤ δ.

Sketch of the Proof: Let λ be defined by

λ =

{
− �� if − �� < 1/2

− �� if − �� > 1/2.

Note that λ is positive in the first case and negative in the
second one. In both cases we have |λ| < 1/2 and − λ is the
closest integer to .

We introduce the notation B = �1/2 +
√
n/2�. B is the

upper bound of C
(i)
t for i = 1, . . . , n, since ‖C0−L‖ ≤

√
n/2.

For k ∈ {−B,−B + 1, . . . , B}, we denote by αk,t the
number of agents with the value − λ+ k at time t, that is

αk,t =
∣∣∣{i ∈ {1, . . . , n} | C(i)

t = − λ+ k
}∣∣∣ .

It is easily checked that

B∑
k=−B

αk,t = n. (7)

Moreover we have

B∑
k=−B

kαk,t = nλ. (8)

Observing that ‖Ct − L‖2 = ‖Ct‖2 − n2 and using (7) and
(8), we obtain

B∑
k=−B

k2αk,t = ‖Ct − L‖2 + nλ2. (9)

4219

Using the hypothesis ‖C0 − L‖2 ≤ n/2, we obtain

B∑
k=−B

k2αk,t ≤ nλ2 + n/2. (10)

Using these results, it can be shown that

B∑
k=0

αk,t > 3n/8 and

0∑
k=−B

αk,t > 3n/8. (11)

Let us now introduce the sequences (Nt)t≥0 and (Φt)t≥0

defined by

Nt =

B∑
k=2

αk,t +

−2∑
k=−B

αk,t

and

Φt =

B∑
k=2

k2αk,t +

−2∑
k=−B

k2αk,t.

Since αk,t are non negative integers, we have, for every t ≥ 0,

Nt = 0 ⇐⇒ Φt = 0.

Note that our objective is to obtain Φt = 0 because

‖Ct − L‖∞ < 3/2 ⇐⇒ Φt = 0.

We also introduce the sets H+
t and H−

t defined by

H+
t = {i ∈ {1, . . . , n} | C(i)

t − + λ ≥ 2}

and

H−
t = {i ∈ {1, . . . , n} | C(i)

t − + λ ≤ −2}

and we define Ht = H+
t ∪H−

t . It can be shown that

Nt ≤ 3n/16.

Let I+t and I−t be the sets defined by

I+t = {i ∈ {1, . . . , n} | C(i)
t − + λ ≥ 0}

and

I−t = {i ∈ {1, . . . , n} | C(i)
t − + λ ≤ 0}.

Relations (11) can be rewritten as

|I+t | ≥ 3n/8 and |I−t | ≥ 3n/8. (12)

Consider the probability that an agent of H+
t interacts with an

agent of I−t or that an agent of H−
t interacts with an agent

of I+t , at time t. Let E denote the set of these interactions. It
can be shown that

�{Xt ∈ E} ≥ 21Nt

32(n− 1)
. (13)

We consider now the difference Φt − Φt+1 in function of the
interactions occurring at time t. It can be shown that

�(Φt − Φt+1 | Xt ∈ E) ≥ 9�(Φt)

50Nt
.

Now, using (13), we have

�(Φt+1) = �(Φt)−�(Φt − Φt+1)

≤ �(Φt)−�((Φt − Φt+1) | Xt ∈ E)�{Xt ∈ E}

≤ �(Φt)−
(
9�(Φt)

50Nt

)(
21Nt

32(n− 1)

)
=

(
1− 189

1600(n− 1)

)
�(Φt).

We easily get

�(Φt) ≤
(
1− 189

1600(n− 1)

)t

�(Φ0).

Let τ be defined by

τ =
1600(n− 1)

189
(lnn− ln δ − 4 ln 2 + ln 3) .

We then have for t ≥ τ

�{‖C(i)
t − ‖∞ ≥ 3/2} ≤ �{Φt 	= 0} = �{Φt ≥ 4} ≤ δ.

The reader is invited to read the detailed proof in [17].

Theorem 7: For all δ ∈ (0, 1), if there exists a con-
stant K such that ‖C0 − L‖ ≤ K then, for every t ≥
n (2 lnK + 7.47 lnn− 13.29 ln δ − 2.88), we have

�{‖Ct − L‖∞ ≥ 3/2} ≤ δ.

Proof: We consider first the case where − �� = 1/2.
Since ‖C0 − L‖∞ ≤ ‖C0 − L‖ ≤ K and since

(n− 1)(2 lnK + lnn− ln δ)

≤ n (2 lnK + 7.47 lnn− 13.29 ln δ − 2.88) ,

Theorem 4 gives

�{‖Ct − L‖∞ 	= 1/2} ≤ δ,

for t ≥ n (2 lnK + 7.47 lnn− 13.29 ln δ − 2.88).

Now since the C
(i)
t are integers and since − �� = 1/2,

we have

�{‖Ct − L‖∞ ≥ 3/2} = �{‖Ct − L‖∞ 	= 1/2} ≤ δ.

Consider now the case where − �� 	= 1/2. We apply
successively Theorem 5 and Theorem 6 replacing δ by δ/2.
We introduce the notation

θ1 = 2 lnK − lnn+ 3 ln 2− 2 ln 2

2 ln 2− ln 3
ln (δ/2).

If ‖C0 − L‖ <
√
n/2 then we have ‖C0 − L‖2 < n/2 and

since ‖Ct −L‖2 is decreasing (see Lemma 3), we get, for all
t ≥ 0,

�{‖Ct − L‖2 < n/2} ≥ �{‖C0 − L‖2 < n/2}
= 1 ≥ 1− δ/2.

If ‖C0 − L‖ ≥
√
n/2 then from Theorem 5 we get, for all

t ≥ nθ1, �{‖Ct − L‖2 ≥ n/2} ≤ δ/2, or equivalently

�{‖Ct − L‖2 < n/2} ≥ 1− δ/2.

Let us introduce the instant τ defined by

τ = nθ1 +
1600(n− 1)

189
(lnn− ln(δ/2)− 4 ln 2 + ln 3) .

5220

We have, for all t ≥ τ ,

�{‖Ct−L‖∞ < 3/2}
≥ �{‖Ct − L‖∞ < 3/2, ‖Cnθ1 − L‖2 < n/2}
= �{‖Ct − L‖∞ < 3/2 | ‖Cnθ1 − L‖2 < n/2}

×�{‖Cnθ1 − L‖2 < n/2}.
We have seen that �{‖Cnθ1 − L‖2 < n/2} ≥ 1 − δ/2.
Using the fact that the Markov chain {Ct} is homogeneous
and applying Theorem 6, we obtain

�{‖Ct−L‖∞ < 3/2 | ‖Cnθ1 − L‖2 < n/2}
= �{‖Ct−nθ1 − L‖∞ < 3/2 | ‖C0 − L‖2 < n/2}
= �{‖Ct−nθ1 − L‖∞ < 3/2 | ‖C0 − L‖ <

√
n/2}

≥ 1− δ/2.

Putting together these two results gives, for all t ≥ τ ,

�{‖Ct − L‖∞ < 3/2} ≥ (1− δ/2)2 ≥ 1− δ

or equivalently

�{‖Ct − L‖∞ ≥ 3/2} ≤ δ.

The rest of the proof consists in simplifying the expression of
τ . We have

θ1 = 2 lnK − lnn+ 3 ln 2− 2 ln 2

2 ln 2− ln 3
ln (δ/2)

= 2 lnK − lnn+

(
4 +

ln 3

2 ln 2− ln 3

)
ln 2

− 2 ln 2

2 ln 2− ln 3
ln δ

and

τ = nθ1 +
1600(n− 1)

189
(lnn− ln(δ/2)− 4 ln 2 + ln 3)

= nθ1 +
1600(n− 1)

189
(lnn− ln δ − 3 ln 2 + ln 3)

≤ n

[
2 lnK +

1411

189
lnn−

(
1789

189
+

ln 3

2 ln 2− ln 3

)
ln δ

−
(
1348

63
− ln 3

2 ln 2− ln 3

)
ln 2 +

1600

189
ln 3

]
≤ n (2 lnK + 7.47 lnn− 13.29 ln δ − 2.88) ,

which completes the proof.

We now apply these results to compute the proportion γA
of agents whose initial input was A, with γA = nA/(nA +
nB) = nA/n. Recall that the output function ωA is given, for
all x ∈ Q, by

ωA(x) = (m+ x)/(2m).

Theorem 8: For all δ ∈ (0, 1) and for all ε ∈
(0, 1), by setting m = �3/(4ε)�, we have, for all t ≥
n (8.47 lnn− 2 ln ε− 13.29 ln δ − 2.88),

�{|ωA(C
(i)
t)− γA| < ε for all i = 1, . . . , n} ≥ 1− δ.

Proof: We have ‖C0 − L‖ ≤ m
√
n. Applying Theorem

7, with K =
√
n/ε ≥ �3/(4ε)�√n = m

√
n, we obtain for all

δ ∈ (0, 1) and t ≥ n (8.47 lnn− 2 ln ε− 13.29 ln δ − 2.88),

�{‖Ct − L‖∞ ≥ 3/2} ≤ δ

or equivalently

�{|C(i)
t − (γA−γB)m| < 3/2, for all i = 1, . . . , n} ≥ 1− δ.

Since γA + γB = 1 we have

|C(i)
t − (γA − γB)m| = |C(i)

t − (2γA − 1)m|
= |m+ C

(i)
t − 2mγA|

= 2m|ωA(C
(i)
t)− γA|.

Then

�{|ωA(C
(i)
t)− γA| < 3/(4m), for all i = 1, . . . , n} ≥ 1− δ.

So

�{|ωA(C
(i)
t)− γA| < ε, for all i = 1, . . . , n} ≥ 1− δ,

which completes the proof.

From Theorem 8, the convergence time to get the pro-
portion γA of agents that were in the initial state A, with
any precision ε and with any high probability 1 − δ is
O (n(log n− log ε− log δ)) and thus the corresponding par-
allel convergence time is O (log n− log ε− log δ). Still from
Theorem 8, the size of the set of states to compute γA is equal
to 2�3/(4ε)� + 1. It is important to note that the number of
states does not depend, even logarithmically, in n.

VII. LOWER BOUNDS

The second contribution of our paper is the derivation of
lower bounds on a more general problem, namely the counting
problem, introduced in [16]. This problem aims, for each agent,
at computing the exact number of agents that started in the
initial state A. Using the interaction rules given in Relation
(1) and the output function

ω′
A(x) = �n(m+ x)/(2m) + 1/2�,

we can exploit the results derived in the present paper to show
that the counting problem can be solved with O(n) states,
improving upon [16] in which the number of states is in
O(n3/2). We show that O(n) states and O(log n) parallel time
are lower bounds to solve the counting problem.

Finally, we prove that any algorithm solving the proportion
problem with a precision ε ∈ (0, 1), requires Ω(1/ε) states.
This demonstrates that our proportion protocol is optimal in
the number of states.

Theorem 9: By setting m = �3n/2�, for all δ ∈ (0, 1)
and for all t ≥ n (10.47 lnn− 13.29 ln δ − 1.49), we have

�{ω′
A(C

(i)
t) = nA, for all i = 1, . . . , n} ≥ 1− δ.

Proof: Observe that we have

ω′
A(x) = �nωA(x) + 1/2�.

Applying Theorem 8 with ε = 1/(2n) and for t ≥
n (10.47 lnn− 13.29 ln δ − 1.49), we obtain

�{|nωA(C
(i)
t)− nγA| < 1/2 for all i = 1, . . . , n} ≥ 1− δ.

Since nγA = nA is an integer, we get

�{ω′
A(C

(i)
t) = nA, for all i = 1, . . . , n} ≥ 1− δ,

6221

which completes the proof.

Thus each agent can solve the counting problem in
O(log n) parallel time and with O(n) states.

Theorem 10: Any algorithm solving the counting problem
takes an expected Ω(log n) parallel time to convergence.

Proof: Solving the counting problem bounds to solving
the exact majority problem. By applying Theorem C.1 of [2],
this algorithm takes an expected Ω(log n) parallel time to
convergence under a worst-case input.

Theorem 11: Any algorithm solving the counting problem
requires Ω(n) states.

Proof: To solve the counting problem, the size of the
output set Y must be n+1. So, the number of states (i.e. |Q|)
is at least n+ 1. The lower bound of the number of states is
thus Ω(n).

Theorem 12: Any algorithm solving the proportion prob-
lem with a precision ε ∈ (0, 1), requires Ω(1/ε) states.

Proof: The value of γA could be any rational value
between 0 and 1, the difference between two output values
cannot exceed 2ε, thus the lower bound for the size of the
output Y is �1/(2ε)� + 1. Hence, the number of states (i.e.,
|Q|) is at least �1/(2ε)� + 1. Thus the lower bound of the
number of states is Ω(1/ε).

VIII. SIMULATION RESULTS

We have conducted simulations to illustrate our theoretical
analysis. Figure 1 provides a summary of these simulations.
In this figure, each point of the curves represents the mean
of 100 simulations (with the maximum and the minimum of
the 100 simulations), a simulation consisting in computing the
total number of interactions, divided by n, needed for all the
agents to converge to γA with precision ε. The number n of
agents varies from 25 to 222, and the precision ε of the result is
set to 10−1, 10−3, and 10−5. Note that as shown theoretically,
Figure 1(a) and Figure 1(b) illustrate the fact that the number of
interactions per agent to converge is independent of the value
of γ, that is independent from the difference between both
proportions. From the generated data, for instance when δ =
1/2, one can deduce for each curve an empirical approximation
of the convergence parallel time given by −2 ln ε+0.62 lnn−
0.6.

IX. CONCLUSION

This paper has shown that in a large-scale system, any
agent can compute quickly and with a high precision specified
in advance the proportion of agents that initially started in
some given input state. This problem is a generalization of
the majority problem. Specifically, our protocol guarantees
that by using 2�3/(4ε)� + 1 states, any agent is capable of
computing the population proportion with precision ε ∈ (0, 1),
in no more than (−2 ln ε+ 8.47 lnn− 13.29 ln δ − 2.88) in-
teractions with probability at least 1 − δ, for any δ ∈ (0, 1).
We have also shown that our solution is optimal both in time
and space. As future work, we aim at using the same detailed
analysis to obtain new results for the majority problem.

REFERENCES

[1] Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and
Ronald Rivest. Time-space trade-offs for population protocols. In
arXiv:1602.08032v1, 2016.

[2] Dan Alistarh, Rati Gelashvili, and Milan Vojnovíc. Fast and exact
majority in population protocols. In Proceedings of the 34th annual
ACM symposium on Principles of Distributed Computing (PODC),
pages 47–56, 2015.

[3] Dan Alistarh, Rati Gelashvili, and Milan Vojnovic. Fast and exact
majority in population protocols. In Proceedings of the 34th annual
ACM Symposium on Principles of Distributed Computing (PODC),
2015.

[4] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and
René Peralta. Computation in networks of passively mobile finite-state
sensors. Distributed Computing, 18(4):235–253, 2006.

[5] Dana Angluin, James Aspnes, and David Eisenstat. Stably computable
predicates are semilinear. In Proceedings of the 25th annual ACM
Symposium on Principles of Distributed Computing (PODC), pages
292–299, 2006.

[6] Dana Angluin, James Aspnes, and David Eisenstat. A simple population
protocol for fast robust approximate majority. Distributed Computing,
20(4):279–304, 2008.

[7] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The
computational power of population protocols. Distributed Computing,
20(4):279–304, 2007.

[8] James Aspnes and Eric Ruppert. An introduction to population proto-
cols. Bulletin of the European Association for Theoretical Computer
Science, Distributed Computing Column, 93:98–117, 2007.

[9] Joffroy Beauquier, Peva Blanchard, and Janna Burman. Self-stabilizing
leader election in population protocols over arbitrary communication
graphs. In Proceedings of the 17th International Conference on
Principles of Distributed Systems (OPODIS), 2013.

 0

 5

 10

 15

 20

 25

 30

 35

 40

24 26 28 210 212 214 216 218 220 222

C
o
n
v
er

g
en

ce
 p

ar
al

le
l

ti
m

e

Number of agents n

=10-1 (17 states)

=10-3 (1,501 states)

=10-5 (150,001 states)

(a) γ = 0 (i.e γA = γB=1/2)

 0

 5

 10

 15

 20

 25

 30

 35

 40

24 26 28 210 212 214 216 218 220 222

C
o
n
v
er

g
en

ce
 p

ar
al

le
l

ti
m

e

Number of agents n

=10-1 (17 states)

=10-3 (1,501 states)

=10-5 (150,001 states)

(b) γ = 1/2 (i.e γA = 3/4 and γB = 1/4)

Figure 1. Number of interactions per agent as a function of the size of the
system.

7222

[10] Olivier Bournez, Cohen Johanne, and Mikaël Rabie. Homonym pop-
ulation protocols. In Proceedings of the 3rd International Conference
on Networked Systems (NETYS), 2015.

[11] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Eric
Ruppert. When birds die: Making population protocols fault-tolerant.
In Proceedings of the 2nd IEEE Conference on Distributed Computing
in Sensor Systems (DCOSS), pages 51–66, 2006.

[12] Moez Draief and Milan Vojnovic. Convergence speed of binary interval
consensus. SIAM Journal on Control and Optimization, 50(3):1087–
11097, 2012.

[13] Rachid Guerraoui and Eric Ruppert. Names trump malice: Tiny mobile
agents can tolerate byzantine failures. In Proceedings of the 36th
International Colloquium on Automata, Languages and Programming:
Part II (ICALP), pages 484–495, 2009.

[14] George B. Mertzios, Sotiris E. Nikoletseas, Christoforos Raptopoulos,
and Paul G. Spirakis. Determining majority in networks with local

interactions and very small local memory. In Proceedings of the 41st
International Colloquium (ICALP), pages 871–882, 2014.

[15] Ryu Mizoguchi, Hirotaka Ono, Shuji Kijima, and Masafumi Yamashita.
On space complexity of self-stabilizing leader election in mediated
population protocol. Distributed Computing, 25(6):451–460, 2012.

[16] Yves Mocquard, Emmanuelle Anceaume, James Aspnes, Yann Busnel,
and Bruno Sericola. Counting with population protocols. In Proceedings
of the 14th IEEE International Symposium on Network Computing and
Applications, pages 35–42, 2015.

[17] Yves Mocquard, Emmanuelle Anceaume, and Bruno
Sericola. Optimal Proportion Computation with Pop-
ulation Protocols. Technical report, August 2016.
https://hal.archives-ouvertes.fr/hal-01354352

[18] Etienne Perron, Dinkar Vasudevan, and Milan Vojnovic. Using three
states for binary consensus on complete graphs. In Proceedings of the
INFOCOM Conference, pages 2527–2435, 2009.

8223

CoVer-ability: Consistent Versioning in
Asynchronous, Fail-Prone, Message-Passing

Environments

Nicolas Nicolaou∗, Antonio Fernández Anta∗, Chryssis Georgiou†
∗ IMDEA Networks Institute, Madrid, Spain, nicolas.nicolaou@imdea.org,antonio.fernandez@imdea.org

† Dept. of Computer Science, University of Cyprus, Nicosia, Cyprus, chryssis@cs.ucy.ac.cy

Abstract—An object type characterizes the domain space and
the operations that can be invoked on an object of that type. In
this paper we introduce a new property for concurrent objects,
we call coverability, that aims to provide precise guarantees on the
consistent evolution of the version (and thus value) of an object.
This new property is suitable for a variety of distributed objects,
including concurrent file objects, that demand operations to
manipulate the latest version of the object. To preserve the order
of versions, traditional approaches use locking, compare-and-
swap (CAS), or linked-load/conditional-store (LL/SC) primitives
to allow a single modification at a time on such objects. Such
primitives however can be used to solve consensus, and thus
are impossible to be implemented in an asynchronous, message-
passing environment with failures.

Coverability, relaxes the strong requirements imposed by
stronger primitives, and allows us to define and implement
consistent versioning in the aforementioned adversarial envi-
ronment. In particular, coverability allows multiple operations
to modify the same version of an object concurrently, leading
to a set of different versions. Given an order of operations,
coverability properties specify a single version in that set that
any subsequent operation may modify, preserving this way the
consistent evolution of the object. We first define versioned
objects and then provide the specification of coverability. We then
combine coverability with atomic guarantees to yield coverable
atomic read/write registers; we show that coverable registers
cannot be implemented by similar types of registers, such as
ranked-registers. Next, we show how coverable registers may be
implemented by modifying an existing MWMR atomic register
implementation, and we continue by showing that coverable
registers may be used to implement basic (weak) read-modify-
write and file objects.

I. INTRODUCTION

Motivation and Prior Work. A concurrent system allows

multiple processes to interact with a single object at the

same time. A long string of research work [2], [6], [15]–

[17] has been dedicated to explain the behavior of concurrent

objects, defining the order and the outcomes of operations

when those are invoked concurrently on the object. Lamport

in [16], [17] presented three different incremental semantics,

This work is supported in part by FP7-PEOPLE-2013-IEF grant
ATOMICDFS No:629088, Ministerio de Economia y Competitividad
grant TEC2014- 55713-R, Regional Government of Madrid (CM) grant
Cloud4BigData (S2013/ICE-2894, co- funded by FSE & FEDER), NSF of
China grant 61520106005.

safety, regularity, and atomicity that characterize the behavior

of read/write objects (registers) when those are modified or

read concurrently by multiple processes. The strongest, and

most difficult to provide in a distributed system, is atomicity
which provides the illusion that the register is accessed se-

quentially. Herlihy and Wing presented linearizability in [15],

an extension of atomicity to general concurrent objects. More

recent developments have proposed abortable operations in the

event of concurrency [2], and ranked registers [6] that allow

operations to abort in case a higher “ranked” operation was

previously or concurrently executed in the system.

Although consistency semantics strictly specify the “place-

ment” of events on an execution trace based on their timing

characteristics, in many cases they are oblivious of the state

of the object at the point when an event takes effect. For

example, a write operation ω on a read/write register is ordered

after all the writes that completed before ω, irrespective to the

value that ω writes on the register. With the advent of cloud

computing, emerging families of more complex concurrent

objects, like files, distributed databases, and bulleting boards,

demand precise guarantees on the consistent evolution of the

object. For example, in concurrent file objects one would

expect that if a write operation ω2 is invoked after a write

operation ω1 is completed, then ω2 modifies either the version

of the file written by ω1 or a version of the file newer than

the one written by ω1. Such guarantees are easy to achieve

in systems that readily provide atomic compare-and-swap

(CAS), or linked-load/conditional-store (LL/SC) operations.

Such primitives allow modify operations to atomically obtain

the current version and value of an object, modify both, and

store the new version along with the new value of the object.

As shown by Herlihy in [14], CAS can be used to solve

consensus as it has a consensus number infinite. However, as

shown by Fischer, Lynch and Paterson [11], solving consensus

in an asynchronous, message-passing, fail-prone environment

is impossible in the existence of a single crash failure. So

the main question we will try to address is: Can we provide
versioning guarantees in an asynchronous, message-passing,
fail-prone environment using weaker primitives, like read/write
registers?

A seminal work by Attiya, Bar Noy and Dolev [3],

demonstrated that it is possible to introduce atomic read/write978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

224

registers in an asynchronous, message-passing environment

where processes may fail. As noted before, in existing atomic

read/write register implementations, write operations are al-

lowed to modify the value of the register, even when they are

unaware of the value written by the latest preceding write

operation. In systems that assume a single writer [3], [8],

[12], [13], the problem may be diminished by having the sole

writer compute the next value to be written in relation to the

previous values it wrote. The problem becomes more apparent

when multiple writers may alter the value of a single register

concurrently [9], [20]. In such cases, atomic read/write reg-

ister implementations appear unsuitable to directly implement

objects that demand evolution guarantees. Closer candidates to

build such objects are the bounded [4] and ranked [6] registers.

These objects take into account the “rank” or sequence number

of previous operations to decide whether to allow a read/write

operation to commit or abort. These approaches do not prevent,

however, the use of an arbitrarily higher rank, and thus an

arbitrarily higher version, than the previous operations. This

affects the consistent evolution of the object, as intermediate

versions of the object maybe ignored.

Contributions. In this paper we propose a formalism to extend

a concurrent object in such a way that the evolution of its

state satisfies certain guarantees. To this end, we extend an

object state with a version, and introduce the concept of

coverability, that defines how the versions of an object can

evolve (Section III).

In particular, we first introduce a new class of a concurrent

read/write register type, which we call versioned register. A

concurrent register is of a versioned type if the state of the

register, and any operation (read or write) that attempts to

modify the state of the register, are associated with a version.

An operation may modify the state and the version of the

register, or it may just retrieve its state-version pair.

Coverability defines the exact guarantees that a versioned

register provides when it is accessed concurrently by multi-

ple processes with respect to the evolution of its versions.

Coverability allows multiple operations to change a version,

generating in this way a tree with possibly multiple version

branches that can grow in parallel. This shares similarities

with fork linearizability presented in [21]. However, in contrast

to [21], coverability allows processes that change the same

version of the object to see the changes of each other in

subsequent operations. In particular, by coverability, when all

the operations that extend a particular version of the object

terminate, there is one version ver that was generated by

one of those operations, which is the ancestor of any version

extended by any subsequent operation. Thus, only a single

branch in the tree is extended and that branch denotes the

evolution of the register. The rest of the branches are discarded.

This resembles the way that the forks in a bitcoin blockchain

converge [1]. In particular, forks in a blockchain are created

when two miners generate a new block concurrently. Both

blocks are legitimate and each miner results in a different

branch, rooted from the same blockchain. Miners tend to

quickly converge on one chain and discard the other because

of profit-related motives. These discarded chains are usually

only one block long and are considered a statistical loss. In

contrast to the “profit-related” motives of the bitcoin, cover-

ability specifies which of the branches need to be discarded

based on a provable ordering of the events. Notice that the

stronger form of coverability where modify operations are

totally ordered, avoids branching of the versions. However

such primitive is equivalent with strong primitives like CAS

and LL/SC, and thus it is as powerful as consensus (details

can be found in [22]). Hence, it is challenging to implement

strong coverability in some distributed systems, and impossible

in an asynchronous system prone to failures (from the FLP

result [11]).

An interesting property of coverability is that it is defined

over a given order of events. Therefore coverability can be

defined over the ordering yielded by any consistency scheme.

In this paper we combine coverability with atomic guaran-

tees and we obtain coverable atomic read/write registers.

Coverable atomic registers have very interesting features. At

first, they provide strong atomic guarantees, i.e they surpass

weaker consistency guarantees like regularity [16], or eventual

consistency [23], and in addition provide guarantees on the

evolution of the value of the register. This allows coverable

atomic registers to be used for the implementation of more

complex objects like: (i) interesting weak read-modify-write
(RMW) objects which in turn can be used to implement (ii)

file objects (Section VI). Furthermore, we show they cannot

be implemented using similar register types such as ranked

registers (Section IV). And last but not least, they can be

implemented in message passing asynchronous distributed sys-

tems where processes can fail, with a simple modification of

existing atomic read/writer register implementations (Section

V).

II. MODEL

We consider a distributed system composed of n asyn-
chronous processes, with identifiers from a set I =
{p1, . . . , pn}, that communicate by exchanging messages. A

subset of processes in I may fail by crashing.

Processes can be modeled in terms of I/O Automata [19].

An automaton A (which combines the automata Ai for each

process pi ∈ I) is defined over a set of states and a set of

actions. An execution ξ of A is an alternating sequence of

states and actions of A. An execution fragment is a finite

prefix of an execution. We say that an execution fragment

ξ′ extends an execution fragment ξ, if ξ is a prefix of ξ′. A

history of an automaton A, denoted by Hξ, is the subsequence

of actions occurring in some execution fragment ξ of A. An

automaton A invokes an operation when an invocation action
occurs in an execution ξ, and receives a response to an action

when a response action occurs. An operation π is complete
in an execution ξ, if Hξ contains both the invocation and the

matching response actions for π; otherwise π is incomplete. A

history Hξ of the automaton Ai of a process pi is well formed
if it begins with an invocation event and alternates between

matching invocation and response events. (This demonstrates

225

the assumption that each process is a single thread of control.)

Each history Hξ includes a precedence relation →Hξ
on its

operations. An operation π1 precedes an operation π2 (or π2

succeeds π1) in Hξ if the response of π1 appears before the

invocation of π2 in Hξ. This is denoted by π1 →Hξ
π2. If

π1 	→Hξ
π2 and π2 	→Hξ

π1 in Hξ, then π1 and π2 are

concurrent. A process pi crashes in an execution ξ if the event

failpi
appears and is the last action of pi in Hξ; otherwise pi

is correct.

III. COVERABLE ATOMIC READ/WRITE REGISTERS

In this section we define a new type of read/write (R/W)

register, the versioned register. Next we provide a new con-

sistency property for concurrent versioned registers called

coverability. We show how coverability can be combined with

atomic guarantees to yield a coverable atomic register.

Versioned register. Let Versions be a totally ordered set

of versions. A versioned register is a type of R/W register

where each value written is assigned with a version from the

set Versions . Moreover, each write operation π that attempts

to change the value of the register is also associated with

a version, say verπ , denoting that it intends to overwrite

the value of the register associated with the version verπ .

More precisely, an implementation of a R/W register offers

two operations: read and write. A process pi ∈ I invokes
a write (resp. read) operation when it issues a write(val)pi

(resp. readpi
) request. The versioned variant of a R/W register

also offers two operations: (i) cvr-write(val, ver)pi
, and (ii)

cvr-read()pi . A process pi invokes a cvr-write(val, ver)pi

operation when it performs a write operation that attempts

to change the value of the object. The operation returns the

value of the object and its associated version, along with a flag

informing whether the operation has successfully changed the

value of the object or failed. We say that a write is successful
if it changes the value of the register; otherwise the write

is unsuccessful. The read operation cvr-read()pi involves a

request to retrieve the value of the object. The response of

this operation is the value of the register together with the

version of the object that this value is associated with.

Read operations do not incur any change on the value of the

register, whereas write operations attempt to modify the value

of the register. More formally, let ΔT be the set of transitions

for the versioned register. Then, each δ ∈ ΔT is a tuple

〈σ, π, pi, σ′, res〉, denoting that the register moves from state

σ to state σ′, and responds with res, as a result of operation

π invoked by process pi ∈ I. The state of a versioned register

is essentially its value, drawn from a set V , and its version,

drawn from the set Versions . We assume that ΔT is total,
that is, for every π ∈ {cvr-write(val, ver)pi , cvr-read()pi},

pi ∈ I, and σ = (val, ver) ∈ V × Versions , there

exists σ′ = (val′, ver′) ∈ V × Versions and res such

that 〈σ, π, pi, σ′, res〉 ∈ ΔT . As such, the transitions of the

versioned register type can be written as follows:

1) 〈(val, ver), cvr-write(val′, verω), pi,
(val′, ver′), (val′, ver′, chg)〉, for verω = ver,

2) 〈(val, ver), cvr-write(val′, verω), pi,
(val, ver), (val, ver, unchg)〉, for verω 	= ver

3) 〈(val, ver), cvr-read(), pi, (val, ver), (val, ver)〉.
Notice that write operations may or may not modify the

value/version of the register. In the transitions above, verω
denotes the version of the register which the write operation

tries to modify. The relationship of ver with ver′ may

vary depending on the application that uses this register

(but seems natural to assume that ver′ > ver). A read

operation does not make any changes on the value or the

version of the object. To simplify notation, in the rest of

the paper we avoid any reference to the value of the reg-

ister. Additionally we only use the flag when its value is

unchg. Thus, cvr-write(v, ver)(v, ver′, chg)pi
is denoted as

cvr-ω(ver)[ver′]pi
, and cvr-write(v, ver)(v′, ver′, unchg)pi

is denoted as cvr-ω(ver)[ver′, unchg]pi .

We say that, a write operation revises a version ver of the

versioned register to a version ver′ (or produces ver′) in an

execution ξ, if cvr-ω(ver)[ver′]pi
completes in Hξ. Let the

set of successful write operations on a history Hξ be defined

as:

Wξ,succ= {π :π = cvr-ω(ver)[ver′]pi completes in Hξ}.
The set now of produced versions in the history Hξ is defined

by:

Versionsξ={veri :cvr-ω(ver)[veri]pi∈Wξ,succ} ∪ {ver0}
where ver0 is the initial version of the object. Observe that

the elements of Versionsξ are totally ordered. In the rest of

the text we use ‘∗’ in the place of some parameter to denote

that any legal value for that parameter can be used. Now we

present the validity property which defines explicitly the set

of executions that are considered to be valid executions.

Definition 1 (Validity): An execution ξ (resp. its history

Hξ) is a valid execution (resp. history) on a versioned object,

for any pi, pj ∈ I:

• ∀cvr-ω(ver)[ver′]pi
∈ Wξ,succ, ver < ver′,

• for any operations cvr-ω(∗)[ver′]pi
and cvr-ω(∗)[ver′′]pj

in Wξ,succ, ver′ 	= ver′′, and

• for each verk ∈ V ersionsξ there is a sequence of ver-

sions ver0, ver1, . . . , verk, such that cvr-ω(veri)[veri+1]
∈ Wξ,succ, for 0 ≤ i < k.

Validity makes it clear that an operation changes the version of

the object to a larger version, according to the total ordering of

the versions. Also validity specifies that versions are unique,

i.e. no two operations associate two states with the same

version. This can be easily achieved by, for example, recording

a counter and the id of the invoking process in the version of

the object. Finally, validity requires that each version we reach

in an execution is derived (through a chain of operations) from

the initial version of the register ver0. From this point onward

we fix ξ to be a valid execution and Hξ to be its valid history.

Coverability. We can now define the coverability properties

over a valid execution ξ of versioned registers with respect to

some total order >ξ on the operations of ξ.

226

Definition 2 (Coverability): A valid execution ξ is cover-
able with respect to a total order <ξ on operations in Wξ,succ

if:

• (Consolidation) If π1 = cvr-ω(∗)[veri], π2 =
cvr-ω(verj)[∗] ∈ Wξ,succ, and π1 →Hξ

π2 in Hξ, then

veri ≤ verj and π1 <ξ π2.

• (Continuity) if π2 = cvr-ω(ver)[veri] ∈ Wξ,succ, then

there exists π1 ∈ Wξ,succ s.t. π1 = cvr-ω(∗)[ver] and

π1 <ξ π2, or ver = ver0.

• (Evolution) let ver, ver′, ver′′ ∈ V ersionsξ. If there

are sequences of versions ver′1, ver
′
2, . . . , ver

′
k and

ver′′1 , ver
′′
2 , . . . , ver

′′
� , where ver = ver′1 = ver′′1 , ver′k =

ver′, and ver′′� = ver′′ such that cvr-ω(ver′i)[ver
′
i+1]

∈ Wξ,succ, for 1 ≤ i < k, and cvr-ω(ver′′i)[ver
′′
i+1]

∈ Wξ,succ, for 1 ≤ i < , and k < , then ver′ < ver′′.
Intuitively, Consolidation specifies that write operations may

revise the register with a version larger than any version

modified by a preceding write operation, and may lead to

a version newer than any version introduced by a preceding

write operation. Continuity defines that a write operation may

revise a version that was introduced by a preceding write

operation according to the given total order. Finally, Evolution
limits the relative increment on the version of a register that

can be introduced by any operation.

By Definition 2, coverability allows multiple write opera-

tions to revise the same version veri of the register, each to

a unique version verj . Given the set of successful operations

Wξ,succ and the set of versions Versionsξ, Definitions 1 and

2 define a connected rooted tree T s.t.:

• The set of nodes of T is Versionsξ,

• The initial version ver0 of the object is the root of T ,

• A node veri is the parent of a node verj in T iff

∃π(veri)[verj] ∈ Wξ,succ,

• If π1 = cvr-ω(∗)[veri] ∈ Wξ,succ, s.t. π1 is not concurrent

with any other operation, then ∀π2 ∈ Wξ,succ, s.t. π1 →ξ

π2 and π2 = π(verz)[∗], then veri is an ancestor of verz
in T , or veri = verz (by Consolidation, Continuity, and

Validity)

• if veri is an ancestor of verj in T , then cvr-ω(∗)[veri] <ξ

cvr-ω(∗)[verj] (by Continuity).

• if veri is at level k of T and verj is at level of T s.t.

k < , then veri < verj (by Evolution).

Observe that without the properties imposed by coverability,

validity allows the creation of a tree of versions and does not

prevent operations from being applied on an old version of

the register. Continuity, Consolidation, and Evolution explic-

itly specify the conditions that reduce the branching of the

generated tree, and in the case of not concurrency lead the

operations to a single path on this tree. Figure 1 provides an

illustration of a tree created from a coverable execution ξ. We

box sample instances of the execution and we indicate the

coverability properties they satisfy.

Atomic coverability. We now combine coverability with

atomic guarantees to obtain coverable atomic read/write reg-

Fig. 1: Tree Illustration from Coverable Execution

isters. A register is linearizable [15], or equivalently atomic
(as defined specifically for registers by [17], [18]) if the

following conditions are satisfied by any execution ξ of an

implementation of the object.

Definition 3 (Atomicity): [18, Section 13.4] An execution ξ
of an automaton A is atomic if every read and write operation

in ξ is complete and there is a partial ordering ≺Hξ
on all

operations Π in Hξ such that: A1. For any pair of operations

π1, π2 ∈ Π, if π1 →Hξ
π2 then it cannot hold that π2 ≺Hξ

π1,

A2. If π ∈ Π is a write operation and π′ any operation in Π,

then either π ≺Hξ
π′ or π′ ≺Hξ

π, and A3. If v is the value

returned by a read ρ then v is the value written by the last

preceding write according to ≺Hξ
(or the initial value v0 if

there is no such a write).

In the context of versioned registers, in Definition 3, a write
refers to a successful write (cvr-ω(∗)[∗, chg]) operation on

the versioned register. Therefore, all the write operations in

an execution ξ are the ones that appear in Wξ,succ. A read
refers to a versioned read (cvr-ρ()[∗]) or an unsuccessful write

(cvr-ω(∗)[∗, unchg]) operation that does not modify the value

(nor the version) of the register.

Definition 4 (Coverable atomic register): A versioned reg-

ister is coverable and atomic, referred as coverable atomic
register, if any execution ξ on the register satisfies: (i) atom-

icity (Definition 3), and (ii) coverability (Definition 2) with

respect to the total order imposed by A2 on Wξ,succ.

Note that in a coverable atomic register, the ordering of read

operations follows the ordering from atomicity. From this point

onward, when clear from context, we refer to a coverable

atomic register, as simply coverable register.

IV. COVERABLE ATOMIC REGISTERS VS RANKED

REGISTERS.

A type of registers that at first might resemble coverable

registers are ranked-registers [6]. As we show here, ranked-

registers are weaker than coverable registers. In particular, we

227

show that it is impossible to implement coverable registers us-

ing ranked-registers; we begin by providing a formal definition

of ranked-registers.

Definition 5 (Ranked-Registers [6]): Let Ranks be a to-

tally ordered set of ranks with r0 the initial rank. A ranked

register is a MWMR shared object that offers the following

operations: (i) rr-read(r), with r ∈ Ranks and returns

(r, v) ∈ Ranks × V alues, and (ii) rr-write(〈r, v〉), with

(r, v) ∈ Ranks × V alues and returns commit or abort. A

ranked register satisfies the following properties: (i) Safety.
Every rr-read operation returns a value and a rank that was

written in some rr-write invocation or (r0, v0). Additionally,

if W = rr-write(〈r1, v〉) a write operation which commits and

R = rr-read(r2) such that r2 > r1, then R returns (r, v) where

r ≥ r1. (ii) Non-Triviality. If a rr-write operation W invoked

with a rank r1 aborts, then there exists an operation with rank

r2 > r1 which returns before W is invoked, or is concurrent

with W (iii) Liveness. if an operation is invoked by a correct

process then eventually it returns.

We want to use rank-registers to implement the operations

of a coverable register. As in Section II, we denote by

cvr-ω(ver)[ver′, f lag] the coverable write operation that tries

to revise version ver, and returns version ver′ with a flag ∈
{chg, unchg}. Similarly we denote by rr-ω(r)[rh, res] a write

operation on a ranked-register that uses rank r and tries to

modify the value of the register. The rank rh is the highest

rank observed by an operation and res ∈ {abort, commit}.

In the following results we assume that a coverable register

is implemented using a set of ranked-registers. We begin with

a lemma that shows that a coverable write operation revises

the coverable register only if it invokes a write operation on

some rank register and that write operation commits. Omitted
proofs can be found in [22].

Lemma 6: Suppose there exists an algorithm A that im-

plements a coverable register using ranked-registers. In any

execution ξ of A, if a process pi invokes a coverable write

operation cvr-ω(ver)[ver′, chg]pi
, then pi performs a write

rr-ω(r)[rh, commit]pi,j on some shared ranked-register j.

Next we show that if π1, π2 are two non-concurrent write

operations on the coverable register, then π2 performs a ranked

write (that commits or aborts) on at least a single ranked

register on which π1 performed a committed ranked write

operation. For the sake of the lemma Ri is the set of ranked

registers on which πi writes, and cRi a subset of them on

which the write commits.

Lemma 7: Let π1 = cvr-ω(ver)[ver1, chg]pi
and π2 =

cvr-ω(ver1)[ver2, ∗]pz
, i 	= z, be two write operations that ap-

pear in an execution ξ s.t. π1 →ξ π2. There exists some shared

register j ∈ R2 ∩ cR1 with a highest rank rj before the invo-

cation of π1, such that pi performs an rr-ω(r)[∗, commit]pi,j

during π1, and pz performs an rr-ω(r′)[∗, ∗]pz,j during π2.

Thus far we showed that a successful coverable write

operation needs to commit on at least a single ranked register

(Lemma 6), and two non-concurrent coverable write opera-

tions need to invoke a ranked write operation on a common

rank register (Lemma 7). Using now Lemma 7 we can show

that a coverable write operation that changes the version of the

coverable register must use a rank higher than any previously

successful coverable write operation.

Lemma 8: In any execution ξ if π1 =
cvr-ω(ver)[ver1, chg]pi and π2 = cvr-ω(ver1)[ver2, chg]pz ,

z 	= i, s.t. π1 →ξ π2, then there exists some shared register j
such that pi performs an rr-ω(r)[∗, commit]pi,j during π1,

and pz performs an rr-ω(r′)[∗, commit]pz,j during π2, and

r′ > r.

Now we prove our main result stating that a coverable

register cannot be implemented with ranked registers as those

were defined in [6].

Theorem 9: There is no algorithm that implements a cov-

erable register using a set of ranked registers.

Proof: The theorem follows from Lemmas 6, 7, and 8,

and the fact that a ranked register allows a write operation to

commit even if it uses a rank smaller than the highest rank of

the register. As by Lemma 6 a successful write must commit,

then by ranked registers it can commit with a rank smaller

than the highest rank of the accessed register. This, however,

by Lemma 8 may lead to violation of the consolidation and

continuity properties, and thus violation of coverability.

Observe that the key fact that makes ranked registers

weaker than coverable registers is that the former allow write

operations to commit even if their ranks are out of order. In

particular, note that the Non-Triviality property does not force
a write operation invoked with a rank r1 to abort, even if

there exists a completed prior operation with rank r2 > r1. As

shown in [6] non-fault-tolerant ranked registers may preserve

the total order of the ranks, and thus be used to implement

consensus. As we show in [22] such ranked registers (i.e., that

implement consensus) could be used to implement strongly

coverable registers.

V. IMPLEMENTING COVERABLE ATOMIC READ/WRITE

REGISTERS

We now show how we can implement coverable atomic

registers. We do so by enhancing the Multi-Writer version of

algorithm ABD [3], [20] (referred as MWABD) to preserve

the properties of coverability. The presented technique can

be applied to implementations of atomic R/W objects that

utilize a 〈tag, value〉 pair to order the write operations and

where each write performs two phases before completing: a

query phase to obtain the latest value of the atomic object

and a propagation phase to write the new value on the object.

We could also adopt implementations of stronger objects

like the ones presented in [4]–[7] but we preferred to show

the simplest modification in a fundamental algorithm. To

capture the semantics of a coverable atomic register we modify

the operations of algorithm MWABD to comply with the

versioned variant of the R/W register. We use cvr-write(ver, v)
and cvr-read() as the write and read operations respectively.

A cvr-write(ver, v) operation may impact differently the state

of the object, depending on the version of the shared object: it

may appear as a read, not modifying the value nor the version

228

of the register, or as a write, changing both the value and the

version of the register.

In brief, the original MWABD replicates an object to a set

of hosts (replicas) S ⊂ I and it uses 〈tag, value〉 pairs to

order the read and write operations. A tag consists of a non-
negative integer and a writer identifier which is used to break

the ties among concurrent write operations. Both the read and

write protocols have two phases: a query and a propagation
phase. During the query phase the invoking process broadcasts

a query message to all the replicas and waits for a majority of

them to reply with their tag-value pairs. Once those replies are

received the process discovers the largest tag-value pair among

the replies. In the second phase, a read operation propagates

the discovered tag-value pair to the majority of the replicas.

A write operation increments the largest tag, associates the

new tag with the value to be written, and propagates the new

tag-value pair to the majority of the replicas.

In the versioned MWABD, vMWABD for short, we use

the tags associated with each value to denote the version of

the register. The pseudocode of each operation of vMWABD

is described in Figure 2. The cvr-read operation is similar

to the read operation of MWABD with the difference that

it returns both the value and the version of the register. A

cvr-write operation differs from the original write by utilizing a

condition before its propagation phase and depending whether

the condition holds it changes the state of the register (value

and version) or not, as detailed in Figure 2. Note that the

version parameter of the write operation is equal to the

maximum tag that the invoking process witnessed.

Theorem 10: Algorithm vMWABD implements coverable

atomic registers.

Proof: It is clear that vMWABD still satisfies properties

A1-A3. Any write operation that is not successful can be

mapped to a read operation that performs two phases and

propagates the latest value/version to a majority of replicas

before completing. It remains to show that vMWABD also

satisfies validity and coverability.

Validity is satisfied since each tag is unique, as it is

composed by an integer ts and the id of a process wid.

The tag is monotonically incrementing at each replica, as

according to the algorithm a replica updates its local copy

only if a higher tag is received. A writer process wi discovers

the maximum tag 〈ts, wj〉 among the replicas and in the

second phase it generates a tag 〈ts + 1, wi〉. As the tag at

each replica is monotonically incrementing then each writer

never generates the same tag twice. Also, for every write

cvr-ω(tag)[tag′, chg], tag′ = 〈tag.ts+1, wid〉 ⇒ tag′ > tag.

Finally, since every tag is generated by extending the initial

tag and each write operation extends a tag that obtains during

its query phase then there is a sequence of tags leading from

the initial tag to the tag used by the write operation.

For consolidation we need to show that for two

write operations ω1 = cvr-ω(∗)[tag1, chg] and ω2 =
cvr-ω(tag2)[∗, chg], if ω1 →ξ ω2 then tag1 ≤ tag2. Accord-

ing to the algorithm ω1 propagates tag1 to the majority of

replicas before completing. In the query phase, ω2 receives

1: at each writer wi

2: Components:
3: maxP ∈ N

+ × W × V, tg ∈ N
+ × W, v ∈ V, flag ∈ {chg, unchg}

4: Initialization:
5: tg ← 〈0, wi〉, v ← ⊥,maxP ← 〈tg, v〉
6: function CVR-WRITE(val, ver)
7: send (Query) to all servers � Query Phase

8: wait until |S|+1
2 servers reply

9: maxP ← max({m.〈tg′, v′〉|m received from some server})
10: if ver = maxP.tg′ then
11: tg ← 〈maxP.tg′.ts + 1, wi〉; v ← val; flag ← chg
12: send (Write, 〈tg, v〉) to all servers � Write Phase

13: wait until |S|+1
2 servers reply

14: else
15: tg ← maxP.tg′; v ← maxP.v′; flag ← unchg
16: send (Propagate,maxP) to all servers � Propagate Phase

17: wait until |S|+1
2 servers reply

18: end if
19: return(〈tg, v〉, flag)
20: end function

21: at each reader ri
22: Components:
23: maxP ∈ N

+ × W × V
24: function CVR-READ()
25: send (Query) to all servers � Query Phase

26: wait until |S|+1
2 servers reply

27: maxP ← max({m.〈tg′, v′〉|m received from some server})
28: send (Propagate,maxP) to all servers � Propagate Phase

29: wait until |S|+1
2 servers reply

30: return(maxP)
31: end function

32: at each server si
33: Components:
34: tg ∈ N

+ × W, v ∈ V
35: Initialization:
36: tg ← 〈0,⊥〉, v ∈ V
37: function RCV(M)q � Reception of a message from q
38: if M.type = Query and M.tg > tg then
39: 〈tg, v〉 ← 〈M.tg,M.v〉
40: end if
41: send(〈tg, v〉) to q
42: end function

Fig. 2: The operations of algorithm vMWABD.

messages from the majority of replicas. So there is one replica

s that received tag1 from ω1 before replying to ω2. Since

the tag in s is monotonically incrementing, then s replies to

ω2 with a tag tags ≥ tag1. So ω2 receives a maximum tag

tagmax ≥ tag1. Since ω2 also changes the value and version of

the register it means that its local tag tag2 is equal to tagmax.

This shows immediately that tag2 ≥ tag1.

Continuity is preserved as a write operation first queries the

replicas for the latest tag before proceeding to the propagation

phase to write a new value. Since the tags are generated and

propagated only by write operations then if a write changes

the value of the system then it appends a tag already written,

or the initial tag of the register.

To show that evolution is preserved, we observe that

the version of a register is given by its tag, where tags

are compared lexicographically (first the number tag.ts and

then the writer identifier to break ties). A successful write

π1 = cvr-ω(tag)[tag′] generates a new tag tag′ from tag
such that tag′.ts = tag.ts + 1. Consider sequences of

tags tag1, tag2, . . . , tagk and tag′1, tag
′
2, . . . , tag

′
� such that

tag1 = tag′1. Assume that cvr-ω(tagi)[tagi+1], for 1 ≤ i < k,

and cvr-ω(tag′i)[tag
′
i+1], for 1 ≤ i < , are successful

writes. If tag1.ts = tag′1.ts = z, then tagk.ts = z + k and

tag′�.ts = z + , and if k < then tagk < tag′�.

229

Supporting Large Versioned Objects. Fan and Lynch [10],

using algorithm MWABD as a building block, showed how

large atomic R/W objects can be efficiently replicated. The

main idea of their algorithm, called LDR, is to have two

distinguished sets of servers: Replicas and Directories. Replica

servers are the ones that actually store the object’s data (value),

while Directories keep track of the tags of the object and the

associated Replicas that store the data of the object. A reader

or writer first runs algorithm MWABD on the Directories to

obtain the highest tag of the object, and the identity of the

Replicas that have the associated value (aka, the most recent

value of the object). A read operation, then contacts a subset

of the Replicas to obtain the value of the object. A write sends

the new value to a majority of the Replicas, while ensuring

that Directories are updated (see [10] for details). By replacing

algorithm MWABD with algorithm vMWABD and performing

a few modifications to the Replicas, we can turn algorithm

LDR into an algorithm that can handle large versioned R/W
objects, such as large files. See [22] for the modified LDR.

VI. APPLICATIONS OF COVERABLE ATOMIC READ/WRITE

REGISTERS

Weak RMW registers. A shared object satisfies atomic read-
modify-write (RMW) semantics if a process can atomically

read and modify the value of the object using some function F ,

and then write the new value on the object. Coverable atomic

R/W registers can be used to implement a weak version of

RMW semantics. In a weak RMW object not all operations

may successfully modify the value of the object. In case that

a RMW operation is not concurrent with any other operation

then this operation satisfies the RMW semantics. In case where

two or more operations invoke RMW concurrently, at least one

of them will satisfy the RMW semantics. Finally, weak RMW

allow multiple RMW operations to modify successfully the

same value.

Figure 3 presents an implementation of a weak RMW object

using coverable atomic R/W registers. We assume that the

object offers a rmw(F) action that accepts a function and tries

to apply that function on the value of the object. The object

returns the initial value of the object and a flag indicating

whether the value of the object was modified successfully.

1: At each process i ∈ I
2: State Variables:
3: lcver ∈ Versions; oldval, lcval, newv ∈ Values;
4: flag ∈ {chg, unchg}
5: function RMW(F)
6: 〈oldval, lcver〉 ← cvr-read()
7: newv ← F(oldval)
8: 〈lcval, lcver, flag〉 ← cvr-write(lcver, newv)
9: if flag = chg then

10: return 〈lcval, success〉
11: else
12: return 〈lcval, fail〉
13: end if
14: end function

Fig. 3: Weak RMW using Coverable Atomic Registers

Theorem 11: The construction in Figure 3 implements a

weak RMW object.

Proof: Consider an execution ξ of the algorithm. We

begin the proof by studying the case where an operation

rmw(F) is not concurrent with any other operation in ξ. The

atomic nature of the register ensures that cvr-read returns the

latest value and version, say 〈ver, val〉, written on the register.

When the cvr-write operation is invoked, the write operation

tries to modify the value associated with version ver. As there

is no concurrent operation, the version of the register remains

ver and thus according to consolidation and continuity, the

write operation successfully writes the new value completing

the RMW operation.

Consider now the case of two operations, π1 and π2,

invoking rmw concurrently. Each of these operations involve

a cvr-read followed by a cvr-write operation. Let ρπi
(resp.

ωπi) denote the read (resp. write) operation invoked during

πi, for i ∈ [1, 2]. We have the following cases wrt the order

of these operations: (i) ωπ1
→ ρπ2

, (ii) ωπ2
→ ρπ1

, (iii)
ρπ2

→ ωπ1
→ ωπ2

, (iv) ρπ1
→ ωπ2

→ ωπ1
, or (v) ωπ1

is concurrent with ωπ2
. In case (i), both read and write

operations of π1 complete before the read and write operations

of π2 are invoked. In this case notice that the version of the

object remains the same from the read to the write operation

of both operations. Thus, according to consolidation and
continuity, both write operations will successfully change the

value of the register. The same holds for case (ii), where

π2’s ops complete before the invocation of π1’s ops. In case

(iii) the write operation of π1 completes before the write

operation of π2. Let ρπ2
in this case complete before ωπ1

. Both

read operations ρπ1
and ρπ2

discover by atomicity the same

version, say ver. So both write operations will be invoked as

cvr-write(ver, v). Since no operation changes the version of

the register before ωπ1 is invoked, then by consolidation and
continuity, ωπ1

changes the version of the object to, say, verπ1
.

Notice that by validity, verπ1
> ver. When ωπ2

is invoked

it fails by consolidation to change the value of the object as

ωπ1
→ ωπ2

and it tries to change the version ver < verπ1
(the

version of ωπ1). Hence, only π1 will manage to preserve RMW

semantics. Similarly, we can show that only π2 will preserve

RMW semantics in case (iv). Finally, in case (v) if both writes

try to change the version ver, both may succeed and preserve

RMW semantics. Since, however, their versions are unique and

comparable, then by consolidation any subsequent operation

will RMW the highest of the two versions. So in all cases

at least a single operation satisfies the RMW semantics, as

desired.

From the proof we can extract that coverable registers may

allow multiple writes to change the same version of the reg-

ister, but consolidation ensures that at least one write satisfies

RMW semantics for each version. Finally, consolidation and
continuity ensure that eventually RMW operations diverge in

a single path in the constructed tree.

Concurrent File Objects. A file object can be implemented

directly using RMW semantics since one can retrieve, revise,

and write back the new version of the file. As RMW semantics

can be used to solve consensus [14], they are impossible to be

implemented in an asynchronous system with a single crash

230

1: At each process i ∈ I
2: State Variables:
3: lcver ∈ Versions
4: lcval ∈ Values
5: flag ∈ {chg, unchg}
6: Initialization:
7: lcver ← ver0; lcval ← ⊥
8: function GET()
9: 〈lcval, lcver〉 ← cvr-read()

10: return 〈lcval, lcver〉
11: end function

12: function REVISE(v, ver)
13: 〈lcval, lcver, flag〉 ←
14: cvr-write(ver, v)
15: if flag = chg then
16: return OK
17: end if
18: return 〈lcval, lcver〉
19: end function

Fig. 4: File Object using Coverable Atomic Registers

failure. Therefore, we consider file objects that comply to the

weak RMW semantics as those were given in the paragraph

above. In particular, we consider concurrent file objects that

allow two fundamental operations, revise and get to be invoked

concurrently by multiple processes. The revise operation is

used to change the contents of the file object, whereas the

get action is analogous to a read operation and facilitates the

retrieval of the contents of the file. Semantically, a file object

requires that a revise operation is applied on the latest version

of the file and a get operation returns the file associated with

the latest written version. Depending on the implementation,

the values written and returned by these operations can be

the complete file object, a fragment of the file object, or just

the journal containing the operations to be applied on a file

(similar to a journaled file system).

Figure 4 presents the algorithm that implements the two

operations. The revise operation specifies the version of the file

to be revised along with the new value of the shared object.

The cvr-write operation attempts to perform the write with

the given version and returns the value and version of the

register, and whether the write succeeded or not. If the write

succeeded then the operation informs the application for the

proper completion of the revise operation; otherwise the latest

discovered value-version pair is returned. From Theorem 11

and Figure 4 we may conclude the following theorem.

Theorem 12: The construction in Figure 4 implements a file

object.

VII. CONCLUSION

In this paper we have introduced versioned registers and

a new property for concurrent versioned registers, we call

coverability. A versioned register associates a version with

its value, and with each operation that wants to modify its

value. An operation may modify the value and the version

of the register, or it may just retrieve its value-version pair.

Coverability defines the exact guarantees that a versioned

register provides when it is accessed concurrently by multiple

processes with respect to the evolution of its versions, over a

total order of its operations.

We combine coverability with atomicity to obtain coverable

atomic registers. The successful writes on the register follow

the total order of atomicity, while preserving the properties

required by coverability. We note that a different total ordering

could be used with coverability to obtain other types of

“coverable objects”. In fact, we believe it would be interesting

to investigate further the use of coverable objects for the

introduction of distributed algorithms for various applications.

The fact that each operation is enhanced by the version of the

object provides the flexibility to manipulate the effect of an

operation under some conditions on the version of the object

with respect to the version of the operation.

REFERENCES

[1] What is bitcoin fork? http://blog.cex.io/bitcoin-dictionary/
what-is-bitcoin-fork-14622. Accessed: 2016-05-05.

[2] Aguilera, M. K., and Horn, S. L. Abortable and query-abortable objects
and their efficient implementation. In Proc. of PODC 2007, pp. 23–32.

[3] Attiya, H., Bar-Noy, A., and Dolev, D. Sharing memory robustly in
message passing systems. Journal of the ACM 42(1) (1996), 124–142.

[4] Boichat, R., Dutta, P., Frølund, S., Guerraoui, R. Deconstructing paxos.
SIGACT News 34, 1 (2003), 47–67.

[5] Chockler, G., Dobre, D., and Shraer, A. Brief announcement: Consis-
tency and complexity tradeoffs for highly-available multi-cloud store. In
Proc. of DISC 2013.

[6] Chockler, G., and Malkhi, D. Active disk paxos with infinitely many
processes. Distributed Computing 18, 1 (2005), 73–84.

[7] Dobre, D., Viotti, P., and Vukolić, M. Hybris: Robust hybrid cloud
storage. In Proc. of SOCC 2014.

[8] Dutta, P., Guerraoui, R., Levy, R. R., and Chakraborty, A. How fast can
a distributed atomic read be? In Proc. of PODC 2004,

[9] Englert, B., Georgiou, C., Musial, P. M., Nicolaou, N., and Shvartsman,
A. A. On the efficiency of atomic multi-reader, multi-writer distributed
memory. In Proc. of OPODIS 2009, pp. 240–254.

[10] Fan, R., and Lynch, N. Efficient replication of large data objects. In
Proc. of DISC 2003, pp. 75–91.

[11] Fischer, M. J., Lynch, N. A., and Paterson, M. S. Impossibility of
distributed consensus with one faulty process. Journal of ACM 32, 2
(1985), 374–382.

[12] Georgiou, C., Nicolaou, N. C., and Shvartsman, A. A. On the robustness
of (semi) fast quorum-based implementations of atomic shared memory.
In Proc. of DISC 2008, pp. 289–304.

[13] Georgiou, C., Nicolaou, N. C., and Shvartsman, A. A. Fault-tolerant
semifast implementations of atomic read/write registers. Journal of
Parallel and Distributed Computing 69, 1 (2009), 62–79.

[14] Herlihy, M. Wait-free synchronization. ACM Trans. Program. Lang.
Syst. 13, 1 (1991), 124–149.

[15] Herlihy, M. P., and Wing, J. M. Linearizability: A correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst. 12, 3 (1990),
463–492.

[16] Lamport, L. How to make a multiprocessor computer that correctly
executes multiprocess progranm. IEEE Trans. Comput. 28, 9 (1979),
690–691.

[17] Lamport, L. On interprocess communication, part I: Basic formalism.
Distributed Computing 1, 2 (1986), 77–85.

[18] Lynch, N. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.
[19] Lynch, N., and Tuttle, M. An introduction to input/output automata.

CWI-Quarterly (1989), 219–246.
[20] Lynch, N. A., and Shvartsman, A. A. Robust emulation of shared

memory using dynamic quorum-acknowledged broadcasts. In Proc. of
FTC 1997, pp. 272–281.

[21] Mazières, D., and Shasha, D. Building secure file systems out of
byzantine storage. In Proc. of PODC 2002, pp. 108–117.

[22] Nicolaou, N., Fernández Anta, A., and Georgiou, C. Cover-ability:
Consistent versioning for concurrent objects. CoRR abs/1601.07352
(2016).

[23] Vogels, W. Eventually consistent. Commun. ACM 52, 1 (Jan. 2009),
40–44.

231

CMTS: Consensus-based Multi-hop Time
Synchronization Protocol in Wireless Sensor

Networks

Amin Saı̈ah∗, Chafika Benzaı̈d∗ and Nadjib Badache∗
∗Univ. of Sciences and Tech. Houari Boumediene, Algiers, Algeria

Email: a.saiah@univ-chlef.dz, cbenzaid@usthb.dz, badache@cerist.dz

Abstract—The Consensus Time Synchronization (CTS) over-
comes the shortcoming of centralized time synchronization in
terms of scalability and robustness to node failure. However,
CTS leads to slow convergence rate, high communication traffic
and the inability to provide synchronization to an external
time source. This paper proposes a novel distributed time
synchronization protocol for WSNs, the Consensus-based Multi-
hop Time Synchronization (CMTS) protocol. CMTS combines
the benefits of consensus-based scheme, multi-level topology,
synchronization by overhearing, master node synchronization,
and MAC-layer timestamping. Simulations are performed to
validate the effectiveness of CMTS. The results show that CMTS
achieves high accuracy and improves the convergence time
compared to competing schemes in the literature.

I. INTRODUCTION

Time synchronization plays an important role in the perfor-

mance of wireless sensor networks (WSNs). It can enhance the

throughput and the lifetime of the network by improving the

energy-efficiency, the freshness of collected data and reducing

the network traffic and message conflicts.

The existing time synchronization protocols rely on one

of the following pairwise synchronization methodologies:

Sender-Receiver (SR), Receiver-Receiver (RR) or Receiver-

Only (RO). In SR (e.g., FTSP [5], GTSP [8]), a receiver

adjusts its clock according to the timestamp received from

a reference node. In RR (e.g., RBS [2]), receivers within one

hop use a number of synchronization pulses initiated by a

sender to synchronize among themselves. While in RO (e.g.,

SPiRT [1], PBS [6]), a group of nodes can be synchronized

by only overhearing the timing messages exchanged between

a pair of nodes. The RO approach shows a promising approach

to achieve time synchronization with a significantly reduced

number of timing messages. It offers better performance

(communication cost and energy efficiency) compared to SR

and RR methodologies [6].

A variety of centralized and distributed synchronization

protocols have been proposed. The centralized time synchro-

nization protocols, such as [2], [3], [5], [6], [1], provides

high synchronization accuracy and fast convergence rate due

to the use of reference nodes and hierarchical structure of

network topology. However, centralized time synchronization

protocols rely on a single timing source which makes the

synchronization protocol vulnerable to its failure. Therefore,

consensus time synchronization, such as [8], [9], [7], [4], [10],

are developed to overcome the shortcomings of centralized

time synchronization approaches in terms of scalability and

robustness to node failure. Unlike the centralized time syn-

chronization protocols, consensus time synchronization proto-

cols are completely distributed and do not rely on any specific

node or hierarchical structure to perform time synchronization.

While this confers to consensus-based schemes their scalabil-

ity and robustness to node failure, it leads to slow convergence

rate and high communication traffic.

This paper proposes a novel distributed time synchroniza-

tion approach which overcomes the shortcomings of central-

ized and consensus time synchronization schemes by com-

bining their advantages. The timing messages are exchanged

following the RO methodology. This reduces the communi-

cation overhead and speeds up the convergence time. The

sensor nodes compensate their clock offset and skew by

synchronizing to multiple synchronized nodes which increases

synchronization accuracy and robustness to node failures. In

addition, nodes are organized into hierarchical structure, which

allows to establish a particular communication pattern between

nodes leading to reduce the number of exchanged messages

and the convergence time. The main contributions of this paper

are three-fold: (1) We propose CMTS, a novel consensus-based

multi-hop time synchronization protocol that suits failure-

prone resource-constrained WSNs. (2) We derive the Max-

imum Likelihood Estimators (MLE) and the corresponding

Cramer-Rao lower bounds (CRLB) for joint offset/skew model

under Gaussian delay model are derived. (3) We provide

simulation results that show the low time synchronization

error and the fast convergence rate achieved by CMTS in

comparison to existing solutions.

The rest of this paper is organized as follows. Section II

presents the problem statement, followed by a detailed de-

scription and analysis of CMTS in Section III. The validation

results are in Section IV. Finally, Section V concludes this

paper.

II. PROBLEM STATEMENT

The synchronization accuracy is a key factor in designing

a time synchronization protocol. Indeed, the synchronization

accuracy depends on various other factors, such as the network

structure and setup, channel status, and the estimation scheme978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

232

employed. As reported by [9], a consensus-based estimation

scheme, where a node adjusts its clock by averaging the

clock values of all its neighbors, is the best approximation

to the ideal time. However, it should be pointed out that

consensus-based schemes do not rely on any reference node

or hierarchical structure. Although this confers to consensus-

based schemes their scalability and robustness to node failure,

it leads to slow convergence rate, high communication traffic

and the inability to provide synchronization to an external

time source. The need of external synchronization arises in

applications that interact with users and/or measure physical

quantities. In such applications, an absolute time as measured

by an external reference such as UTC is essential.

s1 s2 s3 s4

Fig. 1: A linear network topology with four sensor nodes

Since consensus-based schemes do not synchronize to an

external time source, the convergence rate of all clocks to a

common global time is affected by the initial clock difference

among neighbor nodes. Thus, the more the clock difference

among neighbors is, the higher the synchronization error

and consequently the slower the convergence rate will be.

To demonstrate the impact of the initial clock difference

between neighbor nodes on the synchronization accuracy and

convergence rate, let’s consider the example in Fig. 1. In

this example, four sensor nodes s1, s2, s3 and s4 aligned

in a linear topology, correct their clocks using a consensus

value computed by averaging the local timing information as

follow: node s1 adjusts its clock by
C(s1)+C(s2)

2 , node s2
adjusts its clock by

C(s1)+C(s2)+C(s3)
3 , node s3 adjusts its

clock by
C(s2)+C(s3)+C(s4)

3 , and node s4 adjusts its clock by
C(s3)+C(s4)

2 . C(si) is the local clock value of node si.
The average synchronization error and the convergence rate

have been numerically evaluated by varying the initial clock

difference between nodes, δ. Three values of δ are considered,

namely: 1μs, 10μs and 100μs. Each node adds a randomly

generated and uniformly distributed offset in the range [0, δ]
to its clock value. The consensus value is calculated for each

node using the formula above and the average synchronization

error is measured for 200 independent runs. It is observed from

Fig. 2 that the average synchronization error increases as the

initial clock difference between nodes increases. Therefore,

using synchronized values for computing the consensus value

increases synchronization accuracy.
We define the convergence rate as the number of iterations

needed to achieve a steady-state synchronization in the net-

work, that is, all clocks reach a common global time. Hence,

a smaller number of iterations ensures a faster convergence.

To assess the impact of the initial clock difference on the

convergence rate, the calculation of the consensus value using

the formula above is repeated until reaching a steady-state

with an average synchronization error below 10−3μs. Fig. 3

presents the results, averaged over 100 independent runs. The

results demonstrate a slow convergence rate as the initial clock

difference increases. Indeed, the inset in Fig. 3 shows that the

error becomes smaller than 10−3μs after 16 iterations when

the initial clock difference δ is up to 1μs. Meanwhile, more

than 22 and 29 iterations are required when δ is up to 10μs
and 100μs, respectively.

In order to fulfill the need of external synchronization and

fast convergence rate, we assume the existence of an external

time reference to which nodes will be synchronized. However,

relying on a single timing source makes the synchronization

protocol vulnerable to its failure. The proposed protocol over-

comes this limitation by using a set of master nodes which are

already synchronized. The master nodes act as reference nodes

allowing other nodes to synchronize their clocks by computing

a consensus value based on timestamps received from different

master nodes. Accordingly, fast convergence rate with high

synchronization precision can be achieved.

Moreover, the iterative process when combined to the

decentralized nature of distributed consensus algorithms may

cause frequent message collisions in dense WSNs. Thus, both

communication overhead and convergence time will increase

considerably, resulting in higher energy consumption and

lower synchronization precision. To address this issue, we

incorporate a multi-level hierarchy into distributed consensus

algorithms. The level-L nodes synchronize their clocks to

nodes’ clocks of the two higher levels (L − 1) and (L − 2)
which are already synchronized. By synchronizing sensor

nodes to multiple source nodes, we can increase the robustness

of our scheme to node failures. Meanwhile, using a level-based

scheme allows to establish a particular communication pattern

between nodes leading to reduce the convergence time.

III. CMTS: CONSENSUS-BASED MULTI-HOP TIME

SYNCHRONIZATION

A. System Model

We consider a network where static sensor nodes are or-

ganized into levels: 0, 1, · · · , L, · · · , etc. Every node in the

network has a unique ID and is assigned a level that reflects the

number of hops on the shortest path from a node to the base

station (i.e., the sink). Nodes are neighbor-aware. A level-L
node without neighbors at level-(L+1) is a leaf node. Fig. 4

illustrates an example of a sensor network organized into four

levels, where nodes 2, 5 ,8, 9, 10 and 11 are leaves.

The sink at level 0 and nodes at level 1 represent the set of

master nodes. We assume that the sink’s clock is synchronized

with a conventional external clock source (e.g., UTC) and

serves as an accurate time server for master nodes at level 1.

A level-L node (L ≥ 2) synchronizes its clock by computing

a consensus value based on timestamps received from the two

higher levels (L − 1) and (L − 2). In this work, we focus

on achieving network-wide external time synchronization for

applications requiring an absolute, human timescale such as

security applications, target tracking, etc. Hence, the presence

of an external clock source is essential. Nevertheless, CMTS

can operate even in case the external time source is not

required, or not accessible.

The timing messages are exchanged following the RO

methodology, due to the significantly reduced communication

233

0 20 40 60 80 100 120 140 160 180 200

0.2

0.25

0.3

0.35

0.4

Iteration

A
ve

ra
ge

 E
rr

or
 (

s)

(a) Offset=1μs

0 20 40 60 80 100 120 140 160 180 200
1.5

2

2.5

3

3.5

4

Iteration

A
ve

ra
ge

 E
rr

or
 (

s)

(b) Offset=10μs

0 20 40 60 80 100 120 140 160 180 200
20

22

24

26

28

30

32

34

36

38

40

Iteration

A
ve

ra
ge

 E
rr

or
 (

s)

(c) Offset=100μs

Fig. 2: Average synchronization error vs. the initial clock difference between nodes in the target linear topology

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

of iterations

A
v
e
r
a
g
e

E
r
r
o
r

(
s
)

1 s
10 s
100 s

0 10 20 30
0

0.05

0.1

0.15

0.2

0.25

Fig. 3: Convergence rate

cost entailed by this methodology. In addition, timestamping

is performed at MAC layer to decrease synchronization error.

B. Main Idea of CMTS

The key idea behind CMTS consists in achieving network-

wide external synchronization by combining the aforemen-

tioned benefits of consensus-based schemes, multi-level topol-

ogy, and RO synchronization methodology. A level-L node

(L ≥ 2) synchronizes its clock by computing a consensus

value based on timestamps received from the two higher levels

(L− 1) and (L− 2). For instance, in Fig. 4, nodes 6, 7 and 8
can synchronize their clocks using timestamps received from

nodes 1, 2, 3, 4 and 5.

The synchronization of a level-L node’s clock is as follows:

Every non-leaf node of level L − 1 broadcasts a beacon.

On receiving the beacon message, its one-hop neighbors that

are in the same level (L − 1) or one level upper (L − 2))
send back the beacon’s arrival time. After collecting all reply

messages, the beacon sender broadcasts the list of collected

timestamps to level-L nodes. Thus, a level-L node will receive

a list of timestamps from each of its neighbors at level L− 1.

Using the received timestamps, a level-L node synchronizes

its clock by computing a consensus value. This process is

repeated as subsequent levels until synchronizing all nodes. It

is important to note that consensus value is calculated based

on timestamps issued from synchronized clocks. By doing so,

fast convergence with high synchronization precision over hop

counts can be achieved. It is also noteworthy that level-L nodes

can get synchronized without exchanging any packets with

other nodes. In the example of Fig. 4, to synchronize nodes

of level 2, the non-leaf nodes at level 1 (i.e., nodes 3 and

4) broadcast a beacon message. Upon receiving the beacon

message, their neighbors at level 1 and 0 reply by sending the

beacon’s arrival time. Hence, nodes 1, 2 and 4 reply to node

3, meanwhile, nodes 1, 3 and 5 reply to node 4. Afterwards,

nodes 3 and 4 broadcast the collected timestamps to nodes

of level 2 and the latter can be synchronized by computing a

consensus value from received timestamps.

level 0

level 1

level 2

level 3

1

2 3 4 5

6 7 8 9 10

11

Fig. 4: Example of a level-based topology.

C. Detailed CMTS Description

Assume that each node sj at level (L− 1) maintains three

one-hop neighbor lists, namely: (1) Rl
(j) which contains the

IDs of the one-hop sj’s neighbors at the level below (L). A

node in this list is called a child neighbor. (2) Rl−1
(j) which

contains the IDs of the one-hop sj’s neighbors at the same

level (L− 1). A node in this list is called a sibling neighbor,

and (3) Rl−2
(j) which contains the IDs of the one-hop sj’s

neighbors at the level above (L − 2). A node in this list is

called a parent neighbor. In the given example, the one-hop

neighbor lists R2
(4), R

1
(4) and R0

(4) of node 4 are respectively

< 6, 7, 8, 9, 10 >, < 3, 5 >, and < 1 >.

Node i[i=1···I]

Node j[j=1···Ji]

Node k[k=1···Kj]

tijk

tij

< tijk >

< tij1, · · · , tijKj
>

Levels (L− 2)
and (L− 1)

Level (L− 1)

Level (L)

Fig. 5: Clock synchronization principle of CMTS protocol.

The clock synchronization model of CMTS is depicted

in Fig 5. Let i ∈ {1, . . . , I} denotes a level-L node. Let

j ∈ Rl−1
(i) = {1, . . . , Ji} denotes a node i’s parent neighbor,

where Ji =| Rl−1
(i) |. Let k ∈ Rl−1

(j) ∪ Rl−2
(j) = {1, . . . ,Kj}

234

denotes either a sibling neighbor or a parent neighbor of node

j, where Kj =| Rl−1
(j) ∪ Rl−2

(j) |. A level-L node i (L ≥ 2)
is synchronized as follows: Each node j broadcasts a beacon.

Nodes i and k receive the beacon message at their local time tij
and tijk, respectively. Node k sends back the beacon’s arrival

time tijk to j. After collecting timestamps from each node k,

node j broadcasts the timestamps list {tij1, ..., tijKj
} to node

i. So, node i will receive a list of timestamps from each node

j. Using the received timestamps, node i can compensate its

clock offset and skew.

Note that node k may receive several beacons originating

from different nodes j. Thus, node k has to send back the

arrival time for each of these beacons, which may results

in severe congestion and collision. In order to reduce this

communication overhead, node k concatenates the recorded

arrival times into a single packet and broadcasts the combined

packet. The packet piggybacks the following list {< ID1, t1 >
, . . . , < IDz, tz >, . . . , < IDZ , tZ >}, where Z is the

number of received beacons and tz is the arrival time of beacon

sent by node with identity IDz . Upon receipt of this packet,

node j reads the timestamp corresponding to its identity.

D. Clock Estimators and Analysis

A first order linear model is used to represent the relative

clock between nodes, involving the effect of both clock offset

and skew. Thus, the relative clock model between nodes i and

k is given by:

tijk = ai.t
i
j + bi +Djk (1)

where ai and bi stand, respectively, for the relative skew

and offset between nodes i and k. Packet delay d can be

divided into two parts: the fixed portion of delay in up- and

down-link (dfixed) and the variable portion of delay in up-

and down-link (dvar). Let dj and djk be a delay between

nodes j and i, and nodes j and k, respectively. Therefore,

dj = dfixedj + dvarj and djk = dfixedjk + dvarjk . The fixed

portions are assumed to be equal and the variable portions

to be Gaussian distributed random variables (rv) with the

same parameters, i.e., dvarj , dvarjk ∼ N (μ, σ2
0). It follows that

djk − dj = dvarjk − dvarj . Let us denote dvarjk − dvarj by Djk.

Since i.i.d random delay Djk follows Gaussian distribution,

the likelihood function based on the observations {tij}1≤j≤Ji

and {tijk}
1≤k≤Kj

1≤j≤Ji
, is given by:

f
(
bi, ai, σ

2 | DS
)
=

∏Ji
j=1

(∏Kj

k=1
1√

2πσ2
e

−1

2σ2 (Djk)
2)

=
(

1√
2πσ2

)S
e

−1

2σ2

Ji∑
j=1

(
Kj∑
k=1

(Djk)
2

)

(2)

Differentiating the log-likelihood function with respect to

ai and bi and setting the result to zero produces

âi =

S
Ji∑
j=1

(
Kj∑
k=1

tijk.t
i
j

)
−

Ji∑
j=1

(
Kj∑
k=1

tijk

)
×

Ji∑
j=1

tij .Kj

S
Ji∑
j=1

(
Kj∑
k=1

(tij)
2

)
−
(

Ji∑
j=1

(
Kj∑
k=1

tij)

)2 (3)

b̂i =
1
S

[
Ji∑
j=1

(
Kj∑
k=1

tijk)− âi ×
Ji∑
j=1

tij .Kj

]
(4)

The CRLB can be obtained by taking the inverse of

the [i, i]th element of the Fisher information matrix (i.e.,

var(θ̂i) ≥ [I−1(θ)]ii), where the inverse of the Fisher in-

formation matrix, I−1(θ) is given by:

I−1(θ) = σ2

S
Ji∑
j=1

(
Kj∑
k=1

(tij)
2

)
−

(
Ji∑
j=1

(
Kj∑
k=1

tij

))2 ×

⎡
⎢⎢⎢⎢⎣

Ji∑
j=1

(
Kj∑
k=1

(tij)
2

)
σ2 −

Ji∑
j=1

(
Kj∑
k=1

tij

)
σ2

−
Ji∑
j=1

(
Kj∑
k=1

tij

)
σ2

S
σ2

⎤
⎥⎥⎥⎥⎦

(5)

Consequently, the CRLBs of clock offset and skew are

respectively given by:

V ar(b̂i) ≥ (I−1(θ))1,1 =

σ2
Ji∑
j=1

(
Kj∑
k=1

(tij)
2

)
S

Ji∑
j=1

(
Kj∑
k=1

(tij)
2

)
−

(
Ji∑
j=1

(
Kj∑
k=1

tij

))2 (6)

V ar(âi) ≥ (I−1(θ))2,2 = Sσ2

S
Ji∑
j=1

(
Kj∑
k=1

(tij)
2

)
−

(
Ji∑
j=1

(
Kj∑
k=1

tij

))2 (7)

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3

Number of received timestamps

M
ea

n
S

qu
ar

e
E

rr
or

 (
M

S
E

)

MLE of a i
CRLB of a

i

(a)

10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

Number of received timestamps

M
ea

n
S

qu
ar

e
E

rr
or

 (
M

S
E

)

MLE of b i
CRLB of b

i

(b)

Fig. 6: MSE performance of clock skew ai and clock offset

bi estimation vs. number of observations

The mean square error (MSE) performance of the proposed

estimators has been numerically evaluated and compared with

the corresponding CRLB. The obtained results, depicted in

Figure 6, show that the the performance of the proposed

estimators improves and quickly converges to the CRLB as

the number of observations S increases.

IV. PERFORMANCE EVALUATION

CMTS is validated through simulation using Avrora sim-

ulator. The performances of CMTS is compared to ATS [7]

and FTSP [5]. The simulation study is conducted using 16
nodes organized into a multi-level 4 × 4 grid-based topology

as depicted in Figure 7. The sink node 1 initiates a time syn-

chronization round once every 5 seconds. Nodes 2 and 3 are

designated as master nodes and their clocks are synchronized

to the sink node RO methodology. The protocols are evaluated

in terms of synchronization error and convergence rate. The

time synchronization is defined as the time difference between

the real clock reading of one sensor node and the estimated

clock value by another node. The convergence rate refers to

the number of synchronization rounds needed to achieve a

steady-state synchronization in the network; that is, all clocks

reach a common global time. Note that the simulation results

reflect the average of 15 independent runs.

235

1 3 6 10

2 5 9 13

4 8 12 15

7 11 14 16

Level 0 Level 1 Level 2 Level 3

Level 4

Level 5

Level 6

Fig. 7: A 7 levels 4× 4 grid-based topology used to evaluate

the performance of CMTS, ATS, and FTSP.

0 20 40 60 80 100
0

5

10

15

20

Iterations

A
ve

ra
ge

 s
yn

ch
ro

ni
za

tio
n

er
ro

r
(in

 m
ic

ro
se

co
nd

s)

CMTS

FTS

ATS

Fig. 8: Comparison of CMTS, ATS and FTSP on accuracy

After the completion of each synchronization round, we

use an additional external node which broadcasts a message

to all nodes. The difference between the reception time of

that message in different nodes gives us the synchronization

error. Figure 8 plots the simulation results of the average

synchronization error of CMTS, ATS and FTSP protocols. The

obtained results demonstrate that CMTS achieves an average

synchronization error of around 0.9μs. From Figure 8, it is

clear that CMTS outperforms both ATS and FTSP thanks

to the combined benefits of consensus-based scheme, multi-

level topology, master node synchronization, and MAC-layer

timestamping.

The convergence rate is reported for CMTS, ATS and FTSP

in Figure 9. The results demonstrate the superiority of CMTS

over ATS with regard to the number of iterations required

to reach convergence. CMTS needs only one synchronization

round to converge towards an average synchronization error of

less than 2μs by exchanging 42 timing messages. Meanwhile,

ATS could reach such a precision after 90 rounds and by

exchanging 16 timing messages per round; thus, a total of

1440 timing messages. The obtained results show that both

CMTS and FTSP converge to a common global time since

the first synchronization round, but CMTS still offer a better

synchronization accuracy.

V. CONCLUSION

In this paper, we presented a new distributed time synchro-

nization approach for WSN, the Consensus-based Multi-hop

Time Synchronization (CMTS) protocol, which conducts both

the skew and offset compensations. Using a first-order linear

clock model, the Maximum Likelihood Estimators (MLEs)

0 20 40 60 80 100
0

100

200

300

400

500

600

Iterations

A
ve

ra
ge

 s
yn

ch
ro

ni
za

tio
n

er
ro

r
(in

 m
ic

ro
se

co
nd

s)

CMTS

FTS

ATS

Fig. 9: Comparison of CMTS, ATS and FTSP on convergence

time

of joint offset/skew model have been derived, as well as the

corresponding Cramer-Rao Lower Bounds (CRLBs). CMTS is

validated through simulation on a Micaz platform using Avrora

simulator. The validation results have demonstrated that CMTS

achieves higher accuracy and faster convergence compared

to competing schemes, thanks to the combined benefits of

consensus-based scheme, multi-level topology, master node

synchronization, and MAC-layer timestamping. Performance

evaluation of CMTS through real-world experimentation is a

perspective to this work.

REFERENCES

[1] C. Benzaid, M. Bagaa, and M. Younis. An efficient clock synchroniza-
tion protocol for wireless sensor networks. Wireless Communications
and Mobile Computing Conference (IWCMC), pages 718 – 723, Aug.
2014.

[2] J. Elson and D. Estrin Birman. Fine-grained network time synchroniza-
tion using reference broadcast. In Proc. of the 5th Symp. on Oper. Syst.
Design and Implementation (OSDI’02), pages 147–163, Dec. 2002.

[3] S. Ganeriwawal, R. Kumar, and S. M. Timing-sync protocol for sensor
networks. In Proc. of the 1st ACM Conf. on Embedded Networked
Sensor Systems (SenSys), pages 138–149, Nov. 2003.

[4] J. He, P. Cheng, L. Shi, and J. Chen. Time synchronization in wsns:
A maximum value based consensus approach. In Proc. of CDC-ECC,
pages 7882–7887, 2011.

[5] M. Maróti, B. Kusy, G. Simon, and A. Lédezi. The flooding synchroniza-
tion protocol. In Proc. of the 2nd ACM Conf. on Embedded Networked
Sensor Systems (SenSys’04), pages 39–49, Nov. 2004.

[6] K. L. Noh, E. Serpedin, and K. Qaraqe. A new approach for time
synchronization in wireless sensor networks: Pairwise broadcast syn-
chronization. IEEE Trans. Wireless Comm., 9:3318–3322, 2008.

[7] L. Schenato and F. Fiorentin. Average timesynch: a consensus-based
protocol for time synchronization in wireless sensor networks. Auto-
matica, 47(9):1878–1886, 2011.

[8] P. Sommer and R. Wattenhofer. Gradient clock synchronization in
wireless sensor networks. In Proc. of the 2009 Int. Conf. on Info.
Processing in Sensor Net. (IPSN’09), pages 37–48, 2009.

[9] J. Wu, L. Jiao, and R. Ding. Average time synchronization in wireless
sensor networks by pairwise messages. Journal of Computer Commu-
nications, pages 221–233, 2012.

[10] J. Wu, L. Zhang, Y. Bai, and Y. Sun. Cluster-based consensus time
synchronization for wireless sensor networks. IEEE Sensors Journal,
15(3):1404–1413, Mar. 2015.

236

V-Hadoop: Virtualized Hadoop Using Containers

Srihari Radhakrishnan
University of Waterloo

E-mail: s2radhak@uwaterloo.ca

Bryan J. Muscedere
University of Waterloo

E-mail: bmuscede@uwaterloo.ca

Khuzaima Daudjee
University of Waterloo

E-mail: kdaudjee@uwaterloo.ca

Abstract— MapReduce is a popular programming model used
to process large amounts of data by exploiting parallelism.
Open-source implementations of MapReduce such as Hadoop
are generally best suited for large, homogeneous clusters of
commodity machines. However, many businesses cannot afford
to invest in such infrastructure and others are reluctant to use
cloud services due to data security and privacy concerns. In this
paper, we present V-Hadoop, a framework that leverages Linux
containers to allow users to run Hadoop jobs efficiently without
requiring large, expensive, physical machine clusters. We describe
our design and implementation of V-Hadoop and show that it can
effectively support cluster-level parallelism. We experimentally
demonstrate that V-Hadoop is a viable solution that performs
competitively compared to solutions designed for large clusters.

I. INTRODUCTION

The MapReduce [1] framework is a specialized program-

ming model for processing large amounts of data at scale

across large clusters of commodity machines. Apache Hadoop

[2] is a popular open-source implementation of MapReduce

and currently supports an ecosystem of tools [3] used widely

in industry. Since Hadoop’s shift to open-source in 2011,

the MapReduce framework remains an integral part of data

processing.

Companies such as Google, Facebook, and Amazon run

MapReduce on datacenter-scale clusters to process hundreds

of petabytes of data a day [4]. As other businesses look to

deploy Hadoop to meet their data processing needs [2], many

of them do not have the need or the capital to purchase and

maintain large clusters of physical machines. Since MapRe-

duce is optimized for highly parallelized, distributed tasks

spread across a homogeneous cluster, small or heterogeneous

clusters restrict the benefits of parallelism and result in batch

jobs running for undesirable lengths of time. This is because

running MapReduce jobs on clusters with a smaller number of

nodes restricts the amount of parallelism [2] due to the default

1:1 mapping between Hadoop nodes and physical machines.

While the advent of public cloud services has introduced

some degree of flexibility in terms of renting large clusters

as opposed to buying them, many businesses are reluctant to

migrate their data to low-cost commercial cloud-computing

datacenters due to increasing security threats to personal and

confidential data [5].

In view of these challenges, there has been an emphasis on

developing better solutions to run distributed jobs while being

hardware agnostic. Recent related work [6], [7] explores the

use of virtualization to provide a unified view of a cluster

of physical machines as a single resource. Experiments that

examine the benefits of virtualizing Hadoop nodes using

Virtual Machines (VMs) [8], [9] show that virtualizing Hadoop

is promising due to improved scheduling and resource uti-

lization. Though VMs pave the way for virtualizing Hadoop,

performance issues with virtualized stacks exist because VMs

introduce an unnecessary resource overhead from having to

run their own kernel on top of the host operating system.

To address the lack of performant solutions in this space, we

present the V-Hadoop system which leverages container-based

virtualization to overcome the performance issues associated

with deploying Hadoop using VMs. By leveraging container-

based virtualization, our V-Hadoop framework is capable of

starting and managing multiple Hadoop nodes across multi-

ple physical machines where the number of Hadoop nodes

is typically greater than the number of physical machines.

This decouples the degree of parallelism from the number

of physical nodes, effectively increasing parallelism in the

system.

V-Hadoop enables a Hadoop cluster to scale to additional

nodes when computer resources are overutilized and scale

down to fewer nodes during machine underutilization. We

demonstrate that V-Hadoop has distinct performance advan-

tages over traditional Hadoop clusters for specific categories of

jobs and is generally performance competitive with traditional

Hadoop clusters.

II. BACKGROUND

Also known as operating system-level virtualization,

container-based virtualization is an emergent technology that

allows users to run multiple user-space instances across a

single host. As the popularity of this virtualization method has

grown rapidly over the past several years, solutions such as

Linux Containers (LXC), Docker and OpenVZ have emerged.

LXC is popular due to its ease of use, useful API, and small

package size [10].

In Linux-based hosts, container-based virtualization soft-

ware leverages two separate features of the Linux kernel:

control groups (cgroups) and namespaces [11]. Namespaces

is a Linux kernel feature that places computer resources into

an abstraction so that processes in each namespace believe

they have exclusive use of that resource. Cgroups is a Linux

kernel feature that segregates processes into groups, allowing

the OS to allocate and limit the processes given to each group.

Both these features form the basis for Linux-based container

virtualization [11].978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

237

Fig. 1: The typical program stack for hypervisor-based vir-
tualization (left) compared to container-based virtualization
(right).

Although containers appear to be similar in function to

VMs that use hypervisor-based virtualization, there are many

key differences. Figure 1 shows the high-level difference

between hypervisor-based virtualization and container-based

virtualization. First, for hypervisor virtualization, since each

VM is guaranteed a fixed amount of physical resources set

by the user, resources allocated to a VM can be underuti-

lized. Comparatively, containers avoid this problem by sharing

physical resources with their host machine so that machine

resources are used only when required. Additionally, since

VMs emulate full machines, they introduce the overhead of

an entire operating system. This adds unnecessary bulk to

application specific computing clusters such as ones used for

MapReduce jobs. A recent study [12] comparing the boot

times of Linux containers and VMs showed that containers

boot six times faster than VMs. The differences between

containers and VMs make containers a more attractive option

for efficiently running processes in isolation without having to

manually set resource limits.

III. V-HADOOP SYSTEM

The V-Hadoop framework carries out three tasks: a) cluster

elasticity; b) container setup; and c) container management.

Each of these operations is important in meeting the high-level

goals of elasticity, hardware agnosticism, and management of

a Hadoop cluster. The remainder of this section describes V-

Hadoop in the context of these three tasks.

A. Cluster Elasticity

Similar to how Hadoop Distributed File System (HDFS)

and Yarn [13] manage data and MapReduce tasks across

Hadoop nodes, V-Hadoop dynamically manages the container-

ized Hadoop nodes to optimize physical resources and provide

real time elasticity of the virtual cluster without manual

intervention. V-Hadoop is organized into a master-worker

architecture where one physical machine is denoted as the

master and the rest of the machines in the cluster are denoted

as workers. To easily maintain a running V-Hadoop cluster in

the presence of machine failures, the master must be the same

machine that has the containers running the master Hadoop

node. The NameNode and ResourceManager of the Hadoop

cluster must also reside on that master machine. This ensures

that container crashes of the master node will be quickly

resolved. Traditionally, the master node is protected by a

failover mechanism such as Zookeeper [13].

In our framework, the purpose of the master/worker di-

chotomy is important. The master machine manages the

placement of containers on the system and makes decisions

regarding scaling the cluster up or down whereas the workers

carry out decisions made by the master node and are respon-

sible for starting and stopping containers and running Hadoop

configuration tasks. Further, the workers continually check

the state of their respective systems for container crashes or

resource utilization issues. If a worker detects a problem, it

contacts the master for a decision. The master is responsible

for this decision since it has a global view of the cluster; it

can take the states of all workers into account before deciding

where containers need to be spawned and/or shut down.

B. Container Setup

V-Hadoop initially starts all required containers, makes

copies of containers where necessary, and configures Hadoop

on each container. This phase is invoked by the master machine

and propagates to other machines over a period of time. When

the master is started, it detects all the physical machines in the

cluster and configures the worker processes on each machine.

Since this phase can experience long periods without any

communication between master and worker, we use heartbeat

messages to check the status of the physical machines in

the cluster. Once deployed, the master continually sends a

HeartbeatRequest message to each worker. The workers re-

spond with a HeartbeatResponse message. In the event that

the master does not receive a reply from a worker within a

set interval, it assumes the machine is dead. Since heartbeat

messages have to be sent out continuously, the messages are

small. HeartbeatRequest messages are sent at a fixed interval,

TPROBE, which can be set programmatically. The payload

and time-to-live (TTL) of the Heartbeat messages are small

enough that even frequent messages between the master and

worker do not generate significant network traffic.

Once the master has determined which workers are running,

it initiates the setup of the V-Hadoop cluster. Based on

the user’s initial requirements for the number of nodes in

the Hadoop cluster, the master starts and configures virtual

Hadoop nodes on the local machine and instructs the workers

to do the same on their machines. Since V-Hadoop is specif-

ically concerned with managing a physical cluster consisting

of a small number of high performance machines, we fill up

the machines with containers greedily, starting with the master

machine and proceeding to do the same on worker machines

in order of lowest round-trip time first. The logic for this

placement is handled by the container management aspect of

our framework.

When new nodes need to be started on a worker, the master

issues a network request to that worker with information

238

on the number of nodes required. The desired worker then

creates the required number of containers and responds to

the master with a SUCCESS message and payload consisting

of a list of the currently running nodes with their network

addresses. Many techniques such as asynchronous network

requests, non-blocking network I/O, and callback mechanisms

can be applied to reduce delays at the master as it waits for

responses from workers while creating multiple nodes. These

details are implementation specific, as is the creation and

replication of containers and depends on the type of container

technology being used (Section III-D).

Once the master has received a list of running Hadoop

nodes from all the workers, it notifies the user that Hadoop

can now be used. Since HDFS and Yarn are unaware of

the underlying node-container abstraction, the code managing

the NameNode, DataNodes, and NodeManager remains un-

changed from Hadoop’s fully-distributed mode. This natural

abstraction offered by virtualization can be used to streamline

several features in Hadoop such as the distributed file system.

C. Container Management

Our framework defines a container management mode that

occurs once a MapReduce job is running on a V-Hadoop

cluster. The primary purpose of this mode is to periodically

scan the physical machines in the V-Hadoop cluster and check

for underutilization, overutilization and failed containers.

The worker on each machine periodically checks machine

health by aggregating machine statistics and comparing it

against a pre-determined ceiling for CPU, memory and disk

usage. Each worker also checks the health of the containers

on the system with the same periodicity. If a worker detects

that a machine is underutilized or overutilized or that a

container has crashed, it sends a DecisionRequest message to

the master indicating that a container management decision

needs to be made. DecisionRequest messages queue up in

temporal order in a queue on the master. The master picks

up DecisionRequests from the DecisionQueue and processes

them one by one. Each DecisionRequest causes the master

to send messages to all the workers so that it can obtain a

global view of the utilization of all machines and the health

of all containers. With this global snapshot of the physical

cluster, the master balances the system load by shutting down

containers in overutilized machines and spawning new ones

in underutilized ones. DecisionRequests triggered by crashed

containers are also dealt with in a similar fashion.

The V-Hadoop framework ensures fair resource utilization

across the physical machines in the cluster and automatically

scales up or scales down the size of the V-Hadoop cluster

based on the state of currently running jobs.

D. Implementation

We implemented a prototype called the V-Hadoop Container

Manager (VCM) which implements the V-Hadoop framework

and integrates a container management system. Overall, the

VCM’s tasks are: a) start and stop containers on a system;

b) configure Hadoop on all containers running across all phys-

ical machines to form a cluster; c) pull resource information

from each physical machine in the V-Hadoop cluster; and

d) perform simple container management including adding and

removing containers on-demand.

Due to the flexibility of the V-Hadoop framework, the VCM

can be run on a single machine or across a small cluster of

physical machines. To allow for this, VCM is comprised of

two processes: MainVCM and VCMLite. These processes form

a master-worker architecture where the MainVCM process

coordinates the cluster.

Based on this, if running the VCM on a single machine, it

will run in local mode with the MainVCM process running

by itself. In distributed mode, where multiple machines are

running the VCM, one machine will run the MainVCM

process whereas the rest run VCMLite. In this mode, the

physical machine running MainVCM is denoted as the master

and the other machines are the workers.

IV. EVALUATION

In this section, we compare the performance of MapReduce

jobs on V-Hadoop with the two standard Hadoop modes, fully-

distributed, and standalone (pseudo-distributed).

A. Test Environment

Our evaluation environment consisted of a 10-machine clus-

ter. Each machine contained twelve Intel(R) Xeon(R) E5-2630

v2 @ 2.60GHz CPUs with 6 cores, 256GB of RAM, and 2TB

of disk storage split across 3 physical disks. Our tests used

three widely recognized Hadoop benchmarks: TestDFSIO,

MRBench, and TeraSort. They were specifically chosen to

compare the system performance of V-Hadoop against the two

Hadoop modes with respect to different resources: TestDFSIO

for disk intensive jobs, MRBench for CPU intensive jobs,

and TeraSort for CPU, disk and network intensive jobs. The

machines in the fully-distributed setup were connected using

a single TopOfRack(ToR) switch on an Intel I350 Gigabit

network connection.

For standalone mode, all tests were run on a single machine.

V-Hadoop tests were conducted on a single machine running

a virtual cluster of 10 containers. The containers used with V-

Hadoop were configured with Ubuntu 14.04 and Hadoop 2.7.1.

We configured HDFS to map to the container’s file system and

set the replication factor to 1 since replicating blocks on the

same physical machine is redundant. Further, replication on

the same disk could slow down jobs due to disk contention.

B. TestDFSIO Benchmark

TestDFSIO is a benchmark that stresses the Hadoop Dis-

tributed File System (HDFS) and is split into read and write

tests. The TestDFSIO benchmark uses one map task per file.

We ran TestDFSIO by varying the number of files and file sizes

and by measuring the benchmark execution time of writes

and reads. Fig 2 shows a plot of execution time versus the

file size for a ten-node cluster. In comparing the TestDFSIO

239

0

20

40

60

80

100

120

140

160

180

100GB (read) 500GB (write) 500GB (read) 1TB (write) 1TB (read)

Te
st

 E
xe

cu
tio

n
Ti

m
e

(m
in

)

File Size

TestDFSIO Read/Write Benchmark

Hadoop V-Hadoop Standalone

Fig. 2: TestDFSIO read/write benchmarks execution time for
different Hadoop modes (10GB file size).

0

0.5

1

1.5

2

2.5

3

3.5

10GB 100GB 500GB

Lo
g

10
Ex

ec
ut

io
n

Ti
m

e
(m

in
)

File Size

TeraSort Benchmark (log scale)

Hadoop V-Hadoop

Standalone

Fig. 3: TeraSort benchmark results for the three Hadoop modes
(log scale execution time).

benchmark throughput for the three modes, we find that V-

Hadoop and standalone Hadoop perform better for writes

and reads compared to the fully-distributed mode, primarily

because V-Hadoop and standalone modes obviate the need for

network I/O.

We observe that network I/O in the fully-distributed mode is

significant enough to cause a marked difference in execution

times, despite the fully-distributed mode is writing and reading

files from 10 machines, thereby having much lower disk and

memory contention than V-Hadoop and standalone modes. Fig

2 shows that V-Hadoop performs better than Hadoop for I/O-

intensive operations and that this performance difference is

maintained as the size of the dataset is scaled up.

C. TeraSort Benchmark

The TeraSort benchmark is used to test the HDFS and

Yarn layers of the Hadoop cluster. It is a popular benchmark

often used by industry to measure the standard of a Hadoop

cluster. The TeraSort benchmark is a good measure of how

well the Hadoop cluster is configured in terms of the number of

Map/Reduce tasks, and how well they are balanced compared

to the number of disks, cores and machines in the cluster. The

goal of TeraSort is to sort a large number of 100-byte records

as quickly as possible. A full TeraSort benchmark run consists

of the following three steps: a) generating the input data using

TeraGen; b) running TeraSort on the input data; and c) vali-

dating the sorted output data via TeraValidate. Through these

three steps, the benchmark performs considerable amount of

computation and I/O and is considered to be representative of

real MapReduce programs.

TeraSort overrides the specified replication factor so only

one copy is written to HDFS. TeraValidate reads the sorted

data and verifies whether it is in order using one map task

per file and combines the results using a single reduce task to

check if the files are contiguous.

We ran the three stages of TeraSort on data sets rang-

ing from 1GB to 0.5TB on the three Hadoop modes, for

increasing block sizes. Fig 3 shows a comparison of the

TeraSort benchmark runtimes averaged over all three phases

(TeraGen, TeraSort and TeraValidate) for the three modes.

The benchmark was run on datasets of sizes 0.01TB, 0.1TB,

and 0.5TB with block size 512MB on a logarithmic scale

of execution time (minutes). We observed that for smaller

file sizes, the difference in execution speeds was negligible.

For larger files, V-Hadoop performed comparably to the fully-

distributed mode even though it faced heavier disk contention.

The lower network I/O and better CPU utilization allows

V-Hadoop to perform a CPU and I/O intensive task such

as TeraSort comparably to an equivalent cluster of physical

nodes.

D. MRBench Benchmark

MRBench is a benchmark that iterates a short MapReduce

program a number of times. MRBench checks whether small

job runs are responsive and running efficiently on the cluster.

MRBench is complementary to the TeraSort benchmark. We

chose MRBench as a way to compare the MapReduce layer

of V-Hadoop to that of a fully-distributed Hadoop cluster. The

MRBench tests were performed on a minute long MapReduce

job which was looped over 50, 500, 1000 and 5000 times.

Fig 4 shows a comparison of V-Hadoop, standalone and

fully-distributed Hadoop for each of these runs. We observe

that the execution times between V-Hadoop and Hadoop

remain comparable as the number of runs is scaled up

from 50 to 5000 even though V-Hadoop runs on a single

machine, as opposed to the fully-distributed cluster running

on 10 machines. Comparing execution times of V-Hadoop

and standalone mode, we see that V-Hadoop consistently

performs better, and the gap between the execution times

continues to widen as the number of runs are scaled up. This

experiment illustrates why container based virtualization is a

clear winner for performance reasons alone – we can achieve

results comparable to a fully-distributed cluster on a physical

cluster which is an order of magnitude smaller in size. V-

Hadoop uses more virtual nodes to maximize the memory

and CPU utilization of each physical machine, as opposed

to the 1:1 mapping between nodes and machines in a fully-

distributed Hadoop cluster.

240

0

20

40

60

80

100

120

140

50 500 1000 5000

Ex
ec

ut
io

n
Ti

m
e

(m
in

)

Number of Runs

MRBench

Hadoop V-Hadoop Standalone

Fig. 4: MRBench benchmark results for the three Hadoop
modes.

E. Discussion

V-Hadoop provides the best of both worlds by combining

the resource utilization of the standalone mode with the

scalability of the fully-distributed mode. It utilizes machine

resources more efficiently by design while still providing the

flexibility of a fully-distributed Hadoop cluster as new nodes

can span physical machines by leveraging containers. Our

experiments show that even though fully-distributed Hadoop

performs slightly better on CPU intensive benchmarks than

V-Hadoop, the performance gain is not significant enough to

justify the use of more than one powerful physical machine.

Additionally, while V-Hadoop and standalone Hadoop run on

identical hardware and have comparable performance in the

TeraSort benchmark, V-Hadoop is the better choice mainly

because of the distinct advantage it offers in highly parallel

jobs (such as MRBench) and I/O heavy jobs (as shown in the

TestDFSIO benchmark experiments). Furthermore, V-Hadoop

provides a layer of abstraction atop a physical cluster that

allows users to easily scale-up or scale out as well as expand

their Hadoop cluster while being agnostic to the underlying

hardware.

V. RELATED WORK

Previous work [9], [14] has examined the feasibility of

running a virtual Hadoop cluster using a collection of virtual

machines on a physical machine. Research from VMWare has

looked at the performance of running a virtual Hadoop cluster

using proprietary hypervisor virtualization technology [8].

While VMWare’s study demonstrates that running multiple

Hadoop instances on a single machine can improve throughput

of MapReduce jobs, virtualizing using VMs can have signifi-

cant overhead. Other work [15] has evaluated the performance

of virtualized Hadoop and found that the performance of I/O-

intensive jobs is more sensitive to the virtualization overhead

than that of CPU-intensive jobs due to shared I/O.

Apache Mesos is a cluster management tool that provides

users with the ability to share clusters between distributed

computing frameworks such as Hadoop [7]. While Mesos is

different from V-Hadoop in specific functionality, Mesos takes

advantage of containerization to provide resource isolation be-

tween distributed computing frameworks and applications [7].

Mesos does not run multiple containers of the same framework

on a single worker machine.

VI. CONCLUSION

In this paper, we presented V-Hadoop, a framework that

allows users to run a virtual Hadoop cluster across any number

of machines while being agnostic to the underlying hardware.

The prototype version of our V-Hadoop framework can man-

age a V-Hadoop cluster across multiple physical machines,

and can perform simple, resource-based scheduling of Linux

containers across physical machines by adding or removing

containers in the cluster dynamically based on resource usage

and availability. Our experimental evaluation shows that V-

Hadoop performs comparably to a fully-distributed Hadoop

cluster. V-Hadoop allows for elastic clusters that can utilize the

resources of the underlying physical infrastructure, providing

significant management and cost benefits to the user.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1327452.1327492

[2] T. White, Hadoop: The Definitive Guide, ser. Oreilly and Associate
Series. O’Reilly, 2012. [Online]. Available: https://books.google.ca/
books?id=drbI\ aro20oC

[3] J. R. et al. The hadoop ecosystem table. [Online]. Available:
https://hadoopecosystemtable.github.io/

[4] R. Bohn and J. Short, “How Much Information? 2010 Report on
Enterprise Server Information,” Dec. 2011. [Online]. Available: http:
//hmi.ucsd.edu/howmuchinfo\ research\ report\ consum\ 2010.php

[5] H. Takabi, J. B. Joshi, and G.-J. Ahn, “Security and privacy challenges
in cloud computing environments,” IEEE Security & Privacy, no. 6, pp.
24–31, 2010.

[6] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,”
IEEE Cloud Computing, no. 3, pp. 81–84, 2014.

[7] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center,” University of California, Berkeley,
Tech. Rep., 2010.

[8] J. Buell, “A benchmarking case study of virtualized hadoop performance
on vmware vsphere 5,” VMWare, Tech. Rep., 2011.

[9] S. Ibrahim, H. Jin, L. Lu, L. Qi, S. Wu, and X. Shi, “Evaluating
mapreduce on virtual machines: The hadoop case,” in Cloud Computing.
Springer, 2009, pp. 519–528.

[10] D. Lezcano. (2015, oct) Lxc api documentation. [Online]. Available:
https://linuxcontainers.org/lxc/documentation/

[11] M. Cohen and C. Pereira, “Cisco application-centric infrastructure (aci)
and linux containers,” Cisco, Tech. Rep., 2014.

[12] K.-T. Seo, H. Hwang, I. Moon, O. Kwon, and B. Kim, “Performance
comparison analysis of linux container and virtual machine for building
cloud,” 2014.

[13] A. S. Foundation. (2015, jul) Apache hadoop 2.4.1 documentation.
[Online]. Available: https://hadoop.apache.org/docs/current/hadoop-
project-dist/hadoop-common/SingleCluster.html

[14] M. Gomes Xavier, M. Veiga Neves, and C. Fonticielha de Rose,
“A performance comparison of container-based virtualization systems
for mapreduce clusters,” in Parallel, Distributed and Network-Based
Processing (PDP), 2014 22nd Euromicro International Conference on,
Feb 2014, pp. 299–306.

[15] M. Ishii, J. Han, and H. Makino, “Design and performance evaluation for
hadoop clusters on virtualized environment,” in Information Networking
(ICOIN), 2013 International Conference on. IEEE, 2013, pp. 244–249.

241

A Hardware and Software Web-Based Environment
for Energy Consumption Analysis in Mobile

Devices

Sidartha A. L. Carvalho, Rafael N. Lima, Daniel C. Cunha and Abel G. Silva-Filho
Centro de Informática (CIn), Universidade Federal de Pernambuco (UFPE), Recife-PE, Brazil

Emails: {salc, rnl, dcunha, agsf} at cin.ufpe.br

Abstract—In recent times, the number of mobile Android
devices has been growing exponentially not only in the expanding
popularity of low-cost mobile devices but also for the great
number of functionalities and applications. This new range of
features has highlighted the need for greater capacity in mobile
batteries to provide an extended time of use. Several studies
have been done to minimize the impact on the uncontrolled
growth of applications, as well as analyze the suitable hardware
configuration for a range of applications. In this sense, the
objective of this work is to provide a Web-based environment
which helps the designer to characterize mobile devices through
automated testing and multiple devices simultaneously. The Web
environment allows the designer to make assessments on the
mobile device, remotely, without the need for measurement
environment available. The use of multiple devices allows the
designer to perform in different parallel measurements simulta-
neously. As the case study, an analysis involving video streaming,
CPU processor load, and CPU fixed-frequency algorithms versus
dynamic frequency scaling techniques were performed for two
types of Android smartphones.

I. INTRODUCTION

The number of mobile devices, such as smartphones and

tablets, using Android operating system (OS) has grown in

large scale in the last years, increasing from 200.000 devices

activated per day in 2010 to 1.5 million devices activated

per day in 2013 [1]. Nowadays, Android is the most used

OS in mobile devices around the world, with a smartphone

market share of 82.8% in 2015 [2]. Much of this growth is

related to the increasing popularity of low-cost mobile devices.

Besides that, mobiles devices have been manufactured with

a rising number of functionalities, including communication

technologies (Bluetooth, Wi-Fi, and near field communica-

tions), entertainment/multimedia options (for example, games

and cameras), GPS-based applications, etc. These new features

also contribute to the accelerated dissemination of the mobile

devices.

Equipment with more features requires more processing

power, which has led to the adoption of multicore processors

on latest mobile devices. In this way, the development of more

and more powerful applications in conjunction with the use of

multicore platforms results in energy-hungry battery-powered

mobile devices. In the face of this, the extending of the battery

lifetime and, consequently, the time of use, is a concern of

most mobile device design.

For developing techniques that allow energy efficiency, it is

necessary to understand the energy consumption problem on

mobile devices. To perform the mobile power characterization,

it is indispensable to have an energy measurement infrastruc-

ture to obtain energy consumption profiles of mobile devices,

in particular, smartphones. With this in mind, the motivation of

this work is the lack of measurement environments (hardware

and software integration) that assists in characterizing the

energy consumption of mobile devices and allows automate

tests.

In this paper, we propose a hardware and software Web-

based environment that helps to obtain an energy characteri-

zation of mobile devices, automating tests and allowing this

to multiple devices simultaneously. The proposed energy mea-

surement environment provides the necessary infrastructure for

measuring and testing functionalities or applications on mobile

platforms. It is noteworthy to mention that this idea can also

be applied for other mobile OSes, such as iOS and Windows

Phone.

II. RELATED WORKS

Software testing on mobile devices is necessary to combat

the fragmentation problem. Testing can be scalable when the

same test is performed simultaneously on different devices. It

saves time in testing. Several companies offer testing service

in the cloud using real mobile devices, which reduces costs

on equipment purchase and software deployment time on each

device.

The proposed environment aims to complement the related

works described in Table I. None of the reviewed studies

enable software testing with energy analysis, even though this

last one is considered essential in the development of tech-

niques that increase usage time of battery-dependent devices.

The Power Monitor from Monsoon Solutions [3] offers

a robust system for measuring the energy consumption of

battery-dependent devices with a high sampling, but it is more

expensive than Energino [4], an innovative data acquisition

low-cost system. Energino is a real-time energy monitoring

kit using Arduino microcontroller and an open platform with

broad participation of the community.

Xamarin [5] has as the primary objective to take the suffer-

ing of testers, automating software tests quickly and with the

use of a Web interface. In this tester, real devices are connected978-1-5090-3216-7/16/ $31.00 c© 2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

242

Table I
RELATED WORKS FEATURES

Our [3] [4] [5] [6]

Energy Consumption
√ √ √

X X

Frequency Switching
√

X X X X

On/Off CPU Cores
√

X X X X

Web Interface
√

X X
√ √

Statistical Analysis
√

X X X X

Multiple Device, Platform, and
Language

√
X X

√ √

to a server that interacts through a Web interface allowing the

user to install applications on different smartphones and tablets

with different operating systems. The system uses Cucumber

language to program the tests, which were converted to the

target operating system commands and run on the device.

Monkey Mobile Cloud [6] is a service of testing repli-

cation with real devices too. A portion of Monkey Mobile

Cloud environment is open source and offers a free library

(MonkeyTalk Library) that translates commands written in

proper language for equivalent commands in Android and

iOS systems, allowing replication of multiplatform tests. The

company also provides services in the cloud.

III. PROPOSED ENVIRONMENT

The proposed environment provides a Web-based platform

for measurement and analysis of power consumption on mul-

tiple Android mobile devices under pre-defined experiments.

The environment allows the user to select features and sce-

narios to test. For example, it is possible to select the data

network the device should use (WiFi, 2G, 3G or 4G), the CPU

operating frequency of each processor core, Android governor

should be utilized, which devices will be tested and the number

of iterations.

A large combination of scenarios and features configuration

can be created using the proposal. Each scenario is composed

of a list of action, for example, making phone calls, sending

e-mails and/or SMS, opening Web browsers, playing videos

or user actions within a non-native application in Android

OS. Non-native application activities are characterized by a

record of user touch events that the environment replicates in

the specified applications. The proposed environment installs

the mentioned application and opens automatically in each

iteration; after that, the user recorded actions are replicated.

Fig. 1 illustrates the architecture of the proposed Web-based

environment, which is divided into hardware environment

(HE) and software environment (SE). The primary respon-

sibility of the HE is the physical infrastructure needed to

perform energy measurements on devices. The SE is respon-

sible for processing data, communication with the platform

components, Web interface, and communication with the user

and results generation.

A. Hardware Environment

The HE is composed of a power supply that provides

the power required for the operation of the smartphone, the

Figure 1. Architecture of the proposed Web-based environment.

measuring integrated circuit, the smartphone under test and the

computer server. Any hardware that requires external power to

work can be included in the HE, such as smartphones, tablets,

embedded computers and sensors.

1) Measurement Circuit + Power Supply: The measure-

ment circuit consists of a microcontroller, an integrated circuit

responsible for collecting current and voltage samples, a

USB mini converter, and other electronic components. The

circuit responsible for collecting current and voltage samples

is connected between the power supply and the device being

charged. The circuit sends data to the microcontroller that, in

turn, transmit them to the server via USB connection.

Other devices perform measurements on hardware like the

measurement circuit proposed. In a practical way and with

a large number of samples per second, we have MonSoon

Power Monitor [3] with 5k samples per second and Energino

[4] with 10k samples per second. Building a new circuit was

necessary to have more direct control and communication with

the measuring circuit to automate the process. MonSoon Power

Monitor above mentioned having a closed architecture that

does not allow the communication machine-to-machine easily,

which means that it is a black-box product in the market.

2) Devices (Smartphones): In the proposed infrastructure,

it was included two smartphones with Android OS. Technical

specifications of the devices are available in Table II.

Table II
SMARTPHONES USED TO TEST THE PROPOSED WEB-BASED ENVIRONMENT

SP1 SP2

SoC Exynos 4412 Snapdragon 600
Processor ARM Cortex A9 Krait 300
Number of Cores 4 4
Frequencies (MHz) 200 to 1400 384 to 1890
Android Version 4.1.2 4.4.2

New smartphones or tablets can be added to the proposal

even with other OSes such as iOS, Windows Phone, and

others. The iOS can adapt ADB commands used in Android

through an SSH connection established between the server and

the device being measured. This connection allows running

commands in the device shell, as it is done using ADB

commands on Android. To automatize the process of adding

new devices, information from each device may be obtained

by ADB commands.

243

B. Software Environment
The SE consists of modules responsible for the generation of

Web user interface, serial communication with the measuring

circuit, testing automation using MonkeyTalk library, ADB

commands management as network definitions and other low-

level settings in the device under test, energy consumption

analysis and storage module of the measurements.
1) Server: In Server side, Java and HTML5 (HTML +

JavaScript) were used to build the Web interface. Android

Debug Bridge (ADB) was used for communication with smart-

phones, while Java Simple Serial Connector (JSSC) library

was used to connect the measurement circuit and the server.

MonkeyTalk library was employed to aid in test replication,

and PostGreSQL database to store energy measurements. At

last, R language was employed to do statistical analysis.
The computer used as server application is composed of

modules that allow the control and synchronization of periph-

eral devices. MonkeyTalk Library can translate MonkeyTalk

commands (similar to natural language) into Android and iOS

commands.

Figure 2. Web-based user interface use flow.

The communication control and the transmission of sam-

ples of current and voltage between the computer and the

measurement circuit are serially performed by a USB cable.

To establish a connection between smartphone and server,

ADB commands are used for configuration setting, control

parameters obtaining and Web interface updating. The Energy

Consumption module is used to analyze and convert the

sample values of current and voltage in energy consumed

(measured in Joules), using numerical integration.
The use proposal flow is presented in Fig. 2. In the first step,

it is possible to create a new test with some limited predefined

features inside the Web interface or upload an application with

a file defining a more complex test. The environment will

translate this test to the appropriate OS and send commands

in a time sequence to the analyzed device. In the second step,

it is possible to choose the data network (2G, 3G, 4G or Wifi)

that will be used in the test. After that, we should set the

number of test iterations (Step 3), which devices should run

the test (Step 4) followed by the Android governor to scale

CPU frequency (Step 5). In the sixth step, we should establish

the number of active cores of the processor and, in the last

step, the maximum and minimum frequency of each processor

core.

IV. EXPERIMENTAL RESULTS

Three experiments were conducted to demonstrate the uti-

lization of the Web-based proposed environment. In all ex-

periments, the two smartphones previously described in Table

II were used. In the first experiment, we selected the CPU

frequencies that had the lower (best case), mean and higher

(worst case) energy consumption. In the second experiment,

the processor frequencies selected in Experiment one were

compared with Android governors available on the devices.

In the third experiment, an Android application was devel-

oped to stress the processor to the desired use percentage CPU

load. First, The proposed environment installs and executes

the application. Then, all devices perform the test sequence. A

test was created to fit the application to stress the processor on

25%, 50%, and 75% CPU load. All experiments were repeated

30 times to obtain statistical reliability in the results.

A. Experiment One: YouTube Video Streaming with Processor
Frequencies

In this experiment, YouTube was initialized with a video

link that was played for 120 seconds. A test sequence was

created manually according to the first step of the Web-based

user interface use flow (see Fig. 2). The connection type was

assumed to be WiFi, the number of active cores was set to

four (maximum), and all CPU frequencies were analyzed. The

Android governor was set to UserSpace, where we can define

a single CPU frequency without scaling.

We analyzed the average consumed energy for 30 iterations

of video streaming experiment for the SP1 and SP. All itera-

tions have a low standard deviation error based on the power

values, lower than 5 points. The frequencies of 200 MHz

and 300 MHz for SP1 and 384 MHz for SP2 were excluded

because they presented a low performance, invalidating the test

execution. For both cases, the frequency of 700 MHz appears

to be more energy efficient for the analyzed context and

tested smartphones. This information can be used to generate

intelligent scheduling algorithms (as a new Android governor)

to recognize system background and choose the appropriate

CPU operating frequency for each context.

These results may indicate that the upcoming 700 MHz

frequencies are the most energy-efficient options in a video

streaming context for both smartphones. It gives us the insight

to make a more detailed analysis of fixed-frequency and

dynamic frequency scaling (DFS) algorithms.

B. Experiment Two: YouTube Video Streaming with Governors

Similar to the first experiment, we created a test sequence

(Step 1 of the Web-based user interface use flow), set the

number of active cores to four and assumed a WiFi connection.

In each test execution, we utilized the UserSpace governor, and

the range of CPU frequencies presented in Table II.

The boxplots graphs of the energy consumption for smart-

phones SP1 and SP2 were analyzed. For the SP1 de-

vice, we analyzed the fixed-frequency algorithms: 700 MHz,

1100 MHz, and 1400 MHz, as well as the DFS algorithms:

OnDemand (OD), Performance (PE), PowerSave (PS), and

PegasusQ (PQ). For the SP2 device, we analyzed the fixed-

frequency algorithms: 702 MHz, 1134 MHz, and 1890 MHz,

as well as the DFS algorithms: Interactive (IT), OD, PE, and

244

PS. The fixed-frequency algorithms are those that had lower

(best case), mean and higher (worst case) energy consumption

for each mobile device in the previous experiment.

The boxplots suggest that the fixed-frequency algorithms

of 700 MHz (SP1) and 702 MHz (SP2) are the lower energy-

efficient frequencies, with average energy consumption equal

to 180.44 J (SP1) and 230.5 J (SP2). It is important to highlight

that the fixed-frequency algorithms present lower energy con-

sumption than the DFS algorithms. A possible justification is

that a high rate of frequency changing can increase the energy

consumption.

To confirm our hypotheses that using fixed-frequency al-

gorithms (no frequency scaling) is more energy efficient than

using DFS algorithms, we have to resort to statistical analysis.

Firstly, we need to know if data have normality to choose the

adequate method. Non-parametric Shapiro-Wilk and Lilliefors

(Kolmogorov-Smirnov) tests were applied to check adherence

data for normality. After that, we used the Friedman test, the

non-parametric version of the analysis of variance (ANOVA),

while the Nemenyi post-test was applied to determine which

algorithms have significant differences.

The fixed-frequency algorithms around 700 MHz (700 MHz

for the SP1 device and 702 MHz for SP2 one) can provide

a low energy consumption, but they can lead to some delay

in real-time applications that are CPU-bound. It is important

to have another study that analyzes energy consumption and

runtime to have a greater vision of this problem.

C. Experiment Three: Processor Load Stress

In the latter experiment, the energy measurement of the

developed CPU stress Android application was made. We used

the Upload App and Test Sequence option (Step 1 of the Web-

based user interface use flow), set CPU governor to UserSpace

and network type to none, the number of active cores (1, 2, 3,

or 4) and the same CPU frequency to all cores. In the uploaded

test sequence file, we defined touch events on the screen to

simulate user actions in our uploaded Android application to

stress mobile CPU accordingly with the user-defined load CPU

percentage.

The application consisted of creating threads that perform

mathematical operations to overload the processor to the

desired level. The desired levels in the experiments were 25%,

50%, and 75% processor load. Initially, the percentage of

100% was tested but was removed from the operations, since

it causes crashes on devices, inhibiting the tests.

We assumed the highest available CPU frequency in this

experiment. As expected, for a fixed number of active cores,

the higher the load processor percentage, the greater the energy

consumption. Also, for an established load percentage, the

increase in the number of active cores implies the increase

of the energy consumption, but not in the same proportion.

From current consumption, it can be perceived that a CPU-

bound process is more energy-efficient when it uses the

maximum amount of active cores. In reaching this conclusion,

proportion to knowing the average amount of current necessary

for the execution of 1% of the load was performed. Making

the aspect ratio to four active cores we have 25%, 50% and

75% load respectively: 640/25 = 25.6mA, 750/50 = 15mA and

900/75 = 12mA for each 1% processing load. Lower energy

consumption is achieved using the same amount of work with

a larger quantity of cores. The result followed true for all

combination of active cores and both smartphones.

V. CONCLUDING REMARKS AND FUTURE WORKS

In this work, we proposed a hardware and software Web-

based environment that helps to obtain an energy characteriza-

tion of mobile devices and provides the necessary infrastruc-

ture for measuring and testing functionalities or applications

on mobile platforms.

To test the proposal, three macro experiments involving

video streaming, CPU processor load, and an analysis of

CPU fixed-frequency algorithms versus dynamic frequency

scaling techniques were performed for two smartphones with

Android OS. The first and second experiments showed that

CPU fixed-frequency algorithms around 700 MHz for video

streaming are more energy-efficient than DFS algorithms,

resulting in energy saving. In load processor experiment, it was

possible to indicate the use of the maximum number of cores

at the maximum frequency for CPU-bound processes. This

information can provide energy saving for heavy-processing

processes.

For future work, we intend to analyze more scenarios to

identify the optimal-powered CPU frequency as it was per-

formed for video streaming and CPU load stress application.

This knowledge can be compiled in the development of a new

governor for mobile OS devices. Also, the releasing of the

proposed environment as a service through the Web interface

and availability of source code for the academic community

will permit researchers to be able to characterize the energy

consumption of their techniques on real devices in an easy

manner and adapt the proposal to an improved version. At last,

we highlight that the proposed approach can incorporate other

mobile devices, like iPhone and Windows Phone, allowing to

test the behavior of other OSes.

VI. ACKNOWLEDGMENTS

This research is supported by Motorola Mobility, LLC.

Also, the authors thank to CNPq and FACEPE (IBPG-0731-

1.03/12 and IBPG-1269-1.03/14), both Brazilian agencies, for

partial financial support.

REFERENCES

[1] Statista. (2014) The statistics portal. [Online].
Available: http://www.statista.com/statistics/278305/daily-activations-of-
Android-devices

[2] IDC. (Q2, 2015) Smartphone os market share. [Online]. Available:
http://www.idc.com/prodserv/smartphone-os-market-share.jsp

[3] MonSoon. (2014) Power monitor. [Online]. Available:
https://www.msoon.com/LabEquipment/PowerMonitor

[4] K. Gomez et al., “Energino: A hardware and software solution for energy
consumption monitoring,” in Proc. WiOpt, 2012.

[5] Xamarin. (2015) Mobile app development and app creation software.
[Online]. Available: http://www.xamarin.com

[6] MonkeyTalk. (2014) Monkeytalk mobile app testing tool - cloudmonkey.
[Online]. Available: https://www.cloudmonkeymobile.com

245

Energy Efficient File Distribution Problem and its
Applications

Kshitiz Verma
Universidad Carlos III de Madrid, Spain

LNMIIT Jaipur, India

Email: vermasharp@gmail.com

Alberto Garcı́a-Martı́nez
Universidad Carlos III de Madrid, Spain

Email: alberto@it.uc3m.es

Samar Agnihotri
IIT Mandi, India

Email: samar@iitmandi.ac.in

Abstract—Energy efficient networking has gained momentum
in past one decade due to the Internet’s ever increasing share
in world’s total energy consumption. It is crucial to study and
reduce the energy consumption of tasks that are very heavily
used in the Internet. In this paper, we focus on one such task,
file distribution, and study its energy efficiency. We prove lower
bounds on energy consumption for different scenarios that are
relevant in today’s Internet and design schemes that achieve
the lower bounds when all the hosts have equal upload and
equal download capacities. We evaluate our theoretical results
numerically to generalized scenarios as well. We show that our
schemes of file distribution can save as much as 50% energy
compared to other energy efficient P2P methods proposed in the
literature.

I. INTRODUCTION

It is a need of the hour to consider energy efficiency

while designing any engineering artifact for both econom-

ical as well as environmental reasons. Internet with all its

associated devices consumes 2-10% of the total world power

consumption [1] [2]. The root cause for energy waste in the

Internet is because all the devices are powered on all the times

even though the rate of utilization of these devices varies

drastically over time. Apart from the fact that most of the

hardware is agnostic to energy consumption, also the services

and protocols that run on the hardware do not have energy as

a metric.

In this paper, we focus on an extremely common task in

the Internet – file sharing. There have been studies confirming

that users leave PCs on just for file downloading [3]. In such a

scenario, it is important to manage the energy consumed by the

hosts so that the download takes place without wasting energy.

For this purpose, there is a need to design file distribution

algorithms to minimize energy consumption. We propose a

model for energy efficient file distribution, prove lower bounds

and design schemes achieving the bounds. However, due to

lack of space, instead of including all the algorithms we

present examples for case u > d in Fig. 2 and Fig. 4.

The idea behind our algorithms is that all the hosts who want

to receive the file, should upload as well as download. Doing

only one of the two operations is sub-optimal and should be

minimized. Note that we consider only those cases for which

all the hosts have the same upload and download capacity.

Moreover, we also assume that one capacity is an integral

multiple of the other. If the upload capacity is higher than the

download capacity, then download capacity is the bottleneck,

implying that all the hosts should receive at their full capacity.

On the other hand, if download capacity is higher than the

upload capacity then all the hosts should upload at their

full capacity. The schemes depend very much on the power

consumption of the hosts. We do not put any restriction on

the power consumption of hosts for the case in which upload

capacity is greater than the download capacity. However, if

the download capacity is greater, then we assume that all the

hosts consume the same power.

Finally, we compare our schemes with the existing energy

efficient methods for P2P file distribution that use proxy

[4] and the family of algorithms from [5] and the legacy

energy agnostic BitTorrent. We find that our schemes save

at least 50% energy compared to the existing energy efficient

approaches and up to three orders of magnitude compared to

the legacy BitTorrent.

A. Our Contributions

The contributions of this paper are summarized next.

• Lower bounds and schemes for different cases (Fig. 1).

The problem at the root is computationally tractable

which is further divided into two cases depending on

the relationship between upload and download capacities.

Each case is further subdivided depending on the relation

between the number of blocks and the number of clients.

File Distribution (ui = u, di = d∀i)

u = kd

β ≤ n

Fig. 2

β > n

Fig. 4

d = ku

β ≤ n

Algorithm 1

β > n

Algorithm 1

Fig. 1: This figure summarizes the algorithmic results in the

paper. Throughout the paper, u and d represent upload and

download capacities, k ≥ 2 is an integer, β and n represent

the number of blocks and the number of clients respectively.

978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

246

• Having high download to upload capacity ratio is not very

crucial. If all the hosts have the same power consumption,

then d
u = 2 is close to optimal.

• Having high upload to download capacity ratio improves

energy efficiency only for the server, i.e., even if all the

hosts other than the server have u
d = 2, schemes can be

optimal consuming the same energy as for any k > 2.

• Through numerical evaluation, we show that our schemes

are at least 50% more energy efficient than the similar

other approaches. We also study the impact of the block

size on energy consumption.

The rest of the paper is organized as follows: Section II lays

down the assumptions and system model. Section III presents

the energy efficient algorithms designed in the paper. Due to

lack to space we have not included all the algorithms, we rather

provide examples of one of them. Section IV presents the

numerical evaluation of the algorithms. Section V discusses

the related work and we finally conclude in Section VI.

II. ASSUMPTIONS AND SYSTEM MODEL

Consider n hosts and a server S, i.e., total n + 1 hosts.

The server has a file that is to be received by all the hosts.

A host i or Hi for short, has upload capacity ui, download

capacity di and power consumption Pi. For the server these

values are uS , dS and Ps respectively. The file is divided into

β blocks, each of size s. We assume a complete graph, i.e., all

the hosts are reachable to all the other hosts. A host can start

uploading a block to another host only if it has received a block

completely. One block of file can be downloaded only from

one host, i.e., two hosts cannot upload the same block to a host

simultaneously. However, there is no restriction on the number

of blocks a host can download or upload. A host is on if and

only if it is at least uploading or downloading a block. We

also assume that switching on/off happens instantaneously, and

hence, no energy is consumed in switching on/off. However,

we relax this condition in the numerical evaluation.

As proven in [6], the problem with variable upload ca-

pacities is NP-hard. Hence, from now on, we assume that

uS = ui = u, ∀i ∈ {0, 1, 2, · · ·n − 1}. We also assume that

dS = di = d, ∀i ∈ {0, 1, 2, · · ·n−1}. Both u and d are related

by a positive integer k, such that, k = u
d or k = d

u , depending

on whether u > d or d > u. For case d = u, user may refer

to [6]. We also assume that power consumption of a host is

constant irrespective of whether a host is idle, receiving and/or

uploading. and does not change with the operations that a host

may perform during the file distribution process. We assume

that time is slotted and an arbitrary time slot is represented as

τ , then the duration of each slot is given as,

τduration =
s

min{u, d} (1)

Transfer in a slot can be modeled as a directed graph (called

transfer graph) in which there is a directed edge from sender

to receiver. We use this graph to show the transfers in the

examples of algorithms in the next section.

S

H0
b0

H1
b1

H2
b2

S b0 b1 b2

H0

H1

H2

H3

H4

H5

S 0 0

0 S 0

0 0 S

0 0 0

0 0 0

0 0 0

(a) The server can serve at most three
blocks in a slot.

H1

H0
b1

H2
b2

b0

H3

b0

H5

b2

H4
b1

S b0 b1 b2

H0

H1

H2

H3

H4

H5

S H1 0

0 S H2

H0 0 S

H0 0 0

0 H1 0

0 0 H2

(b) Some hosts upload to multiple hosts.

H1

H0
b2

H2
b0

b1

H4

H3
b1

H5
b2

b0

S b0 b1 b2

H0

H1

H2

H3

H4

H5

S H1 H1

H2 S H2

H0 H0 S

H0 H4 0

0 H1 H5

H3 0 H2

(c) Two disjoint transfer graphs in the
same slot.

H4

H3
b2

H5
b0

b1

S b0 b1 b2

H0

H1

H2

H3

H4

H5

S H1 H1

H2 S H2

H0 H0 S

H0 H4 H4

H5 H1 H5

H3 H3 H2

(d) The three hosts form another cycle.

Fig. 2: Example of how our algorithm works when u = 3d,

for n = 6 and β = 3. Note that in the first slot, the server

serves all the three blocks and switches off. In the next slot,

the fact that u > d is used and three hosts upload to two hosts.

All the hosts form a cycle to serve the blocks to each other.

III. ENERGY OPTIMAL ALGORITHMS

A. Upload > Download Capacity

Theorem 1: The energy required by any scheme z to

distribute a file divided into β blocks among n clients when

k = u
d > 1, satisfies

E(z) ≥ �β
k
� · PS · s

d
+ β · s

d
·
n−1∑
i=0

Pi (2)

Sketch of proof: Each host has to be active for at least β
slots to receive the complete file. The server, however, can

upload to k different hosts. It needs to be on for at least �β
k �

slots.

An example of our algorithms for this case is shown in

Fig. 2 which achieves the lower bound mentioned in Equation

2. Hence, we have optimal schemes for the case u = kd.

(a) (b) (c)

Fig. 3: Transfer graphs in case of upload > download capacity.

247

Fig. 3 discusses various kinds of transfer graphs. Observe

that transfer graphs in Fig. 3c cannot be part of any optimal

scheme because it has hosts which are receiving from multiple

hosts. Likes of Fig. 3b are used in optimal algorithms for

case n > β, as illustrated in Fig. 2 because hosts can upload

while they are cycling among each other. However, it is worth

noticing that having u
d > 2 for the hosts other than the server

provides no energy gains.

l = 0 l = �β
n� − 2

0
1

n− 1

Opt(n, n) Opt(n, n) As in
Fig. 2

As in
Fig. 2

Fig. 4: A representation of optimal algorithm for β > n when

u = kd.

Basically the scenario with β > n is divided into �β
n� − 1

subroutines of β = n, as shown in Fig. 4. The server

serves diagonal in all of them and then they cycle as in

Fig. 2c. The remaining number of blocks is divided into

two subproblems in which the blocks are transfered after one

subproblem finishes. These subproblems can be solved in the

similar manner as the example presented in Fig. 2

B. Download > Upload Capacity

We assume that all the hosts have the same power con-

sumption, i.e., Pi = P ∀i ∈ {S, 0, 1, · · · , n−1}. We have the

following theorem for the upper bound on the lower bound

for energy consumption.

Theorem 2: If all the hosts have equal power consumption,

with k ≥ 2, Emin(z) ≤ n(β+1)·P s
u , if β > n, then Algorithm

1 describes a distribution scheme with energy consumption

E(z) ≤
(
n(β + 1) +

⌈
2β

n(n− 1)

⌉)
· P s

u
(3)

Thus, Algorithm 1 provides a scheme for homogeneous case

which is off from the lower bound by an additive factor of

O(1
n2) and hence is quasi-optimal. We can apply Algorithm

1 to cases with condition β ≤ n as well. Also note that

Algorithm 1 uses at most k = 2. Hence, having high download

to upload capacity does not reduce energy consumption.

Algorithm 1 can be used for both the cases, i.e, β ≤ n and

β > n. The hosts can be made to form groups of size ni in

a group Gi such that
ni(ni+1)

2 ≤ β. Keep on repeating this

until all the hosts get the file.

IV. NUMERICAL EVALUATION

Fig. 5a presents a comparison between the optimal algo-

rithms (Opt) for d > u (results are similar for d < u)

other proposals. We observe that the BitTorrent without energy

efficiency is very energy expensive. The other two approaches

considered, improve the energy consumption of BitTorrent and

already achieve three to four orders of magnitude improvement

in energy savings. Our algorithm is the best among all these

that provides 50% improvement over the next best Lachlan

Algorithm 1 Scheme for case d = ku

1: for slot j = 0 : n− 1

2: S
j−→ Hj

3: while (β > 1 +
var∑
i=1

(n− i)) do

4: var++
5: end while
6: var = var -1
7: for (ξ = 1; ξ ≤ var; ξ ++) do

8: for slot j =
ξ∑

i=1
(n− i) + 1 : min

{
ξ+1∑
i=1

(n− i), β − 1

}

9: S
j−→ Hn−1

10: H0

j−
ξ∑

i=1
(n−i)−1

−−−−−−−−−−→ Hn−ξ

11: for i = 1 : n− 1

12: Hi
(i+j−n) mod β−−−−−−−−−−−→ Hi−1

13: end for
14: ξ = 1
15: dif=0

16: for slot j = β : var +
var+1∑
i=1

(n− i)

17: if ξ = var &

(
var+1∑
i=1

(n− i)− (β − 1)

)

= 0 then

18: for i = 1 : n− ξ

19: Hi
(i+j−n) mod β−−−−−−−−−−−→ Hi−1

20: H0

min

{
ξ+1∑
i=1

(n−i),β−1

}
−

ξ∑
i=1

(n−i)+dif

−−−−−−−−−−−−−−−−−−−−−−−−−→ Hn−ξ

21: dif++
22: else
23: for i = 1 : n− ξ

24: Hi
(i+j−n) mod β−−−−−−−−−−−→ Hi−1

25: H0

min

{
ξ+1∑
i=1

(n−i),β−1

}
−

ξ∑
i=1

(n−i)

−−−−−−−−−−−−−−−−−−−−−−→ Hn−ξ

26: ξ++
27: end if
28: for slot j : n+ β − 2

29: H0
(j−var) mod β−−−−−−−−−−→ Hn−var−1

30: for i = 0 : n− var

31: Hi
(i+j−n) mod β−−−−−−−−−−−→ Hi−1

et. al [5] and more than an order of magnitude compared

to Anastasi et. al [4]. To compute the energy consumed

by Anastasi et. al, we assume that there are 50 different

corporations each having 20 hosts. Thus, fifty hosts participate

in P2P file distribution. Once they receive the file they send

to their hosts. The three energy efficient schemes coincide

when the file is divided in only one block. In this case, all the

energy efficient schemes upload each block to each host one

by one. Only the hosts uploading and downloading are kept

on. However, this is not true for BitTorrent, since all the hosts

are on. Therefore, the energy consumption is high even when

the file consists of just one block. This increases the energy

consumption per bit for BitTorrent.

Fig. 5b shows the impact of block size on energy consumed

by our algorithms. As the file size increases, impact of block

size decreases for larger blocks because energy is higher for

small files. It is so because lesser number of blocks are there

and distribution is more sequential. However, as the file size

increases, the parallelism in the optimal schemes is exploited

and energy consumption is lowered.

248

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
6

10
7

10
8

10
9

10
10

10
11

E
n

e
rg

y
 c

o
n

s
u

m
e

d
 p

e
r

b
it
 (

J
o

u
le

/b
it
)

File size (bits)

Opt
Bittorrent

Lachlan et al
Anastasi et al

(a) Comparison between 3 P2P schemes and ours.

60

80

100

120

140

160

180

200

10
6

10
7

10
8

10
9

10
10

10
11

E
n

e
rg

y
 p

e
r

b
it
 (

M
ic

ro
-J

o
u

le
/b

it
)

File size (bits)

16kB
64kB

256kB
1024kB

(b) Impact of block size on Opt.

10
-4

10
-3

10
6

10
7

10
8

10
9

10
10

10
11

E
n

e
rg

y
 c

o
n

s
u

m
e

d
 p

e
r

b
it
 (

J
o

u
le

/b
it
)

File size (bits)

Serial 2s on/0ff

Serial 4s on/off

Serial 0s on/off

Opt 2s on/0ff

Opt 4s on/off

Opt 0s on/off

(c) Impact of non-zero on/off energy cost.

Fig. 5: All the graphs assume that P=80W, u=10Mbps, n=1000. Block size is 256kB unless mentioned otherwise. The results

are similar for n=5000, 500 or 50.

Fig. 5c presents the energy consumed by our scheme in

comparison to the serial scheme considering a switch on/off

time equal to 2 and 4s. In serial scheme all the hosts receive all

the blocks from the server one by one. They switch off after

receiving. As expected, the on/off costs increase the energy

per bit consumed by all schemes. This increment is more

pronounced for small file sizes, where we see that on/off costs

make the performance of our scheme closer (but still better)

to the serial scheme. Conversely, for medium/large file sizes,

the contribution of on/off costs to the total energy consumed

by a scheme becomes marginal, and the performance of both

the optimal scheme and the serial scheme approaches the one

in the case without on/off costs.

V. RELATED WORK

Energy efficiency in file distribution is a well studied

problem in the literature. However, no characterization of its

complexity and analytical analysis exists beyond for some

basic cases as provided by [6]. Sucevic et. al. have studied the

same problem [7], [8] but their analysis is really limited and

works only for very small number of hosts. [9] investigates

green bittorrent via simulations. Studies like [10]–[12] have

explored the file distribution problem from the point of view

of optimizing time, but as shown in [5], the two optimization

problems are different. For a more comprehensive collection

of the state of the art methods for energy efficiency in P2P file

sharing, we refer the reader to [13], [14]. The work presented

in this paper is close to [6] but their analysis is very limited.

They provide analytical results for case d = u only. In this

paper, we have explored almost all the tractable versions of the

problem. The problem of file sharing has been studied in many

contexts, particularly from the point of view of finishing time.

However, the schemes optimizing the finish time can penalize

energy very much, up to an order of magnitude [5].

VI. CONCLUSION

File distribution is a ubiquitous task in the Internet and

having even little energy savings can lead to high absolute

energy gains. In this paper, we present algorithms that enable

energy savings on top of the savings from other methods.

Our methods are fairly general to be applied to not just P2P

file sharing but they can be used in software distribution,

replicating files in cloud, synchronization of servers of a

content distribution network, etc. It is also worth emphasizing

that our techniques improve with advances in energy efficient

hardware. The quicker the hardware can go to sleep and wake

up, the better our algorithms will perform. Hence, our results

will become more relevant as the energy efficiency of the

devices increases.

REFERENCES

[1] M. Gupta and S. Singh, “Greening of the Internet,” in SIGCOMM, 2003.
[2] G. Fettweis and E. Zimmermann, “Ict energy consumption-trends and

challenges,” in Proceedings of the 11th International Symposium on
Wireless Personal Multimedia Communications, vol. 2, no. 4, 2008, p. 6.

[3] G. Anastasi, S. Brienza, G. L. Re, and M. Ortolani, “Energy efficient
protocol design,” Green Communications: Principles, Concepts and
Practice, pp. 339–360, 2015.

[4] G. Anastasi, I. Giannetti, and A. Passarella, “A bittorrent proxy for green
Internet file sharing: Design and experimental evaluation,” Computer
Communications, vol. 33, no. 7, pp. 794–802, 2010.

[5] L. L. Andrew, A. Sucevic, and T. T. Nguyen, “Balancing peer and server
energy consumption in large peer-to-peer file distribution systems,” in
IEEE Online Conference on Green Communications (GreenCom), 2011,
pp. 76–81.

[6] K. Verma, G. Rizzo, A. Fernández Anta, R. C. Rumı́n,
A. Azcorra, S. Zaks, and A. Garcı́a-Martı́nez, “Energy-optimal
collaborative file distribution in wired networks,” Peer-to-Peer
Networking and Applications, pp. 1–20, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s12083-016-0453-4

[7] A. Sucevic, L. Andrew, and T. Nguyen, “Powering down for energy
efficient peer-to-peer file distribution,” ACM Sigmetrics Workshops,
GreenMetrics, 2011.

[8] A. Sucevic, L. L. Andrew, T. T. Nguyen et al., “Minimising peer on-time
for energy efficient peer-to-peer file distribution,” 2012.

[9] J. Blackburn and K. Christensen, “A simulation study of a new green
bittorrent,” in Communications Workshops, ICC, 2009, pp. 1–6.

[10] K.-S. Goetzmann, T. Harks, M. Klimm, and K. Miller, “Optimal file
distribution in peer-to-peer networks,” in Algorithms and Computation.
Springer, 2011, pp. 210–219.

[11] J. Mundinger, R. Weber, and G. Weiss, “Optimal scheduling of peer-
to-peer file dissemination,” Journal of Scheduling, vol. 11, no. 2, pp.
105–120, 2008.

[12] G. M. Ezovski, A. Tang, and L. L. Andrew, “Minimizing average finish
time in P2P networks,” in IEEE Infocom, 2009.

[13] A. Malatras, F. Peng, and B. Hirsbrunner, “Energy-efficient peer-to-
peer networking and overlays,” Handbook on Green Information and
Communication Systems, 2012.

[14] S. Brienza, S. E. Cebeci, S. S. Masoumzadeh, H. Hlavacs, G. Anastasi
et al., “A survey on energy efficiency in P2P systems: File distribution,
content streaming, and epidemics,” ACM Computing Surveys (CSUR),
vol. 48, no. 3, p. 36, 2015.

249

On the Use of Nonlinear Methods for Low-Power
CPU Frequency Prediction Based on Android

Context Variables

Sidartha A. L. Carvalho, Daniel C. Cunha and Abel G. Silva-Filho
Centro de Informática (CIn), Universidade Federal de Pernambuco (UFPE), Recife-PE, Brazil

Emails: {salc, dcunha, agsf} at cin.ufpe.br

Abstract—The objective of this paper is to analyze the use of
nonlinear models to predict the CPU frequency that reaches the
lowest power consumption of a smartphone based on Android
OS context variables. Artificial neural networks (ANNs) and k-
nearest neighbors (k-NN) techniques are investigated, and their
results are compared to those obtained by the linear method
(LM). Experimental results indicate the k-NN technique is the
best option in terms of model accuracy and performance when
compared to the other prediction models.

I. INTRODUCTION

In recent years, energy consumption has become a critical

aspect not only in the design of embedded systems and

mobile operating systems but also in the development of

mobile applications. Predicting and optimization of power

consumption of mobile devices has emerged as a research

topic in embedded and mobile architectures [1]. Various power

consumption management strategies have been developed for

Android systems. For example, some schemes utilize dynamic

voltage and frequency scaling (DVFS) or dynamic power

management (DPM) to extend the battery life [2]. DVFS and

DPM schemes attempt to achieve power reduction based on

the central processing unit (CPU) utilization. When CPU usage

is low, there is no demand for high performance, and because

of that, the CPU frequency is set lower [2].

Other relevant aspects related to the power consumption

management are the running application characteristics [3].

For a clear understanding of the behavior of the power

consumption of mobile devices, it is important to identify the

presence of patterns in user activity [1]. By using application-

specific knowledge, it is possible to set the CPU frequency

closer to the low-power frequency value, thus saving energy

[3]. For identifying this optimal configuration, we should have

a fine-grained model characterizing contexts to measure the

influence of the CPU frequency on the energy consumption.

Energy consumption measuring (also called profiling) can

be done either at hardware or operating system (OS) level. At

OS level, power profiling generates a model where it is possi-

ble to measure power consumption given some input features.

Linear regression has been widely used for power modeling of

processors [4]. In this context, the most common approach to

generate CPU power consumption models is the linear method

(LM) [5]. However, the relationship between user activity and

power consumption does not follow a linear relation. For

example, employing the DVFS technique, it is possible to

reduce the CPU operating frequency to decrease the consumed

power [5]. On the other hand, in current smartphones, the

power consumption depends not only on the processor but

also on a lot of subsystems and applications running in the

background. This aspect indicates that a nonlinear power

modeling can be an attractive option to investigate.

With this in mind, the objective of this paper is to analyze

the use of nonlinear models to predict the CPU frequency

that reaches the lowest power consumption of a smartphone

based on Android OS context variables. The nonlinear models

to be investigated are artificial neural networks (ANNs) and

k-nearest neighbors (k-NN) techniques. Results obtained by

these nonlinear methods are compared each other and with

the LM results.

The remainder of this paper is organized as follows. Sec-

tion II highlights some key related works, while Section III

describes the proposed approach. In Section IV, our experi-

mental results and models evaluation are described. Finally,

conclusion and future works are drawn in Section V.

II. RELATED WORKS

Some researchers have been using ML algorithms in a

mobile user context to obtain energy savings, [6] uses linear

and nonlinear classification models were used to predict user

data/location based on spatiotemporal and device contexts

aiming energy savings. By using ANN and k-NN, it was

achieved a prediction accuracy around 90%, while LMs ranged

an accuracy between 60% and 90%. The used k-NN reached

25% of improvement compared to rate logging algorithm

(VRL) in energy savings. k-NN presented low memory and

CPU usage in training time, but with a high overhead in

prediction time when using a large quantity of data (5 days or

more). Low memory and CPU usage are ideal characteristics

in a mobile environment, reinforcing our results.

In [7], a mobile power model based on the number of active

cores and CPU frequency, and a new CPU governor algorithm

called Medusa was proposed. This governor set the CPU

frequency to an optimal value based on CPU load and some

threshold, turning on all the cores before setting frequency up

to the threshold. Using Medusa governor and the low-power

CPU frequency values, it was obtained an energy consumption978-1-5090-3216-7/16/ $31.00 c© 2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

250

reduction from 12% to 26%. We use a self-learning strategy

to predict low-power frequency, while in [7] the low-power

frequency values were obtained for three benchmarks and set

manually inside the proposed governor.
In [8], the proposed ML power model was based on Linux

system calls, a low-level method that provides a fine-grained

power prediction. A fuzzy neural network was used to train

data and compare the predicted power value with real hard-

ware measurements. To validate the proposal, three Android

applications (Facebook, Google Chrome, and Gmail) were

used as benchmarks. In our proposal, a system level energy

measurement was done, we tried to explore the low-power

CPU frequency impacts into the Android system environment.
Power Tutor (PT) is an Android application that uses LM

to predict power consumption from a variety of smartphone

features like the processor, display, WiFi, GPS, cellular, and so

on [9]. The PT power model was built based on three types

of smartphones and exported to others. When we compared

with our model, we used the coefficients presented in the open

source code of that application [10] with a phone model that is

the closest to ours, when in [9], only the LM coefficients from

a smartphone with two CPU frequencies were presented. From

the gap between smartphones characteristics and features, the

PT power model predicted a very low power consumption

compared with our hardware measurements, because of that,

we decided to exclude the comparison in the results.

III. PROPOSED APPROACH

A. Proposed Methodology
The flow of the proposed methodology is illustrated in

Figure 1. Our proposal can be represented by an off-line

procedure and an on-line one. The off-line procedure is

composed of a training stage and a testing stage. In the first

stage, the nonlinear prediction model is built by using the

collected database. In the table data, we have the number of

active CPU cores, the CPU frequency, the CPU load, and the

running application. Finally, the target or output variable is the

consumed power Pf (·), measured in mW. The first stage of

the off-line procedure is shown in Figure 1(a).

Figure 1. Flow diagram of the proposed approach: (a) Training stage
(prediction of the power consumption). (b) Testing stage (validation of the
nonlinear model). (c) Frequency optimization (obtaining of the low-power
CPU frequency).

The second stage of the off-line procedure, indicated by

Figure 1(b), is called testing stage. In this step, a testing

database is used to validate the nonlinear model, computing

the consumed power. After the model validation, a frequency

optimization is executed using an on-line procedure. The

objective of the on-line procedure is to find the low-power

CPU frequency (fLP) by means of the minimization of

the power consumption. For this purpose, all available CPU

frequencies are used. This on-line procedure is represented by

the Figure 1(c).

B. Experimental Setup and Model Evaluation Methodology

A data acquisition board was developed to get current

and voltage samples with a periodicity of approximately 300

samples per second. A PS-1500 ICEL power supply is used to

power up the mobile. For measuring current values, Adafruit

integrated circuit contained in INA219 was used. An Arduino

UNO was utilized to read data from the Adafruit circuit

and send them to a computer. At last, a Motorola XT1033

smartphone with an ARM Cortex A7 processor and running

Android OS 4.4.4 KitKat was employed in the experimental

environment, since this is the most used OS version on

Android smartphones [11].

An Android application called Context Logger (CL) was

evolved to capture variables from Android OS. This appli-

cation runs as an Android service and captures context and

device attribute at a 0.25-second interval. Our CL application

collects 65 system attributes, such as processor information,

date and time, battery level and characteristics, network and

sensors data, display and applications running in foreground

and background. For our purpose, we will use only the features

that were mentioned in Subsection III-A.

Four benchmarks were carried on for all CPU frequencies

available in the smartphone. The executed benchmarks were

Google Chrome, Facebook (FB), Video Decoder (VD) and

YouTube (YT). User actions were simulated in these bench-

marks, except in VD. We collected samples from 5 minutes of

each available frequency (300, 384, 600, 787, 998, 1094, and

1190 MHz) for each benchmark. On average, we had 1200

context variables samples and 90000 power samples for each

CPU frequency, 8400 context variables and 630000 power

samples at all.

The collected variables from CL application were unified

to the power consumption samples. As the sampling rates of

the data acquisition board and the CL application are different

(300 and four samples per second, respectively), we had to do

an adjustment. Specifically, for each CL sample, we computed

the average of 75 samples from the power data acquisition

board.

To evaluate our methodology, we analyze these data using

the nonlinear models adopted (ANN and k-NN regression) and

the LM using four input variables and one output variable.

About nonlinear models, we firstly used a feedforward ANN

with random initialization weights. The ANN was trained

using the H2O R package and the impact of the number

of neurons in accuracy and training time was analyzed. The

second nonlinear model was the k-NN algorithm, that was

251

implemented by the FNN R package. In this case, the impact

of the number of neighbors (k) was analyzed.

To attest our proposal, we employ a validation technique

called K-fold cross-validation, a method used to evaluate the

model accuracy [12]. This approach is characterized by a re-

sampling training and testing data in which the samples are

randomly split into K sets of approximately equal size to be

used as the training and testing K-folds. The common value

adopted for K is 10. Also, the data are partitioned into subsets

with 80% and 20% for training and testing, respectively.

IV. NUMERICAL RESULTS

In this section, we performed an analysis to identify, on

average, the CPU frequency that reaches the lowest power

consumption (fLP) for each benchmark using the nonlinear

models explained before. The results obtained by the LM

approach was used as a reference.

A. Low-Power CPU Frequency Prediction

For each benchmark and CPU frequency value, both men-

tioned in Subsection III-B, we applied the LM and the nonlin-

ear models to predict the power consumption. The objective

is to find the fLP during a continuous use of the smartphone.

Figure 2 illustrates the average consumed power for all

available CPU frequencies considering the Google Chrome

benchmark. By using the observed data (real values), we can

see that, from 600 MHz on, the higher the CPU frequency, the

higher the power consumption. Besides, the real values show

us that fLP = 600 MHz for the Google Chrome benchmark.

Concerning the prediction models, we can observe that the

nonlinear models fit the real data well and also result in 600

MHz as the power-optimal CPU frequency. Even though, the

LM prediction is not a good option for all CPU frequency

range, since its predicted values were higher than the measured

mean power (Obs).

1000

1100

1200

1300

300 384 600 787 998 1094 1190
Frequency (MHz)

M
ea

n
Po

w
er

 (m
W

)

ANN k−NN LM Obs

Figure 2. Average consumed power for all available CPU frequencies
considering the Google Chrome benchmark.

In the FB benchmark, we can notice a different behavior

of the mean power with the increasing of the CPU frequency

when compared to the previous benchmark. Again, using the

observed data, we can see that fLP = 787 MHz. Similar to the

Chrome benchmark, the LM approach does not prove to be

a good predictor at 300, 384 and 600 MHz. In spite of that,

the LM predictor fit approximately the observed data from

787 MHz on. Regarding the nonlinear models, ANN and k-

NN predicted very close values when compared to real data

(except for the two highest frequencies in k-NN) and result in

787 MHz as the fLP .

In the VD benchmark, the LM predicted fLP = 300 MHz, in

spite of the observed values indicate that the fLP = 384 MHz.

On the other hand, the nonlinear models predicted the fLP

similar to that expressed by the observed values. It is important

to highlight that both nonlinear models fit the observed data in

all frequency range reliably. At the same time, the predictions

obtained by the LM were higher than the observed values for

all frequencies, as it was verified for Chrome benchmark.

Finally, in the YT benchmark, similar to the VD, the LM

also predicted 300 MHz as the fLP , although 384 MHz is the

fLP specified by the observed values. Again, not only ANN

but also k-NN matched the observed values in all frequency

range and also reached the fLP .

The fact that higher CPU frequency reached low power

consumption can be justified by the CPU load and the leakage

power. The same CPU frequency executing with higher CPU

load lead to higher power consumption [13], also high CPU

loads inhibits the CPU to enter in deeper idle states. Higher

CPU frequencies imply in more heat (power dissipation) that

leads to more leakage power [14] leading to higher power

consumption, even with lower CPU load.

B. Model Accuracy Evaluation

For measuring the model accuracy, we used three error

metrics: MSE, MAE, and MAPE. Together with, we used the

10-fold cross-validation technique to compute the average of

the error metrics and the results are shown in Table I.

Table I
AVERAGE ERROR METRICS OBTAINED BY USING 10-FOLD

CROSS-VALIDATION.

Model MSE MAE MAPE
LM 47636.47 171.75 0.16

ANN (n = 3) 41042.97 115.18 0.12
ANN (n = 10) 44783.54 120.21 0.12

ANN (n = 100) 44537.46 120.11 0.12
ANN (n = 1000) 46884.86 124.43 0.13
k-NN (k = 3) 41246.90 140.17 0.12
k-NN (k = 10) 30517.03 120.08 0.10
k-NN (k = 100) 26623.58 111.61 0.09
k-NN (k = 1000) 36728.76 150.32 0.14

ANN was evaluated for four values of neurons: n =
3, 10, 100, and 1000. For k-NN model, we evaluated the

performance with the following number of neighbors: k =
3, 10, 100, and 1000.

Concerning ANNs, all tested configurations had approxi-

mately the same average error metrics. Indeed, the ANN with

three neurons overcame the other ANNs with more neurons.

One possible explanation is that a higher number of neurons

can cause over-fitting in ANNs, so instead of improving, many

neurons can worse the prediction accuracy.

252

Concerning k-NN, the configuration with k = 100 neigh-

bors, overcame all the other algorithms for the whole error

metrics. The worst case was for the LM because it has

the highest error values for MSE, MAE, and MAPE. It is

important to observe that k-NN for k = 1000 obtained a bad

accuracy when compared with other k-NNs (k = 3, 10, 100)

because a high number of neighbors considered to calculate

the k-NN distance can lead to include classes very far from

the analyzed point and predict values out of the scope.

Another analysis that can be done refers to the complexity

of the prediction models. For this purpose, we define the

training time ttr as the required time to adjust the model to

a lower training error metric, and the prediction time tpd as

the time to use the built model to predict the output value

based on some input variables. Table II shows the average

computational cost for each prediction model considered in

this work. For the hardware platform considered, the lowest

times (training and prediction) were in the order of magnitude

of tenths of seconds. The prediction model with the lowest

training time was the LM. However, this model presented

the worse accuracy in error metrics, as we mentioned before.

About the prediction time, all k-NN models presented around

the same minimum value being k = 3 and k = 10, followed

by LM and ANNs.

Table II
AVERAGE COMPUTATIONAL COST FOR EACH PREDICTION MODEL.

Model Average ttr Average tpd
LM 1.00 15.00

ANN (n = 3) 65.41 4545.00
ANN (n = 10) 73.25 4590.00

ANN (n = 100) 105.41 4695.00
ANN (n = 1000) 293.53 4805.00
k-NN (k = 3) 3.07 1.00
k-NN (k = 10) 4.02 1.00
k-NN (k = 100) 4.43 1.50
k-NN (k = 1000) 15.46 1.50

Based on the results, it can be seen that k-NN model has the

best complexity-performance trade-off when compared with

the other prediction models. Thus, the performed analysis

suggest that k-NN (k = 100) is the best option among all

tested prediction models for our test database. We believe that

this value of k is justified by the highest accuracy and a relative

low training and prediction times.

Finally, we present a summary of the comparison between

the related works presented in Section II. Table III highlights

some of our contributions as the use of DVFS reaching

energy savings; the Context Logger App used to capture the

smartphone/user context, and the proposed methodology to

acquire the fLP .

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we analyzed the use of nonlinear models

to predict the CPU frequency that reaches the lowest power

consumption of a smartphone based on Android OS context

variables. The nonlinear models investigated were artificial

neural networks and k-nearest neighbors techniques. Our

Table III
SUMMARY OF THE RELATED WORKS.

DVFS CL App fLP Acquiring Energy Savings
Proposal

√ √
Automatic NA

[6] NA
√

NA 12% to 82%

[8] NA
√

NA NA

[7]
√

NA Manual 12% to 26%

[9] NA
√

NA NA

proposal can be applied in a new Android governor to save

energy consumption of the smartphone. In addition, the low-

power CPU frequency can be dynamically found during the

smartphone use. Among the nonlinear models that we verified,

the best option was the k-NN using 100 neighbors, considering

the complexity-performance trade-off.

Work is in progress to implement this proposal as a gov-

ernor policy in Android kernel and evaluate power savings

and performance gains. Also, we intend to analyze not only

other structures of ANNs and k-NN techniques with different

kernels, but also other methods for regression aiming power

prediction in mobile devices. Finally, we have in mind to

share the built CL Android application with the research

community.

ACKNOWLEDGMENT

This research is supported by Motorola Mobility, LLC.

Also, the authors thank to CNPq and FACEPE (IBPG-1269-

1.03/14), both Brazilian agencies, for partial financial support.

REFERENCES

[1] A. Shye, B. Scholbrock, and G. Memik, “Into the wild: Studying
real user activity patterns to guide power optimizations for mobile
architectures,” in Proc. MICRO, 2009, pp. 168–178.

[2] H. B. Jang et al., “Intelligent governor for low-power mobile application
processors,” in Proc. ISOCC, 2013, pp. 206–207.

[3] X. Liu, P. Shenoy, and M. D. Corner, “Chameleon: Application-level
power management,” IEEE Transactions on Mobile Computing, vol. 7,
pp. 995–1010, 2008.

[4] K. Singh, M. Bhadauria, and S. A. McKee, “Real time power estima-
tion and thread scheduling via performance counters,” in Proc. ACM
SIGARCH, 2009, pp. 46–55.

[5] S. Tarkoma et al., Smartphone Energy Consumption. Cambridge
University Press, pp. 18-35, 2014.

[6] B. Donohoo et al., “Exploiting spatiotemporal and device contexts for
energy-efficient mobile embedded systems,” in Proc. DAC, 2012, pp.
1274–1279.

[7] A. Carroll and G. Heiser, “Unifying dvfs and offlining in mobile
multicores,” in Proc. RTAS, 2014, pp. 287–296.

[8] D.-R. Chen et al., “A machine learning method for power prediction on
the mobile devices,” Journal of Medical Systems - Mobile Systems, pp.
1–11, 2015.

[9] L. Zhang et al., “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones,” in Proc.
CODES+ISSS, 2010, pp. 105–114.

[10] P. Tutor. (2015) Power tutor software. [Online]. Available:
http://ziyang.eecs.umich.edu/projects/powertutor/

[11] A. Developer. (2015) Android, the world’s most popular mobile plat-
form. [Online]. Available: http://developer.android.com/about/index.html

[12] M. Kuhn and K. Johnson, Applied Predictive Modeling. New York:
Springer, 2013.

[13] S. Daud et al., “The effects of cpu load & idle state on embedded
processor energy usage,” in Proc. ICED, 2014, pp. 30–35.

[14] K. Sekar, “Power and thermal challenges in mobile devices,” in Proc.
MobiCom, 2013, pp. 363–368.

253

A Distributed Self-Reconfiguration Algorithm for
Cylindrical Lattice-Based Modular Robots

André Naz, Benoı̂t Piranda, Julien Bourgeois
Univ. Bourgogne Franche-Comté

FEMTO-ST Institute, UMR CNRS 6174

25200 Montbéliard, France

Email : {andre.naz, benoit.piranda, julien.bourgeois}@femto-st.fr

Seth Copen Goldstein
Carnegie Mellon University

Pittsburgh, PA 15213, USA

Email : seth@cs.cmu.edu

Abstract—Modular self-reconfigurable robots are composed
of independent connected modules which can self-rearrange
their connectivity using processing, communication and motion
capabilities, in order to change the overall robot structure. In
this paper, we consider rolling cylindrical modules arranged in a
two-dimensional vertical hexagonal lattice. We propose a parallel,
asynchronous and fully decentralized distributed algorithm to
self-reconfigure robots from an initial configuration to a goal
one. We evaluate our algorithm on the millimeter-scale cylindrical
robots, developed in the Claytronics project, through simulation
of large ensembles composed of up to ten thousand modules. We
show the effectiveness of our algorithm and study its performance
in terms of communications, movements and execution time. Our
observations indicate that the number of communications, the
number of movements and the execution time of our algorithm
is highly predictable. Furthermore, we observe execution times
that are linear in the size of the goal shape.

Index Terms—Distributed algorithm, Self-reconfiguration al-
gorithm, Modular robotic, Programmable Matter, Ensembles

I. INTRODUCTION

Modular Self-reconfigurable Robots (MSR) [1] are dis-

tributed robotic systems composed of independent connected

modules which are able to collaborate and coordinate their

activities in order to achieve common goals. Every module

has its own computation and communication capabilities,

sensors and actuators. MSR have a wide range of potential

applications. This work is part of the Claytronics project [2],

[3] in which we envision massive-scale MSR, composed of

up to millions of modules, to build programmable matter, i.e.,

matter that can change its physical properties under program

control.
The most used algorithm in MSRs is the self-reconfiguration

algorithm which causes the modules to move from one config-

uration (the initial shape) to another one (the goal shape) (see

Figure 1). Self-reconfiguration has several applications. In the

context of programmable matter, it enables an MSR to assume

different shapes. Self-reconfiguration can also be used to adapt

MSR to changes in the environment or to specific tasks. For

instance, in [4], the authors use the self-reconfiguration to

rearrange modules connectivity in order to reach an optimal

network topology.
Self-reconfiguration algorithms pose several challenges.

Firstly, planning is challenging as the number of possible

Fig. 1: Example of initial and goal shapes. Self-reconfiguration

is the process during which the initial clump of modules on

the left self-reconfigures into the car shape on the right.

unique configurations is huge: (c ·w)n where n is the number

of modules, c the number of possible connections per module

and w the ways of connecting the modules together [5]. De-

pending on the physical constraints, modules can often move

concurrently which makes the configuration space grow at the

rate of O(mn) with m the number of possible movements and

n the number of modules free to move [6]. The exploration

space for reconfiguration between two random configurations

is therefore exponential in the number of modules which

prevents finding a complete optimal planning for all but the

simplest configurations. The optimal self-reconfiguration plan-

ning for chain-type MSRs is then an NP-complete problem [7],

and, to the best of our knowledge, nothing has been proved

so far for lattice-based MSR. Secondly, in addition to the path

planning problem, the self-reconfiguration process is also chal-

lenging as it is a distributed process that requires distributed

coordination of mobile autonomous modules connected in

time-varying ways. In particular, modules have to coordinate

their motions in order to not collide with each other.

Self-reconfiguration algorithms are tailored for a specific

class of modular robots, with specific motion constraints [8],

for example using cubes sliding on the floor, some motions

need a cooperation process that complicates motion algo-

rithms [9]. In this paper, we base our model on the millimeter-

scale cylindrical robots [10], [11] (see Figure 2), called 2D

Catoms, developed in our project. Catoms are the basic unit

for Claytronics. 2D Catoms have been partially validated with

the realization of a hardware prototype. In this paper, we

assume 2D Catoms can communicate together using neighbor-

to-neighbor communications and move by rolling around each978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

254

other as long as they respect some motion constraints (see

section II).

Fig. 2: The 2D Catom. A fabricated prototype (on the left)

and the actuation scheme (on the right) [10].

The contribution of this paper is to propose the Cylindrical-

Catoms Self-Reconfiguration (C2SR) algorithm which is asyn-

chronous, deterministic, fully decentralized and able to man-

age almost any kind of initial and goal compact shapes (see

section IV). Although our work is focused on the algorithm,

we carry out our analysis with respect to hardware constraints

based on the 2D Catoms prototype developed in [10], [11].

C2SR is a step toward realizing programmable matter.

We implemented our algorithm in C++ and evaluated it

through simulations with our simulator, VisibleSim [12], [13].

We show the effectiveness of C2SR on large-scale ensembles

composed of up to ten thousands of modules. We also show

the effectiveness of our algorithm and study its performance

in terms of communications, movements, and execution time.

Our observations indicate that the number of communications,

the number of movements and the execution time of our algo-

rithm is predictable. Furthermore, its execution time appears

to be linear in the size of the goal shape.

The rest of this paper is organized as follows. In section II,

we define the system model and assumptions. Afterwards,

we discuss the related work in section III. In section IV, we

present the general idea of C2SR and in section V, we describe

its implementation. In section VI, experimental results are

presented and analyzed. Section VII, concludes this paper and

section VIII proposes some directions for future work.

II. SYSTEM MODEL AND ASSUMPTIONS

In this paper, we consider the millimeter-scale cylindrical

robots [10], [11] (see Figure 2), called 2D Catoms, developed

in the Claytronics project. Some of the 2D Catoms function-

alities have been validated using this prototype.

A 2D Catom consists of a 6-mm long and 1-mm diameter

cylindrical shell. A high voltage CMOS die is attached inside

the tube. The chip includes a storage capacitor and a simple

logic unit. The tube has electrodes used for power transfer,

communications and actuation. The power is spread from

a powered floor through the ensemble using neighbor-to-

neighbor power transfer.

We assume that 2D Catoms are organized into a horizontal

pointy-topped hexagonal lattice where modules have up to six

neighbors. Modules can communicate together using neighbor-

to-neighbor communications. We assume that modules auto-

matically discover their neighbors using communications after

becoming attached. We assume that moving modules cannot

communicate with any other module. NN
Ci

denotes the network

neighbors of the module Ci. Catoms on the periphery have

clockwise (CW) and counter-clockwise (CCW) neighboring

Catoms that also belong to the periphery. For instance, in

Figure 3, C9 is C6’s CW peripheral neighbor and C10’s CCW

one. C11 is both C12’s CW and CCW peripheral neighbor.

pCi
= (xCi

, yCi
) denotes the coordinates of the 2D Catom

Ci in the horizontal hexagonal lattice. pCi
.x denotes Ci’s

column in the lattice, while pCi
.y denotes Ci’s height. For

instance, in Figure 3, pC2
.y = 0 and pC9

.y = 2. We assume

that, at any time, modules know both their coordinates in

the lattice and the coordinates of their neighbor through an

external algorithm, e.g., [14] or a distributed and incremental

version of [15].

Moreover, a 2D Catom can roll CW or CCW around a

stationary module. During an atomic move, a module rotates

60◦ going from one cell of the lattice to its adjacent cell. We

assume that a 2D Catom has only the capability to lift itself,

it cannot carry or push other modules. A module can move if

it satisfies the freedom of movement rule (see Rule 1).

Rule 1 (the freedom of movement rule). Because of possible

mismatching issues due to physical constraints, a 2D Catom

can only move from/into a cell if this cell is currently unoccu-

pied and no two symetrically opposing cells adjacent to that

cell are occupied (see Figure 3). Furthermore, we consider

the floor as if it were filled with 2D Catoms. If a 2D Catom,

Ci, satisfies the freedom of movement rule, free(Ci) is true,

otherwise it is false.

Fig. 3: On the left, motion constraints: examples of feasible

(on the top) and infeasible moves (on the bottom). On the

right, a labeled system: gray cells are occupied by a module

whereas white cells are empty. Some of the empty cells are

labeled with their position (e.g., pa, pb, etc.).

In the current design, a 2D Catom is able to perform a revo-

lution in 1.67 seconds or 3.35 seconds [11], which corresponds

to an average speed of 1.88 mm · s−1 or 0.94 mm · s−1. We

assume that 2D Catoms are not provided with any hardware

mechanism to handle collision. Thus, collisions have to be

prevented by the self-reconfiguration algorithm, using com-

munications.

We use N
K
p to denote the set of modules geographically

adjacent to position p. A module Ci, moving from pCi
to

p′Ci
, is somewhere between these two positions, and thus, Ci

belongs to the set of geographically adjacent modules of all

255

the cells adjacent to pCi
or p′Ci

. For instance, in the labeled

system depicted in Figure 3, module C12 is moving and, thus

it belongs to N
K
pa

, N
K
pb

, N
K
pd

, N
K
pC12

, N
K
pe

, N
K
pC11

, N
K
p′

C12

,

N
K
pf

, N
K
pg

and N
K
ph

. Note that in the presence of moving

modules, NK
pCi

may be different from N
N
Ci

. Also notice that

the construction of the N
K sets is not automatic. 2D Catoms

are not equipped with any presence sensor. Maintaining on

Catoms the N
K set of some specific nearby positions, using

only communications, is one of the key operations in the

implementation of our algorithm.
I and G respectively denote the initial and the goal shapes.

We assume that every module stores a representation of the

shape geometry of G. Our algorithm also assumes some

admissibility conditions for I and G (see section IV).
In this paper, colors are used for illustration purposes only.

The current prototype is not equipped with any mechanism to

glow with color. It is possible to do so, but the weight of that

color mechanism will probably change the 2D Catom motion

speed.
Furthermore, we assume a failure-free environment, i.e., we

assume there is no module, communication, move or lattice

failure during the algorithm execution.

III. RELATED WORK

Self-reconfiguration and self-assembly have attracted a lot

of attention in the last two decades. Algorithms have been

proposed for modules of different shapes, with different phys-

ical motion constraints and arranged in various ways. In this

paper, we consider self-reconfiguration of 2D Catom systems,

rolling elements organized in a vertical and two-dimensional

hexagonal lattice. Algorithms also differ by their restriction on

the initial and goal shapes. Our algorithm can manage almost

any kind of initial and goal compact shapes (see section IV).

Algorithms also vary in their control properties. In particular,

they can be centralized or distributed and synchronous or

asynchronous. In this paper, we propose a distributed and

asynchronous algorithm.
In [16], the authors propose a synchronous distributed

algorithm to perform chain-to-chain self-reconfiguration in a

hexagonal lattice. This work was latter extended to allow

self-reconfiguration from a chain configuration to an arbitrary

shape with some admissibility conditions [17], [18]. These

algorithms assume less restrictive motion constraints than the

motion constraints we assume for the 2D Catoms. For instance,

these algorithms allow the two first motions described as

infeasible in Figure 3, starting from the left.
Self-reconfiguration presented in [19], [20] consists in using

map-less representation for describing shapes. The benefit lies

in a reduced memory footprint, but the number of supported

goal shapes is limited. Proposed distributed algorithms manage

to construct square shapes with spherical modules arranged in

a two-dimensional hexagonal lattice. Due to the fact that initial

and goal shapes are fixed, the number of movements can be

predicted.
Algorithms to reconfigure an initial clump of modules

arranged in a hexagonal lattice to a chain configuration were

proposed in [21], [22]. These algorithms do not require

message passing and do not use any pre-processing. In these

algorithms, modules can both rotate and slide over other

modules. Thus, these algorithms assume less restrictive motion

constraints than ours.

In [23], the authors propose a distributed shape formation

algorithm based on hole motions, for ensembles arranged in a

hexagonal lattice. This algorithms can construct various shapes

by randomly moving empty spaces within the ensemble.

Although a wide variety of shapes can be built, this algorithm

requires less restrictive motion constraints than ours, e.g., it

allows the two first infeasible motions in Figure 3.

In [24], the authors propose a parallel, decentralized and

asynchronous algorithm for the Kilobot swarm system [25]

to self-assemble almost any kind of compact two-dimensional

shapes. This algorithm has been applied on hardware systems

with more than a thousand individual robots per swarm

entities. However, these swarm robots have different physical

motion constraints. During the self-assembly process, Kilobots

may collide with one another. While this is possible with

Kilobots, this is not acceptable in our system.

Existing protocols contain interesting ideas but consider

different physical motion constraints, different restrictions on

the initial and the goal shapes and different control properties.

The contribution of this paper is to propose a distributed, fully

decentralized, asynchronous and parallel self-reconfiguration

algorithm for 2D Catoms that can manage almost any kind of

initial and final compact shapes.

IV. C2SR ALGORITHM AT A GLANCE

In this section, we present the general idea of the

Cylindrical-Catoms Self-Reconfiguration (C2SR) algorithm1

that reconfigures a robot composed of modules from an initial

shape I to a goal one G.

Both shapes have to satisfy some admissibility conditions.

We provide some intuitions about them in this paragraph

and in Figure 4. A more formal description of the condi-

tions and their demonstration are left for future work. Both

shapes are compact, i.e., they do not contain holes, they are

homeomorphic to a sphere. Moreover, both shapes are next

to each other and intersect in one or more bottom cells. Let

the peripheral path be the path formed from the empty cells

on the periphery of both shapes, starting from and ending

at the second horizontal layer (see Figure 4). This path has

to be large enough to allow some modules, which progress

along that path in the same direction with an empty space

of at least one cell between successive modules, to move

without violating our motion constraints and without risking

colliding/getting attached with one another (see Figure 4 and

Rule 1). Note that this condition implies that, at the upper

layers, the horizontal space between the initial and the goal

shapes has to be sufficiently large to enable these modules to

move between the two shapes. Furthermore, the number of 2D

1Some examples of self-reconfiguration with C2SR are available online in
video at https://youtu.be/XGnY-oS4Nw0

256

Catoms in I has to be greater or at least equal to the number

of target positions in G (i.e., |I| ≥ |G|).

Fig. 4: Invalid (on the top) and valid (on the bottom) initial

and goal configurations. Modules in yellow, which are not part

of the initial or the goal shapes, progress along the peripheral

path in the same direction with an empty space of at least one

cell between successive modules. The configurations on the

top are not valid for several reasons. First, they do not intersect

in at least one cell. Second, they both contain a hole. Third,

the peripheral path is not large enough in locations in red.

Indeed, modules in yellow could not move without violating

our motion constraints and without getting attached with each

other.

During the execution of C2SR with shapes individually

composed of only continuous horizontal layers, the goal shape

is progressively constructed from the bottom layer to the top

one by stripping the initial shape, module by module in the

reverse order (see Figure 5). Because of physical constraints,

at a given instant, only modules on the periphery can move.

In order to avoid module collisions and deadlocks, peripheral

modules form a stream: modules roll in the same direction d

(CW in Figures 1 and 5), and maintain an empty cell between

each other using message exchanges. Modules in the stream

do not overtake each other.

Fig. 5: Screenshot during the self-reconfiguration process with

the initial and goal shapes of Figure 1. Modules in the stream

progress by rotating CW.

A module locally decides to start taking part in the stream

if it satisfies the stream entrance rule (see Rule 2). Intuitively,

a free module enters the stream if moving in the direction

d consists in: moving around a module on the ground, or

descending I, or moving around G, or moving in G without

leaving it and without going up.

Rule 2 (the stream entrance rule). Let us consider two

modules Ci and Cj such that both Ci and Cj are on the

periphery and Cj is the next peripheral neighbor of Ci in the

direction of rotation, d. p′Ci
denotes the position that Ci would

occupy after its rotation around Cj . Ci decides to take part

in the stream if the following logical condition is satisfied:

stream(Ci) : − free(Ci)

∧ ((pCi
/∈ G ∧ pCj

.y = 0)

∨ (pCi
/∈ G ∧ p′Ci

.y ≤ pCi
.y)

∨ (pCi
/∈ G ∧ pCj

∈ G)

∨ (pCi
∈ G ∧ p′Ci

∈ G ∧ p′Ci
.y ≤ pCi

.y))

A module in the stream decides to move if it satisfies the

stream progression rule (see Rule 3). More precisely, a module

in the stream can move if the set of modules geographically

adjacent to its destination cell contains no more than three

modules and none of them, except the module itself, belongs to

the stream (see Figure 6). This rule requires local interactions

with neighbors adjacent to its source and destination positions.

These modules are at most two cells away. The admissibility

conditions on I combined with the two rules above, guarantee

that these modules are at most five network hops away.

Rule 3 (the stream progression rule). A module Ci can

move from its position pCi
to the position p′Ci

if the following

condition is satisfied:

progression(Ci) : − stream(Ci)

∧ |N
K
p′

Ci

| ≤ 3

∧ �Cj ∈ N
K
p′

Ci

| Cj �= Ci ∧ stream(Cj)

Fig. 6: Stream progression rule: a simple example. Modules

should rotate CW. White cells are empty and some of them

are labeled with their position in the lattice (e.g., pa, pb, etc.).

Modules C1, C2, C3 and C4 are in the stream. C3 is moving.

C1 cannot move because C2 is in the stream and C2 ∈ N
K
pa

.

C2 cannot move because C3 is in the stream and C3 ∈ N
K
pb

. C3

can move to p′C3
because N

K
p′

C3

contains only three modules

and none of them is in the stream, except C3. C4 cannot move

because |N
K
pe
| = 5.

Rule 3 prevents collisions. The admissibility conditions on

I and G, combined with Rules 2 and 3 prevent deadlock.

Note that, because of the stripping order and the construction

order, our algorithm also guarantees that at all time the system

remains connected.

257

Each module checks for convergence using Rule 4 at the

initialization and after every move. A module has converged

if it is initially in a goal position, or if it has reached G and

moving in direction d will cause it to leave G or to go up.

Rule 4 (the local convergence rule). Let us consider two

modules Ci and Cj such that both Ci and Cj are on the

periphery and Cj is the next peripheral neighbor of Ci in the

direction of rotation. p′Ci
denotes the position that Ci would

occupy after its rotation around Cj . Ci has converged if it

satisfies the following condition:

converged(Ci) : − (pCi
∈ I ∧ pCi

∈ G)

∨ (pCi
∈ G ∧ p′Ci

/∈ G)

∨ (pCi
∈ G ∧ p′Ci

∈ G ∧ p′Ci
.y > pCi

.y)

Applying these rules in a distributed asynchronous system

with parallel communications and motions is challenging.

It is especially complex to maintain N
K sets using only

communications. A complete implementation that overcomes

this challenge is presented in the next section.

V. C2SR IMPLEMENTATION

In this section, we provide a detailed implementation of

C2SR2. Algorithm 1 shows the input and local variables of

C2SR along with its initialization pseudo-code. Every module

knows its position in the lattice, the goal shape, G, and

the rotation direction, d. Algorithm 2 describes some helper

functions used in the description of our implementation of

C2SR. Algorithm 3 provides the message handler pseudo-

code of C2SR. Algorithm 4 gives the pseudo-code executed

by a module after it finishes an atomic move. We assume

that interrupts are disabled during message and event handler

execution.

Input:

pCi
// position of Ci

d ∈ {CW,CCW} // direction of rotation
G // goal shape
Local Variables:

state // state of Ci

Movings // cells from/into which a neighbor
module is moving

Pendings // pending clearance requests
clearance // clearance for the current move (if

any)

1 Initialization of Ci:
2 Movings ← ∅; Pendings ← ∅; clearance ←⊥;
3 if pCi

∈ G then

4 state ← GOAL;
5 else if isInStream() then

6 state ← WAITING;
7 requestClearance();
8 else

9 state ← BLOCKED;
10 end

Algorithm 1: C2SR algorithm input, local variables and

initialization detailed for any module Ci.

2The complete source code is available online at https://github.com/
claytronics/visiblesim

1 Function hasConverged():

// The local convergence rule (Rule 4)
2 return converged(Ci);
3 end

4 Function areAdjacentCells(p1, p2):

5 return true if cells at positions p1 and p2 are adjacent in the
hexagonal lattice, false otherwise;

6 end

7 Function opppositeDirection(d):

// d ∈ {CW,CCW}
8 return the opposite direction of d;
9 end

10 Function isFree():

// The freedom of movement rule (Rule 1)
11 return free(Ci) considering both NN

Ci
and Movings;

12 end

13 Function isInStream():

// The stream entrance rule (Rule 2)
14 return stream(Ci) considering both NN

Ci
and Movings;

15 end

16 Function getNeighbor(dir):

17 return the peripheral neighbor in direction dir (see Section II);
18 end

19 Function getNeighbor(dir, pos):

20 return Ck ∈ NN
Ci

such that Ci is connected to Ck on the

connected interface that immediately follows the interface pointing
to position pos in direction dir;

21 end

22 Function requestClearance():

23 Ck ← getNeighbor(d);
24 p′Ci

← position after rotation in direction d around Ck;

25 r ← (src ← pCi
, dest ← p′Ci

, cnt ← 0);

26 send CLEARANCE REQUEST(r) to Ck;
27 end

28 Function forwardClearance(c(src, dest), Cj):

29 if areAdjacentCells(c.src, pCi
) then

30 Ck ← getNeighbor(oppositeDirection(d), c.src);
31 if Ck �= Cj ∧ areAdjacentCells(c.src, pCk

) then

32 send CLEARANCE(c) to Ck;
33 else

34 Movings ← Movings ∪ {c.src};
35 send CLEARANCE(c) to Cl | pCl

= c.src;
36 end

37 else if areAdjacentCells(c.dest, pCi
) then

38 Ck ← getNeighbor(oppositeDirection(d), c.dest);
39 send CLEARANCE(c) to Ck;
40 end

41 end

42 Function forwardEndOfMove(c(src, dest), Cj):

43 if areAdjacentCells(c.src, pCi
) then

44 Ck ← getNeighbor(oppositeDirection(d), c.src);
45 if Ck �= Cj ∧ areAdjacentCells(c.src, pCk

) then

46 send END OF MOVE(c) to Ck;
47 end

48 else if areAdjacentCells(c.dest, pCi
) then

49 Ck ← getNeighbor(oppositeDirection(d), c.dest);
50 send END OF MOVE(c) to Ck;
51 end

52 end

Algorithm 2: C2SR helper functions detailed for any

module Ci.

258

1 When CLEARANCE REQUEST(r(src, dest, cnt)) is received by

Ci from Cj do:
2 if state = WAITING then

3 send DELAYED CLEARANCE(r) to Cj ;
4 return;
5 end

6 if r.dest ∈ Movings then

7 Pendings ← Pendings ∪ {r};
8 return;
9 end

10 if state = BLOCKED ∨ state = GOAL then

11 if r.cnt = 3 then

12 send DELAYED REQUEST(r) to Cj ;
13 return;
14 end

15 r.cnt ← r.cnt+ 1;
16 end

17 Cn ← getNeighbor(d, r.dest);
18 if Cn �= Cj ∧ areAdjacentCells(pCn

, r.dest) then

19 send CLEARANCE REQUEST(r) to Cn;
20 else

21 c ← (r.src, r.dest);
22 Movings ← Movings ∪ {r.dest};
23 forwardClearance(c,⊥);
24 end

25 When CLEARANCE(c(src, dest)) is received by Ci from Cj do:
26 if c.src = pCi

then

27 clearance ← c;
28 send START TO MOVE to Cj ;
29 else

30 forwardClearance(c, Cj);
31 end

32 When DELAYED CLEARANCE(r(src, dest, cnt)) is received by

Ci from Cj do:
33 if r.src �= pCi

then

34 Pendings ← Pendings ∪ {r};
35 end

36 When START TO MOVE is received by Ci from Cj do:
37 send START TO MOVE ACK to Cj ;

38 When START TO MOVE ACK is received by Ci from Cj do:
39 state ← MOVING;
40 Ck ← getNeighbor(d);
41 move around Ck in direction d;

42 When END OF MOVE(c(src, dest)) is received by Ci from Cj do:
43 Movings ← Movings− {c.src, c.dest};
44 forwardEndOfMove(c, Cj);
45 if isInStream() then

46 state ← WAITING;
47 requestClearance();
48 else if ∃r ∈ Pendings | r ∈ areAdjacentCells(r.dest, c.src) then

49 Cn ← getNeighbor(d, r.dest);
50 if areAdjacentCells(r.dest, pCn

) then

51 send CLEARANCE REQUEST(r) to Cn;
52 else

53 cl ← (r.src, r.dest);
54 Movings ← Movings ∪ {cl.dest};
55 forwardClearance(cl,⊥);
56 end

57 end

Algorithm 3: C2SR algorithm message handler detailed

for any module Ci.

In our implementation, modules can have different states:

BLOCKED, GOAL, WAITING or MOVING. WAITING and

MOVING modules belong to the stream. At the initialization

and during the execution, modules locally decide their state

1 When Ci has finished to move do:
2 pCi

← clearance.dest;
3 send END OF MOVE(clearance) to getNeighbor(d);
4 clearance ← perp;
5 if hasConverged() then

6 state ← GOAL;
7 else if isInstream() then

8 state ← WAITING;
9 requestClearance();

10 end

Algorithm 4: C2SR algorithm event handler detailed for

any module Ci.

using Rules 1, 2 and 4. Modules in the stream move in rotation

direction d around their peripheral neighbor in the d direction.

Before moving, modules have to ensure that the stream pro-

gression rule (Rule 3) is satisfied. WAITING modules send

CLEARANCE REQUEST messages to get the authorization

to move. Clearance requests are composed of the module

source position and of its destination. These requests travel

around the module destination cell. At each hop, modules

check if the requested move satisfies the stream progression

rule (see Algorithm 3, lines 1-24). If the stream progression

rule is not satisfied the clearance request either has to be stored

locally (see Algorithm 3, lines 6-9) or to be stored at the

previous module using a DELAYED CLEARANCE message

(see Algorithm 3, lines 2-5, 11-14 and 32-35). If the stream

progression rule is satisfied, the clearance is granted (see

Algorithm 3, lines 20-24). The clearance is then progressively

forwarded back to the module that initiated the request (see

Algorithm 3, lines 25-31).

To prevent collision, modules maintain a list of neighbor

cells from/into which a module is moving. After having moved

to a new position, modules send an END OF MOVE (EOM

for short) message that is progressively forwarded around

the cell of their previous position (see Algorithm 4, line 3

and Algorithm 3, lines 42-57). Upon reception, of an EOM

message, delayed clearances are potentially re-activated (see

Algorithm 3, lines 48-57).

START TO MOVE and START TO MOVE ACK mes-

sages guarantee that no message is lost when a module decides

to actually move (see Algorithm 3, lines 36-41).

Modules never need to communicate with modules farther

than two cells away in the lattice, which means that, due to

our requirements, modules never need to send messages that

have to travel more than five hops. Thus, our algorithm uses

only local interactions between modules.

VI. EXPERIMENTAL EVALUATION

We implemented C2SR in C++ and evaluated it using

VisibleSim [12], a simulator for modular robots. This section

presents our experimental results. Through our experiments,

we show the effectiveness of C2SR and its efficiency in terms

of communications, movements and execution time.

VisibleSim enables one to perform simulations with differ-

ent and variable motion and communication delays. In our

259

evaluation, we assume that neighboring modules communi-

cate together using 8-N-1 serial communications. Hence, we

assume the effective bit-rate is equal to 80% of the link bit-

rate. We assume the effective average communication bit-

rate between two neighboring modules follows a Gaussian

distribution. Moreover, we assume the average motion speed

during atomic moves of a 2D Catom also follows a Gaussian

distribution. We do not simulate delays due to processing

and interruptions because we assume them to be negligible

in comparison to communication and motion delays.

Unless explicitly mentioned, we assume the following simu-

lation parameters. We consider the effective average communi-

cation bit-rate during message exchanges between two neigh-

boring modules has a distribution centered on 38.9 kbps with

a standard-deviation of 389 bps (1% of the mean). Moreover,

we assume the average motion speed during atomic moves of

a module has a distribution centered on 1.88 mm · s−1 with

a standard-deviation of 0.0188 mm · s−1 (1% of the mean).

We evaluate C2SR on the self-reconfiguration of random

clumps of 2D Catoms into four kinds of shapes, namely a car,

a flag, a magnet and a pyramid shape (see Figures 1 and 7). For

each target shape, we generated different versions of the goal

configurations using different scales ranging from a dozens to

ten thousands of modules.

A. Effectiveness Evaluation

As shown in Figure 7, C2SR is able to self-reconfigure

ensembles composed of more than 10,000 2D Catoms.

(a) Car (9,644 Catoms). (b) Flag (12,047 Catoms).

(c) Magnet (10,220 Catoms). (d) Pyramid (8,033 Catoms).

Fig. 7: Screenshots of VisibleSim at the end of the simulation

of C2SR with different kinds of goal shapes composed of

about 10,000 2D Catoms.

B. Communication Evaluation

Figure 8 shows the total number of messages sent during

the execution of C2SR according to the size of the goal shape.

For the shapes we considered, the number of messages seems

to depend on the size of the goal configuration and not on

the actual shape of the arrangement. Moreover, the standard-

deviation is very small, so small, that it is not visible on

the figure. Thus, for a goal shape of a given size, C2SR

always sends approximately the same number of messages.

Furthermore, as shown in Figure 8 by the curve of best

fit y(x) = 20.29x1.53, this number of messages is highly

predictable and increases polynomially with the size of the

goal shape.

Fig. 8: Average total number of messages (± standard-

deviation) versus the size of the system for different goal

shapes. For each point, 10 executions were performed.

Figure 9 indicates that a few modules tend to send a lot more

messages than the other modules. Intuitively, modules that stay

at the boundary between I and G are communication hotspots

because many modules have to communicate with them before

rolling over them in order to reach G (see Figure 13).

Fig. 9: Average number of messages sent per 2D Catom

(± min/max) versus the size of the system for different goal

shapes. For each point, 10 executions were performed.

Figure 10 shows the maximum message queue size reached

by the modules during the execution of C2SR, taking into

account both the incoming and the outgoing messages. The

maximum message queue size is constant and equal to two

regardless of the shape of the goal configuration and regardless

of its size. We recall that messages generated by C2SR have

260

a small and constant size. As a consequence, the traffic

generated by C2SR is well controlled and modules do not

require a lot of memory space to store incoming and outgoing

messages.

Fig. 10: Maximum reached message queue size (incoming and

outgoing messages) versus the size of the system. For each

point, 10 executions were performed.

Figure 11 shows the average number of hops traveled by the

packets during the execution of C2SR. The average and the

maximum number of hops traveled by the packets is small

and relatively constant regardless of the shape of the goal

configuration and regardless of its size. This confirms that

C2SR only involves local interactions, as announced in the

previous section.

Fig. 11: Average number of hops data have traveled

(± min/max) versus the size of the system. For each point,

10 executions were performed.

C. Motion Efficiency

Figure 12 shows the total number of atomic moves per-

formed during the execution of C2SR according to the size of

the system for different goal shapes. Note that this figure is

really similar to Figure 8. Here again, the number of atomic

moves seems to only depend on the size of the goal configura-

tion and not to the actual shape of the arrangement. As shown

in Figure 12 by the curve of best fit y(x) = 2.09x1.53, the

number of atomic moves is highly predictable and increases

polynomially with the size of the goal shape. Notice that the

number of messages is approximately equal to ten times the

number of moves (see Figures 8 and 12). Thus, an atomic

move requires in average 10 messages.

Fig. 12: Average total number of atomic moves (± standard-

deviation) versus the size of the system for different goal

shapes. For each point, 10 executions were performed.

As shown in Figure 13, many modules can move con-

currently during the execution of C2SR. Thus, although the

self-reconfiguration process may require many atomic moves,

it remains reasonably time efficient as shown in the next

subsection.

Fig. 13: Screenshot of VisibleSim during a self-reconfiguration

process. Modules in the stream progress by rotating CW.

Blocked modules are in gray, waiting ones in yellow, moving

ones in red and modules that have converged are in green.

D. Execution Time Efficiency

Figure 14 shows the average simulated time of C2SR

execution according to the size of the system. For the different

goal shapes we considered, this time seems to only depend

on the size of the configuration and not to the actual shape

of the arrangement. Moreover, the standard-deviation is very

small and not visible on the figure. Thus, for goal shape

of a given size, C2SR always approximately lasts the same

duration. As shown in Figure 14 by the curve of best fit

y(x) = 0.017x + 0.149, the simulated time is highly pre-

dictable and increases linearly with the size of the goal shape.

The slope of the line gives the reconfiguration speed: C2SR

fills on average 1
0.017 ≈ 59 goal cells per minute.

261

Fig. 14: Average simulated time (± standard-deviation) versus

the size of the system for different goal shape. For each point,

10 executions were performed.

Figure 15 shows the average simulated time of C2SR

execution according to the average communication bit-rate for

the two different motion speeds supported by the 2D Catoms.

We consider the usual bit-rates of serial communications. We

conducted this experiment for the car goal shape composed of

1,073 modules. Until 38.9 kbps, the self-reconfiguration pro-

cess becomes much more faster as the average communication

bit-rate increases. Beyond 38.9 kbps, the self-reconfiguration

speed increases less quickly and tends to stabilize.

Fig. 15: Average simulated time (± standard-deviation) versus

the communication bit-rate (random initial configuration to the

car of 1, 073 2D Catoms). For each point, 10 executions were

performed.

VII. CONCLUSION

We have proposed Cylindrical-Catoms Self-Reconfiguration

(C2SR), a parallel, asynchronous and fully decentralized dis-

tributed algorithm to self-reconfigure lattice-based MSR from

an initial shape to a goal one.

The evaluation of C2SR has been conducted with real exe-

cutions under a simulated physical environment (VisibleSim).

These simulations show our algorithm to have nice properties.

The time for reconfiguration is linear in the number of

modules and this time is predictable and seems to only

depends on the number of modules. The number of messages

sent is also predictable such that added with the number of

movements, it can give an estimate of the power consumption

of the algorithm. Communications are local such that no

routing protocol is needed and the message queue of each

module is always bounded by two on our simulation. The

needed bandwidth is reasonable, as it uses less than 40 kbps

on one example without slowing down the reconfiguration

process.

VIII. FUTURE WORK

In future works, we will demonstrate the correctness of

C2SR, i.e., we will prove that the goal configuration can

be built if the shape admissibility conditions are satisfied.

Moreover, we will study the performance of C2SR on other

types of shapes and compare it to existing algorithms. We will

also study the distribution of both the number of messages sent

per module and the number of atomic moves performed per

module. Our observations seem to indicate that our algorithm

is highly predictable and that its execution time is linear

to the size of the goal shape. A further step would be to

prove it. Furthermore, we would like to reduce the memory

usage of our algorithm induced by the storage of the goal

shape representation. Indeed, hardware modules have limited

memory capacity and cannot afford to store the complete

representation of large goal shapes [3], [20], [19]. We envision

two approaches to address this storage limitation, namely to

use a compressed representation of the goal shape and/or to

disseminate and share the representation of the goal shape

between all modules [3].

ACKNOWLEDGMENTS

This work has been funded by the Labex ACTION pro-

gram (contract ANR-11-LABX-01-01) and ANR/RGC (con-

tracts ANR-12-IS02-0004-01 and 3-ZG1F) and ANR (contract

ANR-2011-BS03-005).

REFERENCES

[1] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson,
E. Klavins, and G. S. Chirikjian, “Modular self-reconfigurable robot
systems [grand challenges of robotics],” IEEE Robotics & Automation

Magazine, vol. 14, no. 1, pp. 43–52, 2007.
[2] S. C. Goldstein and T. C. Mowry, “Claytronics: An instance of pro-

grammable matter,” in Wild and Crazy Ideas Session of ASPLOS, Boston,
MA, October 2004.

[3] J. Bourgeois, B. Piranda, A. Naz, H. Lakhlef, N. Boillot, H. Mabed,
D. Douthaut, and T. Tucci, “Programmable matter as a cyber-physical
conjugation,” in Proceedings of the IEEE International Conference on

Systems, Man and Cybernetics. Budapest, Hungary: IEEE, October
2016.

[4] H. Lakhlef, H. Mabed, and J. Bourgeois, “Distributed and dynamic
map-less self-reconfiguration for microrobot networks,” in Network

Computing and Applications (NCA), 2013 12th IEEE International

Symposium on. IEEE, 2013, pp. 55–60.
[5] M. Park, S. Chitta, A. Teichman, and M. Yim, “Automatic configu-

ration methods in modular robots,” International Journal for Robotics

Research, vol. 27, no. 3-4, pp. 403–421, March/April 2008.
[6] J. Barraquand and J.-C. Latombe, “Robot motion planning: A distributed

representation approach,” The International Journal of Robotics Re-

search, vol. 10, no. 6, pp. 628–649, 1991.

262

[7] F. Hou and W.-M. Shen, “Graph-based optimal reconfiguration plan-
ning for self-reconfigurable robots,” Robotics and Autonomous Systems,
vol. 62, no. 7, pp. 1047 – 1059, 2014.

[8] K. Stoy and H. Kurokawa, “Current topics in classic self-reconfigurable
robot research,” in Proceedings of the IROS Workshop on Reconfigurable

Modular Robotics: Challenges of Mechatronic and Bio-Chemo-Hybrid

Systems, 2011.
[9] B. Piranda and J. Bourgeois, “A distributed algorithm for reconfiguration

of lattice-based modular self-reconfigurable robots,” in PDP 2016,

24th Euromicro Int. Conf. on Parallel, Distributed, and Network-Based

Processing. Heraklion Crete, Greece: IEEE, feb 2016, pp. 1–9.
[10] M. E. Karagozler, S. C. Goldstein, and J. R. Reid, “Stress-driven mems

assembly + electrostatic forces = 1mm diameter robot,” in Proceedings

of the IEEE International Conference on Intelligent Robots and Systems

(IROS ’09), October 2009.
[11] M. E. Karagozler, “Design, fabrication and characterization of an

autonomous, sub-millimeter scale modular robot,” Ph.D. dissertation,
Carnegie Mellon University, 2012.

[12] D. Dhoutaut, B. Piranda, and J. Bourgeois, “Efficient simulation of
distributed sensing and control environments,” in iThings 2013, IEEE

Int. Conf. on Internet of Things, Beijing, China, Aug. 2013, pp. 452–
459.

[13] B. Piranda, “Visiblesim: Your simulator for programmable matter,” in
Algorithmic Foundations of Programmable Matter (Dagstuhl Seminar

16271), May 2016, S. Fekete, A. Richa, K. Römer, and C. Scheideler,
Eds.

[14] S. Funiak, P. Pillai, M. P. Ashley-Rollman, J. D. Campbell, and S. C.
Goldstein, “Distributed localization of modular robot ensembles,” In-

ternational Journal of Robotics Research, vol. 28, no. 8, pp. 946–961,
2009.

[15] M. Dermas, P. Canalda, and F. Spies, “First evaluation of a system of
positioning of microrobot with ultra-dense distribution,” in IPIN 2016,

International Conference on Indoor Positioning and Indoor Navigation.
IEEE, October 2016.

[16] J. E. Walter, J. L. Welch, and N. M. Amato, “Distributed reconfiguration
of metamorphic robot chains,” in Proceedings of the nineteenth annual

ACM symposium on Principles of distributed computing. ACM, 2000,
pp. 171–180.

[17] J. E. Walter, E. M. Tsai, and N. M. Amato, “Algorithms for fast
concurrent reconfiguration of hexagonal metamorphic robots,” IEEE

transactions on Robotics, vol. 21, no. 4, pp. 621–631, 2005.
[18] J. Bateau, A. Clark, K. McEachern, E. Schutze, and J. Walter, “In-

creasing the efficiency of distributed goal-filling algorithms for self-
reconfigurable hexagonal metamorphic robots,” in Proceedings of the

International Conference on Parallel and Distributed Techniques and

Applications, 2012, pp. 509–515.
[19] H. Lakhlef, J. Bourgeois, H. Mabed, and S. C. Goldstein, “Energy-aware

parallel self-reconfiguration for chains microrobot networks,” Journal of

Parallel and Distributed Computing, vol. 75, pp. 67–80, 2015.
[20] H. Lakhlef and J. Bourgeois, “Fast and robust self-organization for

micro-electro-mechanical robotic systems,” Computer Networks, vol. 93,
pp. 141–152, 2015.

[21] S. Wong and J. Walter, “Deterministic distributed algorithm for self-
reconfiguration of modular robots from arbitrary to straight chain config-
urations,” in Robotics and Automation (ICRA), 2013 IEEE International

Conference on. IEEE, 2013, pp. 537–543.
[22] S. Wong, S. Zhu, and J. Walter, “Unpacking a cluster of modular

robots,” in Proceedings of the International Conference on Parallel

and Distributed Processing Techniques and Applications (PDPTA).
WorldComp, 2015, p. 103.

[23] M. De Rosa, S. Goldstein, P. Lee, J. Campbell, and P. Pillai, “Scalable
shape sculpting via hole motion: Motion planning in lattice-constrained
modular robots,” in Proceedings 2006 IEEE International Conference on

Robotics and Automation, 2006. ICRA 2006. IEEE, 2006, pp. 1462–
1468.

[24] M. Rubenstein, A. Cornejo, and R. Nagpal, “Programmable self-
assembly in a thousand-robot swarm,” Science, vol. 345, no. 6198, pp.
795–799, 2014.

[25] M. Rubenstein, C. Ahler, and R. Nagpal, “Kilobot: A low cost scalable
robot system for collective behaviors,” in Robotics and Automation

(ICRA), 2012 IEEE International Conference on. IEEE, 2012, pp.
3293–3298.

263

Analysis of the Propagation Time of a Rumour in
Large-scale Distributed Systems

Yves Mocquard
Université de Rennes 1/IRISA,

yves.mocquard@irisa.fr

Bruno Sericola
INRIA Rennes - Bretagne Atlantique,

bruno.sericola@inria.fr

Samantha Robert
Université de Nantes/IRISA,

samantha.robert@hotmail.fr

Emmanuelle Anceaume
CNRS/IRISA,

emmanuelle.anceaume@irisa.fr

Abstract—The context of this work is the well studied dis-
semination of information in large scale distributed networks
through pairwise interactions. This problem, originally called
rumor mongering, and then rumor spreading has mainly been
investigated in the synchronous model. This model relies on the
assumption that all the nodes of the network act in synchrony,
that is, at each round of the protocol, each node is allowed to
contact a random neighbor. In this paper, we drop this assumption
under the argument that it is not realistic in large scale systems.
We thus consider the asynchronous variant, where at time unit,
a single node interacts with a randomly chosen neighbor. We
perform a thorough study of Tn the total number of interactions
needed for all the n nodes of the network to discover the rumor.
While most of the existing results involve huge constants that do
not allow for comparing different protocols, we prove that in a
complete graph of size n ≥ 2, the probability that Tn > k for all
k ≥ 1 is less than

(
1 + 2k(n−2)2

n

) (
1− 2

n

)(k−1)
. We also study

the behavior of the complementary distribution of Tn at point
c�(Tn) when n tends to infinity for c �= 1. We end our analysis
by conjecturing that when n tends to infinity, Tn > �(Tn) with
probability close to 0.4484.

Keywords—rumor spreading, pairwise interactions, Markov
chain, analytical performance evaluation.

I. INTRODUCTION

Randomized rumor spreading is an important mechanism
that allows the dissemination of information in large and com-
plex networks through pairwise interactions. This mechanism
initially proposed by Deemers et al [12] for the update of a
database replicated at different sites, has then been adopted in
many applications ranging from resource discovery [19], data-
aggregation [22], complex distributed applications [8], or virus
propagation in computer networks [6], to mention just a few.

A lot of attention has been devoted to the design and study
of randomized rumor spreading algorithms. Initially, some
rumor is placed on one of the vertices of a given network,
and this rumor is propagated to all the vertices of the network
through pairwise interactions between vertices. One of the

This work was partially funded by the French ANR project SocioPlug
(ANR-13-INFR-0003), and by the DeSceNt project granted by the Labex
CominLabs excellence laboratory (ANR-10-LABX-07-01).

important questions of these protocols is the spreading time,
that is time it needs for the rumor to be known by all the
vertices of the network.

Several models have been considered to answer this ques-
tion. The most studied one is the synchronous push/pull
model, also called the synchronous random phone call model.
This model assumes that all the vertices of the network act
in synchrony, which allows the algorithms designed in this
model to divide time in synchronized rounds. During each
synchronized round, each vertex i of the network selects at
random one of its neighbor j and either sends to j the rumor if
i knows it (push operation) or gets the rumor from j if j knows
the rumor (pull operation). In the synchronous model, the
spread time of a rumor is defined as the number of synchronous
rounds necessary for all the nodes to know the rumor. In one of
the first papers dealing with the push operation only, Frieze and
Grimmet [16] proved that if the underlying graph is complete,
then asymptotically almost surely the number of rounds is
log2(n) + log(n) + o(log n) where n is the number of nodes
of the graph. Further results have been established (see for
example [21], [7] and the references herein), the most recent
ones resulting from the observation that the rumor spreading
time is closely related to the conductance of the graph of
the network [17], [18]. Investigations have also been done in
different topologies of the network [9], [11], [14], [25], in the
presence of link or vertices failures (see [13]), and dynamic
graphs [10].

All the above studies assume that all vertices of the network
act synchronously. In distributed networks, and in particular in
large scale distributed systems, such a strict synchronization is
unrealistic. Several authors have recently dropped this assump-
tion by considering an asynchronous model. Boyd et al [28]
consider that each node has a clock that goes off at the time
of a rate 1 Poisson process. Each time the ring of a node goes
off, the push or pull operations are triggered according to the
knowledge of the node. Acan et al. [1] go a step further by
studying rumor spreading time for any graph topology. They
show that both the average and guaranteed spreading time
are Ω(n), where n is the number of nodes in the network.
Further investigations have been made for different network
topologies [26], [15].978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

264

a) Our contributions : In this paper we consider the
population protocol model, which turns out to resemble to the
discrete-time version of the asynchronous spreading model.
This model provides minimalist assumptions on the compu-
tational power of the nodes: nodes are finite-state automata,
identically programmed, they have no identity, they do not
know how numerous they are, and they progress in their com-
putation through random pairwise interactions. Their objective
is to ultimately converge to a state from which the sought
property can be derived from any node [5]. In this model,
the spreading time is defined as the number of interactions
needed for all the nodes of the network to learn the rumor.
Angluin et al [3] analyze the spreading time of a rumor by
only considering the push operation (which they call the one-
way epidemic operation), and show that with high probability,
a rumor injected at some node requires O(n log n) interactions
to be spread to all the nodes of the network.

In the present paper we go a step further by considering
a more general problem namely, that is all the nodes of the
network initially receive an input value, and the objective for
each node is to learn the maximal value initially received
by any node. Note that the rumor spreading problem is a
particular instance of this problem when two input values 1
and 0 are considered respectively representing the knowledge
and the absence of knowledge of the rumor. We present a
thorough analysis of the number of interactions needed for all
the nodes to converge to the correct response. Specifically, we
study the expectation, variance and an exact formulation of the
distribution of the number of interactions needed to propagate
a rumor.

This formulation being hardly usable in practice once n
becomes too large, a tight bound is derived. This bound is
all the more interesting as usual probabilistic inequalities fail
to provide relevant results in this case. Finally, we study the
asymptotic behavior of the spreading time when the size of
the network tends to infinity.

b) Road map: The remainder of this paper is organized
as follows. Section II presents the population protocol model.
Section III specifies the problem addressed in this work.
Analysis of the spreading time is proposed in Section IV,
while we study in Section V its asymptotic behavior. We have
simulated our protocol to illustrate our theoretical analysis.
Finally, Section VI concludes.

II. POPULATION PROTOCOLS MODEL

In this section, we present the population protocol model,
introduced by Angluin et al. [2]. This model describes the
behavior of a collection of nodes that interact pairwise. The
following definition is from Angluin et al [4]. A population
protocol is characterized by a 6-tuple (Q,Σ, Y, ι, ω, f), over
a complete interaction graph linking the set of n nodes,
where Q is a finite set of states, Σ is a finite set of input
symbols, Y is a finite set of output symbols, ι : Σ → Q
is the input function that determines the initial state of a
node, ω : Q → Y is the output function that determines
the output symbol of a node, and f : Q × Q → Q × Q is
the transition function that describes how two nodes interact
and update theirs states. Initially all the nodes start with a
initial symbol from Σ, and upon interactions with nodes update

their state according to the transition function f . Interactions
between nodes are orchestrated by a random scheduler: at each
discrete time, any two nodes are randomly chosen to interact
with a given distribution. Note that its is assumed that the
random scheduler is fair, which means that the interactions
distribution is such that any possible interaction cannot be
avoided forever. The notion of time in population protocols
refers to as the successive steps at which interactions occur,
while the parallel time refers to as the successive number
of steps each node executes [5]. Nodes do not maintain nor
use identifiers (nodes are anonymous and cannot determine
whether any two interactions have occurred with the same
agents or not). However, for ease of presentation the nodes

are numbered 1, 2, . . . , n. We denote by C
(i)
t the state of

node i at time t. The stochastic process C = {Ct, t ≥ 0},
where Ct = (C

(1)
t , . . . , C

(n)
t), represents the evolution of the

population protocol. The state space of C is thus Qn and a
state of this process is also called a protocol configuration.

III. SPREADING THE MAXIMUM

We consider in this section the following problem. Each
site has initially an integer value. At each discrete instant
of time, two distinct nodes are successively chosen and they
change their value with the maximum value of each node.
More precisely, for all nodes a and b, with a �= b, we consider
the function f given by

f(a, b) = (max{a, b},max{a, b}) .

We want to evaluate the time needed so that all the nodes get
the same value.

Let C = {Ct, t ≥ 0} be a discrete-time stochastic process
with state space S = �n. For every t ≥ 0, the state at time

t of the process is denoted by Ct = (C
(1)
t , . . . , C

(n)
t), where

C
(i)
t is the integer value of node i at time t. At each instant t,

two distinct indexes i and j are successively chosen among
the set of nodes 1, . . . , n randomly. We denote by Xt the
random variable representing this choice and we suppose that
this choice is uniform, i.e we suppose that

�{Xt = (i, j)} = 1

n(n− 1)
1{i�=j}.

Once the couple (i, j) is chosen at time t, the process reaches
state Ct+1, at time t+ 1, given by

C
(i)
t+1 = C

(j)
t+1 = max{C(i)

t , C
(j)
t }

and C
(m)
t+1 = C

(m)
t for i �= j.

We denote by M the maximum initial value among all the

nodes, i.e. M = max{C(1)
0 , . . . , C

(n)
0 }. It is easily checked

that for all t ≥ 0, we have M = max{C(1)
t , . . . , C

(n)
t }.

We consider the random variable Tn defined by

Tn = inf{t ≥ 0 | C(i)
t =M, for every 1, . . . , n}.

The random variable Tn represents the number of interactions
needed for all the nodes in the network to know the maximal
value M .

265

We introduce the discrete-time stochastic process Y =
{Yt, t ≥ 0} with state space {1, . . . , n} defined, for all t ≥ 0,
by

Yt =
∣∣∣{i | C(i)

t =M
}∣∣∣ .

The random variable Yt represents the number of nodes
knowing the maximum value M at time t. The stochastic
process Y is then a homogeneous Markov chain with transition
probability matrix A. The non zero transition probabilities are
given, for i, j = 1, . . . , n, by⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ai,i = 1− 2i(n− i)
n(n− 1)

,

Ai,i+1 =
2i(n− i)
n(n− 1)

, for i �= n.

Indeed, when Yt = i, in order to get Yt+1 = i+ 1, either the
first node must be chosen among the ones with the maximum
value (probability i/n) and the second agent must be chosen
among the ones with the non maximum value (probability (n−
i)/(n− 1)) or the first node must be chosen among the ones
with the non maximum value (probability (n− i)/n) and the
second node must be chosen among the ones with the non
maximum value (probability i/(n− 1)).

The states 1, . . . , n − 1 of Y are transient and state n is
absorbing. The random variable Tn can then be written as

Tn = inf{t ≥ 0 | Yt = n}.

It is well-known, see for instance [27], that the distribution of
Tn is given, for every k ≥ 0, by

�{Tn > k} = αQk�, (1)

where α is the row vector containing the initial probabilities
of states 1, . . . , n− 1, that is αi = �{Y0 = i}, Q is the sub-
matrix obtained from A by deleting the row and the column
corresponding to absorbing state n and � is the column vector
of dimension n− 1 with all its entries equal to 1.

For i = 0, . . . , n, we introduce the notation

pi =
2i(n− i)
n(n− 1)

and we denote by Hk the harmonic series defined by H0 = 0
and Hk =

∑k
�=1 1/�, for k ≥ 1. Note that, for every i =

0, . . . , n, we have pi = pn−i.

If we denote by Si, for i = 1, . . . , n − 1, the total time
spent by the Markov chain Y in state i, then conditionally
on the event Y0 = i, S� has a geometric distribution with
parameter p�, for � = i, . . . , n − 1 and in this case, we have
Tn = Si + · · ·+ Sn−1. It follows that

�{Tn > k | Y0 = i} = �{Si + · · ·+ Sn−1 > k},

which means that �{Tn > k | Y0 = i} is decreasing with i
and in particular that

�{Tn > k | Y0 = i} ≤ �{Tn > k | Y0 = 1}. (2)

IV. ANALYSIS OF THE SPREADING TIME

In the following we study the expectation and the variance
of Tn, the number of interactions needed for all the nodes in
the network to know the maximal value M . We then provide
an explicit expression of the distribution of Tn, and then a
bound and an equivalent for the explicit distribution of Tn.

A. Expectation and variance of Tn

The mean time �(Tn) needed so that all the nodes get the
same value is then given by

�(Tn) = α(I −Q)−1
�, (3)

where I is the identity matrix. This expectation can also be
written as

�(Tn) =

n−1∑
i=1

αi�(Tn | Y0 = i).

This conditional expectations are given by the following the-
orem.

Theorem 1: For every n ≥ 1 and i = 1, . . . , n, we have

�(Tn | Y0 = i) =
(n− 1)(Hn−1 +Hn−i −Hi−1)

2
.

Proof: If Y0 = n, which means that all the nodes start with
same values, then we have Tn = 0 and so�(Tn | Y0 = n) = 0.
For i = 1, . . . , n− 1 we have

�(Tn | Y0 = i) =

n−1∑
�=i

�(S�)

=
n−1∑
�=i

1

p�

=
n(n− 1)

2

n−1∑
�=i

1

�(n− �)

=
n− 1

2

n−1∑
�=i

(
1

�
+

1

n− �

)
=

(n− 1)(Hn−1 +Hn−i −Hi−1)

2
,

which completes the proof.

In particular, when the maximum value is initially unique,
i.e. when Y0 = 1 with probability 1, we have α1 = 1 and thus

�(Tn) = �(Tn | Y0 = 1) = (n− 1)Hn−1 ∼
n−→∞

n ln(n).

More generally, from Relation (2), we have

�(Tn) ≤ �(Tn | Y0 = 1) = (n− 1)Hn−1 ∼
n−→∞

n ln(n).

The variance of Tn is obtained similarly.

Theorem 2: For every n ≥ 1 and i = 1, . . . , n, we have

Var(Tn | Y0 = i) =
(n− 1)2

4

(
n−1∑
�=i

1

�2
+

n−i∑
�=1

1

�2

)

− �(Tn | Y0 = i)

n
.

266

Proof: If Y0 = n, which means that all the nodes start with
the same values, then we have Tn = 0 and thus Var(Tn | Y0 =
n) = 0. For i = 1, . . . , n−1 we have, using the independence
of the S�,

Var(Tn | Y0 = i) =

n−1∑
�=i

Var(S�) =

n−1∑
�=i

1− p�
p2�

=

n−1∑
�=i

1

p2�
−
n−1∑
�=i

1

p�

=
n2(n− 1)2

4

n−1∑
�=i

1

�2(n− �)2 −
n(n− 1)

2

n−1∑
�=i

1

�(n− �)

=
(n− 1)2

4

n−1∑
�=i

(
1

�
+

1

n− �

)2

− n(n− 1)

2

n−1∑
�=i

1

�(n− �)

=
(n− 1)2

4

n−1∑
�=i

(
1

�2
+

1

(n− �)2
)
− n− 1

2

n−1∑
�=i

1

�(n− �)

=
(n− 1)2

4

n−1∑
�=i

(
1

�2
+

1

(n− �)2
)
− �(Tn | Y0 = i)

n

=
(n− 1)2

4

(
n−1∑
�=i

1

�2
+

n−i∑
�=1

1

�2

)
− �(Tn | Y0 = i)

n
,

which completes the proof.

In particular, when the maximum value is initially unique,
i.e. when Y0 = 1 with probability 1, we have α1 = 1 and thus

Var(Tn) = Var(Tn | Y0 = 1)

=
(n− 1)2

2

n−1∑
�=1

1

�2
− n− 1

n
Hn−1 ∼

n−→∞

π2n2

12
.

More generally, from Theorem 2, we have

Var(Tn | Y0 = i) ≤ (n− 1)2

4

(
n−1∑
�=i

1

�2
+

n−i∑
�=1

1

�2

)

≤ (n− 1)2

2

n−1∑
�=1

1

�2
≤ π

2n2

12
.

It follows that

Var(Tn) =

n−1∑
i=1

αiVar(Tn | Y0 = i) ≤ π
2n2

12
.

B. Explicit expression of the distribution of Tn

The distribution of Tn, for n ≥ 2, which is given
by Relation (1) can be easily computed as follows. Let
V (k) = (V1(k), . . . , Vn−1(k)) be the column vector defined
by Vi(k) = �{Tn > k | Y0 = i}. According to Rela-
tion (1), we have V (k) = Qk�. Since V (0) = �, writing
V (k) = QV (k − 1) for k ≥ 1, we get for i = 1, . . . , n− 2,{

Vi(k) = (1− pi)Vi(k − 1) + piVi+1(k − 1),

Vn−1(k) = (1− pn−1)Vn−1(k − 1).
(4)

Recall that we have pi = 2i(n− i)/(n(n−1)). This recursion
can be easily computed since we have, for k ≥ 0,

Vn−1(k) = (1− pn−1)
k
=

(
1− 2

n

)k
. (5)

In the next theorem, we derive from recursion (4) an
explicit expression of the distribution of Tn.

Theorem 3: For every n ≥ 1, k ≥ 0 and i = 1, . . . , n−1,
we have

�{Tn > k |Y0 = n− i}

=

�n/2�∑
j=1

(ci,j(1− pj) + kdi,j) (1− pj)k−1,

where the coefficients ci,j and di,j , which do not depend on
k, are given, for j = 1, . . . , n− 1, by

c1,j = 1{j=1} and d1,j = 0

and for i ∈ {2, . . . , n− 1} by

ci,j =
pici−1,j

pi − pj
− pidi−1,j

(pi − pj)2
for i �= j, n− j,

di,j =
pidi−1,j

pi − pj
for i �= j, n− j,

ci,i = 1−
n/2∑

j=1,j �=i
ci,j for i ≤ n/2,

ci,n−i = 1−
n/2∑

j=1,j �=n−i
ci,j for i > n/2,

di,i = pici−1,i for i ≤ n/2,
di,n−i = pici−1,n−i for i > n/2.

Proof: See [24]

C. Bounds of the distribution of Tn

The exact expression of the distribution of Tn presented
earlier is hardly usable in practice, and computation using
formula (4) may take a long time for large values of n. To
overcome this problem, we propose in this section a bound and
an equivalent for the quantity �{Tn > k | Y0 = i} derived
from the recursive formula (4).

Theorem 4: For all n ≥ 2 and k ≥ 1 we have

�{Tn > k | Y0 = 1} ≤
(
1 +

2k(n− 2)2

n

)(
1− 2

n

)k−1

,

�{Tn > k | Y0 = 1} ∼
k−→∞

(
1 +

2k(n− 2)2

n

)(
1− 2

n

)k−1

and for i = 2, . . . , n− 1 and k ≥ 0,

�{Tn > k | Y0 = i} ≤ (n− i)(n− 2)

i− 1

(
1− 2

n

)k
,

�{Tn > k | Y0 = i} ∼
k−→∞

(n− i)(n− 2)

i− 1

(
1− 2

n

)k
.

267

Moreover, we have

�{Tn > k} ≤ �{Tn > k | Y0 = 1}.

Proof: The result is trivial for n = 2 since in this case
we have T2 = 1. We thus suppose that n ≥ 3. Note that by
definition of pi we have pi = pn−i. Consider the sequence bi
defined for i = 1, . . . , n− 2, by

b1 = 1 and bi =
pibi−1

pi − p1
, for i = 2, . . . , n− 2.

Observing that

bi =
i(n− i)bi−1

(i− 1)(n− i− 1)
,

it is easily checked by recurrence that for i = 1, . . . , n − 2,
we have

bi =
i(n− 2)

n− i− 1
.

We show now by recurrence that for all i = 1, . . . , n− 2, we
have

Vn−i(k) ≤ bi (1− p1)k , for all k ≥ 0

and Vn−i(k) ∼
k−→∞

bi (1− p1)k .

Both results are true for i = 1 since Vn−1(k) = (1−pn−1)
k =

(1− p1)k. Suppose now that these results are true for a fixed
integer i with 1 ≤ i ≤ n− 3. From Relations (4), we have

Vn−i−1(k)

= (1− pn−i−1)Vn−i−1(k − 1) + pn−i−1Vn−i(k − 1)

= (1− pi+1)Vn−i−1(k − 1) + pi+1Vn−i(k − 1).

Using the recurrence hypothesis, we obtain, for what concerns
the inequality,

Vn−i−1(k) ≤ (1− pi+1)Vn−i−1(k− 1)+ pi+1bi (1− p1)k−1
.

Expanding this inequality and using the fact that Vn−i−1(0) =
1, this leads to

Vn−i−1(k)

≤ (1− pi+1)
k + pi+1bi

k−1∑
j=0

(1− pi+1)
j(1− p1)k−1−j

= (1− pi+1)
k + pi+1bi

(1− p1)k − (1− pi+1)
k

pi+1 − p1
= (1− pi+1)

k + bi+1

(
(1− p1)k − (1− pi+1)

k
)

= (1− bi+1) (1− pi+1)
k + bi+1(1− p1)k.

Since bi+1 ≥ 1, we get

Vn−i−1(k) ≤ bi+1(1− p1)k

In the same way, using a similar calculus, we obtain

Vn−i−1(k) ∼
k−→∞

(1− bi+1) (1− pi+1)
k + bi+1(1− p1)k.

Since pi+1 > p1, we also get

Vn−i−1(k) ∼
k−→∞

bi+1(1− p1)k.

We thus have shown that for all i = 1, . . . , n− 2, we have

Vn−i(k) ≤ bi (1− p1)k , for all k ≥ 0

and Vn−i(k) ∼
k−→∞

bi (1− p1)k .

In particular, for i = n− 2 we obtain

V2(k) ≤ bn−2 (1− p1)k , for all k ≥ 0

and V2(k) ∼
k−→∞

bn−2 (1− p1)k .

Consider now the term V1(k). From Relations (4) and using
the previous inequality, we have

V1(k) = (1− p1)V1(k − 1) + p1V2(k − 1)

≤ (1− p1)V1(k − 1) + p1bn−2 (1− p1)k−1
.

Expanding this inequality and using the fact that V1(0) = 1,
this leads to

V1(k) ≤ (1− p1)k + p1bn−2

k−1∑
j=0

(1− p1)j(1− p1)k−1−j

= (1− p1)k + p1bn−2k(1− p1)k−1

= (1− p1 + kp1bn−2) (1− p1)k−1

≤ (1 + kp1bn−2) (1− p1)k−1,

which gives

V1(k) ≤
(
1 +

2k(n− 2)2

n

)(
1− 2

n

)k−1

.

In the same way, using a similar calculus, we obtain

V1(k) ∼
k−→∞

(
1 +

2k(n− 2)2

n

)(
1− 2

n

)k−1

.

Finally, since �{Tn > k | Y0 = i} is decreasing with i, we
have

�{Tn > k} =
n−1∑
i=1

�{Tn > k | Y0 = i}�{Y0 = i}

≤ �{Tn > k | Y0 = 1},
which completes the proof.

The bound established in Theorem 4 is all the more
interesting as usual probabilistic inequalities fail to provide
relevant results in this particular case. For example, Markov
inequality leads for all real number c ≥ 1 to

�{Tn ≥ c�(Tn)} ≤
1

c
,

and Bienaym-Tchebychev inequality leads for all real number
x > 0 to

�{|Tn −�(Tn)| ≥ x} ≤
π2n2

12x2
.

The author of [20] provides a bound, based on Chernoff
inequality, for the tail probabilities of the sum of independent,
but not necessarily identically distributed, geometric random
variables. In the particular case of our protocol computing the
maximum, this leads to the following result.

268

Theorem 5: For all n ≥ 3 and for all real number c ≥ 1,
we have

�(Tn > c�(Tn)) ≤
1

c

(
1− 2

n

)(c− 1− ln c)(n− 1)Hn−1

.

The right-hand side term is equal to 1 when c = 1.

Proof: We have already shown that

�(Tn > c�(Tn)) ≤ �(Tn > c�(Tn) | Y0 = 1}.
The upper bound is then an application of Theorem 2.3 of
[20], and it is clearly equal to 1 when c = 1.

Applying Theorem 4 at point k = �c�(Tn)	, we obtain

�(Tn > c�(Tn)) ≤
(
1 +

2�c�(Tn)	(n− 2)2

n

)
×

(
1− 2

n

)�c�(Tn)�−1

≤
(
1 +

2c�(Tn)(n− 2)2

n

)
×

(
1− 2

n

)c�(Tn)−2

.

From now on we denote this bound by f(c, n) and in the same
way, we denote by g(c, n) the bound of �(Tn > c�(Tn))
derived from Theorem 5. We then have, for n ≥ 3 and c ≥ 1,

f(c, n) =

(
1 +

2c(n− 1)Hn−1(n− 2)2

n

)
×

(
1− 2

n

)c(n−1)Hn−1−2

g(c, n) =
1

c

(
1− 2

n

)(c−1−ln(c))(n−1)Hn−1

.

We also introduce the notation

e(c, n) = �(Tn > c�(Tn)).

Theorem 6: For every n ≥ 3, there exists a unique c∗ ≥ 1
such that f(c∗, n) = g(c∗, n) and we have{

f(c, n) > g(c, n) for all 1 ≤ c < c∗

f(c, n) < g(c, n) for all c > c∗.
(6)

Furthermore,

lim
c−→∞

f(c, n)

g(c, n)
= 0.

Proof: See [24]

The graphs on Figures 1, 2 and 3 illustrate the behavior
of the bounds f(c, n) and g(c, n), depending on c and for
different values of n, compared to the real distribution of Tn at
point c�(Tn), i.e. to e(c, n) = �{Tn > �(Tn)}. The bound
f(c, n) that we provided in Theorem 4 clearly shows better
accuracy than the Chernoff bound g(c, n) provided in [20]
above the threshold c∗ introduced in Theorem 6. Furthermore,
this threshold seems to decrease to 1 as n tends to infinity, as
can be seen on Figure 4.

 0

 0.2

 0.4

 0.6

 0.8

 1

c* 1 1.2 1.4 1.6 1.8 2

c

g(c,100)

f(c,100)

e(c,100)

Fig. 1. Bounds f(c, n) and g(c, n) beside the real value of �(Tn >
c�(Tn)) = e(c, n) for n = 100, as functions of c. In this case, we have
c∗ = 1.14641.

 0

 0.2

 0.4

 0.6

 0.8

 1

c* 1 1.2 1.4 1.6 1.8 2

c

g(c,1000)

f(c,1000)

e(c,1000)

Fig. 2. Bounds f(c, n) and g(c, n) beside the real value of �(Tn >
c�(Tn)) = e(c, n) for n = 1000, as functions of c. In this case, we have
c∗ = 1.12673.

V. ASYMPTOTIC ANALYSIS OF THE DISTRIBUTION OF Tn

We analyze in this section the behavior of the comple-
mentary distribution of Tn at point c�(Tn) when n tends to

 0

 0.2

 0.4

 0.6

 0.8

 1

c* 1 1.2 1.4 1.6 1.8 2

c

g(c,5000)

f(c,5000)

e(c,5000)

Fig. 3. Bounds f(c, n) and g(c, n) beside the real value of �(Tn >
c�(Tn)) = e(c, n) for n = 5000, as functions of c. In this case, we have
c∗ = 1.11385.

n 10 102 103 104 105 106 107

c∗ 1.09 1.15 1.13 1.11 1.10 1.09 1.08

Fig. 4. Approximate values of c∗ for different network sizes n.

269

infinity, depending on the value of c.

We prove in the following corollary that the bounds f(c, n)
and g(c, n), obtained from Theorem 4 and Theorem 5 respec-
tively with k = c�(Tn), both tend to 0 when n goes to infinity.

Corollary 7: For all real number c > 1, we have

lim
n−→∞ f(c, n) = 0 and lim

n−→∞ g(c, n) = 0.

Proof: For all x ∈ [0, 1), we have ln(1 − x) ≤ −x.
Applying this property to the bound f(c, n) leads to

f(c, n) ≤
(
1 +

2c(n− 1)Hn−1(n− 2)2

n

)
×e−2(c(n−1)Hn−1−2)/n

≤
(
1 + 2c(n− 2)2Hn−1

)
e−2(c(n−1)Hn−1−2)/n.

Since ln(n) ≤ Hn−1 ≤ 1 + ln(n− 1), we get

f(c, n) ≤
(
1 + 2c(n− 2)2(1 + ln(n− 1)

)
×e−2(c(n−1) ln(n)−2)/n

=
(
1 + 2c(n− 2)2(1 + ln(n− 1))

)
e−2c ln(n)

×e2(c ln(n)+2)/n.

For x ≥ 0, the function u(x) = e2(c ln(x)+2)/x satisfies u(x) ≤
exp

(
2c/e(c−2)/c

)
, so we obtain

f(c, n) ≤ 1 + 2c(n− 2)2(1 + ln(n− 1))

n2c
exp

(
2c/e(c−2)/c

)
.

The fact that c > 1 implies that this last term tends to 0 when
n −→∞. Concerning the bound g(c, n), we have

g(c, n) =
1

c

(
1− 2

n

)(c−1−ln(c))(n−1)Hn−1

=
1

c
e(c−1−ln(c))(n−1)Hn−1 ln(1−2/n)

≤ 1

c
e−2(c−1−ln(c))(n−1)Hn−1/n,

which tends to 0 when n tends to infinity, since c− 1− ln(c)
is positive for c > 1.

Theorem 8: For all real c ≥ 0, we have

lim
n→+∞�{Tn > c�(Tn)} =

{
0 if c > 1

1 if c < 1.

Proof: From Corollary 7, both bounds f(c, n) and g(c, n)
of �{Tn > c�(Tn)} tend to 0 when n tends to infinity, so
using either f(c, n) or g(c, n) we deduce that

lim
n−→∞�{Tn > c�(Tn)} = 0 for all c > 1.

In the case where c < 1, Theorem 3.1 of [20] leads to

�{Tn > c�(Tn)} ≥ 1− e−2(n−1)Hn−1(c−1−ln(c))/n

≥ 1− e−2(n−1) ln(n)(c−1−ln(c))/n.

Since c − 1 − ln(c) > 0 for all c ∈ [0, 1), the right-hand
side term of this inequality tends to 1 when n −→ ∞. Thus,
limn−→∞�{Tn > c�(Tn)} = 1 when c < 1.

 0.448

 0.4482

 0.4484

 0.4486

 0.4488

 0.449

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

n

P{Tn > E(Tn)}

(1-an)P{Tn > E(Tn)} + an P{Tn > E(Tn)+1}

P{Tn > E(Tn)+1}

Fig. 5. �{Tn > �(Tn)} as a function of n and its smoothing obtained
with an = �(Tn)− ��(Tn)�.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
ro

p
o

rt
io

n
 o

f
in

fo
rm

ed
 n

o
d

es

Parallel Time

n=103

n=104

n=105

n=106

Fig. 6. Simulation results for the proportion of informed nodes as a function
of parallel time

The results established previously don’t allow us to figure
out neither the existence of limn−→∞�{Tn > c�(Tn)} when
c = 1, nor its value. However, numerical results give us a
glimpse of its limiting behavior.

In Figure 5, we show the probability �{Tn > �(Tn)} for
different values of n. The oscillations of this probability with
n are due to the fact Tn is a discrete random variable and
�(Tn) is not an integer. That is why we propose in this figure
a smoothing of this probability using the sequence

sn = (1− an)�{Tn > �(Tn)}+ an�{Tn > �(Tn) + 1},
where an is the fractional part of �(Tn), that is an = �(Tn)−
��(Tn)	. Since an ∈ [0, 1], we have

�{Tn > �(Tn) + 1} ≤ sn ≤ �{Tn > �(Tn)},
that is why we also show in this figure the probability
�{Tn > �(Tn) + 1}. We also checked that the sequence
(sn) is increasing until n = 20000. This figure suggests the
following result proposed as a conjecture.

Conjecture : lim
n−→∞�{Tn > �(Tn)} exists and ≈ 0.4484.

Figure 6 shows the results obtained by simulation concern-
ing the proportion of nodes informed by rumor as a function of
the parallel time. Recall that the parallel time refers to as the
successive number of steps each node executes [5]. Initially, a

270

single node is informed of the rumor. This figure illustrates our
analysis. For instance, with probability almost 1 one thousand
nodes (resp. one million nodes) learn the rumor after no more
than 7 (resp 11) interactions for each of them. The complexity
in space (number of memory bits) is in O(1).

VI. CONCLUSION

In this paper we have provided a thorough analysis of
the rumor spreading time in the population protocol model.
Providing such a precise analysis is a step towards the design
of more complex functionality achieved by combining simple
population protocols [23], [3]. Indeed, an important feature
of population protocols is that they do not halt. Nodes can
never know whether their computation is completed and thus
nodes forever interact with their neighbors while their outputs
stabilize to the desired value (e.g. the maximal value of any
node of the network). By precisely characterizing, for each
protocol of interest, with any high probability, the number of
interactions each node must execute to converge to the desired
value, each node can on its own, decide the time from which
the current protocol has stabilized and start the parallel of
sequential executions of the next ones.

REFERENCES

[1] Huseyin Acan, Andrea Collevecchio, Abbas Mehrabian, and Wormald
Nick. On the push&pull protocol for rumour spreading. In Proceedings
of the ACM Symposium on Principles of Distributed Systems (PODC),
2015.

[2] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and
René Peralta. Computation in networks of passively mobile finite-state
sensors. Distributed Computing, 18(4):235–253, 2006.

[3] Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by
population protocols with a leader. Distributed Computing, 21(2):183–
199, 2008.

[4] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The
computational power of population protocols. Distributed Computing,
20(4):279–304, 2007.

[5] James Aspnes and Eric Ruppert. An introduction to population proto-
cols. Bulletin of the European Association for Theoretical Computer
Science, Distributed Computing Column, 93:98–117, 2007.

[6] Noam Berger, Christian Borgs, Jennifer T. Chayes, and Amin Saberi.
On the spread of viruses on the internet. In Proceedings of the Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2005.

[7] Marin Bertier, Yann Busnel, and Anne-Marie Kermarrec. On gossip
and populations. In Proceedings of the International Colloquium on
Structural Information and Communication Complexity (SIROCCO),
2009.

[8] Keren Censor-Hillel, Bernhard Haeupler, Jonathan Kelner, and Petar
Maymounkov. Global computation in a poorly connected world: Fast
rumor spreading with no dependence on conductance. In Proceedings
of the Annual ACM Symposium on Theory of Computing (STOC), 2012.

[9] Flavio Chierichetti, Silvio Lattanzi, and Alessandro Panconesi. Ru-
mor spreading in social networks. Theoretical Computer Science,
412(24):2602–2610, 2011.

[10] Andrea Clementi, Pierluigi Crescenzi, Carola Doerr, Pierre Fraigniaud,
Francesco Pasquale, and Riccardo Silvestri. Rumor spreading in random
evolving graphs. Random structures and Algorithms, 48(2):290–312,
2015.

[11] Sebastian Daum, Fabian Kuhn, and Yannic Maus. Rumor spreading
with bounded indegree. In Proceedings of the International Colloquium
on Structural Information and Communication Complexity (SIROCCO),
2016.

[12] Alan Demers, Mark Gealy, Dan Greene, Carl Hauser, Wes Irish, John
Larson, Scott Shenker, Howard Sturgis, Dand Swinehart, and Doug
Terry. Epidemic algorithms for replicated datbase maintenance. In
Proceedings of the ACM Syposium on Principles of Distributed Systems
(PODC), 1987.

[13] Uriel Feige, David Peleg, Prabhakar Raghavan, and Eli Upfal. Ran-
domized broadcast in networks. Random Structures and Algorithms,
1(4):447–460, 1990.

[14] Nicolaos Fountoulakis and Konstantinos Panagiotou. Rumor spreading
on random regular graphs and expanders. Random Structures and
Algorithms, 43(2):201–220, 2013.

[15] Nicolaos Fountoulakis, Konstantinos Panagiotou, and Thomas Sauer-
wald. Ultra-fast rumor spreading in social networks. In Proceedings of
the Symposium on Discrete Algorithms (SODA), 2012.

[16] Alan Frieze and Geoffrey Grimmet. The shortest-path problem for
graphs with random arc-lengths. Discrete Applied Mathematics,
10(1):57–77, 85.

[17] George Giakkoupis. Tight bounds for rumor spreading in graphs of a
given conductance. In Proceedings of the International Symposium on
Theoretical Aspects of Computer Science (STACS), 2011.

[18] George Giakkoupis. Tight bounds for rumor spreading with vertex
expansion. In Proceedings of the Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2014.

[19] Mor Harchol-Balter, Tom Leighton, and Daniel Lewin. Resource
discovery in distributed networks. In Proceedings of the ACM Syposium
on Principles of Distributed Systems (PODC), 1999.

[20] Svante Janson. Tail bounds for sums of geomet-
ric and exponential variables. Technical report.
http://www2.math.uu.se/˜svante/papers/sjN14.pdf

[21] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. Randomized
rumor spreading. In Proceedings of the Annual Symposium on Foun-
dations of Computer Science (FOCS), 2000.

[22] David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based
computation of aggregate information. In Proceedings of the Annual
IEEE Symposium on Foundations of Computer Science (FOCS), 2003.

[23] Othon Michail and Paul Spirakis. Terminating population protocols via
some minimal global knowledge assumptions. Journal of Parallel and
Distributed Computing, 81:1–10, 2015.

[24] Yves Mocquard, Bruno Sericola, Samantha Robert, and Emmanuelle
Anceaume. Analysis of the Propagation Time of a Rumour
in Large-scale Distributed Systems. Technical report, 2016.
https://hal.archives-ouvertes.fr/hal-01354815

[25] Konstantinos Panagiotou, Xavier Perez-Gimenez, Thomas Sauerwald,
and Hé Sun. Randomized rumor spreading: the effect of the network
topology. Combinatorics, Probability and Computing, 24(2):457–479,
2015.

[26] Konstantinos Panagiotou and Leo Speidel. Asynchronous rumor spread-
ing on random graphs. Algorithmica, 2016.

[27] Bruno Sericola. Markov Chains. Theory, Algorithms and Applications.
Applied stochastic methods series. WILEY, 2013.

[28] Boyd Stephen, Ghosh Arpita, Prabhakar Balaji, and Shah Devavrat.
Randomized gossip algorithms. IEEE/ACM Transactions on Network-
ing, 14:2508–2530, 2006.

271

Cost Sensitive Moving Target Consensus

Sisi Duan
Oak Ridge National Laboratory

Email: duans@ornl.gov

Yun Li
University of California, Davis

Email: yunli@ucdavis.edu

Karl Levitt
University of California, Davis

Email: levitt@cs.ucdavis.edu

Abstract—Consensus is a fundamental approach to imple-
menting fault-tolerant services through replication. It is well
known that there exists a tradeoff between the cost and the
resilience. For instance, Crash Fault Tolerant (CFT) protocols
have a low cost but can only handle crash failures while Byzantine
Fault Tolerant (BFT) protocols handle arbitrary failures but
have a higher cost. Hybrid protocols enjoy the benefits of both
high performance without failures and high resiliency under
failures by switching among different subprotocols. However, it
is challenging to determine which subprotocols should be used.
We propose a moving target approach to switch among protocols
according to the existing system and network vulnerability. At
the core of our approach is a formalized cost model that evaluates
the vulnerability and performance of consensus protocols based
on real-time Intrusion Detection System (IDS) signals. Based on
the evaluation results, we demonstrate that a safe, cheap, and
unpredictable protocol is always used and a high IDS error rate
can be tolerated.

Index Terms—Consensus, state machine replication, crash fault
tolerance, Byzantine fault tolerance, moving target defense.

I. INTRODUCTION

Consensus is a generic technique that implements fault-

tolerant services through replication. It is critical to achieve

both reliability and availability in various online services and

cloud computing applications, including Google’s Chubby [6],

Amazon Web Services [1], and VMware’s vSphere [2, 3].

Depending on the types of failures we aim to tolerate, various

protocols are designed with different security guarantees and

performance characteristics. It is in general known that there

exists a tradeoff between the resiliency and the cost of the

consensus protocols. Namely, a low cost protocol with low

redundancy and high performance can only handle limited

types of failures. For instance, Crash Fault Tolerant (CFT)

protocols are less redundant but can only tolerate crash fail-

ures. In comparison, Byzantine Fault Tolerant (BFT) protocols

handle arbitrary failures but are very expensive, which may be

an overkill to use most of the time.
Several approaches have been proposed to switch among

different protocols depending on an estimation of failures in

the system [16, 20, 23, 37], which enjoy the benefits of both

high performance in the normal cases and high resiliency

under failures. However, there still exist some issues when

handling a wide range of failures. First, most approaches em-

ploy two subprotocols. Therefore, there is usually an obvious

performance degradation even when it is not necessary to use

a high cost protocol. Second, if we employ more than two

subprotocols to not suffer from large performance degradation,

it is hard to determine which one should be used according to

existing system and network vulnerability. Third, the switching

of protocols is usually deterministic and predictable, which

makes the system more vulnerable since the attackers have

enough time to collect protocol information, prepare, and

complete an attack.

In this paper, we propose a cost sensitive approach moti-

vated by Moving Target Defense (MTD) to build a resilient

consensus model that handles various types of failures accord-

ing to system and network vulnerability. At the core of our idea

is a formalized cost model that evaluates the vulnerability and

performance of leader-based state machine replicated fault-

tolerant consensus protocols. We use damage cost to represent

the vulnerability of the protocols and operational cost to

evaluate the running cost. The input of the cost model is

a set of probabilities from IDS, each of which represents

the certainty of a replica being normal, crash, or Byzantine.

We view the IDS as an oracle that provides the probabilities

periodically. The underlying idea is that if the IDS can provide

a rough reference about which replica(s) might be faulty

without actively participating the protocols, we will be able

to use a protocol that causes the lowest damage to the system

while achieving high performance.

Due to the use of our approach, a protocol that is safe,

cheap, and unpredictable is always used. According to the

cost model, we select a cluster of protocols with low cost

according to existing system vulnerability. By switching pro-

tocols randomly among the cluster, an unpredictable protocol

is always used. In addition, the formalized cost model can also

be viewed as a theoretical model to analyze the consensus

protocols. We illustrate our cost model with 8 consensus

protocols and our evaluation results show that the selection of

the protocols naturally follows the properties of the protocols.

In addition, we handle crashing IDS through the use of a fail-

safe protocol and we also show in the evaluation that our

approach tolerates a high error rate for the IDS.

The contributions of the paper are summarized as follows.

(1) We propose a formalized cost model to evaluate the

vulnerability and performance of consensus protocols based

on real-time IDS signals, which can also be viewed as a

theoretical analysis model (§IV); (2) We illustrate our cost

model using 8 different consensus protocols (§V); (3) Based

on the cost model, we present a moving target consensus

approach to select a cluster of safe, cheap, and unpredictable

protocols (§VI); (4) Our evaluation results show that a cluster

of both safe and fast protocols is always selected. In addition,978-1-5090-3216-7/16/31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

272

we tolerate a high IDS error rate and also handle the case

where the IDS crashes (§VII).

II. RELATED WORK

Most consensus protocols proceed in rounds [3, 7, 9, 13, 16,

23, 24, 35]. A number of approaches rely on (small) trusted

components to prevent equivocation and handle Byzantine

failures using fewer than 3f + 1 replicas [8, 12, 20]. For

instance, ByzID [12] relies on specification-based IDS [22]

to passively monitor the consistency of the messages. We also

rely on a trusted IDS that may fail by crashing. In contrast, we

employ the IDS to evaluate the vulnerability of the replicas

from the network and view it as an oracle.

A number of previous efforts have been made to evaluate

distributed algorithms [21, 34]. We use similar measures to

evaluate operational cost. In addition, we also include damage

cost to evaluate the vulnerability of the system.

The cost factors and cost model have previously been

proposed and their definitions are usually subjective to the

specific problems [29]. Lee et al. [25] discuss cost factors

related to intrusion detection: damage cost, response cost,

and operational cost. They assign values empirically to cost

factors based on the IDS results and improve the model by

reducing some of the cost factors. We use similar terms but

with different definitions for consensus protocols.

MTD has been applied to various of areas such as cyber

security [18] and mobile wireless networks [15, 33] using tech-

niques such as randomization [19]. In order to take advantage

of cost-sensitive model as well as randomization, we do not

always choose the minimum-cost solutions [25, 32] but take

into concerns of both vulnerability and running cost. Turtle

consensus [28] uses a MTD approach that switches between

CFT protocol in each round to handle DoS failures but the

switching of protocols is deterministic. In comparison, our

paper considers a wide range of failures.

III. PRELIMINARIES

In this section, we introduce the system model, our IDS

model, and the background of consensus protocols.

A. System Model

We consider a distributed system with n replicas P =
{p0, p1, · · · pn−1}. Each replica can be viewed as a state

machine following some protocol, where a protocol specifies

the communication between replicas. We distinguish the types

T of correctness for each replica: correct, crash, or Byzantine.

A correct node faithfully follows the corresponding protocol.

Faulty replicas may fail by crashing (stop executing the

protocol) or be Byzantine (behave arbitrarily). The Byzantine

failures we aim to handle are mainly caused by adversary

attacks from the network. We assume fair-loss links, where if

a message is sent infinitely often by a correct replica, a correct

receiver will receive the message infinitely often. Liveness is

ensured under partial synchrony [14]: synchrony holds after

some unknown global stabilization time.

B. IDS Model for Moving Target Defense

An Intrusion Detection System (IDS) monitors the cor-

rectness of each replica pi (near) real-time, which can fail

by crashing. It monitors the host and network devices and

detects events that could indicate an ongoing attack [11, 22,

27]. We view the IDS as an oracle that outputs a set of

signals (N,C,A) with three probabilities Pi,N , Pi,C , and Pi,A.

The three signals represent replica pi being Normal (correct),

Crashed, or under Attack (Byzantine). The three probabilities

represent the confidence of each signal, which are refreshed

periodically. The value of Pi,A is set to 0 initially or after

recovery. The IDS also evaluates the cost using our cost

model and notifies the replicas the protocol to run. There are

several ways to deploy the IDS. For example, we can deploy

a network-based IDS over a LAN with a passive architecture.

In a passive architecture, it monitors a copy of actual network

traffic while no traffic passes through the sensor [30].

C. Consensus Protocols

Consensus protocols tolerate a certain number of failures

through the use of redundant replicas. Correctness includes

safety and liveness. Safety guarantees that all the correct

replicas decide on the same value and liveness guarantees that

all the correct replicas eventually decide. In order to handle f
failures, different protocols may vary significantly regarding

the minimum number of replicas. We specify three types of

protocols: C-1 represents CFT protocols that require at least

f + 1 replicas where safety may not be guaranteed, C-2
denotes CFT protocols that require at least 2f + 1 replicas,

and B-1 represents BFT protocols that require at least 3f +1
replicas. Without loss of generality, for each protocol that

requires at least n replicas, we assume there are n replicas.

When each protocol is run, safety of the protocol is guaranteed

only when the number of corresponding T failures does not

exceed f . Although replicas may be temporarily inconsistent,

they can be consistent after switching to another protocol in

our approach.

We consider leader-based consensus protocols that operate

in rounds, where in each normal round a client request is

received by replicas, assigned with a sequence number by the

leader, agreed by the replicas, executed, and eventually the

result is received by the client. The leader is also called the

primary, which initializes each round. We assume by default

the primary is p0. Other nodes are called backups or backup
nodes. Each protocol consists of several phases, where in each

phase each replica receives and authenticates certain number

of messages and sends messages to some replica(s).

We consider two classes of protocols: broadcast-based
and chain-based [13, 35]. Among broadcast-based protocols,

we further distinguish primary-backup approaches [5, 10, 17],

where primary can communicate with backups but backups do

not communicate with each other. In comparison, in regular

broadcast-based approaches [7, 20, 23, 24], replicas are fully

connected. In contrast, chain-based protocols organize replicas

into a logical chain and the head is considered the primary.

273

Most protocols have view change scheme where a backup

node takes over when existing primary is faulty. Some pro-

tocols have reconfiguration scheme to replace some faulty

replicas. Protocols may use MACs or digital signatures for

authentication. Unless otherwise mentioned, we assume MACs

are used. Every protocol has a checkpoint scheme, where a

replica periodically generates a snapshot of its state, signs a

checkpoint message, and sends to other replicas. After the

checkpoint becomes stable, previous messages are discarded.

IV. COST MODEL

In this section, we formalize the measurement of the costs

based on notations in TABLE I. Cost evaluation plays a very

important role in our approach to select protocols. Therefore,

to precisely evaluate cost factors and select appropriate pro-

tocols, we aim at cost metrics that follow these principles: 1)

Cost metrics should be measured consistently [26]. 2) Source

data should be cheap to gather in terms of time or money.

Based on our formalized cost model, the cost can be easily

calculated according to the IDS signals. 3) Cost metrics should

be evaluated to a value with an associated unit of measures

that characterize the value. We define damage cost as the

number of lost or delayed requests, and operational cost as

the time of running a normal round of the protocols. The

cost factors considered here are standard quantities that all

consensus protocols can adopt to perform the cost analysis.

Notation Meaning

Pi,N The probability replica pi is Normal/correct.

Pi,C The probability replica pi has Crashed.

Pi,A The probability replica pi is being Attacked/Byzantine.

t0 Transmission time between two replicas.

tc Transmission time between client and a replica.

t1 The time it takes for an IDS to report a crash or an attack.

Tm, Td The time it takes to verify or generate a MAC/digital signature.

TV The time it takes for replicas to move to a new view.

TR The time it takes for recovery/reconfiguration.

λ The number of requests in each checkpoint.

δ Number of incoming requests per second.

Δ Number of incoming requests since last checkpoint.

TABLE I
NOTATIONS.

Damage Cost (CD). The damage cost evaluates the vulnera-

bility of the protocol. We measure it as the sum of expected

number of requests that will be lost or delayed due to the

faulty replicas, as shown in Equ. (1). The input is a set of

probabilities Pi,N , Pi,C , and Pi,A for i = 0, · · · , n − 1. The

Ri,c and Ri,A are fixed values that denote the number of

requests that may be lost or delayed due to the failure of

the replica pi being T type where T = C or A. When we

consider the cost for each individual replica pi, we assume pi
is faulty and the number of T faulty replicas in P does not

exceed f .

CD =

n−1∑
i=0

(Ri,CPi,C + Ri,APi,A) (1)

The values for Ri,C and Ri,A depend on the identity of

replica pi and the protocol, as summarized below.

The primary crashes. For protocols that have view changes and

TV < t1, the incoming requests during TV time are lost since

nodes cannot process any other requests, i.e., R0,C = TV δ.
Otherwise, all the requests since the failure of the primary

will be lost, i.e., R0,C = t1δ. For simplicity, we only include

the case where TV < t1.

The primary is Byzantine. We assume that the last checkpoint

is stable for all the replicas. For CFT protocols with arbi-

trary failures, all the requests since the last checkpoint are

considered lost since there is no guarantee of the safety of

the protocol. Therefore, R0,A = Δ. In comparison, the BFT

approaches handle this case through view changes. Therefore,

the cost is the same with the previous case, i.e., R0,A = TV δ.

A backup node crashes. All the broadcast-based protocols

naturally handle the crash of backup nodes, i.e., there is

no cost for this case. However, chain-based protocols suffer

from backup failures. For instance, Chain [35] reconfigures

faulty replicas. Therefore, requests during reconfiguration are

delayed, i.e., Ri,C = TRδ.

A backup node is Byzantine. The correctness of the protocols is

closely related to the primary. In C-1 protocols, the requests

since last checkpoint will be lost, i.e., Ri,A = Δ. This is

because the case is indistinguishable from the case where the

primary is Byzantine. In contrast, in a broadcast-based C-2
protocol, correct replicas are still consistent if the primary is

correct. This is because the primary always sends consistent

messages to the replicas. On the other hand, most broadcast-

based BFT protocols handle backup failures. An exception

happens to protocols like Zyzzyva [23] since it employs two

subprotocols. Also, similar to the previous case, chain-based

protocols also suffer from backup failures.

Operational Cost (CO). The operational cost evaluates the

cost to run the protocols. We present two types, latency (CO,L)

and throughput (CO,T), and both are evaluated in terms of

time according to similar metrics of previous work [34]. The

smaller the latency CO,L, the smaller the throughput CO,T ,

and the larger the actual throughput will be. In addition,

if the checkpoint is not required frequently, the cost of the

checkpoint is not included in the operational cost.

Latency CO,L. The latency cost is measured as the time

of a consensus round starting from the leader receiving the

request to the end of the round of agreement. It includes the

transmission time and the time for authentication. CO,L is

computed according to the following equation.

CO,L =

#phases∑
j=1

(nj,cTm + t0 + nj,1Tm + nj,2Tm) + ε (2)

In the above equation, nj,c is the number of MACs the

replica pj needs to verify and generate for the client, nj,1 is

the minimum number of MACs pj needs to authenticate in

each phase, and nj,2 is the number of MACs each replica

needs to generate in each phase. The cost is measured for

the normal case when there is no message congestion. Notice

that, although in broadcast-based protocols, all the replicas

need to run the same steps, they run concurrently. Therefore,

we measure the cost for each phase as the cost of a single

274

replica if all the replicas execute the same step. The total cost

will be the sum of cost for each phase. We also include a

variable ε, which includes the cost caused by switching to the

new protocol, e.g. physical cost of starting a new replica. For

simplicity, we do not include it in the examples in §V.

Throughput CO,T . CO,T evaluates the time for authenticating

and generating MACs or digital signatures of the bottleneck

node. This is due to the fact that the bottleneck replica can

continue processing new messages before a consensus round

completes. Therefore, the transmission time is not included.

CO,T =

#phases∑
j=1

(nj,cTm + nj,1Tm + nj,2Tm) (3)

V. CONSENSUS COST

We introduce the costs of 8 protocols to illustrate our

cost model, with both CFT protocols and BFT protocols.

Specifically, we survey the cost of two C-1 protocols, Remus

and Semi-Active, which can guarantee safety only when all

the replicas are correct. We also include two C-2 protocols,

Paxos and Chain, which are the state-of-the-art CFT protocols.

Finally, we present four BFT protocols, Aliph-Chain, BChain,

PBFT, and Zyzzyva, which have different performance char-

acteristics and are perfect for case study. In this section, we

first briefly introduce the protocols and then show their cost

using the notations in TABLE I.

Remus [9]: A primary-backup C-1 approach where the

backups periodically obtain checkpoints from the primary to

maintain the latest state. It can also be viewed as a semi-

passive approach [10]. In the presence of failures, the requests

since last one or two checkpoints will be lost depending on

the time IDS detects the failure. Namely, if t1δ is greater than

λ, a node has already been faulty the last stable checkpoint.

Therefore, two checkpoints will be lost. Otherwise, only one

checkpoint will be lost.

CD =

⎧⎪⎪⎨
⎪⎪⎩

2λP0,C + ΔP0,A +
f∑

i=1
ΔPi,A if t1δ > λ

λP0,C + ΔP0,A +
f∑

i=1
ΔPi,A otherwise

(4)

CO,L = CO,T =
2λTm + Td

λ
(5)

Semi-Active [3]: A primary-backup C-1 approach where the

primary notifies the backups each incoming request so that all

the replicas execute them directly. Since backup nodes receive

all the requests from the primary, only those requests during

view changes will be lost, i.e., TV δ.

CD = TV δP0,C + ΔP0,A +

f∑
i=1

ΔPi,A (6)

CO,L = CO,T = (2 + f)Tm (7)

Paxos [24]: A broadcast-based C-2 approach with two phases:

the leader first notifies the backups of the incoming request;

each replica sends a message to all other replicas. If a replica

collects at least f + 1 matching messages, it executes the

request and sends a reply to the client.
CD = TV δP0,C + ΔP0,A (8)

CO,L = (5f + 3)Tm + 2t0 (9)

CO,T = (3f + 2)Tm (10)

Chain [35]: A chain-based CFT approach. The head receives

a request from a client and then sends along the chain towards

the tail and the tail replies to the client. When a replica crashes,

a non-faulty master node reconfigures the chain. When a node

fails, all the request during reconfiguration will be lost.

CD = TRδP0,C + ΔP0,A +

2f∑
i=1

TRδ(Pi,C + Pi,A) (11)

CO,L = 2(2f + 1)Tm + 2ft0 (12)

CO,T = 2Tm (13)

Aliph-Chain [16]: A chain-based BFT approach. Each replica

needs to verify MACs from at most f + 1 previous replicas

and also append MACs for up to f + 1 subsequent replicas

or the clients. The client accepts the reply message when it

receives a message from the tail with f+1 valid MACs. In the

equations, function F (i) represents the latency up to replica

pi.

CD = t1δ(P0,C + P0,A) +

3f∑
i=1

(t1 + F (i))δ(Pi,C + Pi,A) (14)

CO,L=

f−1∑
i=0

(f+i+2)Tm+

2f−1∑
i=f

(2f+2)Tm+

3f∑
i=2f

(4f−i+2)Tm+3ft0

(15)

CO,T = (2f + 2)Tm (16)

BChain [13]: A chain-based BFT approach. Being different

from Chain and Aliph-Chain, only the first 2f + 1 replicas

form a chain and the last f replicas serve as backups which

are reconfigured periodically and the message is sent from the

head to the (2f + 1)th replica. It uses similar authentication

scheme with Aliph-Chain. All the first 2f + 1 replicas notify

the rest f replicas the execution order so that they are also

up-to-date. When failures occur, the chain is reordered by the

head with at most f rounds of reconfigurations.

CD = TV δ(P0,C + P0,A) +

2f∑
i=1

TRδPi,C + 3fTRδ

2f∑
i=1

Pi,A (17)

CO,L =

f−1∑
i=0

(2f + 2i+ 3)Tm +

2f∑
i=f

(6f − 2i+ 3)Tm + 4ft0 (18)

CO,T = (4f + 3)Tm (19)

PBFT [7]: A leader-based BFT approach with three phases: in

the first phase the leader notifies the replicas of the incoming

request; replicas exchange their messages until each correct

replica collects at least 2f+1 matching messages in the second

and third phase. Replicas then reply to the clients.
CD = TV δ(P0,C + P0,A) (20)

CO,L = (13f + 3)Tm + 3t0 (21)

CO,T = (10f + 2)Tm (22)

Zyzzyva [23]: A leader-based BFT approach where clients

participate. The leader first notifies the replicas and the replicas

directly send a reply to the client. If the client receives

matching replies from all the replicas, it accepts the message.

If it receives at least 2f +1 matching messages, it sends them

to all the replicas. The replicas then commit the request.

CD = TV δ(P0,C + P0,A) +

3f∑
i=1

(
t1

(25)(a)
− t1

(25)(b)
)(Pi,C + Pi,A) (23)

CO,L =

{
(6f + 3)Tm + t0 if 3f + 1 matching
(10f + 5)Tm + t0 + 2tc if 2f + 1 matching

(24)

CO,T =

{
(6f + 2)Tm if 3f + 1 matching (a)
(8f + 3)Tm if 2f + 1 matching (b)

(25)

275

VI. A MOVING TARGET CONSENSUS APPROACH

In this section, we first briefly overview our approach and

introduce the procedures for switching protocols. Then we

show our moving target algorithm for selecting protocols in

details. Finally, we show the lower bound for the IDS values

and discuss the case when IDS crashes.

Overview of the Protocol. We illustrate our approach in

Fig. 1. It contains three components: the IDS, a set of available

consensus protocols, and a set of replicas. The IDS monitors

the correctness of the replicas and periodically evaluates the

costs of the protocols based on the Moving Target Algorithm.

It selects a protocol and sends configuration messages to the

replicas. Namely, by default a cluster of protocols is selected

and a random one is used periodically on a set of replicas P . If

the damage cost of existing protocol is higher than a threshold,

the IDS selects a new cluster of protocols. The IDS can also

select a set of new replicas P ′ according to the correctness of

the replicas. After receiving the configuration message from

the IDS, the replicas switch to the new protocol following the

procedures in Moving Target Consensus.

The underlying idea is that given the IDS indication of

failures of some replicas, running the same protocol may cause

a large number of lost or delayed requests. If the damage is

higher than expected, we should select a set of protocols that

causes lower damage while still achieving good performance.

The cost model provides the flexibility of selecting the right

protocols according to both network and system vulnerability

and user requirements.

Pi,C
Pi,N

MTD
Alg

A

IDS

default

π.CD >S

π.CD >S′

Cluster 1
1 2

3 4

Cluster 2
5 6

7

Cluster 3 8 9

P P ′

P P ′

P P ′

Fig. 1. Moving Target Consensus

Moving Target Consensus. We assume existing protocol π
is run on a set of replicas P . Replicas periodically generate

checkpoints and authenticate them using digital signatures. In

addition to the regular checkpoint steps of the protocols, if

π is a C-1 protocol, we let the replicas also forward their

checkpoint messages to the IDS.

The IDS updates the costs for all the protocols and sends a

configuration message to the replicas periodically. A config-

uration message includes a protocol π′, a set of replicas P ′,
and the id of a default primary. A protocol π′ is randomly

selected 1) periodically in the same cluster of π, or 2) when

the damage cost of π is higher than the threshold S. In the

latter case, a new cluster is selected and a random one is used,

as we will discuss in Algorithm 1. All the replicas in both P
and P ′ also forward the configuration message to each other

to guarantee that the configuration is learned.

If P ′ is a subset of P , the leader in P ′ initializes protocol
π′ (more details later) and replicas start executing the pro-

tocol. Otherwise, replicas need to first obtain the last stable
checkpoint and then the new primary initializes π′.

There are two cases for replicas to obtain the last stable

checkpoint. If π is a C-1 protocol, the replicas in P ′ obtain

a stable checkpoint directly from the IDS. In all other cases,

replicas in P ′ need to obtain checkpoints from P . Namely,

after receiving a configuration message from the IDS, replicas

in both P ′ and P send checkpoints to each other. In a

checkpoint, with a sequence number greater than the last stable

checkpoint, a replica includes all the committed requests in O
and all the accepted but uncommitted requests in U . For C-1

protocols and Aliph-Chain, all the requests are included in U .

For C-2 protocols, if a replica receives matching message from

2f+1 replicas during protocol π, the request is included in O
and other requests are included in U . For B-1 protocols besides

Aliph-Chain, each replica includes the committed requests

according to the protocols, e.g., a valid ack in BChain, etc. If

the new primary receives matching checkpoints from at least

f + 1 replicas, it starts π′.
In order to initialize π′, the primary selects the last stable

checkpoint and uses the state and sequence number l. The

primary then determines L where l+L is the largest sequence

number found in O and U . For each sequence number, the new

primary selects a request M if at least f + 1 replicas include

M in O or at least 2f +1 replicas include M in U (or f +1
for C-1 protocols). It then sends a message to all the replicas

in P ′. The message includes the last stable checkpoint and a

set of selected requests. After receiving the message, replicas

process the requests according to π′.
We show in Theorem 1 the switching of protocols is both

safe and live. We include the proofs for all the theorems in

the Appendix.
Theorem 1. Let protocol π on a set of replicas P be switched
to protocol π′ on a set of replicas P ′. If π′ tolerates failures
with type T and there are fewer than f T failures in both π
and π′, the switching of protocols is both safe and live.
The Moving Target Algorithm. The underlying idea of

out algorithm for selecting protocols is that based on the

IDS signals, we evaluate the cost of the existing protocol.

If the existing protocol is considered vulnerable regarding a

threshold S, we select a new cluster of protocols that is safe

and cheap. As shown in Algorithm 1, A represents all the

available protocols we can use, which initially includes all

the protocols. The function top(x,B.y) selects the xth largest

value according to the y value in set B. We set up the threshold

S to be the σ|A|th largest of the damage cost for protocols

in A where σ ∈ (0, 1). When the damage cost of existing

protocol is higher than S, indicating that existing protocol may

cause larger damage than expected, we start selecting a new

cluster. We first filter all the protocols with higher damage

cost from A. Then we select protocols with operational cost

smaller than the θ|A|th protocol according to the operational

cost, where θ ∈ (0, 1). Finally, we do an optional step among

protocols in R to further filter protocols with outstanding

276

damage cost. Namely, we set up another threshold Λ for

damage cost and filter the protocols with damage cost higher

than h + Λ where h represents the lowest damage cost for

protocols in R.

Algorithm 1 The Moving Target Algorithm

S ← top(σ|A|,A.CD)
if π.CD > S then {Damage cost of existing protocol is high}

A ← A.CD < S {Remove protocols with high damage cost}
O ← top(θ|A|,A.CO,L)
R ← A.CO,L < O {Select protocols with low operational cost}
h ← top(|R|,R.CD)

C ← R.CD < h+ Λ {Remove protocols with outstanding cost}

Notice that we use three parameters: σ, θ, and Λ. σ is used

for threshold S in order to determine whether the damage

cost of existing protocol is higher than a portion of protocols

in A. Similarly, θ is a threshold that is used to select a set of

protocols in A with the lowest operational cost. It is important

to select protocols with the similar performance given the

damage cost is lower than S. Lastly, Λ is an optional threshold

that is used to further choose protocols with low damage cost

based on the previous selection. The values of σ and θ can be

set up according to the requirement. However, the value of Λ
is important to guarantee that we select the right protocols. As

shown in Theorem 2, it is also related to the P values from

IDS.

Theorem 2. Let Ω be the damage cost caused by backups for
BFT protocols and Λ be the threshold for selecting a cluster.
In order for the approach to be safe, the following requirement
for IDS holds, wheremin(Ω) represents the BFT protocol with
minimum damage cost caused by all the backups.

P0,A >
Λ +min(Ω)

Δ + TV δ
(26)

Dealing with Crashing IDS. The IDS generates configuration

messages periodically. In order to handle the case where

IDS crashes, each replica starts a timer after receiving a

configuration message and waits for the next configuration

message. If the replica does not receive any configuration

message before its timer expires, it sends a [cids] message

to other replicas. If a replica receives more than f + 1 [cids]
messages, it also sends a [cids] messages to other replicas. All

the replicas then learn that the IDS has crashed. Then replicas

switch to a default fail-safe protocol, in our case PBFT. This

is due to the fact that PBFT, in general, has the lowest damage

cost among all the protocols we use. This guarantees that

the protocol is still safe when IDS crashes. Notice that C-1
protocols require only f + 1 replicas. In this case, the failure

of IDS can only be detected if all the replicas are correct.

MTD Entropy. Based on Shannon’s information entropy [31],

MTD entropy is formalized to evaluate the randomness and

effectiveness of the MTD model [36]. Specifically, the greater

the entropy of the configuration of an MTD system, the more

effective the approach is to prevent future attacks. We show

the entropy of our approach in Theorem 3.

Theorem 3. Let A = {π1, π2, · · · , πm} represent the m
protocols we can use. H(A) represents the MTD entropy,
which can be denoted as:

H(A) = H(π1, π2, · · · , πm) =

m∑
i=1

p(πi)log(p(πi)) (27)

p(πi) represents the possibility πi is selected:
p(πi) =

1

σ|A| (28)

Given that Λ is large enough, after selecting a cluster, the
probability of each protocol being used is:

p(πi) =
1

(1 − θ)(1 − σ)|A| (29)

Based on this theorem, if the switching of protocols is

deterministic, the entropy is 0 since the probability of each

protocol is 1. In comparison, in our example, |A| = 8 and let

σ = Λ = 0.2, the entropy for our approach is 8.68 initially

and 96.51 after switching. If we simply switch among all the

8 protocols, the entropy is 192.00. We conclude that due to the

unpredictability of our approach, we can also prevent further

attacks using the randomization method. If there are more

protocols in the same cluster, the effectiveness can be further

increased.

VII. EVALUATION

In this section, we show the evaluation of the effectiveness

of our cost model in selecting protocols and the IDS error rate

our approach can handle.

Setting λ Tm Td TR/TV t1/t0/tc δ Δ P

1 10 0.5 1.0 0.5 1.0 10 15 0.001

2 10 0.5 1.0 0.5 5.0 10 60 0.01

3 10 0.5 1.0 0.1 1.0 10 20 0.01

4 10 0.5 1.0 0.1 10.0 10 105 0.1

TABLE II
EXPERIMENT SETTINGS. Tm , Td , TR , TV , t1 ,t0 , AND tc ARE MEASURED

IN MS. P IS THE DEFAULT VALUE OF THE REPLICAS UNLESS SPECIFIED.

Implementation and Settings. The implementation of the

protocols is based on Castro et al.’s implementation of PBFT.

We evaluate throughput under failures based on our cost model

using 0/0 benchmark, where the clients issue 0kB request and

receive 0kB replies. We test the throughput to demonstrate the

effectiveness of our cost model. Experiments are carried out on

DeterLab [4], utilizing a cluster of up to 20 identical machines

connected through a 100 Mbps switched LAN. Each machine

is equipped with a 3 GHz Xeon processor and 2 GB of RAM.

We use several parameters in our cost model. Among them,

the P values are the output of the IDS. The values of δ,
λ, and Δ are all fixed or preset. In comparison, the values

of t0, t1, Tm, TV , and TR can be obtained through testing.

Although the values can be different for different protocols

or even for different rounds of each protocol, we can still

test them and use average values to measure the cost. For

instance, we measure t0 as the half of the average round trip

transmission time between any two correct nodes.

Additionally, we use IDS as an oracle in our cost model. We

assign different values to assess our cost model. We evaluate

our cost model using 4 settings, as shown in TABLE II, where

P represents the default values unless specified.

277

CO,L

CD

SA, Remus, Paxos, Chain

Aliph-Chain

BChain,PBFT,Z

(a) P0,A = 0.9.

CO,L

CD

Remus

Aliph-Chain

SA,Paxos,Chain,Z-1

BChain,PBFT,Z-2

(b) P0,C = 0.9.

CO,L

CD

Remus,SA

Paxos,Chain,Z-1

Aliph-Chain

BChain

PBFT,Z-2

(c) P1,A = 0.9.

CO,L

CD

Aliph-Chain

SA,Remus,Chain

Paxos,Z-1

BChain, PBFT, Z-2

(d) P1,C = 0.9.

Fig. 2. Damage cost (CD) vs. Operational Cost - Latency (CO,L) under setting 1 and f = 1. SA, Z, Z-1, Z-2 represent Semi-Active, Zyzzyva, Zyzzyva
with normal run, and Zyzzyva when at least one backup node fails, respectively.

CO,T

CD

SA, Remus, Paxos, Chain, Aliph-Chain

BChain, Z-1

Z-2, PBFT

(a) P0,A = 0.9.

CO,T

CD

Remus

Aliph-Chain

SA,Paxos,Chain

BChain,PBFT,Z

(b) P0,C = 0.9.

CO,T

CD

Paxos,BChain

Remus,SA,Chain

Aliph-Chain

PBFT,Z

(c) P1,A = 0.9.

CO,T

CD

Aliph-Chain

Remus,SA,Chain,Paxos,PBFT

Z-1,BChain

Z-2

(d) P1,C = 0.9.

Fig. 3. Damage cost (CD) vs. Operational Cost -Throughput (CO,T) under setting 1 and f = 1.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.60
5
10
15
20
25
30
35
40
45
50
55
60
65
70

time(s)

T
h

ro
u

g
h

p
u

t
(K

o
p

s/
se

c)

Semi-Active
Paxos

Zyzzyva
Remus
PBFT

(a) Throughput under setting 1 with
f = 2 and 10 clients. Protocols are
not switched periodically in the same
cluster.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.60
5
10
15
20
25
30
35
40
45
50
55
60
65
70

time(s)

T
h

ro
u

g
h

p
u

t
(K

o
p

s/
se

c)

SA/Remus
Paxos/Chain

Zyzzyva-2/PBFT/BChain

(b) Throughput under setting 1 with
f = 2 and 10 clients. Protocols are
switched in the same cluster every 0.2
ms.

1 2 3 4 5 6 7 8 9 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f

P
i,
A

v
al

u
e

Setting 1 - BChain
Setting 2 - BChain
Setting 3 - BChain
Setting 4 - BChain
Setting 2 - Zyzzyva
Setting 3 - Zyzzyva
Setting 4 - Zyzzyva

(c) Minimum requirement for P0,A

between Paxos and BChain or Zyzzyva
under different settings.

CO,L

CD

Paxos,Z-2,PBFT

SA, Remus, Chain

Aliph-Chain, BChain

Z-1

(d) CD vs. CO,L. Setting 1 with f =
2 and P0,A = P1,A = P2,A =
P0,C = P1,C = P2,C = 0..9.

Fig. 4. Evaluation of the cost model and the protocol.

Selection of Protocols. We first evaluate the effectiveness of

our cost model in selecting the “right” cluster of protocols, as

shown in Fig. 2 and Fig. 3 under setting 1 and f = 1. In each

experiment, the IDS reports a relatively high P value for one

replica, either crash or Byzantine. Based on the figures, we

notice that the protocols naturally fall into clusters. For the

case where the primary is Byzantine, protocols fall into two

clusters. As observed from Fig. 2(a) and Fig. 3(a), the damage

cost is high for the CFT protocols and much lower for the BFT

protocols. This observation correctly reflects the nature of the

protocols. On the other hand, in the case where the primary

crashes, the damage cost remains low since most protocols

have view changes, as shown in Fig. 2(b) and Fig. 3(b). We

observe similar results from the cases where a backup is faulty.

Being different from the case where the primary is Byzantine,

only Remus and Semi-Active (SA) have very high damage

cost compared to other protocols. This can be explained by

the fact that Remus and SA require only f + 1 replicas and

the protocols are no longer safe. For other CFT protocols like

Paxos, since the primary is correct, correct replicas are still

consistent.

Parameter θ. We evaluate the protocols to determine an

empirical value for θ, which is used to select protocols with

low operational cost. We use ellipses to show the selection of

the protocols in the figure. In practice, the threshold values

represent ranges of cost values. As observed in Fig. 2 and

Fig. 3, the threshold value can largely impact the selection of

protocols. For instance, if we use a tight value, as illustrated in

the small ellipses, protocols in general fall into the same cate-

gory (either CFT or BFT). The only exception we notice is the

case where a backup node fails. In this case, CFT protocols and

BFT protocols fall into the same cluster, as shown in Fig. 3(b)

and Fig. 3(d). However, the protocols are still safe since the

primary is correct. The downside is the possibility that very

few number of protocols are selected and the selection of

protocol becomes predictable. In comparison, more protocols

will be selected if we use a larger threshold. However, it is

possible that “wrong” protocols will be included. In most cases

for the protocols we illustrate, 2 or 3 is an appropriate number,

which indicates that θ = [0.25, 0.375].

278

Throughput. We assess the throughput under failures. We use

10 concurrent clients and let f = 2 and σ = θ = 0.375
based on setting 1. We inject a crash failure at time t = 1s
and a “Byzantine” failure at t = 2s where the IDS reports

a high probability within 0.2 ms. As illustrated in Fig. 4(a),

we first do not include periodic switching among protocols

and show two typical cases. In the first case, SA is run in the

beginning, Paxos is used after a crash failure is injected, and

Zyzzyva is selected after Byzantine failures. In the second

case, Remus is first run and PBFT is used after failures,

where the performance degrades suddenly. We then show in

Fig. 4(b) with the same setting but protocols in the same

cluster are switched every 0.2 ms. It can be observed that if

protocols are switched with a tight bound on operational cost,

the performance is in general consistent, where the switching

of protocols generates some overhead.
Threshold Λ and IDS Error Rate. The value Λ is used

to select the protocol with certain damage cost in C and we

have shown the theoretical bound. In order to determine an

appropriate Λ value, we show the minimum requirement for

P0,A so that the damage cost of any CFT protocol is lower than

the highest of the BFT protocols. This is considered the worst

case where the CFT protocol might fall in the same cluster

with BFT protocols. We evaluate the costs for all the settings

by changing the Pi,A values. In each setting, we compare the

damage cost of Paxos with that of BChain and Zyzzyva. This is

because, in general, Paxos has the lowest damage cost among

CFT protocols while BChain and Zyzzyva have the highest

damage cost among BFT protocols. Notice that Aliph-Chain

itself may have high damage cost, but our approach filters the

protocols with outstanding cost. As shown in Fig. 4(c), there

exist some settings where the IDS must report a high P0,A
value, especially when f is large. In most cases, the IDS does

not need to report a P with value higher than 0.5. Based on

our observation, we can handle a high IDS error rate so as for

the approach to be safe.

Limitations. Our cost model has several limitations. First, it

cannot be used to evaluate the case where the number of faulty

nodes exceeds f . As shown in Fig. 4(d), we use setting 1 and

f = 2. Pi,C and Pi,A for replica 0, 1, and 2 are 0.9. It can be

observed that the damage costs for the protocols such as Paxos

and PBFT are still low. This is because the cost is measured

by assuming that fewer than f faulty replicas are present.

Second, as we have shown previously, a high IDS error rate

can be tolerated. However, performance can be degraded due

to inaccurate IDS results, i.e., when IDS reports an attack

while the replicas do not fail. Third, the protocols with high

damage cost are removed when the IDS reports more failures.

However, we do not provide a scheme to add protocols into the

set. This problem can be resolved by periodically recovering

the replicas and adding protocols to A.

VIII. CONCLUSION

In this paper, we present a moving target consensus ap-

proach. At the core of our approach is a cost model that can

be used to evaluate the damage cost and the operational cost

for leader-based consensus protocols that operate in rounds.

Based on real-time Intrusion Detection System signals about

each replica being correct, crash, or Byzantine, the damage

cost evaluates the vulnerability of the protocols while the

operational cost evaluates the performance of the protocols.

Our approach enables the use of a safe, fast, and unpredictable

protocol according to existing system vulnerability. In addi-

tion, the cost model can also be viewed as a theoretical model

to analyze the characteristics of the consensus protocols.

IX. ACKNOWLEDGMENTS

Sisi Duan was sponsored in part by UT-Battelle, LLC under

Contract No. DE-AC05-00OR22725 with the Department of

Energy. Yun Li and Karl Levitt were sponsored in part by

the Army Research Laboratory under Cooperative Agreement

Number W911NF-13-2-0045(ARL Cyber Security CRA).

REFERENCES

[1] Amazon Web Services (AWS). https://aws.amazon.com,.
[2] White paper: VMware high availability concepts, implementation, and

best practices. Technical report, VMware, 2007.
[3] White paper: Protecting mission-critical workloads with VMware fault

tolerance. Technical report, VMware, 2009.
[4] T. Benzel. The science of cyber security experimentation: the deter

project. In ACSAC, pages 137–148, 2011.
[5] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg. Distributed

Systems. ACM Press/Addison-Wesley, 1993.
[6] M. Burrows. The chubby lock service for loosely-coupled distributed

systems. In Proceedings of the 7th symposium on Operating systems
design and implementation, pages 335–350. USENIX Association, 2006.

[7] M. Castro and B. Liskov. Practical byzantine fault tolerance. In OSDI,
pages 173–186, 1999.

[8] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. Attested
append-only memory: making adversaries stick to their word. In SOSP,
pages 189–204, 2007.

[9] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield. Remus: High availability via asynchronous virtual machine
replication. In NSDI, pages 161–174, 2008.

[10] X. Défago and S. André. Semi-passive replication and lazy consensus.
Parallel and Distributed Computing, 64:1380–1398, 2004.

[11] D. E. Denning. An intrusion-detection model. IEEE Transactions on
Software Engineering, SE-13(2):222–232, 1987.

[12] S. Duan, K. N. Levitt, H. Meling, S. Peisert, and H. Zhang. ByzID:
Byzantine fault tolerance from intrusion detection. In SRDS, pages 253–
264, 2014.

[13] S. Duan, H. Meling, S. Peisert, and H. Zhang. BChain: Byzantine
replication with high throughput and embedded reconfiguration. In
OPODIS, pages 91–106, 2014.

[14] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of
partial synchrony. Journal of ACM, 32(2):288–323, 1988.

[15] L. Eschenauer and V. D. Gligor. A key-management scheme for
distributed sensor networks. In Proceedings of the 9th ACM conference
on Computer and communications security, pages 41–47. ACM, 2002.

[16] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić. The next 700 bft
protocols. ACM Transactions on Computer Systems, 32(4):12:1–12:45,
2015.

[17] R. Guerraoui and A. Schiper. Software-based replication for fault
tolerance. Journal of Computer, 30(4):68–74, 1997.

[18] W. House. Trustworthy cyberspace: Strategic plan for the federal cyber
security research and development program. Report of the National
Science and Technology Council, Executive Office of the President, 2011.

[19] S. Jajodia, A. K. Ghosh, V. Subrahmanian, V. Swarup, C. Wang, and
X. S. Wang. Moving target defense ii. Application of game Theory
and Adversarial Modeling. Series: Advances in Information Security,
100:203, 2013.

[20] R. Kapitza, J. Behl, C. Cachine, T. Distler, S. Kuhnle, S. V. Mohammadi,
W. Schröder-Preikschat, and K. Stengel. CheapBFT: Resource-efficient
Byzantine fault tolerance. In EuroSys, pages 295–308, 2012.

279

[21] I. Keidar. Challenges in evaluating distributed algorithms. In Future
directions in distributed computing, pages 40–44. Springer, 2003.

[22] C. Ko, M. Ruschitzka, and K. N. Levitt. Execution monitoring of
security-critical programs in distributed systems: a specification-based
approach. In Security and Privacy, pages 175–187, 1997.

[23] R. Kolta, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva:
speculative byzantine fault tolerance. ACM Transactions on Computer
Systems, 27(4):7:1–7:39, 2009.

[24] L. Lamport. The part-time parliament. ACM Transactions on Computer
Systems, 16(2):133–169, 1998.

[25] W. Lee, W. Fan, M. Miller, S. J. Stolfo, and E. Zadok. Toward cost-
sensitive modeling for intrusion detection and response. Journal of
Computer Security, 10(1, 2):5–22, 2002.

[26] E. B. Lennon, M. Swanson, J. Sabato, J. Hash, and L. Graffo. It security
metrics. ITL Bulletin, National Institute of Standards and Technology,
2003.

[27] T. F. Lunt and R. Jagannathan. A prototype real-time intrusion-detection
expert system. In Security and Privacy, pages 59–66, 1988.

[28] S. Nikolaou and R. van Renesse. Turtle consensus: Moving target
defense for consensus. In Middleware, pages 185–196, 2015.

[29] N. Poolsappasit, R. Dewri, and I. Ray. Dynamic security risk manage-
ment using bayesian attack graphs. Dependable and Secure Computing,
IEEE Transactions on, 9(1):61–74, 2012.

[30] K. Scarfone and P. Mell. Guide to intrusion detection and prevention
systems (idps). NIST special publication, 800(2007):94, 2007.

[31] C. E. Shannon. A mathematical theory of communication. ACM
SIGMOBILE Mobile Computing and Communications Review, 5(1):3–
55, 2001.

[32] N. Stakhanova, S. Basu, and J. Wong. A cost-sensitive model for
preemptive intrusion response systems. In AINA, volume 7, pages 428–
435, 2007.

[33] P. Traynor, H. Choi, G. Cao, S. Zhu, and T. La Porta. Establishing
pair-wise keys in heterogeneous sensor networks. In INFOCOM, 2006.

[34] P. Urbán, X. Défago, and A. Schiper. Contention-aware metrics for
distributed algorithms: Comparison of atomic broadcast algorithms. In
Computer Communications and Networks, 2000. Proceedings. Ninth
International Conference on, pages 582–589. IEEE, 2000.

[35] R. van Renesse and F. B. Schneider. Chain replication for supporting
high throughput and availability. In OSDI, pages 91–104, 2004.

[36] R. Zhang, S. A. DeLoach, and X. Ou. Towards a theory of moving
target defense. In MTD, pages 31–40, 2014.

[37] P. Zieliński. Low-latency atomic broadcast in the presence of contention.
In DISC, pages 505–519, 2006.

APPENDIX

A. Proof of Theorem 1

Proof. We first prove the following lemmas and then show the

correctness of the theorem.

Lemma 4. For all the BFT protocols, if a correct replica
includes a request M in O with the same sequence number
N , at least 2f + 1 replicas accept M with N .

Proof of Lemma 4: The lemma simply follows the correct-

ness of the protocols and we ignore the details here. �
Lemma 5. If π′ is run on the same set or a subset of replicas
of π, i.e., P ′ ⊆ P , the switching to protocol π′ is both safe
and live.

Proof of Lemma 5: If π′ is run on the same set or subset

of replicas P , all the replicas maintain the same state from π.

The lemma can then be proved by showing that 1) The new

primary can select a set of requests based on the execution

history for the switching to be live, and 2) If a correct replica

has committed a request, the request will be selected by the

new primary for the switching to be safe. Notice that if the

primary is not correct, view changes will occur until a correct

primary is selected. The correctness of view change is proved

according to protocol π′ and we only consider the case where

a correct primary ensures the safety during the switching of

protocols.

If both π and π′ are CFT protocols, all the committed and

uncommitted requests must be consistent since there are only

crash failures. Therefore, the primary can order the requests

based on the execution history and the switching of protocols

is both safe and live.

Otherwise, if π is a BFT protocol, the primary is able to

proceed since if fewer than 2f + 1 replicas have committed

a request, it selects null. It is also not possible where two

sets of f + 1 replicas both include M in the O. This can be

proved by contradiction where in each set there is at least one

correct replica, e.g., p1 committed M and p2 committed M ′.
In both cases, according to Lemma 4, at least 2f +1 replicas

that have already accepted M or M ′. Therefore, at least one

correct replica has accepted both M and M ′, a contradiction.

Therefore, the switching of protocols is live.

We then prove that if a correct replica has committed a

request then the primary will select it. This can also be proved

by contradiction assuming a correct replica pi has committed

a request M with sequence number N but the primary selects

M ′. If the primary assignsM ′ with N , there are at least f+1
replicas that include M ′ in the O set, among which there is

at least one correct replica. Based on Lemma 4, it indicates

that in π at least 2f + 1 replicas has accepted M ′. However,

since pi has committed the request M , at least 2f+1 replicas

has accepted M . Therefore, there must be at least one correct

replica that has accepted both M and M ′, a contradiction.

Therefore, the switching of protocol is safe and the lemma

follows. �

Lemma 6. A correct latest checkpoint can be collected based
on the replicas in P running π.

Proof of Lemma 6: If we use new replica(s) for protocol

π′, each new replica obtains checkpoints from P and the new

primary selects one with at least f + 1 signatures and orders

the requests with a sequence number greater than the latest

stable checkpoint. If π is a C-1 protocol, the replicas must

send their signed checkpoint by the primary to the IDS so that

IDS can transfer the checkpoint to the new replicas. Since we

assume IDS is benign and can only fail by crashing, the new

replicas will receive matching checkpoints and the correctness

follows. Otherwise, if π is a B-1 protocol, the correctness

simply follows the checkpoint scheme for BFT protocols and

we ignore the details here. Lastly, if π is a C-2 protocol and

there are Byzantine failures, it is possible that correct replicas

have inconsistent states and checkpoints. However, the new

primary is able to find a stable checkpoint if there exists a

checkpoint with at least f +1 signatures and it is not possible

that there exist two inconsistent checkpoints since there are

2f+1 replicas. Since checkpoints from replicas can be verified

by any replicas due to the use of digital signatures, all the new

replicas will accept the checkpoint by the new primary. �

280

Lemma 7. If π′ is run on a larger number of replicas than
π, i.e., |P| < |P ′|, the switching to protocol π′ is both safe
and live.

Proof of Lemma 7: As we show in Lemma 6, if we use

new replicas, the primary is able to select a stable checkpoint.

Therefore, during the switching of protocols there are three

cases for ordering requests with sequence number greater than

last stable checkpoint: 1) π is a C-1 protocol and π′ is a C-2

protocol, 2) π is a C-1 protocol and π′ is a B-1 protocol, and

3) π is a C-2 protocol and π′ is a B-1 protocol. The first case

is trivial due to the fact that all the replicas are benign and the

uncommitted requests are consistent. Therefore, the primary

will be able to select a request for each sequence number. We

then show the correctness the other two cases.

In the second case, if π is a C-1 protocol like Remus, the

new primary selects null request for all the sequence numbers

from l to l+L since backups keep their states consistent from

the checkpoints. Otherwise, replicas will include their executed

requests in U instead of O. The new primary only selects

requests for each sequence number if uncommitted requests

are matching for all the replicas. In this case, at least one

correct replica has accepted the request. Therefore, the primary

can select requests easily and the requests must be accepted

by correct replicas. The correctness therefore follows.

In the third case, O includes requests where the replica

collects 2f + 1 matching messages in π for C-2 protocols

according to our consensus model. We first show safety that

any committed requests by a correct replica will be included

by the new primary. We prove by contradiction by assuming a

correct replica pi commits a requestM with sequence number

N and the new primary includes M ′ during the switching of

protocols. According to our approach, if pi includes M in

O, pi receives matching messages for M with N from all the

2f+1 replicas, among which at least f+1 of them are correct.

Similarly, if the new primary in π′ selects M ′ for N , it finds

that at least f + 1 replicas include M ′ for N in O or at least

2f + 1 replicas include M ′ in U . If at least f + 1 replicas

include M ′ in O, at least one correct replica includes M ′ for

N and the correct replica receives 2f +1 matching messages

with M ′, among which at least f + 1 replicas are correct. If

at least 2f + 1 replicas include M ′ in U , it is straightforward

that at least f + 1 correct replicas accept M ′. Since there are

only 2f + 1 replicas in π, there exists at least one correct

replica that accepts both M and M ′ for N , a contradiction.

Therefore, the protocol is safe.

We only need to prove liveness for the third case where

the primary will be able to select a request for each sequence

number. We show that it is not possible where there exists M
andM ′ with the same sequence number, at least f+1 replicas

include in O or 2f+1 replicas include in U . It is trivial that if

2f + 1 replicas include a request in U , all the replicas accept

the request. If at least f + 1 replicas include a request in O,

at least one of them is correct. The correct replica must have

received matching messages from 2f + 1 replicas in protocol

π. Therefore, it is not possible that there exists M and M ′

with the same sequence number. The switching to protocol π′

is live and the correctness of the lemma follows. �
We now show the correctness of the theorem. During the

switching of protocols, since we use f + 1 replicas for C-1

protocols, 2f+1 for C-2 protocols, or 3f+1 for B-1 replicas,

there are in total three cases: 1) the new protocol runs on the

same number of replicas, 2) the new protocol runs on more

replicas, and 3) the new protocol runs on fewer replicas. We

have already show in Lemma 5 the first two cases are safe

and live if P ′ ⊆ P . We also include the case where if new

replicas are used in π′, all the replicas will be able to use

a consistent checkpoint and state in Lemma 6. Notice that if

there are new replicas in P ′, replicas must be able to obtain

consistent checkpoint from P since if π′ runs on the same

number or smaller number of replicas, the type of failures π′

tolerates is weaker than or the same with π. Therefore, all the

new replicas in P ′ can obtain consistent state. Finally, we also

show in Lemma 7 the last case is safe and live. The correctness

of the theorem then follows.

B. Proof of Theorem 2

Proof. In order for our approach to be safe, we always need to

guarantee that in the worst case when the primary is Byzantine,

the damage cost of any CFT protocol is high enough so that

it does not fall into the same cluster with other BFT protocol.

Therefore, when the CFT protocol that has the lowest damage

cost is greater than any BFT protocol, no CFT protocols will

fall into the same cluster with BFT protocols. This requires a

value of P0,A that is high enough regarding the threshold for

selecting a cluster. We notice that Paxos has the lowest damage

cost among the CFT protocols we illustrate, which has damage

cost as shown in Equ. (8) and all the BFT protocols with view

changes have the same pattern as follows.

CD = TV δ(P0,C + P0,A) + Ω (30)

Ω represents the expected damage cost from the failures

of backup nodes. Therefore, the following equation follows

according to the selection of C in Algorithm 1.

TV δP0,C + ΔP0,A > TV δ(P0,C + P0,A) +min(Ω) + Λ (31)

In Equ. (31), min(Ω) represents the minimum damage cost

by backups among all the BFT protocols. We then have the

following:
(Δ − TV δ)P0,A > min(Ω) + Λ (32)

Therefore, Theorem 2 follows.

C. Proof of Theorem 3

Proof. Since the threshold S is set to σ|A|, in the beginning

there are σ|A| replicas and the probability follows.
According to Algorithm 1, we first filter the protocols with

damage cost greater than σ|A| protocols and there are |A′| =
(1−σ)|A| protocols. Next, we filter protocols with operational

cost greater than θ|A′| protocols. Therefore, there are (1 −
θ)(1− σ)|A| protocols in R. If we assume a large enough Λ
value, set C has (1 − θ)(1 − σ)|A| protocols and we switch

among them, the theorem then follows.

281

Peripheral Authentication for Autonomous Vehicles

Shlomi Dolev and Nisha Panwar
Ben-Gurion University of the Negev, Israel. {dolev,panwar}@cs.bgu.ac.il

Abstract—We propose a peripheral authentication scheme
for autonomous vehicles. A mutual authentication protocol
is required to secure every peripheral device access to a
vehicle. Specifically, we present a vehicle to peripheral device
authentication scheme. In addition, our three way handshake
scheme for vehicle to keyfob authentication scheme based on
generalized peripheral authentication scheme has been proposed.
The vehicle to keyfob authentication scheme is adapted and
improved with an additional attribute verification of the keyfob
holder. Conventionally, vehicle to keyfob authentication is realized
through a challenge-response verification protocol. An authentic
coupling between the vehicle identity and the keyfob avoids
any illegal access to the vehicle. However, these authentication
messages can be relayed by an active adversary, thereby, can
amplify the actual distance between the authentic vehicle and the
keyfob. Eventually, through this malicious relaying an adversary
can possibly get access to the vehicle, without any effort to
generate or decode the crypto credentials. Our solution is a two
party, three way handshake scheme with proactive and reactive
commitment verification. Conceptually, our solution is different
than the distance bounding protocols that requires multiple
rounds of round trip delay measurement.

Keywords—Authentication, access control, event data recorders.

I. INTRODUCTION

Currently, vehicles are customized to be a secure mobile
information system [1]. The rapidly moving vehicles are
compliant with the Dedicated Short Range Communication
(DSRC) IEEE 1609 [2] based on Wireless Access in Vehicular
Environment (WAVE) 802.11p [3]. However, another crucial
aspect is to authorize the access to a vehicle via peripheral
device connections. In general, vehicle internal networks
are supposed to provide a secure identifying gateway to
these external devices. However, our approach verifies any
transient peripheral device integration via three way handshake
that promises a secure authentication. In addition, derive all
subsequent messages with the initial round authentication
associated to initial prover.

We propose a secure mutual pairing between the vehicle
and peripheral device [4]. The solution avoid any unauthorized
access and, thereby, a consequent privilege to start the engine
of a parked vehicle. Our motivation is to strengthen an access
control over a static/parked vehicle such that an owner must be
authenticated based on pre-defined Challenge-Response Pairs
(CRP), shared commitments, actively measured dynamics, and
attribution of human/owners characteristics.

Peripheral authentication. A secure digital periphery of the
vehicle is achieved via secure authentication with respect to
paired devices. Specifically, any temporary peripheral device
connection with the vehicle must be authenticated for the
extended functional security of the vehicle (ISO 2626 vehicle
functional security standard). These peripheral devices as a
keyfob, USB stick, cell phone, and, ipod provide extended

services to the vehicle. Evidently, this is a potential exposure
for the external threats to break-in an otherwise secure vehicle
periphery. Our motivation is to secure the peripheral device
integration, specifically, remote vehicle access via keyfob. In
particular, the problem is beyond the effort to place a secure
firewall for filtering any external threats due to a range of relay
and impersonation attacks. A secure remote access is most
crucial among other peripheral device connections because
vehicle access via keyfob has a wider horizon to attack.
Therefore, it is important to identify and authenticate the
correct keyfob (continuously approaching towards the parked
vehicle) via active locomotion pattern of the keyfob (more
appropriately keyfob holder).

Problem statement. The problem is to avoid an unauthorized
remote vehicle access via fabricated Radio Frequency
Identification (RFID) enabled keyfob. Also to provide
an anthropomorphic link to the bonding between the
vehicle and peripheral device such as RFID enabled
keyfob. Conventionally, keyless entry systems provide an
autonomous ∗ sensing. Such that the parked vehicle keeps on
sensing the presence of authentic keyfob in the proximity, e.g.
via regular beacon solicitation. The authentic keyfob must be
present in the proximity and respond back to these soliciting
beacons from the parked vehicle. However, the absence of the
authentic keyfob within the sensed region can be amplified
with another RFID enabled keyfob. The malicious keyfob
would create an illusion of the shorter distance by amplifying
and relaying the signals between both parties. In addition,
these RFID signals are vulnerable to other more sophisticated
attacks [6] in an adaptive adversary model. In particular, an
adversary recover a exhaustive number of CRP transcripts and
based on that knowledge might fabricate a duplicate keyfob.

Design requirements. An authentication protocol construction
must incorporate the verification of a pre-shared secret, an
active response and a specific anthropomorphic feature, e.g.,
personalized locomotion pattern of keyfob holder. In particular,
our design involves following factors and synergize it into a
multi-dimensionally secure access control scheme. Essentially,
design requirements can be summarized as:
Reciprocal authentication: A primary requirement is to
provide a mutual authentication between vehicle and peripheral
device, i.e., keyfob. In general, the vehicle to keyfob pairing
is visualized from vehicle’s perspective and keyfob as a
responder. However, the vehicle as an initiator is more
vulnerable to attack exposure as compared to the other way
around. In our scheme, the keyfob is initiator and vehicle
is responder to validate a specific service access grantee.
i.e., authentic keyfob. The vehicle acts as a responder to
authenticate the initiator and to reciprocate the secret challenge

∗Note that the system settings are defined within the scope of autonomous
vehicles, i.e., availability of IEEE 1609.2 [2], IEEE 802.11p [3], and, Black
Box IEEE 1616 [5]978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

282

with vehicle identity towards initiator.
Identification based on pre-determined state: In our solution,
initial pairing is secured using an internal state record of the
vehicle which is pro-actively synchronized with the internal
state record of the keyfob. The initial pairing must witness
a matching internal state (inside the vehicle and authentic
keyfob) as a part of pre-determined knowledge verification.
Reactive verification: CRP based reactive verification avoid
misbinding attacks and satisfy at least a non-injective
authentication property. The pro-active commitment (based
on internal vehicle state) must be coupled with a reactive
commitment verification. This handshake ordering would avoid
an attack scenario in which the adversary might respond
with any random response for an authentic challenge. Thus
the vehicle must be able to verify the validity of response,
i.e. response should be in correspondence with the current
challenge.
Anthropomorphic features: The personification of any unique
behavior or attribute of the keyfob owner can be verified during
handshake. In particular, we propose to verify the locomotion
with respect to keyfob holder. Also this locomotion pattern
would become somewhat obvious and distinguishable over
a period of time, i.e., any locomotion information collected
over multiple authentication phases (between a specific vehicle
and paired keyfob) would result into personification of
this locomotion pattern (with respect to a specific keyfob
holder). The human attribution of the owner’s gait and
active verification of the corresponding locomotion pattern is
sort of customized way of authentication. In particular, this
customization provides more intuitive authentication to same
vehicle and keyfob over different sessions.

Vehicle (v) Keyfob (kf)

Solicit access:
Send commitment:

(commitment, time stamp)←−−−−−−−−−−−−−−−−
Verify: commitment
Define: time split
Challenge:

(Challenge, time split)−−−−−−−−−−−−−→
Compute: response & gait

(Response, gait)←−−−−−−−−−−
Verify: response
Compute: local gait
Compare: original gait

Fig. 1: The proposed approach.

Our contribution. We provide a solution (see Figure 1) with:
(i) Knowledge based initial pairing: A most recent internal

state of any vehicle is known only to the keyfob in current use.
Therefore, every time a vehicle changes its internal state, the
corresponding commitment data is also changed. In particular,
only a key that was used during the last drive would be in
possession of the correct internal state of the vehicle.

(ii) Commitment based authentication: A reactively
changing commitment data between the vehicle and authentic
keyfob provides spontaneous identity verification. It provides
a spontaneous verification of the peer party in communication
during the last rounds of handshake.

(iii) Personified localization: An instant gait verification is
done with respect to a keyfob holder approaching towards

paired vehicle. Evidently, a direct communication between
the paired vehicle and corresponding keyfob would yield the
same gait observation, i.e., similar distance covered in similar
time window; as opposed to an attack scenario in which the
adversary relay the wireless radio messages. In particular, no
additional hardware integration is required within the internal
vehicle network. In particular, gait observation at the static
vehicle would differ with the original gait observation at the
keyfob holder, if an active relaying is involved during the
wireless radio communication.

Events Recorded data IEEE 1616 [5]
Location (x,y) coordinates
Time stamps paired with (x,y)
Deceleration velocity decrease ratio
Acceleration velocity increase ratio
Yawing steering angle
Seat position passenger posture
Airbag deployment activation time
Unusual events breaking above threshold

Table I: Event triggered data.

IEEE 1616 Event Data Recorders (EDRs). EDRs are used to
maintain event primitives in a log. The event observation and
recording process is defined by the standard IEEE 1616a. The
event primitives such as acceleration, deceleration, steering
angle/movement, velocity, and seat position, accounts for
the driving decisions taken during the crash incident (see
Table I). These essential event factors contribute to improve
the consequent safety events [5] in future. Subsequently,
forensic investigation against a crash event extracts and links
these event records of the vehicle. However, the privileges
regarding the access over this critical/confidential information
of any vehicle depends on the state law. It may further be
of utmost importance to forensic team investigation. In past,
consumers were not aware that an Event Data Recorder (EDR)
is integrated inside the vehicle. However, the current state laws,
i.e. Black Box Privacy Protection act 2013 [7] made the EDR
ownership clear to vehicle owner and that it cannot be accessed
without the consent from the vehicle owner. (1) the presence
and location of an EDR (also termed as a black box), (2)
refining the critical event information and storage format (3)
usage and claims to acquire the recorded internal state data
for legal proceedings with owner’s consent. We emphasize that
the crucial event record stored on a volatile memory inside the
Electronic Control Units (ECUs) can be used to authorize the
original vehicle owner to the vehicle.

Definition 1 EDR mobility pattern: A recent few seconds
of the vehicle dynamics during the last itinerary available
from a non-volatile EDR storage defines the vehicle mobility
pattern. A static vehicle and the corresponding keyfob share
this mobility trace as a common internal state of the vehicle.

Previous work. Remote keyless entry via transponder
integrated with the ignition key or using immobilizer, has been
used actively [8]. A solution based on a distance bounding
protocol and a verifiable multi-lateration scheme has been
considered in [8]. An immobilizer is used to avoid the
vehicle movement even if an unauthorized access is gained.
The immobilizer based physical lock is useful to secure the
physical periphery but not the digital periphery. In [9] a

283

coalition attack scenario has been solved, however, it differ in
terms of access control countermeasures required for a parked
vehicle scenario. Therefore, our solution eliminates the need of
specialized Physically Unclonable Function (PUF) integration
to the vehicle and the keyfob. Also a gait based authentication
scheme is given in [10], [11] for identifying that the same user
is operating over two devices simultaneously.

II. ADVERSARY MODEL

We present three different (but related) relay and
impersonation attack scenarios. These attack scenarios are
applicable to various systems based on service access
verification. Specially, the services that are accessible over a
wireless radio channel within a closer proximity. Therefore,
the vehicle to peripheral device, e.g., keyfob, access scenarios
are equally vulnerable to these scenarios.

Distance fraud. There are various services that are meant to
verify presence of user in locality before granting access to
the resources. According to the distance fraud an authentic
prover claims to be at certain distance (thereby, legal to access
the services) while actually being far away from the claimed
distance with respect to the verifier. The adversary pretends
to impersonate the original sender as a man-in-the-middle
attack. For example, suppose that a vehicle and keyfob
are situated apart (might be in the range of each other).
An adversary might just amplify and relay these signals
from the authentic keyfob pretending to acquire an access.
In this case, an adversary would receive at leat an early
access, in case the original keyfob has actually requested
for vehicle access. Therefore, both the proactive and reactive
secret verification (with additional locomotion verification
for the keyfob authentication) are crucial to the proposed
authentication scheme. The authentication protocols that
satisfy only aliveness property are usually prone to distance
fraud. Therefore, the protocol must satisfy, at least, a weak
agreement property to avoid distance fraud attacks.

Mafia fraud. This attack is another more sophisticated form of
distance attack. In this attack scenario two adversaries collude
and get illegitimate access to the secure services, while the
original sender has no intention to request an access or to
reveal cryptographic secret. According to the mafia fraud an
adversary tries to utilize a separate channel and an accomplice
to extract and relay the credentials from an authentic prover
(not actively interested at all, in any service access). Therefore,
adversaries collude and relay the secure access code to break
in the verifier (meant to provide the service access to authentic
secret holder). The authentication protocols that satisfy only,
aliveness and weak agreement properties are usually prone to
mafia fraud. Therefore, the protocol must satisfy, at least, a
non-injective agreement property to avoid mafia fraud attacks.

Terrorist fraud. According to the terrorist fraud an authentic
prover assists with the adversary (by handing over secret
component) to impersonate in front of the verifier. The
attack scenario is practically feasible even with the biometric
authentication because the original secret holder can authorize
himself, and, let the service be accessible to other who does
not possess secret biometric credentials. A secure protocol
design requires more sophisticated identity verification method
such as a ticket granting authority (issuing tickets for service
access). It must be noticed that we are solution is not resistant
to this type of impersonation attacks. In general, authentication

protocols that satisfy the most concrete form of authentication,
i.e., injective agreement property might still be prone to these
attacks. A most resembling example is when any vehicle (that
is secured under insurance policy of the owner) is stolen by a
thief, if only, had the owner subliminally assisted to thief.

III. PROPOSED SCHEME

We propose an authentication scheme (Figure 2) for a
remote vehicle access control. This access control can be
perceived as an authorization check for services within the
periphery of a vehicle. For example, we propose an initial
pairing based on the event log replication. The event log
is overwritten with every new event occurrence and keeps
recording only the recent few seconds of vehicle dynamics.
Concurrently, vehicle event log can be replicated over the
peripheral device. Therefore, a peripheral device in possession
of most recent event log is authorized as previous occupant.

Pre-processing phase: A pre-processing phase and the
subsequent usage of cryptographic primitives is given as
below:
Setup phase (Key generation): The manufacturing authority
initializes Init(Auth) the security module with a secret
symmetric key K (for both vehicle and keyfob) before even
handing it over to the consumer.
Registration phase (Symmetric key with user identity): The
next phase is to provide a vehicle to keyfob binding at the
time of handing it over to a specific consumer u. Accordingly,
the registration phase is required to associate a pre-initialized
symmetric key K in setup phase Init(Auth) with the keyfob
and the user, i.e., (K, kf, v, u) binding user u with vehicle v,
keyfob kf and symmetric key K. It must be noticed that the
user identity u is crucial for the initial binding such as creating
an administration account. Initially, event records are null and
does not provide a linkage between any keyfob holder, as in
the past and in the current.
Query phase (Attempt to attack): In the query phase, adversary
A utilizes the knowledge of symmetric key K (from the n
number of transcripts tn extracted during n sessions in past)
and perform the following sequence of message exchange:

• P sends (K, kf, v, u) requesting for access
permission.

• A retrieves (K, kf, v, u) and relay (K, kfadv, v, u).
• V verifies (K, kfadv, v, u) before granting access

permission, i.e., Check ← (K , kfadv , v , u).
First, we present a simple authentication approach for

peripheral devices, e.g., cell phone, USB stick, ipod, laptop,
and other bluetooth devices.

Peripheral authentication scheme. The digital periphery
(meaning physical as well as wireless signal periphery) of
a vehicle must utilize reactive and proactive commitment
verification towards an access grantee. In general, a vehicle is
supposed to receive a request for safe pairing and a subsequent
access to various internal vehicle modules, e.g., Anti-lock
Braking System (ABS), Powertrain Control Module (PCM),
Engine Control Unit (ECU), Transmission Control Unit (TCU),
Tire Pressure Monitoring (TPM), Active Control Module
(ACM), Relay Control Module (RCM), Heat Ventilation and
Air Condition System (HVAC). Evidently, the security of these
modules is related to the secure pairing with peripheral devices.
However, the secure pairing is even more crucial when a
peripheral device (e.g., keyfob) requests a remote access to
the vehicle.

284

Vehicle(v) Device(pd)
(K) (K)

[H(ed)pd,idpd,nouncepd]EncK←−−−−−−−−−−−−−−−−−−
pairing request←−−−−−−−−−−

Authorize [H(ed)pd, idpd]

Store (nouncepd)

[idv,Cv,nouncepd]EncK−−−−−−−−−−−−−−→
Reciprocate pairing−−−−−−−−−−−−−→

Authorize idv
Store (Cv)

Compute (Rpd)

[Rpd,nouncepd]EncK←−−−−−−−−−−−−−
Verify [Rpd]

If matches Then accept
1

Fig. 2: Peripheral authentication scheme.

As detailed in Figure 2, a vehicle receive the pairing
request from a peripheral device. The request begins with
encrypted identity information from a specific peripheral
device pd. For example, the shared internal state ed, identity
pdid, and sequence number nounce. The event information
is securely hashed in an abstract form. The vehicle and
device share a symmetric key K (as detailed in setup and
registration phase) and all handshake messages are encrypted
with K. Next, vehicle verify the pairing request as: (i) Is
the requesting device has similar internal state as H(ed)v =
H(ed)pd (i.e., the device has been used during most recent
drive in past)? (ii) Is the requesting device has an authentic
identity as pdid? (iii) Is the requesting device has a unique
nounce as nouncepd? In the second step, after the successful
verification of initial commitment, vehicle would send a
challenge Cv with vehicle identity idv and nouncepd. The
device authenticates the reciprocated values, i.e., idv and
paired nouncepd. Consequently, the device would produce and
send the corresponding response Rpd with nouncepd. The
vehicle verifies the reactive response and grants the access,
if authentication succeeds.

Next we present an authentication game to define the
adversary advantage over the proposed scheme Auth .

Definition 2 The security game for the proposed
authentication scheme Auth , adversary A, prover P
and an authentic verifier V is given as below:

A wins the game if [Check = 1]. The probabilistic
advantage of adversary, Adv(A), for winning the game is

Adv(A) = Pr[Check = 1]

Specifically, vehicle to keyfob authentication scheme Auth
is secure if the Adv(A) is negligible. In addition, Pr[Check =
1] is maximum during the initial rounds of pairing when event
log is almost null. Therefore, a user identity is used for initial
pairing as long as the event data is not populated enough.

IV. FUTURE WORK

We aim to provide a three way handshake based vehicle to
keyfob authentication scheme that incorporates authentication

based on human attribution. In addition, the potential usage
of one time password schemes, e.g., HMAC based One
Time Password (HOTP) and Time based One Time Password
(TOTP). As a part of open problems, our solution based on
commitment verification and machine learning is not designed
to cope with replay attacks. Furthermore, the solution does not
cope with adversary that might have tuned the relaying delay,
mimicking the change in distance over time in a malicious
fashion.

REFERENCES

[1] K. Dellios, D. Papanikas and D. Polemi. Information Security
Compliance over Intelligent Transport Systems: Is IT Possible?. IEEE
Security Privacy, 13(3), pp 9-15, 2015.

[2] Dedicated Short Range Communications (DSRC) Concept of Operations
and ISO Layer Implementation Summary available at URL: http://www.
its.dot.gov/factsheets/dsrc factsheet.htm

[3] R. Uzcategui and G. Acosta-Marum. Wave: A tutorial. Communications
Magazine, IEEE, 47(5):126–133, 2009.

[4] A. Kumar, N. Saxena, G. Tsudik, and E. Uzun. A comparative study
of secure device pairing methods. In Pervasive and Mobile Computing,
5(6), pp 734-749, 2009.

[5] IEEE Standard for Motor Vehicle Event Data Recorders (MVEDRs).
IEEE Std 1616-2004, pp 1-163, 2005.

[6] W. Aerts, E. Biham, D. De Moiti, E. De Mulder, O. Dunkelman,
S. Indesteege, N. Keller, B. Preneel, G. Vandenbosch, and
I. Verbauwhede. A Practical Attack on KeeLoq. Journal of Cryptology,
25(1), pp 136-157, 2012.

[7] Black Box Privacy Protection Act available at URL: https://www.
govtrack.us/congress/bills/113/hr2414

[8] C. Patsakis, K. Dellios, and M. Bouroche. Towards a distributed secure
in-vehicle communication architecture for modern vehicles. Computers
and Security, 2014.

[9] S. Dolev, Ł. Krzywiecki, N. Panwar, and M. Segal. Optical puf for
vehicles non-forwardable authentication. Computer Communications, 93,
pp 52-67, 2016.

[10] R. Mayrhofer and H. Gellersen. Shake Well Before Use: Intuitive and
Secure Pairing of Mobile Devices. In IEEE Transactions on Mobile
Computing, 8(6), pp 792-806, 2009.

[11] T.D. Gray, S. Valiyani, and V. Polotski. Gait-based authentication
system, WO Patent App. PCT/CA2010/001,002, 2011.

285

Efficient Transmission Strategy Selection Algorithm
for M2M Communications: An Evolutionary Game

Approach

Safa Hamdoun∗, Abderrezak Rachedi∗, Hamidou Tembine†, Yacine Ghamri-Doudane‡
∗Paris-Est University † New York University ‡University of La Rochelle

{hamdoun, rachedi}@u-pem.fr {tembine}@nyu.edu {yacine.ghamri}@univ-lr.fr

Abstract—Device-to-device (D2D) communications, one of the
major component of the evolving 5G networks, is showing
promising advantages on supporting machine-to-machine (M2M)
communications. In this paper, we consider the design of efficient
transmission strategy selection algorithm for M2M communica-
tions underlaying cellular networks. First, a group of machine-
type-devices (MTDs) is matched with a particular user equipment
(UE). MTDs belonging to the same group can access the same
spectrum within its matched UE while the latter quality of service
(QoS) is maintained. Next, we propose an efficient evolutionary
game based transmission strategy selection algorithm for M2M
communications using D2D mode. Specifically, MTDs switch op-
portunistically from a non-cooperative strategy to a cooperative
strategy. Initially, we consider a non-cooperative scenario due
to the selfish behavior of devices. In case the latter QoS is not
satisfied, MTDs switch to a cooperative game. In a cooperative
game, we propose two alternative power control schemes: a
fixed mixed-strategy power control scheme where each MTD
willing to play cooperatively selects the power strategy from a
discrete level of powers and an adaptive mixed-strategy power
control scheme. The latter technique enables to set efficiently
the discrete power levels using a fuzzy logic and a proportional-
integral-derivative (PID) controllers aiming to assure the desired
QoS of UEs while maximizing the efficiency of M2M commu-
nications. Simulation results show that the evolutionary game
based transmission strategy selection algorithm avoids significant
degradation of traditional human-to-human (H2H) services in
terms of throughput and fairness compared to a single non-
cooperative game strategy. Besides, the adaptive mixed-strategy
power control scheme outperforms the fixed mixed-strategy
power control scheme by saving the battery life of MTDs while
guaranteeing the latter QoS.

Index Terms—M2M communications, D2D communications,
QoS, PID controller, Fuzzy logic, evolutionary game.

I. INTRODUCTION

Machine-to-machine (M2M) communications is a new

paradigm that refers to the autonomous communications in-

volving a myriad of machines, that interact among themselves

without or with limited human intervention. The ubiquitous

connection of devices favors the emergence of a vast range

of intelligent M2M applications ranging from e-health, smart

grids, smart homes as well as intelligent transportation sys-

tems, enabling partially the internet of things (IoT) [1], [2].

Cellular wireless technologies have been considered a po-

tential candidate to support M2M communications for its

ubiquitous coverage, good support of user mobility as well

as high data rates. Consequently, the third generation partner-

ship project (3GPP) has standardized M2M as machine-type-
communication (MTC) in long term evolution and its advance-

ments (LTE-A). 3GPP has been focusing in release 10 and

beyond on air interface improvements to counter the potential

problems posed by MTC on their cellular networks optimally

designed for human-to-human (H2H) communications [3].
Contrarily to traditional H2H applications, M2M systems

are characterized by a massive number of deployed devices

with specific features such as: time-tolerance, small data

transmission, extra low power consumption and centralized

data collection. Hence, the associated signaling load and com-

plexity of traditional LTE schedulers being designed to carry

high data rates for broadband applications make existing LTE

uplink schedulers prohibitive to cater to M2M requirements.

Besides, the network efficiency and scalability can be dras-

tically affected by the large number of active M2M devices,

which can lead to the access and core network congestion due

to the signaling overhead.
Along with the MTC new paradigm, 3GPP has introduced

a new technology called device-to-device (D2D) communica-

tions [4]. D2D refers to the direct communication between

devices without traversing the base station (BS) in cellular

networks. Eventhough the spectrum efficiency is the major

advantage of D2D communications, designing new resource

allocation methods to mitigate the co-channel interference

remains the key issue to solve.
In this paper, we study the resource sharing problem

for M2M communications using D2D mode, where multi-

ple D2D pairs can use the same sub-channel. We design

an efficient evolutionary game based transmission strategy

selection algorithm for M2M communications underlaying

cellular networks. Specifically, machine-type-devices (MTDs)

switch opportunistically from a non-cooperative strategy to

a cooperative strategy, where the key issue is to control the

interference introduced to H2H users while saving the battery

life of M2M devices. The major contributions of this paper

can be summarized as follows:

• We design an efficient evolutionary game based transmis-

sion strategy selection algorithm. We define a preference

order for the transmission strategy of M2M devices where978-1-5090-3216-7/16$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

286

we consider initially a non-cooperative scenario assuming

that M2M devices are selfish as they are in the practical

scenarios. Then, M2M devices whose QoS is not satisfied

switch to a cooperative scenario.

• We propose two alternative power control schemes in the

cooperative scenario; a fixed and an adaptive mixed- strat-

egy power control schemes. While the former consider a

fixed discrete strategy space, the latter approach enables

to set properly the power levels using a fuzzy logic and a

proportional-integral- derivative (PID) controllers in order

to assure the desired QoS of H2H users while maximizing

the efficiency of M2M communications.

• We assess the impact of the proposed transmission strat-

egy selection algorithm on H2H services in terms of

throughput and fairness in an H2H/M2M coexistence sce-

nario and evaluate the M2M transmit power consumption.

The remainder of this paper is organized as follows. In

Section II, we present some existing approaches for M2M

scheduling. In Section III, an overview of two major con-

trollers in the control field, namely PID and fuzzy logic is

introduced. In Section IV, we describe the specific technical

details of the scenario under evaluation. In Section V, the evo-

lutionary game based transmission strategy selection algorithm

for M2M communications is formulated. Two novel mixed

strategy power control schemes are developed in Section VI.

The performance evaluation of our proposal is drawn in section

VII followed by the conclusion in Section VIII.

II. RELATED WORKS

Different from the traditional human-centric communica-

tions where most of the research efforts is in the downlink,

MTC applications are usually uplink-centric. Consequently,

uplink (UL) scheduling for M2M communications in LTE

networks and beyond has become particularly a challenging

issue to solve. Numerous works that have focused on uplink

scheduling aim to support traditional H2H communications

[5], [6], [7]. Specifically, LTE is designed to carry high data

rates for broadband application. However, the small amount

of data to forward for MTDs, in addition to the huge number

of devices, render the associated signaling load with existing

UL schedulers prohibitive to cater to M2M scenarios. There-

fore, changing existing approaches as well as designing new

protocols in order to offload the signaling overhead becomes

crucial.

In [8], authors have proposed two fully dynamic M2M

scheduling algorithms for LTE uplink based on a delay toler-

ance objective and channel conditions. While higher priority

has been given to UEs, the remaining resources have been

assigned to MTDs. In the first scheduler, radio resources have

been ranked based on the channel quality. Meanwhile, in the

second scheduler, MTDs have been ranked first based on

their delay tolerance, then the least delay tolerant machines

have been assigned the best resources in terms of channel

quality. In [9], authors have developed a mixed scheduler

for H2H and M2M communications. Here, the devices have

been classified into two queues. H2H users and some delay-

sensitive MTDs have been included in the high-priority queue,

while the remaining MTDs have been grouped in the low-

priority queue. Then different scheduling algorithms have

been applied for each queue. The major drawback of these

algorithms consists of the starvation problem for M2M devices

in case of a heavy H2H traffic scenario. Moreover, the quite

good performance achieved comes at the expense of a huge

signaling load because of the centralized scheme consisting

of sending reports and receiving allocation decisions from the

evolved NodeB (eNB) individually per MTD.

In [10], a distributed channel sharing algorithm based on a

game theoretic approach has been designed for massive access

management in an H2H/M2M coexistence scenario with the

aim of maximising the sum weighted data-rate of all devices.

A group of MTDs has been matched with a particular UE

such that MTDs in each group can access the sub-channel of

their matched UE by using TDMA scheme and send their data.

However, they do no considered the UE QoS guarantees.

In [11], authors have formulated the resource sharing prob-

lem between M2M and H2H communications as an interfer-

ence aware bipartite graph, then have proposed a two phase

radio resource allocation approach. In the first phase, H2H

users have been assigned radio resource using conventional

H2H schedulers. In the second phase, authors proposed an

M2M radio resource sharing algorithm. A power control

scheme for the concurrently transmitting M2M nodes using

D2D technology has been developed to mitigate the H2H

service degradation following a probability that is set based on

a Proportional-integral-derivative (PID) controller. The main

drawback is the associated signaling load due to the centralized

approach.

In this paper, we investigate the resource sharing problem

for M2M communications using D2D mode. Unlike most

of the existing work which consider that a sub-channel is

reused by no more than one D2D pair, we consider a multi-

resource sharing case where a sub-channel can be reused by

multiple D2D pairs. We establish a preference order for the

transmission strategy of M2M devices. Hence, we consider

initially a non-cooperative scenario due to the selfishness of

M2M devices. Then, M2M devices whose QoS is not satisfied

switch to a cooperative scenario. We also consider the cost of

information exchange. To the best of the author’s knowledge,

our work is pioneer in dealing with efficient mode selection

strategy using an evolutionary game approach with the aim to

assure the desired QoS of H2H users while maximizing the

efficiency of M2M devices.

III. OVERVIEW OF FUZZY LOGIC AND PID CONTROLLERS

The PID and fuzzy logic are two controllers that are widely

used in the control field in order to solve many problems in

various applications areas such as controlling the congestion

problem, leveling the security services in wireless sensor

networks and managing the radio resources [12], [13].

287

A. PID Controllers

The PID controller is the most common feedback controller

that stands for proportional-integral-derivative. The basic con-

cept of a feedback controller is to keep a measured process

variable close to a desired value despite of the variation of the

process dynamics. Fig. 1 illustrates the PID feedback control

system. The error signal e(k) is the input of the PID controller

that represents the difference between the measured process

variable Qk and a reference value Qref . The PID controller in

turns gives as output the control variable uk. A PID controller

has three types of control actions:

• Proportional to the error (P part): The P part is

proportional to the current error. It reacts immediately

to the sensed error.

• Proportional to the integral of the error (I part): The

integral controller integrates the history of the error.

• Proportional to the derivative of the error (D part):
The derivative controller tries to predict the immediate

future and makes corrections based on the estimated error.

Fig. 1: The PID-controller based system

These three parameters can be used separately or in a

combination [14].

B. Fuzzy Logic

Fuzzy logic is another mathematical tool in the control field

that exploits a linguistic model of the process to be controlled

[15]. The fuzzy theory deals with imprecision and is easier

to prototype compared to the PID controller. Indeed, the latter

applies a mathematical tool to generate a specific output given

a quantitative and precise data value. Therefore, fuzzy logic is

more appropriate when a mathematical model of the process

cannot be defined or it is too complex to be evaluated in real

time. The fuzzy logic decision making process is composed

of three consecutive steps as illustrated in Fig. 2:

• Fuzzification: The input variables are fuzzified using

predefined membership functions (MBFs). MBFs are a

set of fuzzy regions that define the control variables in

the fuzzy model. Unique names known as labels are given

to these regions, within the domain of the variable. The

MBFs: X → {0,1} assigns every control variable, x ∈ X

numbers from 0 and 1 unlike in the binary logic where

only a value from two-element set {0, 1} is assigned.

That’s why it is called fuzzification.

• Fuzzy inference system: Fuzzy numbers or input vari-

ables are fed into a predefined fuzzy control rules which

tie the input values to the output model properties and

are written with a IF-THEN clauses syntax.

• Defuzzification: The output of the fuzzy set is converted

into a crisp value. The defuzzification can be performed

using several methods. The most popular method is the

centroid, where the center of area of the fuzzy set is

determined and the value at which this occurs is used

as the defuzzified output.

Fig. 2: A fuzzy system

We are motivated to use both controllers for determining

the power level strategies of MTDs to efficiently avoid the

interference situations in an H2H/M2M coexistence scenario.

IV. SYSTEM MODEL AND ASSUMPTIONS

We consider the uplink scenario of a single cellular network

where K channels have been allocated in an orthogonal man-

ner to N traditional cellular users. At the same time, M MTD

pairs attempt to share the uplink radio resources using D2D

communications. Each MTD pair Mj with j = 1, 2, ...,M is

compromised of a MTD transmitter, Mj,t, and a MTD receiver,

Mj,r, as shown in Fig. 3 and has a rate requirement of Rmin
Mj

.

Each cellular link Ui with i = 1, 2, ..., N is a connection

between a UE and the eNB (i.e., the base station) and has a rate

requirement of Rmin
Ui

. We use N = {1, 2, ..., N} to denote the

set of indices of cellular links, M = {1, 2, ...,M} to denote

the set of indices of M2M links and K = {1, 2, ...,K} to

denote the set of indices of radio resources.

In LTE networks, radio resources are distributed in the

time-frequency domain every transmission time interval (TTI)

which consists of one subframe and has a duration of one

ms. In the frequency domain, the available bandwidth is

divided into a number of sub-channels. Each sub-channel has

a bandwidth of 180 Khz and along with 7 symbols in the

time domain constitutes a resource block (RB). The latter is

the minimum unit of the resource allocation process [16].

A set of orthogonal sub-channels are allocated to each UE

Ui with i = 1, 2, ..., N using conventional schedulers (such

as proportional fairness (PF) or round robin (RR)) optimally

designed for H2H users. We assume that each sub-channel

k is allocated to only one UE, implying that there will be

no interference observed from the UEs at the eNB. The sub-

channels allocated to the UEs are fixed for each transmission

frame. During each transmission frame, a set of MTDs is

matched to each UE based on cellular rate requirements and

the channel information collected by the eNB from the cellular

and M2M links, thus forming a virtual cluster. The latter

construction is updated each transmission frame. To construct

virtual clusters for each cellular link represented by circles in

Fig. 3, we require the definition below:

288

Fig. 3: System model under study: inter-MTD within D2D

underlaying cellular network

Definition 1: The interference value of a cluster Ci on RBk,
denoted by vkI (Ci), is defined as the sum of the interference
introduced by L M2M pairs if sharing the radio resource RBk

with a UE, Ui. Thus, the interference value vkI (Ci) can be
given as:

vkI (Ci) =

L∑
j=1

Pk
j gkMj,t,eNB , j ∈ M (1)

where Pj is the MTD transmit power.

The basic idea of the virtual cluster construction is to match

iteratively MTDs pairs to a UE where both access the same

sub-channel taking into account the interference value of the

cluster in order to guarantee that the UE’s QoS is always

satisfied. Thus, a virtual cluster is composed with L MTDs

whose total introduced interference if sharing the RBk with

the UE Ui, is equal or below to a given UE interference

threshold Ikth, vkI (Ci) ≤ Ikth.

Our objective is to design an efficient evolutionary game

based transmission strategy selection algorithm for M2M

communications using D2D mode to satisfy the requirements

of all nodes. Hence, to guarantee the QoS of the UE Ui,

the achievable throughput for the UE should be larger than

a threshold as defined as follows:

Rk
Ui

≥ Rmin
Ui

,∀i ∈ N (2)

The achievable throughput of UE, Ui with i ∈ N, on RBk
can be expressed as

Rk
Ui

= β.log2(1 +
Pig

k
Ui∑

j∈Ci

Pk
j gk

Mj,t,eNB
+σ2) (3)

where Pi is the UE transmit power, gUi
is the channel gain

of the UE from Ui to eNB while gMj,t,eNB is the interference

link from the MTD transmitter to the eNB. The first term in the

denominator in Eq. 3 represents the interference from MTDs

belonging to the same virtual cluster Ci, while the second

term represents the variance of the thermal noise, denoted by

σ2 and modeled as an independent Gaussian distribution with

zero mean.

To guarantee the QoS of the MTD pair Mj with j ∈ M,

the achievable throughput for the MTD should be larger than

a threshold as defined as follows:

Rk
Mj

≥ Rmin
Mj

, ∀j ∈ M (4)

We evaluate the throughput of MTD pair Mj , on RBk as

Rk
Mj

= β.log2(1 +
Pk
j gkMj,t,Mj,r

Pig
k
Ui,Mj,r

+
∑

j′∈Ci,j �=j′
Pk
j′g

k
M

j′,t,Mj,r
+σ2) (5)

where gMj,t,Mj,r
is the channel gain of the M2M communica-

tion from the MTD transmitter Mj,t to the MTD receiver Mj,r,

gMj′,t,Mj,r
is the interference link from the Mj′,t to Mj,r, and

gUi,Mj,r
is the interference link from the UE to Mj,r. The first

term in the denominator in Eq. 5 represents the interference

from UE Ui to the Mj,r, while the second term represents the

inter-cluster interference. This latter represents the interference

generated from MTDs of the same virtual cluster when sharing

the radio resource, RBk.

V. FORMULATION OF THE TRANSMISSION STRATEGY

SELECTION ALGORITHM BASED ON EVOLUTIONARY GAME

We consider a preference order for the transmission strat-

egy of each M2M pair. Hence, for any given M2M pair,

ReuseNCG ≥j ReuseCG implies that an MTD pair Mj with

j ∈ M matched to a UE Ui in a virtual cluster Ci with j ∈ N
strictly prefers a non-cooperative scenario due to the individual

selfish behavior of MTD over a cooperative scenario. Here,

NCG stands for non-cooperative game while CG stands for

a cooperative game. Initially, we assume a non-cooperative

scenario where MTDs are free to act according to their own

interests without regard to the overall performance of the

virtual cluster. In a non-cooperative game, we consider that

MTD transmitters use the maximum transmit power aiming

to gain their targeted QoS. If the obtained QoS of MTD is

less than the required QoS, then MTDs belonging to the same

virtual cluster Ci whose QoS is not satisfied form a coalition

denoted by Coi and switch in a fully distributed manner

from a non-cooperative transmission strategy to a cooperative

transmission strategy. Let’s assume that L′ is the number of

MTD pairs in the formed coalition of each virtual cluster.

Algorithm 1 implements the switch rule for the transmission

strategy selection of each MTD pair. We also consider the cost

of information exchange inside a coalition. Then, we propose

two alternative power control algorithms based on cooperative

game theory.

Algorithm 1 Transmission strategy selection algorithm

1: for each Virtual Cluster Ci, i ∈ N do
2: Each MTD link starts to play selfishly in a non-cooperative scenario

using the maximum transmit power
3: if MTD’s QoS requirement is not satisfied then
4: MTDs whose QoS is not satisfied form a coalition Coi
5: if Cost of information exchange (P̂j in Eq. 6) is less than a

predetermined threshold (P̃j) then
6: MTDs in the coalition switch to a cooperative game
7: end if
8: end if
9: end for

289

VI. POWER CONTROL IN COOPERATIVE GAME

In this section, we present our proposed power control

scheme for MTDs inside each coalition based on the coop-

erative game theory.

A. Cost of information exchange

We consider the cost of information exchange inside each

coalition Coi in terms of transmit power in order to model

the data exchange penalty. Consequently the total power cost

for a coalition is taken as the sum of the powers required

by each MTD transmitter in a coalition, Mj,t ∈ Coi, to

communicate to the remaining MTD transmitters of the same

coalition Mj′,t ∈ Coi, j
′ �= j and can be expressed as:

P̂ k
j =

∑
j′∈Coi

,j′ �=j

ν0.σ2

(gkMj,t,Mj′,t
)2

(6)

where ν0 is a target average SNR for information exchange,

σ2 is the noise variance and gMj,t,Mj′,t is the channel gain

between MTDs transmitters, from Mj,t to Mj′,t. P̂j should

be less than a given threshold denoted by P̃j .

B. Payoff function

Let’s denote π the payoff function of different MTD trans-

mitters Mj,t in the same Coalition Coi of each virtual cluster

Ci. Here, we consider a joint throughput and power control

game model. The payoff function of an Mj,t is composed of

an utility function and a cost function, where
Rk

Mj

Rmin
Mj

is the

utility function that represents the user’s satisfaction in terms

of throughput and
Pk

j

Pmax
j

is the cost function that depends

on the power consumption. α and γ are the positive weights

constants of the throughput and the price of the transmission

cost, respectively.

πj(R
k
Mj

, Pk
j) = α.

Rk
Mj

Rmin
Mj

− γ.
Pk
j

Pmax
j

(7)

C. Fixed mixed-strategy power control algorithm

The L′-player cooperative power control game is formulated

as G = {L′, P, π}, with L′ = {1, 2, ..., L′} as the player set

and P is the strategy set. Each MTD Mj,t selects a transmit

power lever Pj such that Pj ≤ Pmax
j where Pmax

j is the

maximum allowed transmit power of an MTD. π is the payoff

function which characterizes the utility function and its cost

function. The power level is usually quantized into discrete

values in practice [17]. Therefore, the power level of M2M pair

Mj is assumed to be chosen from a finite set Pj . At each time

TTI, each MTD transmitter Mj,t forwards its data with trans-

mit power strategies from Pj = {Pj(1), Pj(2), ..., Pj(N
′)}

where N ′ is the total action sets. In a fixed mixed-strategy

power control algorithm, we consider the case of a fixed power

level where the strategy space Pj of each MTD has a minimum

and maximum power constraints. Throughout this paper, we

assume that the available power level for each MTD is with

the same dimension. According to definition of the payoff

function, we can obtain the payoff matrix when different Mj,t

choose multi-power levels.

• Solve Mixed Strategy Nash Equilibria

To solve the matrix power control game, we use the funda-

mental theorem of mixed strategy Nash equilibria [18]:

Definition 2: Let σ= (σ1,σ2,...σL′) be a mixed strategy

profile for an L′-player game. For any player j = 1, 2, ..., L′

let σ−j represent the mixed strategies used by all the players

other than player j, Let Sj the finite set of pure strategies

available to player j, and let πj(s, σ−j) s ∈ Sj be the payoff

to player j when playing s against σ−j .

Then σ is a Nash equilibrium ⇔ the following two condi-

tions hold:

• If s, s′ in Sj are two strategies that occur with positive

probability in σj , then πj(s, σ−j)= πj(s
′, σ−j)

• If s, s′ in Sj where s occurs with positive probability

in σj , and s′ occurs with zero probability in σj , then

πj(s, σ−j) > πj(s
′, σ−j)

D. Adaptive mixed-strategy power control algorithm

Rather than fixing the power levels in the strategy space

of each MTD having a minimum and maximum power

constraints, we use two novel power control schemes that

efficiently adjust the MTD transmit power in order to not

only assure the desired QoS of H2H users and maximize the

spectrum efficiency of M2M communications but also to save

the battery life of MTDs.
1) Strategy space set using the PID controller: The primary

goal is to drive the actual UE throughput, Rk
Ui

, obtained in
an H2H/M2M case to converge to its corresponding required
QoS in terms of throughput, Rmin

Ui
[11]. Therefore, the PID

controller takes as input the error signal e(k) that should
be related to the MTD transmit power P k

j (k). Particularly,
e(k) represents the gap between the current MTD transmit
power and the maximum MTD transmit power. This latter is
determined given the UE’s interference threshold that assure
its desired QoS, Rmin

Ui
. The PID controller takes as output the

power control ratio, u(k), determined by a weighted sum as
follows:

u(k) = u(k − 1) + kp
(
1 +

T

Ti
+ kp

Td

T

)
e(k) (8)

− kp
(
1 + 2

Td

T

)
e(k − 1) + kp

Td

T
e(k − 2)

where T and e(k) represents the sampling period and the
error signal at the kth sampling period, respectively. Ti and
Td are two parameters that depends on the proportional gain
kp, the integral gain ki, and the derivative gain kd. They are
equal to (kp/ki) and (kd/kp), respectively. In each scheduling
period (TTI), the new MTD transmit power is determined by
multiplying the actual MTD transmit power and the power
control ratio Rpc derived from the output of the PID system.
The transmit power control ratio of the MTD transmitter Mj,t
is expressed as follows in dB domain:

Rk
pc(dB) = 10.log10

(P k
j)new

(Pk
j)actual

(9)

= (Pk
j)new(dBm)− (P k

j)actual(dBm) (10)

Where (P k
j)

new is the new transmit power and (P k
j)

actual is

the actual transmit power of Mj,t on RBk.

290

Thus, by applying the PID controller, the transmit power is

limited to assure the desired QoS of H2H users and also to

maximize the efficiency of M2M spectrum usage.

2) Strategy space set using the fuzzy logic: Unlike the

proposed MTD transmit power control process using a PID

controller where a precise output is generated using a mathe-

matical model, fuzzy controllers approximate the mathematical

solution and thus less computational complexity is required.

Furthermore, the fuzzy logic can incorporate the human

knowledge into a machine based decision. We design a fuzzy

power controller that dynamically adjusts the transmit power

of the specific MTD in order to assure the QoS of H2H users

as well as to maximize the efficiency of the MTD spectrum

usage. The desired UE throughput should be greater than a

predetermined threshold (see Eq. 2). From Eq. (3), we notice

that the MTD transmit power is influenced by the following

two parameters called antecedents in the fuzzy logic.

Antecedent x1) : The UE’s throughput level in an H2H sce-

nario. Indeed, the UE’s throughput given by Eq. (3) obtained

in an exclusive H2H mode (no interference from M2M mode,∑
j∈Ci

Pk
j gkMj,t,eNB = 0) is a predominant parameter of the MTD

transmit power and reflects the sensitivity to interference.

Fig. 4: The membership func-

tion for the antecedent

0

0.2

0.4

0.6

0.8

1

1.2

Decrease Increase
Idle

9-9 -3 3Consequent (dBm)

Fig. 5: The membership func-

tion for the consequent

Consequently, the antecedent (x1) is the ratio of the
throughput of a UE in an exclusive H2H scenario to the
corresponding QoS. It is given by:

x1 =
Rk

Ui

Rmin
Ui

(11)

The linguistic variable x1 characterizes the transmission state

of the H2H link with the term set: low, medium and high.

Antecedent x2) : The channel information of the interfer-

ence link caused by an MTD to the reclaiming UE is also a

predominant parameter of the MTD transmit power. Similarly

to antecedent (x1), given the UE’s interference constraint

to maintain the QoS of H2H users, the ratio of the actual

interference introduced by M2M mode to the interference

threshold is used to evaluate the level of interference. We use

the linguistic variable x2 that specifies low, medium and high.

x2 =
P k
j gkMj,t,eNB

Pmax
j gkMj,t,eNB

(12)

Consequent: The consequent of this process, which is the

MTD transmit power control ratio (Rk
pc), is defined in (9)

and the new transmit power level is obtained by multiplying

the actual transmit power and the power control ratio derived

from the output of the fuzzy logic system together. The

consequent is divided into three levels: decrease, increase and

idle. Trapezoidal membership functions are used to represent

the level of the antecedents x1 and x2 as well as the consequent

as depicted in Fig. 4 and Fig. 5, respectively.

Fuzzy inference system We set up the fuzzy rules based on

linguistic knowledge from a group of experts after defining the

membership functions. The number of rules is 23 = 9 rules

since there are two antecedents and each antecedent has 3

fuzzy sub-sets. We establish the fuzzy control rules as shown

in Table I. Finally, the defuzzification is performed using the

most well known method: centroid.

TABLE I: Rule base

Antecedent x1 Antecedent x2 Consequent
low low increase
low medium increase
low high increase
medium low increase
medium medium idle
medium high decrease
high low increase
high medium increase
high high increase

After properly setting the transmit power levels of the

discrete strategy space of MTD players in the cooperative

scenario using PID and fuzzy logic controllers, we calculate

the payoff matrix when different Mj,t choose multi-power

levels. Then, we solve the mixed strategy Nash equilibria of

the obtained payoff matrix (see Definition 2).

VII. PERFORMANCE EVALUATION

In order to evaluate the efficiency of the proposed Trans-

mission Strategy Selection Algorithm (TSSA), we conduct

the following simulations based on the 3GPP LTE system

model [19]. The main parameters are summarized in Table

II. We consider an isolated cell where traditional H2H and

M2M communications coexist and can share the RBs for

individual data transmission. The system bandwidth consid-

ered is 10MHz. Therefore, 50 usable RBs are available per

TTI. The channel model accounts for small scale Rayleigh

fading and large scale path loss (log-normally distributed).

The MTDs and UEs in the cell are distributed randomly

each transmission frame. For simplicity and without loss of

generality, we assume one RB is assigned to each H2H

user per TTI. This assumption is due to the complexity

introduced to uplink LTE scheduling algorithms because of

the adjacency and power restrictions imposed by the Single

Carrier-Frequency Division Multiple Access (SC-FDMA) and

which is not the aim of our work. On the other side, one

RB is assumed to be sufficient to fulfill the M2M throughput

requirement. We assume two power level strategies for each

player {P1,P2}, where P1 = 8dBm and P2 = 11dBm in the

proposed fixed discrete strategy space. P1 and P2 are the mean

of the obtained MTD transmit powers when using the PID and

291

fuzzy logic controllers, respectively in the adaptive discrete

strategy space. We use the round robin (RR) scheduler for H2H

communications. We also consider that 3 is the maximum size

of the virtual cluster which means that up to 3 M2M pairs can

share the sub-channel with a given H2H user. In other words,

a maximum number of M2M pairs of M = 3.N = 150 can

share the sub-channels with H2H users in each transmission

frame. The simulation results are obtained through averaging

50 different realizations.

TABLE II: SIMULATION PARAMETERS

Parameter Value
Cell radius 500m

UEs per cell N = 50
Path loss model UMi in [19]

Pi 23dBm
Pmax
j 14dBm

D2D range 150m
Noise power spectrum density −174dBm/Hz

Carrier frequency 2.5Ghz
Small scale fading Rayleigh fading coefficient

with zero mean and unit variance
Modulation QAM
Kp, Kd, Ki 0.3

Rmin
Ui

64Kbps

Rmin
Mj

{5Kbps, 9.2Kbps, 15Kbps}
α 1
γ 0.7
ν0 10dB

P̃j 0.01Pj

The nomenclatures, H2H and H2H/M2M mentioned in all

figure legends refer respectively to the exclusive H2H case and

the H2H/M2M coexistence case.

Number of H2H users
0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 th
ro

ug
hp

ut
 (M

bp
s)

×106

0

2

4

6

8

10

12

14

H2H: no M2M
H2H/M2M: non-cooperative
H2H/M2M: TSSA (fixed discrete strategy space)
H2H/M2M: TSSA (adaptive discete strategy space)

Fig. 6: H2H average throughput

Fig. 6 demonstrates the H2H throughput as function of H2H

users in order to evaluate the impact of introducing M2M

communications on H2H services. We compare the two pro-

posed Transmission Strategy Selection Algorithm (TSSA) with

a fixed discrete strategy space and adaptive discrete strategy

space with a non cooperative approach. The latter consists

of using the maximum MTD transmit power between M2M

pairs sharing the same resource block. The worst performance

in an H2H/M2M scenario is obtained when using the non

cooperative strategy where the total H2H throughput for 50

UEs is decreased about 60 % compared to the throughput

obtained in an exclusive H2H scenario. On the other hand,

the H2H throughput is decreased about 50 % and about 40%

when using TSSA with fixed discrete strategy space and TSSA

with adaptive discrete strategy space, respectively. This can be

explained by the fact that the adaptive strategy space adjusts

properly the M2M transmit power in a way that the QoS of

H2H users is assured contrarily to the fixed strategy space

where high interference situations cannot be avoided. The

degradation is justified by the multiple resource sharing even-

though the virtual clustering process assure the desired QoS of

H2H users.Both qualitative fairness measure, using max-min’s

Number of H2H users
0 5 10 15 20 25 30 35 40 45 50

M
ax

-M
in

 fa
irn

es
s

in
de

x
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

H2H: no M2M
H2H/M2M: non-cooperative
H2H/M2M: TSSA (fixed discrete strategy space)
H2H/M2M: TSSA(adaptive discrete strategy space)

Fig. 7: Max-Min’s Fairness index

Number of H2H users
0 5 10 15 20 25 30 35 40 45 50

Ja
in

 fa
irn

es
s

in
de

x

0.988

0.99

0.992

0.994

0.996

0.998

1

H2H: no M2M
H2H/M2M: non-cooperative
H2H/M2M: TSSA
(fixed discrete strategy space)
H2H/M2M: TSSA
(adaptive discrete strategy space)

Fig. 8: Jain’s Fairness index

fairness index, and quantitative fairness measure through jain’s

fairness index based on throughput are illustrated in Fig. 7 and

Fig. 8 respectively to give us more information about how

the fairness policy of H2H scheduler get affected due to the

emergence of M2M communications. Both measures show that

our proposed TTSA with a fixed discrete strategy space and

adaptive discrete strategy space maintains the fairness level

of the the existing H2H scheduler, namely RR which is quite

interesting. It is clearly seen that the level of fairness of H2H

users is more reduced when using a non-cooperative strategy.
Fig. 9 shows the total power consumption of MTD transmit-

ters as a function of transmission time. Our proposed TTSA

292

Fig. 9: Total power consumption of MTD transmitters

A
ve

ra
ge

 p
er

ce
nt

ag
e

of
 th

e
M

TD
s

w
ho

se
 Q

oS
 is

 n
ot

 m
et

0

5

10

15

20

25

30

H2H/M2M: non-cooperative
H2H/M2M:TSSA (fixed discrete strategy space)
H2H/M2M: TSSA (adaptive discrete strategy space)

Fig. 10: Percentage of M2M pairs whose QoS is not satisfied

with adaptive discrete strategy space achieves significant re-

duction in terms of transmit power of about 45% and 70%
compared to the TTSA with fixed discrete strategy space and

non-cooperative approaches, respectively and hence improving

notably the device battery life.

Fig. 10 illustrates the average percentage of MTDs whose

QoS in terms of throughput is not met for 50 TTIs. The pro-

posed TSSA algorithm with both alternatives slightly outper-

forms the non-cooperative strategy where MTDs are using the

maximum transmit power which is quite promising. Indeed,

this proves that the proposed TSSA algorithm guarantees the

M2M communications while achieving a significant gain in

terms of transmit power consumption as demonstrated in Fig.

9 as well as assuring the desired QoS of H2H users.

VIII. CONCLUSION

In this paper, we have studied the resource sharing problem

for M2M communications using D2D mode, where multiple

D2D pairs can use the same sub-channel. We have developed

an efficient evolutionary game based transmission strategy

selection algorithm for M2M communications underlaying

cellular networks aiming to guarantee traditional H2H services

while maximizing the spectrum efficiency of M2M links.

Specifically, we have considered initially a non-cooperative

scenario since M2M devices are selfish as they are in the

practical scenarios. Then, M2M devices whose QoS is not sat-

isfied switch to a cooperative scenario. We have proposed two

alternative power control schemes in the cooperative scenario:

a fixed and an adaptive mixed- strategy power control schemes.

While the former consider a fixed discrete strategy space,

the latter approach enables to set properly the power levels

using a fuzzy logic and a PID controllers in order to save the

battery life of M2M devices. Simulation results show that the

evolutionary game based M2M transmission strategy selection

algorithm avoids significant degradation of H2H services in

terms of throughput and maintains the UE’s level of fairness

compared to the non-cooperative approach. In addition, the

adaptive mixed-strategy power control scheme allows to save

considerably the MTD battery life while maintaing the QoS

of M2M links. As a future work, we intend to perform a

comparative study when varying the dimension of the strategy

space. REFERENCES

[1] M. Chen, “Towards smart city: M2m communications with software
agent intelligence,” Multimedia Tools and Applications, vol. 67, no. 1,
pp. 167–178, 2013.

[2] M. Chen, J. Wan, and F. Li, “Machine-to-machine communications,”
KSII Transactions on Internet and Information Systems (TIIS), vol. 6,
no. 2, pp. 480–497, 2012.

[3] T. 3GPP, Technical Specification Group Radio Access Network, “study
on ran improvements for machine-type communications (release 10),”
2010.

[4] A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device
communication in cellular networks,” Communications Surveys & Tuto-
rials, IEEE, vol. 16, no. 4, pp. 1801–1819, 2014.

[5] N. Abu-Ali, A.-E. M. Taha, M. Salah, and H. Hassanein, “Uplink
scheduling in lte and lte-advanced: Tutorial, survey and evaluation
framework,” Communications Surveys & Tutorials, IEEE, vol. 16, no. 3,
pp. 1239–1265, 2014.

[6] R. Kwan and C. Leung, “A survey of scheduling and interference
mitigation in lte,” Journal of Electrical and Computer Engineering, vol.
2010, p. 1, 2010.

[7] E. Yaacoub and Z. Dawy, “A survey on uplink resource allocation in
ofdma wireless networks,” Communications Surveys & Tutorials, IEEE,
vol. 14, no. 2, pp. 322–337, 2012.

[8] A. S. Lioumpas and A. Alexiou, “Uplink scheduling for machine-to-
machine communications in lte-based cellular systems,” in GLOBECOM
Workshops (GC Wkshps), 2011 IEEE, 2011, pp. 353–357.

[9] S. Zhenqi, Y. Haifeng, C. Xuefen, and L. Hongxia, “Research on uplink
scheduling algorithm of massive m2m and h2h services in lte,” 2013.

[10] S. Bayat, Y. Li, Z. Han, M. Dohler, and B. Vucetic, “Distributed massive
wireless access for cellular machine-to-machine communication,” in
2014 IEEE ICC, 2014, pp. 2767–2772.

[11] S. Hamdoun, A. Rachedi, and Y. Ghamri-Doudane, “A flexible m2m
radio resource sharing scheme in lte networks within an m2m/h2h
coexistence scenario,” in IEEE ICC, 2016.

[12] M.-L. Ku, Cognitive Radio and Interference Management: Technology
and Strategy. IGI Global, 2012.

[13] A. Ksentini, Y. Hadjadj-Aoul, and T. Taleb, “Cellular-based machine-to-
machine: overload control,” Network, IEEE, vol. 26, pp. 54–60, 2012.

[14] J. W. . S. Ltd, “System engineering in wireless communications,”
Communications Surveys & Tutorials, IEEE, 2009.

[15] E. Cox, “Fuzzy fundamentals,” Spectrum, IEEE, vol. 29, no. 10, pp.
58–61, 1992.

[16] E. U. T. R. A. E.-U. P. C. 3GPP and r. G. P. P. G. Modulation”
TR 36.211, “study on ran improvements for machine-type communi-
cations (release 10),” 2010.

[17] Y. Xing and R. Chandramouli, “Stochastic learning solution for dis-
tributed discrete power control game in wireless data networks,”
IEEE/ACM Transactions on networking, vol. 16, pp. 932–944, 2008.

[18] D. Fudenberg and J. Tirole, “Game theory,” The MIT Press, Cambridge,
Massachusetts, 1991.

[19] M. Series, “Guidelines for evaluation of radio interface technologies for
imt-advanced,” Report ITU, pp. 2135–1, 2009.

293

On The Privacy-Utility Tradeoff in Participatory
Sensing Systems

Rim Ben Messaoud∗†, Nouha Sghaier†, Mohamed Ali Moussa∗ and Yacine Ghamri-Doudane†
∗LIGM Laboratory, Université Paris-Est, Champs sur Marne, France
†L3I Laboratory, University of La Rochelle, La Rochelle, France

{rim.ben messaoud, nouha.sghaier, yacine.ghamri}@univ-lr.fr

mohamed-ali.moussa@u-pem.fr

Abstract—The ubiquity of sensors-equipped mobile devices
has enabled citizens to contribute data via participatory sensing
systems. This emergent paradigm comes with various applications
to improve users’ quality of life. However, the data collection
process may compromise the participants’ privacy when report-
ing data tagged or correlated with their sensitive information.
Therefore, anonymization and location cloaking techniques have
been designed to provide privacy protection, yet to some cost of
data utility which is a major concern for queriers. Different from
past works, we assess simultaneously the two competing goals of
ensuring the queriers’ required data utility and protecting the
participants’ privacy. First, we introduce a trust worthy entity to
the participatory sensing traditional system. Also, we propose a
general privacy-preserving mechanism that runs on this entity to
release a distorted version of the sensed data in order to minimize
the information leakage with its associated private information.
We demonstrate how to identify a near-optimal solution to the
privacy-utility tradeoff by maximizing a privacy score while con-
sidering a utility metric set by data queriers (service providers).
Furthermore, we tackle the challenge of data with large size
alphabets by investigating quantization techniques. Finally, we
evaluate the proposed model on three different real datasets
while varying the prior knowledge and the obfuscation type.
The obtained results demonstrate that, for different applications,
a limited distortion may ensure the participants’ privacy while
maintaining about 98% of the required data utility.

Keywords—Participatory Sensing, Privacy-preserving, Data util-
ity, Convex Optimization, Tradeoff.

I. INTRODUCTION

The emergent Participatory Sensing (PS) paradigm [1] has
powered people carrying sensors-equipped devices to share
and collect data about specific phenomenon. In this context,
mobile users, denoted as participants, are actively involved
in sensing tasks as in the case of taking photos or recording
audios/videos. Besides, the participatory applications may be
allowed to report opportunistically other sensors’ readings such
as the accelerometer, GPS and gyroscope [2]. As a result,
various potential applications have been proposed to address
different issues affecting individuals like activity recognition
and health care [2] or a community such as urban traffic
monitoring [3] and environment management [4].

Participatory sensing comes also with significant advan-
tages when compared to traditional sensing networks. First, it
leverages the cost limitations of the static deployed sensors
and gathers users’ data from places not economically feasible
before such as in traffic congestion control applications [5].

Moreover, it solves the coverage range issue and offers a much
broader one given the participants’ mobility. However, this
promising paradigm raises new challenges [2] such as the en-
ergy consumption issue, the necessary rewarding mechanisms
and mainly the privacy concerns which are the most significant
barriers to users’ participation in the sensing process.

Indeed, reporting data in a community-scale task may incur
private information leakage. Particularly, most of participatory
applications require location and sensing time tagged data.
Hence, an adversary can derive sensitive information (e.g.
the participant’s residence, income level, political affiliation,
medical condition, etc.) by only observing the multiple reports
in the system [6]. Besides, other applications do not access
directly private information but can collect sensors’ readings
that may be correlated with. For instance, by sending the en-
ergy consumption reports of different smart home equipment,
users may release unintentionally their household activities to
a service provider. Thus, users are reluctant to participate to
sensing campaigns unless with privacy protection guarantee.

A variety of privacy-preserving schemes have been pro-
posed in the literature. The simpler is the pseudonymity [7]
where participants share their sensors’ readings associated with
pseudonyms instead of their real identities. However, this does
not guarantee necessarily privacy. Furthermore, encryption-
based methods have been implemented as a user-centric model
[8]. Hence, it comes with an important computation complexity
which may drain users’ devices batteries. Other methods de-
ploy mainly generalization [9], [10] or obfuscation techniques
[11]. The former method is based on reducing the accuracy of
the reported data to “general” value common among a set of
participants such as in spatial cloaking methods [12]. While
the latter is based on perturbing data, by adding random noise
or hiding samples of measurements of the original data, in
order to protect participants’ sensitive information. Yet, this
impacts the usefulness of the collected data, a major criterion
in sensing systems. In fact, the utility of a data source is related
to its ability to reveal viable information, necessary to analysts
or queriers to offer services that meet users’ needs. Thus, any
approach that gives priority only to the information privacy
aspect while overlooking the resultant reduction in utility is
not likely to be practically usable.

To address utility and privacy competing goals, we propose
in this paper a privacy-preserving model which conserves the
queriers’ data utility requirements. Therefore, we introduce
first a trusted entity in the participatory sensing system as
described in Figure 1. This entity, denoted broker, could978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

294

Fig. 1. The centralized architecture of PS system with trusted entity

be merged with the central server, i.e, it receives queriers’
specific requests and collects data from participants. Also,
we propose to run on the broker, a general obfuscation-based
mechanism that aims to achieve a utility-privacy tradeoff. The
basic idea is to obfuscate the reported data by participants
in order to minimize the privacy leakage with their private
information without degrading the final released data. Our
main contributions can be summarized as follows:

• We present privacy and utility metrics to quantify the
requirements of each part of the participatory sensing
system; the requesters and the participants.

• We propose a utility-aware privacy-preserving mech-
anism that achieves a tradeoff between the queriers’
requirements and the participants’ privacy concerns.

• We validate our privacy-utility tradeoff mechanism
on three different real datasets while varying the
distribution of the collected data and the obfuscation
type which highlights its generality and efficiency.

The rest of this paper is organized as follows. Section II
gives an insight into the related work. Section III describes
our system model. Section IV and V outline the mathematical
formulation and the proposed algorithm. We evaluate the
proposed privacy-utility tradeoff mechanism in Section VI.
Conclusions and Future work are withdrawn in Section VIII.

II. RELATED WORK

In this section we summarize the most relevant research
work of the privacy in PS and privacy-utility tradeoff.

A. Privacy in Participatory Sensing

Privacy-preserving mechanisms vary based on their
adopted techniques. We mainly distinguish four classes;
cryptography, anonymization, data aggregation and obfusca-
tion/perturbation. The former class relies on encryption method
as in the case of PEPSI [8], a privacy-enhanced architecture
for crowdsensing applications. In this work, authors aim to
hide sensing reports from unauthorized entities. Thus, each
participant has to obtain an encryption key to cipher his
collected data and a decryption key to be known by the end-
user (service querier) to decipher it. This process requires high
computation and energy resources which makes it unsuitable
for most PS applications. Moreover, the queriers can be curious
to gather information about the participants and hence the
collected data should be distorted before being reported to
them in order to protect participants’ sensitive information.

Another widely adopted privacy-aware technique in PS
systems is the anonymization. This method aims to avoid
association between the participants’ identities and their private
information [5] and has been implemented especially for
location-privacy. In this context, authors in [9] utilized the
Tesselation technique to generalize one user’s location in a Tile
containing k other users’ locations to guarantee k-anonymity.
This results in a so-called spatial cloaking to prevent partici-
pants’ trajectories tracking. In the contrast, the anonymization
can not be used in many crowdsensing applications that require
accurate location tagged data.

Shi et al. [13] focused on privacy-preserving data aggrega-
tion in PS systems and proposed a distributed-scheme called
PriSense. The basic idea is to not rely on a central entity to
provide protection to participants. However, the participants
tend to distribute their collected data among their neighbors.
Upon receiving a request from the aggregation server, each
participant returns his data and the remaining data of his
neighbors. This reduces the probability to successfully attribute
each sensor reading to its corresponding mobile user. Nev-
ertheless, this scheme ignores the inter-participants threat. In
fact, participants may be curious to collect information about
each-other. Particularly, in competitive sensing campaigns,
disclosing the bid of other users may help the participant to
select an adequate price and get the task [14].

Researchers adopted also data perturbation/obfuscation
techniques which consist of perturbing the data by adding noise
or by hiding some of its features [12]. Poolview [11] is a novel
data perturbation mechanism that generates a noise model
with similar characteristics to the phenomenon measured by
the PS application. Then, this model is distributed to all
participants so they can generate the noise locally and modify
the configuration parameters regularly in order to enhance their
privacy protection against historical attacks.

The main drawback of the above described methods is that
the data utility is slightly studied. Though, different privacy
protection mechanisms incur an important data degradation
and information loss, essentially, when modifying the attributes
of the reported measurement as in the case of perturbation.

B. Privacy-Utility tradeoff

In order to address the privacy-utility tradeoff, the research
community tends to apply information-theoretic tools [15–18].
Particularly, using rate-distortion theory, authors in [16] have
developed a utility-privacy tradeoff region for databases. Their
model is based on Shannon entropy which may be inadequate
for some applications where individual anonymity guarantees
are required. Du Pin Calmon and Fawaz [17] have introduced
a general framework for privacy against statistical inference
and formulated a convex program to find privacy-preserving
mappings for minimizing the information leakage from a user’s
data with utility constraints. Both works address collective
privacy in database systems while considering the data utility
constraint. However, they present only theoretic metrics with
no evaluation on real applications. Further, authors in [18] have
extended the work of [17] with the aim of solving the privacy-
utility issue in rating web applications.

Inspired by these works, we propose a general data utility-
aware privacy-preserving mechanism in participatory sensing

295

systems that we describe its model in the following section.

III. SYSTEM MODEL

In this section, we introduce the different entities involved
in our privacy-utility aware PS system. We define also the at-
tacker and the data privacy-preserving and processing models.

A. Participatory Sensing System Architecture

We consider, in this paper, the participatory sensing system
of Figure 1, where two parties are communicating via the
trusted entity as detailed below:

Participants: Set of smart-devices equipped users regis-
tered within the participatory sensing platform to contribute
data either voluntarily or while receiving monetary incen-
tives/services in return. Thus, they are more likely to report a
good quality contribution in order to get interesting “rewards”.
However, they have privacy concerns and may require that a
set of their contributed measurements should remain private.
For instance, by reporting periodic temperature measurements
along with collection points, participants may be exposing their
trajectories to a service provider (weather service). Conse-
quently, the latter can disclose their behavior and daily-life
related information such as the frequented places.

Queriers/Requesters: Set of service providers or individ-
ual users looking for a specific data and requiring a predefined
quality level under which the information may be perceived
as useless. Hence, each querier sets a utility threshold value,
based on a predefined quality evaluation metric that takes into
account the specificity of the data collecting purpose. Then, he
sends this value to the broker to be considered as the minimum
accepted quality level for the collected and reported data.

Server/Broker: A central entity in the cloud that receives
information requests from the queriers and assigns the cor-
responding tasks to the available participants based on their
sensing preferences and/or current location. It is worth noting
that the tasks assignment scheme adopted by the server is out
of the scope of this paper. Also, for simplicity reasons, we
consider that the server plays the role of the trusted entity
(broker) which collects the participants’ contributed data and
receives the utility threshold values from queriers.

The broker’s goal is to answer participants’ privacy con-
cerns by minimizing the probability of inferring their private
information from publicly reported measurements while re-
specting the data utility threshold value set by the queriers.

B. Adversary Model

In this work, we consider both partial-internal and external
adversaries [19]. That is, an attacker might be part or not of the
participatory sensing system. First, we assume that the server
is the only trusted entity who collects data from participants
with no curiosity or intentions of comprising their privacy.
Second, we consider that other participants and queriers are
honest but curious. Thus, they honestly report their data or
their utility metrics, but they may try to learn about other users’
behaviors from their periodically released sensing data. Also,
we consider that external adversaries may be eavesdropping as
false queriers to the different collected measurements in order
to disclose the participants’ private information. Finally, we

assume that the adversaries are passive. Hence, they can only
read and observe data but they do not modify it.

C. Privacy-preserving Model

Let M ∈ M denotes a sensing measurement collected
by a participant where M represents the set of all possible
measurements. Indeed, M can be correlated with a participant
private information denoted by S ∈ S , where S denotes the set
of all possible secrets detained by participants. The correlation
betweenM and S can be expressed through the jointly random
distribution PM,S(m, s), where (m, s) ∈ M × S are two
realizations of the random variables M and S. This may
compromise the participants’ privacy since observing M may
result in infering S. Therefore, a participant would rather send
his collected data M to the broker which should generate a
distorted version D ∈ D to be reported to the queriers.

Note that we consider the settings described in [17].
Accordingly, we opt for the next defined privacy mechanism:

Definition 1 (Privacy-mapping [17]). A privacy-preserving
model is a probabilistic mapping f : M → D characterized
by the conditional probability pD|M (d|m) that minimizes the
privacy risk to infer a private information S, jointly distributed
with a public data M , from the released data D.

Furthermore, we take into consideration the threshold value
on the utility of the reported data D set by the requesters,
that we denote by Uδ . In other terms, the broker must report
data D with utility UD ≥ Uδ . Therefore, we define the
utility regression level as UM − UD and the maximum utility
regression level as follows:

Definition 2 (Maximum utility-regression level). The max-
imum utility regression level tolerated by a querier is the
difference between the utility of the sensing data M , UM , and
the utility threshold level, Uδ; δ = UM − Uδ .

D. Data Processing Model

Without loss of generality, we will study separately
throughout this paper two scenarios:

• First, we tackle the case of a measurement M corre-
lated with a secret S. For instance, a turned-on room
light, considered as a measurement M , indicates its
occupancy and thus user’s indoor position considered
as a secret S. In this case, only the measurement M
would be obfuscated.

• Second, we consider the case of a secret S jointly
reported with the measurement M . For example, in
location tagged sensing tasks, the location S and the
measurement M (e.g Temperature) are sent together.
Thus, both variables (M,S) should be distorted.

The aforementioned scenarios are illustrated in details in
Figure 2. In the next section, we investigate both proposed
scenarios and we propose a general mathematical formulation
for the privacy-utility tradeoff that we target.

IV. PROBLEM FORMULATION

In this section, we define adequate evaluation metrics
for privacy leakage and data utility. Then, we formulate the
corresponding optimization problem.

296

(a) S is correlated with M (b) S is reported with M

Fig. 2. The different scenarios of data reporting and obfuscation

A. Privacy Leakage Metric

In order to define a robust privacy metric, we should
consider the adversary estimation model. According to [19],
an adversary may perform a statistical inference on the dif-
ferent measurements reported by participants to make a first
estimation of the secret S. Further, when inferring the released
data D, the attacker estimates again the possible set of users’
secrets. The two estimations come with costs. Therefore, after
observing the collected data, the adversary obtains an average
cost gain defined by authors in [17] as:

ΔC = C0 − CD (1)

where C0 and CD are the estimation costs with no prior
knowledge and after observing the released data, respectively.

With respect to this model and while considering a log-loss
cost function, the adversary average cost gain expression turns
into the mutual information [17] between the secret S and the
released data D expressed as:

I(S,D) = H(S)−H(S|D)

=
∑
s∈S

∑
d∈D
pS,D(s, d) log

(pS,D(s, d)
pS(s)pD(d)

)
(2)

where H(S) is the entropy of S defined as: H(S) =
−∑

s∈S pS(s) log(pS(s)).

The mutual information quantifies how much information
is shared between two random variables [19]. In our case,
we measure by I(S,D) the quantity of information shared
between S and D, which represents the amount of information
leaked from a privacy mechanism. We opt for this function as
our privacy leakage metric to be minimized. In other terms, we
target to maximize the conditional entropy between the secret
of a participant S and the distorted data D, H(S|D).

B. Data Utility Metric

We aim to quantify the collected data quality as perceived
by a querier. Thus, we reuse the “utility” theory introduced first
in economy to evaluate a product or a service then extended to
different fields. For example, utility functions have been widely
used to evaluate networks or services and can be in different
forms such as exponential, logarithmic or sigmoid. In this
work, we opt for the utility function proposed by the authors in

[20] given its general formulation flexible for different sensing
data. We define for a measurement x in the interval [xα, xβ]:

U(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x < xα (3a)

(x−xαxm−xα)
ζ

1 + (x−xαxm−xα)
ζ

xα ≤ x ≤ xm (3b)

1−
(
xβ−x
xβ−xm)γ

1 + (
xβ−x
xβ−xm)γ

xm < x ≤ xβ (3c)

1 x > xβ , (3d)

where ζ ≥ max{ 2(xm−xα)
xβ−xm , 2} and γ =

ζ(xβ−xm)
xm−xα are the

tuned steepness parameters, and xm is the median of [xα, xβ].

This function sets bounds to the possible values of any
distorted version of a measurement M collected by a user and
released by the broker as D. Hence, the lower accepted “util-
ity” of D is U(xα) which corresponds to the aforementioned
threshold value set by the queriers, Uδ .

We consider U(x) as the main metric to evaluate the utility
of D throughout this work because of its general application.
Nevertheless, any other less complex utility metric can be used
such as the Euclidean distance in case of location-privacy or
the Hamming distance in case of binary reported information.

The data utility metric is rather a constraint to be respected
while looking for the privacy mapping that we model by
Eq. (4). Thus, we set the maximum accepted utility regression
level for a querier, introduced in Definition 2, as an upper
bound of the average distance between the utilities of the
original measurements M and their distorted versions D.

EM,D[d(U(M), U(D))] ≤ δ (4)

where d(x, y) is a distance function between two variables x
and y that depends on the obfuscation type.

In the following paragraph, we utilize the two defined pri-
vacy and utility metrics in order to formulate the corresponding
optimization problem.

C. Optimization Problem

Our goal is to minimize the participants’ privacy leakage
expressed by Eq. (2) while respecting the utility constraint
described by Eq. (4). To do so, the broker must achieve such
tradeoff by solving the following optimization problem:

Minimize:
PD|M

I(S,D)

subject to: EM,D[d(U(M), U(D))] ≤ δ
(5)

In this paper, we adopt the settings of [17] to look for a
privacy mapping that solves the problem (5) and we distinguish
the formulation for the two scenarios of Figure 2.

1) S correlated with M: First, we consider the general
model where a participant’s private information S is correlated
with a collected dataM . Indeed, the three variables; S,M and
D form a Markov chain as follows: S →M → D. Thus, the
joint distribution of S and D can be expressed as function of
pS,M and pD|M as follows:

pS,D(s, d) =
∑
m∈M

pD|M (d|m)pS,M (s,m) (6)

297

According to the formulation of (6), we rewrite the ob-
jective function of our optimization problem as a function
of the conditional probability pD|M representing our privacy
mapping and the joint probability pS,M representing the prior
knowledge that the broker can statistically compute from the
different historical reported data by participants.

I(S,D) =
∑
s,m,d

pD|M (d|m)pS,M (s,m)×

log
(∑

m” pD|M (d|m”)pM |S(m”|s)∑
s′,m′ pD|M (d|m′)pS,M (s′,m′)

)
= g(pD|M , pS,M).

(7)

Note that pS , pM and pM |S could be derived from the
joint probability pS,M . Moreover, the obtained expression
g(pD|M , pS,M) responds to the form ax log(xz) which proves
its convexity as stated in [17].

Also, we approximate the distance between utilities to
any other distance depending on the obfuscation type;
EM,D[d(U(M), U(D))] ∼ EM,D[d(M,D)]. Then, we express
the data utility constraint as a function of pD|M and pS,M
by placing pM (m) =

∑
s∈S pS,M (s,m) in the expectancy

expression.

EM,D[d(M,D)] =
∑
m,d

pM,D(m, d)d(M,D)

=
∑
m,d

pD|M (d|m)pM (m)d(M,D)

=
∑
s,m,d

pD|M (d,m)pS,M (s,m)d(M,D)

= h(pD|M , pS,M , d(M,D))
(8)

Finally, we reformulate the problem (5) in order to enhance
its dependency on the probabilistic privacy mapping pD|M
and the prior knowledge pS,M . The final optimization problem
formulation is expressed as:

Minimize:
PD|M

g(pD|M , pS,M)

subject to: h(pD|M , pS,M , d(M,D)) ≤ δ
(9)

2) S reported with M: Problem (9) models the utility
privacy tradeoff in participatory sensing for any reported
measurement that may be correlated with a participant’s secret.
Without loss of generality, we investigate the case of a secret
S reported along with a measurement M as illustrated in
Figure 2(b). Hence, the prior knowledge is reduced to the
marginal distribution of one measurement M̃ ∼ (M,S). As
a result, the formulation of our objective and constraint are
simplified to the next two functions I(M̃,D) = g′(pD|M̃ , pM̃)

and EM̃,D[d(U(M̃), U(D))] = h′(pD|M̃ , pM̃ , d(M̃,D)).

In the next section, we introduce the proposed algorithm to
solve the privacy-utility tradeoff issue in participatory sensing
systems for both scenarios.

V. PRIVACY-UTILITY TRADEOFF MECHANISM

Hereafter, we design our privacy-utility tradeoff mechanism
and we tackle the different issues that may be encountered in

Algorithm 1 Privacy-Utility Tradeoff Algorithm

Require: Joint probability pS,M (s,m), Maximum utility re-
gression level δ,

1: Obfuscation type: Generate the corresponding D
2: Choose the distortion/utility metric U and compute the

distance d(U(M), U(D)) ∼ d(M,D)
3: Set the vector of variables X = pD|M
4: Interior-point method:

Minimize :
X

g(X, pS,M)

subject to:

1) h(X, pS,M , d(M,D)) ≤ δ
2) AX = b
3)

∑
X = 1, ∀D ∈ D

4) 0 ≤ X ≤ 1, ∀D ∈ D,M ∈M
5: Return pD|M

participatory sensing systems such as the mapping of distorted
data and large size data alphabets.

First, we note that problem (9) is convex and bears some
approximation to modified rate-distortion problems [17]. Such
problems are widely studied in information theory with the aim
of computing the bounds of a specific distortion. However,
few applications have been developed based on this model
since they require to be solved using a dual minimization
procedure analogous to the Arimoto-Balhut algorithm [21].
Nevertheless, by using the formulation of problem (9), we may
rely on standard and efficient algorithms for solving the convex
optimization such as the Interior-Point Method (IPM) or the
Successive Quadratic Programming (SQP). Furthermore, we
consider a unique algorithm for the two scenarios of Figure 2,
since they differ mainly in the formulation and in the prior
knowledge but not in the solving method.

Without loss of generality, we assume that the joint prob-
ability distribution between a private information S and a
collected data M , pS,M , is known by the broker by analyzing
statistically the multiple sensing reports and thus can be the
input of our mechanism. Besides, for simplicity reasons, we
suppose that all the queriers for a same type of data have
the same maximum utility regression level, δ. Moreover, we
consider the fact that we are looking for a probabilistic privacy
mapping pD|M . Therefore, we add two extra constraints to
problem (9) as follows:

∑
D∈D pD|M = 1, ∀M ∈ M and

0 ≤ pD|M ≤ 1, ∀D ∈ D,M ∈M.

Finally, we consider two possible encountered challenges
specific to the participatory sensing applications:

a) Mapping of distorted data: the set of the distorted
data D generated by a broker might be larger/smaller than
or equal to the set of measurements M collected by the
participants depending on the type of obfuscation used. Hence,
some mapping fromM to D may be not possible, i.e, pD|M =
0. In order to minimize the computation time, we set such
probabilities to be null. To do so, we form a boolean matrix A
with ones in the positions of potential zeros probabilities and
zeros otherwise. Next, we add the following condition to our
optimization problem: AX = b, where X = pD|M and b is a
zeros vector with the size of X .

298

b) Data with large size alphabets: most of participa-
tory sensing collected data is rather with large size alphabets
such as the environment sensors’ readings. Therefore, the size
of the set of measurements M can be very important which
results in a challenging estimation of the prior knowledge
pS,M . Furthermore, the set of distorted data D can be, de-
pending on the selected obfuscation, as large as M. Thus,
the solving of the predefined optimization problem (9) could
be complex and time consuming. Also, regarding the non-
linear nature of the objective function g(pD|M , pS,M), we
should minimize the size of data to be distorted in order to
utilize the standard convex solvers. In order to deal with such
an issue, we opt for the well-known quantization techniques.
We differ the quantization method based on the type of the
sensing application. For example, if the participatory sensing
task targets collecting location-tagged data, we can consider
clustering the sensing area into small cells. Though, we must
highlight that the quantization step represents an additional
distortion source which may yield to sub-optimal privacy-
utility tradeoffs. Hence, we generate a new set of data alphabets
that we denote by Q and we compute the corresponding prior
knowledge pS,Q that represents the new input of our privacy-
utility algorithm. The resulted privacy mapping is defined as
pDq|Q where Dq ∈ N is the set of distorted quantized-
data. Finally, we map the obtained probabilities values to their
corresponding original alphabets.

The steps of our privacy-utility tradeoff method are sum-
marized in Algorithm 1. First, we compute the prior knowledge
of the broker, pS,M . Next, we select an obfuscation technique
based on the data type (e.g exchanging position for location
data, adding noise for audio/photo, etc.). Accordingly, we
generate the set of possible distorted data D and compute the
distance among utilities UM and UD. Finally, we run the IPM
method to solve our optimization problem.

VI. PERFORMANCE EVALUATION

Hereafter, we present three different real sensing datasets
to be considered as crowd sensed measurements. We run
simulations on each different dataset and we evaluate the
observed privacy and utility metrics while varying the prior
knowledge distribution, the obfuscation type and the scenario.

A. Real Sensing Datasets

1) Occupancy Detection Data: This dataset was generated
by authors in [22] with the aim of evaluating the accuracy
of different classification Machine Learning algorithms. The
experiment consists of detecting if a room is occupied or not
based on environment sensors readings. The sensors collect the
ambient temperature, the humidity, the light and the CO2 level
measurements. In this work, we consider that such readings are
the measurements M reported via a crowdsensing application
to a service provider in order to monitor smart-house con-
nected objects. However, when reporting these measurements,
a participant can expose his position which is considered as
the secret S since it reveals his indoor lifestyle.

2) GPS Trajectory Data: This data has been collected from
the GO Track mobile application [23] and studied by authors
in [24] in order to identify similar trajectories for carpooling
purpose. The readings include rating of the traffic, weather

TABLE I. OCCUPANCY DATA CHARACTERISTICS

Datasets
Data Distribution

0 (non occupied) 1 (occupied)

Dataset1 (closed door) 0.64 0.36

Dataset2 (open door) 0.79 0.21

and transportation besides collecting the visited geographical
points, the vehicle speed and the total realized distance. Hence,
we consider here a traffic rating crowdsensing application that
reports periodically these measurements. And, we assume that
the private information S is the participants’ driving behavior
which can be inferred from the reported speed, weather and
traffic status values.

3) Crowd Temperature Data: This dataset is contributed
by Mohannad et al. [25], as collected outdoor temperature
by taxis in Rome. Taxicabs are equipped with temperature
sensors attached to their vehicles which report their readings
along with the corresponding geographical position to a central
server every 6 hours. In this paper, we suppose that such mea-
surements are gathered via a participatory sensing application.
That is, the participants’ private information (location) is sent
along with the measurements, which represents the scenario
of Figure 2(b).

B. Evaluation Results

In the following, we run our privacy-utility tradeoff
method, using the convex solver Interior Point Method of
Matlab, on the above described dataset for various participa-
tory sensing applications and scenarios. For different plots, we
recall the utility metric U of Eq. (3) to measure the achieved
data utility and the mutual information of Eq. (2) to quantify
the privacy leakage. Also, we set an inversely proportional
privacy score as Ps = 1− I(S,D).

1) Prior knowledge impact (scenario 1): We consider the
crowdsensing from smart-house connected objects applications
using the occupancy detection data [22]. We utilize two
datasets collected with room door open and closed as detailed
in Table I. Let S ∈ {0, 1} be the room occupancy status where
S = 1 for an occupied room and 0 otherwise. Also, we denote
byM = {T,H,L,CO2} and D = {T̃ , H̃, L̃, ˜CO2} the vector
of measurements reported by a participant to the broker and
by the broker to the queriers, respectively. Such readings are
large size alphabets data. So, we apply a quantization step
that clusters the values into significant intervals based on the
identified thresholds of [22]. Since the number of features in
M is important, we opt for the exchange-distortion obfuscation
technique to generate a set of distorted data D of a same size
as M. That is, we perturb the measurements’ vector M by
exchanging its elements’ values with others in the set M.

We plot in Figure 3 (a) and (b) the utility-privacy tradeoff.
The utility metric is naturally a decreasing function of the
data regression level δ which implies the amount of distortion
applied to M . That is, the more the data is perturbed, the
less useful is. Nevertheless, our method has reached a utility-
privacy tradeoff by achieving at least 90% of privacy protection
with less than 10% of data-utility loss for both datasets.

On the other hand, we plot in Figure 3 (c) the evolution
of the privacy leakage, I(S,D) as function of the average
obfuscation level measured by the Hamming distance and we

299

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Maximum data utility regression

P
riv

ac
y−

U
til

ity

Privacy score
Data Utility

(a) Privacy-Utility Tradeoff for Dataset1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Maximum data utility regression

P
riv

ac
y−

U
til

ity

Privacy score
Data Utility

(b) Privacy-Utility Tradeoff for Dataset2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Average Hamming distance

P
riv

ac
y

Le
ak

ag
e

Dataset1
Dataset2

(c) Privacy leakage-Dataset1 & Dataset2

Fig. 3. The Privacy and Utility metrics for the two datasets of Occupancy

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Maximum data utility regression

P
riv

ac
y−

U
til

ity

Privacy score
Data Utility

(a) Privacy-Utility Tradeoff for erasure-
distortion

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Maximum data utility regression

P
riv

ac
y−

U
til

ity

Privacy score
Data Utility

(b) Privacy-Utility Tradeoff for exchange-
distortion

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Average distortion

P
riv

ac
y

Le
ak

ag
e

Erasure distortion
Exchange distortion

(c) Privacy leakage exchange Vs distortion

Fig. 4. The Privacy and Utility metrics for the two distortion applied on GPS data set

compare it for the two datasets. Clearly, the privacy leakage
is minimized when data perturbation level increases until we
achieve a perfect privacy, I(S,D) = 0. Also, we observe that,
for Dataset1, the perfect privacy requires distorting at least one
feature of the measurements vector M whereas an average of
30% distorted data was enough to reach the same privacy level
for Dataset2.

This is due to the difference of the data distribution
as detailed in Table I. Dataset1 has a balanced distribution
of occupancy measurements which makes distinguishing the
secret harder while Dataset2 consists of more non occupied-
room reported readings. Indeed, this distribution presents the
prior knowledge of the broker about the participants’ data.
Hence, the more balanced the joint distribution pS,M (by
reporting different readings) is, the harder to compromise one’s
private information is.

2) Obfuscation type impact (scenario 1): We suppose
studying here a traffic rating participatory sensing application.
We consider as secret S the driving behavior of a participant
and byM = {speed,R,W} the reported values for the vehicle
speed, the traffic and the weather rating, respectively. Similar to
the occupancy data, we notice that the reported speed measure-
ments are large size alphabets data and we quantized it by set-
ting three different intervals; ([0, 30], [30, 50], [≥ 50])km.h−1.
Besides, we vary the type of obfuscation to generate D and
we plot the corresponding results in Figure 4.

First, we set the obfuscation technique as the erasure-
distortion, i.e, we hide one or more features of the measure-
ments vector M . The obfuscation level is quantified by the
average number of erasures and varies from 0 to 3. Figure 4(a)

shows the achieved privacy and utility values for different data-
utility regression levels. We notice that hiding one feature
among 60% of the collected data is enough to obtain the
maximum privacy level achieved when hiding all data features.
Moreover, our method realizes such privacy protection while
maintaining more than 95% of data utility.

Further, we set the obfuscation type as the exchange-
distortion measured by the Hamming distance. Similarly, we
show in Figure 4(b) that, differently from the erasure-distortion
simulation, the privacy-utility tradeoff is obtained for only 35%
of data obfuscated while realizing an important quality of data.

Finally, we compare the impact of varying the obfuscation
type on the traffic rating crowdsensing data in Figure 4(c). We
observe that an average of 0.1 erasure-distortion data ensures
lower privacy leakage values than the exchange-distortion. This
confirms that hiding a feature of the measurements vector
M has an interesting impact on the privacy risk whereas
exchanging it with another value affects mainly the data
joint distribution. Nevertheless, by exchanging more values
(Average Hamming distance ≥ 0.2), we obtain better privacy
levels. Note also that the minimum achieved privacy leakage
level by erasure-distortion is I(S,D) = 0.0117 while the
exchange-distortion obfuscation realized a perfect privacy. This
highlights the importance of the obfuscation type selection in
order to ensure better privacy for similar data regression levels.

3) Obfuscating both variables (M,S) impact (scenario
2): Hereafter, we investigate the scenario of Figure 2(b) for
location tagged reported temperature measurements. Hence,
we study the efficiency of our method while using the marginal
distribution of M̃ = (M,S) instead of the joint one. To do

300

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Average L2−distance

P
riv

ac
y

Le
ak

ag
e

Privacy leakage

(a) Privacy leakage

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Maximum data utility regression

P
riv

ac
y−

U
til

ity

Privacy score
Data Utility

(b) Privacy-Utility Tradeoff

Fig. 5. The Privacy and Utility metrics for temperature crowdesensing app

so, we first cluster the sensing area into 9 sub-areas and we
consider the exchange-distortion on the participants’ locations.
That is, the users may report close by sub-areas tags along with
their sensor readings instead of their real positions. Figure 5
shows the realized privacy and utility values for different L2-
distance (Euclidean) values.

We observe that the privacy leakage is decreasing slowly
and reaches its minimum level for a l2-distance ≥ 2. On the
other hand, we achieve a privacy-utility tradeoff by changing
80% of the location data to the cost of minimizing the utility
of data to 70%. This slightly more important cost, compared
to the other participatory sensing applications, is due to the
fact that the location is distorted, however necessary for the
accuracy of the reported temperature readings. Indeed, we
achieve by our privacy-mechanism a better privacy level for
participants, but lower data quality.

VII. CONCLUSIONS & FUTURE WORK

In this paper, we focus on the privacy-utility tradeoff in
participatory sensing systems. This issue is encountered by a
participant recruited to report publicly some data to a querier
while protecting his private information and respecting the data
utility requirements simultaneously. We present an adequate
metric to quantify the privacy protection level of participants
and consider a data utility threshold set by queriers. Also,
we investigate the adversary model and propose to rely on a
trusted entity aiming at minimizing the privacy leakage while
respecting the data utility constraint. We evaluate our privacy-
preserving utility-aware mechanism on different participatory
sensing applications based on various real datasets. Results
demonstrate the efficiency of our solution for different obfus-
cation types and data distribution.

For future work, we consider enhancing the performance
of our scheme by merging the proposed probabilistic model
with other privacy-preserving techniques such as l-diversity or
differential privacy.

REFERENCES

[1] J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy,
and M. B. Srivastava, “Participatory sensing,” in WSW: Mobile Device
Centric Sensor Networks and Applications, 2006, pp. 117–134.

[2] N. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. Camp-
bell, “A survey of mobile phone sensing,” IEEE Communications
Magazine, vol. 48, no. 9, pp. 140–150, 2010.

[3] P. Mohan, V. N. Padmanabhan, and R. Ramjee, “Nericell: Rich monitor-
ing of road and traffic conditions using mobile smartphones,” in ACM
conf. on Embedded Network Sensor Systems, 2008, pp. 323–336.

[4] M. Mun, S. Reddy, K. Shilton, N. Yau, J. Burke, D. Estrin, M. Hansen,
E. Howard, R. West, and P. Boda, “PEIR, the personal environmental
impact report, as a platform for participatory sensing systems research,”
in Mobile Systems, Applications and Services, 2009, pp. 55–68.

[5] I. J. Vergara-Laurens, L. G. Jaimes, and M. A. Labrador, “Privacy-
preserving mechanisms for crowdsensing: Survey and research chal-
lenges,” IEEE Internet of Things Journal, 2016.

[6] M. Wernke, P. Skvortsov, F. Dürr, and K. Rothermel, “A classification of
location privacy attacks and approaches,” Personal Ubiquitous Comput.,
vol. 18, pp. 163–175, 2014.

[7] K. Shilton, “Four billion little brothers?: Privacy, mobile phones, and
ubiquitous data collection,” ACM Communications, vol. 52, pp. 48–53,
2009.

[8] E. D. Cristofaro and C. Soriente, “Participatory privacy: Enabling
privacy in participatory sensing,” IEEE Network, vol. 27, 2013.

[9] C. Cornelius, A. Kapadia, D. Kotz, D. Peebles, M. Shin, and N. Trian-
dopoulos, “AnonySense: Privacy-aware people-centric sensing,” in Mo-
bile Systems, Applications and Services, 2008, pp. 211–224.

[10] Y. Yao, L. T. Yang, and N. N. Xiong, “Anonymity-based privacy-
preserving data reporting for participatory sensing,” IEEE Internet of
Things Journal, vol. 2, pp. 381–390, 2015.

[11] R. K. Ganti, N. Pham, Y.-E. Tsai, and T. F. Abdelzaher, “Poolview:
Stream privacy for grassroots participatory sensing,” in Proceedings of
the 6th ACM Conference on Embedded Network Sensor Systems, 2008,
pp. 281–294.

[12] D. Christin, A. Reinhardt, S. S. Kanhere, and M. Hollick, “A survey
on privacy in mobile participatory sensing applications,” J. Syst. Softw.,
vol. 84, 2011.

[13] J. Shi, R. Zhang, Y. Liu, and Y. Zhang, “Prisense: Privacy-preserving
data aggregation in people-centric urban sensing systems,” in INFO-
COM, 2010 Proceedings IEEE, 2010, pp. 1–9.

[14] H. Jin, L. Su, H. Xiao, and K. Nahrstedt, “Inception: Incentivizing
privacy-preserving data aggregation for mobile crowd sensing systems,”
in Proceedings of the 17th ACM International Symposium on Mobile
Ad Hoc Networking and Computing, 2016, pp. 341–350.

[15] I. S. Reed, “Information theory and privacy in data banks,” in Pro-
ceedings of the June 4-8, 1973, National Computer Conference and
Exposition, 1973, pp. 581–587.

[16] S. R. L. Sankar and H. V. Poor, “A theory of privacy and utility in
databases,” in ArXiv e-prints, Feb. 2011, 2011.

[17] F. du Pin Calmon and N. Fawaz, “Privacy against statistical inference,”
in 50th Annual Allerton Conference on Communication, Control, and
Computing, 2012, pp. 1401–1408.

[18] S. Salamatian, A. Zhang, F. du Pin Calmon, S. Bhamidipati, N. Fawaz,
B. Kveton, P. Oliveira, and N. Taft, “Managing your private and public
data: Bringing down inference attacks against your privacy,” IEEE
Journal of Selected Topics in Signal Processing, vol. 9, pp. 1240–1255,
2015.

[19] I.Wagner and D.Eckhoff, “Technical privacy metrics: a systematic
survey,” in eprint arXiv:1512.00327, 2015.

[20] Q.-T. Nguyen-Vuong, Y. Ghamri-Doudane, and N. Agoulmine, “On
utility models for access network selection in wireless heterogeneous
networks,” in IEEE Network Operations and Management Symposium,
NOMS, 2008, pp. 144–151.

[21] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley-
Interscience, 2006.

[22] L. M. Candanedo and V. Feldheim, “Accurate occupancy detection of
an office room from light, temperature, humidity and {CO2} measure-
ments using statistical learning models,” Energy and Buildings, vol.
112, pp. 28 – 39, 2016.

[23] “GO TRACK application,” https://play.google.com/store/apps/gotrackfree,
accessed: 2016-08-16.

[24] M. O. Cruz, H. Macedo, and A. Guimares, “Grouping similar tra-
jectories for carpooling purposes,” in 2015 Brazilian Conference on
Intelligent Systems (BRACIS), 2015, pp. 234–239.

[25] M. A. Alswailim, H. S. Hassanein, and M. Zulkernine, “CRAWDAD
dataset queensu crowd temperature (v. 2015-11-20),” Downloaded from
http://crawdad.org/queensu/crowd temperature/20151120, nov 2015.

301

Decision-Theoretic Approach to
Designing Cyber Resilient Systems

Vineet Mehta
MITRE Corporation

Paul D. Rowe
MITRE Corporation

Gene Lewis
Stanford University

Ashe Magalhaes
Stanford University

Mykel Kochenderfer
Stanford University

Abstract—The increasing number of persistent attacks on
computing systems has inspired considerable research in cyber
resilience solutions. Resilient system designers seek objective
approaches to aid in the comparison and selection of effective
solutions. Decision theoretic techniques such as Markov decision
processes can be leveraged for such comparisons and design
decisions. Markov decision processes facilitate examination of
uncertainty in system dynamics, diversity of responses, and
optimization for operational objectives. This paper proposes a
system design approach based in decision theory to achieve
effective cyber resilience solutions. The prototypical example of a
system with network intrusion detection and host reconstitution is
used to illustrate this approach and highlight difficulties designers
face due to the non-trivial coupling that may arise between
response mechanisms.

I. INTRODUCTION

Recently, the field of cyber resilience has received growing

attention as the cyber defense community has pivoted from the

pursuit of absolute protection to the exploration of methods

for damage mitigation and system recovery. Cyber resilience

has been defined as “the ability of cyber systems and cyber-

dependent missions to anticipate, continue to operate correctly

in the face of, recover from, and evolve to better adapt to

advanced cyber threats” [1]; this is a paradigm shift away

from the traditional focus of preventing intruders from entering

a system. Recent work in cyber resilience has subsequently

focused on the study of reconstitution, or actions that allow

for the recovery of infected systems back to a normal operating

state. Cyber resilient design attempts to blend traditional

security measures with proactive strategies and adaptive com-

ponents to create a system that can both defend and recover

from malicious attacks conducted by an adversary.

The design of cyber-resilient systems is a non-trivial task.

Even simple system architectures that operate under strong

assumptions about adversary behavior are prone to volatile and

unpredictable system dynamics due to inherent uncertainty in

system inputs and the effects of component interactions. This

difficulty is further exacerbated by the number and variety of

defensive and resilience solutions available, coupled with di-

verse organizational objectives, and shifting adversarial tactics.

Systematic analysis under a range of operational conditions

Approved for Public Release; Distribution Unlimited. Case Number 16-
2931. This technical data was produced for the U. S. Government under
Contract No. FA8702-16-C-0001, and is subject to the Rights in Technical
Data-Noncommercial Items Clause DFARS 252.227-7013 (JUN 2013).

is necessary for understanding the performance sensitivity

of candidate system designs; to perform such an analysis, a

flexible framework is needed within which system designs can

be quantitatively modeled, evaluated and compared. Such a

framework would ease the designer’s task of identifying cyber

resilient architecture options.

We contribute to the development of this framework by

proposing a decision-theoretic modeling paradigm. Specifi-

cally, we illustrate the advantages of a Markov Decision Pro-

cess (MDP) formulation [2], [3] for comparing cyber resilience

of a variety of system designs and configurations. Through the

use of an illustrative example, we demonstrate how an MDP

system model can be used to account for the variety of mission

objectives, input uncertainties, and design options in a unified

manner. Each MDP formulation entails an optimal policy (a

mapping from the system state to a recommended action). We

study the sensitivity of the utility of these policies to changes

in the adversary-controlled parameters of a model. Our illus-

trative example suggests how more complex systems can be

analyzed through the composition of component models. The

facility for composition allows for a unified examination of

design options from diverse resilience techniques.

Previous work in the formation of mathematical frameworks

of cyber resilience [4], [5] has focused on systems modeled

as interdependent service components connected over a graph.

Broadly, these approaches represent the system health as a

collection of component states, with the system transition-

ing between states in response to both external influences

and actions taken on components. Though these works are

important steps in model development, their focus has been

on recommending the best actions that return a system to

normalcy during operation. There appears to be an absence

of frameworks which address system designs with a mixed

set of cyber resiliency goals (anticipate, withstand, recover,

and evolve) in a unified manner, with the goal of supporting

both feature selection during system design and sensible action

recommendation during system operation. Our approach sug-

gests a unifying framework within which features contributing

to different resilience goals can be compared against each

other; a system designer can therefore decide, for example,

whether it is better to implement a feature that makes it easier

to withstand an attack or a feature that reduces the time to

recover from an attack. Furthermore, the system operator is

provided with guidance on how to best employ the resilience

features selected by the system designer.978-1-5090-3216-7/16/$31.00 ©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

302

Concretely, the main goal of this paper is to illustrate the

use of decision theory for a quantitative analysis of resilience

as it relates to the security of computing systems. In support

of this goal we provide:

• A formulation of systems analysis for cyber resilience

within the context of a decision-theoretic framework.

• An application of this formulation to an example system

with a specific set of resilience response mechanisms:

network intrusion detection and host reconstitution.

• An illustration of design options analysis using this

framework in comparing the resilience afforded by fam-

ilies of systems.

The paper is structured as follows. Section II describes pre-

vious work in support of cyber resilience. Section III describes

the use of a POMDP framework for examining resilience for

security of computing systems. Section IV introduces the for-

mulation of an example system as an MDP model. Section V

describes experiments aimed at comparing the resilience of

different system configurations. Section VI compares results

obtained from the calculation of optimal policies for a variety

of system configurations, with different resilience features,

and adversarial activity. The results illustrate how a designer

can establish which resilience features are most effective.

Section VII closes the paper with a discussion.

II. RELATED WORK

Previous work in support of cyber resilience has focused

on the development of a set of goals and a framework within

which these goals may be pursued; examples include the

Cyber Resiliency Engineering Framework (CREF) proposed

by Bodeau et. al [1], [6] and the CERT Resilience Management

Model [7]. Under these frameworks, generic cyber resilience

goals are defined by a cyber system’s ability to anticipate

adversarial attacks, continue operation under distress, recover

operation after sustaining an attack, and utilize previous en-

counters to better prepare for future attacks.

A. Mathematical Formulations of Cyber Resilience

Work in developing a mathematical formulation of modern

cyber resilience can be traced to Ramuhalli et. al [4], who

proposed a graph-based cyber resilience model for the study of

reconstitution actions. They model their system as a connected

network with nodes that host a set of dependent services; the

system maintains a state related to its health, with the ability to

transition between sets of fully operational, marginally oper-

ational, and compromised states in response to natural causes

or the actions of an adversary. Reconstitution is treated as an

optimization problem over the resulting graph, balancing the

value of continued operation against the costs of reconstitution;

resilience is achieved through complete reconstitution of lost

services.

Choudhary et. al [5] expand this graph-based framework by

modeling systems of interest as a collection of interdependent

system components. Here each system component is modeled

as a subgraph and assumed to provide a distinct service while

being susceptible to a particular type of attack; the system as a

whole is then modeled as the total set of connected sub-graphs.

Resilience is achieved by selecting a subset of pre-defined

mitigation actions. Choudhary et. al also provide an action

recommendation engine that takes as input the current system

state and provides as output an action recommendation. The

recommendation engine compiles sufficient statistics related to

performance and security measures of interest, and then solves

an optimization problem to provide a sensible advisory. In

contrast, our approach provides a recommendation engine in

the form of a policy; advantages include the ability to examine

policies without the need for a running system during design-

time, and fast real-time action lookup for a given system state

when in deployment.

B. Decision-Theoretic Approaches to Cyber Security

One well-explored approach to handling the inherent un-

certainty in adversarial cyber attacks is to adopt a learning-

based decision-theoretic model. These models are capable of

leveraging data to derive optimal actions based on the state of

the system. To the best of our knowledge, such models have

not been employed as generalized frameworks in the design

or orchestration of resilience for secure systems. Decision-

theoretic approaches have been applied extensively to the

adaptation of detection models in intrusion detection systems

(IDS); examples include a multi-agent reinforcement learning

approach considered by Servin and Kudenko [8], where agents

cooperate to detect intrusions, and a partially observable

Markov decision process (POMDP) formulation provided by

Lane [9], where incoming partially labeled data is assumed to

be generated by a normal user or an attacker. They have also

been applied in the selection of suitable policies for guiding

the operation of intrusion detection and response systems, as

demonstrated in the analysis provided by Kriedl [10].

The mention of previous IDS related efforts here is mo-

tivated only by their connection to our own illustrative ex-

ample of applying MDP models for design and operation

of resilient secure systems. Our main aim, however, is to

demonstrate the general utility of such models in providing

a unified framework for design of resilient systems, and their

subsequent operation. Since our illustrative example considers

IDS models, we provide some details on the IDS attributes

highlighted in our example. Despite the popularity of IDS

systems, the inaccuracy of detections and large volume of

false alarms (in some cases nearly 70% of all alerts) can limit

effectiveness [11]. IDS systems also have difficulty keeping

up with incoming network traffic which exceeds rates of a

few megabits per second. Studies with Snort, an open source

intrusion detection system, have reported dropped packets

proportions of more than 70% [12] due to network packet

throughput limitations.

In order to address this limitation, Bakhoum [13] disproved

the common notion that a strong IDS must inspect every

packet, showing instead that network security can be main-

tained while inspecting only a subset of incoming packets.

However, such a system is still vulnerable to allowing hostile

packets past the IDS and into the host, where an infection can

303

cause critical computing components to malfunction indefi-

nitely until taken offline for maintenance. This result suggests

that a controller taking actions over both the IDS and the

system host is needed to achieve the cyber resilience goals of

operation under distress and recovery after a sustained attack.

In order to highlight the use of decision theory for selection

of features during design, we include a host capable of

reconstitution as a separate component, connected to the IDS

by a communications link. This allows us to illustrate the

modular composition of a system from components and to

examine non-intuitive responses that can arise from com-

ponent interactions under a range of adversarial scenarios.

We consider how different design choices augment the space

of actions available for an operational system, and how the

addition of such actions affects overall cyber resilience. We

also illustrate the flexibility of decision theory based design for

assessing resilience of alternate operational objectives through

appropriate constructions of reward structures. This ability to

assess alternate designs in the context of operational objec-

tives allows for discriminating the effectiveness of resilience

features. For instance, an IDS, which is often viewed as a

valuable feature, might prove to be of little value for certain

designs and operational scenarios.

III. MDP FRAMEWORK FOR CYBER RESILIENCE

When we talk of the resilience of a system we refer to

the stability of that system’s performance under shocks of

various types. The performance is measured by some objective

function f , and the shocks are represented as changes in

the different inputs to f . There is no single right choice of

objective function to measure a system’s performance; in fact,

there may be many such performance measures of interest for

a given system. The system may similarly be more or less

stable as different inputs vary, so we might be more interested

in resilience to changes of particular inputs. In cyber resilience

we are primarily interested in the stability of an objective

function f under changes to inputs that are under the control

or influence of a cyber adversary.

A. Decisions in Cyber Resilient System Design

An important question in system design is whether adding a

given feature to a system will make it more resilient, and if so

by how much. Similarly, a system designer may be constrained

to add only one of two extra features, and so would like to

know which one has a greater effect on the system’s resilience.

It is common for such features to provide system administra-

tors with the ability to adaptively respond to adversary activity.

An important aspect in increasing the resilience is to choose

good policies for response. This suggests a connection between

cyber resilience and decision theory.

To demonstrate this connection consider a standalone sys-

tem that is connected to an external network on which an

adversary may reside. The adversary can inject malicious mes-

sages into the stream of incoming messages; these malicious

messages have some chance of infecting the system. The

system incurs some cost for being infected. Common methods

for making the system more resilient to incoming malicious

messages include (a) employing an intrusion detection system

(IDS) to filter out messages matching known malware signa-

tures and (b) periodically resetting or reconstituting the system

to a known good state. Both of these resilience mechanisms

may introduce a new cost of their own. If message inspection

cannot keep up with the rate of incoming messages, dropped

packets will reduce the performance of the system. Similarly,

resetting the system might entail taking it offline for some

time, which itself may carry some cost.

These feature interactions increase the complexity of the

system; by offering more actions to take in a given state

(e.g. inspect a message vs. let it pass through uninspected),

the variety of system behaviors depending on the policy

chosen is correspondingly higher. Given the additional cost

of some of the new actions, there is a chance that there are

new policies available to deploy that perform worse than the

original system. This suggests that techniques from decision

theory can bring value to the problem of cyber resilience.

B. Markov Decision Process Formulation

A popular model used in decision theory is a (fully ob-

servable) Markov Decision Process (MDP) or its partially

observable variant (POMDP) [2], [3]. In general a POMDP is

described by the tuple FΩ = (S,A, PS , R, Z, PZ ,Ω) where:

Parameter

S Set of states

A Set of actions

PS Probability distribution over resulting states

R Rewards associated with states and actions

Z Set of observations

PZ Probability distribution over resulting observations

Ω Set of system parameters

A POMDP model of the system described above can provide

us with parameterized, quantitative dynamics. The set Ω can

encode probabilistic parameters such as false positive and

negative rates of the IDS, or the likelihood that a malicious

message will infect the system. We can therefore investigate

and compare the system’s performance under changes to the

underlying parameters, and consider variations associated with

uncertainty of these parameters. Likewise, we can compare

the system behavior with and without the two resilience

mechanisms we described. Since such models admit solutions

(i.e. policies that optimize the utility function) it is sensible

to use the expected utility of the system under this optimal

policy as a performance measure. That is, V̄∗ = E[V∗(s)]
acts as a scalar metric for characterizing the performance of a

system modeled by FΩ. In this way the resilience of the system

roughly corresponds to the stability of V̄∗ under changes to the

underlying parameters Ω.

IV. EXEMPLAR PROBLEM FORMULATION

In the sequel, we illustrate the practicality and power of

our MDP cyber resilience framework via an examination of a

prototypical system.

304

A. Model Overview

Our example model features an intrusion detection system

protecting a host, as illustrated in Figure 1. The actions of

the intrusion detection system and the host are guided by a

controller. The action spaces over the IDS and host system

is specified as aI ∈ AI = {inspect, pass} and aH ∈
AH = {wait, reset}. Messages generated in the extranet

Extranet Intrusion Detector Host

Controller

X Y

AI

AH

Fig. 1. Intrusion Detection and Response System

first pass through the intrusion detection system before arriving

at the host system. A message’s infection state is given by

the random variable x ∈ X = {benign, malicious}. An

incoming message is malicious with probability λ. The

intrusion detection system can either pass the input message

or drop it, guided by the controller actions aI ∈ AI . The

random variable Y encodes the message output states as:

y ∈ Y = {benign, null, malicious}. If a message

successfully passes through the intrusion detection system it’s

outputs state y corresponds to that of the input x. Otherwise

the output has state y = null. In the following we detail the

internal operation of the intrusion detection system and the

host, as influenced by the actions (aI , aH).

B. Intrusion Detection System Model

The state transition diagram in Figure 2 describes the

operation of the intrusion detection system.

b = idle b = busy

aI = pass

y′ = x

aI = inspect

φ

y′ = x y′ = null

ψB ψM

aI = pass

y′ = x

(1− φ)φ

(1− φ)

y′ = null

aI = inspect

(1− φ)

φ

Fig. 2. Intrusion detector state transition diagram

The random variable B encodes this state as b ∈ B =
{busy, idle}. The intrusion detection system is in the

b = idle state if it is not inspecting a message for mali-

cious content, otherwise its state is b = busy. We employ

the Markov assumption to model transitions between states.

Therefore transition to a future state B′ = b′ depends only

on the current state B = b and the action AI = aI . The

intrusion detection system simply passes an input message

without inspection if the current action is aI = pass. Under

this action, the output of the intrusion detection system at the

next time step y′ corresponds to the infection state of x. In

this instance, the intrusion detection system returns to the idle

state with certainty. If the intrusion detection system starts in

the busy state, it transitions to the idle state with probability

φ. The value of parameter φ governs the mean holding time

in the busy state, and lower values of φ are interpreted as

settings where the system performs deeper message inspection.

When the system starts in the idle state, under the action

aI = inspect , it transitions to the busy state with probability

(1 − φ). In our model we make the simplifying assumption

that the intrusion detection system provides an output which

reflects the outcome of its inspection in the next time step,

independent of the busy time induced by inspect action.

We model the intrusion detection system as an imperfect

inspection system that can produces false positive and false

negative results. The false positive and false negative proba-

bilities for malicious message detection are specified by the

parameters βFP and βFN respectively. When the intrusion de-

tection system inspects a message, the message is classified as

malicious with probability ψM = λ(1−βFN)+(1−λ)βFP
and benign with probability ψB = λβFP +(1−λ)(1−βFN).
When the intrusion detection system is in the idle state and

it classifies a message as malicious, that message is always

dropped and y = null for the next time step. While the

intrusion detection system is in the busy state, the action

to inspect also results in that message being discarded and

y = null. This behavior models computational limits typical

of intrusion detection systems when attempting to keep pace

under high traffic loads.

C. Host System Model

Figure 3 illustrates operational dynamics of the host, which

are also modeled by a Markov Decision Process. The host

system is described by two primary state variables that char-

acterize the operational and infection states. The host has two

operational states w ∈W = {full, reset}. In the full state,

the host is capable of fully processing incoming messages.

The reset state provides an opportunity for the host to either

avoid processing potentially malicious messages or allow for

repairs if the host was previously infected. The state variable

h ∈ H = {clean, infected} specifies whether the host

system is infected or not.

The state of the host system is influenced by the input

message state y and action aH . If the action state is wait

and incoming message is not malicious, the system remains

in the (full, clean) state. We allow the host to have some

305

w = full

h= clean

w = reset

h= clean

w = full

h= infected

w = reset

h= infected

aH = reset

(1− θ)

θ

ψ

(1− ψ)

y �= infected

aH = wait

p(h′ = infected|y = infected, ·) = μ

aH = reset

aH = wait

y = (·)

Fig. 3. Host state transition diagram

intrinsic resistance to malicious incoming messages. This

ability is parameterized by μ: the probability of infection in

the event of a malicious message. Incoming malicious

messages cannot further infect a host, when the host state is

(full, infected). The reset action forces a transition to

w = reset state. Our model allows different mean holding

times in the reset state for the infection states clean and

infected, through separate restoration probabilities θ and ψ.

D. Stochastic Model Dynamics

In order to examine the stochastic dynamics of our model

as a whole we must consider the joint state of the system

S = (Y,X,W,H,B), under the influence of aggregate actions

A = {AI , AH}. The transition probability from current state

S to future state S′ conditioned on action A is factored as:

P (S′ | S,A) = P (Y ′ | X,B,AI)P (X ′)
× P (W ′, H ′ |W,H, Y,AH)P (B′ | B,AI)

The probability of a malicious incoming message is inde-

pendent of other state variables, and given as a Bernoulli

distribution with parameter λ:

P (X ′) = Ber(X ′ = x′ | λ) = λx′(1− λ)1−x′

Selected component probabilities are provided in Tables I

and II. For brevity of presentation, we have only specified the

non-zero probabilities in these tables. The probability function

P (Y ′ | X,B,AI) is specified in Table I. This function models

the output of our intrusion detection system at the next time

step as dependent only on the input message state, the intrusion

detection system busy state, and the controller action. The

probability function P (B′|B,AI) is specified in Table II. This

function models the intrusion detection system’s next busy

state B′ as depending only on the current busy state and

controller action.

TABLE I
INTRUSION DETECTOR OUTPUT TRANSITION PROBABILITY:

P (Y ′ | X,B,AI)

X B AI Y ′ P (Y ′ | X,B,AI)

benign idle inspect benign 1− βFP

benign idle inspect null βFP

malicious idle inspect null 1− βFN

malicious idle inspect malicious βFN

benign idle pass benign 1

malicious idle pass malicious 1

benign busy pass benign 1

malicious busy pass malicious 1

benign, malicious busy inspect malicious 1

TABLE II
INTRUSION DETECTOR OPERATION TRANSITION PROBABILITY:

P (B′ | B,AI)

B AI B′ P (B′ | B,AI)

idle pass idle 1

idle inspect busy 1− φ

idle inspect idle φ

busy inspect, pass busy 1− φ

busy inspect, pass idle φ

The transitions of the aggregate host states are given by the

probability function P (W ′, H ′ | W,H, Y,AH). This proba-

bility can be written in a fashion similar the other component

probabilities. The form of this probability highlights that the

host state is driven primarily by the message state Y and action

AH .

Our aim is to find optimal policies π∗(s) for the MDP

(S,A, P,R | Ω). We have specified the states S and actions A,

as well as the transition probability P for the parameter tuple

Ω = (λ, μ, φ, θ, ψ, βFP, βFN). The reward structure R remains

to be specified for a complete description of the MDP. In this

paper we will focus on the case where the rewards depend only

on the aggregate state SH = (W,H, Y) of the host system.

The rewards for the host states are specified in Table III.

TABLE III
REWARD STRUCTURE: R(α) = R(SH)

W H Y R

full clean benign 1.0

full clean null 1.0 + αρ+

full clean malicious 1.0 + αρ−
full infected benign, null, malicious ρ

reset clean, infected benign, null, malicious 2ρ

In general the future-discounted expected return of applying

a policy π when starting in state S0 = s is given by the value

function:

Vπ = E

[∞∑
t=0

γtR(st, π(st))|S0 = s

]
(1)

The discount factor γ is constrained such that γ ∈ [0, 1]. A

solution to our MDP involves finding the optimal policy which

306

TABLE IV
FOUR SUBSYSTEMS

AH

AI {wait} {wait, reset}
{pass} Σ0 Σ2

{pass, inspect} Σ1 Σ3

maximizes the value function across all states. This objective

is formally expressed as:

π∗(s) = argmax
a

R(s, a) + γ
∑
s′
P (s′|s, a)V (s′) (2)

A scalar metric for characterizing the resiliency of our system

is the maximal expected utility V̄∗ = E[Vπ|π = π∗]. This ex-

pected value is calculated using the stationary state probability

distribution ϕ(s). The stationary distribution can be computed

as the normalized left eigenvector for the unit eigenvalue of

the transition probability matrix under optimal policy.

V. EXPERIMENTS

Our MDP model contains several sub-models that arise by

restricting the action space A = AI × AH . In particular,

consider the four systems that arise by restricting the action

spaces as described in Table IV. These systems are viewed as

candidate design proposals with different resilience features.

Σ0 represents a system without an IDS and with no ability

to reset or reconstitute the system if it becomes infected. By

adding the ability to inspect messages, Σ1 represents a system

with an IDS but with no ability to reset. Σ2 contains no

IDS, and so has no ability to inspect messages, but a reset

action can restore it to a full and clean state. Finally, Σ3

is the full system described in the previous section. Viewed

as MDPs, these systems share the same underlying transition

probabilities given a set of parameters Ω, but the restriction

of the action spaces reduces the set of policies we can choose

from when solving the MDP.

As discussed in Section III, we choose to measure the

performance of these systems using the maximal expected

utility under the optimal policy π∗, which we denote V̄∗.

Of course, V̄∗ really depends on the underlying system (i.e.

the set of available policies), on the parameter set Ω =
(λ, μ, φ, θ, ψ, βFN, βFP), and on the discount factor γ used to

discount the value of future rewards. We also might consider

each system under several reward structures parameterized by

ρ as described in the previous section. Thus, if we let Ω+

denote the augmented set of parameters Ω ∪ {γ, ρ} we may

write V̄ i∗ (Ω
+) to denote the resulting maximal expected utility

under the optimal policy for system Σi. Beyond comparing

the performance (i.e. the values of V̄ i∗ (Ω
+)) for the various

systems Σi, we are also interested in the resilience of the

systems. We want to know which systems are more sensitive

to changes in the parameters Ω+. We can thus examine the

effect that each of the functional mechanisms (IDS and reset

capability) has on both performance and resilience. Through

this type of examination a designer can assess which features

should be included in the objective design.

Ω+ is a large domain, and some of the parameters are more

likely to change over time than others. From the viewpoint

of cyber resilience, we are most interested in detecting sen-

sitivity to changes in parameters that are likely to be under

the influence of an adversary. By adjusting the number of

malicious packets sent to the system, the adversary has a

strong influence on the λ parameter. Similarly, an adversary

may have the ability to adjust the μ parameter governing

the likelihood of compromise given a malicious message. For

example, the adversary could send messages tailored to the

particular system that are more likely to cause infections than

generic attacks.

We therefore fix values for most of the parameters of Ω+

while varying the values of λ and μ. The fixed parameters are

φ = θ = ψ = 0.9 and βFP = βFN = 0.01. This assumes a

system that is likely to complete packet inspection in a single

time step, and is equally likely to recover from reset in a

single time step (whether or not it was infected at the time

of reset). The IDS is assumed to have very high accuracy

with very low false positive and negative rates. We also set

γ = 0.95 indicating that we only slightly discount the value

of future states. Finally, we fix the parameter for the rewards

to be ρ = −1.5.

Fixing these parameters means that V̄ i∗ (Ω
+) defines a sur-

face over the unit square as λ and μ each vary over [0, 1]. We

compute and plot various cross sections of this surface. In par-

ticular, we consider cross sections for μ ∈ {0, 0.25, 0.5, 0.75}
letting λ range over [0, 1] in increments of 0.01. The next

section contains the results.

VI. RESULTS

In this section we present results for the experiments de-

scribed is Section V. Our experiments cover a limited param-

eter space: λ ∈ [0, 1] and μ ∈ [0, 1]. The remaining parameters

in the set Ω have values: φ = 0.9, θ = 0.9, ψ = 0.9,

βFP = 0.01, βFN = 0.01. These parameters characterize a

system that can quickly recover from busy and reset states.

This system is also fairly accurate in its classification of

inspected incoming messages. We will examine the resiliency

of this system for two different reward structures: R
(0)
H and

R
(1)
H for reward parameters ρ+ = −1.75, ρ− = −2.75, and

ρ = −1.5.

A. Baseline System

We start by considering the system Σ0 with the reward

structure R
(0)
H . This system has a restricted action space

(AI , AH) = ({pass}, {wait}). The reward structure R
(0)
H fa-

vors the system’s occupancy of state (w, h) = (full, clean).
In the absence of any incoming malicious messages (λ = 0),

the host system is always in this state, with expected utility

V̄∗ = 1/(1 − γ). This value of expected utility serves as an

upper bound on the performance the system can achieve. For

non-zero probability of malicious incoming messages (λ > 0)

the host system is always in state (w, h) = (full, infected) ,

307

with expected utility V̄∗ = ρ/(1−γ). We note that the expected

utility remains constant for values of λ > 0, because the

reward structure favors the state (w, h) = (full, infected)
irrespective of the value y. Due to the low utility value, this

baseline system may be viewed as a poor resilience candidate.

B. Adding an IDS

System Σ1 adds an intrusion detection capability whose

objective is to intercept malicious messages before they reach

the host system. However the host in this system lacks the

ability to reset if it is infected. The presence of an intru-

sion detection system provides some protection by dropping

malicious messages. However, some malicious messages do

ultimately get past the intrusion detection system and suc-

cessfully infect the host. Without the benefit of a reset, the

host eventually enters the state (w, h) = (full, infected),
which serves as an absorbing state for the system for λ > 0.

Thus the expected utility for this system has the same behavior

as that for system Σ0, for reward structure R
(0)
H . This result

appropriately suggests that little value is derived by adding

an intrusion detection system, without a host based mitigation

mechanism, based on long-term (stationary) behavior of the

system.

C. Adding Reconstitutive Actions

Now we consider the systems Σ2 and Σ3, which include

hosts that can reset in order to mitigate the effects of

malicious messages. For the reward structure R
(0)
H , the in-

trusion detection system has been shown to add little value.

We therefore expect benefit under this reward structure to

be derived mainly from mitigation mechanisms at the host.

Computed results of the expected utility under optimal policy

are consistent with this intuition. The expected utility curves

for system Σ3 are shown in Figure 4 over a range of values

for (λ, μ). The expected utility V̄∗ reaches its maximum value

Fig. 4. Expected Utility for System Σ3 with Reward Structure R
(0)
H

(1/(1 − γ) = 20) in the absence of incoming malicious

messages (λ = 0), or when malicious messages have no

impact on the host (μ = 0). The expected utility diminishes

quickly with increases in the probability of malicious messages

(λ) and the probability of host infection (μ). The expected

utility approaches its minimum value (ρ/(1 − γ) = −30) as

(λ, μ)→ (1.0, 1.0).

With reward structure R
(0)
H it is difficult to see the added

benefit provided by an intrusion detection system, working in

cooperation with host-based mitigation mechanisms. We can

reveal this benefit by considering a modified reward structure

R
(1)
H . In this modified structure we assign higher rewards

for the absence of malicious passed messages, along with

an uninfected and fully functioning host system (i.e. y ∈
{benign, null} and (w, h) = (full, clean) respectively).

The benefit of cooperative operation of an intrusion detection

system with host mitigation mechanisms is highlighted by

comparing the expected utility of systems Σ2 and Σ3 with

the modified reward structure R
(1)
H . Results for system Σ2 are

shown in Figure 5. We note that this system lacks an intrusion

Fig. 5. Expected Utility for System Σ2 with Reward Structure R
(1)
H

detection capability, but does possess host-based reconsti-

tution. The observed monotonic reduction in this system’s

expected utility with increases in probability of malicious

messages is consistent with the new reward structure, which

favors the absence of such messages even for μ = 0. A further

decrease in utility is observed as the susceptibility of the host

to malicious messages increases (μ > 0). These results

suggest the reset feature to be a valuable resilience design

option for the system.

D. Combining Reconstitutive Actions with an IDS
The results for system Σ3, which augments Σ2 with an

intrusion detection capability, are presented in Figure 6. The

difference in resiliency offered by systems Σ2 and Σ3 can

be understood by examining the plots in Figures 5 and 6

for corresponding values of μ. We recall that the intrusion

detection system offers little benefit on its own. However,

Figures 5 and 6 now reveal that the addition of intrusion

detection capabilities provides an increase in expected utility.

The cooperative operation of intrusion detection and host

based mitigation capabilities is particularly evident for higher

probabilities of incoming malicious messages (λ), and high

values of host susceptibility (μ > 0.5). It is interesting to

308

Fig. 6. Expected Utility for System Σ3 with Reward Structure R
(1)
H

note that, for lower host susceptibilites, the host based reset

mechanism offers the best mitigation to adversarial activity. As

the host susceptibility increases, the intrusion detection system

provides supplementary assistance against adversary attacks.

We note that the results shown in Figures 4-6 align well

with our notion that resilience is connected to both the

utility function’s value and sensitivity (given by slope). As an

example of this notion, note that we do not consider system

Σ0 resilient, despite the fact V̄∗ is constant for all values of

λ > 0; this is due to the utility over λ > 0 being at a minimum.

These results highlight the value of our approach by revealing

scenarios in which the inclusion of an IDS improves resilience.

VII. CONCLUSIONS

In this paper we have proposed decision theory as a suit-

ably flexible framework for examining cyber resilience of

computing systems. We have advocated the use of MDPs

(or the more general variant POMDPs) for modeling a range

of system designs, while incorporating uncertainty in system

dynamics. MDPs also provide a flexible way of assigning value

to desired system behaviors using rewards and a means of

making optimal decisions that support resiliency goals.

In order to make our proposal concrete, we have chosen to

analyze commonly used resiliency mechanisms: an intrusion

detection system and host-based system reconstitution. The

overall system has been modeled as a MDP. We have taken

care however to treat the intrusion detection system and the

host as separate components, with distinct state transition

models. The coupling between the two components is via the

messages that are passed from one to the other. Our model

system has a number of tuning parameters, which facilitate the

examination of a variety of behaviors and responses. However,

we have chosen to focus on parameters that have a dominant

connection with adversary behavior: the malicious message

probability (λ) and the host infection probability (μ). Using

this model we have illustrated how a comparative analysis of

design alternatives can be formulated by examining different

options for the action space and reward structure.

A quantitative comparative analysis of resiliency for a set

of design alternatives has been performed for a common

base system model that includes an IDS and host-based

reconstitution capability. In this analysis we have selected

reward structures that focus on the host’s behavior, while

allowing the coupling between the IDS and host to drive

optimal actions for both components. The expected utility V̄∗,

derived from stationary probabilities based on optimal actions,

has served as a scalar metric for understanding the resiliency

of various design alternatives. We note that this particular

metric is focused on assessing the defender’s ability to weather

adversarial activity.

In this paper we have examined resiliency from the per-

spective of the defender. For instance have not developed a

metric that characterizes the amount of effort expended by

an adversary to successfully impact system function. We have

also assumed that state information about adversarial actions

(malicious messages), and host infection state are known.

The ability to jointly optimize actions of the IDS and host is

also assumed. A natural extension of our work would seek to

relax these assumptions.

REFERENCES

[1] D. Bodeau, R. Graubart, W. Heinbockel, and E. Laderman, “Cyber
resiliency engineering aid—the updated cyber resiliency engineering
framework and guidance on applying cyber resiliency techniques,”
MITRE Corporation, Tech. Rep. MTR140499R1, 2015.

[2] L. Kaelbling, M. Littman, and A. Cassandra, “Planning and acting in
partially observable stochastic domains,” Artificial Intelligence, vol. 101,
no. 1–2, pp. 99–134, 1998.

[3] M. J. Kochenderfer, Decision Making Under Uncertainty: Theory and
Application. MIT Press, 2015.

[4] P. Ramuhalli, M. Halappanavar, J. Coble, and M. Dixit, “Towards a
theory of autonomous reconstitution of compromised cyber-systems,” in
IEEE Conference on Technologies for Homeland Security, 2013.

[5] S. Choudhary, L. Rodriguez, D. Curtis, K. Oler, P. Nordquist, P. Chen,
and I. Ray, “Action recommendation for cyber resilience,” in Workshop
on Automated Decision Making for Active Cyber Defense, 2015.

[6] D. Bodeau, R. Graubart, and E. Laderman, “Cyber resiliency engineering
overview of the architectural assessment process,” Procedia Computer
Science, vol. 28, pp. 838–847, 2014.

[7] R. Caralli, J. Allen, P. Curtis, D. White, and L. Young, “Cert® resilience
management model,” Software Engineering Institute, Tech. Rep., 2010.

[8] A. Servin and D. Kudenko, “Multi-agent reinforcement learning for
intrusion detection: A case study and evaluation,” in Proceedings of
the 6th German Conference on Multiagent System Technologies, 2008.

[9] T. Lane, “A decision-theoritic, semi-supervised model for intrusion de-
tection,” in Machine Learning and Data Mining for Computer Security,
2006.

[10] O. Kreidl, “Analysis of a Markov decision process model for intrusion
tolerance,” in IEEE/IFIP International Conference on Dependable Sys-
tems and Networks Workshops, 2010.

[11] G. Tjhai, M. Papadaki, S. Furnell, and N. Clarke, “The problem of
false alarms: Evaluation with Snort and DARPA 1999 dataset,” in
International Conference on Trust, Privacy and Security in Digital
Business, 2008.

[12] F. Aleserhani, M. Akhlaq, I. Awan, J. Mellor, A. Cullen, and P. Mirchan-
dani, “Evaluating intrusion detection systems in high speed networks,” in
International Conference on Information Assurance and Security, 2009.

[13] E. Bakhoum, “Intrusion detection model based on selective packet
sampling,” EURASIP Journal on Information Security, 2011.

309

The Blockchain Anomaly

Christopher Natoli
NICTA/Data61-CSIRO

University of Sydney

chistopher.natoli@sydney.edu.au

Vincent Gramoli
NICTA/Data61-CSIRO

University of Sydney

vincent.gramoli@sydney.edu.au

Abstract—Most popular blockchain solutions rely on proof-
of-work to guarantee that participants reach consensus on a
unique block per index of the chain. As consensus is impossible in
the general case, it seems that these blockchain systems require
messages are delivered fast and no participant mines faster than
the crowd. To date, no experimental settings have however been
proposed to demonstrate this hypothesis.

In this paper, we identify conditions under which these
blockchain systems fail to ensure consensus and present a
reproducible execution on our Ethereum private chain. To this
end, we introduce the Blockchain Anomaly, the impossibility
for the blockchain to guarantee that a committed transaction
is not abortable. This anomaly may translate into dramatic
consequences for the user of proof-of-work blockchains.
Named after the infamous Paxos anomaly, this anomaly makes
dependent transactions, like “Bob sends money to Carole after
he received money from Alice” impossible and may lead to
double spending. We also explain how the anomaly differs from
a 51-percent attack and how one could avoid it by adapting the
Ethereum implementation or by exploiting smart contracts.

Keywords: Ethereum; Paxos anomaly; smart contract

I. INTRODUCTION

Mainstream public blockchain systems, like Bitcoin [1]

and Ethereum [2], require to reach consensus on the Internet

despite the presence of malicious participants and possible

congestions that delay messages. Yet, it is impossible for a dis-

tributed system including a faulty process to reach consensus

if messages may not be delivered within a bounded time [3].

This raises interesting questions about the properties ensured

by blockchains. Foundational consensus algorithms [4] were

proposed to never reach a decision in case of arbitrary message

delays, but to respond only correctly if ever. Surprisingly, these

blockchain systems adopt a different approach, sometimes re-

sponding incorrectly, especially when delays occur [5]. These

few last years, the concept of private chain gained traction

for its ability to offer blockchain among multiple companies

in a private, controlled environment. The R3 consortium is

currently running an Ethereum private chain with more than 45

banks worlwide.1 To understand the limitations of consensus

and its potential consequences in the context of private chains,

we deployed our own private chain and stress-tested the

systems in corner-case situations.

In this paper, we present the Blockchain anomaly, a new

problem named after the Paxos anomaly [6], [7], [8], that

1http://www.coindesk.com/r3-ethereum-report-banks.

prevents Bob from executing a transaction based on the current

state of the blockchain. In particular, we identified a complex

scenario where the agreement on the state of the blockchain

is not sufficient to guarantee immutability of the chain. This

anomaly can lead to dramatic consequences, like the loss

of virtual assets or a double-spending attack. We also show

that some smart contracts, expressive code snippets that help

defining how virtual assets can be owned and exchanged in

the system, may suffer from the Blockchain anomaly. These

results confirm the risk of using a blockchain in a private con-

text without understanding its complex design features, which

also confirms the need for solid research foundations [9].

We terminate this paper by providing the source code of a

more complex smart contract that can circumvent a particular

example of the Blockchain anomaly.

Most blockchain systems track a transaction by including it

in a block that gets mined before being appended to the chain

of existing blocks, hence called blockchain. The consensus

algorithm guarantees a total order on these blocks, so that

the chain does not end up being a tree. This process is

actually executed speculatively in that multiple new blocks

can be appended transiently to the last block of the chain—a

transient branching process known as a fork. Once the fork

is discovered, meaning that the participants learn about its

branches, the “longest” (i.e., heaviest in Ethereum or deepest

in Bitcoin) branch is adopted as the valid one. Blockchain

systems usually assume that forks can grow up to some limited

depth, as extending a branch requires to solve a cryptopuzzle

that boils down to computing for a long time during which one

gets likely notified of the longest chain. Bitcoin recommends

six blocks to be mined after a transaction is issued to consider

the transaction accepted by the system. Similarly, Ethereum

states that five to eleven more blocks should be appended after

a block for it to be accepted [2].

However, consensus cannot be solved in the general case.

In particular, foundational results of distributed computing

indicate that consensus cannot be reached if there is no upper-

bound on the time for a message to be delivered and if some

participant may fail [3]. Consensus is usually expressed in

three properties: agreement indicating that if two non-faulty

participants decide they decide on the same block, validity
indicating that the decided block should be one of the blocks

that were proposed and termination indicating that eventually a

correct participant decides. The common decision that is taken

by famous consensus protocols, like Paxos [10] and Raft [11],

is to make sure that if the messages get delayed, at least

2016 IEEE 15th International Symposium on Network Computing and Applications

978-1-5090-3216-7/16/$31.00 ©2016 IEEE

310

validity and agreement remain ensured by having the algorithm

doing nothing, hence sacrificing termination to ensure that only

correct responses—satisfying both validity and agreement—

can be returned. These “indulgent” consensus algorithms [12]

are appealing, because if after some time the network stabilizes

and messages get delivered in a bounded time, then consensus

can be reached [4].

We show experimentally that the Ethereum protocol can

suffer from the Blockchain anomaly. We describe a distributed

execution where even committed transactions of a private

chain get reordered so that the latest transaction ends up

being committed first. We chose Ethereum for our experiments

as it is a mainstream blockchain system that allows the

deployment of private chains. Although there exist solutions

in the distributed computing literature to order some trans-

actions [13] or to use unstructured overlays to cope with

malicious participants [14], to our knowledge no experiment

has ever been proposed to show that proof-of-work protocols

are subject to such a problem.

We show how to reproduce the Blockchain anomaly by

following the same execution, where messages get delayed

between machines while some miner mines new blocks.

Despite transactions being already committed the eventual

delivery of messages produces a reorganisation reordering

some of the committed transactions. In our execution, miners

are setup to dedicate different number of cores to the mining

process, hence mining at different speeds. We argue that the

misconfiguration of a machine and the heterogeneous mining

capabilities of machines belonging to different companies are

sufficiently realistic to allow an attacker to execute a double-

spending attack.

Section II overviews the blockchain technology, the Paxos

anomaly and defines the important terms of the paper. In

Section III, we present the blockchain anomaly. In Section IV,

we present our experiments and illustrate how the anomaly is

possible with less than half of the mining power. In Section V,

we explain how replacing transactions by smart contracts could

help bypassing the anomaly. Section VI presents the related

work. And Section VII concludes.

II. PRELIMINARIES

In this section, we present the key concepts of Bitcoin and

Ethereum consensus protocols, the condition of their termi-

nation and the Paxos anomaly before presenting the general

model. We consider a distributed blockchain system of n peers

where peers can exchange coins from one to another through

transactions. Peers can fail arbitrarily, they can stop working

and can be malicious. Any peer can issue transactions that get

recorded into the transaction pool. Only special peers, called

miners, can bundle a subset of the pool of transactions into

a block after ensuring that there are sufficient funds available

on the accounts of the ledger and that these transactions do

not conflict.

A. Blockchain Systems

A blockchain can be considered as a replicated state ma-

chine [15] where a reversed link between blocks is a pointer

from a state to its preceding state as depicted in Figure 1(a).

Consensus is necessary to totally order the blocks, hence

maintaining the chain structure. To reach consensus despite

arbitrary failures, including malicious behaviors, traditional

blockchain systems adopted a technique based on proof-of-

work, requiring a proof of computation [16]. Miners provably

solve a hashcash crypto puzzle [17] to append a new block to

the chain. Given a block and a threshold, a miner repeatedly

selects a nonce and applies a pseudo-random function to this

block and the selected nonce until it obtains a result lower

than the threshold. The difficulty of this work limits the rate

at which new blocks can be generated by the network.

B. From Nakamoto’s Consensus to Smart Contracts

Nakamoto’s consensus [1] is at the core of Bitcoin,

the mainstream decentralised digital currency. Interestingly,

Nakamoto’s consensus does not guarantee agreement deter-

ministically. Instead it guarantees that agreement is met with

some probability close to 1. The difficulty of the crypto puzzles

used in Bitcoin leads to mining a block every 10 minutes.

The advantage of this long period, is that it is relatively rare

for the blockchain to fork due to blocks being simultaneously

mined and Bitcoin resolves these forks by choosing the longest

branch and discarding the other(s).

Ethereum [18] is a recent open source cryptocurrency

platform that also builds upon proof-of-work. As opposed to

Bitcoin’s consensus protocol, Ethereum generates one block

every 12–15 seconds. While it improves the throughput (trans-

actions per second) it also favors transient forks as miners are

more likely to propose new blocks simultaneously. To avoid

frequently wasting mining efforts to resolve forks, Ethereum

uses the GHOST (Greedy Heaviest Observed Subtree) protocol

that does not necessarily discard all the, so called uncle,

blocks of non selected branches. Ethereum offers a Turing-

complete programming language that can be used to write

smart contracts [19] that define new ownership rules.

C. Termination of Consensus

By relaxing the agreement property of consensus,

blockchain systems can guarantee termination deterministi-

cally. In the context of blockchain, termination of consensus

indicates that a block has been decided for the next available

block index. We say that all the transactions of a decided block

are committed.2 This decision upon a block inclusion in the

chain is necessary for cryptocurrency exchange platforms, for

example, to determine that coins of a particular type that are

newly minted3 within this block can be converted into altcoins

2Here, we use the term “committed” rather than “confirmed” as, in the
blockchain terminology, a transaction is meant to be “confirmed” sometimes
when only its block is mined, and sometimes when k + 1 blocks get mined
(its own block and the k successor blocks).

3As opposed to mining that includes the computation of the miners, minting
consists simply of the creation of coins.

311

(a) The blockchain structure starts with a genesis block
at index 0 and links successive blocks in reverse order of
their index; a new block is decided at index i > 0 when
the blockchain depth reaches i+k (note that a blockchain
of depth of 0 is a genesis block)

ti

tj

ti

time

index i

index j

ti tj

1. ti is proposed 2. ti appears committed 4. tj is committed rst

3. tj is proposed by another node

(b) The Blockchain anomaly: a first client issues ti
that gets successfully mined and committed then a
second client issues tj , with tj being conditional
to the commit of ti (note that j ≥ i + k for
ti to be committed before tj gets issued), but
the transaction tj gets finally reorganized and suc-
cessfully committed before ti, hence violating the
dependency between ti and tj

ti ti’

time

index i

index j

1. ti and tj are proposed

2. ti’ and tj’ are proposed

3. ti’ and tj are committed

tj tj’

ti’

tj

(c) The Paxos anomaly: a first leader proposes
ti and tj for slots i and j > i (with tj being
implicitly conditional to the commit of ti), a
second leader proposes t′i and t′j while a third

leader commits t′i and tj for slots i and j,
respectively, hence violating the dependency
between ti and tj

Fig. 1: An example of decided blocks and the difference between the Paxos and the Blockchain anomaly

(coins of a different type) or fiat currencies (e.g., EUR, USD).

In particular, observing that a block was mined and appended

to the chain is not sufficient to guarantee that it is decided: this

block could be part of one branch of a transient fork without

consensus being reached yet on any of these branches.
Figure 1(a) depicts the termination of consensus on the

index i of a blockchain starting with the genesis block. An

arrow pointing from right to left indicates that a block contains

a hash of its predecessor block, the one located immediately

on its left. Newly mined blocks are added to the right end of

the blockchain that may fork transiently if multiple blocks

referring to the same predecessor get mined concurrently.

Forks are only transient and their resolution depends on the

blockchain system in use. The consensus for an index i
terminates when participants decide on the new block to be

assigned at index i. The decision upon the block at index i
occurs for all i > 0 when the blockchain depth reaches i+ k,

where k ≥ 0 is a constant dependent on the Blockchain.
Different blockchain systems adopt different values of k

to define termination. In Bitcoin (btc), kbtc = 5, meaning

that the block at index i is decided—consensus for index

i terminates—when the kbtc + 1 = 6 blocks at indices

i, ..., i + 5 have been successfully mined. As we previously

mentioned, a new block is decided every 10 minutes in

Bitcoin, hence it takes (kbtc + 1) ∗ 10min = 1hour for a

transaction to be committed in Bitcoin. In Ethereum (eth) since

version 1.3.5 Homestead, keth = 11, meaning that the block

at index i is decided—consensus for index i terminates—

when the blockchain depth reaches i + 11. Hence it takes

(keth+1)∗15 sec = 3min for transactions to be committed in

Ethereum. Note that some cryptocurrency exchange platforms

adopt different values of k to adjust the probability of agree-

ment, hence QuadrigaCX Ether Trading waits for k′btc+1 = 4
blocks to be mined in the Bitcoin blockchain while it waits for

keth+1 = 12 blocks to be mined in the Ethereum blockchain.4

D. The Paxos Anomaly
Paxos is a famous consensus protocol originally guaran-

teeing agreement and validity despite crash failures [10].

4https://www.quadrigacx.com/faq.

The Paxos anomaly [7], [6] stems from the difficulty of

implementing conditional requests (or transactions) in Paxos:

Paxos decides on individual proposed transactions, poten-

tially violating dependencies between transactions even when

proposed by the same requester as depicted in Figure 1(c)

where a slot can be viewed as the index of the decision.

These dependencies can be useful to make the execution of

a transaction tj dependent on the successful execution of a

previous transaction ti: for example if Bob wants to transfer

an amount of money to Carole (tj) only if he successfully

received some money from Alice (ti). In centralised systems,

this anomaly can be easily avoided by enforcing an ordering

on these transactions by simply forwarding all requests to a

primary node or coordinator [6]. However, in Paxos, as in fully

decentralised systems, the first transaction may not be decided

in favor of another proposed transaction in a first consensus

instance, while in a subsequent consensus instance the second

transaction may be successfully decided. This results in a

violation of the condition that the second transaction should

be decided only if the first transaction was decided.

Below we present the Blockchain anomaly due to the

decentralised aspects of blockchain systems, like Bitcoin and

Ethereum. The Blockchain anomaly shares similarities with

the Paxos anomaly, except that it can occur when transac-

tions, issued by different nodes of the system, are not even

concurrent.

III. THE BLOCKCHAIN ANOMALY

We present the Blockchain anomaly, an anomaly of

blockchain consensus protocols.

A. Causes of the Blockchain Anomaly

The problem stems from the asynchrony of the network, in

which message delays cannot be bounded, and the termination

of consensus. Although two miners mine on the same chain

starting from the same genesis block, a long enough delay

in messages between them could lead to having the miners

seemingly agree separately on different branches containing

more than k blocks each, for any k. This anomaly is dramatic

as it can lead to simple attacks within any network where users

312

have an incentive to maximise their profits—in terms of coins,

stock options or arbitrary ownership. Moreover, this scenario is

realistic in the context of (consortium or fully) private chain

where the employees of an institution, like Data61-CSIRO,

have direct access to some of the network resources. When

messages get finally delivered, the results of the disagreement

creates inconsistencies.

B. Uncommitting Transactions is Abnormal

Figure 1(b) depicts the Blockchain anomaly, where a trans-

action ti gets committed as part of slot i. After observing

that ti is committed, a node proposes a new transaction tj
knowing that ti was successfully committed. Again, one can

imagine a simple scenario where “Bob transfers an amount of

money to Carole” (tj) only if “Bob had successfully received

some money from Alice” (ti) before. However, once these

nodes get notified of another branch of committed transactions,

they decide to reorganise the branch to resolve the fork. The

reorganisation removes the committed transaction ti from slot

i. Later, the transaction tj is successfully committed in slot i.
The anomaly stems from the violation of the dependency

between tj and ti: tj occurred meaning that Bob has trans-

ferred an amount of money to Carole, however, ti did not

occur meaning that Bob did not receive money from Alice.

Note that in Bitcoin, transaction ti gets discarded whereas in

Ethereum transaction ti may in some cases be committed in

slot j.

C. Facilitating a Double-Spending Attack

One dramatic consequence of the Blockchain anomaly is

the possibility for an attacker to execute a double-spending
attack: converting, for example, all his coins into goods

twice. The scenario is similar to a double-spending attack

against Bitcoin [20] and consists of the attacker issuing a first

transaction t1 that converts all its coins into goods in block i
and starting mining blocks after block i−1 in isolation of the

network. As part of this mining, the attacker mines another

transaction t2 that also converts all its coins into goods. The

attacker then waits for the blockchain depth to reach i+k after

which it can collect its goods as a result of transaction t1, then

it publicizes its longer chain without t1 so that the chain gets

adopted by the rest of network. t2 gets committed in block j
and after the chain depth reaches j + k, the peer can collect

its goods for the second time. Note that even if one tries to re-

commit t1 later, the transaction will be invalidated because the

balance is insufficient, however, the double-spending already

occurred.

D. Tracking Blockchain Anomalies

Another dramatic aspect of the Blockchain anomaly is that

it goes undetected. More specifically, the Blockchain anomaly

relies on a wrongly committed state of the blockchain. Once

the wrongly committed state gets uncommitted, there is no

way to a posteriori observe this problematic state and to notice

that a blockchain anomaly occurred. Although it is possible

to observe that a peer mined several blocks in a row, there

is no way to track down the beneficiaries of the Blockchain

anomaly. This dangerously incentivizes participants to lever-

age the Blockchain anomaly to attack the private chain.

IV. EXPERIMENTAL EVALUATION

In this section, we describe a distributed execution involving

a private chain that results in the Blockchain anomaly.

A. Experimental Setup
We deployed a private blockchain system in our local area

network using geth version 1.4.0, which is a Go implementa-

tion of the command line interface for running an Ethereum

node. We setup three machines connected through a 1 Gbps

network, two consisting of miners, p1 and p3, generating

blocks and one consisting of a peer p2 simply submitting

transactions. Peers p1 and p2 consist of 2 machines with 4 ×
AMD Opteron 6378 16-core CPU running at 2.40 GHz with

512 GB DDR3 RAM, each. Peer p3 consists of a machine with

2 × 6-core Intel Xeon E5-260 running at 2.1 GHz with 32 GB

DDR3 RAM.
We artificially created a network delay by transiently anni-

hilating connection points between machines. Note that such

artificial delays could be reproduced by simply unplugging an

ethernet cable connecting a computer to the company network

and does not require an employee to access physically a switch

room.
Also, we made sure p3 would mine faster than p1, by mining

with the 24 hardware threads of p3 and a single hardware

thread of p1. The same speed difference could be obtained

between a loaded server and a server that does run any other

service besides mining. Note that hardware characteristics may

also help one machine mine faster than the rest of a private

chain network. For example, a machine equipped with an

AMD Radeon R9 290X would mine faster in Ethereum than a

pool of 25 machines, each of them mining with an Intel Core

i7. The same setting as the one used above could allow us to

conduct a 51-percent attack, however, the 51-percent attack is

not necessary to encounter a blockchain anomaly. For example

in a private blockchain adopting the longest branch, if the

attacker only owns a minority of the mining power then not

adapting the block size or the difficulty of the crypto-puzzle

adequately with respect to the network delay could result in

having the system adopting p3’s branch anyway.

B. Distributed Execution
For the sake of reproducibility, we present a simple exe-

cution where a malicious miner mines faster than a correct

miner, the discussion of the anomaly when the malicious

miner owns less than half of the mining power is defer to

Section IV-E. In our experiment, the client only sends coins

once the peer owns a verified amount of coins. The peer

performs a transaction t2 only if it was shown by the system

that the previous transaction t1 had been committed and the

money was successfully transferred to its wallet.
Figure 2 depicts the distributed execution leading to the

Blockchain anomaly where p1, p2 and p3 exchange informa-

tion about the blockchain whose genesis block is denoted ‘G’.

313

1

30 mined blocks

12 mined blockst1

t2

t2 12 blocks

t1p1

p2

p3
message delays

t1G
0 1 2 3 15

G
0 32

blockchain state viewed by p1 and p2:

blockchain state viewed by p3: t2G
0 32 33 45

t2G
0 32 33 45

ti transaction ti submitted to pool ti block mined with transaction tii i mined blocks

1

Fig. 2: Execution scenario leading to the Blockchain anomaly: p3 mines a longer chain than p1 without including t1 and

without disseminating new blocks until it forces a reorganisation that imposes t2 to be committed while t1 appears finally

uncommitted

1) Peer p1 mines a first block after the genesis block and

informs p2 and p3 to update their view of the blockchain

state.

2) Peer p3 mines a second block and informs p1 and p2 of

this new block.

3) A network delay is introduced between peers p1 and p2
on the one hand, and peer p3 on the other hand.

4) Peer p1 submits transaction t1 and informs p2 but fails

to inform p3 due to the network delay. In the meantime,

peer p3 starts mining a long series of 30 blocks.

5) Peer p1 mines a block that includes transaction t1 and

mines 12 subsequent blocks; p1 then informs p2 but not

p3 due to the network delay.

6) Peer p2 receives the notification from p1 that t1 is

committed because its block and k subsequent blocks

are mined; then p2 decides to submit transaction t2 that

should only execute after t1.

7) The network becomes responsive and p3 who receives

the information that t2 is submitted, mined t2 in a block

along with 12 subsequent blocks.

8) Once peers p1 and p2 receive from p3 the longest

chain of 45 blocks, they adopt this chain, discarding

or postponing the blocks that were at indices 2 to 15,

including the transaction t1, of their chain.

9) All peers agree on the final chain of 45 blocks in which

t2 is committed and where t1 is finally not committed

before t2.

This execution results in a violation of the conditional

property of transaction t2 stating that t2 should only execute if

t1 executed first. This violation occurred because transaction

t1 had been included in one chain, decided and agreed by two

of the participants, it was then changed after the message of

the third participant was finally delivered to the rest of the

network.

C. Automating the Reproduction of the Anomaly

To illustrate the anomaly, we wrote a script that automated

the execution depicted in Figure 2. Figure 3(b) represents the

execution of a script that execute 8 iterations of the Blockchain

anomaly over a period of 50 minutes. Again the goal is to wait

until t1 gets committed before issuing t2 that ends up being

committed while t1 does not appear to be. Note that this is

similar to Figure 1(b) except that t2 is not necessarily included

at the index t1 occupied initially. In particular, the block in

which t2 gets included varies from one iteration to another due

to the non-determinism of the execution as indicated by the

curve with square points. This non-determinism is explained

by the randomness of the mining process and the latency

of the network that also impacts the time it takes for the

consensus to terminate (curve with triangle points) in each

iteration of the experiment. Note that we use k = 11 in

this experiment, making sure that 12 blocks were successfully

mined, as recommended since the release of Ethereum 1.3.5

Homestead, for the consensus to terminate.

As expected, in each of these eight cases we observed

the Blockchain anomaly: even though t2 was issued after t1
was successfully observed as committed, if the messages get

successfully delivered, then the reorganisation results in t2
being committed while t1 is not. Finally, we can observe that

the time to disseminate a committed transaction to all the peers

of the network is much shorter than the termination delay.

314

0x2000 0x4000 0x6000
Mining difficulty

0%
30

%
60

%
90

%

4
6

8
10

12

Time to terminate (minutes)
Time to disseminate (seconds)

T
im

e

P
ro

po
rt

io
n

of
 s

w
ap

pi
ng

 e
xe

cu
tio

ns

(a) The proportion of transaction
swaps observed does not depend on
the difficulty, as opposed to the con-
sensus termination that increases with
the difficulty

0
16

34
52

70
88

20:46 21:07 21:28

0s
20

s
45

s
70

s
95

s

Block index of t2
Time to terminate
Time to disseminate

D
el

ay
 (

se
co

nd
s)

B
lo

ck
 in

de
x

Time of day

(b) Automated executions of the
Blockchain anomalies over a period
of 50min, the execution is non-
determinstic due to the randomness of
the mining process and the network
delay between peers

Fig. 3: Experimental evaluation of the anomaly

This is due to the time needed to mine a block, which is

significantly larger than the latency of our network.

D. Swap Frequency with Different Mining Difficulties

In the previous experiment, we used the default Ethereum

difficulty (0x4000) and automated the execution with a precise

script. To better understand the cause of the anomaly we tried

reproducing the anomaly by hand (without the script) with

larger difficulties.

Figure 3(a) depicts the average number of blockchain

anomalies leading to a swap, where both t2 and t1 are

eventually committed in reverse order, occurring in our private

chain for 6 different mining difficulties. Each bar results from

the average number of anomalies observed during 6 manual

runs of the scenario depicted in Figure 2.

We ran this particular experiment with k = 10 for the

termination of consensus, meaning that t1 was mined in block

at index i and it was committed once the chain depth reached

i + 10 blocks. (We presented the anomaly in the case where

k = 11 in Section IV-C.)

We varied the difficulty from 0x2000 to 0x40000 and

measure the frequency of the Blockchain anomaly and the

time it would take for consensus to terminate (upper curve).

We observed that the termination time was proportional to

the difficulty while the occurrence of the anomaly was not

significantly affected by the difficulty. This is explained by the

fact that the difficulty impacts the time it takes to mine k+1
blocks for termination. In addition we report the time it would

take for a transaction in a mined block to be disseminated to

all the peers of the network (bottom curve) and observed that

it was not related to the difficulty.

E. The Blockchain Anomaly Differs from the 51-Percent Attack

For the sake of reproducibility we simplified the execution

leading to the Blockchain anomaly in Figure 2. It is however

important to note that the Blockchain anomaly can occur even

though the malicious user controls less than half of the mining

power. To this end, Figure 4 depicts an execution where peer

Fig. 4: Half of the mining power is not necessary for the

blockchain anomaly as it is sufficient to discard the

blockchain containing t1

1 contract conditionalPayment {
2 // to keep track of the amount paid by Alice
3 uint32 paid ;
4 // map addresses to their respective balance
5 mapping (address => uint256) public balances;
6 // the address of Alice’s account
7 address A = 0x57ec7927841e2d25aad5f335e3b701369b177392;
8 // the address of Bob’s account
9 address B = 0x5ae58375c89896b09045de349289af9034902905;

10 // the address of Carole’s account
11 address C = 0x3b12387c88de7834ab3129e3949d0918c4a09122;
12

13 // enables function depending on invoker
14 modifier onlyFrom(address address) {
15 if (msg.sender != address) throw;
16

17 }
18

19 // Alice sends money to Bob
20 function sendTo(address B, uint32 amount) onlyFrom(A) {
21 if (balances [A] >= amount) { // sufficient funds?
22 balances [A] −= amount;
23 balances [B] += amount;
24 paid = amount; // sorting the amount paid
25 }
26 }
27

28 // Bob sends money to Carole
29 function sendIfReceived(address C, uint32 amount) onlyFrom(B) {
30 if (paid > amount) { // only if previous payment
31 balances [B] −= amount;
32 balances [C] += amount;
33 } else {
34 throw; // cancel contract execution
35 }
36 }
37 }

Fig. 5: A smart contract written in the Solidity programming

language to replace transactions prone to the blockchain

anomaly: the sendIfReceived function checks that the

transfer from A to B occurred before executing the transfer

from B to C

p3 owns strictly less than half of the mining power. As the

network is delayed between all pairs of nodes, we can see

that p1 alone cannot mine a chain longer than p3’s and that

the blockchain of p1 containing t1 gets eventually overridden.

V. SMART CONTRACTS

Smart contracts are a foundational aspect of the Ethereum
system, as they are distributed code execution based on con-

ditional aspects. The contracts can be programmed to allow

315

1 contract problematicConditionalPayment {
2 ...
3 function checkPayment(address B, uint32 amount) onlyFrom(B)

constant returns (bool result) {
4 if (paid > amount) { // check that Alice paid
5 return true ;
6 } else throw;
7 }
8 // Bob sends money to Carole
9 function sendIfReceived(address C, uint32 amount) onlyFrom(B) {

10 balances [B] −= amount;
11 balances [C] += amount;
12 }
13 }

Fig. 6: Executing the transfer to Carole in a separate

function may suffer from the Blockchain anomaly

for certain conditions to be met in order for the code to be

executed. What we found was that the anomaly prevention

depended entirely on the programming of the smart contract.

This means that if a smart contract was coded so that it did

not properly check the condition that the first transaction had

occurred, it would execute as normal, acting like a normal

transaction and suffering from the anomaly.

In Figure 5, we illustrate the writing of a smart con-

tract in the Solidity programming language with which we

could not observe the anomaly. The key point is that the

sendIfReceived function groups two steps: the check that

the amount has been paid at Line 22 and the payment that

results from this successful check at Lines 23 and 24. Because

these two steps are executed on-chain, we know that one has

to be necessarily true for the second to occur.

However, if the two steps were parts of two separate

functions of the contract, one checking that the amount had

been paid and another that would do the payment and be

invoked upon the returned value of the former then the

anomaly could arise. For example, consider Figure 6 where

one function, checkPayment, checks that the payment

from Alice proceeded correctly (Lines 3–7) and the other

function, sendIfReceived, is modified to execute the

payment unconditionally (Lines 9–13). Even if Bob invokes

checkPayment and observes that it returns successfully

before invoking sendIfReceived the anomaly may arise.

The reason is that the check is made off-chain and nothing

guarantees that the payment from Alice was not reorganized

while Bob was checking the result off-line.

To conclude, the former contract in Figure 5 does not suffer

from the Blockchain anomaly as it executes the check and the

conditional transfer on-chain.

VI. RELATED WORK

Proof-of-work has been previously compared to Byzan-

tine Fault Tolerant protocols [21], [22]. Some of this re-

search [21] focuses on comparing experimentally Bitcoin

against PBFT [23]. The Bitcoin blockchain and the PBFT

consensus protocol were evaluated with nodes scattered at 8

locations around the world. As one could expect given the dif-

ficulty of the crypto puzzle of Bitcoin, the experiments showed

that PBFT achieves a lower latency and a higher throughput

than Bitcoin in serving transactions. However, PBFT suffers

from scalability limitations and using sharding [24] could be

necessary to scale to hundreds of nodes.

Another part of this research [22] discusses the probabilistic

guarantees of proof-of-work systems and the deterministic

guarantees of Byzantine fault tolerance. The proof-of-work

consensus is compared to Byzantine agreement protocols

along two axes, scalability and performance, where proof-

of-work consensus protocols are considered as scalable but

inefficient while Byzantine agreement protocols are considered

as efficient but not scalable. For example, Bitcoin scales

beyond 1000 nodes while achieving a performance lower than

100 transactions per second with a high latency, whereas

standard Byzantine fault tolerant protocols achieve more than

10,000 transactions per second but scale only to tens of nodes.

Multiple attacks to Bitcoin share the “solo-mining” tech-

nique we used to illustrate the Blockchain anomaly in

Ethereum. Some attacks assume that the merchant accepts

transactions before they are confirmed [25], [26], [27]. Other

attacks assume the merchant to accept transactions that are

confirmed once [28]. According to our definition none of these

transactions are however “committed”, hence these attacks

cannot be considered anomalies. The Blockchain anomaly

affects transactions that are committed (or k + 1 times con-

firmed).

Even though more than half of the mining power was

controlled by the adversary to illustrate a simple scenario to

reproduce the Blockchain anomaly, it is important to notice

that the Blockchain anomaly is different from the 51-percent

attack. First, note that the smart contract solution we proposed

in Section V cannot fix the 51-percent attack. More generally,

the blockchain anomaly could occur with n nodes with all

attackers owning totally a q-th of the mining power if each

correct node mines at a rate of q/n blocks every block

propagation delay.

Some solutions to the Blockchain anomaly could be easily

implemented in Ethereum. As an example, logical clocks is

a well-known technique to order causally-related events in a

distributed system [13]. A logical clock could be used to order

two transactions issued by the same peer, simply associating

messages to sequence numbers using a monotonically increas-

ing counter at each peer. As this cannot be used for dependent

transactions issued by different peers, one could use a special

flag when issuing a transaction to inform the miners to either

ignore the transaction or to mine it within the same block as its

precedent dependent transaction. Designing the reward model

to incentivize the miners to follow this protocol is out of the

scope of this paper. Other technique to perform a transaction

as soon as other were performed were used to enhance the

scalability of Bitcoin [29].

Some solutions immune to the Blockchain anomaly also

exist. PeerCensus [30] was proposed as an algorithm with two

components: one to execute a Byzantine agreement protocol

on top of Bitcoin with a simple voting system and another

to minimize the effect of Sybil attacks during these votes.

316

The latter component makes it difficult for an attacker to

create multiple identities so as to outnumber the votes with

its own votes. Using this technique PeerCensus strengthens

the guarantees of Bitcoin and resolves immediately the forks,

hence avoiding the Blockchain anomaly.

Although the Paxos anomaly was not considered a prob-

lem in the original design of Paxos [10], this scenario was

informally stated as an anomaly during the design of the

Zookeeper distributed coordination service [6], due to the en-

gineers needing to implement conditional concurrent requests:

Zookeeper organizes nodes into a tree structure and it was

desirable for the additions of a parent node and its child to

be made concurrent. The child addition depended naturally

on the success of the parent addition. Note that for other

applications that do not need concurrent dependent requests

Paxos is sufficient [31]. A major difference between the Paxos

and the Blockchain anomalies is that if consensus is reached

with Paxos, the index of the decision cannot change while

the Blockchain anomaly precisely stems from the fact that the

index of a decided transaction, or the order of its block in the

chain, can change.

VII. CONCLUSION

In this paper, we demonstrate empirically the presence of

the Blockchain anomaly in proof-of-work blockchain sys-

tems. Named after the Paxos anomaly, it prevents a user of

mainstream blockchain systems from executing a conditional

transaction, a transaction that should only execute in the

current observable committed state or a later state of the

system. A possible way to avoid the anomaly could be to

write smart contracts rather than transactions, yet it adds to

the level of complexity.

Our conclusion is that blockchain systems are difficult to

use properly. This observation should discourage users from

using blockchain systems unless they fully understand the

underlying design principles and the guarantees they offer.

Besides the prominent blockchain systems we have discussed,

namely Bitcoin and Ethereum, there exist many alternatives.

Exploring the alternatives that exclusively offer deterministic

guarantees for private chains is part of future work.

REFERENCES

[1] S. Nakamoto, “Bitcoin: a peer-to-peer electronic cash system,” 2008,
http://www.bitcoin.org.

[2] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger final draft - under review,” 2014, https://github.com/ethereum/
wiki/wiki/White-Paper.

[3] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” J. ACM, vol. 32, no. 2,
pp. 374–382, Apr. 1985.

[4] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” J. ACM, vol. 35, no. 2, Apr. 1988.

[5] Y. Sompolinsky and A. Zohar, “Secure high-rate transaction processing
in bitcoin,” in Financial Cryptography and Data Security - 19th Inter-
national Conference, FC 2015, San Juan, Puerto Rico, January 26-30,
2015, Revised Selected Papers, 2015, pp. 507–527.

[7] K. Birman, D. Malkhi, and R. van Renesse, “Virtually synchronous
methodology for dynamic service replication,” Microsoft Research,
Tech. Rep. MSR-TR-2010-151, 2010.

[6] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free
coordination for internet-scale systems,” in ATC. USENIX, 2010, pp.
11–11.

[8] ——, “Appendix A: Virtually synchronous methodology for building
dynamic reliable services,” in Guide to Reliable Distributed Systems:
Building High-Assurance Applications and Cloud-Hosted Services.
London: Springer London, 2012, pp. 635–671.

[9] V. Gramoli, “On the danger of private blockchains,” in Workshop on
Distributed Cryptocurrencies and Consensus Ledgers (DCCL), July
2016.

[10] L. Lamport, “The Part-Time parliament,” ACM Transactions on Com-
puter Systems, vol. 16, no. 2, pp. 133–169, May 1998.

[11] D. Ongaro and J. Ousterhout, “In search of an understandable
consensus algorithm,” in 2014 USENIX Annual Technical Conference
(USENIX ATC 14). Philadelphia, PA: USENIX Association, 2014, pp.
305–319. [Online]. Available: https://www.usenix.org/conference/atc14/
technical-sessions/presentation/ongaro

[12] R. Guerraoui, “Indulgent algorithms (preliminary version),” in PODC,
2000, pp. 289–297.

[13] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.

[14] E. Anceaume, Y. Busnel, and S. Gambs, “On the power of the adversary
to solve the node sampling problem,” Trans. Large-Scale Data- and
Knowledge-Centered Systems, vol. 11, pp. 102–126, 2013.

[15] X. Xu, C. Pautasso, L. Zhu, V. Gramoli, S. Chen, A. Ponomarev, and
A. B. Tran, “The blockchain as a software connector,” in Proceedings
of the 13th Working IEEE/IFIP Conference on Software Architecture
(WICSA), 2016.

[16] C. Dwork and M. Naor, “Pricing via processing or combatting junk
mail,” in Proceedings of the 12th Annual International Cryptology
Conference on Advances in Cryptology, ser. CRYPTO ’92, 1993, pp.
139–147.

[17] A. Black, “Hashcash - a denial of service counter-measure,”
Cypherspace, Tech. Rep., 2002. [Online]. Available: http://www.
hashcash.org/papers/hashcash.pdf

[18] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” 2015, yellow paper.

[19] N. Szabo, “Formalizing and securing relationships on public networks,”
1997. [Online]. Available: http://szabo.best.vwh.net/formalize.html

[20] M. Rosenfeld, “Analysis of hashrate-based double-spending,” 2012.

[21] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, E. G. Sirer, D. Song, and R. Wattenhofer,
“On scaling decentralized blockchains,” in 3rd Workshop on Bitcoin
Research (BITCOIN), Barbados, February 2016.

[22] M. Vukolı́c, “The quest for scalable blockchain fabric: Proof-of-work
vs. BFT replication,” in Proceedings of the Workshop on Open Research
Problems in Network Security (iNetSec 2015), ser. LNCS, 2016.

[23] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4, pp. 398–
461, Nov. 2002.

[24] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in Proceedings of
the 23rd ACM Conference on Computer and Communications Security
(CCS), 2016.

[25] H. Finney, “Finney’s attack,” February 2011. [Online]. Available:
https://bitcointalk.org/index.php?topic=3441.msg48384#msg48384

[26] G. Karame, E. Androulaki, and S. Capkun, “Two bitcoins at the price
of one? double-spending attacks on fast payments in bitcoin,” IACR
Cryptology ePrint Archive, vol. 2012, p. 248, 2012.

[27] T. Bamert, C. Decker, L. Elsen, R. Wattenhofer, and S. Welten, “Have a
snack, pay with bitcoins,” in Proceedings of the 13th IEEE International
Conference on Peer-to-Peer Computing (P2P), 2013, pp. 1–5.

[28] vector76, “The vector76 attack,” August 2011. [Online]. Available:
https://bitcointalk.org/index.php?topic=36788.msg463391#msg463391

[29] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain
instant payments,” 2016, draft Version 0.5.9.2. [Online]. Available:
https://lightning.network/lightning-network-paper.pdf

[30] C. Decker, J. Seidel, and R. Wattenhofer, “Bitcoin meets strong con-
sistency,” in Proceedings of the 17th International Conference on
Distributed Computing and Networking (ICDCN), 2016, p. 13.

[31] V. Gramoli, L. Bass, A. Fekete, and D. Sun, “Rollup: Non-disruptive
rolling upgrade with fast consensus-based dynamic reconfigurations,”

IEEE Trans. on Parallel and Distributed Systems, 2016.

317

Safety Analysis of Bitcoin Improvement Proposals

Romaric Ludinard
ENSAI, UMR 9194 - CREST

romaric.ludinard@ensai.fr

Bruno Sericola
INRIA RBA

bruno.sericola@inria.fr

of the blockchain. This is achieved by introducing some syn-

chronization among the miners: to successfully create a block,

a miner must first solve a resource consuming computation,

the so-called proof-of-work. Miners are rewarded for each

successfully created block, which introduces a competition

among them to create the next block as fast as possible.

Such a competition may in its turn give rise to concurrent

blocks, and thus to the creation of different branches in the

blockchain. This phenomenon is called a blockchain fork. Even

if Bitcoin eventually converges to a legal state (i.e. a unique

branch), stabilization may take time. For instance, the March

2013 fork [7] was resolved after several hours. During a fork,

an attacker may repeatedly perform double-spending attacks.

Given the increasing popularity of Bitcoin, one may expect

that the abuse of the weaknesses in its design will increase.

A large amount of work has been devoted to mitigating this

salient issue and, among them, three propositions have recently

emerged as the very first convincing solutions to solve the

double-spending attack. These solutions, respectively called

Bitcoin-NG [6], PeerCensus [5], and BizCoin [13], propose to

give additional specific power to miners, by coordinating their

view of the blockchain through either executions of Byzantine-

tolerant consensus protocols or leadership of one of them.

a) Our contributions: The paper is devoted to a thorough

analysis of the behavior of these three works with respect

to their capacity to handle numerous transactions and their

resilience to malicious miners. Prior to this analysis, we

provide an extensive description of the Bitcoin ecosystem from

which we derive a formalization of its properties in terms of

validity, confirmation, safety and liveness. We then present

the model that allows us to investigate the properties of the

three above mentioned solutions. The outcome of this study

contains a mixture of both favorable and negative results.

Bitcoin-NG, by relying on a leader, neither improves upon

Bitcoin safety, nor scales to a large number of transactions. De-

spite the support of Byzantine-tolerant consensus algorithms,

PeerCensus does not tolerate the well-known threshold of

1/3 malicious miners. On the other hand, by combining the

design of both Bitcoin-NG and PeerCensus and by relying

on the CoSi protocol [24] for collective signing, BizCoin

shows good theoretical performance. Its resilience to malicious

miners corroborates results of Byzantine tolerant distributed

algorithms [15] for large enough signature groups: in the

presence of less than one third of Byzantine miners, BizCoin

is safe with high probability if the number of miners involved

in the signature group exceeds 1, 000. However, BizCoin has

Emmanuelle Anceaume, Thibaut Lajoie-Mazenc
CNRS, UMR 6074 - IRISA

firstname.lastname@irisa.fr

Abstract—Decentralized cryptocurrency systems offer a
medium of exchange secured by cryptography, without the need
of a centralized banking authority. Among others, Bitcoin is
considered as the most mature one. Its popularity lies on the
introduction of the concept of the blockchain, a public distributed
ledger shared by all participants of the system. Double spending
attacks and blockchain forks are two main issues in blockchain-
based protocols. The first one refers to the ability of an adversary
to use the very same bitcoin more than once, while blockchain
forks cause transient inconsistencies in the blockchain. We
show through probabilistic analysis that the reliability of recent
solutions that exclusively rely on a particular type of Bitcoin
actors, called miners, to guarantee the consistency of Bitcoin
operations, drastically decreases with the size of the blockchain.

Keywords— Bitcoin; Peer-to-Peer Systems; Safety; Ana-

lytical Performance Evaluation

I. INTRODUCTION

The goal of decentralized cryptocurrency systems is to offer
a medium of exchange secured by cryptography, without the
need of a centralized banking authority. An important design
issue of such a platform is to prevent the occurrence of double-

spending attacks, which consists in using the same resources
(the same ”coins”) in more than one transaction. Classically,
the centralized banking authority serves as a trusted third-

party that verifies the validity of every single transaction which
prevents this kind of attacks. In absence of such a trusted
entity, an alternative mechanism must be implemented.

Satoshi Nakamoto proposed a solution in 2008 [20]: the
Bitcoin cryptocurrency system, the first decentralized ecosys-

tem providing users with a virtual currency to buy and sell
services or goods. Bitcoin relies on a public distributed ledger,
the so-called blockchain, that records all the valid transactions
ever issued in the Bitcoin system. Technically, the blockchain
is built by some of the participants of the ecosystem, the
miners, through the creation of blocks. Each block contains
the set of most recently issued transactions. The strength of
the blockchain design is that it does not require participants to
trust each other, each one maximizing its self-interest. Thus, it
can be viewed as a way to create a global trusted third-party
from a network populated by untrusted participants.

To prevent double-spending attacks, the blocks (and thus
all the transactions) must be totally ordered so that every
participant of the system can check their validity. However,
concurrent blocks can be created due to propagation delays
and this must be carefully handled to enforce the consistency

978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

318

not yet been implemented with more than 148 miner because

of the complexity of the underlying CoSi protocol [12].

b) Road map: To summarize, the remainder of the paper

is organized as follows. Section II presents the necessary

background to understand Bitcoin properties in terms of safety

and liveness. Section III presents an analysis of the safety guar-

anteed by respectively Bitcoin-NG, PeerCensus and BizCoin.

Section IV presents a brief survey of the crypto systems that

have appeared since 2009. Finally, Section V concludes.

II. BACKGROUND ON THE BITCOIN NETWORK

The Bitcoin network [20] is a peer-to-peer payment network

that relies on distributed algorithms and cryptographic tools to

allow entities to pseudonymously buy goods or services with

digital currencies called bitcoins. Its main ingredients are (i)
transactions issued by buyers each time they wish to spend bit-

coins, (ii) the blockchain, an ordered sequence of blocks, each

one being a set of issued transactions, maintained distributively

by the entities of the system, and (iii) a pool of pending

transactions eligible for confirmation in the blockchain, locally

maintained by each entity. Three types of entities participate

in the Bitcoin ecosystem: users, that send and receive bitcoins,

peers that propagate transactions in the network and maintain a

local copy of the blockchain, and miners, that establish which

transactions will appear in the blockchain, and the order in

which they will appear. Of course, at any time, an entity may

play any of the roles in the Bitcoin ecosystem.

A. The Bitcoin protocol

To illustrate the description of the Bitcoin ecosystem, we

will take the example of individual users called Alice, Bob

and Carol. Alice owns bitcoins, and she wishes to send them

to Bob and Carol for the goods they provide to her. Bitcoins

are entirely virtual. They are accessible via Bitcoin accounts.

An account, which refers to the elementary functional entity of

the Bitcoin ecosystem, is described by a key, derived from the

public key of the public/private key generated by Bitcoin users.

Keys are used to prove the ownership of bitcoins. A bitcoin

account is locked by its owner, and spending bitcoins amounts

to unlocking that account and transferring its value to that of

the recipient of the transaction who will be credited once the

transaction is confirmed in the blockchain (more details will

be given in the sequel). Note that to hide their profile, it is

recommended that users generate a new public/private key for

each transaction they are recipient of. An important aspect

of Bitcoin accounts is their indivisibly, meaning that once an

account has been created by a user, it will be credited by a

single transaction and will be debited by a single subsequent

transaction. Note that Alice may voluntarily pay a small trans-
action fee which will be kept by the miner that will succeed in

confirming Alice’s transaction in the blockchain. In this case,

the total amount of bitcoins in the input accounts is greater

than the amount of bitcoins transferred to the output accounts.

The successful miner creates an account that will be credited

with the fees from all the transactions of the block, along with

a block reward (whose amount is currently set to 12.5 bitcoins;

Transaction T1

Transaction T3

Transaction T4

Transaction T2

a1

50

b1

30

c1

20

c2

25

d1

30

b2

20
d2

21
c3

3

Fig. 1. Modelling the evolution of users’ accounts

it is halved every 210,000 blocks, which last occurred in July

2016) through a coinbase transaction, the way Bitcoin creates

money. Specifically, to send bitcoins to Bob and Carol, Alice

creates a transaction T = ({ai1 , . . . , aim}, {bj , c�}), where

{ai1 , . . . , aim}, m ≥ 1, refers to Alice’s credited accounts

that she wishes to spend. Set {ai1 , . . . , aim} is called the

input set of transaction T , and is denoted by I . The inputs

of a transaction are actually the hash of the transactions that

credited Alice’s accounts. We refer directly to the accounts for

a sake of clarity. Accounts bj and c� have respectively been

created by Bob and Carol to receive bitcoins from Alice’s

accounts. Set {bj , c�} is called the output set of T , and is

denoted by O. The amount of bitcoins of account ui is denoted

by v(ui). T also includes Alice’s digital signature on the input

and output accounts; thus, any user can verify its integrity by

checking the chain of signatures.

To describe the evolution of user accounts, we have adopted

a place/transition model as depicted in Figure 1. User accounts

are represented by places (circles) and transactions by transi-

tions (vertical bars). The place from which an arc runs to a

transition is an input place of the transition, and the place to

which an arc runs to is an output place of the transition. The

number of bitcoins in a user account represents the tokens of

the place. A transition may fire if there are sufficiently many

tokens in its input places, and it consumes all of them upon

firing. Places and transitions are dynamically created.

In Figure 1, Alice creates transaction T1 to transfer the

50 bitcoins of her account a1 to Bob and Carol’s accounts:

30 bitcoins to b1 and 20 to c1. Transaction T4 contains a

transaction fee equal to (25+20)− (20+21+3) = 1 bitcoin.

T2 is a coinbase transaction.

We say that a transaction T = (I,O) is well-formed if the

transition can be fired, i.e
∑
i∈I v(i) ≥

∑
o∈O v(o), and the

creator of T is the owner of the input accounts of T . In the

following we consider that all the transactions are well-formed.

When Bob and Carol receive the digitally signed transaction

319

T , they submit it to any peer p of Bitcoin for a validity check.

Informally, a transaction T = (I,O) is valid if p has received

all the transactions that have credited all the accounts in I
and not received any transaction already using any of those

same accounts. To formally define the validity property we

introduce the notion of a local view. The local view of p is

the pool of pending transactions at p together with the content

of p’s blockchain B(p). If we respectively denote by V(p)
k and

P(p)
k the local view of p and p’s pool of pending transactions

when p receives its k-th transaction, then we have

V(p)
k = P(p)

k ∪ B(p).

The current view and the current pool of pending transactions

of peer p are simply denoted by V(p) and P(p), respectively.

We suppose that p has initialised V(p)
1 with the first block

broadcast by Satoshi, containing a single coinbase transaction.

When p receives a new transaction T , p declares it valid

according to the following definition.

Definition 1 (Validity Property). Given a peer p of the Bitcoin
network, p considers its k-th transaction T = (I,O) as locally
valid if and only if the following three properties hold:

∀a ∈ I, ∃T ′ = (I ′, O′) ∈ V(p)
k−1, a ∈ O′ (1)

∀T ′ = (I ′, O′) ∈ V(p)
k−1, I ∩ I ′ = ∅ (2)

∀a ∈ O, ∀T ′ = (I ′, O′) ∈ V(p)
k−1, a /∈ O′. (3)

In the following, in accordance with Bitcoin requirements,

we suppose that a user creates a new account for each trans-

action she receives. That is Relation (3) is always satisfied.
As soon as T = (I,O) is considered locally valid, p

inserts it in its transaction pool, that is P(p)
k ← P(p)

k−1 ∪ {T},
then positively acknowledges Bob and Carol, and finally

disseminates T in the Bitcoin network. On the contrary, if

T = (I,O) is not locally valid, two cases must be considered:

either Relation (1) or Relation (2) does not hold. In the former

case, p inserts T in its local pool (i.e. P(p)
k ← P(p)

k−1∪{T}) and

disseminates it in the Bitcoin network. Transaction T becomes

locally valid when p receives the transactions crediting the

missing accounts. In the latter case, p has already received a

locally valid transaction T ′ = (I ′, O′) such that a = I ∩ I ′:
account a is in a double-spending situation. Formally,

Definition 2 (Double-spending situation). Given a Bitcoin
account ai, account ai is in a double-spending situation if
there exist two transactions T1 = (I1, O1) and T2 = (I2, O2)
such that :

T1, T2 ∈
⋃
p

V(p) ∧ ai ∈ I1 ∩ I2.

A transaction T is conflict-free if none of the inputs of

T = (I,O) is involved in a double-spending situation and all

of the transactions that credited T ’s inputs are conflict-free:

Definition 3 (Conflict-free transaction). A transaction T =
(I,O) is conflict-free if ∀a ∈ I , a is not involved in a double-
spending situation and the transaction T ′ = (I ′, O′) ∈ V(p)

with a ∈ O′ is conflict-free.

By construction, the induction is finite because Bitcoin

creates money only through coinbase transactions, which are

by definition conflict-free. Each T ′ exists by Relation (1).

Preventing a double-spending situation from transforming

into a successful double-spending attack (i.e. Alice succeeds

in converting the content of one of her accounts into goods

twice) is the key challenge of many virtual crypto-systems.

The solution adopted in Bitcoin to mitigate double-spending

attacks, without relying on a central trusted authority, consists

in gathering transactions into blocks and totally ordering them

in a publicly accessible and distributively managed ledger. This

is the role of miners. Briefly, the construction of a well-formed

block uses the hashcash proof-of-work function which consists

in computing h(x)/2m(m− k), where h is the double SHA-

256 hash function, m is the size of the hash output, i.e., m =
256, and k is the work factor. The value of x is obtained

by combining, among others, the sequence number of the last

block in the blockchain, the set of locally pending transactions

and a counter c incremented by the miner until the first k bits

of the hash output are 0. The work factor k is adjusted every

2016 blocks to provide an average block creation time of 10
minutes. Once the proof-of-work has been generated by some

miner q, it forms, together with the set of locally pending

transactions P(q), a numbered block b� that q appends to B(q).

Miner q disseminates this block in the Bitcoin network so

that each peer appends it to its local copy of the blockchain.

The status of a transaction changes from pending to locally
confirmed whenever it is included in a block.

Definition 4 (Local confirmation). Given a peer q of the
Bitcoin network, and a locally valid transaction T ,

T is locally confirmed ⇐⇒ ∃!B ∈ B(q), T ∈ B.

The local confirmation level of transaction T at peer q
is equal to the depth of block B, which corresponds to the

number of blocks appended in B(q) after B, including B.

Bitcoin miners are incentivized by receiving, when they

successfully generated a block, a reward in the form of the

coinbase transaction, defined above. Blocks, being generated

at a regular and very slow rate, provide a fully distributed

synchronization of the network. Since bitcoins are only created

through block rewards, it also ensures their rarity, leading to

their high financial value and hence to the high incentive to

create blocks.

B. Blockchain forks

Rewarding the creation of blocks introduces a competition

among miners. This competition may lead to concurrent blocks

(i.e. equally numbered blocks) and thus to a blockchain with

a tree structure. This phenomenon is called a blockchain fork.

A blockchain fork is resolved as soon as a miner generates

a proof-of-work and disseminates the corresponding block

b� quickly enough so that no concurrent miner has found

a valid proof-of-work before it receives it. In that case, the

branch of the local blockchain that contains b� is longer than

any other concurrent branches, which are pruned from the

320

tree, leading to a blockchain with a unique branch. Note

that ”pruned” transactions that do not already belong to the

unique branch are added again in the local transaction pools

for a possible confirmation in subsequent blocks. Blockchain

forks must be quickly resolved for two main reasons. Firstly,

malicious miners can take advantage of this phenomena to

trigger double-spend attacks. Such an attack is successful if

the branch that remains after the resolution of the fork contains

the illegitimate transaction issued by the attacker. Nakamoto’s

analysis, as well as subsequent ones [8], [11], [19] focus on

the race between malicious miners and honest ones to generate

the longer branch of the blockchain. Suppose that Bob is the

recipient of a transaction issued by the malicious sender Alice,

and that Alice manipulates a proportion μ of the miners of

the system. Nakamoto has shown that with probability less

than 0.1%, Bob’s transaction will be rejected if its level of

confirmation z in the local blockchain of some peer is less than

5 when μ = 10%. The level of confirmation must increase to

z = 8 when μ increases to μ = 15%, and to z = 15 when 25%
of the miners are corrupted. In the following, a transaction

is said deeply confirmed once it reaches such a confirmation

level. The second reason is that, in the presence of several

branches, the global computing power of the miners is spread

over the branches. This leads to an increase of the average

block generation time, and accordingly to the augmentation of

the time needed by transactions to become deeply confirmed.

C. Bitcoin properties

We can now state Bitcoin’s fundamental properties:

Property 1 (Bitcoin Liveness). A conflict-free transaction will
eventually be deeply confirmed in the blockchain of an honest
peer.

Property 2 (Bitcoin Safety). A conflict-free transaction deeply
confirmed by some honest peer will eventually be deeply
confirmed by all honest peers with the same confirmation level.

Two important remarks are in order.

Remark 1. Properties 1 and 2 guarantee that the view of all
honest peers have the same prefix.

Remark 2. Properties 1 and 2 each apply to transactions
issued by honest users, but honest recipients of conflictual
transactions have no guarantee of receiving the corresponding
coins.

To summarize, to prevent money counterfeiting, Bitcoin

opens the door to double-spending attacks against users that

optimistically assume that valid or even locally confirmed

transactions will eventually be deeply confirmed.

Given the increasing popularity of Bitcoin, any user may

legitimately expect a stronger liveness property than the one

implemented by Bitcoin. Indeed, in its current implementation,

a user cannot detect that a transaction it is recipient of

is conflictual and, thus, has no guarantee to be paid for

the service provided before said transaction becomes deeply

confirmed, which takes one hour in average.

In the sequel of the paper, we present three recent works that

aim at providing stronger guarantees to honest users through

linearizable operations on Bitcoin accounts. We show that

none of these works provide sufficient guarantees in presence

of malicious miners.

III. RELYING ON MINERS AS A TRUSTED THIRD PARTY

Three recent works, Bitcoin-NG [6], PeerCensus [5], and

BizCoin [13], have proposed to rely exclusively on miners to

take in charge the full process of validation and confirmation to

guarantee that all the operations triggered on the transactions

are atomically consistent. Atomic consistency guarantees that

all the updates on shared objects are perceived in the same

order by all entities of the system. In all these protocols, time is

divided into epochs. An epoch ends when a miner successfully

generates a new block. This miner becomes the leader of the

subsequent epoch. Each of these solutions rely on a dedicated

set E�, with � ∈ {1, w,∞}. This set is built along consecutive

epochs as follows. At epoch k, if |E�| < �, the new leader

is added to E�. Otherwise, the leader at epoch k + 1 − � is

removed from E� and the new leader is added. Once set E�
reaches size �, it remains at constant size �.

Strong consistency is implemented in these protocols by

different means. In Bitcoin-NG, it is achieved by delegating

the validation process to E1, i.e. the leader of the current epoch.

In PeerCensus it is implemented by relying on Byzantine

Fault Tolerant consensus protocols (e.g. [4], [9], [14]) run

by E∞ (recall that it contains all the miners that successfully

generated a block). Finally, BizCoin leverages both ideas by

using the leader and a consensus run by Ew. In all these

protocols, members of E�, with � ∈ {1, w,∞}, are entitled

to validate and confirm issued transactions and blocks and

to disseminate them so that each peer integrates them in its

local blockchain. In the remainder of the section we show that,

surprisingly enough, relying on miners to confirm transactions

does not prevent malicious users from successfully double-

spending bitcoins. Prior to doing that, we present the model

we use to analyze the safety of these protocols.

A. Model

We assume the presence of an adversary controlling a

proportion μ ∈ (0, 1) of the whole set of miners. This

adversary aims at exploiting the protocol under consideration

in order to perform double spending attacks. Miners that are

controlled by the adversary and the blocks they generate are

called Byzantine or malicious. On the contrary, miners that are

not controlled by the adversary and their blocks are considered

honest (i.e. they follow the prescribed protocol) and represent

a proportion (1 − μ) of the whole set of miners. We assume

that each miner (honest or not) has the same computational

power. Finally, we assume a constant block generation time.

Let Bk = (h,m) denote the state of the blockchain at epoch

k, where h andm represent the number of honest (respectively

malicious) blocks. We assume that Nakamoto, the Bitcoin

system creator, is honest and thus we have B0 = (1, 0).
Process B = {Bk | k ≥ 0} represents the evolution of the

321

blockchain composition over epochs. From state Bk = (h,m)
two transitions are possible: the next block can either be

generated by a honest miner, and the blockchain goes to state

Bk+1 = (h + 1,m) with probability 1 − μ, or generated by

a malicious miner, and Bk+1 = (h,m + 1), which happens

with probability μ. Process B is an homogeneous discrete time

Markov chain over the discrete state space ∗× . Non null

probability transitions are given for all (h,m) ∈ ∗ × by

{Bk+1 = (h+ 1,m) | Bk = (h,m)} = 1− μ, (4)

{Bk+1 = (h,m+ 1) | Bk = (h,m)} = μ. (5)

B. Analysis of Bitcoin-NG Safety

As previously described, in Bitcoin-NG each epoch is led

by a single miner entitled to validate the set of transactions

it receives. Upon reception of a new one, the leader has to

check if it is locally valid, i.e. if it satisfies Definition 1. If so,

the leader cryptographically signs it and disseminates it. Only

signed transactions may be confirmed, i.e. inserted in a block.

Note that if the leader is malicious, it may easily create

double-spending transactions and sign them with no consider-

ation for the other transactions whose recipients are honest. By

assumption a proportion μ ∈ (0, 1) of miners are controlled

by the considered adversary. Thus in expectation, a proportion

μ of blocks are malicious as well. The evolution of the

blockchain can be seen as a random walk over ∗× . Given

k ≥ 0, h ≥ 1 and m ≥ 0, and with B0 = (1, 0) as initial state,

we easily derive :

{Bk = (h,m)} =
(
k

h− 1

)
(1−μ)h−1μm1{k=h+m−1} (6)

The probability that at epoch k the blockchain does not

contain any malicious block is equal to {Bk = (h, 0)} =
(1−μ)k−1 if h = k−1 and 0 otherwise. Currently, the Bitcoin

blockchain counts more than 420 000 blocks, making this

probability close to 0. Furthermore, one can note the scalability

issue in this protocol: in the current setting, a leader has to

sign on average 1500 transactions per epoch, this volume being

steadily growing. Consequently, Bitcoin-NG approach cannot

cope with an adversarial environment, and hardly scales to a

high number of transactions.

C. Analysis of PeerCensus Safety

Contrarily to Bitcoin-NG, PeerCensus [5] proposes to in-

volve the whole set E∞ of successful miners in a Byzan-

tine Fault Tolerant consensus protocol like PBFT [4]. Prior

to focusing on PeerCensus safety, one may easily notice

that the scalability of this solution highly depends on the

blockchain size. Indeed, by involving in the k-th execution of

the Byzantine tolerant consensus algorithm the k−1 previously

successful miners, this would lead, today, to a consensus

run by k ≥ 420, 000 miners. The message complexity of

Byzantine tolerant consensus is classically in O(k3), leading

these algorithms to barely scale beyond 10 participants which

clearly weakens the feasibility of this approach.

Beyond this aspect, making E∞ membership at the k-th

execution of consensus depend on the decision obtained at the

(k − 1)-th consensus execution leads with high probability

to the permanent pollution of E∞. By pollution we mean

the presence of more than one third of byzantine miners in

E∞, even if from a global point of view, the Bitcoin network

contains less than one third of byzantine entities (i.e. μ < 1/3).

The following analysis proves our assertion.

According to [15], a consensus cannot be reached among n
participants if more than (n−1)/3 participants are byzantine.

We say that the state Bk = (h,m) of E∞ at epoch k is polluted
if the numberm of byzantine miners belonging to E∞ is larger

than or equal to (k − 1)/3. Conversely, a state that is not

polluted is said to be safe. We partition the space state ∗×
into two sub-spaces S∞ and P∞ corresponding respectively

to the set of safe and polluted states. We have

S∞ = {(h,m) ∈ ∗ × | h ≥ 2m+ 1}
and P∞ = {(h,m) ∈ ∗ × | h ≤ 2m}.

Thus, using Relation (6), the probability that E∞ is in a safe

state at epoch k is given by

{Bk ∈ S∞} =
k+1∑

h=1, 3h≥2k+3

(
k

h− 1

)
(1− μ)h−1μk−h+1

=

k∑
h=�2k/3

(
k

h

)
(1− μ)hμk−h.

Using the central limit theorem, we get

lim
k−→∞

{Bk ∈ S∞} =

⎧⎨⎩
0 if μ > 1/3

1/2 if μ = 1/3
1 if μ < 1/3.

(7)

Relation (7), while in accordance with [5], does not allow

one to claim that the execution that led to state Bk was

safe, i.e., ∀k′ ≤ k,Bk′ ∈ S∞. This argument is of prime

importance, as once E∞ is polluted, the adversary will be able

to impose its decision at each forthcoming consensus, either

on the transactions to be confirmed or on the blocks to be

included in the blockchain.

We now derive the probability of k consecutive safe ex-

ecutions of the consensus. Let T be the number of epochs

spent in states of S∞ before reaching for the first time a

state of P∞. Formally, the random variable T is defined by

T = min{k ≥ 0 | Bk ∈ P∞}, and we have {T > k} =
{B0 ∈ S∞, B1 ∈ S∞, . . . , Bk ∈ S∞}. Theorem 1 provides

a way to compute the probability of being in a given state

Bk = (h,m) ∈ S∞ before the first corruption.

Theorem 1. For all (h,m) ∈ S∞ (i.e. h ≥ 1, m ≥ 0 et
h ≥ 2m+ 1) and k = m+ h− 1, we have

{T > k,Bk = (h,m)}

=

[(
k + 1

h

)
− 3

(
k

h

)]
(1− μ)h−1μm1{k=m+h−1}. (8)

Proof. We define f(h,m) = {T > k,Bk = (h,m)} for

(h,m) ∈ S∞ (with k = m+h−1) and f(h,m) = 0 otherwise.

322

(a) {T > k} as a function of μ and the
blockchain size k

(b) Asymptotic behavior of {T > k} as a func-
tion of μ

(c) {Wk ∈ Sw} as a function of μ and w

Fig. 2. Analysis of the safety of PeerCensus and BizCoin algorithms

The initial state being (1, 0), we have f(1, 0) = 1. Using the

Markov property, we have

f(h,m) = (1− μ)f(h− 1,m)1{h≥2m+2} + μf(h,m− 1).

The relation is true for m = 0. Indeed the previous relation

gives, for m = 0,

f(h, 0) = (1− μ)f(h− 1, 0)1{h≥2},

that is f(h, 0) = (1 − μ)h−1, for every h ≥ 1. Moreover,

Relation (8) gives the same result for m = 0. We now use a

recurrence on two levels. Suppose that Relation (8) is true for

integer m− 1. For h = 2m+ 1, we have

f(2m+ 1,m) = μf(2m+ 1,m− 1)

=

[(
3m

2m+ 1

)
− 3

(
3m− 1

2m+ 1

)]
(1− μ)2mμm

=
(3m)!

(2m+ 1)!m!
(1− μ)2mμm,

which is the result given by Relation (8).
Suppose that the relation is true for integers h− 1 and m,

with h ≥ 2m+ 2. The recurrence hypothesis gives

f(h,m) = (1− μ)f(h− 1,m) + μf(h,m− 1)

=

[(
m+ h− 1

h− 1

)
− 3

(
m+ h− 2

h− 1

)
+

(
m+ h− 1

h

)
− 3

(
m+ h− 2

h

)]
(1− μ)h−1μm.

Grouping the first and the third term, and the second and the

fourth leads, since k = m− h+ 1, to

f(h,m) =

[(
k + 1

h

)
− 3

(
k

h

)]
(1− μ)h−1μm,

which completes the proof.

Theorem 2 gives the distribution of the first instant T of

pollution of E∞, as well as its asymptotic behavior.

Theorem 2. For all μ ∈ (0, 1) and k ≥ 0, we have

{T > k} = 1

1− μ

k+1∑
h=�2k/3+1

(
k + 1

h

)
(1− μ)hμk+1−h

− 3μ

1− μ

k∑
h=�2k/3+1

(
k

h

)
(1− μ)hμk−h.

The limit �(μ) = lim
k−→∞

{T > k} is then given by

�(μ) =

⎧⎪⎨⎪⎩
0 if μ > 1/3

1− 2μ

1− μ if μ ≤ 1/3.
(9)

Proof. Theorem 1, gives for all k ≥ 0,

{T > k} =
∑

(h,m)∈S

[(
k + 1

h

)
− 3

(
k

h

)]
× (1− μ)h−1μm1{k=m+h−1}

=

k+1∑
h=1, 3h≥2k+3

(
k + 1

h

)
(1− μ)h−1μk−h+1

−
k∑

h=1, 3h≥2k+3

(
k

h

)
(1− μ)h−1μk−h+1

=
1

1− μ

k+1∑
h=�2k/3+1

(
k + 1

h

)
(1− μ)hμk+1−h

− 3μ

1− μ

k∑
h=�2k/3+1

(
k

h

)
(1− μ)hμk−h.

The second result is derived from the central limit theorem.

We observe in Figure 2(a) the fast convergence of T to its

limit �(μ), while Figure 2(b) shows that when 0 < μ ≤ 1/3,

the probability to have a series of safe consensus executions

is strictly less than 1. For instance, for μ = 1/4 < 1/3, we

have �(μ) = 1/3 meaning that among all the trajectories of k
consensus executions, only 1/3 of them are safe. This result

clearly shows the limitations of the PeerCensus approach.

D. BizCoin

BizCoin [13] combines some of the ideas proposed in

PeerCensus and Bitcoin-NG: BizCoin uses the last successful

miner as the leader of the current epoch but the confirmation

process is handled by tolerant Byzantine consensus execu-

tions, implemented through a cryptographic collecting signing

scheme [24]. Furthermore, differently from PeerCensus, which

relies on E∞, BizCoin restricts the consensus membership to

Ew, containing the current leader and the w−1 previous ones.

323

We proceed as above to analyze BizCoin safety. Let us

consider the random variable M correponding to the type

of the current leader. According to Relations (4) and (5), at

epoch k, the leader is honest, i.e. M = 0, with probability

{M = 0} = 1 − μ and byzantine, i.e. M = 1, with

probability {M = 1} = μ. We denote byM0,k, . . . ,Mw−1,k

the type of the last w leaders at epoch k. The vector Wk =
(M0,k, . . . ,Mw−1,k) ∈ {0, 1}w represents the state of Ew. The

process W = {Wk, k ≥ 0} evolves as follows:

∀k ≥ 1, ∀1 ≤ i ≤ w − 1,Mi,k =Mi−1,k−1 (10)

where (M0,k)k≥1 is a sequence of independent and identically

distributed Bernoulli random variable with {M0,k = 0} =
1−μ and {M0,k = 1} = μ. The processW = {Wk, k ≥ 0}
is thus a homogeneous discrete-time Markov chain over the

state space {0, 1}w, representing the evolution of the compo-

sition of Ew over epochs.

Similarly to Section III-C, a state Wk is polluted if the

number of Byzantine miners belonging to Ew is larger than

(w − 1)/3. Conversely, a state that is not polluted is safe.

We are interested in the number of Byzantine miners in Ew at

epoch k. We denote this random variable by Nk which is given

by Nk =
∑w−1
i=0 Mi,k. We partition the space state {0, 1}w

into two subsets Sw and Pw corresponding respectively to the

set of safe and polluted states. We then have

Sw = {(m0, . . . ,mw−1) ∈ {0, 1}w |
w−1∑
i=0

mi ≤ (w − 1)/3},

Pw = {(m0, . . . ,mw−1) ∈ {0, 1}w |
w−1∑
i=0

mi > (w − 1)/3}.

Theorem 3 derives the probability of having Ew in a safe state

in steady state, and shows that the steady state is reached at

epoch k = w.

Theorem 3. For all k ≥ w, we have

{Wk ∈ Sw} =
(w−1)/3∑
�=0

(
w

�

)
μ�(1− μ)w−�.

Proof. From Relation (10), we easily get for any k ≥ 1, Nk =
Nk−1 +M0,k −Mw−1,k−1. Expanding this relation gives

Nk = N0 +

k∑
�=1

M0,� −
k−1∑
�=0

Mw−1,�. (11)

Observing that

k−1∑
�=0

Mw−1,� =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

k−1∑
�=0

Mw−1−�,0 if k ≤ w

w−1∑
�=0

Mw−1−�,0 +
k−1∑
�=w

M0,�−w+1 if k > w

Fig. 3. Proportion of blocks mined by the most represented mining pools
according to the epoch length w

and putting this last relation into Relation (11) provides the

following result:

Nk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

k∑
�=1

M0,� +

w−1−k∑
�=0

M�,0 if k ≤ w − 1

k∑
�=k−w+1

M0,� if k ≥ w.
(12)

Thus, for k ≥ w, Nk is the sum of w i.i.d. Bernoulli random

variables with the parameter μ, so we have

{Wk ∈ Sw} = {Nk ≤ �(w − 1)/3	}

=

(w−1)/3∑
�=0

(
w

�

)
μ�(1− μ)w−�.

Note that this expression does not depend on k, for k ≥ w,

meaning that the stationary regime is reached at epoch w.

Note that the result provided by Theorem 3 is consistent

with Relation (7) when w tends to infinity.

Figure 2(c) depicts the proportion of safe execution of

BizCoin as a function of w and μ. At the time of writing

this paper, the Bitcoin blockchain contains 422, 579 blocks.

We derive for k ≥ w values of {Wk ∈ Sw} for a size of 1

hour (w = 6), 6 hours (w = 36), 1 day (w = 144), 1 week

(w = 1008), 1 month (w = 4320), 6 months (w = 25920).

There are two trends depending on μ: against a weak adversary

(μ ≤ 1/3), the system is safer with a large window, and

conversely against a strong adversary (μ > 1/3). The larger

the window, the lower the variance (i.e. the deviation from

the expected Byzantine fraction μ of Ew); a lower variance

prevents a weak adversary from randomly gaining power while

a higher variance helps honest nodes to “steal” safe runs from

strong adversaries.

Considering the effective power of an adversary, we inves-

tigate the Bitcoin blockchain. Over the last year, almost all

blocks were generated through mining pools, which refer to

groups of miners gathering their computational resources so

as to increase their probability to successfully mine a block. If

the block is effectively appended in the blockchain, its reward

is shared among mining pool participants. Mining pools may

embed a text data in blocks, allowing them to later identify

all the blocks they generated. At the time of writing this

paper, around 95.8% of the blocks generated over the last

year contain such a text signature.

324

Figure 3 depicts the proportion of blocks generated by

the most important mining pools, namely BWPool, BTCC,

F2Pool, AntPool and BitFury, over different sizes w of set Ew.

These proportions are derived from two different blockchain

trackers [1], [2]. We can note that for all sizes w that we

considered for set Ew, no mining pool has generated more than

w/3 blocks, i.e. if we consider that an adversary controls the

totality of a mining pool, we have μ < 1/3. In this case, tuning

the size of Ew to 1 week provides a good tradeoff between the

probability of safe executions of BizCoin and the algorithmic

complexity of these executions. Should these mining pools

be colluding, i.e. under the control of a unique adversary,

they would control around 60% of the miners, which clearly

jeopardizes the reliability of BizCoin.

To summarize, we have shown that none of the studied

solutions enhances Bitcoin’s behavior. Beyond the complexity

introduced by the consensus executions, the main issue comes

from the fact that all important decisions of Bitcoin are

solely under the responsibility of (a quorum of) miners, and

the membership of the quorum is decided by the quorum

members. This magnifies the power of malicious miners.

IV. RELATED WORK

Bitcoin [20] is considered as the pioneer cryptocurrency

systems. Since its inception, several altcoins [3] have emerged.

Most of their differences lie in practical details like use of

a database [17], block generation time [25], used hashing

algorithm [16] or an unlimited number of coins [23]. The

GHOST protocol [22] proposes a different rule to solve

blockchain forks, based on the number of blocks contained

in each blockchain subtree (in case of consecutive forks).

Meanwhile, CoinJoin [18] and CoinShuffle [21] propose to

mix transactions to avoid user linkability. Recent works have

focused on Bitcoin modeling and evaluation. Authors of [19]

prove that the Bitcoin protocol achieves consensus with high

probability, while [8] show that peers participating in the

Bitcoin network agree on a common prefix for the transaction

history, both in failure-free environments. In contrast, authors

of [10], [11] focused on adversarial environments. These

works study the feasibility of double spending attacks and

their detection. Finally, as analyzed in this paper, different

approaches [6], [5], [13] have been proposed to enforce Bitcoin

safety.

V. CONCLUSION

In this paper, we have formally exhibited the key concepts

ruling the Bitcoin protocol. These concepts are used to de-

rive fundamental properties of Bitcoin. To the best of our

knowledge, this is the first time that they are highlighted. We

then study three recent propositions aiming at enforcing strong

consistency in Bitcoin. These propositions exclusively rely on

miners. We have shown that i) none of these propositions is

safe in an adversarial environment, ii) worse, these solutions

amplify the ability of malicious users to exploit Bitcoin

flaws. We are currently working on the protocol vulnerabilities

related to double spending, and implementing our solution to

demonstrate its feasibility and evaluate its performance in a

real setting.

REFERENCES

[1] Bitcoin Network Hashrate - Bitcoinity.org. https://data.bitcoinity.org/
bitcoin/hashrate/, 2016.

[2] BlockTrail — Bitcoin API and Block Explorer. https://www.blocktrail.
com/BTC, 2016.

[3] S. Ahamad, M. Nair, and B. Varghese. A survey on crypto currencies. In
Proceedings of the International Conference on Advances in Computer
Science (AETACS), 2013.

[4] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In
Proceedings of the Symposium on Operating Systems Design and
Implementation (OSDI), 1999.

[5] C. Decker, J. Seidel, and R. Wattenhofer. Bitcoin Meets Strong Con-
sistency. In Proceedings of the International Conference on Distributed
Computing and Networking (ICDCN), 2016.

[6] I. Eyal, A. E. Gencer, E. G. Sirer, and R. V. Renesse. Bitcoin-ng: A
scalable blockchain protocol. In Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2016.

[7] N. Fincham. https://mineforeman.com/2013/03/14/
what-the-fork-was-that-a-forking-post-mortem/.

[8] J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone
protocol: Analysis and applications. In Proceedings of the Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques - Advances in Cryptology (EUROCRYPT), 2015.

[9] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić. The Next
700 BFT Protocols. In Proceedings of the European Conference on
Computer Systems (EuroSys), 2010.

[10] G. O. Karame, E. Androulaki, and S. Capkun. Double-spending fast
payments in bitcoin. In Proceedings of the 2012 ACM Conference on
Computer and Communications Security (CCS), 2012.

[11] G. O. Karame, E. Androulaki, M. Rzeschlin, A. Gervais, and S. Capkun.
Misbehavior in bitcoin: A study of double-spending and accountability.
ACM Transactions on Information and System Security, 2015.

[12] E. Kokoris-Kogias, N. Gailly, I. Khoffi, L. Gasser, and B. Ford. Poster:
Bitcoin meets collective signing. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), 2016.

[13] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and
B. Ford. Enhancing bitcoin security and performance with strong
consistency via collective signing. In Proceedings of the USENIX
Security Symposium (USENIX Security), 2016.

[14] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva:
Speculative byzantine fault tolerance. In Proceedings of the Symposium
on Operating Systems Principles (SOSP), 2007.

[15] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem.
ACM Transactions on Programming Languages and Systems, 1982.

[16] Litecoin. Global Decentralized currency based on blockchain technol-
ogy. https://litecoin.org, 2011.

[17] A. Loibl. Namecoin. http://namecoin.info/, 2014.
[18] G. Maxwell. CoinJoin: Bitcoin privacy for the real world. https://en.

wikipedia.org/wiki/CoinJoin, 2013.
[19] A. Miller and J. LaViola Jr. Anonymous byzantine consensus from

moderately-hard puzzles: A model for bitcoin. Available on line:
http://nakamotoinstitute.org/research/anonymous-byzantine-consensus/,
2014.

[20] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. https:
//bitcoin.org/bitcoin.pdf, 2008.

[21] T. Ruffing, P. Moreno-Sanchez, and A. Kate. Coinshuffle: Practical
decentralized coin mixing for bitcoin. In Proceedings of European
Symposium on Research in Computer Security (ESORICS), 2014.

[22] Y. Sompolinsky and A. Zohar. Accelerating bitcoin’s transaction
processing. fast money grows on trees, not chains. IACR Cryptology
ePrint Archive, 2013:881, 2013.

[23] S. N. Sunny King. Ppcoin: Peer-to-peer crypto-currency with proof-of-
stake. 2012.

[24] E. Syta, I. Tamas, D. Visher, D. Wolinsky, L. Gasser, N. Gailly, and
B. Ford. Keeping authorities ”honest or bust” with decentralized witness
cosigning. In Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2016.

[25] G. Wood. Ethereum: A secure decentralised generalised transaction
ledger. http://gavwood.com/Paper.pdf.

325

A Comparison of GPU Execution Time Prediction using
Machine Learning and Analytical Modeling

Marcos Amarı́s∗, Raphael Y. de Camargo†, Mohamed Dyab‡, Alfredo Goldman∗, Denis Trystram‡
∗ Institute of Mathematics and Statistics

University of São Paulo
São Paulo, Brazil

{amaris, gold}@ime.usp.br
† Center for Mathematics, Computation and Cognition

Universidade Federal do ABC
Santo André, Brazil

raphael.camargo@ufabc.edu.br
‡ Grenoble Institute of Technology

Grenoble, France
{mohamed.dyab, denis.trystram}@imag.fr

Abstract—Today, most high-performance computing (HPC) platforms
have heterogeneous hardware resources (CPUs, GPUs, storage, etc.) A
Graphics Processing Unit (GPU) is a parallel computing coprocessor spe-
cialized in accelerating vector operations. The prediction of application
execution times over these devices is a great challenge and is essential for
efficient job scheduling. There are different approaches to do this, such as
analytical modeling and machine learning techniques. Analytic predictive
models are useful, but require manual inclusion of interactions between
architecture and software, and may not capture the complex interactions
in GPU architectures. Machine learning techniques can learn to capture
these interactions without manual intervention, but may require large
training sets.

In this paper, we compare three different machine learning approaches:
linear regression, support vector machines and random forests with
a BSP-based analytical model, to predict the execution time of GPU
applications. As input to the machine learning algorithms, we use profiling
information from 9 different applications executed over 9 different GPUs.
We show that machine learning approaches provide reasonable predic-
tions for different cases. Although the predictions were inferior to the
analytical model, they required no detailed knowledge of application code,
hardware characteristics or explicit modeling. Consequently, whenever
a database with profile information is available or can be generated,
machine learning techniques can be useful for deploying automated on-
line performance prediction for scheduling applications on heterogeneous
architectures containing GPUs.

Keywords-Performance Prediction, Machine Learning, BSP model,
GPU Architectures, CUDA.

I. INTRODUCTION

Today, most computing platforms for HPC have heterogeneous
hardware resources (CPUs, GPUs, storage, etc.). The most powerful
supercomputers today have millions of those resources [1]. In order
to use all the computational power available, applications must be
composed of multiple tasks that must use all available resources as
efficiently as possible.

The Job Management System (JMS) is the middleware responsible
for distributing computing power to applications. The JMS requires
that users provide an upper bound of the execution times of their jobs
(wall time). Usually, if the execution goes beyond this upper bound,
the job is killed. This leads to very bad estimations, with an obvious
bias that tends to overestimate their durations [2].

Graphics Processing Units (GPUs) are specialized processing units
that were initially conceived with the purpose of accelerating vector
operations, such as graphics rendering. GPUs are general purpose

parallel processing units with accessible programming interfaces,
including standard languages such as C, Java and Python. In partic-
ular, the Compute Unified Device Architecture (CUDA) is a parallel
computing platform that facilitates the development on any GPU
manufactured by NVIDIA [3]. CUDA was introduced by NVIDIA
in 2006 for their GPU hardware line.

Information from profiling and traces of heterogeneous applica-
tions can be used to improve current JMSs, which require a better
knowledge about the applications [4-5]. Predicting execution times
in heterogeneous applications is a great challenge, because hardware
characteristics can impact their performance in different ways. Some
parallel programs can be efficiently executed on some architectures,
but not on others.

Parallel computing models have been an active research topic
since the development of modern computers [6-9]. Preliminary works
on the characterization of the performance of GPU applications on
heterogeneous platforms showed that simple analytical models can
be used to predict performance of such applications [10-11].

In this paper, we implemented a fair comparison between different
machine learning approaches and a simple BSP-based model to
predict the execution time of GPU applications [10]. The experi-
ments were made using 9 different applications that perform vector
operations. We used 9 different NVIDIA GPUs in the experiments,
6 from Kepler and 3 from Maxwell architecture.

Our main contribution was showing that machine learning tech-
niques provided acceptable predictions for all the applications over all
the GPUs. Although the analytical model provided better predictions,
it requires knowledge on the application and hardware structure. Con-
sequently, machine learning techniques can be useful for deploying
automated on-line performance prediction for scheduling applications
on heterogeneous architectures containing GPUs, whenever a large
data set with information about similar applications is available.

The rest of this paper is organized as follows: In Section II, we
present important concepts to understand this work. In Section III,
we review the literature about the area. In Section IV, we describe
our experiments and methodology. In Section V, we present the
results from the experiments. Finally, in Section VI, we present the
conclusions of our work and future work.978-1-5090-3216-7/16/ 31.00 c⃝ 2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

326

II. BACKGROUND

A. NVIDIA GPU Microarchitecture and CUDA

NVIDIA GPU architectures have multiple asynchronous parallel
Streaming Multiprocessors (SMs) which contain Scalar Processors
(SPs), Special Function Units (SFUs) and load/store units. These
GPU architectures vary on a large number of features, such as
number of cores, registers, SFUs, load/store units, on-chip and cache
memory sizes, processor clock frequency, memory bandwidth, unified
memory spaces and dynamic kernel launches. Those differences are
summarized in the Compute Capability (C.C.) of an GPU.

The main advantage of GPUs is that they contains thousands of
simple cores, which can be used concurrently by many threads.
NVIDIA GPUs have hierarchical memory configuration with a global
memory, which is shared among all threads. Concurrent accesses by
threads from the same warp (groups of 32 threads) to contiguous
addresses can be coalesced in a single transaction. But it has a latency
of about 400 or 600 cycles per access [12]. To improve memory
access efficiency, they provide a small on-chip shared memory, which
has a low-latency and can be accessed by all threads in a single
SM. Fermi and Kepler also provide a low-latency on-chip L1 cache,
with a small access latency. A L2 off-chip cache is also present,
with a latency higher than L1 cache, but lower than the global
memory. Figure 1 shows the hierarchy memory accessed by any
thread executed in a Kepler and Maxwell architecture.

Fig. 1. Memory hierarchy for threads from a kernel executed in Kepler
architectures

The CUDA programming model and platform enables the use
of NVIDIA GPUs for scientific and general purpose computations.
A single master thread runs in the CPU, launching and managing
computations on the GPU. Data for the computations has to be
transferred from the main memory to the GPU’s memory.

B. Bulk Synchronous Parallel Model

The main goal of parallel computing models is to provide a
standard way of describing and evaluating the performance of
parallel applications. For a parallel computing model to succeed,
it is paramount to consider the characteristics of the underlying
architecture of the hardware used.

One of the most well-established models for parallel computing
is the Bulk Synchronous Parallel (BSP), first introduced by Valiant
in 1990 [13]. The computations in BSP model are organized in a
sequence of supersteps, each one divided into three successive—
logically disjointed—phases. On the first phase, all processors use
their local data to perform local sequential computations in parallel
(i.e., there is no communication among the processors.) The second
phase is a communication phase, where all nodes exchange data
performing personalized all-to-all communication. The last phase

consists of a global synchronization barrier, that guarantees that all
messages were delivered and all processors are ready to start the next
superstep. Figure 2 depicts the phases of a BSP application.

Fig. 2. Superstep in a Bulk Synchronous Parallel Model.

The cost to execute the 𝑖-th superstep is then given by:

𝑤𝑖 + 𝑔ℎ𝑖 + 𝐿 (1)

where 𝑤𝑖 is the maximum amount of local computations executed,
and ℎ𝑖 is the largest number of packets sent or received by any
processor during the superstep. If 𝑊 =

∑𝑆
𝑖=1 𝑤𝑖 is the sum of

the maximum work executed on all supersteps and 𝐻 =
∑𝑆

𝑖=1 ℎ𝑖

the sum of the maximum number of messages exchanged in each
superstep, then the total execution time of the application is given
by:

𝑇 = 𝑊 + 𝑔𝐻 + 𝐿𝑆 (2)

It is common to present the parameters of the BSP model as a tuple
(𝑤, 𝑔, ℎ, 𝐿).

C. BSP-based Model for GPU Applications

In [10] the authors created a simple BSP-based model to predict
performance in GPU applications. This model abstracts all the
heterogeneity of GPU architectures and many optimizations that GPU
application can perform in a parameter 𝜆. We have used this model
to do the comparison with the machine learning approaches. The
equation 3 shows the predicted running time of a kernel 𝑇𝑘 using
this model.

𝑇𝑘 =
𝑡 ⋅ (𝐶𝑜𝑚𝑝+ 𝐶𝑜𝑚𝑚𝐺𝑀 + 𝐶𝑜𝑚𝑚𝑆𝑀)

𝑅 ⋅ 𝑃 ⋅ 𝜆 (3)

𝑡 is the number of threads launched, 𝐶𝑜𝑚𝑝 is the computational cost
of one thread, number of cycles spent by each thread in computations,
𝐶𝑜𝑚𝑚𝐺𝑀 is the communication cost of global memory accesses of
one thread (Equation 5), 𝐶𝑜𝑚𝑚𝑆𝑀 is the communication cost of
shared memory accesses of one thread (Equation 4), 𝑅 is the clock
rate, 𝑃 is the number of cores, 𝜆 models the effects of application
optimizations.

𝐶𝑜𝑚𝑚𝑆𝑀 = (𝑙𝑑0 + 𝑠𝑡0) ⋅ 𝑔𝑆𝑀 (4)

𝐶𝑜𝑚𝑚𝐺𝑀 = (𝑙𝑑1 + 𝑠𝑡1 − 𝐿1− 𝐿2)⋅𝑔𝐺𝑀+𝐿1⋅𝑔𝐿1+𝐿2⋅𝑔𝐿2 (5)

where 𝑔𝑆𝑀 , 𝑔𝐺𝑀 , 𝑔𝐿1 and 𝑔𝐿2 are constants representing the latency
in communication over shared, global, L1 cache and L2 cache
memory, respectively. 𝑙𝑑0 and 𝑠𝑡0 represent the average number of

327

load and stores for one thread in the shared memory, and 𝑙𝑑1 and
𝑠𝑡1 global memory. 𝐿1 and 𝐿2 are average cache hits in 𝐿1 and 𝐿2
cache for one thread. 𝐿1 caching in Kepler and Maxwell architectures
is reserved for register spills in local memory. For this reason 𝐿1 is
always 0 for all the experiments. Global loads are cached in 𝐿2 only.

The parameter 𝜆 captures the effects of thread divergence, global
memory access optimizations, and shared memory bank conflicts. t
is used to adjust the predicted application execution time with the
measured one and is defined as the ratio between these values. It
needs to be measures only once, for a single input size and a single
board. The same lambda should work for all input sizes and boards
of the same architecture. For a better description of this analytical
model, more info can be found in [10].

Intra-block synchronization is very fast, and did not need to be
included. Nevertheless, we maintained the inspiration on the BSP-
model because the extended version of the model for multiple GPUs
needs global synchronizations.

D. Machine Learning

Machine learning refers to a set of techniques for understanding
data. The theoretical subject of “learning” is related to prediction.
Machine learning techniques involve building a statistical model for
predicting, or estimating an output based on one or more inputs.
Regression models are used when the output is a continuous value.
In this paper, we used three different machine learning methods:
Linear Regression, Support Vector Machines and Random Forest.
There exists other machine learning techniques with sophisticated
learning process. However, in this work, we wanted to use simple
models to prove that they achieve reasonable predictions.

1) Linear Regression (LR): Linear regression is a straightforward
technique for predicting a quantitative response 𝑌 on the basis of
a single or multiple predictor variables 𝑋𝑝. It assumes that there
is approximately a linear relationship between each 𝑋𝑝 and 𝑌 . It
gives to each predictor a separate slope coefficient in a single model.
Mathematically, we can write the multiple linear regression model as

𝑌 ≈ 𝛽0 + 𝛽1𝑋1 ++𝛽2𝑋2 + . . .++𝛽𝑝𝑋𝑝 + 𝜖 (6)

where 𝑋𝑝 represents the 𝑝th predictor and 𝛽𝑝 quantifies the associ-
ation between that variable and the response.

2) Support Vector Machines (SVM): Support Vector Machines is
a widely used technique for classification and regression problems.
It belongs to the general category of kernel methods, which are
algorithms that depend on the data only through dot-products. The
dot product can be replaced by a kernel function which computes
a dot product in some possibly high dimensional feature space 𝑍.
It maps the input vector 𝑥 into the feature space 𝑍 though some
nonlinear mapping.

3) Random Forest (RF): Random Forests belong to decision tree
methods, capable of performing both regression and classification
tasks. In general, a decision tree with 𝑀 leaves divides the feature
space into 𝑀 regions 𝑅𝑚, 1 ≤ 𝑚 ≤ 𝑀 . The prediction function of
a tree is then defined as 𝑓(𝑥) =

∑𝑀
𝑚=1 𝑐𝑚𝐼(𝑥,𝑅𝑚), where 𝑀 is

the number of leaves in the tree, 𝑅𝑚 is a region in the features space,
𝑐𝑚 is a constant corresponding to region 𝑚 and 𝐼 is the indicator
function, which is 1 if 𝑥 ∈ 𝑅𝑚, 0 otherwise. The values of 𝑐𝑚
are determined in the training process. Random forest consists of an
ensemble of decision trees and uses the mode of the decisions of
individual trees.

III. RELATED WORK

Juurlink et al. were one of the firsts authors to compare perfor-
mance predictions of parallel computing models [7], comparing BSP,

E-BSP and BPRAM over different parallel platform. Some authors
have also focused their work in performance prediction of parallel
applications using machine learning [14-18]. All this work is about
parallel applications executed over CPUs and not GPU applications.

In recent years, studies on GPU performance using different
statistical and machine learning approaches have appeared. Baldini
et al. showed that machine learning can predict GPU speedup from
OpenMP applications [19]. They used K-nearest neighbor and SVM
as classifier to know the performance of these applications over
different GPUs. Wu et al. described a GPU performance and power
estimation model [20], using K-means to create sets of scaling be-
haviors representative of the training kernels and neural networks that
map kernels to clusters, with experiments using OpenCL applications
over AMD GPUs. Karami et al. proposed a statistical performance
prediction model for OpenCL kernels on NVIDIA GPUs [21] using
a regression model for prediction and principle component analysis
for extracting features of higher weights, thus reducing model com-
plexity while preserving accuracy. Zhang et al. presented a statistical
approach on the performance and power consumption of an ATI
GPU [22], using Random Forest due to its useful interpretation
tools. Hayashi et al. constructed a prediction model that estimates the
execution time of parallel applications [23] based on a binary pre-
diction model with Support Vector Machines for runtime CPU/GPU
selection. Kerr et al. developed Eiger [24], which is a framework
for automated statistical approaches for modeling program behav-
iors on diverse GPU architectures. They used various approaches,
among them principal component analysis, clustering techniques, and
regression analysis. Madougou et al. presented a comparison between
different GPGPU performance modeling tools [25], they compare
between analytical model, statistical approaches, quantitative methods
and compiler-based methods. Meswani et al. predicted the perfor-
mance of HPC applications on hardware accelerators such as FPGA
and GPU from applications running on CPU [26]. This was done by
identifying common compute patterns or idioms, then developing a
framework to model the predicted speedup when the application is run
on GPU or FPGA using these idioms. Ipek et al. trained multilayer
neural networks to predict different performance aspects of parallel
applications using input data from executing applications multiple
times on the target platform [27].

In this work, we compare three different machine learning tech-
niques to predict kernel execution times over NVIDIA GPUs. We also
perform a comparison with a BSP-based analytical model to verify
when each approach is advantageous. Although some works have
compared analytical models, statistical approaches and quantitative
methods, to the best of our knowledge this is the first work that
compares analytical model to machine learning techniques to predict
running times of GPU applications. Moreover, it offers a comparison
between different machine learning techniques.

IV. METHODOLOGY

In this section we discuss the algorithms and GPU testbed, the
analytical model and the methodology used in the learning process.
During our evaluation, all applications were executed using the
CUDA profiling tool nvprof. Each experiment is presented as the
average of ten executions, with a confidence interval of 95%.

A. Algorithm Testbed

The benchmark contains 4 different strategies for matrix multipli-
cation [3], 2 algorithms for matrix addition, 1 dot product algorithm,
1 vector addition algorithm and 1 maximum sub-array problem
algorithm [28].

328

1) Matrix Multiplication: We used four different memory access
optimizations: global memory with non-coalesced accesses (MMGU);
global memory with coalesced accesses (MMGC); shared memory
with non-coalesced accesses to global memory (MMSU); and shared
memory with coalesced accesses to global memory (MMSC). The
run-time complexity for a sequential matrix multiplication algorithm
using two matrices of size 𝑁×𝑁 is 𝑂(𝑁3). In a CUDA application
with 𝑁2 threads, the run-time complexity is 𝑂(𝑁)

2) Matrix Addition: We used two different memory access op-
timizations: global memory with non-coalesced accesses (MAU);
and global memory with coalesced accesses (MAC); The run-time
complexity for a sequential matrix addition algorithm using two
matrices of size 𝑁 × 𝑁 is 𝑂(𝑁2). In a CUDA application with
𝑁2 threads, the run-time complexity is 𝑂(1).

3) Vector Addition Algorithm (vAdd): For two vectors 𝐴 and 𝐵,
the Vector Addition 𝐶 = 𝐴 + 𝐵 is obtained by adding the corre-
sponding components. In a GPU algorithm, each thread performs an
addition of a position of the vectors 𝐴 and 𝐵 and stores the result
in the vector 𝐶.

4) Dot Product Algorithm (dotP): For two vectors 𝐴 and 𝐵, the
dot product 𝐶 = 𝐴 ⋅ 𝐵 is obtained by adding the multiplication of
corresponding components of the input, the result of this operation is
a scalar. In a GPU algorithm, each thread performs a multiplication
of a position of the vectors 𝐴 and 𝐵 and stores the result shared
variable. Then a reduction per blocks is performed and a vector of
size equal to the number of block in the grid is transferred to the
CPU memory for later processing.

5) Maximum Sub-Array Problem (MSA): Let 𝑋 be a sequence of
𝑁 integer numbers (𝑥1, ..., 𝑥𝑁). The Maximum Sub-Array Problem
(SSM) consists of finding the contiguous sub-array within 𝑋 which
has the largest sum of elements. The implementation used in this
paper creates a kernel with 4096 threads, divided in 32 blocks with
128 threads [28]. The 𝑁 elements are divided in intervals of 𝑁/𝑡,
and each block receives a portion of the array. The blocks use the
shared memory for storing segments, which are read from the global
memory using coalesced accesses. Each interval is reduced to a set
of 5 integer variables, which are stored in vector of size 5 × 𝑡 in
global memory. This vector is then transferred to the CPU memory
for later processing.

B. GPU Testbed

We performed our comparisons over several different NVIDIA
microarchitectures. We used 9 GPUs, described in Table I. GPUs
with Compute Capability 3.X belong to Kepler architecture. GPUs
with Compute Capability 5.X belong to Maxwell architecture.

TABLE I
HARDWARE SPECIFICATIONS OF THE GPUS IN THE TESTBED

Model C.C. Memory Bus Bandwidth L2 Cores/SM Clock
GTX-680 3.0 2 GB 256-bit 192.2 GB/s 0.5 M 1536/8 1058 Mhz

Tesla-K40 3.5 12 GB 384-bit 276.5 GB/s 1.5 MB 2880/15 745 Mhz

Tesla-K20 3.5 4 GB 320-bit 200 GB/s 1 MB 2496/31 706 MHz

Titan Black 3.5 6 GB 384-bit 336 GB/s 1.5 MB 2880/15 980 Mhz

Titan 3.5 6 GB 384-bit 288.4 GB/s 1.5 MB 2688/14 876 Mhz

Quadro K5200 3.5 8 GB 256-bit 192.2 Gb/s 1 MB 2304/12 771 Mhz

Titan X 5.2 12 GB 384-bit 336.5 GB/s 3 MB 3072/24 1076 Mhz

GTX-980 5.2 4 GB 256-bit 224.3 GB/s 2 MB 2048/16 1216 Mhz

GTX-970 5.2 4 GB 256-bit 224.3 GB/s 1.75 MB 1664/13 1279 Mhz

C. Data sets

For the analytical model, each application was executed with input
sizes of power of two. For problems of one dimension, 10 samples
were taken, from 218 until 227. For problems of two dimensions, 6
samples were taken, all of them were squares matrices, with number
of lines from 28 until 213.

For the machine learning analysis, we first collected the perfor-
mance profiles (metrics and events) for each kernel and GPU. To
be fair with the analytical model, we then choose similar commu-
nication and computation parameters to use as data input for the
machine learning algorithms. We performed the evaluation using
cross-validation, that is, for each target GPU, we performed the
training using the other 8 GPUs, testing the model in the target GPU.

To collect data for the machine learning algorithms, we executed
the two-dimensional applications using three different size for the
CUDA thread blocks, 82, 162 and 322, and input sizes from 28 to
213. We took 32 samples per block size, resulting in 96 samples per
GPU and a total of 864 samples. For the uni-dimensional problems
we used input sizes from 218 to 227 and took 69 samples for each
configuration, resulting in 207 samples per GPU and a total of
1863 samples. For sub-array maximum problem, 96 samples with
the original configuration were taken, for a total of 864 samples.

We also evaluate a scenario were we collected more examples of a
single application. We executed the matrix multiplication with shared
memory and coalesced accesses (MMSC) using 8 configurations:
16, 64, 144, 256, 400, 576, 784, and 1024 threads per blocks. This
resulted in a total of approximately 256 samples for GPU, and more
than 2000 samples.

For each sample, the metrics, events and trace information were
collected in different phases, therefore avoiding the overhead over
the measured execution time of the application. The features which
we used to feed the Linear Regression, Support Vector Machines and
Random Forest algorithms are described in the Table II.

TABLE II
FEATURES USED AS INPUT IN THE MACHINE LEARNING TECHNIQUES

Feature Description

num_of_cores Number of cores per GPU

max_clock_rate GPU Max Clock rate

Bandwidth Theoretical Bandwidth

Input Size Size of the problem

totalLoadGM Load transaction in Global Memory

totalStoreGM Store transaction in Global Memory

TotalLoadSM Load transaction in Shared Memory

TotalStoreSM Store transaction in Global Memory

FLOPS SP Floating operation in Single Precision

BlockSize Number of threads per blocks

GridSize Number of blocks in the kernel

No. threads Number of threads in the applications

Achieved Occupancy
Ratio of the average active warps per

active cycle to the maximum number of
warps ed on a multiprocessor.

To generate the flags totalLoadGM, totalStoreGM,
TotalLoadSM and TotalStoreSM, the number of requests was
divided by the number of transactions per request for each operation.

We first transformed the data to a 𝑙𝑜𝑔2 scale and, after performing
the learning and predictions, we returned to the original scale using a
2𝑝𝑟𝑒𝑑 transformation [29], reducing the non-linearity effects. Figure 3
shows the difference between the trained model without (left-hand

329

side graph) and with (right-hand side graph) logarithmic scale. The
linear regression resulted in poor fitting in the tails, resulting in poor
predictions. This problem was solved with the log transformation.

Fig. 3. Quantile-Quantile Analysis of the generated models

In this work, we applied these methods over profiling information
about metrics and events of the executions of GPU applications over
NVIDIA GPUs. To measure the progress of the learning algorithm
we have used the normalized mean square error. With this error we
have analysed the reliability of our approaches.

We used R to automate the statistical analyses, in conjunction
with the e1071 and randomForest packages to use the svm and
randomForest functions respectively [30-31].

V. RESULTS

The source code for all the experiments and results are available1

under Creative Commons Public License for the sake of reproducibil-
ity. The comparison between analytical models and machine learning
approaches are done taking the accuracy of the predictions, defined
as the ratio between the predicted and true values of execution times,
i.e,

𝑦𝑝𝑟𝑒𝑑
𝑦𝑡𝑟𝑢𝑒

.
The rest of this section is organized as follows: In subsection V-A,

the Analytical model results are presented. In subsection V-B, results
for Machine Learning approach are presented. In subsection V-C, a
comparison between the results of both approaches is presented.

A. Analytical Model

The number of computation (𝐶𝑜𝑚𝑝) and communication (𝑔𝑆𝑀 ,
𝑔𝐺𝑀 , 𝑔𝐿1 and 𝑔𝐿2) steps were extracted from the application source
codes. These parameters are the same for all the simulations, and are
presented in Table III. We did not include the values of the cache
L2 for these experiments because they did not impact the execution
times.

TABLE III
VALUES OF THE MODEL PARAMETERS OVER 9 DIFFERENT APPLICATIONS

Par. Matrix Multiplication Matrix Addition vAdd dotP MSAMMGU MMGC MMSU MMSC MAU MAC

comp 𝑁 ⋅ FMA 1 ⋅ 24 1 ⋅ 96 (𝑁/𝑡) ⋅ 100
ld1 2 ⋅𝑁 2 2 𝑁/𝑡

st1 1 2 1 𝑁

ld0 0 2 ⋅𝑁 0 0 𝑁/𝑡

st0 0 1 0 1 + 𝑙𝑜𝑔(𝑡) 5

Different micro-benchmarks were used to measure the number of
cycles per computation operation in GPUs [32], with FMAs, additions
and multiplications taking approximately 1, 24 and 96 cycles of
clock. For all simulations, we considered 5 cycles for latency in the

1Hosted at GitHub: https://github.com/marcosamaris/svm-gpuperf
[Accessed on 19 June 2016]

communication for shared memory and 500 cycles for global memory
[3]. Finally, when the models were complete, we executed a single
instance of each application on each GPU to determine the 𝜆 values,
described in the Table IV.

TABLE IV
VALUES OF THE PARAMETER 𝜆 FOR EACH APPLICATION IN EACH GPU

MMGU MMGC MMSU MMSC MAU MAC dotP vAdd MSA

GTX-680 4.25 19.00 18.00 68.00 0.85 11.00 14.00 11.00 0.68
Tesla-K40 4.30 20.00 19.00 65.00 2.50 9.50 9.00 10.00 0.48
Tesla-K20 4.50 21.00 18.00 52.00 2.50 9.00 9.00 10.00 0.50
TitanBlack 3.75 17.00 16.00 52.00 1.85 8.00 7.00 8.50 0.35

Titan 4.25 21.00 17.00 50.00 2.50 10.00 9.50 12.00 0.48
Quadro 5.00 22.00 22.00 68.00 1.25 10.00 12.00 11.00 0.50
TitanX 9.00 38.00 38.00 118.00 2.75 10.50 7.50 10.50 1.05

GTX-980 9.00 40.00 40.00 110.00 3.25 9.75 10.00 10.00 1.65
GTX-970 5.50 26.00 24.00 75.00 1.85 5.90 7.00 6.00 1.05

B. Machine Learning Approaches

Figure 4 shows the box plots of the accuracy of the machine
learning techniques using many samples. The box plots show the
median for each GPU and the upper and lower first quartiles,
with whiskers representing the 95% confidence interval. Outliers are
marked as individual points.

In this experiment, approximately 260 samples of the application
MMSC were collected in each one of the 9 GPUs. For the training
set 8 GPUs were used, and the remaining GPU was used for the
test set. This was made for each GPU in the three techniques of
machine learning. We can see that Linear Regression, Support Vector
Machines and Random Forest have a reasonable accuracy for all the
GPUs, with a mean between 0.75 and 1.5, for most cases, with some
outliers.

The linear kernel in the support vector machine achieved the best
performance and accuracy in the prediction. For this reason, Figures
4, 5 show similar results for Linear Regression and for Support
Vector Machines. Other kernel like Polynomial, Gaussian (RBF) and
Sigmoid were tested, they resulted in worse predictions.

For the random forest, we have changed two default parameters,
the number of trees and the number of variables as candidates at each
split. For the first parameter, the default value was 500 and for the
second parameter, the default value was 𝑝/3, where 𝑝 is the number
of predictors, 13 in this case according to Table II. We set the number
of trees to 50, and the number of predictors to split to 5. These values
achieved better prediction, and they were determined manually after
many simulations.

Fig. 4. Accuracy of Machine Learning Algorithms of matMul-SM-Coalesced
with many samples

330

Table V shows the comparison between the different regression
models used, in terms of mean accuracy and mean squared error.
In this table, we can see that the accuracy of the predictions are
between 0.75 and 1.2 for almost all the cases, only the predictions of
the GTX-980 with the Random Forest showed irregular predictions,
we think that was because the application MMSC showed the best
performance in this GPU and the selected parameters to split the
decision tree lied at the moment of the predictions.

TABLE V
STATISTICS OF THE MACHINE LEARNING WITH MORE OF 1000 SAMPLES

FOR TRAINING PROCESS

GPUs
Accuracy Mean NMSE

LR SVM RF LR SVM RF

GTX-680 0.85 ± 0.09 0.82 ± 0.07 0.78 ± 0.08 0.033 0.037 0.026
Tesla-K40 1.21 ± 0.05 1.20 ± 0.06 0.97 ± 0.06 0.006 0.008 0.005
Tesla-K20 0.85 ± 0.03 0.84 ± 0.03 0.77 ± 0.02 0.008 0.008 0.051

Titan-Black 1.18 ± 0.07 1.16 ± 0.06 1.12 ± 0.12 0.145 0.115 0.019
Titan 0.96 ± 0.04 0.96 ± 0.04 0.98 ± 0.06 0.012 0.012 0.008

Quadro 1.00 ± 0.10 1.01 ± 0.10 0.98 ± 0.10 0.041 0.043 0.017
TitanX 1.34 ± 0.28 1.30 ± 0.27 1.45 ± 0.17 0.064 0.059 0.254

GTX-980 1.05 ± 0.17 1.04 ± 0.17 2.08 ± 0.50 0.029 0.027 0.855
GTX-970 0.73 ± 0.13 0.71 ± 0.13 0.75 ± 0.08 0.035 0.039 0.039

C. Machine Learning VS Analytical Model

Figure 5 shows a comparison between the accuracy of the Ana-
lytical Model (AM), Linear Regression (LR), Random Forest (RF)
and SVM Regression (SVM) to predict execution times of each
application on each target GPU. Each box plot represents accuracy
per GPU, with each column representing a different technique and
each line a different application.

We used matrix and vector algorithms with regular behavior, but
the usage of thread blocks of different sizes and input sizes resulted
in varying levels of occupancy in the GPUs, which made the problem
challenging

We could reasonably predict the running time of 9 kernel functions
over 9 different GPUs using the analytical model and machine
learning techniques. For the Analytical model, the accuracy for all
applications and GPUs were approximately between 0.8 and 1.2,
showing a good prediction capability. For the machine learning
models, the accuracy for all the applications (except MAU) and GPUs
for Linear Regression and Random Forest were between 0.5 and 1.5.

When using machine learning, we considered different thread
blocks configurations, which resulted in nonlinear changes in the
occupancy of the GPU multiprocessors, as this affects the number
of active blocks and threads, and in the effective memory bandwidth.
This resulted in large variations in the execution times for each
application. Also, to predict the results on each GPU, we used training
data from the other 8 GPUs, which caused additional errors. These
factor caused some prediction errors, but for the vast majority of
cases, the predictions were reasonable.

Table VI shows the comparison between both analytical model and
machine learning approaches in terms of normalized mean squared
error (MSE). This table shows that although the analytical model
obtained the best predictions for almost all the cases, machines
learning techniques also provided good predictions. Our next step
is to use feature extraction to improve these predictions.

VI. CONCLUSIONS AND FUTURE WORKS

We performed a fair comparison between analytical model and
machine learning techniques to predict the execution times of applica-
tions running on GPUs using similar parameters to both approaches.

TABLE VI
NORMALIZED MSE OF THE DIFFERENT TECHNIQUES USED

Apps
NMSE

AM LR SVM RF

MMGU 0.0291 0.105 0.061 0.096
MMGC 0.0110 0.036 0.036 0.079
MMSU 0.007 0.055 0.040 0.071
MMSC 0.008 0.046 0.044 0.097
MAC 0.047 0.293 0.212 0.262
MAU 0.044 0.037 0.035 0.114
dotP 0.015 0.052 0.054 0.061
VecA 0.010 0.021 0.018 0.062
MSA 0.007 0.066 0.059 0.087

The machine learning techniques were Linear Regression, Support
Vector Machine and Random Forest.

The Analytical model provides relatively better prediction accuracy
than machine learning approaches, but it requires calculations to be
performed for each application. Furthermore, the value of 𝜆 has to
be calculated for each application executing on each GPU.

Machine learning could predict execution time with less accuracy
than the analytical model, but this approach provides more flexibility
because performing specific calculations is not needed as in the
analytical model. A machine learning approach is more generalizable
for different applications and GPU architectures than an analytical
approach.

As future work, we will consider other irregular benchmarks
(Rodinia, Sparse and dense matrix linear algebra operation kernels
and graph algorithms). We will also consider the scenario of multiple
kernels and GPUs where global synchronization among kernels and
one extra memory level, the CPU RAM, needs to be considered.

Also for the learning process in the machine learning: we will
perform feature selection from a large set of features (All profiling
and metrics data) to choose the most relevant ones and try them on
all the regression models we tried before.

ACKNOWLEDGMENT

This project was grant-aided by São Paulo Research Foundation
(FAPESP) (processes #2012/23300-7 and #2013/26644-1) by CAPES
and by CNPq. Thanks to NVIDIA Corporation who donate us a
some GPUs of the testbed. Experiments presented in this paper
were carried out using the Digitalis platform (http://digitalis.imag.fr)
of the Grid’5000 testbed. Grid’5000 is supported by a scien-
tific interest group hosted by Inria and including CNRS, RE-
NATER and several Universities as well as other organizations (see
https://www.grid5000.fr).

REFERENCES

[1] TOP-500-Supercomputer, “ [Web site http://www.top500.org] Visited
May 2016.” [Online]. Available: http://www.top500.org

[2] K. Gaj, T. A. El-Ghazawi, N. A. Alexandridis, F. Vroman,
N. Nguyen, J. R. Radzikowski, P. Samipagdi, and S. A. Suboh,
“Performance evaluation of selected job management systems,” in
Proceedings of the 16th International Parallel and Distributed
Processing Symposium, ser. IPDPS ’02. Washington, DC, USA:
IEEE Computer Society, 2002, pp. 260–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645610.660898

[3] NVIDIA, CUDA C: Programming Guide, Version 7., March 2015.
[4] J. Emeras, C. Ruiz, J.-M. Vincent, and O. Richard, “Analysis

of the jobs resource utilization on a production system,” in Job
Scheduling Strategies for Parallel Processing, ser. Lecture Notes
in Computer Science, N. Desai and W. Cirne, Eds. Springer
Berlin Heidelberg, 2014, vol. 8429, pp. 1–21. [Online]. Available:
http://dx.doi.org/10.1007/978-3-662-43779-7 1

331

Fig. 5. Accuracy of compared techniques to predict execution times of applications on each GPU.

332

[5] E. Gaussier, D. Glesser, V. Reis, and D. Trystram, “Improving
backfilling by using machine learning to predict running times,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’15. New
York, NY, USA: ACM, 2015, pp. 64:1–64:10. [Online]. Available:
http://doi.acm.org/10.1145/2807591.2807646

[6] P. Gibbons, Y. Matias, and V. Ramachandran, “The queue-read
queue-write asynchronous PRAM model,” Theoretical Computer
Science, vol. 196, no. 1–2, pp. 3–29, 1998. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S030439759700193X

[7] B. H. H. Juurlink and H. A. G. Wijshoff, “A quantitative comparison
of parallel computation models,” ACM Transactions on Computer
Systems, vol. 16, no. 3, pp. 271–318, Aug. 1998. [Online]. Available:
http://doi.acm.org/10.1145/290409.290412

[8] D. B. Skillicorn and D. Talia, “Models and languages for parallel
computation,” ACM Computing Surveys, vol. 30, no. 2, pp. 123–169, Jun.
1998. [Online]. Available: http://doi.acm.org/10.1145/280277.280278

[9] A. Goldchleger, A. Goldman, U. Hayashida, and F. Kon, “The
implementation of the bsp parallel computing model on the
integrade grid middleware,” in Proceedings of the 3rd International
Workshop on Middleware for Grid Computing, ser. MGC ’05.
New York, NY, USA: ACM, 2005, pp. 1–6. [Online]. Available:
http://doi.acm.org/10.1145/1101499.1101504

[10] M. Amaris, D. Cordeiro, A. Goldman, and R. Y. Camargo, “A simple
bsp-based model to predict execution time in gpu applications,” in
High Performance Computing (HiPC), 2015 IEEE 22nd International
Conference on, December 2015, pp. 285–294.

[11] K. Kothapalli, R. Mukherjee, M. Rehman, S. Patidar, P. J. Narayanan,
and K. Srinathan, “A performance prediction model for the CUDA
GPGPU platform,” in High Performance Computing (HiPC), 2009
International Conference on, 2009, pp. 463–472.

[12] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos, “Demystifying gpu microarchitecture through
microbenchmarking,” in Performance Analysis of Systems Software
(ISPASS), 2010 IEEE International Symposium on, March 2010, pp.
235–246.

[13] L. G. Valiant, “A bridging model for parallel computation,” Communi-
cations of the ACM, vol. 33, no. 8, pp. 103–111, Aug. 1990.

[14] J. Li, X. Ma, K. Singh, M. Schulz, B. de Supinski, and S. McKee,
“Machine learning based online performance prediction for runtime
parallelization and task scheduling,” in Performance Analysis of Systems
and Software, 2009. ISPASS 2009. IEEE International Symposium on,
April 2009, pp. 89–100.

[15] B. Ozisikyilmaz, G. Memik, and A. Choudhary, “Machine learning
models to predict performance of computer system design alternatives,”
in Parallel Processing, 2008. ICPP ’08. 37th International Conference
on, Sept 2008, pp. 495–502.

[16] K. Singh, E. İpek, S. A. McKee, B. R. de Supinski, M. Schulz, and
R. Caruana, “Predicting parallel application performance via machine
learning approaches: Research articles,” Concurr. Comput. : Pract.
Exper., vol. 19, no. 17, pp. 2219–2235, Dec. 2007. [Online]. Available:
http://dx.doi.org/10.1002/cpe.v19:17

[17] E. Ipek, B. de Supinski, M. Schulz, and S. McKee, “An Approach
to Performance Prediction for Parallel Applications,” in Euro-Par 2005
Parallel Processing, ser. Lecture Notes in Computer Science, J. Cunha
and P. Medeiros, Eds. Springer Berlin Heidelberg, 2005, vol. 3648, p.
196–205.

[18] A. Matsunaga and J. Fortes, “On the use of machine learning to predict
the time and resources consumed by applications,” in Cluster, Cloud
and Grid Computing (CCGrid), 2010 10th IEEE/ACM International
Conference on, May 2010, pp. 495–504.

[19] I. Baldini, S. J. Fink, and E. Altman, “Predicting gpu performance from
cpu runs using machine learning,” in Computer Architecture and High
Performance Computing (SBAC-PAD), 2014 IEEE 26th International
Symposium on, Oct 2014, pp. 254–261.

[20] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou,
“Gpgpu performance and power estimation using machine learning,”
in 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA), Feb 2015, pp. 564–576.

[21] A. Karami, S. A. Mirsoleimani, and F. Khunjush, “A statistical perfor-
mance prediction model for opencl kernels on nvidia gpus,” in The 17th
CSI International Symposium on Computer Architecture Digital Systems
(CADS 2013), Oct 2013, pp. 15–22.

[22] Y. Zhang, Y. Hu, B. Li, and L. Peng, “Performance and power analysis of
ati gpu: A statistical approach,” in Networking, Architecture and Storage
(NAS), 2011 6th IEEE International Conference on, July 2011, pp. 149–
158.

[23] A. Hayashi, K. Ishizaki, G. Koblents, and V. Sarkar, “Machine-
learning-based performance heuristics for runtime cpu/gpu selection,”
in Proceedings of the Principles and Practices of Programming on The
Java Platform, ser. PPPJ ’15. New York, NY, USA: ACM, 2015, pp. 27–
36. [Online]. Available: http://doi.acm.org/10.1145/2807426.2807429

[24] A. Kerr, E. Anger, G. Hendry, and S. Yalamanchili, “Eiger: A framework
for the automated synthesis of statistical performance models,” in High
Performance Computing (HiPC), 2012 19th International Conference
on, Dec 2012, pp. 1–6.

[25] S. Madougou, A. Varbanescu, C. de Laat, and R. van Nieuwpoort,
“The landscape of {GPGPU} performance modeling tools,” Parallel
Computing, vol. 56, p. 18–33, 2016. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0167819116300114

[26] M. R. Meswani, L. Carrington, D. Unat, A. Snavely, S. Baden, and
S. Poole, “Modeling and predicting performance of high performance
computing applications on hardware accelerators,” in Parallel and Dis-
tributed Processing Symposium Workshops PhD Forum (IPDPSW), 2012
IEEE 26th International, May 2012, pp. 1828–1837.

[27] E. Ipek, B. R. de Supinski, M. Schulz, and S. A. McKee, “An approach
to performance prediction for parallel applications,” in Proceedings of
the 11th International Euro-Par Conference on Parallel Processing, ser.
Euro-Par’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 196–205.
[Online]. Available: http://dx.doi.org/10.1007/11549468 24

[28] C. Silva, S. Song, and R. Camargo, “A parallel maximum subarray
algorithm on gpus,” in 5th Workshop on Applications for Multi-Core Ar-
chitectures (WAMCA 2014). IEEE Int. Symp. on Computer Architecture
and High Performance Computing Workshops, Paris, 2014, pp. 12–17.

[29] B. J. Barnes, B. Rountree, D. K. Lowenthal, J. Reeves, B. de Supinski,
and M. Schulz, “A regression-based approach to scalability prediction,”
in Proceedings of the 22Nd Annual International Conference on Su-
percomputing, ser. ICS ’08. New York, NY, USA: ACM, 2008, pp.
368–377.

[30] D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, and F. Leisch,
e1071: Misc Functions of the Department of Statistics, Probability
Theory Group (Formerly: E1071), TU Wien, 2015, r package version
1.6-7. [Online]. Available: https://CRAN.R-project.org/package=e1071

[31] A. Liaw and M. Wiener, “Classification and regression by randomforest,”
R News, vol. 2, no. 3, pp. 18–22, 2002. [Online]. Available:
http://CRAN.R-project.org/doc/Rnews/

[32] X. Mei, K. Zhao, C. Liu, and X. Chu, “Benchmarking the memory
hierarchy of modern gpus,” in Network and Parallel Computing, ser.
Lecture Notes in Computer Science, C.-H. Hsu, X. Shi, and V. Salapura,
Eds. Springer Berlin Heidelberg, 2014, vol. 8707, pp. 144–156.

333

A QoS-Aware Controller for Apache Storm

M.Reza HoseinyFarahabady∗, Hamid R. Dehghani Samani†,Yidan Wang‡, Albert Y. Zomaya§, Zahir Tari¶

∗,†,§ Centre for Distr. & High Performance Computing, School of IT, The Uni. of Sydney, Australia
‡,¶ School of Computer Science & IT, RMIT University, Melbourne, Australia

∗,†,§{reza.hoseiny,hamid.samani,albert.zomaya}@sydney.edu.au, ‡,¶{yidan.wang,zahir.tari}@rmit.edu.au

Abstract—Apache Storm has recently emerged as an attractive
fault-tolerant open-source distributed data processing platform
that has been chosen by many industry leaders to develop real-
time applications for processing a huge amount of data in a
scalable manner. A key aspect to achieve the best performance
in this system lies on the design of an efficient scheduler for
component execution, called topology, on the available computing
resources. In response to workload fluctuations, we propose an
advanced scheduler for Apache Storm that provides improved
performance with highly dynamic behavior. While enforcing the
required Quality-of-Service (QoS) of individual data streams,
the controller allocates computing resources based on decisions
that consider the future states of non-controllable disturbance
parameters, e.g. arriving rate of tuples or resource utilization
in each worker node. The performance evaluation is carried
out by comparing the proposed solution with two well-known
alternatives, namely the Storm’s default scheduler and the best-
effort approach (i.e. the heuristic that is based on the first-
fit decreasing approximation algorithm). Experimental results
clearly show that the proposed controller increases the overall
resource utilization by 31% on average compared to the two
others solutions, without significant negative impact on the QoS
enforcement level.

Index Terms—Streaming Data Processing, Apache Storm,
Model Predictive Control, Resource Allocation/Scheduling

I. INTRODUCTION

In a complex stream event processing engine, data is consid-

ered as a real-time flow of events that must be analyzed on the

fly [1], [2]. With such a paradigm, mainly used in big data ap-

plications, continuously produced data streams are applied and

as a result new events/data streams are generated for further

computation. To evaluate the success of a resource allocation

strategy, three performance metrics are used to examine its

adaptivity in case of workload fluctuates. These performance

metrics include processing delay [3] (i.e. the average time

needed for processing an event), resource throughput, and QoS
satisfaction imposed by users [2], [4]–[6].

A number of stream processing frameworks have emerged

recently [2], [7], [8]. Apache Storm is one of the popular

systems which hugely attracts both industries and researchers’

attention [8]. In Apache Storm ecosystem, operators, which

are defined as the basic computational components, are ag-

gregated into a single topology for execution. Unlike other

applications, such as Bag-of-Tasks (BoT) [9] and scientific

workflow [10], streaming data processing poses new chal-

lenges in terms of varying arrival rate of real-time data

flows as well as ever-changing operating conditions. Therefore,

achieving efficiency of scheduling decisions becomes of the

key aspects of QoS enforcement, which is translated as finding

an optimal placement of Storm’s topology operators across

active physical nodes.

Devising an elastic solution that can cope with abrupt

fluctuation in incoming data streams is a recent vivid research

area [6]. Traditional scheduling schemes [11]–[14] rely heavily

on the measurement of a set of performance metrics to make

appropriate (scheduling) decisions by comparing them with

another set of predefined thresholds. Such schemes suffer from

a lack of adaptability to quickly respond to the live variations

in the workload patterns and available resource capacity.

This paper proposes a dynamic resource allocation scheme

based on a control model with predicting capability, famously

known in the literature as Model Predictive Controller or MPC.

Our aim is to build a model that represents as accurately as

possible the working conditions of the Storm ecosystem. Such

a scheme enables to forecast system’s behavior as well inter-

prets the near-optimal configurations by knowing the limits

and errors that exist in the prediction model. Surprisingly

there is only a few work in the literature that exploited

such a powerful concept in scheduling/resource allocation of

computer platforms [15], while its usage in other engineering

disciplines is quite prevalent [16]–[18].

The proposed scheme is able to response to changes in

a variation of workload or resource capacity once they are

detected. It makes its decisions based on three factors: (1)

prediction of the system behavior over a future time framework

(e.g. the incoming workload for each stream), (2) QoS violence

incidents for each individual stream measured by a newly

defined metric called QoS detriment in which the processing

latency of each stream is considered as the main parameter

for evaluating a scheduling decision, and (3) the resource con-

sumption of each worker node (CPU utilization). Specifically,

the latter factor is reflected in the MPC cost function to ensure

that the system throughput runs at the desired level (for CPU

resource in our study). We also provide a detailed performance

analysis of the proposed controller in comparison with state-

of-the-art techniques.

The outline of this paper is as follows. Section II provides

the necessary background knowledge of Apache Storm. Sec-

tion III presents a formal definition of QoS detriment metric

to reflect the enforcement level of each stream, and Section

IV gives the details of the proposed dynamic linear control978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

334

model (based on MPC) as a solution for Storm’s resource

allocation problem. The performance evaluation is summarized

in Section V, and Section VI provides an overview of the

existing work on scheduling in data stream processing systems.

We conclude this paper in Section VII.

II. BACKGROUND ON APACHE STORM

In recent years we have seen an increasing demand for

continuous processing on high-volume data, ranging from

applications in the stock market, transportation management,

cyber-security to manufacturing processes [2]. Apache Storm

is receiving an important momentum over the past few years

as a streamlined framework for dealing with real-time data

processing. It offers a scalable and fault-tolerant design that is

supported by a broad set of tools to address the upcoming is-

sues in streaming data processing systems. Examples of Storm

implementations, as either part or the core of computational

framework, can be found in big enterprises, including Twitter,

Alibaba, Baidu and Yahoo.

A. Components

Following the idea of the master/slave paradigm, nodes in

a Storm cluster are categorized as either master or worker
nodes. A daemon runs in the master node, called “Nimbus”,

enables the node to schedule tasks across other physical

machines as workers. By maintaining the availability of work-

ers through cooperation with a ZooKeeper service, Nimbus

ensures a high throughput and low-latency coordination among

distributed processes by providing a shared in-memory name-

space [19]. On the other hand, each worker node runs a

daemon, called “Supervisor”, to manage the execution of the

“working processes” assigned by Nimbus. Any number of

working processes can be allocated to a worker node, where

the number can be determined by either the available worker

nodes or the scale of tasks.

While both Nimbus and Supervisor are designed to act as

stateless and fail-fast daemons, ZooKeeper is responsible for

providing fault-tolerant computing by storing the coordination

information of the Storm cluster, configuration files, and status

information in its memory space [8].

B. Topology and Stream

A topology in Storm terminology is simply a computational

element. Being implemented as an event listener architecture,

a topology is not a self-terminate component, in contrary to

batch processing system (e.g. Hadoop) in which terminates

itself after accomplishing the job execution. Each topology

can be structured as a directed acyclic graph that provides

both an overview of the computation components (operators)

as well as the data flow between connected components.

Storm’s data flows can be abstracted as streams, which are

unbounded sequences of tuples (the atomic data model). Each

stream is transformed by a specific logic, which is precisely

defined at computational component. In Apache Storm, the

source of data streams in a topology is referred as “Spout”.

Spout enables a topology to retrieve data from external data

generators to transform it later into normalized tuples. Once a

topology fed by input tuples, Spouts can emit streams along

the edges of the directed graph.

Processing nodes that receive tuples from Spout are known

as “Bolt”. They execute a set of pre-defined functions on tuples

sent by Spout or upstream Bolts. Common functions deployed

at each Bolt consists of tuple exploration, join or aggregation

operations. This can emit new streams for further processing

in the downstream Bolts.

C. Parallelism of Topology

Storm auto parallelization serves the purpose of ensuring

high throughput and fault-tolerance. Data processing operation

in a Storm terminology is referred as a “task”, which could

be an instance of a Spout or Bolt node. Tasks defined at a

computation component constitute an “executor” running on

the host machine as a single thread. Such threads are executed

as part of a topology identified by a “worker process”. Each

worker process hosts a Java Virtual Machine (JVM) to sustain

a certain degree of isolation between different topologies.

By manipulating the number of tasks, executors as well

as worker processes, parallelism in Storm topology can be

achieved. In particular, the number of executors is chosen

according to its execution priority or critical level of oper-

ations. Such a decision has a direct impact in improving the

throughput of the available resources. In the default Storm

system, the privilege of determining instance numbers of an

executor is granted to users/developers who are not well aware

of varying QoS objectives. This justifies our investigation for

the design of a dynamically self-adjustment parallelism in

Storm to meet a wide variation of QoS expectations.

D. Default Storm Scheduler

The default Storm scheduler uses Round-Robin (RR) strat-

egy. At any given time, the scheduler aims to evenly distribute

the number of executors among available worker processes,

while trying to fairly allocate worker processes across phys-

ical machines. The default scheduler balances the workload

amongst active hosts, which obviously results in less aware-

ness of computational capability and/or resource demands,

especially in heterogeneous Storm clusters.

The heterogeneity of physical nodes and user-defined op-

eration demands justify the need to improve the default

scheduler to fulfill the SLA and QoS. Over/Under-utilizing the

hosting resources, which is a natural consequence of the naive

scheduling decisions, could lead to resource wastage or even

serious execution failures. For example, Storm’s operations

can fully stop simply because memory/computing units are

not affordable for processing of further executors’ demands.

Conversely, an extra cost can be incurred when far more

resources than the executors’ expectation are provisioned by

the scheduler [20]. On this basis, it can be inferred that under

ever-changing operating conditions, scheduling policies must

be carefully designed with a variety of QoS objectives.

335

III. QOS DETRIMENT METRICS

Although fair allocation of available resources among sub-

mitted topologies can be seen as a reasonable strategy to

ease the imbalance resource usage in a share environment

[21]–[23], careful observations revealed that fairness cannot

always produce a desirable output as expected in practice

[24]. In reality, applications tolerate delays differently with

regards to the response time. Some1 are highly sensitive to

any type of delay, while others2 might be less sensitive to

such problem. Even within the context of a single application,

different users might enforce different service levels and be

charged accordingly by the service provider.

Therefore, designing an efficient mechanism to respond

differently to QoS violation is essential. As example, the work

in [25] showed that a fair allocation of resources among

applications in a shared environment does not necessarily

provide an appropriate QoS satisfaction level. Therefore, a

situation could be considered to be “good” as long as we

have the following situation: when a data stream experiences

some amount of QoS violation, other data streams should also

experience almost the same QoS violation.

Even a strategy similar to the one suggested in [6], which

attempts to minimize the number of QoS violations across the

entire platform, can lead to undesirable practical outcomes.

Let us consider a scenario where the input rates of several

streams suddenly go up, hence, the scheduler struggles to

assign enough resources to all streams. Inevitability, it decides

to give fewer resources to some streams. If the objective

function only cares about minimizing the total number of QoS

violation incidents (e.g. [6]), then it might end up allocating

fewer resources to those streams that are more important than

others. Our aim, however, is to design an objective function

that penalizes such decisions rather than trying to minimize the

number of QoS violation incidents for more important streams.

This, therefore, makes the metric similar to one presented in

[25], called QoS detriment, more suitable to be exploited in a

platform with shared resources.

In our context, there are two performance parameters that

should be satisfied: (1) the average latency of each tuple3, and

(2) the average instruction per cycle (IPC) in the worker nodes.

These parameters can successfully reflect both the user’s

satisfaction and system throughput in a variety of scenarios.

The QoS enforcement, as a minimum service level contract

between the system and the clients, can be quantified as a

function that maps desirable level of such performance metrics

into the unit interval (0,1].

Stream QoS Violation. In what follows, we introduce a

metric to reflect the QoS violation for a set of streaming data

during a given interval. Let ρ∗s and ρs be the desirable (∗) level

and the measured (�) values of a specific performance metric

(like the average latency) for a particular stream s during

1e.g. high-frequency trading or health monitoring applications
2e.g. applications in social media, environmental monitoring, or network

intrusion detection
3The time elapsed from getting a tuple and providing the result.

an arbitrary interval, respectively. We can define ρ
∗/
s =

ρ∗s
ρ�s

as a building block to quantify the amount of QoS level

attained by a resource allocation/scheduling (RA/S) algorithm

when running multiple data streams. A “fair” scheduling

suggests that the most desirable RA/S algorithm is the one

that minimizes the variance of ρ
∗/
s among different streams.

However, one can argue that trying to reach such an objective

to equalize the QoS violation that each stream experiences is

a serious defect.

To address this deficiency, we define an alternative metric

that models the amount of QoS violations from a different

perspective. The owner of each data stream, say s, is asked

to submit the required QoS level as a real number, say Qs ∈
(0, 1], referred as the QoS enforcement level of s. We also

need to design a truthful mechanism rule (like a VCG-based

online mechanism) that forces users to report truthfully the

private value of required Qs for each stream. We assume such

a mechanism exists for the sake of this research. To identify the

set of streams experiencing QoS violations, the value of ρ
∗/
s

needs to be computed so to be compared with Qs. However,

it is almost impossible in practice to avoid occurrence of QoS

violations for every data stream. To relax such a requirement,

we allow the RA/S algorithm to violate QoS level every now

and then. We can define a function, denoted as FΔt(Qs), to

take a Qs value as the input, and its output determines an

upper bound for the percentage of QoS violations tolerated

during an arbitrary interval Δt. One good candidate for F
function is a simple linear rule, such as F(Qs) = 1 − Qs.
For example, a stream with an associated Qs = 0.9 can have

the value of ρ
∗/
s below a certain threshold of Qs only during

10% of any arbitrary interval.

Equipped with the above statements, we introduce the new

metric QoS detriment to quantify the amount of QoS violation

happening during an interval T = (t, t+Δt):

DT =
∑
s∈S

Is (1)

where S represents all streams that experience a QoS

violation during T . Is is the importance factor of an individual

stream s. A good candidate for I function can be Is = Qs.
An interpretation for this choice is as follows: if a stream s
imposes a high QoS requirement (Qs), then this contributes

more in the system’s QoS detriment metric if it experiences a

violation. One objective of this work is to reduce the value of

DT progressively.

IV. MPC BASED SCHEDULING FOR STORM

The proposed resource allocation algorithm is an advanced

process controlling technique based on model predictive con-

trol (MPC) method. The basic concept of MPC lies in using a

dynamic model to forecast future system’s behavior as well

as optimize it to produce the best possible decision [26].

The MPC model can be used to (1) effectively portray the

nonlinear operations of a complex system, and (2) repetitively

optimize the controlling variables during short intervals, while

336

considering the future states. It uses a prediction model to

prognosticate the alternation of dependent variables, which is

often caused by changes in the input variables.

While applications of MPC controller are very well estab-

lished and ubiquitous in the manufacturing industries, its usage

in complex computer systems is quite new [15]. The work

in [25], [27], [28] successfully applied MPC as a solution

for the dynamic resource provisioning and power management

problem in large cloud systems. In [29], authors designed a

controller to maximize the total revenue of cloud providers,

subject to capacity, QoS availability, and migration constraints.

A comprehensive tutorial review in the theory and design of

model predictive control systems and possible future research

trends can be found in [26], [30]–[33].

A. Predictive Controller

The basic idea of a predictive controller is that at any time

τ , the system output, denoted as Z(τ), should follow an ideal

vector/signal, denoted as s(τ). Such a reference vector is also

known as set-point trajectory. We use bold case to denote a

vector (or a matrix) quantity. The main goal of the designer

is to create a mechanism to force the system’s output follows

the set-point trajectory within the near short periods.

It is normally assumed that the system’s output should

approach the set-point trajectory exponentially from the cur-

rent output with a response speed, denoted as Tref . Partic-

ularly, if ε(τ) = s(τ) − Z(τ) represents the current error

value, then such an error in the next i steps must satisfy

ε(τ + i) = e−iTs/Tref ε(τ), where Ts is the sampling interval.

An important MPC characteristic is that Ts/Tref < 1.

In a typical MPC controller, the designer must determine

the values for the following three multi-dimensional vectors:

1) An internal state vector, shown by X,

2) An input vector, shown by U,

3) An output vector, shown by Z.

In most cases, the input variable U itself consists of two

disjoint sets of either controllable or uncontrollable variables,

denoted a Uσ and Uω respectively.

The relationship between X, U, and Z vectors in a general

discrete-time MPC model at any arbitrary time of τ : Xτ+1 =
g1(Xτ ,Uτ), and Zτ = g2(Xτ), where g1 and g2 are some

(non-linear) functions that can be determined by observing the

run-time behavior of a system, often referred as the system’s

model. In our study, we use a simpler version of the original

MPC that omits the necessity to define the internal state vector

of X. It builds a model to directly relate the input and output

vectors using a model f as Zτ = f(Uστ ,U
ω
τ). Interested readers

are referred to [26], [32]–[34] for a deep understanding of

MPC model.

The sequence of actions at any arbitrary τ in a typical MPC

is as follows:

1) Obtaining the measurement of Zτ ,
2) Predicting the values for non-controllable input values,

Uωτ+1

3) Computing the best possible values for future values of

controllable input vector, i.e. Uστ+1 . . . Uστ+i,
4) Applying one step input vector, Uστ+1, to the system.

At time τ + 1, MPC measures the new values for output

vectors as the feedback signal, and the whole cycle of pre-

diction, trajectory determination, and optimization process is

repeated.

The proposed solution divides the entire time into inter-

vals with equivalent duration. We allow controller’s decisions

to occur only at the beginning of each interval shown by

τ = 1, 2, · · · . The controllable input vector Uσ at any

time τ consists of the following elements: (1) set of active

virtual/physical machines as Storm worker nodes, shown by

Mτ , (2) set of worker nodes appointed to run a given stream

s, shown by Wsτ = {Ws1,τ · · ·Wsw(s),τ}, and (3) the amount of

memory and CPU in each worker nodes Wsi,τ which stream s
is allowed to use.

B. Prediction

The prediction of future values for non-controllable input

vectors, also known as disturbances, at f future steps is

imperative in any MPC controller. At any given time τ , we

need to estimate λst , the value for the arriving rate (intensity)

of tuples for each stream s coming to the system at future

time points t ∈ {τ + 1, τ + 2 · · · τ + f}.
Let Λ be the random variable associated with the arriving

rate of tuples (λ) in a given interval. If the probability

distribution of Λ is already known by some means, then λ̂
can be estimated by applying basic probability theories on the

previous observations. Otherwise, an existing prediction model

(e.g. ARIMA - Auto Regressive Integrated Moving Average)

can be used to estimate the value of future λ̂ values through

past observations.

In ARIMA model, a future value of an observation, λτ+1,

can be estimated using a series of past observations as: λ̂τ+1 =
c+ ετ +

∑
i=1...h αiλτ−i + βiετ−i, where c is a constant and

ε’s represent errors which are i.i.d samples from a normal

distribution with mean 0 and finite variance (like a white

noise process). αi’s and βi’s coefficients can be computed and

updated using least-squares regression method after each new

observation. To predict ahead the f step values of λ̂t, we can

simply repeat the above-mentioned one-step ahead prediction

to obtain the multi-step prediction conditionally.

C. Cost function

A cost function in MPC penalizes derivations of the con-

trolled output, namely Z(τ), from the target signal s(τ) at any

given time. The measured output vector in our model consists

two major components during the interval of T = (τ, τ+Δτ):
(1) Average CPU utilization at each worker node w, shown by

ŪCPUw,T , and (2) the total amount of QoS detriment, i.e. DT .

Ideal CPU Utilization Point. Previous studies [35] con-

firmed that the ideal CPU utilization in steady state working

condition should be a value between 75% to 90%. We refer

this ideal utilization as U∗,CPU throughout this paper. Such

a limitation is, in fact, beneficial as it allows CPU to avoid

337

a serious issue known as “meltdown point”, which is caused

by exploitation of the full capacity of computing resources.

Working at this utilization level is shown to be more energy-

efficient than working on a higher level of CPU utilization,

especially if accomplishing a job using a certain energy-cap

is more important than its make-span. The right value of U∗

depends on CPU characteristics that needs to be determined

through experimental measurements.

The following equations are produced to model the CPU’s

utilization of each worker node close to the optimal level,

while keeping the amount of QoS violation at minimum level.

min
∑
Ti
D̂Ti (2)

s.t. ˆ̄UCPUw,Ti
≤ U∗,CPU ∀Ti=1···f , ∀w (3)

where Ti=1···f are the future f steps.

Equation 2 indicates that a resource allocation schema (say

σ1) is preferred to another one (say σ2) if and only if the

predicted sum of QoS detriment metric caused by σ1 is less

than the one caused by σ2 over future f steps. Condition 3

ensures that the proposed controller avoids meltdown point

issue to occur in all worker nodes.

D. Linear Dynamic Model

As a designer’s knowledge about the internal structure of the

platform is limited, we try to take an approach that suppresses

the state variable effect (X) as well relate the inputs (U) and

outputs (Z) together using a time-varying linear model (f).
In this way, we perform a reasonable amount of experiments

to identify system model in macroscopic scale. During the

experiments, we manipulate input parameters, and measure

output variables to come up with a linear model for f.
An overall overview of the proposed controller is outlined in

Algorithm 1. In Line 3, ts↓ indicates a time that a new stream

s is submitted to the system, and tτ denotes the beginning

of a time-frame. We update the system model (Line 5) when

a new observation of system Z becomes available (Line 4).

Using the proposed model as well as prediction tool, we can

predict the next steps (Line 7-10). Then the total amount of

QoS detriment occurring at each stream is computed (Line 11).

A forward/backward dynamic programming method is used

to decompose and solve recursively the optimization problem

given by Equations 2 and 3 (Line 13). Finally, after making a

resource allocation decision, the controller transmits a message

to the worker nodes to apply the new scheduling decisions on

each (Line 14).

V. EXPERIMENTAL EVALUATION

We carried out extensive experimental work to evaluate

the proposed MPC-based resource allocation/scheduling al-

gorithm. We benchmarked our work against two well-known

solutions, namely the default Apache Storm scheduler and the

best-effort greedy approach (presented in Section V-B).

Algorithm 1 MPC-based resource allocation & scheduling

1: procedure MPC-RA(s(τ), Tref ,Qs,F , I,U∗,CPU , f)

2: while true do
3: at every time slot tτ or ts↓ do
4: Z ← PERCEPTOUTPUTVARIABLE()

5: UPDATESYSTEMMODEL(Z)

6: for each stream s do
7: λ̂s ← ESTIMATEARRIVALRATE(f, s)
8: end for
9: for each node m ∈M, resource r ∈ CPUm do

10: Ûrm ← ESTIMATERESOURCEUSAGE()

11: Dm ← QOSDETERMINENETMODEL

12: end for
13: U ← COMPUTEOPTIMAL(s(τ), Z,D,U∗, λ̂s, Ûrm)
14: APPLYSYSTEMINPUT(U, Tref)

15: end while
16: end procedure

A. Setting

We used a local virtualized cluster consists of three ma-

chines with total 96 cores, and 304GB of RAM. The first

machine is a 80 hyper-threaded-core system composed of four

2.40 GHz Intel(R) Xeon(R) E7-8870 CPUs, with 30Mb LLC,

256GB of RAM, and two 2TB SCSIv3 Disks. Each of the

other two machines has a 3.40 GHz i7 CPU, 16GB of RAM,

8MB LLC. We ran Xen release 4.2.0-42-generic to build a

private cloud using these machines. Ubuntu 14.04.1 ran on

Dom0 and it has been assigned a fixed amount of 3GB of

RAM and one dedicated core during all experiments, the rest

of resources used exclusively by Apache Storm cluster.

Based on the decisions made by MPC controller in the run-

time, we use Xen to flexibly adjust: (1) the number of worker

nodes, and (2) the amount of CPU/RAM resources that each

worker node should be receiving. As an example, consider a

scenario that there are initially 32 worker nodes deployed to

handle some streams (each worker node has access to use one

CPU core and 2 GB of RAM at the beginning). After a while

assume that two new events occur: (1) the arrival rate of an

important (with high QoS demand) stream, say s1, increases

abruptly, and (2) three new data streams, again with high QoS

demands, submitted to the system.

Observing the new platform’s conditions, the MPC con-

troller decides to (a) assign more resources (cores and RAM

amount) to those worker nodes which are responsible to serve

the stream s1, and (b) create new five worker nodes to server

requests generated by new three streams. Both decisions can

be accomplished straightforwardly using Xen command tool

without any need to restart the worker nodes4. We used Xen

command tools5 to pin each worker thread to a distinct logical

core, decided by MPC, too.

We evaluated the performance of underlying system for

different scenarios using two metrics: the average latency

4vcpu-set, mem-set, and sched-credit
5vcpu-pin

338

experienced by emitted events, and the amount of system’s

QoS detriment metric (as an indicator of QoS violations

occurred in the entire system). All evaluations were performed

on a Storm cluster (version 0.94) with k worker nodes, where

5 ≤ k ≤ 95. The number of slots in each worker node is a

variable that is set by the MPC controller, which is below 5.

We also assigned one node hosting exclusively the Nimbus and

Zookeeper services. The performance of the proposed solution

has been tested on a specific topology, as first introduced by

[3]. Such a topology can be considered as a representative of

a broad class of streaming topologies.

B. Opponents & Workload Attributes

The proposed solution is compared against two other ap-

proaches, namely default storm, and best-effort. The default

Storm scheduler uses a RR (Round Robin) policy to bal-

ance the load amongst the resources. In essence, the default

scheduler aims to distribute evenly the existing executors

among worker processes by allocating in a fair manner worker

processes across various PMs. On the other hand, the best-

effort approach uses first fit decreasing (FFD)6 method to

determine the set of appropriate workers so to achieve a

compromise between resources’ usages and QoS violations.

This approach tries to add an additional worker node when the

total amount of QoS violation occurring continuously exceeds

a certain threshold (∈ [1, 5] minutes). It also assigns the

maximum number of bolts on an individual worker node till

it becomes fully utilized.

The general topology used in this study is compatible to

the one introduced in [3]. Each component ci in the topology

has an associated stage number s(ci) that represents the

longest path length that a tuple should pass from a spout to

a component. Components that have same s(ci) number will

not communicate with each other, while components at stage

s(ci) can only receive tuples from upstream components such

as cj where s(cj) < s(ci). This model has been investigated

and used extensively in other works such as [37]–[39], too.

Such a topology can be characterized by two factors: (a)

number of stages (i.e. N ∈ [5, 10]) and (b) the replication

parameter for each stage (i.e. |cj | ∈ {2, 4, 8}, 1 ≤ j ≤ N).

The spout executor sets its tuple rate from either a Poisson
or Weibull distribution with parameters of λ ∈ {1, 4, 16},
for Poisson, or λ ∈ {1, 4, 16} and β ∈ {1.5, 3}, for

Weibull distribution, to mimic realistic scenarios (especially

those with heavy-tailed traffic patterns). In Poisson process, λ
represents the average number of events per millisecond. In

Weibull process λ and β are the scale and shape parameters

of a standard Weibull distribution. The average number of

events per millisecond in Weibull process can be obtained via

λΓ(1 + β−1)7.

To imitate the QoS patterns of real applications, we have

used two mainstreams, namely UniQoS and NormQoS, to

represent the probability distribution of QoS enforcement

6FFD is a 11/9-approximation bin packing solution: items are ordered in
non-increasing order, the next item is packed into the first bin it fits [36]

7Γ(.) represents Gamma function, the continuous extension of the factorial

requested. In the UniQoS (NormQoS) schema, the QoS en-

forcement of each stream is taken from a uniform (standard

normal) probability distribution over the unit interval with an

average at 0.5. By changing the above parameters, we have

created 54 scenarios that represent different possible generated

workloads.

C. Evaluation

Three performance metrics were considered in the experi-

mental evaluation, namely (a) the average event latency, (b)

the average resource (CPU) utilization, and (c) total amount

of QoS violation. We only report here those results that reflect

the behavior of Apache Storm in the stable state, which occur

right after passing a short period of a transient state that lasts

approximately a couple of few minutes (depending on the

scenario). Within such a transient period, the latency of serving

requests are significantly higher than its average. After passing

the transient state however, the system performance becomes

and remains fairly stable. During the transient period, the

proposed scheduler collects performance metrics continuously

to identify and build the system model (Section IV-A). After-

wards, it converges to the performance level that is expected

to work on consistently.

Figures 1 and 2 show that our algorithm outperforms both

default and best-effort polices in terms of average response

time (latency) and CPU utilization. The x axis represents the

number of stages increases from 5 to 10. These figures report

the results for different Poisson arrival rates λ and replication

factors |c.| in UniQoS case. The trends of latency and CPU

utilization in all other scenarios are similar to ones shown in

Figure 1 and 2, and we have not plotted them here.

The trend confirms that in all three policies, both the latency

and CPU utilization become larger when the number of stages

increases, and no anomalies can be seen in any policy. Such

a result is expected as each tuple must travel more among

processing units when |N | increases, and each worker node

needs to do more work as the total number of nodes is fixed.

By increasing the replication factor, as can be seen the

trend from left to right columns in the figures, the traffic of

communication patterns among bolts, spouts and executors in

worker nodes becomes increasingly complex, resulting fewer

intra-node passing of tuples in each worker node. This explains

why the effectiveness of the default scheduler quickly dropping

down. On the other hand, the proposed controller can adapt

this change by assigning more resources to those workers that

just close to become a bottleneck. If such workers are sitting

in different hosts where the communication bandwidth became

a bottleneck, the controller would shift their data streams to

other nodes where the bandwidth has not congested yet.

Arrival rate. The effect of arrival rate parameter on each

scheduler has also been studied here. Each column of Figures

1 and 2 report the results for a setting of same experiments

that differ only on their arrival rate, e.g. λ in Poisson case. As

expected, larger arrival rates provide larger latencies among

all schedulers without detection of any noticeable anomaly. In

339

Fig. 1. Average latency achieved by default, Best-Effort and the proposed
schedulers as the number of stages, N , varies. Nine scenarios are recog-
nized by different values of λi, βi, and |c.|. QoS pattern is UniQoS while
the tuple rate distribution is Poisson for all scenarios. Maximum number
of worker nodes set here to be 20.

Fig. 2. Average CPU utilization of worker nodes in the stable state
achieved by default, Best-Effort and the proposed scheduling policies as N
varies. QoS pattern and tuple rate distribution are UniQoS and Poisson,
respectively, for all nine scenarios. Maximum number of worker nodes are
40. The data gathered within the first 1-hour working time-frame.

fact, a larger arrival rate decreases the inter-node communica-

tion while makes a worker node (and its associated executors)

too busy to quickly respond to events (congestion situation).

The proposed controller can handle this situation much better

than other two opponents. By predicting the future arriving

rate of tuples few steps ahead, our controller can adaptively

prevent larger response time for each tuple by either switching

on more worker nodes or assigning more resources to available

ones.

Resource utilization. A significant achievement by apply-

ing MPC controller is its ability to keep the utilization of CPU

cores of active working nodes around 80% (the ideal level),

which is one of the main objectives of this work. This can

be leveraged by switching off or putting other non-working

cores into the deep sleeping mode to save the total power

usage. Both best-effort and default schedulers are uninformed

about the resources’ throughput, i.e. they keep the utilization

level of some cores higher than the ideal level, while let

the rest of cores work on the range much below than the

ideal level. Altogether, results from all scenarios confirmed

that our controller achieves an average of 31% improvement

in resource utilization and an average of 30% reduction in

average tuple latencies comparing to the best-effort strategy,

which allocates worker nodes based on the FFD method (a

1.22-approximation bin packing solution).

QoS violation. To find out the QoS detriment value for each

scheduler, we need to identify the average latency achieved by

tuples in each data stream. If the observed latency of a stream

s within a specific time-frame is higher than an expected

threshold, we count it as a QoS violation (Section III).

Table I summarizes the normalized percentage of QoS vio-

lations obtained by applying each heuristic in scenarios where

the total traffic and latency are more problematic. The results

TABLE I
NORMALIZED PERCENTAGE OF AVERAGE QOS VIOLATION INCIDENTS FOR

TUPLE LATENCY METRIC IN DIFFERENT SCENARIOS. MAXIMUM NUMBER

OF NODES ARE 40. POIS. AND WEIB. STAND FOR POISSON AND

WEIBULL ARRIVAL DISTRIBUTION, WHILE UNI. AND NORM. REPRESENT

THE UNIFORM AND NORMAL QOS PATTERN, RESPECTIVELY.

Scenario Description Norm. QoS Violation(%)
QoS/Arrival (λ, β) (|N |, |C.|) Ours Best Default

pattern effort policy

Uni./Pois. (4, -) (10, 2) 11 60 79

Uni./Pois. (16, -) (10, 2) 15 66 88

Norm./Weib. (16, 1.5) (10, 2) 12 71 91

Norm./Weib. (16, 3) (10, 2) 18 78 100

shows that the QoS-aware controller can effectively reduce the

QoS violation incidents by a factor of ≥ 4 comparing to both

default scheduler and best-effort heuristic in all scenarios. Our

solution can keep the QoS violations below 18% even for the

most extreme cases while others do not care about neither the

requested QoS level nor the overall CPU throughput.

Our solution achieves this result by applying two simple

methods. It first tries to avoid collocating data streams with

high level of QoS enforcement in a worker node. Furthermore,

if a continuous set of QoS violation incidents is detected,

it dynamically makes more CPU/memory resources available

to the worker node that recognized as the bottleneck, hence,

avoids further QoS detriment in the upcoming time-frames.

Computational running time. The computational time of

the proposed controller to calculate a solution in a system with

95 worker nodes was 0.1 seconds while the time-frame is in

order of minutes8 with almost negligible overhead time. This

8ΔT = 1 minute throughout our experiments

340

suggests the applicability of proposed controller in large-scale

platforms.

VI. RELATED WORK

The design of efficient scheduling schemes for real-time

distributed stream processing received significant attention in

recent years. Most of the studies that addressed the limitation

of RR (Round Robin) default scheduler of Apache Storm, the

most popular stream processing system used in the industry

could be categorized to either online or offline scheduling.

In an offline scheduling, components are placed by explor-

ing the parallel partition and data dependencies of a given

topology. This aims to reduce the communication cost among

connected components. For example, the offline algorithm [3]

could successfully reduce the processing delays of streams

comparing with Storm default scheduler. However, such offline

scheduling decisions require executing before an event is trig-

gered in lieu of making schedule decisions during execution.

Hence, its limitation is quickly revealed as it fails to adapt to

varying traffic conditions in run-time.

Authors in [3] proposed an online scheduling to deal with

dynamic traffic conditions particularly. By measuring both

inter-node and inter-slot run-time traffic patterns, they can im-

prove by 30% the effectiveness of latency in comparison with

default Storm scheduler. Another notable work in this area

conducted is presented in [40], where an online mechanism is

devised to automatically explore the parallel level of a given

topology based on measured congestion status and throughput.

This work provides a solution regarding the stateful migration

if a rescheduling is happening. This issue of stateful migration

has not been covered in our work, and we left it as a future

work in this line.

The online approach in T-Storm [41] is also concerned

with the run-time traffic patterns. T-storm enables dynamic

adjustment of schedule parameters to support running fewer

worker nodes while speeding up the overall time for data

processing. The evaluation showed that T-storm provides 84%

and 27% speedup on lightly and heavily loaded topologies,

respectively, while it achieves 30% less utilization of worker

nodes comparing with the default scheduler. However, T-storm

does not support any mechanism to guarantee the QoS enforce-

ments. R-storm [20] implements a resource-aware scheduling

in Storm by respecting to CPU and Memory constraints,

network distance between components that communicate with

each other, and the variety of resource types involved. Some

node and task selection algorithms, which use the minimum

Euclidean distance along the axis of CPU and network di-

mension such that the memory constraint, are never violated.

Awareness of resource makes R-storm achieve up to 47%

throughput improvement and at least 69% improvement of

CPU utilization comparing to Storm default scheduler. None of

the above-mentioned mechanisms gives an effective solution to

handle changes in the arrival rate of tuples, workload pattern,

and operating conditions, however.

Some studies implied a control loop to automatically adjust

resources for stream processing applications by dynamic mon-

itoring and analysis of resource usage. As a notable example,

authors in [42] implements such a control system to deal with

both under- and over- provisioning of resources in a virtualized

environment. They suggested that the number of processing

nodes can be self-configured by uninterrupted monitoring of

performance of Storm components, especially the size of

queues.

More recently, authors in [15] proposed a set of proactive

strategies that can dynamically adjust Storm’s configurations.

Unlike reactive approaches, proactive scheduling scheme take

actions even before the performance metric or varying work-

load is observed. In particular, they adopted MPC to explore

the optimal configuration of target applications (i.e. latency-

sensitive applications) under ever changing operational condi-

tions.

Similar to what we exploited in this work, the MPC-based

algorithm suggested in [15] not only enables the prediction of

arrival rate for incoming data, but it also forces the system

to follow the set-point trajectory through adjustment of some

controllable factors, which includes parallelism degree of an

operator, CPU frequency and the distribution scheme. On

the other hand, our study focuses more on keeping CPU

utilization at the ideal level as well avoiding QoS violations.

We defined the active number of the physical or virtual

machine, scheduling scheme and maximum CPU/Memory

usage allowed for each stream as the controlling metrics.

Accordingly, the desired outputs of [15] are the reflecting

response time as well as the power consumed for each set

of tuples.

The algorithm in [15] also imposes a greater penalty to

measured latencies that exceed defined threshold subject to

QoS objectives. Compared to all other previous, this work pro-

vided an efficient elastic scaling mechanism with flexible and

dynamic reconfigurability. Considering the fact that their work

is presented and evaluated based on a system in the form of

homogeneous infrastructure with multiple-core CPUs, we are

suggesting that further experiments/adjustments are required to

fully understand the unknown benefit or disadvantage of using

an MPC controller in multi-node heterogeneous scenarios with

QoS diversity among individual streams.

VII. CONCLUSION

Understanding run-time characteristics of individual data

streams is of great practical importance to design an automatic

resource allocator for distributed stream processing platforms

(Apache Storm particularly). We have devised a solution based

on model predictive controller (MPC) for achieving three

goals of (1) well-utilization of resources, (2) reducing tuple

response times, and (3) satisfying the QoS demand levels of

each stream.

The effectiveness of the proposed solution has demonstrated

its efficacy with an average improvement of 31% in total

servers’ resource utilization and an average of 30% reduction

in average tuple latencies, comparing to the best-effort policy,

a heuristic based on first fit decreasing (FFD) algorithm (a

1.22-approximation schema for bin packing problem). While

341

initial assessments have shown the potential benefits of our

proposed technique, there are some restrictions we plan to

manage in future. These include finding an automatic way

to determine the optimal values of the parameters on which

our method intensely depends, and managing situations where

unusual burst streaming of data happens abruptly.

ACKNOWLEDGEMENT

Authors acknowledge support of the Australian Re-

search Council Linkage-Industry Grant (LP140100980) titled

“Energy-Efficient Computing: Expanding the Role of Schedul-

ing in Cloud Data Centres”.

REFERENCES

[1] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Monitoring streams: a new
class of data management applications,” in Proc. of Intl. Conf. on Very
Large Data Bases, pp. 215–226, VLDB Endowment, 2002.

[2] H. C. M. Andrade, B. Gedik, and D. S. Turaga, Fundamentals of Stream
Processing: Application Design, Systems, and Analytics. New York, NY,
USA: Cambridge University Press, 1st ed., 2014.

[3] L. Aniello, R. Baldoni, and L. Querzoni, “Adaptive online scheduling in
storm,” in Distributed event-based systems, pp. 207–218, ACM, 2013.

[4] M. Stonebraker, U. Çetintemel, and S. Zdonik, “The 8 requirements of
real-time stream processing,” SIGMOD Rec., vol. 34, pp. 42–47, Dec.
2005.

[5] Y. Liu, W. Liu, J. Song, and H. He, “An empirical study on implementing
highly reliable stream computing systems with private cloud,” Ad Hoc
Netw., vol. 35, pp. 37–50, Dec. 2015.

[6] T. D. Matteis and G. Mencagli, “Proactive elasticity and energy aware-
ness in data stream processing,” Journal of Systems and Software, pp. 1
– 18, Aug 2016.

[7] IBM, “Infosphere platform datastage,” 2016.
[8] Apache Software Foundation, “Storm, an open source distributed real-

time computation system,” 2016.
[9] M. HoseinyFarahabady, Y. C. Lee, and A. Y. Zomaya, “Pareto-optimal

cloud bursting,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 10,
pp. 2670–2682, 2014.

[10] J. Liu, E. Pacitti, P. Valduriez, and M. Mattoso, “A survey of data-
intensive scientific workflow management,” J. of Grid Computing,
vol. 13, no. 4, pp. 457–493, 2015.

[11] A. Kumbhare, M. Frincu, Y. Simmhan, and V. K. Prasanna, “Fault-
tolerant and elastic streaming mapreduce with decentralized coordina-
tion,” in Distributed Computing Systems (ICDCS), pp. 328–338, 2015.

[12] B. Gedik, “Partitioning functions for stateful data parallelism in stream
processing,” The VLDB Journal, vol. 23, no. 4, pp. 517–539, 2014.

[13] T. Heinze, Z. Jerzak, G. Hackenbroich, and C. Fetzer, “Latency-aware
elastic scaling for distributed data stream processing systems,” in Dis-
tributed Event-Based Systems, DEBS ’14, (NY), pp. 13–22, ACM, 2014.

[14] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch,
“Integrating scale out and fault tolerance in stream processing using
operator state management,” pp. 725–736, 2013.

[15] T. Matteis and M. Gabriele, “Keep calm & react with foresight: strategies
for low-latency & energy-efficient elastic dasp,” in Principles & Practice
of Paral. Programming (PPoPP’16), pp. 1–12, ACM, 2016.

[16] S. Qin and T. A. Badgwell, “A survey of industrial model predictive
control technology,” Control Engineering Practice, vol. 11, no. 7,
pp. 733 – 764, 2003.

[17] E. F. Camacho and C. B. Alba, Model Predictive Control (Advanced
Textbooks in Control and Signal Processing). Springer, 2008.

[18] J. A. Momoh, Adaptive Stochastic Optimization Techniques with Appli-
cations. CRC Press, 2015.

[19] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free
coordination for internet-scale systems.,” in USENIX Annual Technical
Conf., vol. 8, p. 9, 2010.

[20] B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell, “R-storm:
Resource-aware scheduling in storm,” in Proc. of Annual Middleware
Conf., pp. 149–161, ACM, 2015.

[21] R. Gabor, S. Weiss, and A. Mendelson, “Fairness enforcement in switch
on event multithreading,” ACM Trans. Archit. Code Optim., vol. 4, no. 3,
2007.

[22] O. Mutlu and T. Moscibroda, “Stall-time fair memory access scheduling
for chip multiprocessors,” in IEEE/ACM Intl. Symp. on Microarchitec-
ture, MICRO, (DC), 2007.

[23] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Prefetch-aware shared
resource management for multi-core systems,” SIGARCH Comput. Ar-
chit. News, vol. 39, no. 3, pp. 141–152, 2011.

[24] R. Gabor, A. Mendelson, and S. Weiss, “Service level agreement for
multithreaded processors,” ACM Trans. Archit. Code Optim., vol. 6,
pp. 6:1–6:33, July 2009.

[25] M. Hoseinyfarahabady, Y. C. Lee, A. Zomaya, Z. Tari, and A. Song,
“A model predictive controller for contention-aware resource allocation
in virtualized dcs,” in Self-Aware Networks & Quality of Service (MAS-
COT’ 16), (London, UK), IEEE, 2016.

[26] J. B. Rawlings and D. Q. Mayne, Model Predictive Control Theory &
Design. Nob Hill, 2009.

[27] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang,
“Power and performance management of virtualized computing env. via
lookahead control,” vol. 12, pp. 1–15, Springer, 2009.

[28] C. Wen and Y. Mu, “Power & performance management in nonlinear
virtualized computing systems via mpc,” PLOS ONE, vol. 10, no. 7,
p. e0134017, 2015.

[29] E. Casalicchio, D. A. Menascé, and A. Aldhalaan, “Autonomic resource
provisioning in cloud with availability goals,” in Cloud & Autonomic
Computing, p. 1, ACM, 2013.

[30] M. Morari and J. H. Lee, “MPC: past, present and future,” Computers
& Chemical Eng., vol. 23, no. 4, pp. 667–682, 1999.

[31] S. Qin and T. A. Badgwell, “A survey of industrial mpc technology,”
Control Eng. Practice, vol. 11, no. 7, pp. 733–764, 2003.

[32] J. A. Rossiter, Model-Based Predictive Control. CRC Press, 2003.

[33] P. D. Christofides, R. Scattolini, D. M. de la Pena, and J. Liu, “Dis-
tributed MPC: A tutorial review,” Computers & Chemical Eng., vol. 51,
pp. 21–41, 2013.

[34] J. Maciejowski, Predictive Control with Constraints. Prentice Hall, 2000.

[35] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy aware consolidation
for cloud computing,” in Power Aware Computing & Systems, vol. 10,
pp. 1–5, CA, 2008.

[36] G. Dosa, “The tight bound of ffd bin-packing algorithm is 11/9,” in
Combinatorics, Algorithms, Probabilistic & Experimental Methodolo-
gies, pp. 1–11, Springer, 2007.

[37] G. T. Lakshmanan, Y. G. Rabinovich, and O. Etzion, “A stratified
approach for supporting high throughput event processing applications,”
in Proc. of ACM Intl. Conf. on Distributed Event-Based Systems, p. 5,
ACM, 2009.

[38] A. Martin, T. Knauth, S. Creutz, D. Becker, S. Weigert, C. Fetzer, and
A. Brito, “Low-overhead fault tolerance for high-throughput data pro-
cessing systems,” in Distributed Computing Systems (ICDCS), pp. 689–
699, IEEE, 2011.

[39] L. Al Moakar, A. Labrinidis, and P. K. Chrysanthis, “Adaptive class-
based scheduling of continuous queries,” in Data Eng. Workshops
(ICDEW), pp. 289–294, IEEE, 2012.

[40] B. Gedik, S. Schneider, M. Hirzel, and K.-L. Wu, “Elastic scaling
for data stream processing,” IEEE Trans. on Parallel and Distributed
Systems, vol. 25, no. 6, pp. 1447–1463, 2014.

[41] J. Xu, Z. Chen, J. Tang, and S. Su, “T-storm: Traffic-aware online
scheduling in Storm,” in Distributed Computing Systems (ICDCS),
pp. 535–544, IEEE, 2014.

[42] J. S. van der Veen, B. van der Waaij, E. Lazovik, W. Wijbrandi, and R. J.
Meijer, “Dynamically scaling Storm for analysis of streaming data,” in
Big Data Computing Service & App., pp. 154–161, IEEE, 2015.

342

An Algorithm Based on Response Time and Traffic
Demands to Scale Containers on a Cloud Computing

System

Marcelo Cerqueira de Abranches
Departamento de Ciência da Computação

Universidade de Brasília

Brasília, Distrito Federal (61) 3107-6737/3658

Controladoria-Geral da União

Federal Government of Brazil

Brasília, Distrito Federal (61) 2020-6964

Email: marcelo.abranches@cgu.gov.br

Priscila Solis
Departamento de Ciência da Computação

Universidade de Brasília

Brasília, Distrito Federal (5561) 3107-6737/3658

Email: pris@cic.unb.br

Abstract—This paper proposes a cloud computing architecture
based in containers and on an algorithm that intends to achieve
an efficient allocation of processing resources to comply with
response time requirements in a Web system. The algorithm is
based on the characterization of web requests and on a PID
(Proportional - Integral- Derivative) controller. The proposal was
evaluated with a real time series obtained from an operational
massive web system in a controlled infrastructure. The results
show that the proposal achieves the expected response times
allocating a lower number of containers than other related
proposals.

I. INTRODUCTION

Some of the most challenging and interesting topics on
cloud computing environments are auto elasticity algorithms
[13] and load balancing procedures. Several recent works
address elasticity in cloud computing environments [13], [11],
[5] [7]. Elasticity is a key feature in the cloud computing area
and is the main characteristic that distinguishes this computing
paradigm from the other ones such as grid computing or cluster
computing.

The scalability describes the systems ability to reach a
certain scale. Is the ability of the system to be enlarged
as necessary, mainly to accommodate future growth adding
more resources. Elasticity is a dynamic property that allows
the system to scale on-demand in an operational system.
Elasticity is the ability for clients to quickly request, receive,
and release, many resources as needed. The elasticity implies
in fluctuations, i.e., the number of resources used by a client
may change over time.

The policy to implement elasticity can be manual or
automatic. A manual policy means that the user is responsible
for monitoring his virtual environment and applications and for
performing all elasticity actions. Normally, the cloud provider
provides interfaces with the system with this purpose. In
automatic policy, the control is done by the cloud system, in
accordance with user requirements, normally specified in the
Service Level Agreement (SLA). Then, auto elasticy means

to automatically adapt the environment, and even optimize
resources according to the user demands.

This work proposes an algorithm and an architecture to
promote auto elasticity on a cloud computing environment
based on the efficient allocation of resources. Our work is
focused on processing power elasticity.

This paper makes the following contributions: first, we
propose a cloud computing architecture, integrating several
technologies to promote auto elasticity. Secondly, we analyse
and characterize the web requests of a massive web system
and propose an algorithm that using this typical workload
allows to allocate processing resources to comply with QoS
requirements, in our case, the response time. And finally, this
paper evaluates the proposal in an experimental environment
using several scenarios.

This work is organized as follows: section 2 presents the
related work. Section 3 contains the literature review and the
theoretical concepts used in our proposal. Section 4 describes
the tools and technologies used in the proposed architecture.
Also this section details the proposed auto scaling algorithm.
Section 5 presents the experimental results. Finally, section 6
presents the conclusions and future work of this research.

II. RELATED WORK

The work [11], compares different methods to obtain auto
elasticity on a cloud computing environment. These methods
can be classified into 2 categories: reactives and predictives.
Those techniques are based on machine learning, queueing
theory, control theory, temporal series analysis, among others.

The work [5] proposes an algorithm called PRESS to
predict CPU loads by extracting consumption patterns and
adjust resource allocation. Their approach uses two methods
to perform online predictions: the first is based on the use of
signal processing (Fast Fourier Transforms -FFT) to extract
dominant frequencies. This frequencies are used to generate
a time series and different time windows are compared. The
Pearson correlation index is generated for various windows. If978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

343

it is obtained a Pearson correlation index greater than 0.85,
the average value of the resources in each position of the time
series is used to generate a forecast to the next window and
the virtual machine’s resources are adjusted. If a pattern is not
identified, they propose an approach that uses a Markov chain
with finite number of states to perform the forecast.

Another work that proposes auto elasticity is Haven [13].
This proposal is based on monitoring CPU and memory loads
for each virtual machine in a load balancing pool. From CPU
and memory thresholds previously established, Haven loads
new virtual machines and insert them in the load balancing
pool. In addition, the load balancer which is implemented with
SDN (Software Defined Network), directs each request to the
least loaded member of the pool.

The work [7] proposes and provides a tool called HPA
(Horizontal Pod Autoscaler). This tool works by scaling the
environment (number of containers) from CPU average thresh-
olds of containers that serve a given application.

Our proposal is different from PRESS, as it does not per-
form load prediction, but rather, performs resource allocation
or deallocation, based on the response time observed from
an application behind a load balancer, prior to a workload
characterization. Our proposal is reactive since it uses the
variation of the average response time of an application to
decide using control theory the allocation or deallocation of
resources. Also, our proposal is different from PRESS that
performs vertical scaling. Our proposal performs horizontal
scalability, that is, new instances are allocated behind a load
balancer. As our proposal, Haven also performs horizontal
scalability but with virtual machines and our proposal uses
containers [2].

Another difference of our proposal regarding to HPA is that
while HPA performs CPU consumption measurements inside
containers, our proposal performs measurements outside of
containers, i. e., in the load balancer. This approach has the
advantage to watch system performance, regardless of the level
of resource utilization of containers. In Section 5 a comparison
is made between the HPA and the solution proposed in this
paper .

III. THEORETICAL CONCEPTS AND LITERATURE REVIEW

A. Containers

Container is a technology for creation of isolated pro-
cessing instances and enables virtualization at the operating
system level to provide protected processing portions and when
running on the same system, they are not aware that are sharing
resources as each one has its own network abstraction layer,
memory and processes[2].

Containers have a great portability, because they can run on
any operating system based on Linux. Virtualization depends
on a hypervisor to achieve similar portability. Virtualization
via hypervisors consumes more resources than containers. If
a container is not performing any task, it is not consuming
resources on the server [2]. Besides that, containers are very
dynamic to be created and destroyed, as they just have to start
or destroy processes in its isolated space.

B. Web Servers and Load Balancers

In our proposal, the infrastructure hosting the web system
must be prepared to meet the demand with high performance,
scalability and high availability. However there are many
challenges to be addressed so that a cluster of distributed
servers can function efficiently as if it were a single server.
These challenges range from the routing of requests to the
members of the cluster, methods for choosing the member to
receive the workload and methods to maintain the connection
status.[4].

In load balancing at the transport layer, the requests are
distributed among the members of the cluster based on in-
formations like IP addresses and ports. The load balancer
distributes client connections, which must know the IP address
cluster, among the various servers that effectively respond the
requests. In this case, as the load balancing process is based
on layer 4, the server is selected regardless of the content or
the type of request. [1]. When load balancers are in layer 5,
the distribution of workloads is based on the contents of the
requests.

C. PID Controllers

PID controllers (Proportional - Integral- Derivative) are
control algorithms that are widely used in industry. Examples
of its applications are temperature control environments, and
drone control. PID controllers have three coefficients : propor-
tional , integral and derivative. These coefficients are varied
in order to obtain the desired optimum control response for a
given process.

A PID controller works in a closed loop system where it is
possible to read the current state of a particular variable that is
being controlled, and according to its value, an action is per-
formed so that the variable of interest converges and remains
on a desired level (even considering external disturbances), for
the next iterations of time. [8]

Thus, the PID controller should read the current state of
the variable and calculate the output response, by calculating
the proportional, integral and derivative components and then
adding the three for calculating the control output. The pro-
portional component depends on the difference between the
desired value (setpoint) and the current value of the variable.
This difference is referred to as an error. The integral compo-
nent adds the error term over time. The derivative response is
proportional to the rate of change of the process variable.

In order to produce the necessary adjustments to the
system, the PID controllers use gain parameters Kp Ki and
Kd that should be adjusted. There are several methods for
adjusting these parameters, such as the manual method (guess
and check)) and the Ziegler -Nichols method [8].

In the manual method, the gains of each component are
adjusted using trial and error. For this, the effects that each
parameter causes the controller output must be known. In this
method , the terms Ki and Kd are set to zero, and the term
Kp is increased until the cycle output starts to oscillate. From
there, the term Ki should be slowly raised to reduce the steady
error. At this point the term Kd is incremented, in order to
decrease the oscillations at the cycle output. The discussion on

344

other methods of parameter adjustment is beyond the scope of
this paper, since we used the manual adjustment method.

IV. THE PROPOSED SOLUTION

Our proposal is based on a cloud computing environment
based on containers and a method of auto elasticity to comply
with a required system response time. For this purpose, we use
a closed loop system with a PID controller, which responds to
changes to system response time by increasing or decreasing
the number of containers in a load balancing cluster that
process web requests.

In the next subsections, we describe the tools that were
integrated and the implementation of the algorithm to provide
the features that enable our proposal.

A. Docker

Docker started as a project of the PaaS company (Platform
as a Service) dotCloud in 2013 [12] proposing to be an
integrator and facilitator for adoption of containers in pro-
duction environments and in large scale. Docker uses kernel
features to isolate the containers from the server, creating
isolated processes, network and privileges. The limitation and
accounting of resources (CPU, memory, disk space and I/O)
is made through the use of cgroups. Also the use of the file
system is done efficiently because it is based on copy-on-write,
which allows changes to a container to be simply a differential
update of the previous image.

One of the greatest advantages of Docker is the ability to
find, download and start images of containers that were created
by other developers very quickly and conveniently.

B. Kubernetes

Kubernetes is a system developed by Google [6], and
made available to the community, which aims to manage
the life cycle of containers in the nodes of a cluster. Thus,
Kubernetes is an orchestrator of containers, being able to
schedule the launch of containers between the nodes of a clus-
ter, to do admission control of containers, resource balancing
and provides scalability to the environment. Kubernetes also
provides features such as service discovery between containers,
service publication for access from outside the cluster and load
balancing between containers [6].

The infrastructure of a Kubernetes cluster is composed
of master nodes that control worker nodes, which run the
containers. All settings of the cluster are stored in a distributed
configuration repository, called Etcd. PODs are the basic unit
within Kubernetes. Containers are grouped in PODs and these
generally represent an application. These are created using
Replication Controllers which are used to define PODs that
can be scaled horizontally. Replication Controllers are also
responsible for maintaining the desired number of PODs active
in a cluster.

C. Apache Spark, Flume, HAproxy and Redis

Apache Spark is a distributed processing tool, ideal for
processing large databases. It was developed by AMPLab (UC
Berkeley) and performs data processing in memory by default.

Its basic structure of abstraction are the RDDS (Resilient
Distributed DataSets), which are collections of elements that
can undergo operations in parallel, making it possible to gener-
ate new RDDS from transformations such as map, reduce, filter
and join on RDDS [16]. This tool was chosen to integrate the
solution because it allows the solution to perform processing
of large databases in text format, in a scalable way.

Apache Spark offers an API called Spark Streaming,
which allows real-time data processing, through the creation
of structures called DStreams (discretized streams), which are
sequences of RDDs. The creation of DStreams is made by the
StreamingContext class where you can configure the duration
of each window of DStreams [16]. In our proposal, the duration
of each window was set to 5 seconds and the motivations for
this are further detailed in the next section.

In our proposal, the Spark Streaming is used to process
the load balancer logs, collecting the response time of each of
the requests that the system serves, in real time. This response
time information is stored in a time series format on a Redis
server, so that it can be used by the auto scaling algorithm
proposed in this article.

Spark receives the log entries of the load balancer in
text format, using the Flume tool. Flume is a service that
aggregates, collects and moves large volumes of data flow.
For its operation it creates a source that receives the data of
interest. This source is connected to a channel, where the data
will travel toward a sink [3].

Therefore, the function of this tool in the solution, is to
send, in real time, the load balancer access logs to Spark,
through the creation of a source of type Syslog, which receivers
the Load Balancer logs, and a memory channel that carries the
source data in memory. From there, Spark consumes this data
stream through an Avro Sink, which travels over the network.

The load balancer used in the solution is HAproxy, which
can act as a layer 4 or 7 load balancer, SSL terminator, reverse
proxy and other [17]. Currently, this is the load balancer
used by web sites as Reddit, Stack Overflow, Server Fault,
Instagram among others, and has been chosen as the cloud load
balancer of Red Hat’s OpenShift. HAProxy has the following
log format:

May 18 06:24:25 10.125.7.229 haproxy[1078]:
10.125.8.252:43839 [18/May/2016:06:24:24.988] cherrypy
cherrypy/10.125.7.227 0/0/2/26/28 200 169 - - —- 1/1/1/0/0
0/0 "GET /generate HTTP/1.0"

In the above line, there are informations such as the
waiting time in queue at the application server, http method
and response code, among others. The part with 0/0/2/26/28
contains the information: Tq ’/’ Tw ’/’ Tc ’/’ Tr ’/’ Tt, where
Tr is the time in milliseconds that the load balancer waits until
it receives a complete response of a web request to the server
[17]. So this represents the total time of the request processing
by the container.

In our proposal, the SparkStreaming processes the log
entries and separates the field Tr and stores it in the Redis
database, in a time series format. SparkStreaming is also
responsible for converting the format of the date of each line
to the number of seconds from 0 hour of every day, to support
the creation of time series.

345

Redis is used to store the time series, because it can provide
low latency both for writing and reading, as it keeps the data as
memory structures [14]. The integration of the solution with
Redis is made through the use of the Kairos library, which
creates a structure for storing time series in databases such as
Redis, Mongo, SQL or Cassandra [9]. This library provides
features, such as setting the number of entries to keep in the
database and the minimum time unit of interest of a series.
In the case of this work we keep stored in the series data
of the last 600 seconds, which is sufficient for the algorithm
operation.

Kairos also allows the calculation of statistical parameters
of the series, using configurable time windows. This allows, for
example, to compute average response time of an application
in the last two minutes. The minimum unit of time set in
this solution is 1 second. This allows good flexibility for
configuring the time windows for statistical calculations and
enables the generation of graphics with good time resolution
for monitoring and evaluation of the solution.

D. The Cloud Architecture

The proposed architecture is shown in Figure 1 and de-
scribed in the PAS pseudocode in this section. The PID
controller is used to maintain the average response time of a
particular application within a certain threshold. Our proposed
architecture, hereby called as PAS (PID based Autoscaler)
operates based on the following sequence:

1) Establishment of an average time threshold (setpoint)
desired to the system to answer requests. The monitor
receives the response time of the requests arriving at
the load balancer;

2) The monitor sends the average response time (the
average of the last 200 seconds) so that the PAS
algorithm calculates the number of containers needed
to reach the setpoint. The average of the last 200 sec-
onds was defined because it was found experimentally
that this value is adequate since avoids that outlier
values influence on the operation of the system.

3) PAS runs algorithm 1 and inform the desired number
of containers to Kubernetes. The current number of
containers is obtained using a Kubernetes tool called
kubectl, and the average response time of the cluster
is determined using the time series present in the
Redis database.

4) Kubernetes creates, mantains, or removes new con-
tainers, and ensures that the environment will remain
with the desired number of containers until the next
round of the algorithm (in this case, after 10 seconds).
This value of 10 seconds was chosen because it was
found that it is sufficient for Kubernetes to load new
containers.

E. Solution Operation

In order to allow the operation of the algorithm which
works with dynamic data received in real time, we use the
processing flow shown in Figure 2. Haproxy acts as the load
balancer of the solution. Its logs are sent to Flume that puts
the data in a memory channel and sends it to Spark Streaming,

Algoritmo 1: PAS

Input: Average response time of the cluster, Current
number of containers

Output: Desired number of containers
1 begin
2 Read the desired threshold of average response time

of the requests: t_ms_desired
3 Read the current number of containers:

n_containers_current
4 Read the average response of the cluster in ms:

t_ms_current
5 Calculate the error: e(t) = t_ms_desired -

t_ms_current
6 Calculate the PID output:
7

u(t) = Kpe(t) +Ki

∫ t
0

e(t)δt+Kd
d

dt
e(t) (1)

8 n_desired_containers=n_containers_currrent +
u(t)

9 end
10 return n_desired_containers

Figure 1. PAS Architecture

thus providing the information necessary for operation of the
algorithm.

Haproxy balances the requests in round robin mode be-
tween the Docker/Kubernetes nodes hosting the containers.
When the Docker/Kubernetes node receives the request, the
Kubernetes proxy performs load balancing between the con-
tainers of each server.

So, two levels of load balancing are performed, one
between the Docker/Kubernetes nodes, where Haproxy per-
forms the load balancing, and other internally within the
Docker/Kubernetes nodes where the service Kubernetes proxy
performs the load balancing.

We have developed in this research a set of specific codes
to customize the interaction between the tools, for example, to
generate the time series with system response times and for
the creation and destruction of containers, among others.

346

Figure 2. Processing Flow Between the Set of Tools

V. EXPERIMENTAL RESULTS

A. Environment and Evaluation Scenarios

To evaluate the solution we configured a Kubernetes v1.1.2
cluster on the top of Coreos (899.6.0 (2016-02-02)) operating
system, virtualised with VMWare ESXi 5.5.0. This environ-
ment was configured for solution validation. A production
environment could benefit more if the system Coreos was in-
stalled directly on physical machines because the virtualization
layer would be eliminated.

The cluster was built with the following components: 1
master node (4 vCPUs, 6 GB of RAM) , 1 Etcd node (4 vCPUs,
6 GB of RAM) and 4 worker nodes (4 vCPUs, 6 GB of RAM).
Ubuntu 14.04.3 LTS Virtual machines (VMWare ESXi 5.5.0),
with the following settings and tools: 1 haproxy 1.5.4 node (4
vCPUs , 4G GB of RAM) , 1 Spark 1.5.2 + Redis 2.8.4 node
(2 vCPU 10 GB of RAM) and 1 Flume 1.7.0 + PAS node (2
vCPU , 4 GB RAM)

We defined 4 evaluation scenarios. For the scenarios 1, 2
and 3, we generated an image of a container that runs the web
server Cherrypy 5.1.0. We configured a link on this server. The
link generates in each request an array of random size between
1,000 and 10,000 elements.

The service publication in Kubernetes was made through
the creation of a Replicaction Controller and the config-
uration of a service of the type NodePort. The HAProxy
load balancer was configured to balance requests between the
Docker/Kubernetes nodes using the IP addresses of the nodes
and ports published by the service of the type NodePort. Each
container had its processing and memory resources limited to
18 MB of RAM and 24 millicores of CPU.

Scenario 4 was evaluated with a more elaborate Web
system than the arrays generator of scenarios 1, 2 and 3. The
evaluation was made using the workload Rubis [15], which
is modeled to be a clone of eBay (www.ebay.com). Rubis
implements the basic features of ebay: product registration,
sale, bidding, browsing products by region (United States) and
categories. The installed version of Rubis 1.4.3 was obtained
in https://github.com/sguazt/RUBiS.

In the tests we used the PHP version of Rubis and a
MySQL 5.5 database. MySQL was installed in a virtual
machine with Ubuntu 14.04.1 (16 vCPU and 4 GB of RAM).
MySQL has been configured to allow caching of Rubis tables.
These high settings of CPU and RAM of the MySQL virtual
machine were carried out to ensure that there would be no
bottlenecks in access to the application database, since the
purpose of the tests is to test Web service auto scaling.
The database was populated from the dump obtained in
http://download.forge.ow2.org/rubis/rubis_dump.sql.gz.

As in the configuration described for scenarios 1, 2 and 3,
the service publication in Kubernetes was made through the

creation of a Replicaction Controller and the configuration of a
NodePort service. The HAproxy load balancer was configured
to balance requests between the Docker/Kubernetes nodes
using the IP addresses of the nodes and ports published
by the NodePort service. Each container had its processing
and memory resources limited to 500 MB of RAM and 160
millicores of CPU.

The PID in the PAS algorithm utilized the following
parameters: Kp = 0.016 , Ki = 0.000012 and Kd = 0.096,
which was set after several tests with the workloads, adjusting
the parameters using the manual method, or guess and check
, as described in section III-C.

B. Workload

The workload generation was made using "ab" tool
(apache bench). In order to generate a load with a realis-
tic profile we collected a set of accesses of the Portal da
Transparência (www.transparencia.gov.br), between May/2016
and June/2016. The captured time series in the range of 1
second is the number of accesses on that time interval. The
series was characterized with Kettani-Gubner method [10].
The self-similarity and long dependence of the series was
confirmed with the Hurst parameter H = 0.87 in the scales
of 1 second, 10 seconds and 100 seconds.

A sample of the obtained series can be seen in Figure 3.
This series is used to generate in every second, simultaneous
requests directed to the IP address of the load balancer which
distributes requests to the nodes of the Kubernetes cluster. The
workload intensity was set at 3 levels by multiplying the time
series by 1, 1.5 and 2, and preserving the same self-similarity
index. These loads are referred in the experiments as load_1 ,
load_1.5 and load_2 .

Figure 3. Workload Sample, H=0.87

1) Scenario 1: In this scenario the response time threshold
at the load balancer (setpoint) was set at 50 ms and we applied
load_1 and load_1.5. Figure 4 shows the system response time
while under load_1. The graph shows the adjustment caused by
the allocation of containers performed by the PAS algorithm
and stability achieved close the setpoint of 50 ms.

Figure 5 shows the allocation of containers. The number
of containers at the beginning of the experiment was equal
to 2. The system allocated the required number of containers
so that the average response time shown in Figure 4 reached

347

the setpoint. At the end of the run there were 26 allocated
containers .

Figure 4. Response Time (ms) x Time (s), load_1, setpoint 50 ms

Figure 5. Number of Containers x Time (s), load_1, setpoint 50 ms

Figure 6 shows the average response time of the system
while under load_1.5 and the setpoint kept at 50 ms. Figure
7 shows the containers allocation during this test. It is worth
noting that the container allocation was adjusted to keep the
average response time of the system near the setpoint. At the
end of the run, 52 containers were allocated. In this case, the
system under a greater load, allocated more containers to keep
the response time within the defined threshold.

Figure 6. Response Time (ms) x Time (s), load_1.5, setpoint 50 ms

2) Scenario 2: In this scenario, the response time threshold
in the load balancer (setpoint) was set at 50 ms and we
applied load_1 for 1000 seconds, then load_1.5 for another
1000 seconds (starting at second 1001), and then we applied
load_1 for more 1000 seconds (starting at second 2001). The

Figure 7. Number of Containers x Time (ms), load_1.5, setpoint 50 ms

purpose of this test was to evaluate the behavior of the system
during sudden intensity changes.

As can be seen in figure 8 and 13, the system is capable
to adjust itself increasing the number of containers when the
intensity increases and decreases. It is observed that after
exposing the system to load_1.5 at second 1000, the response
time remains slightly over 50 ms, and after applying load_1 at
second 2000 the response time remains slightly below 50 ms.
Better results could be obtained for this case, readjusting the
parameters of the PID controller.

Figure 8. Response Time (ms) x Time (s), Variable load, setpoint 50 ms

Figure 9. Response Time (ms) x Time (s), Variable load, setpoint 50 ms

3) Scenario 3: Scenario 3 compares the proposed algo-
rithm in this paper with the HPA [7].

348

The comparison follows this procedure: the system con-
figured with the HPA_80 (configured to scale when the av-
erage consumption of the containers of a given Replication
Controller is above 80 %) is exposed to load_1, load_1.5 and
load_2 during 1000 seconds. At the end of the test the average
waiting time of the requests at the application layer (customer
perspective) is observed.

From these data, it was defined a setpoint to use with
the algorithm (PAS) for comparing with the response time
close to the HPA reference. The results will be compared by
checking the average amount of containers allocated during
the experiments and the average response times achieved in
the customer application layer.

As can be seen in Figure 10 the average response time
in the application layer with the HPA algorithm for each load
were: 66.18 ms for load_1, 110.12 ms for load_1.5 and 144.01
ms to load_2 .

For comparative purposes, the PAS setpoints was config-
ured to deliver an average response time close to those obtained
with the HPA. For this, we configured setpoints slightly below
those observed in the HPA, as the setpoint is controlled in the
load balancer, so the time measured in the customer application
layer should be slightly higher. The values set for setpoints are:
50 ms (PAS_50) for the load_1 , 80 ms (PAS_80) for load_1.5
and 100 ms (PAS_100) for load_2 .

Figures 10 and 11 show that for response times near the
value obtained by HPA, PAS system allocated less containers
than HPA. The comparative of the container allocation shows
that: PAS_50 allocated 44.02 % of which was allocated by the
HPA_80, PAS_80 allocated 36.07 % of which was allocated
by the HPA_80 to load_1 .5 and PAS_100 allocated 12.72%
of which was allocated by the HPA_80 to load_2 .

Figure 10. Comparison between HPA and PAS (Average Response Time of
the System)

4) Scenario 4: In scenario 4 we evaluated the behavior
of the PAS algorithm in the Rubis environment. We used
loads_1.5. To generate request variability at every second the
accesses to the links is divided as follows: 10 percent home
page access, 10 percent of queries to the list of products with
random category and random region, 40 percent of visits to
random products and 40 percent of queries to random user
profiles.

In this test the setpoint is set to 50 ms and it is applied
load_1.5. Figure 13 shows the container allocation during the
test, needed to control the application response time (setpoint
= 50 ms) for load_1.5, and figure 12, shows the response

Figure 11. Comparison between HPA and PAS (Average number of
containers)

time controlled near the setpoint. As can be seen, even with
a much more varied workload than the array generator, PAS
can control the average response time of the application close
to the threshold .

Figure 12. Rubis Response Time (ms) x Time (s), load_1.5, setpoint 50 ms

Figure 13. Rubis Number of Containers x Time (s), load_1.5, setpoint 50
ms

C. Analysis of Results

The experimental results show that for all the scenarios our
proposal is efficient for resource allocation. In the scenario
(V-B3), the PAS algorithm optimizes the allocation of the

349

number of containers to hold the values of setpoints within
a given threshold. The HPA allocates a greater number of
containers to achieve equivalent threshold response times for
requests in the application layer. This result shows that the
allocation of a larger number of containers can increase the
complexity of load balancing time and not necessarily produce
better response times.

The obtained results show that the PAS algorithm proposed
in this work has the potential to promote an optimization
of the number of allocated containers in a cloud computing
environment.

The tested scenarios show that the PAS algorithm is a
viable alternative to promote auto elasticity to comply with
a required response time. Furthermore, performing measure-
ments outside the container, allows PAS to be a generic tool
for providing auto elasticity in cloud systems.

VI. CONCLUSION AND FUTURE WORKS

This paper presented an algorithm based on response
time to scale containers on a Cloud Computing system. The
proposal defines a cloud computing architecture based on
containers and uses a PAS algorithm (PID based Autoscaler)
to optimize resource allocation.

The proposal was evaluated in 4 scenarios using different
workloads characterized from real world applications. The
results shows that our proposal has the potential application to
provide auto elasticity in cloud computing systems based on
containers. The comparison with the native tool of Kubernetes,
the HPA shows a higher efficiency for the PAS proposal.

In future work we intend to improve the PAS algorithm
with sophisticated methods for setting the PID parameters.
Furthermore the algorithm will be tested with other container
orchestrators, such as Mesos and Docker Swarm, to verify that
PAS can be a generic tool to provide auto elasticity in cloud
computing environments based on containers.

[1] Mitchell Anicas. Mitchel Anicas an introduction to haproxy and load
balancing concepts. https://www.digitalocean.com/community/tutorials/
an-introduction-to-haproxy-and-load-balancing-concepts, 2014.

[2] Docker. Docker the definitive guide to docker containers.
https://www.Docker.com/sites/default/files/WP-%20Definitive%
20Guide%20To%20Containers.pdf, 2016.

[3] Flume. Flume flume user guide. https://flume.apache.org/
FlumeUserGuide.html, 2016.

[4] Katja Gilly, Carlos Juiz, and Ramon Puigjaner. An up-to-date survey
in web load balancing. World Wide Web, 14(2):105–131, 2011.

[5] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. Press: Predictive
elastic resource scaling for cloud systems. In Network and Service
Management (CNSM), 2010 International Conference on, pages 9–16.
IEEE, 2010.

[6] Google. Google container cluster manager from google. https://github.
com/kubernetes/kubernetes, 2016.

[7] Google. Google horizontal pod autoscaler. https:
//github.com/kubernetes/kubernetes/blob/release-1.2/docs/design/
horizontal-pod-autoscaler.md, 2016.

[8] National Instruments. National Instruments explicando a teoria pid.
http://www.ni.com/white-paper/3782/pt/, 2015.

[9] Kairos. Kairos time series data storage in redis, mongo, sql and
cassandra. https://pypi.python.org/pypi/kairos, 2015.

[10] Houssain Kettani, John Gubner, et al. A novel approach to the
estimation of the hurst parameter in self-similar traffic. In Local
Computer Networks, 2002. Proceedings. LCN 2002. 27th Annual IEEE
Conference on, pages 160–165. IEEE, 2002.

[11] Tania Lorido-Botrán, José Miguel-Alonso, and Jose Antonio Lozano.
Auto-scaling techniques for elastic applications in cloud environments.
Department of Computer Architecture and Technology, University of
Basque Country, Tech. Rep. EHU-KAT-IK-09, 12:2012, 2012.

[12] Nick Martin. Nick Martin a brief history of docker contain-
ers’ overnight success. http://searchservervirtualization.techtarget.com/
feature/A-brief-history-of-Docker-Containers-overnight-success, 2015.

[13] Rishabh Poddar, Anilkumar Vishnoi, and Vijay Mann. Haven: Holistic
load balancing and auto scaling in the cloud. 2015.

[14] Redis. Redis redis documentation. http://redis.io/documentation, 2015.

[15] Rubis. Rubis rubis: Rice university bidding system. http://rubis.ow2.
org/, 2009.

[16] Spark. Spark spark programming guide. https://spark.apache.org/docs/
1.5.2/programming-guide.html, 2015.

[17] Willy Tarreau. HAProxy haproxy configuration manual. http://www.
haproxy.org/download/1.5/doc/configuration.txt, 2015.

350

REFERENCES

SLA and Profit-aware SaaS Provisioning through
Proactive Renegotiation

Aya Omezzine1,2,3 and Narjes Bellamine Ben Saoud1
1Univ. Manouba, ENSI, RIADI LR99ES26

Campus Universitaire Manouba, 2010, Tunisie
2Université Fédérale Toulouse Midi-Pyrénées, CNRS/LAAS

F-31400 Toulouse, France

Email: aya.omezzine@gmail.com, Narjes.bellamine@ensi.rnu.tn

Saı̈d Tazi2,3 and Gene Cooperman2,4
3Univ. de Toulouse, UT1 Capitole, LAAS

F-31000 Toulouse, France
4College of Computer and Information Science

Northeastern University, Boston, MA / USA

Email: tazi@laas.fr, gene@ccs.neu.edu

Abstract—Software-as-a-Service (SaaS) providers offer on-
demand, highly scalable applications to the end users. To
maximize their profit, the providers must make profit-aware
scheduling decisions about assigning client requests to virtual
resources, while respecting the agreed upon Service-Level Agree-
ment (SLA). Given the highly dynamic nature of the cloud
environment, unexpected events may affect the initial scheduling
plans, which leads to unanticipated SLA violations. Thus, an
unaccounted event may create a lose-lose situation between
provider and client. If the SLA is violated the provider must
pay the potentially high penalty that is negotiated within the
original SLA. But from the client’s viewpoint, an SLA violation
may cause cancellation of a business-critical job, and no ordinary
SLA penalty can compensate for the loss of the client’s business.
The provider’s reputation could also suffers as the number of
such SLA violations grows, resulting in loss of future clients.
On the contrary of most existing work that assume that once
established the SLA cannot be modified, we propose to convert
the lose-lose situation into a win-win one through an automated
renegotiation mechanism. When an event threatens a lose-lose
violation of the SLA, the renegotiation mechanism is launched
to establish a new SLA that limits the losses on the two sides.
Experiments show that this new approach minimizes the loss in
profit of the provider and minimizes the number of cancelled
jobs experienced by the client, as compared with enforcing the
original SLA.

Index Terms—Cloud computing; SaaS provisioning; Service
Level Agreement (SLA); SLA-aware scheduling; Client satisfac-
tion; Automated renegotiation; Decision making strategy;

I. INTRODUCTION

SaaS providers offer highly scalable applications to end

users over the Internet. To run their applications, SaaS

providers often prefer to rent virtual resources from an

Infrastructure-as-a-Service (IaaS) provider instead of in-house

hosting. By doing so, they avoid infrastructure maintenance

and they can scale their application to serve as many end users

as possible. Thus, the end user negotiates with a SaaS provider,

while that provider in turn schedules jobs with IaaS providers.

The SaaS application provisioning must satisfy the SLA

contract established between the two parties. The SLA contract

is a formal representation of the QoS parameters, obligations

of the two parties, and provider penalties, that are agreed upon.

In order to maximize their profit and to satisfy end users, the

SaaS providers use an SLA-aware scheduling algorithm, which

efficiently assigns user requests to virtual resources offered by

IaaS providers.

Cloud computing represents a highly dynamic environment

(both at the business level and at the resource level). There may

be unforeseen events at the resource level such as catastrophic

resource failure, or else there may be unexpected events at the

business level coming from the need to share rented resources

between new clients that compete for immediate execution.

These events may result in violation of the original negotiated

SLA, since the schedule originally done (based on the initial

SLA) can be modified.

Generally if a contract is violated, a penalty is paid and

the service is canceled [1], [2]. But if a contract is violated

due to circumstances not accounted for in the original SLA

negotiation, the two parties may both lose badly. For example,

consider the situation in which a job is critical to the success

of the business. In principle, the client could have insisted on a

penalty in the original SLA that is equal to the value of client’s

business, as compensation for the losses due to the failure of

that business-critical job. But this is usually unrealistic, since

such a penalty can be larger even than the total assets of the

provider. Hence, the client will never be fully compensated,

and the provider faces a loss of future clients due to the loss

in reputation as the number of violated jobs accumulates.

For these reasons, the provider and the client would nor-

mally prefer to renegotiate using a new SLA with a new

deadline (i.e., an extension beyond the first deadline), rather

than pay a steep penalty and accept the cancellation of a

business-critical job. The new SLA will generally include a

discount by the provider on the originally agreed-upon price,

as a concession by the provider for avoiding the steep penalty

envisaged by the original SLA violation.

Most of the literature assumes that once an SLA is estab-

lished, it cannot be renegotiated [1], [2], [3], [4]. The concept

of renegotiation has not yet been well studied [5]. There is

some work that tries to enhance the WS-Agreement nego-

tiation protocol using renegotiation [6], [7], [8], and others

propose general conceptual renegotiation frameworks [9], [10].

However, the term renegotiation in this prior literature always

refers to a renegotiation phase within the original SLA.978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

351

In particular, the prior work mentioned above does not

propose any decision-making model to guides the renegoti-

ation process toward a satisfactory agreement. In contrast, the

current work proposes decision-making strategies in which the

negotiators renegotiate based on a concession (lowering) of the

original penalty.

The key novelty of this paper is to propose an automated

renegotiation-based approach when detecting an unexpected

event during the SaaS provisioning process. In our approach,

the provider proactively renegotiates with the clients whose

jobs may be in violation of the SLAs, in order to minimize

the loss in profit and in order to assure the continuity of the

service. The renegotiation approach is composed of two steps.

1) The first step happens when the SaaS provider detects an

unexpected event. Since the provider may not be able to

physically continue some jobs with the same scheduling

parameters (VM, completion time, etc.), we consider

alternative rescheduling options for the provider. The

first step consists of the selection of an option for profit-

aware rescheduling. In examining the possible schedul-

ing options, the provider chooses an option leading to

a minimum loss in profit while also minimizing the

number of canceled jobs. (See Section III-C.)

2) At the second step, the SaaS provider triggers a renego-

tiation with those end users whose jobs may terminate

after deadline. The renegotiation consists of an exchange

of offers and counter-offers guided by decision-making

strategies using a utility model that is based on eco-

nomics. The strategies followed by the SaaS provider

are based on the rescheduling option selected in the first

step, above. (See Section IV-A and following.)

The rest of the paper is organized as follows. Section II

presents the basis for negotiation, how it is used in cloud com-

puting, and especially the role of renegotiation. Section III and

Section IV describe the first step and second step, respectively,

of the renegotiation-based SaaS provisioning process. Sec-

tion V presents experiments to assess the algorithm. Section VI

is dedicated to discussing the related work. Conclusions are

presented in Section VII.

II. MOTIVATION AND BACKGROUND

Cloud computing presents a highly dynamic marketplace

for delivering IT services on demand. Each cloud actor has its

own interests. In particular, the client aims to obtain the most

convenient service at the cheapest price, while the provider

aims to maximize its profit and to serve the maximum number

of clients. The negotiation between cloud actors is an intuitive

way to solve conflicts between client and provider and to reach

a satisfactory agreement. As the infrastructure and platforms

for the cloud become more complex, we need more automated

negotiation to handle that interaction.

Automated negotiation can be split into three issues [11].

1) The negotiation protocol expresses the locutions that may

be exchanged between the negotiators and defines the rules of

interaction. 2) The negotiated service is composed of objects

(also called issues) about which the participants negotiate.

There are specific service issues, which concern the service

type, and there are generic issues such as the price. 3) The

decision-making model for negotiation defines the decision-

making strategies for each actor.

Decision making is composed of two main strategies. The

first strategy allows one to evaluate a received offer and to

decide whether to accept, reject or propose a counter-offer.

This first strategy is generally based on a utility function

that measures the degree of satisfaction of a received offer

according to the preferences. The second strategy enables one

to generate offers or counter-offers at each step.

Automated negotiation in the Cloud is primarily used to

establish an SLA between clients and providers. It happens

generally in the first phase of the service-provisioning process

(before the SLA establishment itself). In this paper, we focus

on SaaS application provisioning and especially on compute-

intensive applications. Some examples are: scientific data pro-

cessing, and finance data analysis. In the first phase, in order

to maximize the number of clients and minimize the costs of

renting sufficient computer resources, the SaaS provider adopts

a profit- and SLA-aware scheduling algorithm. The schedule

must guarantee that the SLA is met, while also maximizing

the profit.

After signing the contract, unexpected events may later

occur that can impact the current scheduling. To avoid an

SLA violation, the provider must take rescheduling actions.

However, maybe no rescheduling can meet the previously

signed SLA. For example, migrating a job to another VM

after failure may delay the completion time beyond the agreed

upon deadline. The SLA model generally assumes that once

the deadline is violated, the job is automatically cancelled and

a penalty is paid.

This is the scenario in which automated renegotiation

becomes important, as part of a second phase of service

provisioning. This second phase occurs after violation of

the original SLA due to an unexpected event. We invoke a

new renegotiation phase between the end user and the SaaS

provider, in order to minimize the SLA penalty costs and

in order to ensure the continuity of service on which the

provider’s reputation depends.

In what follows, we detail how automated renegotiation can

be used to handle unexpected events, as part of a second phase

in SaaS application provisioning.

III. SELECTION OF AN OPTION FOR PROFIT-AWARE

RESCHEDULING

When detecting an expected event that alters the initial

scheduling, the provider takes rescheduling actions in order

to avoid SLA violations to the extent possible. Generally, the

provider may have more than one rescheduling option. For this

reason, we propose an algorithm for the selection of an option

for profit-aware rescheduling. In this section, we model first

the unexpected event and the rescheduling option. Then, we

present our algorithm for selection of a rescheduling option.

352

A. Definition of an Unexpected Event

An unexpected event leads to a change in the situation under

which the already signed SLAs had originally been negotiated.

Indeed, the schedule contracted by the SaaS provider in the

first phase may be affected, thereby leading to violation of the

original SLA. The unexpected events can be classified into

two categories: 1) resource events, for example VM failure,

failure of the currently executing job, etc. The jobs scheduled

on that VM may be affected, and so the initial scheduling

may be altered. 2) business events, such as a new incoming

client needing immediate execution with no additional VMs

available from the IaaS provider. Thus, the SaaS provider may

choose to execute a new job on an already active VM even

though there exist prior jobs (either running, or scheduled but

not yet started). An unexpected event can be specified using

two parameters: the time at which the event occurs, tevent;
and the set of resources affected by the event, vmID. The

unexpected event is assumed to be detected just prior to SLA

violation through a monitoring module.

B. Definition of the Rescheduling Option

The rescheduling option is composed of potential schedul-

ing actions applied to accepted and scheduled jobs (which

may either be running or not yet started). Two examples of

rescheduling actions are: (i) the provider may proactively mi-

grate the job to a different computer; and (ii) the provider may

invoke periodic checkpointing to protect against catastrophic

failure. (The provider can then restart from a previous check-

point image on a new computer, or even directly migrate to a

new computer.) A scheduling action defines when and where to

place a job. A scheduling action Ac, applied to a job j, can be

defined as (type, j, estimated start time, vmID, compT)
where: the type denotes the scheduling action type. For ex-

ample: insert, postpone, cancel/restart, migrate,suspend/restart.

The estimated start time and vmID define when and

where to start the job, respectively. The compT denotes the

estimated completion time, and can be calculated based on the

information given by scheduling action.

Hence, a rescheduling option, denoted Op, is defined as

follows: Op = {Acj}, where j ∈ {rescheduled jobs}. Each

rescheduling option has as output a list of rescheduled jobs

(resch List) and the list’s rescheduling information given by

the scheduling action.

C. Algorithm for Selection of a Profit-aware Rescheduling
Option

For the selection of a rescheduling option, we consider two

metrics: 1) the lossInProfitp, which calculates the SaaS

provider loss in profit when choosing rescheduling option p;
and 2) the number of potential cancelled jobs when choosing

option p, denoted by nbrJobsp.

1) The lossInProfitp for the provider: This include two

parameters: a) The actionCost define the cost due to

the action. For example, if the action is to migrate

the job to a new VM , the cost of the action will be

equal to the price of provisioning a new VM . b) The

penaltyCost, defined as the SLA violation cost, which

can be calculated for a job j using the following formula:

penaltyCostj =

⎧⎪⎨⎪⎩
0, if compTj ≤ respTj
prj ∗ delayj , if respTj ≤ compTj ≤ dlj
fixedPenaltyj , if dlj < compTj

(1)

where respTj is the agreed upon response time, and dlj
is the agreed upon deadline. The value prj indicates the

penalty rate. The fixedPenaltyj denotes the penalty

paid in case of violation.

2) The number of potential cancelled jobs, nbrJobsp:
This calculates the jobs whose estimated completion

time compTj are greater than the deadline dlj of the

initial SLA.

The proposed algorithm, Algorithm 1, below, takes as input

the list of possible rescheduling options that the provider can

choose after detecting the unexpected event. The algorithm

returns a scheduling option and associated rescheduling infor-

mation for each job such that the number of cancelled jobs is

minimized and the loss in profit is minimized.

For each possible rescheduling option: First, Algorithm 1,

below, calculates the estimated completion time compTj for

each job j, based on the action Acj applied to this job (line 5).

Second, the algorithm calculates the lossInProfit as a sum

of the loss in profit for each of the rescheduled jobs (lines

6 and 7). Third, the algorithm selects the potential cancelled

jobs whose compT are greater than the agreed upon deadline,

calculates nbrJobs, and stores the rescheduling information

for those jobs in potentialCancelJobs (line 8 to 10). Then,

the algorithm stores the option results in optionsResults
(line 13). Finally, the algorithm selects the option noted

optionsResultss having the minimum nbrJobs and the min-

imum lossInProfit (line 14) using the selectBestOption
function. We propose to use utility functions in order to

select the most convenient option. The utility function of an

attribute i with value x can be calculated as follows.

Let U(xi) =
xi − xworst
xbest − xworst

, (2)

where xworst and xbest denote the best and worst value,

respectively. For each possible rescheduling option: the

selectBestOption function calculates the utility values

UtLoss and UtNbrJobs for lossInProfit and nbrJobs
using equation 2 (line 21 and 22). The worst and best

values for the lossInProfit are the maximum and minimum

lossInProfit values selected from the optionResults, re-

spectively. Likewise, the worst and best values for nbrJobs
are the maximum and minimum nbrJobs values selected from

the optionResults, respectively. Then, the function calculates

the option’s distance to the best option, which has UtLoss = 1
and UtNbrJobs = 1 (line 23). Finally, the function returns

the option having the minimum distance to the best option

(line 24 to 27). The provider will renegotiate based on the

results of the rescheduling option selected (optionsResultss)

353

Algorithm 1 Pseudo-code for selection of rescheduling option

Input: The list of possible rescheduling options

Output: The rescheduling option leading to the min

lossInProfit and min nbrJobs
1: for each p ∈ possible rescheduling options do
2: lossInProfitp = 0
3: nbrJobsp = 0
4: for each j ∈ resch Listp do
5: compTj = getCompT (Acj)
6: lossInProfitj = penaltyCost(compTj) +

actionCost(Acj)
7: lossInProfitp = lossInProfitp+ lossInProfitj
8: if compTj > dlj then
9: nbrJobsp ++

10: Add resch info from resch Listj to

potentialCancelJobsp
11: else
12: continue
13: Store lossInProfitp,nbrJobsp,potentialCancelJobsp

in OptionsResultsp
14: OptionsResultss=selectBestOption(OptionsResults)
15: return OptionsResultss

16:

17: Function selectBestOption(OptionsResults)
18: minDistance =

√
2

19: optionsResultss = optionsResultsp
20: for each p ∈ OptionsResults do
21: UtLossp = U(lossInProfitp)
22: UtNbrp = U(nbrJobsp)

23: Distancep =
√
(UtLossp − 1)

2
+ (UtNbrp − 1)

2

24: if Distancep < minDistance then
25: minDistance = Distancep
26: optionsResultss = optionsResultsp
27: return optionsResultss

IV. THE RENEGOTIATION-BASED RESCHEDULING

PROCEDURE

Once a rescheduling option is selected, the provider will

renegotiate with the clients whose jobs may be cancelled

by triggering a renegotiation session with each client. The

values of the renegotiable issues (deadline, compensation)

will be guided by the renegotiation decision-making strategy

and will be based on the results of the selected rescheduling

option. In this section, we present first the overall process for

renegotiation. Then we present details about the strategies that

will be followed by the provider and the client.

A. The renegotiation overall process

A renegotiation session can be defined as the period cover-

ing the time when the interaction between negotiators begins

until it stops. The renegotiation session terminates either with

an agreement, and in this case the new SLA is applied, or

without an agreement, in which case the initial SLA is applied.

The different states of the renegotiation session, denoted

renegSessionState, are: 1) Active (when the two parties are

exchanging offers and counter-offers); 2) Succeeded (when

the renegotiation session terminates with an agreement if

one party accepts the offer received from his opponent);

3) Failed (when the renegotiation session terminates without

an agreement). This last situation (Failed) occurs when one

party rejects the opponent’s offer or when the negotiation

deadline is reached.

The renegotiation-based rescheduling algorithm, Algo-

rithm 2, takes as input the potentialCancelJobs list (included

in the optionsResults returned by Algorithm 1). For each

job that may be cancelled, the provider opens a renegotiation

session with the client that owns that job. The renegotiation

sessions are triggered sequentially. The provider opens a new

renegotiation session only if the current one is terminated

(lines 3 and 4). If the renegotiation terminates with success,

then the SLA is updated to include the new agreed upon

deadline and the compensation (lines 5 and 6). If the rene-

gotiation about the job j fails then the provider must update

the estimated completion time of the jobs that potentially are

rescheduled after job j, in order to avoid the resource wastage

due to unused time slots (lines 8 to 10). For that reason, the

renegotiation is done sequentially, so that the provider can

update the estimated completion time of the rescheduled jobs

based on the renegotiation session’s output.

Algorithm 2 Pseudo-code for renegotiation-based reschedul-

ing

Input: The list of potential cancelled jobs

Output: The results of each renegotiation session

1: for each j ∈ potentialCancelJobs do
2: open renegotiation session j with owner of job j
3: while renegSessionStatej == Active do
4: wait
5: if renegSessionStatej == Succeded then
6: update the SLAj
7: continue
8: else if renegSessionStatej == Failed then
9: for each k ∈ rescheduled jobs after j do

10: update compTk in potentialCancelJobsk

B. The Decision-making Strategies for Renegotiation

During the renegotiation session, the provider and client

automatically exchange offers and counter-offers according

to their decision-making strategies. The renegotiation strategy

should be designed to rapidly achieve agreement, since the

participants are generally pressed when renegotiating after

an SLA violation. For this reason, we assume that the new

deadline proposed by the provider in the first round cannot

be modified when exchanging offers and counter-offers. This

is because the proposed deadline value is imposed by the

rescheduling option selected. So the given deadline value is

the best that the provider can offer to the client.

354

In what follows, we present how the compensation value is

evaluated and generated during the renegotiation session.
1) Decision-making by the Provider:

The offer evaluation strategy: The offer evaluation is

based on the satisfaction model described in [12]. The utility

value of a negotiable attribute i with value x can be calculated

using equation 2 where the worst and best values are

defined by the negotiator before starting the negotiation as

internal preference. In our scenario, based on the SLA model

described in equation 1, the values penaltyCost(deadline)
and fixedPenalty denote the best and worst values of com-

pensation, respectively.

The acceptance conditions of a received

offer from the client during the renegotiation

session are: 1) U(compensation received) >=
U(compensation proposed); and 2) deadline received >
compT .

If the offer received from the client does not satisfy the

two conditions mentioned above, the provider will propose a

counter-offer using the utility-based offer generation strategy.
The Strategy for Generation of Utility-based Offers:

As mentioned earlier, the proposed new deadline will

be equal to the estimated completion time included in

potentialCancelJobs list. Given the expected compensation

utility for the provider, the compensation value can be gen-

erated using equation 2 of Section III-C. The expected utility
consists of a tradeOff between minimizing the loss in profit

and satisfying the client. The expected client utility can vary

between 0 and 1. In the special case when the utility is

equal to 1, the provider proposes a minimum compensation

(the provider’s best value) while still managing to relax the

deadline. So, in this case the provider prefers minimizing the

provider loss over satisfying the client.

And in the special case that the utility is equal to 0, the

provider proposes to pay the fixed penalty as compensation

while continuing to run the job. So, the provider doesn’t

minimize the provider loss, but instead satisfies the client by

not cancelling his job. The SaaS provider can offer this to the

client only because it had obtained additional resources during

the rescheduling phase with the IaaS provider, as described

in Section III-C. Before renegotiating and according to the

provider’s internal preferences, the provider has fixed values

for preferred and reserved utility values (upper and lower

bounds on the expected utility). Those values are kept secret

and are not know by the client. In the first round, the provider

generates the initial offer based on the provider’s preferred

utility. During the later rounds, the provider may back off

from its preferred utility until reaching its reserved utility.
2) Decision-making by the Client:

The Strategy for Offer Evaluation: The evaluation is

based on the overall utility value. The overall utility of

a received offer composed of n attributes is calculated as

a weighted sum of each single utility using the following

equation:

U(offer) =
n∑
i=1

wi ∗ U(xi) (3)

where wi is the weight expressing the importance of the

attribute i and wi is in the range [0, 1]. For example, for high

priority jobs, users may place more importance on the deadline

than on compensation. In contrast, for low priority jobs, users

may place more importance on the compensation than on the

deadline.

The client defines preferred (preferredUt) and reserved

(reservedUt) utility values, as bounds on the overall expected

utility. Those clients having urgent business-critical jobs assign

low value to the (reservedUt). This is because they prefer to

accept the job along with a relaxed deadline and a smaller

compensation, rather than having the job cancelled. The client

preferences are kept secret.

In our scenario, the client accepts an offer only if

U(offerreceived) ≥ reservedUt. The client rejects an offer if

∃ issue i, U(xi) < 0. Otherwise, the client proposes a counter-

offer using the following strategy.
The Strategy for Offer Generation: As mentioned earlier,

the client does not change the deadline value proposed by the

provider when generating a counter-offer. Since the deadline

utility is known (expressed by the provider’s initial offer),

the compensation utility value can be generated from the

expected overall utility using equation 3. As was the case

for the provider, the client similarly starts by generating an

offer according to the preferredUt value, until reaching the

reservedUt value.

V. EVALUATION AND ANALYSIS

A. Experimental settings

To simulate the cloud market and the interaction between

the SaaS provider and the final users, we implement a multi-

agent system using JAVA and the Java Agent DEvelopment

framework (JADE) [13]. Each software agent is acting on

behalf of either clients or providers. The agents negotiate

through the FIPA iterated contract net protocol, which is a

multi-round negotiation protocol [14].

In the SaaS application provisioning process there are two

phases: 1) Before the SLA establishment: the provider tries

to find a schedule satisfying the client request, and decide

whether to accept or reject the request. Once accepted, an SLA

is signed between the two parties (between SaaS provider and

client). 2) When an unexpected event occurs after the SLA

establishment, as we have presented in Section III, there are

two steps. The first step happens when the provider initially

detects an unexpected event that may alter the initial schedule.

The first step deals with choosing an option from several

possible rescheduling options. In the second step, the provider

triggers a renegotiation session with each user whose SLA

may be violated.

Since we are interested in testing and validating the rene-

gotiation approach, we assume in our experiments that:

• The first phase is done according to an existing SLA-

aware scheduling algorithm [3]. That algorithm performs

more efficiently when evaluated and compared with the

reference scheduling algorithms [3]. For each accepted

job, the output of the first phase is an SLA with the

355

required scheduling information. The scheduling infor-

mation indicates where and when to put the job to satisfy

the SLA.

• The first step of the second phase is not explicitly

implemented. Instead, we generate an unexpected random

event. We implement a rescheduling module simulator

that generates the list of potential rescheduled jobs and

their estimated completion time given an unexpected

event. We assume that the jobs are rescheduled sequen-

tially. The estimated completion for the job running can

be generated randomly and for the other jobs using the

following formula.

compTj = compTjr +
∑

k∈{k between jr et j}
procTk,l (4)

where compTjr denotes the completion time of the job

running jr at tevent. And procTk,l denotes the processing

time of job k on the VM of type l.
We assume that the rescheduling module simulator

chooses the best rescheduling option.

B. Results and Analysis

Our objective is to evaluate the renegotiation-based appli-

cation provisioning algorithm and to compare it to the basic

scenario in which the provider cannot modify the established

SLA. For the basic scenario, we assume that the provider

tries to execute a rescheduling action (step 1) without any

renegotiation. If the SLA is violated the job is cancelled and

the SLA penalty is paid. We measure performance using two

metrics: 1) the total loss in profit, expressing how much the

provider loses when violating an already established SLAs;

and 2) the number of cancelled jobs, the number of jobs whose

completion time is beyond the agreed upon deadline for the

original SLA.

We conduct three types of experiments in which we cal-

culate the loss in profit and the number of cancelled jobs.

For these experiments, we assume that each agent (provider

or consumer) is able to generate only one offer during the

renegotiation session, since the renegotiation must be done in a

timely manner. Furthermore, we assume for the expected util-

ity that the agent’s reserved utility is equal to the preferred one.

So the agents generate one offer according to their expected

utility. If the opponent accepts the offer, the renegotiation ends

with an agreement. Otherwise the renegotiation fails. This

configuration (where preferred utility is equal to the reserved

one) is the worst possible configuration in negotiation, since it

is the least flexible. By choosing this configuration, we will be

sure that for other configurations, our renegotiation algorithm

will perform better. Hence, when relaxing the expected utility,

there is a greater chance of a request/offer being accepted,

and so the number of successful renegotiation sessions will

be increased.

For the first and the second experiments, we vary the

expected utility for the provider and the client, respectively,

while injecting exactly one unexpected event (affecting only

one VM). For the third experiment, we vary the number of

Fig. 1. Impact of provider’s expected utility variation

resources affected by the unexpected event. Note that an event

may lead to altering the initial scheduling of more than one

VM. For example, a failure may affect many VMs.

1) Impact when varying the expected utility of the SaaS
provider: Figure 1 shows the different values obtained for the

loss in profit and the number of cancelled jobs with respect

to the provider expected utility. For those experiments, we

generate clients and their initial request with expected utility

equal to 0.1 (clients with business-critical jobs). We observe

that the loss in profit and the number of cancelled jobs using

renegotiation is minimized compared to the basic scenario.

Without renegotiation, the loss in profit and the number of

cancelled jobs are constant. regardless of the value of the

provider utility. This is expected, since the provider’s strategy

for handling unexpected events does not consider the value of

the provider utility.

In Figure 1(a), the loss in profit (red curve) is decreasing

when the provider’s expected utility increase. This is because

the utility is related to the compensation paid to the client. The

higher the utility, the less is the compensation that is paid, and

so the loss in profit is also less. In Figure 1(b), the number of

cancelled jobs (red curve) is constant regardless of the value of

the provider utility, this is because the client’s reserved utility

is at the lower limit. This implies that the client will accept

any offer from the provider, even if the compensation is not

at the upper limit (not at the upper bound for the provider

utility). For those clients, a lower utility is nevertheless better

than cancelling the job.

In the next experiments, we will vary the clients’ expected

utility.

2) Impact when varying the expected utility of the clients:
Figure 2 shows the different values obtained for the loss in

profit and the number of cancelled jobs, with respect to the

clients’ expected utility. For those experiments, the provider’s

expected utility is equal to 0.6. We note, as in Figure 1, that

the loss in profit and the number of cancelled jobs are constant

in the basic scenario, since the basic scenario does not take

into account client satisfaction.

With renegotiation, we notice that the loss in profit and the

number of cancelled jobs increase when the client expected

utility increases. For the users with low utility values, the

renegotiation algorithm performs much better than the basic

one. But, for users with high utility values, the renegotiation

algorithm results are the same as the basic one. So, when

356

Fig. 2. Impact of variation of clients’ expected utility

increasing the clients’ expected utility, the renegotiation al-

gorithm performance tends to the performance of the basic

algorithm. In contrast, when the expected utility is low, the

client has a high-priority business-critical job, and so it accepts

any renegotiation offer in order to assure the continuity of its

business. In contrast, the client with a high expected utility

(i.e., having a less business-critical job) may choose to not

accept a renegotiation offer. In this case, the client prefers

that the provider should pay the penalty and cancel the job.

3) Impact as the number of resources are varied: Figure 3

shows the different values obtained for the loss in profit and

the number of cancelled jobs with respect to the number of

affected resources. For those experiments, the provider and the

client expected utility are equal to 0.6 and 0.1, respectively.

Fig. 3. Impact of variation of number of resources

We notice that the loss in profit (with and without renegotia-

tion) and the number of cancelled jobs (without renegotiation)

increase when the number of affected resources increases.

Further, when the unexpected event affects many VMs, the

number of rescheduled jobs increases which lead to a poten-

tially increased number of cancelled jobs. Consequently, the

total loss in profit will increase. In Figure 3(b), the number of

cancelled jobs is equal to zero, regardless of the number of

resources. This is because, in our configuration, we generate

clients whose jobs are highly business-critical. So the clients

always accept the renegotiation requests.

For the three experiments, we conclude that: 1) our algo-

rithm’s performance exceeds that of the basic algorithm in

terms of profit and the number of cancelled jobs when the

clients’ jobs are highly business-critical (low expected client

utility); and 2) our algorithm’s performance tends toward the

basic algorithm’s performance when the clients have jobs that

are less business-critical (when the clients’ expected utility is

high). Thus in the second case, the clients do not accept a

renegotiation, and prefer to enforce the initial SLA.

VI. RELATED WORK

Our work is related to SLA-aware Cloud service provision-

ing. Most of the existing work proposes an approach aiming to

guarantee the agreed upon QoS during the service provisioning

process. However, there is less work that considers the conse-

quences of SLA violations, and how the service provisioning

should be affected by those violations (e.g., the effect on the

provider profit and provider reputation).

In [15], Wu et al. propose a negotiation framework that

helps both consumers and providers to define QoS parameters

values before service provisioning. The proposed framework

includes brokers that assist consumers to find SaaS providers

satisfying their needs. The provider cost model does not

consider the SLA penalties to be assessed in case of violation.

In order to avoid SLA violations and minimize SLA

penalties, it is important to design efficient SaaS scheduling

algorithms [1], [2], [3], [4]. In [2], Leitner et al. propose a

scheduling algorithm that takes as input the incoming job’s

execution time requests and the current resource load. That

algorithm decides for each request whether to launch a new

VM or to schedule it on an existing VM. The objective

is to minimize the cost of running VMs and to minimize

SLA violations. Despite the fact that the provider revenue

depends on the budget given by the requests, the authors do

not consider this parameter in the scheduling decision. In the

same sense as [2], Liu et al. [1] propose a genetic algorithm

that aims to maximize revenue by minimizing the costs of

rented VMs. This algorithm divides the user’s request into

sub-tasks, and then tries to find the optimal combination of

VMs able to run those sub-tasks without an SLA violation.

Although [1], [2] do not consider the client’s budget when

scheduling, Wu et al. [3] propose admission control strategies

that take into account the budget and the deadline to decide

whether to accept or reject the client’s request. The main

goal is to avoid SLA violation and maximize profit. In [4],

Wu et al. propose a scheduling algorithm for enterprise-based

SaaS application. The algorithm aims not only to minimize

the number of rented VMs, but also to maximize the Customer

Satisfaction Level (CSL) by considering the consumer’s future

interest when scheduling his or her initial request.

The works cited above do not consider what to do after

an SLA violation, and once established, the SLA cannot be

modified. Our work proposes a renegotiation-based approach

to handle possible SLA violations. In contrast to cloud service

negotiation for SLA establishment, which is well developed,

the subject of renegotiation has not yet been well studied. We

are interested in work dealing with renegotiating an already

signed SLA, in contrast to [16], which considers renegotiation

as negotiating a counter-offer (before the SLA establishment).

There is some research work that evokes the idea of SLA

renegotiation, but without presenting a concrete contribution

on how it could be done [5], [17]. That work focusses

on showing the importance of adding renegotiation to the

357

SLA management life-cycle and presents the requirements

for doing so. In [9], [10], the authors propose a conceptual

framework for renegotiation. Before renegotiation was intro-

duced to the WS-Agreement protocol by the Grid Resource

Allocation Agreement Protocol (GRAAP) group [18], many

researchers tried to extend the negotiation component of the

WS-Agreement standard in order to support renegotiation [6],

[7]. Those authors focus on a renegotiation protocol and pro-

pose an approach for extending the WS-Agreement standard

in order to support renegotiation.

None of the above-mentioned work proposes a decision-

making approach for renegotiation. In [8], Sharaf et al. pro-

pose a decision-making strategy based on a fuzzy logic de-

cision support system, as part of the AssessGrid project. The

proposed strategy enables the evaluation of an offer received

during renegotiation. The authors do not provide details on

how the offers are generated during the renegotiation.

To the best of our knowledge, no previous decision-making

approach for renegotiation handles a SaaS provisioning proce-

dure wherein the SaaS provider is provisioned by a lower-tier

IaaS provider. Our work differs from the work above in that

we propose a renegotiation process based on SaaS scheduling

information. The proposed renegotiation approach aims not

only to minimize the loss in profit due to violation, but also

to assure the continuity of service.

VII. CONCLUSION

For scaling purposes, SaaS providers need to rent resources

from IaaS providers in order to run their highly scalable

applications. In order to maximize their profit and to satisfy

clients, a SaaS provider employs an SLA-aware scheduling

algorithm that efficiently assigns client requests to rented

resources. Since the cloud environment is highly dynamic,

unexpected events may occur that alter the originally selected

schedule and lead to SLA violations. Most of the literature

assumes that once established, an SLA cannot be modified,

and when violated the job is automatically cancelled, without

first allowing the provider and consumer the option of renego-

tiation. The provider pays a high penalty and loses reputation,

while the consumer may have a business-critical job cancelled.

We have described an SLA renegotiation-based approach

to proactively handle such SLA violations. The resulting

decision-making model makes possible a win-win situation

(ensuring continuity of service and minimizing SLA penalties

costs). The decision-making strategies are based on a utility

function for the provider and scheduling information generated

by the rescheduling option chosen before renegotiation.

In the future, we plan to investigate further the rescheduling

options upon detecting an expected event. The impact of these

options will be studied in a large-scale environment using

a real world application. Finally, we intend that negotiators

will be able to automatically choose an appropriate decision-

making negotiation strategy based on the situation.

ACKNOWLEDGMENT

This publication is partially supported by the IDEX “Chaire

d’attractivité” program of the Université Fédérale Toulouse

Midi-Pyrénées under Grant 2014-345.

REFERENCES

[1] Z. Liu, S. Wang, Q. Sun, H. Zou, and F. Yang, “Cost-aware cloud service
request scheduling for saas providers,” The Computer Journal, p. bxt009,
2013.

[2] P. Leitner, W. Hummer, B. Satzger, C. Inzinger, and S. Dustdar, “Cost-
efficient and application sla-aware client side request scheduling in an
infrastructure-as-a-service cloud,” in Cloud Computing (CLOUD), 2012
IEEE 5th International Conference on. IEEE, 2012, pp. 213–220.

[3] L. Wu, S. K. Garg, and R. Buyya, “Sla-based admission control for
a software-as-a-service provider in cloud computing environments,”
Journal of Computer and System Sciences, vol. 78, no. 5, pp. 1280–
1299, 2012.

[4] L. Wu, S. K. Garg, S. Versteeg, and R. Buyya, “Sla-based resource provi-
sioning for hosted software-as-a-service applications in cloud computing
environments,” IEEE Transactions on services computing, vol. 7, no. 3,
pp. 465–485, 2014.

[5] A. F. M. Hani, I. V. Paputungan, and M. F. Hassan, “Renegotiation in
service level agreement management for a cloud-based system,” ACM
Computing Surveys (CSUR), vol. 47, no. 3, p. 51, 2015.

[6] M. Parkin, P. Hasselmeyer, and B. Koller, “An sla re-negotiation proto-
col,” in Proceedings of the 2nd Non Functional Properties and Service
Level Agreements in Service Oriented Computing Workshop (NFPSLA-
SOC08), CEUR Workshop Proceedings, ISSN 1613-0073, Volume 411.
Citeseer, 2008.

[7] G. Di Modica, O. Tomarchio, and L. Vita, “Dynamic slas management
in service oriented environments,” Journal of Systems and Software,
vol. 82, no. 5, pp. 759–771, 2009.

[8] S. Sharaf and K. Djemame, “Extending ws-agreement to support renego-
tiation of dynamic grid slas,” in eChallenges e-2010 Conference. IEEE,
2010, pp. 1–8.

[9] A. F. M. Hani, I. V. Paputungan, and M. F. Hassan, “Service level
agreement renegotiation framework for trusted cloud-based system,” in
Future Information Technology. Springer, 2014, pp. 55–61.

[10] W. Mach and E. Schikuta, “A generic negotiation and re-negotiation
framework for consumer-provider contracting of web services,” in Pro-
ceedings of the 14th International Conference on Information Integration
and Web-based Applications & Services. ACM, 2012, pp. 348–351.

[11] N. R. Jennings, P. Faratin, A. R. Lomuscio, S. Parsons, M. Wooldridge,
and C. Sierra, “Automated negotiation: prospects, methods and chal-
lenges,” Intern. J. of Group Decision and Negotiation, vol. 10, no. 2,
pp. 199–215, 2001.

[12] X. Zheng, P. Martin, and K. Brohman, “Cloud service negotiation:
Concession vs. tradeoff approaches,” in Proceedings of the 2012 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (ccgrid 2012). IEEE Computer Society, 2012, pp. 515–522.

[13] Jade Site: Java Agent DEvelopment Framework, http://jade.tilab.com/.
[14] FIPA Interaction Protocols, http://www.fipa.org/repository/ips.php3.
[15] L. Wu, S. K. Garg, R. Buyya, C. Chen, and S. Versteeg, “Automated sla

negotiation framework for cloud computing,” in Cluster, Cloud and Grid
Computing (CCGrid), 2013 13th IEEE/ACM International Symposium
on. IEEE, 2013, pp. 235–244.

[16] A. Galati, K. Djemame, M. Fletcher, M. Jessop, M. Weeks, S. Hickin-
botham, and J. McAvoy, “Designing an sla protocol with renegotiation to
maximize revenues for the cmac platform,” in Web Information Systems
Engineering–WISE 2011 and 2012 Workshops. Springer, 2013, pp.
105–117.

[17] T. B. Quillinan, K. P. Clark, M. Warnier, F. M. Brazier, and O. Rana,
“Negotiation and monitoring of service level agreements,” in Grids and
Service-Oriented Architectures for Service Level Agreements. Springer,
2010, pp. 167–176.

[18] O. Waeldrich, D. Battré, F. Brazier, K. Clark, M. Oey, A. Papaspyrou,
P. Wieder, and W. Ziegler, “Ws-agreement negotiation version 1.0,” in
Open Grid Forum, vol. 35, 2011, p. 41.

358

Modeling Dynamic Location Update Strategies for
PCS Networks

Chung-Chin Lu
Department of Electrical Engineering

National Tsing Hua University
Hsinchu, Taiwan

Email: cclu@ee.nthu.edu.tw

Ruey-Cheng Shyu
Department of Electrical Engineering

National Tsing Hua University
Hsinchu, Taiwan

Yung-Chung Wang
Department of Electrical Engineering

National Taipei University of Technology
Taipei, Taiwan

Email: ycwang@ntut.edu.tw

Abstract—Location management, accomplished through the
backbone network and wireless links, is an important issue
in a personal communication system (PCS). In this paper, we
present a unified model to assess three dynamic location update
strategies, including the distance-based, movement-based and
time-based schemes, based on a seven-state Markovian mobility
model on a two-dimensional hexagonal cellular topology. In our
analysis, performance measures of each strategy can be evaluated
efficiently.

I. INTRODUCTION

In a PCS, the backbone network tracks the current location
of a user and can therefore route messages to the user
regardless of the user’s location. In addition to its impact on
signaling within the backbone network, a location management
strategy influences the expenditure of wireless resources and
the power consumption on portable terminals as well. Ideally,
the location tracking strategy of each user should depend on
user’s current mobility behavior and call arrival pattern in
order to minimize the consumption of wireless resources.

Recently, per-user based location update strategies, such
as time-based, movement-based, and distance-based dynamic
strategies, attract many researchers’ attention.

Movenment-based location management scheme were an-
alyzed in [1][2] based on a simple one-dimensional Markov
walk model. The authors in [3] studied the movenment-based
location update and shortest-distance-first selective paging
scheme with Poisson call arrivals and general cell residence
times. In [4], a simplifed two-dimensional random walk model
capturing the movement of mobile users in PCS networks is
proposed. In [5], a unified analytic framework for dynamic
mobility management of mobile station is proposed by using
a noval 2D Markov walk as the mobility model. The author
in [6] performed the trade off analysis for the movement-
based location update and paging for the wireless mobile
networks. In [7], the authors study a dynamic movement-
based location update scheme. However, the system topology
is usually assumed to be one-dimensional or as a ring and the
terminal mobility model is treated as a random walk or as a
diffusion model for simplicity. By the way, the analytic models
in the literature [1]–[7] just can assess the distance-based or
movement-based dynamic location update schemes.

In this paper, we consider the system to have a two-
dimensional hexagonal cellular topology and adopt a Marko-
vian mobility model to capture more practical situations in
a real cellular system. A unified analysis is proposed for
performance assessment of three dynamic location update
schemes, including the distance-based, movement-based and
time-based schemes. In addition, several assumptions such
as very few incoming calls, adopted in the literature, are
relaxed and a more general analysis and comparison of various
dynamic update strategies are conducted in this paper.

II. SYSTEM FORMULATION

The system model investigated in this paper consists of a
cellular topology, a user mobility model and a distribution of
arrivals of incoming calls. We assume that the time axis is
slotted. We adopt a discrete-parameter seven-state Markovian
model to describe the movement behavior of mobile on
the two-dimensional hexagonal cellular topology. Finally, the
arrivals of incoming calls are modeled as a Bernoulli process.

A. User Mobility Model

A movement will be defined as a user crossing the boundary
of two adjacent cells. To describe the user mobility model, we
note that the slot time is chosen small enough such that a user
can make at most one movement during a slot time.

Among the seven states (called movement states) in the
model, the stationary state (𝑆) corresponds to the situation that
there is no movement during a time slot and each of the other
six states corresponds to a movement from a cell to one of the
six adjacent cells on the hexagonal cellular topology. Let �̃�(𝑡)
be the movement state of a user in the 𝑡-th time slot. The state
transition is assumed to be completed at the end of each time
slot. The movement process �̃�(𝑡), 𝑡 = 0, 1, 2, . . ., of a user is
modeled as a homogeneous discrete-parameter Markov chain
with state space 𝒮 = {𝑁𝑜𝑟𝑡ℎ,𝑁𝐸,𝑁𝑊,𝑆𝑜𝑢𝑡ℎ, 𝑆𝐸, 𝑆𝑊,𝑆}
and one-step state-transition probabilities 𝑃𝑠1,𝑠2 = 𝑃𝑟{�̃�(𝑡+
1) = 𝑠2 ∣ �̃�(𝑡) = 𝑠1}, 𝑠1, 𝑠2 ∈ 𝒮. These transition
probabilities are assumed to be symmetric in each direction
as illustrated in Figure 1.

To facilitate the analysis of various dynamic location update
strategies in the next section, we shall simplify the description978-1-5090-3216-7/16/$31.00 c⃝2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

359

1-b-e-4f

1-b-e-4f

1-b-e-4f

1-b-e-4f

1-b-e-4f

1-b-e-4f

a

a

b

b

b

f f

e

South

SESW

S

NW

North

NE

f f

f

f
f

f

e

Fig. 1. The state-transition diagram of a seven-state Markovian mobility
model.

of the movement behavior in two different ways for differ-
ent purposes. The first is based on a ring structure on the
hexagonal cellular topology relative to the center cell. Let
V(𝑡) be another movement process of a user with state space
{𝑆, 𝐹,𝐵,𝑁}. V(𝑡) will be called the four-state movement
process, while U(𝑡) will be called the seven-state movement
process. The four-state process 𝑉 (𝑡) at the 𝑡-th time slot is in
the stationary state (𝑆) if the seven-state process �̃�(𝑡) is in
the stationary state (𝑆). 𝑉 (𝑡) is in the forward state (𝐹) at 𝑡 if
�̃�(𝑡) is in a movement state such that the user will move up
to a cell in the adjacent ring of larger distance. And, 𝑉 (𝑡) is
in the backward state (𝐵) if �̃�(𝑡) is in a movement state such
that the user will move down to a cell in the adjacent ring of
smaller distance. Finally, 𝑉 (𝑡) is in the neighboring state (𝑁)
if �̃�(𝑡) is in a movement state such that the user will move
to an adjacent cell in the same ring.

Now, it is clear that �̃�(𝑡+1) is a function of �̃�(𝑡) and 𝑉 (𝑡).
By induction, �̃�(𝑡 + 1) is a function of 𝑉 (𝑡), 𝑉 (𝑡 − 1), . . . ,
𝑉 (0). Unlike the process �̃�(𝑡), the movement process 𝑉 (𝑡) is
not Markovian. The following lemma sheds some light on a
way to treat 𝑉 (𝑡) and its proof is sketched in [8].

Lemma 1: 𝑃𝑟{𝑉 (𝑡 + 1) = 𝑣𝑡+1 ∣ 𝑉 (𝑖), 0 ≤ 𝑖 ≤ 𝑡} =
𝑃𝑟{𝑉 (𝑡+ 1) = 𝑣𝑡+1 ∣ �̃�(𝑡+ 1), 𝑉 (𝑡)}. □
The conditional probabilities 𝑃𝑟{𝑉 (𝑡 + 1) = 𝑣1 ∣ 𝑉 (𝑡) =
𝑣0, �̃�(𝑡+1) = 𝑑}, 𝑣0, 𝑣1 ∈ {𝑆, 𝐹,𝐵,𝑁} and 𝑑 = 0, 1, . . ., de-
noted as 𝑃 (𝑑)

𝑣0,𝑣1 , are called distance-dependent state-transition
probabilities of the four-state movement process 𝑉 (𝑡). Figure
2-(a) illustrates these transition probabilities in a schematic
way. The following theorem is also proved in [8].

Theorem 2: The joint distance and movement process
(�̃�(𝑡), 𝑉 (𝑡)), 𝑡 = 0, 1, 2, . . ., is a homogeneous discrete-
parameter Markov chain. And, 𝑃𝑟{�̃�(𝑡 + 1) = 𝑑𝑡+1, 𝑉 (𝑡 +
1) = 𝑣𝑡+1 ∣ �̃�(𝑡), 𝑉 (𝑡)} = 1{�̃�(𝑡+1)=𝑑𝑡+1}𝑃𝑟{𝑉 (𝑡 + 1) =

𝑣𝑡+1 ∣ �̃�(𝑡+ 1), 𝑉 (𝑡)}. □
The above theorem indicates that the one-step transition prob-

1 3 1− − −
~ ~ ~() ()β γ θd d

1 2 2− − −
~ ~ ~()β γ θ d 1 1 4− − −

~ ~ ~() ()β γ γd d

1 3 2− ~α

~α 2

~()α3
d

~()α1
d

~
β

~
β

~
β

~()θ2
d

~()θ1
d

~()γ 4
d~()γ 3

d

~γ 2

~()γ 1
d

BS

F N
G

S

1 3 2− ~α

1−
~
β

3 2
~α ~

β

(a) (b)

Fig. 2. A schematic representation for (a) distance-dependent transition
probabilities of the four-state movement process 𝑉 (𝑡) and (b) state-transition
probabilities of the two-state movement process �̃� (𝑡).

abilities of the Markov chain (�̃�(𝑡), 𝑉 (𝑡)) can be determined
by the distance-dependent transition probabilities 𝑃 (𝑑)

𝑣0,𝑣1 of the
four-state movement process 𝑉 (𝑡).

The second way to simplify the description of the movement
behavior of a user is to define a third movement process �̃� (𝑡)
for a user with state space {𝑆,𝐺}. The two-state movement
process �̃� (𝑡) is in the stationary state (𝑆) if �̃�(𝑡) is in the
stationary state 𝑆. And, �̃� (𝑡) is in the go state (𝐺) if �̃�(𝑡) is
in any non-stationary state. Thus, �̃� (𝑡) is a function of �̃�(𝑡).
Furthermore, we have the following theorem, whose proof is
given in the Appendix of [8].

Theorem 3: The two-state movement process �̃� (𝑡) is a
discrete-parameter Markov chain. □
The state-transition diagram of �̃� (𝑡) is shown in Figure 2-(b).

III. DYNAMIC LOCATION UPDATE STRATEGIES

A. Distance-based Strategy

In distance-based strategy, a location update is initiated if
the distance of a user traveled reaches 𝐷 (in cell-diameters)
from the cell the user last updated its location (i.e. the center
cell) or after the successful completion of a paging process
for an incoming call.

We use a joint distance and movement process (𝑋(𝑡), 𝑉 (𝑡)),
𝑡 = 0, 1, . . ., to describe the state of a user under the control
of distance-based strategy and the influence of incoming call
arrival process. 𝑋(𝑡) is the distance of the user from the cell
the user last updated its location (i.e. the center cell) and takes
values from 0 to 𝐷−1. 𝑉 (𝑡) is the movement behavior of the
user during the 𝑡-th time slot and takes values in the space
{𝐹, 𝑆,𝑁,𝐵} of four movement states. Since the incoming
call arrival process is a Bernoulli process and the tilded joint
distance and movement process (�̃�(𝑡), 𝑉 (𝑡)), 𝑡 = 0, 1, . . ., is a
Markov chain and independent of the incoming call process,
the process (𝑋(𝑡), 𝑉 (𝑡)), 𝑡 = 0, 1, . . ., is indeed a Markov
chain. For convenience, we define an ordering among states as

360

follows: (0, 𝐹) < (0, 𝑆) < (1, 𝐹) < (0, 𝑆) < ⋅ ⋅ ⋅ < (𝑑, 𝐹) <
(𝑑, 𝑆) < (𝑑,𝑁) < (𝑑,𝐵) < ⋅ ⋅ ⋅ < (𝐷 − 1, 𝐵). Let 𝑇 be
the one-step transition probability matrix of the Markov chain
(𝑋(𝑡), 𝑉 (𝑡)) with states indexed in the above order. It can be
seen that

𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐵0 𝐴1 0 0 0 ⋅ ⋅ ⋅ 0 0
𝐶0 𝐵1 𝐴2 0 0 ⋅ ⋅ ⋅ 0 0
𝐸0 𝐶1 𝐵2 𝐴3 0 ⋅ ⋅ ⋅ 0 0
𝐸0 0 𝐶2 𝐵3 𝐴4 ⋅ ⋅ ⋅ 0 0
𝐸0 0 0 𝐶3 𝐵4 ⋅ ⋅ ⋅ 0 0
...

...
...

...
...

. . .
...

...
𝐸0 0 0 0 0 ⋅ ⋅ ⋅ 𝐵𝐷−2 𝐴𝐷−1

𝐹0 0 0 0 0 ⋅ ⋅ ⋅ 𝐶𝐷−2 𝐵𝐷−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where

𝐴1 =

[
1-𝛽-𝛾2-𝜃(1)2 -𝑐 𝛽 𝛾2 𝜃

(1)
2

0 0 0 0

]
,

𝐴𝑑 =

⎡
⎢⎢⎣

1-𝛽-𝛾2-𝜃(𝑑)2 -𝑐 𝛽 𝛾2 𝜃
(𝑑)
2

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , ∀2 ≤ 𝑑 ≤ 𝐷 − 1,

𝐵0 =

[
𝑐(1-𝛽-𝑐)/(1-𝑐) 𝑐𝛽/(1− 𝑐)
3𝛼2/(1− 𝑐) (1-3𝛼2-𝑐)/(1-𝑐)

]
,

𝐵𝑑 =

⎡
⎢⎢⎣

0 0 0 0

𝛼
(𝑑)
1 1-3𝛼2-𝑐 𝛼2 𝛼

(𝑑)
3

𝛾
(𝑑)
1 𝛽 1-𝛽-𝛾(𝑑)

1 -𝛾(𝑑)
4 -𝑐 𝛾

(𝑑)
4

0 0 0 0

⎤
⎥⎥⎦ , ∀1 ≤ 𝑑 ≤ 𝐷-1,

𝐶0 =

⎡
⎢⎣

𝑐(1− 𝛽 − 𝑐)/(1− 𝑐) 𝑐𝛽/(1− 𝑐)
3𝑐𝛼2/(1− 𝑐) 𝑐(1-3𝛼2-𝑐)/(1-𝑐)

𝑐(1− 𝛽 − 𝑐)/(1− 𝑐) 𝑐𝛽/(1− 𝑐)
(1− 𝛽 − 𝑐)/(1− 𝑐) 𝛽/(1− 𝑐)

⎤
⎥⎦ ,

𝐶𝑑 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0

𝜃
(𝑑)
1 𝛽 𝛾

(𝑑)
3 1-𝛽-𝛾(𝑑)

3 -𝜃(𝑑)1 -𝑐

⎤
⎥⎥⎦ , ∀1 ≤ 𝑑 ≤ 𝐷-2,

𝐸0 =

⎡
⎢⎣

𝑐(1− 𝛽 − 𝑐)/(1− 𝑐) 𝑐𝛽/(1− 𝑐)
3𝑐𝛼2/(1− 𝑐) 𝑐(1-3𝛼2-𝑐)/(1-𝑐)

𝑐(1− 𝛽 − 𝑐)/(1− 𝑐) 𝑐𝛽/(1− 𝑐)
𝑐(1− 𝛽 − 𝑐)/(1− 𝑐) 𝑐𝛽/(1− 𝑐)

⎤
⎥⎦ ,

𝐹0 =

⎡
⎢⎣

(1− 𝛽 − 𝑐)/(1− 𝑐) 𝛽/(1− 𝑐)
3𝑐𝛼2/(1− 𝑐) 𝑐(1-3𝛼2-𝑐)/(1-𝑐)

𝑐(1− 𝛽 − 𝑐)/(1− 𝑐) 𝑐𝛽/(1− 𝑐)
𝑐(1− 𝛽 − 𝑐)/(1− 𝑐) 𝑐𝛽/(1− 𝑐)

⎤
⎥⎦ .

It can be seen that the Markov chain (𝑋(𝑡), 𝑉 (𝑡)) is
ergodic and has steady-state probability distribution 𝜋 =
(𝜋0,𝐹 , 𝜋0,𝑆 , 𝜋1,𝐹 , . . . , 𝜋𝐷−1,𝐵) which is the unique non-
negative solution of the matrix equation 𝜋 = 𝜋𝑇 with the sum
of all components of 𝜋 to be 1. Now, the averaged location
update cost in a time slot is

𝐶𝑢(𝐷) = [(1− 𝑐)𝜋𝐷−1,𝐹 + 𝑐]𝑈 (1)

and the averaged terminal paging cost in a time slot is

𝐶𝑝(𝐷) = 𝑐

⎧⎨
⎩Γ(0)(𝜋0,𝐹 + 𝜋0,𝑆) +

𝐷−1∑
𝑑=1

Γ(𝑑)
∑

𝑣∈{𝐹,𝑆,𝑁,𝐵}
𝜋𝑑,𝑣

⎫⎬
⎭𝑃

(2)

where Γ(𝑑) = 3𝑑(𝑑+1)+1 is the total number of cells with
distance less than or equal to 𝑑 from the center cell.

B. Movement-based Strategy

In movement-based strategy, a location update is initiated if
a user travels across cell boundary 𝑀 times since last update.
Since the averaged paging cost is directly correlated to the dis-
tance, we proliferate the untilded joint distance and movement
process (𝑋(𝑡), 𝑉 (𝑡)), 𝑡 = 0, 1, 2, . . ., discussed in the last sub-
section into a three-dimensional process (𝑌 (𝑡), 𝑋(𝑡), 𝑉 (𝑡)),
by including the counter 𝑌 (𝑡) of movements. 𝑌 (𝑡) is the
number of movements from the time at which a user last
updated his location to the current 𝑡-th time slot, taking values
from 0 to 𝑀 − 1. The process (𝑌 (𝑡), 𝑋(𝑡), 𝑉 (𝑡)) is again an
ergodic Markov chain. Let 𝑇 be the one-step state-transition
probability matrix and 𝜋 be the steady-state probability vector
with component 𝜋𝑚,𝑑,𝑣 for state (𝑚, 𝑑, 𝑣). We shall represent
the matrix equation 𝜋 = 𝜋𝑇 as a system of balanced equations.
Since there do not exist any state (𝑚, 𝑑, 𝑣) with 𝑚 < 𝑑, we
shall let 𝜋𝑚,𝑑,𝑣 = 0 for 𝑚 < 𝑑 for convenience. Similarly,
we let 𝜋1,0,𝑆 = 𝜋1,0,𝐹 = 0 and 𝜋𝑚,0,𝑁 = 𝜋𝑚,0,𝐵 = 0 for all
0 ≤ 𝑚 ≤𝑀 − 1. Then for 1 ≤ 𝑑 ≤ 𝑚 ≤𝑀 − 1, we have

𝜋𝑚,𝑑,𝐹 = (1-𝛽-𝛾2-𝜃(𝑑)2 -𝑐)𝜋𝑚−1,𝑑−1,𝐹 + 𝛼
(𝑑)
1 𝜋𝑚,𝑑,𝑆

+𝛾
(𝑑)
1 𝜋𝑚−1,𝑑,𝑁 + 𝜃

(𝑑)
1 𝜋𝑚−1,𝑑+1,𝐵, (3a)

𝜋𝑚,𝑑,𝑆 = 𝛽𝜋𝑚−1,𝑑−1,𝐹 + (1-3𝛼2-𝑐)𝜋𝑚,𝑑,𝑆 + 𝛽𝜋𝑚−1,𝑑,𝑁

+𝛽𝜋𝑚−1,𝑑+1,𝐵, (3b)

𝜋𝑚,𝑑,𝑁 = 𝛾2𝜋𝑚−1,𝑑−1,𝐹 + 𝛼2𝜋𝑚,𝑑,𝑆 (3c)

+(1-𝛽-𝛾(𝑑)1 -𝛾(𝑑)4 -𝑐)𝜋𝑚−1,𝑑,𝑁 + 𝛾
(𝑑)
3 𝜋𝑚−1,𝑑+1,𝐵 ,

𝜋𝑚,𝑑,𝐵 = 𝜃
(𝑑)
2 𝜋𝑚−1,𝑑−1,𝐹 + 𝛼

(𝑑)
3 𝜋𝑚,𝑑,𝑆 + 𝛾

(𝑑)
4 𝜋𝑚−1,𝑑,𝑁

+(1-𝛽-𝛾(𝑑)3 -𝜃(𝑑)1 -𝑐)𝜋𝑚−1,𝑑+1,𝐵 (3d)

and for 2 ≤ 𝑚 ≤𝑀 − 1,

𝜋𝑚,0,𝐹 = (1− 𝛽 − 𝑐)𝜋𝑚−1,1,𝐵 + 3𝛼2𝜋𝑚,0,𝑆 ,
𝜋𝑚,0,𝑆 = 𝛽𝜋𝑚−1,1,𝐵 + (1− 3𝛼2 − 𝑐)𝜋𝑚,0,𝑆 (3e)

and finally

𝜋0,0,𝐹 = 𝑐

(
1− 𝛽 − 𝑐

1− 𝑐

)
𝜋0,0,𝐹 +

(
3𝛼2

1− 𝑐

)
𝜋0,0,𝑆

+𝑐

(
3𝛼2

1− 𝑐

)𝑀−1∑
𝑚=1

𝜋𝑚,𝑆 + 𝑐

(
1− 𝛽 − 𝑐

1− 𝑐

)𝑀−2∑
𝑚=1

𝜋𝑚,𝐺

+

(
1− 𝛽 − 𝑐

1− 𝑐

)
𝜋𝑀−1,𝐺 (3f)

𝜋0,0,𝑆 = 𝑐

(
𝛽

1− 𝑐

)
𝜋0,0,𝐹 +

(
1− 3𝛼2 − 𝑐

1− 𝑐

)
𝜋0,0,𝑆

+𝑐

(
1− 3𝛼2 − 𝑐

1− 𝑐

)𝑀−1∑
𝑚=1

𝜋𝑚,𝑆 + 𝑐

(
𝛽

1− 𝑐

)𝑀−2∑
𝑚=1

𝜋𝑚,𝐺

+

(
𝛽

1− 𝑐

)
𝜋𝑀−1,𝐺 (3g)

where

𝜋𝑚,𝐺 ≡
∑𝑚
𝑑=0(𝜋𝑚,𝑑,𝐹 + 𝜋𝑚,𝑑,𝑁 + 𝜋𝑚,𝑑,𝐵),

𝜋𝑚,𝑆 ≡
∑𝑚
𝑑=0 𝜋𝑚,𝑑,𝑆 , 0 ≤ 𝑚 ≤𝑀 − 1.

(3h)

361

It seems complicated to calculate the steady-state probabilities
from the balanced equations. But it can be observed that
once 𝜋0,0,𝑆 and 𝜋0,0,𝐹 are obtained, all other steady-state
probabilities can be calculated by the balanced equations (3a)
– (3e). Now, the averaged terminal paging cost in a time slot
is

𝐶𝑝(𝑀) = 𝑐

𝑀−1∑
𝑑=0

𝑤𝑑Γ(𝑑)𝑃 (4)

where 𝑤𝑑 =
∑𝑀−1
𝑚=𝑑

∑
𝑣∈{𝐹,𝑆,𝑁,𝐵} 𝜋𝑚,𝑑,𝑣 and Γ(𝑑) = 3𝑑(𝑑+

1) + 1 as defined before.

C. Time-based Strategy

In time-based strategy, a location update is initiated if the
time interval during which a user does not update its location
reaches 𝑇 time slots. To describe the behavior of a user
under the control of time-based strategy, we define a two-
dimensional process (𝑍(𝑡),𝑊 (𝑡)), 𝑡 = 0, 1, . . ., where 𝑍(𝑡)
is the number of time slots lapsed from the time at which a
user last updated his location to the current 𝑡-th time slot,
taking values from 0 to 𝑇 − 1 and 𝑊 (𝑡) is the two-state
movement behavior of the user during the 𝑡-th time slot
as described in the last subsection. With the same reasons
as for the process (𝑌 (𝑡),𝑊 (𝑡)), the process (𝑍(𝑡),𝑊 (𝑡)),
𝑡 = 0, 1, . . ., is also an ergodic Markov chain. As in the
analysis of averaged paging cost of movement-based strategy,
we proliferate the untilded joint distance and movement pro-
cess (𝑋(𝑡), 𝑉 (𝑡)), 𝑡 = 0, 1, 2, . . ., into a three-dimensional
process (𝑍(𝑡), 𝑋(𝑡), 𝑉 (𝑡)), by including the counter 𝑍(𝑡)
of time slots. The process (𝑍(𝑡), 𝑋(𝑡), 𝑉 (𝑡)) is again an
ergodic Markov chain. The system of balanced equations to
find the steady-state probabilities 𝜋𝑡,𝑑,𝑣 is as follows. Again
for convenience, we let 𝜋𝑡,𝑑,𝑣 = 0 for any 𝑡 < 𝑑 and
𝜋𝑡,0,𝑁 = 𝜋𝑡,0,𝐵 = 0 for all 0 ≤ 𝑡 ≤ 𝑇 − 1. Then for
1 ≤ 𝑑 ≤ 𝑡 ≤ 𝑇 − 1, we have

𝜋𝑡,𝑑,𝐹 = (1-𝛽-𝛾2-𝜃(𝑑)2 -𝑐)𝜋𝑡−1,𝑑−1,𝐹 + 𝛼
(𝑑)
1 𝜋𝑡−1,𝑑,𝑆

+𝛾
(𝑑)
1 𝜋𝑡−1,𝑑,𝑁 + 𝜃

(𝑑)
1 𝜋𝑡−1,𝑑+1,𝐵, (5a)

𝜋𝑡,𝑑,𝑆 = 𝛽𝜋𝑡−1,𝑑−1,𝐹 + (1− 3𝛼2 − 𝑐)𝜋𝑡−1,𝑑,𝑆 (5b)

+𝛽𝜋𝑡−1,𝑑,𝑁 + 𝛽𝜋𝑡−1,𝑑+1,𝐵 , (5c)

𝜋𝑡,𝑑,𝑁 = 𝛾2𝜋𝑡−1,𝑑−1,𝐹 + 𝛼2𝜋𝑡−1,𝑑,𝑆 (5d)

+(1-𝛽-𝛾(𝑑)1 -𝛾(𝑑)4 -𝑐)𝜋𝑡−1,𝑑,𝑁 + 𝛾
(𝑑)
3 𝜋𝑡−1,𝑑+1,𝐵 ,

𝜋𝑡,𝑑,𝐵 = 𝜃
(𝑑)
2 𝜋𝑡−1,𝑑−1,𝐹 + 𝛼

(𝑑)
3 𝜋𝑡−1,𝑑,𝑆 + 𝛾

(𝑑)
4 𝜋𝑡−1,𝑑,𝑁

+(1-𝛽-𝛾(𝑑)3 -𝜃(𝑑)1 -𝑐)𝜋𝑡−1,𝑑+1,𝐵 (5e)

and for 1 ≤ 𝑡 ≤ 𝑇 − 1,

𝜋𝑡,0,𝐹 = (1− 𝛽 − 𝑐)𝜋𝑡−1,1,𝐵 + 3𝛼2𝜋𝑡−1,0,𝑆 , (5f)

𝜋𝑡,0,𝑆 = 𝛽𝜋𝑡−1,1,𝐵 + (1− 3𝛼2 − 𝑐)𝜋𝑡−1,0,𝑆 (5g)

and finally

𝜋0,0,𝐹 = 𝑐

(
1-𝛽-𝑐
1− 𝑐

) 𝑇−2∑
𝑡=0

𝜋𝑡,𝐺 + 𝑐

(
3𝛼2

1− 𝑐

) 𝑇−2∑
𝑡=0

𝜋𝑡,𝑆

+

(
1-𝛽-𝑐
1− 𝑐

)
𝜋𝑇−1,𝐺 +

(
3𝛼2

1− 𝑐

)
𝜋𝑇−1,𝑆 , (5h)

𝜋0,0,𝑆 = 𝑐

(
𝛽

1-𝑐

) 𝑇−2∑
𝑡=0

𝜋𝑡,𝐺 + 𝑐

(
1-3𝛼2-𝑐
1− 𝑐

) 𝑇−2∑
𝑡=0

𝜋𝑡,𝑆

+

(
𝛽

1-𝑐

)
𝜋𝑇−1,𝐺 +

(
1-3𝛼2-𝑐
1− 𝑐

)
𝜋𝑇−1,𝑆 (5i)

with

𝜋𝑡,𝐺 ≡
∑𝑡
𝑑=0(𝜋𝑡,𝑑,𝐹 + 𝜋𝑡,𝑑,𝑁 + 𝜋𝑡,𝑑,𝐵),

𝜋𝑡,𝑆 ≡
∑𝑡
𝑑=0 𝜋𝑡,𝑑,𝑆 , 0 ≤ 𝑡 ≤ 𝑇 − 1.

(5j)

All other steady-state probabilities 𝜋𝑡,𝑑,𝑣 can be calculated by
the balanced equations (5a) – (5g). Now, the averaged terminal
paging cost in a time slot is

𝐶𝑝(𝑇) = 𝑐
𝑇−1∑
𝑑=0

𝑤𝑑Γ(𝑑)𝑃 (6)

where 𝑤𝑑 =
∑𝑇−1
𝑡=𝑑

∑
𝑣∈{𝐹,𝑆,𝑁,𝐵} 𝜋𝑡,𝑑,𝑣 . and Γ(𝑑) = 3𝑑(𝑑+

1) + 1 as defined before.

IV. CONCLUSION

In this paper, we have presented performance modeling
of distance-based, movement-based and time-based dynamic
location update strategies, based on a seven-state Marko-
vian mobility model on a two-dimensional hexagonal cellular
topology. Since our model is based on a two-dimensional
cellular system, we believe that a system designer can exploit
our results to evaluate the performance of various location
tracking strategies to a practical cellular system. Based on the
analysis in Section III, a numerical performance comparison
is conducted in [8], which shows that with the consideration
of cost performance as well as implementation complexity,
time-based strategy should be an excellent choice.

REFERENCES

[1] H. Xie, S. Tabbane, and D. J. Goodman, “Dynamic location area
management and performance analysis,” Proc. IEEE VTC’93, pp. 536–
539.

[2] A. Bar-Noy, I. Kessler, and M. Sidi, “Mobile users: To update or not to
update?” Wireless Networks, vol. 1, no. 2, pp. 175–186, July 1995.

[3] I. Akyildiz, S. M. Ho, and Y. B. Lin, “Movement-based location update
and selective paging for PCS networks,” IEEE/ACM Trans. Networking,
vol. 4, pp. 629–638, Aug. 1996.

[4] I. Akyildiz, Y. B. Lin, W. R. Lai, and R. J. Chen, “A new random walk
model for PCS networks,” IEEE J. Select. Area Commun., vol. 18, no. 7,
pp. 1254–1261, July 2000.

[5] C. H. Wu, H. P. Lin, and L. S. Lan, “A new analytic framework for
dynamic mobility management of PCS networks,” IEEE Trans. Moble
Computing, vol. 1, no. 3, pp. 208–220, July-Sept. 2002.

[6] Y. Fang, “Movement-based mobility management and trade off analysis
for wireless mobile networks,” IEEE Trans. Cmputers, vol. 52, no. 6,
pp. 791–803, June 2003.

[7] J. Li, H. Kamada, and K. Li, “Optimal dynamic mobility management for
PCS networks,” IEEE/ACM Trans. Networking, vol. 8, no. 3, pp. 319–327,
June 2000.

[8] C. C. Lu, R. C. Shyu, and Y. C. Wang, ”Performance evaluation of
dynamic location update strategies for PCS networks,” preprint.

362

Ricardo Filipe and Filipe Araujo

CISUC, Dept. of Informatics Engineering

University of Coimbra

Coimbra, Portugal

rafilipe@dei.uc.pt, filipius@uc.pt

Abstract—Ensuring the correct presentation and execution
of web sites is a major concern for system developers and
administrators. Unfortunately, only end users can determine
which resources are available and working properly. For example,
some internal or external addresses might be unavailable or
unreachable for specific clients, while seemingly available re-
sources, like JavaScript, might run with errors in some browsers.
While standard monitoring and analytic tools certainly provide
valuable information on web pages, problems might still escape
such measures, to reach end web users. To demonstrate the
limitations of current tools, we ran an experiment to count web
page errors in a sample of 3,000 web sites, including network
and JavaScript errors. Our results are significant: as many as
16% of the top 1,000 sites have errors in their own resources; less
popular sites have even more. Based on these results, we make
a review of three client-side monitoring approaches to mitigate
such errors: stand-alone applications, browser extensions and
JavaScript snippets with analytic tools. Interestingly, even the
latter approach, which requires no software installation, and
involves no security changes, can cover a large fraction of existing
web errors.

Index Terms—Web monitoring, Client-side monitoring, Ana-
lytics.

I. INTRODUCTION

Web site monitoring plays a major role in mitigating the

negative consequences of programming errors and network

malfunctions. Several studies [1], [2] show the significant

impact for companies, when users experience blank pages,

missing items, or are unable to interact with the web page.

One may consider that the consequences would be minimal,

but the true costs of a web page malfunction come from

disgruntled customers and the respective impact on the com-

pany’s reputation. To control failures in web resources, system

administrators must keep a watchful eye on a large range of

system parameters, like memory occupation, network interface

utilization, among an endless number of other metrics, such

as page load time. Unfortunately, even with all these metrics

— that add complexity and intrusiveness to the system —,

clients may experience some problems, due to web page ex-

ternal content, and client specific conditions, such as network

glitches or incompatible browser versions. In fact, even sites

belonging to the top-50 of the world wide web have errors [3],

thus suggesting that expensive monitoring mechanisms cannot

provide a completely accurate picture of web page reliability.

Another study [4] shows that an earlier detection of failures

would reduce the majority of customer complaints. Indeed,

customer feedback is a key aspect for web page trustworthiness

since some server issues might not produce the same effects

in all clients.

We argue that there are still no effective means to easily

detect web page problems. A possible approach is to send

browsing data to some analytic tool. These tools may handle

problems such as nonexistent pages in the domain, but, since

they are oriented to advertising and search engine optimiza-

tion, they typically neglect correct web page display.

To demonstrate that the web currently suffers from a lack

of proper monitoring, in Section II, we describe an experiment

with 3,000 sites of the top 1,000,000 web sites of the Alexa

ranking [5]. The 3,000 samples cover sites from the range

1-1,000, 10,000-20,000 and also from 100,000-200,000. We

used the Chrome web browser from two distinct locations in

Europe, to ensure realistic access to web pages, and simulate

real user interactions. We collected metrics, such as network

errors, broken links or JavaScript problems.

We think that the results we present in Section III are

noteworthy: 16% of the top 1,000 sites have errors in their

web page resources, being this value higher for less popular

sites. This demonstrates that no widespread monitoring tool

effectively prevents these errors. Then, in Section IV, we

proceed to discuss possible client-side monitoring solutions,

to complement available monitoring techniques. We compare

the client-side solutions, based on their level of intrusiveness

for the client. Unfortunately, as we might expect, approaches

that can collect more metrics are also much more intrusive.

Nevertheless, even non-intrusive light-weight approaches can

cover a significant fraction of web errors. These light-weight

approaches have the additional benefit of not compromising

client security or increasing the complexity of monitoring.

II. EXPERIMENTAL SETTINGS

Before rendering and displaying an HTML (HyperText

Markup Language) page, browsers must first fetch the page

from a server, using a URL (Uniform Resource Locator).

The browser then goes through the page, to build the DOM

(Document Object Model), render the corresponding tree and978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

Client-Side Monitoring Techniques for Web Sites

363

TABLE I. SOFTWARE USED AND DISTRIBUTION.

Component Observations Version

Selenium selenium-server-standalone jar 2.45.0
Chrome browser 48.0.2564.103
Chrome driver 2.21.371461
Xvfb xorg-server 1.13.3

display it. The browser might need to download other re-

sources referenced in the main page. To fetch these resources,

the browser opens several TCP [6] (Transmission Control

Protocol) connections to their respective server, either internal

or external to the domain. However, each of these resources is

subject to failures that might impact the user experience. To

analyze the extension of problems, we inspected 3,000 sites,

including the most popular ones, and looked for very specific

metrics:

• We decomposed network errors into DNS (Domain Name

System) errors, in the phase of name lookup; TCP, if the

connection crashes or the server is unreachable; and other
errors.

• For HTTP errors related to resources, we looked to the

range 4xx and 5xx. In our experiments, we do not count

how many of these errors exist in a single page, but only

whether they exist.

• We count broken links, where the server responds with a

4xx or 5xx HTTP code. Again, we only count the number

of web sites that have errors in these ranges.

• We also care for other errors related to resources: fonts,

style sheets, images and JavaScript. These errors might

originate in the network layer, while processing the script

(if applied), or in the cancellation of a resource download,

e.g., because a change in the page made it unnecessary.

For the sake of doing an online analysis of the web sites,

we used Selenium [7], to emulate clients accessing web pages

through browsers. We used the Xvfb virtual display emulator

for the client machine. This display performs all graphical

functions, without actually needing a real screen, thus allowing

Selenium to run without a terminal. We wrote a program

in Java that ran in the background, attached to this display

emulator. This program used Selenium and Chrome, to access

a list of web sites. We used a Linux machine, running in the

facilities of our department in Portugal and another instance

in Hungary, at MTA SZTAKI’s laboratories [8]. Clients run-

ning from different locations experienced different network

connectivities, thus displaying distinct perspectives for the

same web page, like resources inaccessible from only one of

the locations. Additionally, since programs ran autonomously,

with a time lapse of several hours, they occasionally observed

different page errors. Table I lists the software we used and

the respective versions.

This program used as input a file that we retrieved from

Alexa [5], with the top one million ranking sites. We se-

quentially analyzed 3,000 sites from this file: from pages 1

to 1,000; then from rank 10,000 to 20,000 with steps of 10

(e.g. rank 10,000; 10,010; 10,020;...) and finally, from 100,000

to 200,000 with steps of 100.

Additionally, and one of the most relevant aspects of our

work is that we parse the main HTML page, to get all links

accessible to the users through web page interaction. We

follow and invoke these links, to check if any HTTP error

occurs, with error codes 4xx or 5xx, related to client or server

errors, respectively. This information is important, because the

availability of the links is tightly connected to the utility of

the web page. As we shall see the number of broken links is

surprisingly high, even in top web sites.

III. RESULTS

In this section, we present the results of our experiment.

The experiment took several days to finish, mostly due to the

invocation of links associated with each web page. Tables IIa

and IIb present the most significant results we got. To conserve

space, we only display the results of our client in Portugal, as

the client in Hungary got similar results.

In Table IIa, we analyze the number of web pages with

network or HTTP errors. This table displays problems with

page resources (HTTP 4xx and 5xx), e.g., some image; con-

nection errors (DNS, TCP and other) and broken links, i.e.,

links that point to resources outside the page and that exhibit

some problem. Connection errors are all related to the main

HTML page or one of its resources. As we mentioned before,

the numbers in the table refer to the total number of sites where

we could observe the problem. This means that, for example,

in the first line, first column of Table IIa, the number of HTTP

4xx errors in the top 1,000 sites is 161. I.e., 161 sites have

one or more resources that are not accessible and return a 4xx

error code.

The number of errors is quite high in general, especially in

lower raking sites. Differences between the first and the other

two rows of the table are blatant, for most metrics. This is true

for internal problems and for external links, including network

error conditions, which are also much less frequent in the top

ranking sites. Most problems come from the external links

that tend to break quite often, either with a 4xx or a 5xx error

code (right side of the table). However, internal problems (left-

side of the table) are arguably more important, as they might

result in visible problems in the page layout. Interestingly,

as much as 16% of the top-tier sites may suffer from some

form of internal problem. This number is even higher for

the lower rankings. The same is true for connectivity errors

(center of the table). DNS, TCP and other forms of errors

are less frequent in major sites. The HTTP 5xx error codes

are the only ones where the frequency of problems seems

stable across all rankings. This might be due to an inverse

relation between complexity and ranking positions (i.e., more

complex pages correspond to lower ranking numbers), but a

clear demonstration of such hypothesis requires further study.

Overall, these results suggest that top-tier sites either have

better network connections, or more server resources, or both.

We might say the same about the contents themselves, most

364

TABLE II. NUMBER OF SITES WITH ERRORS - PORTUGAL

(a) Network and HTTP errors

HTTP 4xx
errors

HTTP 5xx
errors

DNS
errors

TCP
errors

Other
Network errors

Broken
Links 4xx

Broken
Links 5xx

range1000 161 62 68 27 96 115 65
range10000 251 47 122 38 111 182 42
range100000 291 51 113 37 114 193 43

(b) Resource errors and Event averages

Resource
Font errors

Resource
style sheet error

Resource
image error

Resource
JS error

Resource
JS External

Resource
JS Internal

Resource
JS Both

DOM
Event

Load
Event

range1000 11 15 131 153 136 13 4 4517 33
range10000 16 16 134 189 136 39 14 6097 24
range100000 27 27 143 174 103 62 9 6963 19

likely due to significant advantages in the lifecycle of the

web pages (one or more among design, development, testing,

deployment, and maintenance).

In Table IIb, we show the number of sites that returned

at least one resource error, for different types of resources.

Resource problems include errors getting fonts, images or

processing JavaScript (left side). Regarding JavaScript errors,

we split data into external or internal to the web page domain,

or both, if errors exist in internal and external resources. We

can see that fonts and style sheet resources do not pose major

problems for sites. The main offenders to web page reliability

are images and JavaScript. Another interesting result is that

top-tier sites have more errors in external JavaScript resources.

This is an indication that top pages rely more on standard

libraries, normally hosted in another domain.

IV. CLIENT-SIDE MONITORING

In this section, we discuss some solutions that might serve

to improve web page reliability. We suggest three different

options involving different levels of transparency to the client:

a stand-alone approach, a browser extension and a JavaScript

snippet.

For a stand-alone application (similar to the one we used

in Section II), the possibilities are endless. By having total

control of the browser and resorting to a testing framework

such as Selenium, developers can test pretty much anything.

The major disadvantage of this approach is that a customized

stand-alone application is not practical or reasonable to install

on the clients. Monitoring a site in this way, would therefore

be limited to a handful probes controlled by the site owners.

A second approach would be to install a browser extension

to get the most important metrics from the web page interac-

tion and send them to a central monitoring site (we refer to

some work using browser plugins in Section V). Extensions

could bypass some of the security constraints associated with

JavaScript. For example, with extensions, it would be possible

to have access to the browser APIs and therefore to network

logs. This would enable network error collection (DNS, TCP

and others). Additionally, the extension could invoke links as-

sociated with a web page. Unfortunately, extensions have two

setbacks: firstly, it does not look feasible to convince hundreds

or thousands of users to install some browser extension that

could raise issues, concerning security and privacy; secondly,

different extensions should be developed for each different

browser, thus entailing a great effort and cost.

As a third approach, site owners might use JavaScript and

AJAX in the web pages they serve, to collect error information.

By precluding the need for special software, this would rule

out the shortcomings of the previous approaches. Furthermore,

this would allow for a very simple integration with analytic

tools, like Google Analytics [9]. Naturally, this can only work

for resources inside the main page, once the browser loads the

JavaScript. Collecting different kinds of errors with JavaScript

and AJAX raises a number of challenges, but it is still possible,

as we can see in the following list:

1) Networking Errors: with JavaScript, one can only infer

DNS or TCP errors, using the Resource Timing API [10], as

some browsers add entries in the PerformanceResourceTiming

array, for resources with network issues.

2) Internal 4xx Errors: it is possible to customize an HTTP

4xx page for this range of errors. As the user is redirected to

this page, administrators will receive an alert.

3) Internal 5xx Errors: the browser may analyze the con-

nection and the response times. If the former is different from

zero, while the latter is zero, the browser has an indication

that it could not retrieve the resource from the server.

4) External Broken Links: we might invoke links from a

proxy, using some AJAX solution [11]. This proxy will then

invoke the URL and return the request in JSON, thus not

breaking cross-domain security.

5) Resource Errors: regarding JavaScript exceptions

and console logs, it is possible to use the

window.addEventListener for error events

with the useCapture argument set to true or use

window.onerror event. This will retrieve the element

or script that originated the error, and not the specific error

message. We briefly compare the alternatives in Table III.

365

TABLE III. COMPARISON OF METHODOLOGIES

Stand-alone
Application

Browser
Extension

JavaScript
Code

Network
Problems

Y Y
Y

Indirectly for resources
Broken
Links

Y Y
Y

Proxy
JavaScript

Errors
Y Y Y

Real-world
application

Hard to
deploy

Security
constraints

Easier to scale
and deploy

V. RELATED WORK

We divide previous work on web sites reliability into two

categories: (i) methods or platforms that collect client metrics;

(ii) studies regarding top sites reliability.

Regarding monitoring platforms, Dasu [12] is a client-based

software that gathers metrics from different locations. It is

limited by the number of hosts that are online, and discards

HTML objects from third-party resources or JavaScript errors.

In [13], Flach et al. use a browser plugin to analyze sites

based on rules. This work only focuses on connectivity issues.

In [14], authors propose a collaborative approach to detect

performance problems. They use a web browser extension on

each client and send all information to a central point, for

processing. In [15], authors aim to detect user-visible failures,

by analyzing Web logs and users’ browsing patterns. However,

the client may not react to the visible failure (e.g., by leaving

the page, or not refreshing it) making this a major concern.

Regarding the reliability of top web sites, in [16] the goal is

to collect web page evolution over time. [17] uses a different

approach, implementing a web crawler that gathers HTTP,

DNS and TCP connection data, to understand in which layer

do most of the user-visible page failures occur. This, however,

uses a customized crawler, instead of a common browser.

In [18], authors gather network information from 80 sites,

and analyze the source of the problems. However, recent

studies suggest that this pattern of concurrent accesses can

significantly change the results observed [19].

Unlike previous work, we consider a very wide range of

sites, using a real web browser.

VI. CONCLUSION

The evidences we collected in this paper support the point of

view that monitoring remains as a largely unsolved challenge

to this day. Even large companies with vast resources fail to

provide impeccable, failure-free, web sites. To mitigate this

problem, we argue that web site providers must include client-

side observations into their monitoring tools. Despite the trade-

offs involved, the least intrusive mechanisms can still detect a

large number of errors.

ACKNOWLEDGMENT

This work was partially carried out under the project

PTDC/EEI-ESS/1189/2014 — Data Science for Non-

Programmers, supported by COMPETE 2020, Portugal 2020-

POCI, UE-FEDER and FCT.

REFERENCES

[1] “A study about online transactions, prepared for tealeaf technology
inc, oct 2005,” http://www-01.ibm.com/software/info/tealeaf/, retrieved:
April, 2016.

[2] “Causes of failure in web applications (cmupdl-05-109), dec 2005,” http:
//repository.cmu.edu/cgi/viewcontent.cgi?article=1047&context=pdl, re-
trieved: April, 2016.

[3] No time for downtime: It managers feel the heat to prevent outages that
can cost millions of dollars, Internet Week, N.807, 3, Internet Week
Std., Apr 2000.

[4] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do
internet services fail, and what can be done about it?” in
Proceedings of the 4th Conference on USENIX Symposium on Internet
Technologies and Systems - Volume 4, ser. USITS’03. Berkeley,
CA, USA: USENIX Association, 2003, pp. 1–1. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251460.1251461

[5] “Alexa — top-ranked websites,” https://support.alexa.com/hc/en-
us/articles/200449834-Does-Alexa-have-a-list-of-its-top-ranked-
websites-, retrieved: April, 2016.

[6] J. Postel, “Transmission Control Protocol,” RFC 793 (Standard),
Internet Engineering Task Force, Sep. 1981, updated by RFCs 1122,
3168. [Online]. Available: http://www.ietf.org/rfc/rfc793.txt

[7] “Selenium browser automation,” http://www.seleniumhq.org/, retrieved:
April, 2016.

[8] Z. Balaton, P. Kacsuk, N. Podhorszki, and F. Vajda, From Cluster
Monitoring to Grid Monitoring Based on GRM. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, pp. 874–881. [Online]. Available:
http://dx.doi.org/10.1007/3-540-44681-8 121

[9] “Google analytics solutions,” https://analytics.google.com/, retrieved:
April, 2016.

[10] “Papers — Resource Timing,” https://www.w3.org/TR/2016/WD-
resource-timing-20160225/, retrieved: March, 2016.

[11] “Webpage — Yahoo Query Language (YQL),” https://developer.yahoo.
com/yql/, retrieved: April, 2016.

[12] M. A. Sánchez, J. S. Otto, Z. S. Bischof, D. R. Choffnes, F. E. Busta-
mante, B. Krishnamurthy, and W. Willinger, “Dasu: Pushing experiments
to the internet’s edge,” in Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
13). Lombard, IL: USENIX, 2013, pp. 487–499.

[13] T. Flach, E. Katz-Bassett, and R. Govindan, “Diagnosing slow
web page access at the client side,” in Proceedings of the 2013
Workshop on Student Workhop, ser. CoNEXT Student Workhop ’13.
New York, NY, USA: ACM, 2013, pp. 59–62. [Online]. Available:
http://doi.acm.org/10.1145/2537148.2537160

[14] S. Agarwal, N. Liogkas, P. Mohan, and V. Padmanabhan, “Webprofiler:
Cooperative diagnosis of web failures,” in Communication Systems and
Networks (COMSNETS), 2010 Second International Conference on, Jan
2010, pp. 1–11.

[15] W. Li and I. Gorton, “Analyzing web logs to detect user-visible
failures,” in Proceedings of the 2010 Workshop on Managing Systems
via Log Analysis and Machine Learning Techniques, ser. SLAML’10.
Berkeley, CA, USA: USENIX Association, 2010, pp. 6–6. [Online].
Available: http://dl.acm.org/citation.cfm?id=1928991.1929000

[16] “Http archive,” http://httparchive.org/, retrieved: April, 2016.

[17] C. Vaz, L. Silva, and A. Dourado, “Detecting user-visible failures in
web-sites by using end-to-end fine-grained monitoring: An experimental
study,” in Network Computing and Applications (NCA), 2011 10th IEEE
International Symposium on, Aug 2011, pp. 338–341.

[18] V. N. Padmanabhan, S. Ramabhadran, S. Agarwal, and J. Padhye, “A
study of end-to-end web access failures,” in Proceedings of CoNEXT,
Lisboa, Portugal, December 2006.

[19] J. Sommers and P. Barford, “An active measurement system for
shared environments,” in Proceedings of the 7th ACM SIGCOMM
Conference on Internet Measurement, ser. IMC ’07. New York,
NY, USA: ACM, 2007, pp. 303–314. [Online]. Available: http:
//doi.acm.org/10.1145/1298306.1298348

366

To Route or To Secure:
Tradeoffs in ICNs over MANETs

Hasanat Kazmi* Hasnain Lakhani Ashish Gehani
SRI

Rashid Tahir
University of Illinois,

Urbana-Champaign

Fareed Zaffar
Lahore University of

Management Sciences

Abstract—Information-Centric Networks (ICNs) operating
over Mobile Ad hoc Networks (MANETs) are challenged by
the node churn, evolving topologies, and limited resources of
the underlying network. The complex interplay of publishers,
subscribers, and brokers brings with it a corresponding set of
security concerns, where precisely-defined trust boundaries are
needed to guarantee the confidentiality and integrity of all data
objects in the ecosystem. Building a practical framework that can
service users efficiently requires understanding the motivations
and actions of the participants.

We explore several tradeoffs between efficiency and the secu-
rity of data objects in such environments, using ICEMAN – a
real-wold implementation of an ICN that operates on MANETs.
Since our findings are based on an actual system, they have
significant implications for building efficient ICNs that have
security designed in at the outset (rather than added later when
options may be limited). We empirically establish that there
is a strong interplay between the need to have more specific
information for efficient routing and the need to ensure trust
and confidentiality in such a decentralized system.

I. INTRODUCTION

Information-Centric Networking (ICN) is an approach for

content distribution and retrieval that has drawn considerable

attention in recent years. While there are several compet-

ing architectures and implementations, the underlying idea

is that data is de-coupled from a single location. Network

functionality is driven by descriptions of content rather than

requests for the content at a specific address, as occurs in

traditional source-destination based models. Publishers can

advertise descriptions of their content. Subscribers advertise

their interests in the hope that they will flow to others that

have relevant objects. Data transport and routing decisions

are content-aware, driven by matches between interests of

nodes and the descriptions of the published content. The

network can therefore take advantage of various performance

optimizations, such as in-network caching in order to reduce

latency and improve bandwidth utilization. However, these

useful characteristics of ICNs come with a corresponding

set of trust, privacy, and security challenges that need to be

addressed.

Mobile Ad hoc Networks (MANETs) are used in environ-

ments where nodes can join or leave the network at will.

In such high-churn environments, the ability to authenticate

nodes in the absence of a single online trusted authority

*While visiting.

becomes fundamental for the correct and secure operation

of the network. In the absence of an authentication scheme,

a malicious node can access private objects and generate

spurious content to overwhelm the network using resource

exhaustion attacks. Similarly, the confidentiality of metadata is

an important concern as its breach can lead to privacy compro-

mises. In particular, query, response, and forwarding informa-

tion can reveal sensitive details about publishers, subscribers,

and content [2]. For instance, descriptive information about a

data object is usually embedded in the associated metadata.

ICN routing algorithms leverage these content descriptions

to match objects with subscriber interests for forwarding

decisions. However, the information present in the metadata

also leaks privacy-sensitive details about the nodes involved

in the production and consumption of the data objects.

Several approaches have been suggested in the literature to

improve the security, privacy, and confidentiality of ICN-based

publish-subscribe systems [5], [4], [11], [12], [1]. However,

enhancing security and privacy generally leads to a subop-

timal data delivery model with degraded performance. For

instance, reducing the number of forwarding options at routers

(to enhance security) causes data objects to follow longer

paths. This results in reduced data rates and higher network

congestion [14]. Additionally, this can also lead to routing

black holes for data objects – that is, a data object might

never be able to find a path to the subscriber [9]. Hence,

a detailed investigation is needed to better understand the

tradeoffs between the efficiency of the system and the security,

privacy, and confidentiality of the actors and data involved.

To this end, we present a detailed analysis and results from

our measurement- and modeling-based study of security in

ICEMAN, SRI International’s open source implementation of

an ICN for MANETs [15]. Specifically, we explore three

tradeoffs: (i) the effect on routing performance when nodes

must be authenticated, (ii) how caching policies affect access

control performance (since in-network communication is used

to retrieve credentials), and (iii) the impact on content delivery

rates when stronger privacy protections are utilized for data

descriptions and subscriber interests.

The rest of the paper is organized as follows. Section II

describes ICEMAN and its privacy-enhancing architecture.

Section III explains the tradeoffs we will examine. Our exper-

imental evaluation and results are reported on in Section IV.

We conclude in Section V.978-1-5090-3216-7/16/ $31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

367

II. BACKGROUND

ICEMAN uses the European Union project Haggle [7] as

an integration framework, into which it adds implementations

of multiple content dissemination algorithms, proactive and

reactive utility-based caching, context-aware network coding,

multi-authority node certification, access control, and interest

privacy protection.

Participants: ICEMAN has three primary roles for nodes

in the network: publishers, subscribers, and brokers. Publisher

nodes add content with descriptive tags to the network. Sub-

scriber nodes periodically broadcast node descriptions that

include their interests. These descriptions are used by other

nodes to identify which content matches a remote node’s

interests. Broker nodes forward content between publishers

and subscribers, based on matches between the content tags

and node interests.

Data Objects: Participants in ICEMAN share and receive

data in units called data objects. Each such object has metadata

associated with it, including a set of tags that are key-value

attributes used to describe the content. Tags in the metadata

are used to make forwarding decisions in the network. Content

(such as a file) is inserted in a data object as its payload.

A data object contains other metadata as well, such as the

timestamp of when it was created, and a globally unique

identifier, derived by computing a hash of its content and tags.

Data objects can also be exchanged between nodes without

any payload. These data objects are announcements from a

node to the network – for example, a node can send a node
description that defines its interests to its neighbors. Nodes

periodically retransmit their node descriptions to refresh their

neighbors’ view of their interests. Each node maintains a

knowledge base of other nodes’ cached content and interests.

Trust Model: ICEMAN supports the use of multiple con-

current authorities. This enables it to be resilient to failures of

individual authorities and partitions of the network. Any node

can serve as an authority, as long as other nodes agree to trust

it. A node accepts another as an authority by receiving a shared

secret from it out-of-band. This serves as the basis for securing

messages from nodes to and from the authority. A node can

send a Security Data Request (SDReq) to an authority to

utilize its certification or authorization services. The authority

uses a Security Data Response (SDRes) to return credentials

to a node. These requests and responses are called Security

Data Objects (SDOs) and are routed in the same manner as

other data objects in the network.

Authenticating Nodes: A node must choose to trust at least

one authority in order to start participating in the network. As

previously mentioned, the initial trust relationship between a

node and an authority is established out-of-band. The resulting

shared secret is then used to securely ask the authority to cer-

tify the node’s identity certificate. The availability of multiple

authorities increases the robustness of the system since each

node can be certified by any authority.

When a node joins the network, it sends a self-signed

identity certificate (in an SDReq) to the authority for signing.

If the authority is configured to trust that node, it sends a

signed version back (in an SDRes). Nodes only accept content

from their neighbors if they are co-certified – that is, they share

at least one trusted authority. Nodes Alice and Bob exchange

their certificates when they communicate with each other for

the first time. If CAlice,α is the set of certificates that Alice has

been issued by the set of authorities α, and CBob,β is the set

of certificates that Bob has been issued by set of authorities

β, then trust is established if α ∩ β �= ∅. This prevents an

untrusted node from injecting content into the network.

Bootstrapping Trust: Nodes can join the network at any

point in time and dynamically request that their identity

certificates be signed by trusted authorities. If a node Alice
tries to join the network and there is only one node Bob in its

vicinity, Bob cannot assume that Alice has already interacted

with a trusted authority to obtain a signed identity certificate.

In particular, it is possible that Bob is the only node that Alice
can communicate with at the outset. Consequently, if Bob is

not one of Alice’s trusted authorities, then Bob must relay

communication from Alice to authorities; otherwise, Alice
would not be able to get certified. ICEMAN addresses this

trust bootstrapping conundrum by granting each node, such as

Alice, a temporary window during which its SDReq objects

will be forwarded even though the node has not yet been co-

certified. If Alice receives a response from an authority in

this window, it can join the network by including its signed

certificate in future interactions. If the window expires without

Alice receiving a response, future data objects from it will be

ignored by the network.

Content Routing: Data routing decisions are made by

comparing a piece of content’s tags with the interests of

other nodes. Subscribers propagate their node descriptions

containing a list of interests to other nodes that they encounter.

Similarly, publishers share content with interested nodes that

they encounter. Nodes aggregating the interests of others can

serve as brokers to facilitate the hop-by-hop transportation of

data objects from publishers to subscribers. Content caching in

ICEMAN can either be proactive or reactive [8]. In proactive

mode, a node pushes data objects to its neighbors based on the

expectation that they will be interested in them in the future.

In reactive forwarding, on the other hand, a node only sends

a data object if the other node’s interests and the content tags
exceed a matching threshold.

Among other routing schemes, ICEMAN supports the use

of a modified version of the DIsruption REsilient Content

Transport (DIRECT) interest-driven content dissemination al-

gorithm [13]. Every node periodically informs its neighbors

about its interests by sending a timestamped node description.

This is then propagated further in the network so that more

nodes can respond if they have matching content cached.

When a match occurs, the data object is forwarded along

the reverse path – that is, to the neighbor from which the

interest was first received. It is worth noting that interests

are explicitly listed in a node description, which is then

propagated through the network. This introduces the potential

for significant dissemination of privacy-sensitive information.

368

(a) Scenario 1: Intra-group trust. (b) Scenario 2: Inter-group trust. (c) Scenario 3: Security not enabled.

Fig. 1: Three different co-certification scenarios are depicted. Authority nodes are represented with solid circles, while ordinary

nodes are represented with rings. Only adjacent nodes are physically close enough to communicate directly.

Attribute-based Encryption: ICEMAN uses discretionary

access control to define which nodes can read published

content. This is enforced by limiting access to the payload of

a data object using the multi-authority variant (MA-ABE) [6]

of attribute-based encryption (ABE) [10]. Since MA-ABE is

a type of ciphertext-policy attribute-based encryption [3], it

embeds the access policy directly into the ciphertext. This

is particularly useful in settings where potential subscribers

are not known at the time of publication. Every publisher

can encrypt each piece of content with a different access

control policy. The ability of a node to decrypt a piece of

content depends on the set of cryptographic attributes it has

received from the authorities. Authorities are expected to issue

credentials that correspond to the real-world characteristics of

a node (such as its owner’s organization, position, or role).

Content Access Control: Publishers encrypt content with

an access policy before sending it to a remote node. The

policy specifies which nodes can access the data, or more

specifically, which combination of attributes are required to

gain access. Note that each authority has a unique identifier,

which determines the set of attributes for which it can issue

encryption and decryption keys. The name of each attribute

links it to the authority that issued it. With this approach,

each publisher can construct a policy for its data requiring

that any party that can decrypt the ciphertext has to possess a

set of attributes issued by authorities that the publisher trusts.

The publisher needs to know only the attributes that it uses

in its policy. Each node requests encryption and decryption

attributes from the authorities that it has established trust

relationships with. It uses the shared secret key with the

authority to establish secure communication for these requests.

Nodes may request encryption and decryption attributes either

on demand as they are needed to encrypt and decrypt content

or through pre-provisioning – that is, requesting encryption

and decryption attributes as soon as they join the network.

Metadata Access Control: Similar approaches are used by

publishers and subscribers to limit the set of nodes that can

act as brokers for their content and interests, respectively. A

publisher encrypts each content tag with a policy that specifies

which nodes are allowed to serve as brokers. Similarly, sub-

scribers encrypt each interest with a policy that specifies which

nodes can serve as brokers on their behalf. It is worth noting

the flexibility of this framework, which allows each content

tag and subscriber interest to be protected with an independent

access policy. When a node receives a data object, it attempts

to decrypt as many content tags as it can. Similarly, when it

receives a node description, it attempts to decrypt as many

interests as it can. Using the decrypted tags and interests, the

node attempts to check if there is a sufficient match to forward

the data object toward the subscriber.

III. CASE STUDIES

The content dissemination and protection strategies in an

ICN can interact in complex ways. We conducted a series of

experiments to measure the effects of authorization, privacy,

and caching policies on the efficiency and usability of ICE-

MAN. Below we report on three tradeoffs that we identified

empirically:

Impact of Authentication on Routing: If all the nodes in a

network act fairly and all the edges have the same bandwidth,

the shortest path between any two nodes would be the optimal

path for communication. However, as previously mentioned, a

node trusts another node only if there is at least one authority

that has certified both of them. If two nodes do not have such

a trust relationship, the direct path between them cannot be

used for any content exchange. This can lead to an increase

in latency as the next optimal path may require more hops.

Furthermore, this phenomenon can also partition the network

graph into disconnected components, where no communication

is possible between subsets of nodes. Greater trust increases

routing efficiency at the cost of leaving the system increasingly

vulnerable.

Impact of Caching on Authorization: ICEMAN uses

encryption to ensure the confidentiality of data and to limit

the nodes that can serve as brokers for content and interests.

The efficiency with which a node can check for matches

between a content’s tags and a subscriber’s interests depends

on the extent to which the node can decrypt them. This

may require the node to obtain cryptographic attributes from

authorities, using SDOs. However, this process is complicated

369

by the fact that these objects are subject to caching policies

at intermediate nodes between a requester and an authority.

As storage pressure increases at a node, the SDOs may be

evicted, adversely affecting authorization efficiency of remote

nodes.

Impact of Privacy on Delivery Rate: An ICN router has

access to content tags and interests in plaintext. ICEMAN

addresses the privacy concerns of publishers and subscribers

by allowing them to scope which nodes have access to the

tags and interests, respectively. As more restrictive access

policies are utilized, the privacy of publishers and subscribers

increases. However, this also limits the nodes that can serve as

brokers, bringing a concomitant reduction in routing robust-

ness and efficiency.

IV. EVALUATION

To ensure the repeatability of our experimental evaluation,

we used the U.S. Naval Research Laboratory’s Common Open

Research Emulator (CORE 4.3) and Extendable Mobile Ad-

hoc Network Emulator (EMANE 0.7.3) frameworks. Each ICN

node’s entire user-space code is run unmodified in a sepa-

rate Linux (lightweight virtualization) container provided by

CORE. The creation and movement of ICN nodes, publication

of content, and subscription to interests, are orchestrated with

scripts on each node, using CORE and EMANE programming

interfaces.

A. Authentication / Routing Tradeoff

1) Goal – Understanding the baseline: Our first set of

experiments was conducted to measure the effect of different

configurations of trust among nodes on the time it takes

to successfully deliver published data objects to interested

subscribers. Figure 1 shows the physical arrangement of nodes

in the experiment. Nodes are arranged in three groups, where

each group has four nodes with one of the nodes an authority

node (depicted with a solid circle). Nodes within a group trust

each other as their identity certificates have been attested by

the same authority.

Experimental Setup: We considered three scenarios:

1) Intra-group trust is established (as shown in Figure 1a).

This case deals with the situation where there can be no

data object exchanged across groups as no two nodes

from different groups trust each other (as they are not

co-certified).

2) Inter-group trust is established by letting all authority

nodes in all groups co-certify each other. As shown in

Figure 1b, this allows communication between groups

but a data object may not follow the shortest path to a

destination node.

3) Ubiquitous trust is shown in Figure 1c, where security

is not enabled. Nodes are no longer required to be co-

certified to exchange data objects. Hence, exchanges

happen along the most optimal path permitted by the

routing protocol.

Application Workload: In this experiment, 15 data objects

were published and 31 subscriptions were issued. These pub-

lications and subscriptions were distributed among all groups

and a total of 348 data objects could be delivered in the

network (with multiple published data objects containing the

same tags). All data objects were published and interests

subscribed to within first 30 seconds of nodes initializing. Each

data object had a payload that 512 KB in size.

Fig. 2: Data objects delivered as a function of time. Individual

plots correspond to different co-certification configurations.

Results: Figure 2 shows the effect of various security

policies on the performance of the data delivery. Lack of

inter-group trust severely hampers data object dissemination

across groups. This causes total network delivery to reduce

significantly. An intermediate configuration allows inter-group

communication but forces data objects to follow longer paths.

This causes slower data delivery. Furthermore, a small fraction

of data objects remain undelivered at the end of the experi-

ment. Finally, a ubiquitous trust environment (where security

is entirely disabled) removes any barriers for data object flow

between nodes. This case is characterized by complete and

fastest data object delivery across the network.

We can infer from this that if an ICN is designed for a

public domain (such as use by first responders) where the

primary focus is complete access to all data objects, the

ICN should allow communication without the restriction of

co-certification. On the other hand, enterprise and private

ICNs, where data confidentiality is a higher priority, should

either have a single authority or redundant authorities that

certify all the nodes. For an option that allows a better balance

between utility and security, please see the next section.

2) Goal – Understanding the benefit of bridge nodes: A

node that has been co-certified by two or more authorities

is trusted by the corresponding co-certification groups. It is

therefore able to bridge the groups by forwarding data objects

from one group to the others. We empirically study the effect

of the presence of such bridge nodes on content delivery

performance.

Experimental Setup: We considered the following five

scenarios:

1) Untrusted neighbors are depicted in Figure 3a. In this

scenario, each node is a member of one of two distinct

trust groups. Each group has been separately co-certified

370

(a) Each node’s neighbors are untrusted. (b) Longest linear distinct trust groups. (c) Single bridge between two trust groups.

(d) Two bridges between two trust groups. (e) Three bridges between two groups.

Fig. 3: Co-certification creates trust groups. Five different configurations are shown here. Solid circles are authorities. Rings

are ordinary nodes. Only adjacent nodes are close enough to communicate.

by a different authority. The nodes are arranged so that

no two neighbors are from the same group. Hence, every

node is surrounded by untrusted nodes.

2) Longest linear groups are shown in Figure 3b. Nodes

in this setting are arranged to maximize the number of

hops a data object can travel while remaining within a

single trust group. The configuration is referred to as

maximum piping.

3) Single bridge is a refinement of the previous case. The

difference is the presence of a single bridge node, as

depicted in Figure 3c.

4) Two bridges are illustrated in Figure 3d. The second

bridge reduces (on average) the number of hops a data

object must traverse to be able to cross from one trust

group to another.

5) Three bridges are shown in Figure 3e. As expected, the

availability of a third bridge further reduces the intra-

group number of hops a data object must traverse before

crossing into another trust group.

Application Workload: To facilitate a consistent compar-

ison with the baseline, the same data object publication and

interest subscription patterns were used as those described in

Section IV-A1.
Results: Figure 4 reports the data delivery achieved (as a

function of time) when different node trust configurations are

utilized. As expected, disabling security completely results in

the best data delivery (in the absence of any adversaries). To

limit the attack surface of the ICN, the use of co-certification

is recommended (to ensure outsiders cannot inject content into

the system). In the baseline case we saw this impose a high

negative impact on performance.
Our results here show that we can achieve both high per-

formance and low risk through the judicious use of sufficient

Fig. 4: Data objects delivered as a function of time. Individual

plots correspond to different co-certification configurations.

bridge nodes. In particular, when three bridge nodes were

used, we saw data delivery performance approaching the case

when security was disabled. As the number of bridge nodes

decreases to two and then to one, we continue to observe all

the data objects delivered but over longer timespans.

In the case of maximum piping, data objects can only travel

within a single trust group. Consequently, the maximum num-

ber of deliveries is limited by what can be retrieved without

objects crossing over from the other group. Similarly, in the

case that all neighbors are untrusted, the only objects delivered

are from a node to itself. This occurs if one application on the

node publishes a piece of content while the interests of another

application match the content’s tags.

Our findings provide a prescription for designers of ICNs

with multiple trust domains. In this setting, it is critical to

introduce enough bridge nodes in the architecture. While it

371

is well understood that increasing the number of such nodes

is important for reliability, our results show the direct and

significant effect on improving data delivery rates as well.

B. Authorization / Caching Tradeoff

1) Goal – Understanding the effect of caching policies
on distributed access control: In the absence of dedicated

control channels for security metadata, an ICN must utilize

the underlying data forwarding infrastructure to send security-

related requests and responses – that is, the SDOs described

in Section II. Since access control in a distributed system is

implemented through the use of SDOs from ordinary nodes to

authorities and back, the caching policy at intermediate bro-

kers determines the speed with which authorization requests

complete.

Experimental Setup: We studied this question in a setting

with the hourglass topology depicted in Figure 5. It contains

two authorities α1 and α2 at opposite corners of the network.

They are responsible for issuing encryption and decryption

attributes to nodes that request them (and are authorized

according to the authorities’ configurations). The node β is

the narrow waist of the hourglass. It separates the two sides

of the network where α1 and α2 are located, respectively.

The bottleneck at node β facilitates controlled analysis of

authorization performance as a function of the caching policy

(at β). We consider the canonical case where a data object

is published by node ni with an access policy that contains

an attribute from authority α1. This data object has tags that

match the interests of a node nj on the opposite side of

the network. Consequently, when nj attempts to access the

content, it will send a security data request that must traverse

node β en route to the authority α1. Similarly, the security

data response from α1 to nj must go through β.

1

2

i j

Fig. 5: Node β serves as a bridge between the groups of nodes

on its left and right, credentialed by authorities α1 and α2,

respectively.

We compared four representative caching strategies to un-

derstand their effect on authorization performance:

1) Ubiquitous SDO prioritization. All nodes, including

bridges, use caching policies that give SDOs highest pri-

ority, minimizing the chance that they will be dropped at

an intermediate broker en route to or from an authority.

2) Only bridges are SDO-agnostic. All nodes, except

bridges, use caching policies that prioritize SDOs. This

configuration models the case where bridges minimize

per-object analysis to be able maximize throughput. In

this setting, bridges will not distinguish between SDOs

and other data objects.

3) Only bridges prioritize SDOs. In practice, the impor-

tance and low volume of SDOs may argue for bridges

to be configured with caching policies that prioritize

SDOs. This scenario assumes this but examines what

happens when the remaining nodes do not perform

similar prioritization.

4) No SDO prioritization. The final case provides a base-

line for comparison. This scenario represents the ICN

performance if it does not build in any cognizance of

the effect of caching on authorization.

Application Workload: To saturate the cache at the

bridge β, 8 data objects were published at the node. Each

of these had content tags that matched interest subscriptions

from the bridge. The 13 nodes on each side of the bridge

each publish a single data object, for a total of 2 x 13. Each is

encrypted with an access policy that contains a unique attribute

that can be obtained from the authority that is reachable

without crossing the bridge. Each node expresses an interest

that matches an object that must traverse the bridge to arrive

at the subscriber. Further, subscriptions are distributed across

the network to balance the delivery overhead at all nodes.

Fig. 6: Access control performance depends on the prioritiza-

tion of SDOs in caching policies at nodes.

Results: Figure 6 describes how many objects have been

delivered as a function of time. The four plots correspond to

the different caching policy configurations described above.

Recall that every data object’s delivery is predicated on the

completion of an authorization operation (that retrieves a

cryptographic attribute from an authority on the opposite side

of the bridge). So these plots are reporting on the effect of the

caching policies on access control performance.

372

When all the nodes in the system prioritize SDOs, au-

thorization and consequently data object delivery, completes

fastest. When none of the nodes do so, performance is the

worst. Interestingly, the prioritization of SDOs at the single

bridge node does more to improve performance than such

implementing this caching policy at all the remaining nodes

in the system. This derives from the fact that the bridge is the

bottleneck in communication.

In addition to affecting the average performance, caching

policies also impact the variance in the performance. Config-

urations with policies that result in worse performance also

result in higher standard deviations, as seen by the error bars

in Figure 7.

Fig. 7: Caching policies that result in longer times for access

control requests to complete have the side-effect of larger

variations in performance as well.

C. Privacy / Delivery Tradeoff

1) Goal – Pricing privacy primitives: ICEMAN protects

the privacy of publishers and subscribers by allowing them

to encrypt their content tags and interests, respectively. This

encryption is effected using MA-ABE policies that scope the

set of nodes that will have access to the tags and interests.

Coarser policies result in lower privacy. Finer-grained policies

protect the privacy of publishers / subscribers. To understand

the price being paid for privacy, we measured the associated

cryptographic costs.

Experimental Setup: We constructed the following micro-

benchmarks:

1) Encryption measures the time for symmetric encryption

of a tag or interest.

2) Decryption measures the time for symmetric decryption

of a tag or interest.

3) Capability generation measures the time to encrypt a

symmetric key with an MA-ABE access policy.

4) Capability usage measures the time to decrypt a sym-

metric key encrypted under an MA-ABE policy.

Workload: The set of micro-benchmarks was run, while

varying the number of attributes used in the MA-ABE access

policy. More attributes correspond to a more specific policy,

which results in reduced privacy leakage.

Results: Figure 8 reports the increasing costs of more

specific access policies. A runtime cost is introduced that

results in each node taking longer to be able to access content

tags and subscriber interests. The cost is commensurate with

the number of attributes utilized.

Fig. 8: As the number MA-ABE attributes used increases, the

capability generation and usage times grow.

2) Goal – Pricing privacy-sensitive routing: A publisher

can preserve their own privacy by limiting the nodes in the ICN

that can see the tags they label their content with. Similarly,

subscribers can maintain their privacy by scoping which nodes

can see their interests. The consequence is that only some

nodes can serve as brokers. To understand the impact these

privacy protections have on the data delivery rates in the ICN,

we conducted the following study.

Experimental Setup: The setting for this analysis was the 4

x 4 grid of nodes depicted in Figure 9. i, j, and k denote three

groups of subscriber nodes. The nodes in i are also publishers.

In this context, we studied the following three scenarios:

1) Circumference routing where the tags encrypted by

nodes from group i can only be decrypted by nodes

from groups i, j, and k.

2) Universal routing where all nodes have sufficient de-

cryption attributes to be able to match and forward data

objects.

3) Promiscuous routing where privacy protections are dis-

abled.

Application Workload: Within the first 20 seconds after

node initialization, they publish content or subscribe to specific

interests. Each publisher shares 4 data objects, while sub-

scribers express interests that match the tags on these objects.

A maximum of 160 data objects can be delivered in this

setting.

Results: If security is disabled, promiscuous routing results.

In particular, both the tags of all content and the interests

373

i

j k

Fig. 9: Three levels of routing privacy protection were studied

using this arrangement of nodes. They differed in which nodes

could serve as brokers and the cost for doing so.

of subscribers are exposed for all intermediate nodes to see.

This mode of operation provides no privacy protection but

does result in the fastest delivery of content. Note that all data

160 objects are delivered by the 50 second mark, as seen in

Figure 10.

In the case of universal routing, publishers apply protection

to content tags, subscribers do the same for interests, and all

intermediate nodes are provided with attributes that allow them

to access content tags and interests. While privacy protections

are used, all nodes are trusted enough to be able to serve

as brokers. This allows multiple paths for content to flow

from each publisher to each subscriber. The result is that data

objects are all delivered by the 70 second mark. The reduction

in speed is the result of brokers needing to decrypt tags and

interests to perform matches.

Finally, circumference routing occurs when nodes outside

groups i, j, and k are not trusted to access the private tags

and interests of publishers and subscribers, respectively. The

untrusted nodes cannot serve as brokers, preventing content

from flowing through them. Consequently, content must be

“piped” through a longer path. This results in the data objects

taking close to 100 seconds to be delivered. The cost of

maintaining tag and interest privacy is the slower delivery time.

V. CONCLUSION

Using the SRI’s open source ICEMAN implementation of

an ICN that operates over a MANET, we examined three trade-

offs between maintaining the privacy of content publishers and

subscribers on the one hand, and the performance of routing

and content delivery on the other. In particular, we empiri-

cally demonstrated that (i) adding authentication to prevent

outsiders from injecting content in the ICN comes at a cost

for routing performance, (ii) using the data plane of an ICN for

security-related communication requires corresponding cache

policy prioritization, and (iii) the use of more privacy-sensitive

content tags and subscriber interests increases the delivery time

of affected content. We also make specific prescriptions for

ICN architectures, including the use of sufficient bridge nodes,

specific cache policy priorities, and relaxing privacy protection

of metadata when possible.

Fig. 10: Access control on tags and attributes slows down

content delivery.

REFERENCES

[1] Alexander Afanasyev, Priya Mahadevan, Ilya Moiseenko, Ersin Uzun,
and Lixia Zhang, Interest flooding attack and countermeasures in Named
Data Networking, 12th IFIP Networking Conference, 2013.

[2] Bengt Ahlgren, Christian Dannewitz, Claudio Imbrenda, Dirk Kutscher,
and Borje Ohlman, A survey of information-centric networking, IEEE
Communications Magazine, Vol. 50(7), 2012.

[3] John Bethencourt, Amit Sahai, and Brent Waters, Ciphertext-policy
attribute-based encryption, 28th IEEE Symposium on Security and
Privacy, 2006.

[4] Mihaela Ion, Jianqing Zhang, and Eve Schooler, Toward content-centric
privacy in ICN: Attribute-based encryption and routing, 3rd ACM
SIGCOMM Workshop on Information-Centric Networking, 2013.

[5] Jun Kuriharay, Ersin Uzun, and Christopher Wood, An encryption-based
access control framework for content-centric networking, 14th IFIP
Networking Conference, 2015.

[6] Allison Lewko and Brent Waters, Decentralizing attribute-based encryp-
tion, 30th International Conference on the Theory and Applications of
Cryptographic Techniques, Springer, 2011.

[7] Erik Nordstrom, Christian Rohner, and Per Gunningberg, Haggle: Op-
portunistic mobile content sharing using search, Computer Communica-
tions, Vol. 48, Elsevier, 2014.

[8] Soon Oh, Davide Lau, and Mario Gerla, CCN in tactical and emergency
MANETs, 3rd IFIP Wireless Days Conference, 2010.

[9] Mariana Raykova, Hasnain Lakhani, Hasanat Kazmi, and Ashish
Gehani, Decentralized authorization and privacy-enhanced routing for
ICNs, 31st Annual Computer Security Applications Conference, 2015.

[10] Amit Sahai and Brent Waters, Fuzzy identity-based encryption, 24th In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, Springer, 2005.

[11] Abdullatif Shikfa, Melek Onen, and Refik Molva, Bootstrapping security
associations in opportunistic networks, 6th International Workshop on
Mobile Peer-to-Peer Computing, 2010.

[12] Abdullatif Shikfa, Melek Onen, and Refik Molva, Privacy and confiden-
tiality in context-based and epidemic forwarding, Computer Communi-
cations, Elsevier, Vol. 33(13), 2010.

[13] Ignacio Solis and J. J. Garcia-Luna-Aceves, Robust content dissemi-
nation in disrupted environments, 3rd ACM Workshop on Challenged
Networks, 2008.

[14] Reza Tourani, Travis Mick, Satyajayant Misra, and Gaurav Panwar,
Security, privacy, and access control in Information-Centric Networking:
A survey, arXiv:1603.03409, 2016.

[15] Samuel Wood, James Mathewson, Joshua Joy, Mark-Oliver Stehr,
Minyoung Kim, Ashish Gehani, Mario Gerla, Hamid Sadjadpour, and
J.J. Garcia-Luna-Aceves, ICEMAN: A system for efficient, robust and
secure situational awareness at the network edge, 32nd IEEE Military
Communications Conference, 2013.

374

Con dential and Authenticated Communications in a
Large Fixed-Wing UAV Swarm

Richard B. Thompson and Preetha Thulasiraman
Department of Electrical and Computer Engineering

Naval Postgraduate School
Monterey, California 93940, USA
{rbthomps & pthulas1}@nps.edu

 Abstract – Large Unmanned Aerial Vehicle (UAV) swarms
are a nascent technology promising useful military and civilian
solutions to logistical problems. Securing data communications
within the swarm is essential to accomplishing swarm objectives.
The Naval Postgraduate School has successfully demonstrated
the launch, flight and landing of 50 UAVs. The communications
architecture to support a UAV swarm is unique. This paper
details the practical challenges of creating a secure
communications channel in the swarm. The Advanced
Encryption Standard (AES) was chosen as one of the encryption
algorithms for testing as it is authorized by the National Security
Agency (NSA). Various modes of AES, including Galois/Counter
Mode (GCM) and Counter with Cipher Block Chaining Message
Authentication Code (CCM), were analyzed within the swarm
architecture. The impact of these authenticated encryption
algorithms on network capacity and processor performance is
presented. In addition to AES, ChaCha20-Poly1305, another
type of authenticated encryption scheme was studied. It was
found to be the better solution for securing the swarm if
classified data is not being handled or created.

I. INTRODUCTION

 With the advent of ever cheaper hardware and further
development of unmanned systems technology, the ability to
field large swarms of unmanned aerial vehicles (UAVs) has
become a reality. On August 27, 2015 the Naval Postgraduate
School (NPS) set a world record by autonomously launching,
flying and landing 50 UAVs concurrently [1]. The UAV
swarm can be controlled by a single operator, guiding it to
perform a specific behavior. Specific behaviors include area
search, point intercept, ordered transit and mass ordered
landing.

A. Research Motivations and Contributions

 Currently there is no security architecture built into the
UAV swarm at NPS. This stems from various factors,
including cost and how UAV performance will be affected by
computationally expensive encryption operations. However,
the inability to solve the security problem has and will
continue to have severe consequences for swarm deployment
[2][3]. In the last several years, researchers have studied the
various cyber security threats that UAV swarms face. These
threats have been identified, along with extensive risk
assessments [4][5]. While there is a consensus in the research

propriate algorithms to facilitate a security architecture for
UAV swarm communications. As large UAV swarms are just
coming into existence, examples of security implementations
in practice do not exist. This is especially true for large
swarms. A swarm that is unable to operate securely is almost
entirely useless in any military or civilian application.

In this paper, we focus on the impact of communication
security on the swarm. This includes both encryption and
authentication. Authenticated encryption (AE) is designed to
simultaneously protect both a message’s privacy and
authenticity. For classified information communications, we
study the Advanced Encryption Standard (AES). AES has
been approved and adopted by the National Security Agency
(NSA) as the official cryptographic module for the
transmission of SECRET and TOP SECRET information. We
implement four modes of AES: Counter with Cipher Block
Chaining Message Authentication Code (CCM),
Galois/Counter Mode (GCM), Synthetic Initialization Vector
(SIV) and EAX. In addition, we also implemented ChaCha20-
Poly1305, an unstandardized AE algorithm. This is used as a
baseline for securing unclassified swarm communications. We
present results that show the impact of these algorithms on
network throughput and execution time.

It must be noted that this is a work in progress. The
results we present in this paper reflect limited scale
experiments run on the UAV software. We are in the process
of building a full network simulation scenario using Network
Simulator 3 (NS3) in which we will run experiments using a
number of UAVs. These simulations will be concluded in the
coming months.

The remainder of this paper is organized as follows: In
Section II, we present how the swarm is designed and
operates, with specific detail on the communications
architecture. Section III contains a discussion on
communication security, and how it is to be implemented in
the swarm. Various AE techniques will be presented for
consideration. Section IV presents network traffic analysis,
including the impact of AE on network throughput. In
Section V we perform a comparison of AE techniques on the
ODroid processor. The percentage of time spent on
cryptographic operations for each AE technique is calculated.
In Section VI we conclude with a description of ongoing
work.

2016 IEEE 15th International Symposium on Network Computing and Applications

375

II. SWARM SYSTEM ARCHITECTURE

A. Concept of Operations

 The swarm architecture and its detailed operation can be
found in [1] and are summarized here. UAVs launch at
regular intervals of about 15 seconds and transit to a waiting
area where they await a command from the swarm controller.
The swarm controller has a set of predefined behaviors to
choose from. After performing the set of defined behaviors, a
command is sent to land. The swarm will then sort itself and
land in an orderly fashion.
 Each UAV was built from low-cost commercially
available components. Fig 1. shows a picture of the NPS
UAV.

Fig 1. Picture of NPS UAV, designed to be low cost yet capable. The figure is
from [1].

 The swarm communicates with an ALFA AWUS036NEH
Long Range Wi-Fi Radio and processes information on an
ODroid U3 computer with Ubuntu Linux 14.04. The ODroid
computer has a Samsung Exynos4412 Prime Cortex-A9 Quad
Core 1.7 GHz with 1 MB L2 cache. All software is coded in
Python. Each UAV also possesses a remote control (RC) link
and a 900MHz serial link, but are used for emergency and not
necessary for swarm operation. In a secure setting they would
be turned off.

B. Communications Architecture

 The swarm communicates using 802.11n in ad hoc mode.
The Wi-Fi radio has a single spatial stream operating on a 20
MHz channel, allowing for a maximum data rate of 72.2
Mbps. Each message is broadcast to each of the other UAVs.
There is no expectation of privacy from any of the other
UAVs. It is single hop, so there is no routing. All messages
use UDP on top of IPv4, which by definition is
connectionless. There is a small subset of messages that do
receive acknowledgements, but that is built on top of UDP
with a custom protocol. Fig. 2 shows the information
pathways to and from a UAV.

Fig 2. Illustration of UAV hardware configuration, detailing communication
paths between entities. This figure was adapted from [3].

 Increasing the reliability by using TCP, implementing a
routing protocol, and communicating with direct links instead
of broadcast would significantly increase latency and
congestion on the network to the point that it becomes
intolerable with a large swarm.
 A side effect of the chosen architecture is the need to be
tolerant of lossy communications. Messages must adhere to
two principles. They must be stateless and idempotent.
Stateless means a message cannot rely on a different message
having been received. Idempotent means any message
received may only change the state of the UAV once and only
once. Duplicate messages do not further change the UAV
state [6].
 Table I lists the components that make up a message with
typical lengths.

TABLE I
MESSAGE CONTENTS

Section Typical Length
(bytes)

Preamble 15
802.11 Header 34
IPv4 Header 20
UDP Header 8
Autonomous Capability
Suite (ACS) Header 16

Encryption Overhead Varies by Algorithm
Payload Varies by Behavior

 Any security implementation should not fundamentally
alter or impose changes on the defined communication
structure. Doing so would limit the range of behaviors
available and increase the complexity.

376

III. COMMUNICATIONS SECURITY ARCHITECTURE

A. Communication Threats

 Due to the fact that swarm communications are broadcast
in every direction, any receiver within range of the UAV is
able to collect communications. In order to prevent tactical
information from being discovered, encryption is a necessary
requirement. Due to the ease of message capture, and open
nature of communications, the swarm is particularly
vulnerable to replay attacks. As such, strong authentication is
also an absolute necessity.

B. Cryptographic Methods

 There are two broad categories for providing encryption
and authentication in the swarm: symmetrically and
asymmetrically. With asymmetric encryption, a public key is
used to encrypt and a private key is used to decrypt. This
would create a different communication channel between each
UAV. In addition, to provide authentication, the system
would require a secure central repository for public keys.
That repository would either be a UAV or a ground station.
 Asymmetric cryptography is not an option for swarm
communications. It is a potential option for initially keying or
for inflight rekeying, but for regular communications it would
permanently impose an undesirable structure on the swarm.
 Symmetric encryption is faster and works within the
current swarm architecture. In this construct the same key
would be preloaded before flight into each UAV. The UAV
would encrypt and decrypt with this same key.

C. Authenticated Encryption Alternatives

 There are only two options authorized for the encryption
of classified data, Advanced Encryption Standard (AES) and
Triple Data Encryption Standard (3DES) [7]. It is well
established that AES is faster, more secure and efficient [8]
and should be the chosen method for classified operations.
Within AES, there are two AE modes available, GCM and
Counter with CCM. GCM has been a part of the NSA Suite B
since 2007 [7]. It has the benefit of being both efficient and
parallelizable [9]. While both CCM and GCM provide secure
solutions, GCM has a reputation for being faster [10].
 SIV and EAX are highly specialized AE techniques
designed for specific problems. Initialization Vectors (IVs)
are used by cryptographic algorithms to ensure duplicate
messages produce unique ciphertexts. For most algorithms,
including CCM and GCM, improper selection of the IV has
catastrophic results. SIV was designed to be tolerant of IV
misuse, but by sacrificing speed [11].
 EAX is another AES mode that was built to improve
upon certain features of CCM. It can use arbitrary length IVs,
and it does not need to know the message length in advance
before beginning the algorithm. It also is a two pass mode
(i.e., one pass to achieve privacy and the other pass for
authenticity), and as such was not designed for speed [12].
SIV and EAX are currently under consideration for use in a

classified environment and were included in the ODroid
processor performance analysis [13].
 The ChaCha20 algorithm for encryption and Poly1305 for
authentication have become a popular alternative in industry
for performing AE [14]. In 2014, Google replaced GCM on
its Android phones with ChaCha20-Poly1305, believing it to
be more secure and showing it to be significantly faster in
software implementations [15]. ChaCha20-Poly1305 was
designed to be fast in software on generic computer
architectures by minimizing hardware intensive operations
such as matrix multiplication [16]. While not approved for
classified data, it was included in the analysis to provide both
a baseline and an option for secure communications when the
swarm is not performing classified operations.
 The AES algorithms were implemented using the Python
library PyCryptodomex 3.4.2. This library is written in
Python where possible, except for the pieces critical to
performance, which were written in C [17]. ChaCha20-
Poly1305 was implemented using the Python library PyNaCl
1.0.1. The library is also written in Python but is a wrapper
around the libsodium library, which is written in C.
 PyCryptodomex allows for IV sizes of between 7 and 13
bytes for CCM. For CCM, the chosen IV size was 13 bytes
and for all other AES based algorithms it was 16 bytes as
recommended by [18]. The IV size for PyNaCl is required to
be 24 bytes [19].
 Message Authentication Codes (MACs) are bytes
attached to each message used to verify the authenticity of a
message. The MAC size for each algorithm was 16 bytes
[18][19].

D. Appropriate Layer for Applying Security

 In most applications there is a choice of whether to place
security at the application layer or at the transport layer. Due
to the connectionless nature of the swarm, it is possible to
place security at an even lower level, just above the Physical
Layer. Every message that is sent on the swarm channel is
received by every other entity, with no expectation of routing.
Therefore, the entire frame can be encrypted, including MAC
addresses. This would prevent an adversary from gathering
potentially critical message source information. Doing so,
however, would require specialized hardware and/or software
and is not possible with the current swarm configuration.
 Security at the Transport Layer is also problematic.
WPA2 with authentication on Ubuntu 14.04 is not supported
for a connectionless ad hoc network without a central access
point or centralized authentication server [20]. The ALFA
Wi-Fi radio provides WPA2 encryption but only with 128 bit
keys and lacks authentication that would work with the
connectionless swarm configuration [21].
 Security at the Application Layer is easily implementable,
and provides privacy and authenticity. For the purposes of this
study, security was implemented at the Application Layer on
the ODroid processor. Implementation at the Application
Layer will allow us to determine the impact of security on
communications within the swarm.

377

IV. EFFECTS OF AUTHENTICATED ENCRYPTION ON THE
NETWORK THROUGHPUT

A. Simulation Description

 To determine the effects of security on the network it is
necessary to get a sense of the amount and type of traffic that
is being passed.
 Three instances of UAVs were created using multi-UAV
simulation in the loop (SITL) software, commanded and
flown with actual flight software as described in [22]. The
messages passed between UAVs and ground station were the
same as though the UAVs had been flying. For each message
on the channel, the message type, size, time of transmission
and sending UAV was recorded. A larger software swarm
would have been preferred, but hardware limitations resulted
in inaccurate results when the number of UAVs grew larger
than three. Section IV-C discusses how the results obtained
from a three UAV swarm are relevant to larger swarms.
 The swarm has the following behaviors that it can
perform:

• Line Formation: UAVs form into a line and fly to a
designated location or flight pattern.

• Swarm Search: UAVs cooperatively search a
specified area.

• Greedy Shooter: UAVs find the closest enemy
UAV and tag it as being shot.

• PN Interceptor: Command given to one UAV to
intercept another.

• Eager Altitude Sort: UAVs are sorted by altitude.
Missing information is requested from other UAVs.
Responses to requests are given about itself and other
missing UAVs.

• Lazy Altitude Sort: Similar to Eager Altitude Sort
except only missing information about itself is
broadcast.

• Independent Transit: All UAVs in a subswarm
transit separately to a geographic position.

• Sequence Land: UAVs land in an orderly fashion.
 A software application called Swarm Commander is used
to command the swarm to perform these behaviors during
actual operations. In the simulation, Swarm Commander was
used to execute each of the behaviors in the order presented
above. When parameters were required, the default values
were selected.

B. Simulation Results

 There was an average of 13.02 messages per UAV
transmitted in any given second. The average number of
messages per second for a three UAV swarm was 39.07, with
a standard deviation of 6.618 and a high of 52. The average
unencrypted message size was 141.61 bytes with a standard
deviation of 12.54. Fig. 3 illustrates the throughput of the 3
UAV swarm over the time of the experiment. As can be seen,
throughput is fairly constant, and it is difficult to distinguish
when certain behaviors are occurring.

Fig 3. Total throughput on a 3 UAV Swarm channel without AE

 With a 3 UAV swarm, Table II shows the breakdown of
occurrence by message type.

TABLE II
OCCURRENCE OF MESSAGE TYPE

Message Type Occurrence
Pose 74.38%
Flight Status 14.38%
Heartbeat 9.48%
Other 1.76%

 Traffic is dominated by just three types of messages:
Pose, Flight Status and Heartbeat. These messages are used
by the UAVs to update each other and the ground station with
telemetry and health information. They are sent out at regular
intervals regardless of swarm size.
 Fig. 4 shows the same throughput as Fig. 3, but with
Pose, Flight Status and Heartbeat messages removed.
Throughput is much less, and areas where behaviors occur are
somewhat distinguishable.

Fig 4. Total throughput on a 3 UAV Swarm channel with Pose, Flight Status
and Heartbeat messages removed

 Table III shows the effects of AE on swarm throughput.
ChaCha20-Poly1305 had the greatest overhead. Note that the
bytes per message overhead incurred by each algorithm is
constant, regardless of message length. Thus as message
length increases, the overhead as a percentage of message
length due to cryptographic operations decreases.

378

 TABLE III
EFFECTS OF CRYPTOGRAPHIC OPERATIONS ON THROUGHPUT

Cryptographic
Algorithm

Average
Throughput

(kbps)

Maximum
Throughput

(kbps)

Average
Overhead
Incurred

(%)
None 44.23 60.28 0
CCM 53.29 71.64 20.4
GCM 54.29 72.82 22.5
ChaCha20-Poly1305 56.73 76.96 28.2

C. Extending Results to Larger Swarms

 Knowing how these results apply to larger swarm sizes is
essential for an accurate understanding of the effects of AE on
network throughput. To determine the effects, it is necessary
to analyze each message and determine how it depends on the
size of the swarm. There are two ways in which a message
can be dependent on swarm size: length dependent and
frequency dependent. A message is length dependent if a
particular message changes length as a function of swarm size.
A message is frequency dependent if how often a message is
sent depends on swarm size.
 With complete message independence of swarm size,
growth rate of network traffic is ()O n where n is the number
of UAVs in the swarm. In a behavior where messages grow
by a constant amount with each additional UAV, growth rate
of network traffic would be 2(n)O . In a behavior where the
frequency of messages increases at a constant rate with each
additional UAV, the growth rate of network traffic would also
be 2(n)O . A behavior where both message frequency and
length grow by a constant amount with each additional UAV
would be 3(n)O .
 If all messages are independent of swarm size, Fig. 5
shows how average throughput will increase as the swarm size
grows. In this scenario, even in a 100 UAV swarm, and 30%
cryptographic overhead, the swarm does not approach the
72.2 Mbps throughput ceiling.

Fig 5. Average total throughput as a function of swarm size where messages
do not depend on swarm size (no AE)

 If an additional packet is sent by each additional UAV per
second, and each of those messages grows by 10 bytes for
each UAV, we get the results seen in Fig. 6. With larger
swarms the channel becomes overwhelmed, even without
cryptographic overhead.

Fig 6. Average total throughput as a function of swarm size where messages
have both length and frequency dependence on swarm size (no AE)

 Fig. 5 and Fig. 6 give a reasonable lower and upper
bound on network traffic. To determine the likelihood of the
two scenarios, a closer examination of each behavior was
undertaken. Table IV shows how each behavior affects
message dependence on swarm size.

TABLE IV
MESSAGE DEPENDENCE ON SWARM SIZE

Behavior/
Message Type

Length
Dependence

Frequency
Dependence

Flight Status No No
Pose No No
Heartbeat No No
Eager Altitude Sort Yes Yes
Greedy Shooter No Yes
Independent Transit No No
Lazy Altitude Sort No Yes
Line Formation Yes Yes
PN Interceptor No No
Sequence Landing No No
Swarm Search No Yes

 Flight Status, Pose and Heartbeat messages are sent out at
frequencies of 10Hz, 2Hz and 2Hz respectively, regardless of
swarm size.
 The Eager Altitude Sort and Line Formation behaviors
make use of a consensus sort algorithm. This algorithm
requests a message from each UAV from which it lacks
information. A larger swarm increases the likelihood of
missing information. In addition, response messages from any
UAV includes information from any other UAV whose
information was also requested, thus message lengths will also
increase. Designers recognized this and limited the frequency
of the messages to 4Hz. Thus, the frequency dependence has
an upper bound.
 In the Greedy Shooter behavior, the frequency
dependence is very weak and probably undetectable. As the
swarms grow, the density of UAVs also grows creating more
shooting opportunities, and thus more kill reports.
 In the Lazy Altitude Sort behavior, the consensus sort
algorithm is also used with the difference being any UAV
whose information is requested will only respond with
information about itself. Thus there is no length dependence.
The frequency dependence is again limited to 4Hz.
 In the Swarm Search behavior, a lead UAV is designated
at the commencement of the behavior. The lead UAV
proceeds to assign search areas to each of the other UAVs in

379

its subswarm. There is frequency dependence, but only from
the point of view of the lead UAV.
 The worst case for network traffic would be during a
behavior using the consensus sort algorithm where each UAV
requested information from every other UAV. If an additional
4 messages were sent from each UAV per second, each UAV
grew 10 bytes for each UAV in the swarm, and a 30%
overhead was added on for worst case cryptography, the
resulting throughput would look similar to that shown in Fig.
7.

Fig 7. Expected throughput of a worst case scenario behavior, with worst case
cryptographic overhead included

 Even with the worst case behavior, and using the largest
cryptographic overhead, the swarm communications channel
is left with some operational margin.

IV. EFFECTS OF AUTHENTICATED ENCRYPTION ON THE
ODROID COMPUTER

A. Experiment Description

 To completely understand the impact of AE on the
swarm, it is necessary to determine if the ODroid processor is
capable of sustaining the cryptographic overhead incurred. To
make this determination, GCM, CCM, SIV, EAX and
ChaCha20-Poly1305 algorithms were implemented and
executed on the ODroid hardware.
 AE was performed on messages of sizes ranging from 8
to 32,768 bytes and then decrypted and authenticated. For
each message size, this step was repeated 10,000 times and
averaged. Each message was randomized on each pass to
create as cold a cache as possible.
 The experiment was repeated with key sizes of 128, 192
and 256 bits. ChaCha20-Poly1305 and SIV do not provide
functionality for key sizes of 128 and 192 bits.

B. Experiment Results

 Figs 8, 9 and 10 show the results for key sizes of 128,
192, and 256 bits, respectively.

Fig 8. ODroid performance while executing cryptographic operations with
128 bit key sizes

Fig 9. ODroid performance while executing cryptographic operations with
192 bit key sizes

Fig 10. ODroid performance while executing cryptographic operations with
256 bit key sizes

 As was expected, the best performance for any key size
was ChaCha20-Poly1305. EAX and SIV had the poorest
overall results. This poor performance was expected given
their specialized nature.
 According to the results, CCM outperformed GCM. As
stated earlier, the biggest advantage of GCM is its ability to be
parallelizable. GCM did not perform better than CCM in this
situation for the following reason: GCM performs best when
software is tailored to the hardware, making use of parallel
processors [9][23]. It does not appear that the
PyCryptodomex library makes full use of the parallelizable
nature of GCM, and it certainly was not designed specifically

380

for the ODroid computer. These results are consistent with
the results found in [12].
 Another interesting result is how little key size affects
speed of execution, especially with smaller messages. The
average length of an unencrypted message was 141.61 bytes.
Table V lists the average time (in milliseconds) to execute
each iteration of an average length message.

TABLE V
CRYPTOGRAPHIC TIMES FOR AVERAGE SIZED MESSAGE IN MILLISECONDS

 128 Bit Key 192 Bit Key 256 Bit Key
CCM 1.30 1.31 1.32
ChaCha20-Poly1305 .0781
EAX 4.40 4.28 4.33
GCM 2.10 2.08 2.09
SIV 4.54

C. ODroid Performance under Various Network Loads

 From the channel throughput analysis in Section IV, we
can predict the burden that cryptography will place on the
ODroid computer. Given that the average unencrypted
message size was 141.61 bytes, and the average number of
messages per second per UAV was 13.02, an average
cryptographic load for a given swarm size on the ODroid
computer can be estimated.
 Assuming messages do not exhibit any dependence on
swarm size (as laid out in Fig. 5) and assuming an average
case throughput of 13.02 messages per UAV per second, the
percentage of time out of each second spent conducting
cryptographic operations is displayed in Fig. 11.

Fig 11. Average case percentage of time spent on cryptographic operations
with 256 bit key

 SIV and EAX would not be able to support a 50 UAV
swarm, as the ODroid would be spending 100% of its time on
cryptographic operations and still not be able to keep up with
the traffic load. GCM and CCM might be able to manage an
average case load in a 50 UAV swarm, but it would be
consuming a significant amount of the processing capacity,
leaving little to other processes. Fig. 11 shows the worst case
scenario as defined by Fig 6. Using a smaller key size does
not improve performance by any meaningful amount.

Fig 12. Worst case percentage of time spent on cryptographic operations with
256 bit key

 Clearly SIV, EAX, GCM and CCM are not an option. It
does appear that ChCha20-Poly1305 would be successful in
providing AE for the swarm.

D. Mitigations for Classified Information

 Currently the swarm at NPS is used for academic
purposes. It does not gather or create classified information
and thus does not require the use of an AES based algorithm.
In the event that classified information was gathered, the
following mitigations could be used to enable the use of either
GCM or CCM:

• Upgrade to a more powerful processor.
• Use an Application Specific Integrated Circuit

(ASIC).
• Tailor the AES algorithm to the ODroid processor.
• Only use AE on command data.

 Performing AE only on command data would give access
to information about the state of the swarm and its current
location, and might not be tolerable. It also opens the risk of
an adversary planting false telemetry data and surreptitiously
changing the state of the swarm. It would, however, prevent
the taking over of the swarm by the sending of direct
commands. Fig.13 shows the impact on swarm performance
in the worst case network channel scenario presented in Fig. 7
when only command data is encrypted.

Fig 13. Worst case percentage of time spent on cryptographic operations only
on command data with 256 bit key

 With this mitigation, SIV and EAX still fall short of
acceptability on large swarms. GCM and CCM perform

381

tolerably, and ChaCha20-Poly1305 again proves the superior
method.

V. CONCLUSIONS AND ONGOING WORK

 In the current swarm configuration and architecture,
analysis indicates that performing AE with GCM, CCM, SIV
or EAX is not feasible. GCM and CCM are only feasible by
accepting risk. The best choice by far is ChaCha20-Poly1305,
and it should be the AE choice in any scenario where
classified data is not being handled or created.
 Future work is needed to fully and accurately determine
the true effect of AE on swarm communications. The
following course of action is either planned or in progress:

• An NS3 model of the channel is being built. This
will allow a more in depth understanding of how
much capacity is actually available. It will be able to
model how distance, packet collision avoidance and
modulation affect throughput.

• An experiment has been designed to bombard an
ODroid with typical traffic through an 802.11n
connection. The amount of traffic will be increased
until a saturation point is discovered. This will help
determine how much processor margin is available
for cryptographic operations.

• Power consumption due to AE could prove
significant. An experiment is planned to measure the
impact AE has on battery life.

 Operating a swarm without communication security poses
too great a risk in almost any operation. Completion of this
work is essential for the ultimate success of UAV swarms in
any operational environment.

ACKNOWLEDGEMENT

 This work was funded and sponsored by the Consortium
for Robotics and Unmanned Systems Education and Research
(CRUSER)-Office of Naval Research (ONR).

REFERENCES
[1] T. H. Chung et al., "Live-Fly, Large-Scale Field Experimentation for

Large Numbers of Fixed-Wing UAVs," in IEEE International
Conference on Robotics and Automation (ICRA), Stockholm, Sweden,
2016.

[2] M.S. Faughnan et al., “Risk Analysis of Unmanned Aerial Vehicle
Hijacking and Methods of its Detection,” in Proc. of IEEE Systems and
Information Engineering Design Symposium, 2013, pp. 145-150.

[3] K. Hartmann and C. Steup, “The Vulnerability of UAVs to Cyber
Attacks-An Approach to Risk Assessments,” in Proc. of IEEE 5th
International Conference on Cyber Conflict, 2013, pp. 78-100.

[4] K. Mansfield et al., “Unmanned Aerial Vehicle Smart Device Ground
Control Station Cyber Security Threat Model,” in Proc. of IEEE
International Conference on Technologies for Homeland Security, 2013,
pp. 722-728.

[5] A. Javaid, W. Sun and M. Alam, “UAVSim: A Simulation Testbed for
Unmanned Aerial Vehicle Network Cyber Security Analysis,” in Proc.
of IEEE Globecom Workshop-Wireless Networking and Control for
Unmanned Autonomous Vehicles, 2013, pp.1432-1436.

[6] M. Clement, private communication, Dec. 2015.
[7] A. Vassilev, "Annex A: Approved Security Functions for FIPS PUB

140-2, Security Requirements for Cryptographic Modules," National
Institute of Standards and Technology, Gaithersburg, Maryland, 2016.

[8] H. O. Alanazi, et al., "New Comparative Study between DES, 3DES and
AES within Nine Factors," Journal of Computing, vol. 2, no. 3, pp. 152-
157, 2010.

[9] M. Dworkin, "NIST Special Publication 800-38D: Recommendation for
Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and
GMAC," National Institute of Standards and Technology, Gaithersburg,
Maryland, 2007.

[10] D. A. McGrew and J. Viega, "The Security and Performance of
Galois/Counter Mode (GCM) of Operation," in Progress in Cryptology -
INDOCRYPT 2004, Chennai, India, 2005.

[11] P. Rogaway and T. A. Shrimpton, “A Provable-Security Treatment of
the Key-Wrap Problem.” in Advances in Cryptology EUROCRYPT2006,
St. Petersburg, Russia. 2006, vol. 4004 of LNCS, pp.373-390.

[12] Švenda, P. (2016) "Basic comparison of Modes for Authenticated-
Encryption (IAPM, XCBC, OCB, CCM, EAX, CWC, GCM, PCFB,
CS)." [Online]. Available: https://www.fi.muni.cz/~xsvenda/docs/
AE_comparison_ipics04.pdf

[13] Modes Development. (2016, Mar. 24). National Institute of Standards
and Technology. [Online]. Available: http://csrc.nist.gov/groups/ST/
toolkit/BCM/modes_development.html#01

[14] N. Sullivan. (2015, Feb. 23). Do the ChaCha: better mobile performance
with cryptography [Online]. Available: https:// blog.cloudflare.com/do-
the-chacha-better-mobile-performance-with-cryptography/

[15] E. Bursztein. (2014, Apr. 24). Speeding up and strengthening HTTPS
connections for Chrome on Android [Online]. Available:
https://security.googleblog.com/2014/04/speeding-up-and-
strengthening-https.html

[16] D. Bernstein. “The Salsa20 family of stream ciphers” in New Stream
Cipher Designs, 2008, pp. 84–97.

[17] pycryptodomex 3.4.1 (n.d.) Cryptographic Library for Python. Python
Package Index. [Online]. Available: https://pypi.python.org/pypi/
pycryptodomex/3.4.2. Accessed Aug. 8, 2016.

[18] Module AES. (2016 Feb. 7) Pycryptodome.org. [Online]. Available:
http://legrandin.github.io/pycryptodome/Doc/3.4/Crypto.Cipher.AES-
module.html#MODE_CCM

[19] D. J. Bernstein et al. "The security impact of a new cryptographic
library." in International Conference on Cryptology and Information
Security in Latin America, Santiago, Chile, 2012, pp.159-176.

[20] WifiDocs/Adhoc. (2011, May 23). Ubuntu Documentation. [Online].
Available: https://help.ubuntu.com/community/WifiDocs/Adhoc

[21] AWUS036NEH. (n.d.) ALFA Network. [Online]. Available:
https://www.alfa.com.tw/products_show.php?pc=34&ps=22. Accessed
Aug. 11, 2016.

[22] M. A. Day et al., "Multi-UAV Software Systems and Simulation
Architecture," in International Conference on Unmanned Aircraft
Systems (ICUAS), Denver, Colorado, 2015.

[23] K. Thompson, “Bad APIs Cause Bugs,” in Zero Bugs and Program
Faster, 1st ed. Seattle: Kate Thompson Books, 2015, ch. 29, pp. 61-64.

382

A Back-end Offload Architecture for Security of
Resource-constrained Networks

Jiyong Han and Daeyoung Kim
School of Computing

Korea Advanced Institute of Science and Technology, KAIST

291 Daehak-ro, Yuseong-gu, Daejeon, Korea

Email: {jyhanzz, kimd}@kaist.ac.kr

Abstract—Recent years have seen the development of successful
internet of things (IoT) technologies based on an IP-enabled
6LoWPAN, which enables the extensive message exchange of
information generated from various applications such as health-
care, smart home, and factory automation. Because IoT devices
are closely related to the human life, they generally handle
critical data which must be protected from a malicious adversary.
However, a majority of IoT devices are resource-constrained
in terms of memory and computational ability, so that they
cannot provide heavy security protocols and authentication. To
protect connections over constrained networks, we introduce a
back-end offload architecture which offloads the processing of a
security protocol to a specified back-end offloader. The offloader
assists constrained devices back-end by handling the packets of
handshake procedure and encrypted application data. The load
balancing of offloaders and the protection of offload messages
are also provided in the design. The proposed architecture
allows an extremely constrained device to establish a secure
session by utilizing high-level authentications such as public key
infrastructure or certificate, without the burden of deploying
heavy security modules. This research would be advantageous
for incompetent nodes to support security and reduce cost at the
same time.

I. INTRODUCTION

The proliferation of internet of things (IoT) technologies

enables billions of objects to be connected online and to

exchange information over an IP-enabled 6LoWPAN network

which serves various applications such as health-care, smart

home, factory automation, even military. IoT devices are

expected to be closely related to the human life, which handles

critical data generated from such services. Thus the security

of resource-constrained networks should be counted as an

essential requirement, notwithstanding the fact that a majority

of devices participating the networks are mostly not able to

handle security connections due to their limited memory and

computation resources.

In order to support security to constrained devices, several

studies have explored lightweight solutions, centering around

datagram transport layer security (DTLS) [1] which is the de

facto security protocol for IoT. However, DTLS was originally

designed to protect traditional Internet services for resource-

rich devices. Thus, deploying DTLS as is in constrained

devices incurs considerable overheads. To overcome this prob-

lem, recent studies have focused on the new designs of authen-

tication architecture [2][3][4], security protocol optimization

[5][6], and protocol profiling for constrained networks [7][8].
Although much work has been done to date, more practical

and network-wide solutions need to be further studied to

enable the reliable establishment of secure connections, even

if a network device is extremely constrained to have a security

protocol inside. In addition, constrained devices should be

able to employ high-level authentications such as public key

infrastructure (PKI) and certificate.
The purpose of this research is to provide security to con-

strained nodes even if they cannot run heavy security protocols

with their own specification. To this end, we introduce a back-

end offload architecture which offloads the processing of a

security protocol to a specified back-end offloader (BeO). It

relieves constrained devices from managing security protocols

directly and also from authentication. The proposed BeO

assists a constrained device back-end by handling security

contexts instead of it, from handshake negotiation to the

encryption and decryption of application data. The commu-

nication between a constrained device and BeO is protected

safely with a symmetry secret key generated. Trust association

manager (TAM) controls BeOs and their allocations based on

the proposed load balancing scheme. With the aids of BeO,

heavy authentications can also be provided. This architecture

eventually allows constrained devices to not only establish

a simple secure connection but also be provided high-level

authentications and the load balancing of security processing.
Despite the difficulties on the use of security protocols in

constrained networks, security should be provided to protect

critical information related to our life. The proposed back-

end offload architecture would provide an alternative to the

problem of security supports in resource-constrained networks.
The rest of the paper is organized as follows: We introduce

the background in section II and explain a back-end offload

architecture in section III. Section IV discusses security con-

siderations and finally, section V concludes the paper.

II. BACKGROUND

We here provide a brief explanation of the security protocol

and limitations on providing security in constrained networks.

A. Resource-constrained Networks
IoT generally refers the network of heterogeneous nodes

from constrained devices such as small sensors which mainly978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

383

focus on single task (e.g. monitoring) to comparatively un-

constrained devices like smartphones and tablets. Compared

to traditional network nodes, resource-constrained nodes have

difficulties to provide a seamless communication with other

nodes of plenty resources. The IETF standard document [9]

specifies the terminology of a resource-constrained network

and the resource standard in terms of memory and energy

limitation. It defines the constrained node (CN) and the

constrained-node networks (CNN). Table I represents the

memory constraints of CNs. Note that CNs have maximum

250 kilobytes of code memory (e.g. Flash) and 50 kilobytes

of read and write memory (e.g. RAM). This paper mainly aims

at C0 and C1 devices which cannot deploy a security protocol

due to the lack of resources.

B. Datagram Transport Layer Security (DTLS)

DTLS is a security protocol for UDP datagram which

succeeds the major characteristics from traditional transport

layer security (TLS) [10]. This protocol is originally designed

to protect web application services; however, it is now actively

used for IoT devices which mainly have constrained resources.

Handshake procedure is similar with the one of TLS as shown

in figure 1. To provide the same features of the connection-

based protocol (TLS) to the connection-less protocol (DTLS),

DTLS explicitly uses a sequence number field. Several op-

tional messages (with a star mark) in handshake are used to

negotiate ciphersuite parameters in PKI and certificate based

authentication.

C. Limitations on Providing Security

Due to the limitations of CNs explained in II-A, they usually

have a little space for upper-layer applications even though

they load a lightweight operating system such as Contiki OS
1 or TinyOS2. The OS required around 100 kilobytes of ROM

and 15 kilobytes of RAM in our implementation on the 16-bit

MSP430 micro-controller platform. As for DTLS, it incurred

additional ROM and RAM overheads about 16 kilobytes and

5 kilobytes [11]. When it comes to the use of software-based

cryptography modules, about 20 kilobytes of ROM is addition-

ally consumed. PKI and certificate based authentications also

require additional overhead. For the PKI library, 16 kilobytes

or more ROM is needed [12] and for the certificate based

authentication, transmission and parsing become costly jobs.

Because of these constraints, C0, C1 even C2 devices cannot

deploy security protocols easily. Low-class devices cannot save

the space for security protocols, and even high-class level

devices cannot run protocols without considering performance

degradation. However, it is still important that C0 and C1

devices should be able to provide security.

III. ARCHITECTURE

In this chapter, we propose the overall design of the back-

end offload architecture. We first introduce the overview, then

explain the details.

1Contiki: [Online]. Available: http://www.contiki-os.org
2[Online]. Available: http://www.tinyos.net

TABLE I
CLASSES OF CONSTRAINED DEVICES

Name Code Size (e.g., Flash) Data Size(e.g., RAM)

Class 0, C0 <<100 KiB <<10 KiB

Class 1, C1 ∼ 100 KiB ∼ 10 KiB

Class 2, C2 ∼ 250 KiB ∼ 50 KiB

* KiB = 1024 bytes

Fig. 1. DTLS handshake procedure. Messages marked with * are optional.

A. Overview

The communication scenario can be summarized as follows.

• A CN (e.g. level C0, C1) communicates with a remote

end-point with an IP address (both IPv4 and IPv6).

• A remote end-point can be any nodes either constrained

or not, and located either inside or outside local network.

• A remote end-point can request a CN to obtain informa-

tion (e.g. value of deployed sensors) by using application

protocols such as CoAP [13] or LWM2M [14].

• A CN can report its status to a remote end-point by itself

(likely to be periodic).

The proposed architecture shown in figure 2 provides a

secure communication in above scenario even when CNs

cannot provide security. The proposed architecture enables

DTLS by back-end offloading, so that a CN can pretend to

be a powerful host with a security protocol, without the real

implementation in it. A CN has no ability to interpret secure

packets (i.e., DTLS packets); thus, it forwards packets to a

back-end offloader (BeO) which has ability. A BeO, assigned

to the CN beforehand, handles these packets instead of the CN

and forwards the result back. The communication data between

BeO and the CN is protected by a symmetry key generated

using a nonce provided from the trust association manager

(TAM) beforehand. With this procedure, the CN can finally

establish a secure connection with a remote host whenever it

cannot deploy a security protocol inside it.

Note that TAM and BeOs are also in the same network

with CNs. They have the IEEE 802.15.4 network stacks

and communicate with CNs. Our architecture allows multiple

BeOs in one CNN to guarantee many CNs can be provided the

security feature at the same time. Offloading requests of many

CNs are distributed to multiple BeOs and it is performed by

384

Fig. 2. Back-end offload Architecture for Security. (CN) is a constrained
node, (BeO) is a back-end offloader, (P) is a pan coordinator, and (GW) is a
gateway. Two CNs in the middle have finished the handshake procedure and
are now offloading the application data. All transactions are encrypted.

the proposed load balancing scheme. For overall supports, we

introduce a trust association manager and discuss its roles in

the next subsection.

B. Trust Association Manager

To manage BeOs effectively, we propose the trust associa-

tion manager (TAM) which in charge of providing secret keys

between BeOs and CNs. TAM is under the direct supervision

of a local CNN administrator and should be deployed at least

one in a CNN. TAM is specially required to have sufficient

resources to be able to manage secret keys and the load

balancing of BeOs.

When a CN which needs security assists joins a network,

it automatically registers itself to TAM, then TAM enrolls

the node id to a list of joined CNs. For this procedure, it

is required that the CN and TAM should share a master key

to protect messages between them. This key can be imprinted

from factory or securely deployed [15] from TAM. After this,

TAM finds a suitable BeO for the CN, and assigns it by

transmitting a nonce. This nonce is used for a symmetry key

generation between the CN and BeO. Using this key, the CN

offloads its security context to BeO in a secure manner and can

be provided protected information from a remote end-point. In

case that a CN cannot start a bootstrapping function, a local

CNN administrator can register and assign a BeO manually.

C. Back-end Offloading Procedure

In our back-end offloading architecture, we assume that

there should be at least one BeO in a local CNN and BeO

should not be resource-constrained. For the handling of offload

packets, a CN and BeO employ a tiny application which

takes charge of bootstrapping and exchanging offload request

and response. Note that all offload request and response data

are encrypted by a symmetry key generated beforehand to

guarantee security between a CN and BeO.

There are two network cases how a CN has a secure session

between a remote end-point, inbound and outbound. In the

inbound case, a remote end-point first asks a CN to retrieve

the information of sensor values. In the case of the outbound,

Fig. 3. Back-end Offloading Procedure. a) inbound and b) outbound. Offrq
means offload request, and Offrs is offload response. SP stands for security
protocol. All transactions are encrypted.

a CN reports its status (mainly periodically) to a remote end-

point by itself. As shown in figure 3-a), when a CN receives

a ClientHello from an end-point, it firstly distinguishes the

packet whether it is from a security protocol by inspecting

the incoming port. Then, the relevant packet is packed in a

offload request message (Offrq) and forwarded to BeO. BeO

establishes a DTLS connection with the end-point using an

IP address of the CN and let the CN knows the result with

the Established message within a offload response message

(Offrs). On the other hand, a CN initiates a secure session

with a remote end-point as shown in figure 3-b). It first sends

the Offrq message to BeO with a flag that indicates outbound,

and encloses an address information of the remote end-point.

Then BeO establishes a DTLS connection instead of the CN,

and notifies the handshake finish to the CN.

After a secure session is established, both communication

parties can exchange their application data safely under the

protection of a security protocol. Similar to handshake of-

floading, when a CN receives an encrypted application data, it

forwards it to the allocated BeO and waits for the decrypted

data. Likewise, when a CN wants to send an application data,

it transmits the data to BeO in the Offrq message. Then BeO

constructs a security protocol packet and forwards the packet

to the CN in the Offrs message. The CN simply removes the

Offrs and sends the protocol packet to the end-point.

When a CN or an end-point explicitly notifies a session

termination, the CN lets BeO knows the termination by

transmitting Finish message in the Offrq. When there is no

explicit session termination, BeO waits until the session time-

out reaches so that it can withdraw resources back and avoid

security dangers.

Since the communication from a CN to a remote end-

point is secured thoroughly, an adversary cannot eavesdrop

plaintexts between them. During whole procedure, a remote

end-point has no knowledge of BeO and only can assume that

a CN is directly communicating with it over a security protocol

(e.g. DTLS). Also a CN can initiate a secure session without

notifying the existence of BeO to the outside of a network.

Note that all offload-related transactions are encrypted by a

385

generated symmetry key.

D. End-point Authentication

CNs follow ciphersuites which BeO supports. Thus they

can employ high-level authentications such as public key

infrastructure (PKI) or certificate by letting BeO handles them

instead. Pre-shared key (PSK) is the most lightweight and

common authentication; however, a shared secret key has to

be provided to both entities beforehand, which restricts the

access of various end-points. Moreover, a shared key is used

only for one client-server pair; thus, it is not efficient in the

case of many pairs.

Meanwhile, PKI or certificate based authentication is mainly

considered for resource-rich devices due to big implementation

size and high requirements for processing, despite its conve-

nience of key provision and guaranteed secret (e.g. perfect

forward secrecy (PFS)). In the proposed architecture, BeO can

assist a CN to employ PKI or certificate based authentication.

Thus a CN can be provided upgraded security properties even

if it has limited capability.

E. Initiating Offloaders

We have pointed that BeO should be deployed at least one

in a CNN. Any nodes which have capability of managing

many secure sessions at the same time can be considered to

be BeO. A BeO candidate bootstraps by sending its node id

and the device specification to TAM. TAM identifies the node

and records it in the list of BeO candidates. Similar to CNs,

a master key between TAM is also provided to BeOs. The

device information sent to TAM is used for the decision of

the qualified offloader for a CNN. The priority of metrics

to become a BeO can also be adjusted. Until when TAM

determines that there are sufficient BeOs in a network, it

keeps selecting BeOs for the network. A network administrator

can also designate a BeO node manually without using the

function of TAM. When there are multiple candidates, TAM

can initiate multiple offloaders in one CNN. It mainly occurs

when there are many offload demands which one BeO cannot

handle connections reliably (e.g. low response time).

We assume that a pan coordinator does not act as BeO

even though there is a benefit which lightens the burden of

deploying another resourceful node (BeO) in the network. A

pan coordinator already has many jobs as a main controller,

such as device association, dissociation, assigning addresses,

and synchronization; thus, it is hard to entrust security opera-

tions to a coordinator. Moreover, it is vulnerable to an outside

attacks because a pan coordinator is more likely to be shown.

On the other hand, BeOs are basically hidden devices which

never disclose their network addresses to outside.

F. Load Balancing Offloaders

The designation of BeOs to CNs can be changed dy-

namically by the load balancer module of TAM when the

previously allocated BeO is found to be out of resources. The

change of network topology caused by the mobility of CNs

is also considered as a metric (hop distance). For this, TAM

Algorithm 1 The Load Balancing of BeOs

1: procedure BALANCER(numBeO,α, β)

2: for every BeOs k do
3: loadBeOk

←
∑numCN

i=1 γihi×loadi
capacityBeOk

4: end for
5: loadavg ←

∑numBeO
k=1 loadk
numBeO

6: for every BeOs k do
7: if loadBeOk

≤ α× loadavg then
8: flagk ← 0 � idle
9: else if loadBeOk

≥ β × loadavg then
10: flagk ← -1 � overload
11: else
12: flagk ← 1 � normal
13: end if
14: end for
15: end procedure

continuously monitors BeOs and determines whether they are

available or not. The load of a BeO is computed as line 3

in algorithm 1. Hop distance between the BeOk and each

connected CNi is represented as hi. The number of connected

CNs with the BeOk is numCN , and the traffic load of the

CNi is represented as loadi. A weight factor γi (∀γ ∈ [0, 1])
is multiplied to hi to reflect the network condition between

the BeOk and each CNi in real-time. If the quality of a

network is good (in terms of low delay, high packet delivery

rate, etc.), γ is set low. If not, γ should be set high to reflect

bad condition. Each γ is computed by BeO using various

condition parameters. For example, if a network is sensitive to

packet delivery rate (PDR), PDR parameter should primarily

be reflected to the computation of γ. Based on computed loads

of BeOs, TAM derives the average load as line 5 in algorithm 1

and determines whether the BeO is in idle, normal, or overload
status. The balancer computes two load boundaries, low and

high, which are derived using pre-determined parameters α
and β beforehand by administrator. Then the BeO is flagged

as shown in line 6-14 in algorithm 1.

When a new CN joins a network, TAM assigns the best

suitable BeO with the lowest score, among BeOs only with

idle or normal flags. The score is computed as a product of

the load of BeO and the hop distance between the BeO and

the new CN.

In the case of overload, TAM replaces the BeO with a

new available BeO (idle or normal) and notifies to CNs. An

overloaded BeO is not reallocated until its flag has changed to

others and CNs ask the new BeO to handle its security context

instead of former one. Proposed load balancing scheme for the

back-end offload architecture mitigates the load concentration

to one BeO and improves the overall network performance.

G. Session Management

BeO can have multiple connections from several CNs. To

manage these, BeO maintains the lists of connected CNs and

their sessions. This information is used in offloading until the

session terminates.

386

When BeO is overloaded and thus replaced, ongoing ses-

sions will not be terminated by force, rather BeO waits until

the session time-out reaches, claiming the sticky session. The

migration of sessions into idle or normal BeO might be

effective; however, its overhead would become more burden.

When a session finally expires after the application data

exchange, BeO should remove all information related to the

session only except when a node wants to cache certificate

information [16] or when it uses the session resumption

extension [17] to accelerate handshake performance.

There can be harmful sessions with end-points. If an end-

point is proved to be malicious, BeO stops offloading and

instructs a CN to drop packets from the host. In this process,

the CN blacklists the malicious host and reject a connection

from it in the future. The blacklist can also be provided to

CNs beforehand by administrator. In that case, CNs should

block all connections listed.

IV. SECURITY CONSIDERATIONS

The Security of an Offloader If BeO is compromised,

it can cause the serious malfunction and also can affect

related CNs. Then, TAM should immediately deprive the

qualification of BeO from the compromised node and notify

CNs to dismiss connections. All stored information related to

certificate caching and live sessions should be removed. After

the compromised BeO has been recovered, it can apply as a

candidate of BeO again. Note that a new symmetry secret key

should be regenerated.

The Security of TAM When TAM is compromised, CNs

cannot be provided a proper security assist, which deactivates

the key functionality of the proposed architecture. In this

case, TAM should be able to recover itself from attackers by

resetting the device, otherwise it should be quickly replaced by

an administrator. All registered BeOs and provided keys should

be initialized. Note that TAM should always be monitored.

The Security of End-points There are also risks in end-

points. When a CN is attacked, it must be isolated from other

nodes and BeO. All live connections should be terminated.

A recovered CN can rejoin the network and register itself to

TAM. In the case of a remote end-point, we require that it

must be protected and managed regularly by a remote operator

and should not store expired sessions or secret information.

Particularly, the end-point vulnerability is not only limited to

our architecture, but also relevant to general networks.

V. CONCLUSION

The main purpose of this study was to suggest a feasible

security architecture in resource-constrained networks, even

when CNs cannot support security protocols. We presented the

back-end offload architecture which allows a CN to establish a

secure session between a remote end-point, without the burden

of deploying a security protocol. This architecture introduces

the back-end offloader (BeO) and trust association manager

(TAM). Also it takes account of the load balancing of of-

floaders, reflecting the current load, hop distance, and network

conditions. The proposed architecture would be advantageous

for incompetent CNs to have security with low cost. This study

has taken a step in the direction of defining the architecture

itself; thus, extensive future experiments should evaluate the

performance of the proposed architecture and determine its

feasibility in a real world IoT system.

ACKNOWLEDGMENT

This work was partly supported by Institute for Information

& communications Technology Promotion (IITP) grant funded

by the Korea government (MSIP) (No.R01261610020001002,

Development of agro-livestock cloud and application service

for balanced production, transparent distribution and safe con-

sumption based on GS1) and supported by the MSIP (Ministry

of Science, ICT and Future Planning), Korea, under the ITRC

(Information Technology Research Center) support program

(IITP-2016-H8601-16-1007) supervised by the IITP.

REFERENCES

[1] E. Rescorla and N. Modadugu, “Datagram transport layer security
version 1.2,” 2012.

[2] R. Hummen, H. Shafagh, S. Raza, T. Voig, and K. Wehrle, “Delegation-
based authentication and authorization for the ip-based internet of
things,” in 2014 Eleventh Annual IEEE International Conference on
Sensing, Communication, and Networking (SECON), June 2014.

[3] R. Hummen, J. H. Ziegeldorf, H. Shafagh, S. Raza, and K. Wehrle,
“Towards viable certificate-based authentication for the internet of
things,” in Proceedings of the 2Nd ACM Workshop on Hot Topics on
Wireless Network Security and Privacy, ser. HotWiSec ’13. New York,
NY, USA: ACM, 2013.

[4] S. Gerdes, O. Bergmann, and C. Bormann, “Delegated coap authentica-
tion and authorization framework (dcaf),” IETF draftgerdes-core-dcaf-
authorize-02, 2014.

[5] S. Raza, D. Trabalza, and T. Voigt, “6lowpan compressed dtls for coap,”
in 2012 IEEE 8th International Conference on Distributed Computing
in Sensor Systems, May 2012.

[6] S. Raza, H. Shafagh, K. Hewage, R. Hummen, and T. Voigt, “Lithe:
Lightweight secure coap for the internet of things,” Sensors Journal,
IEEE, vol. 13, no. 10, 2013.

[7] T. Fossati and H. Tschofenig, “TLS/DTLS Profiles for the Internet of
Things,” Internet Engineering Task Force, Internet-Draft draft-ietf-dice-
profile-17, Oct. 2015, work in Progress.

[8] S. Gerdes, L. Seitz, G. Selander, and D. C. Bormann, “An architecture
for authorization in constrained environments,” IETF, Internet-Draft
draft-ietf-ace-actors-03, Mar. 2016, work in Progress.

[9] C. Bormann, M. Ersue, and A. Keranen, “Terminology for constrained-
node networks,” Internet Engineering Task Force (IETF), RFC, vol.
7228, 2014.

[10] T. Dierks, “The transport layer security (tls) protocol version 1.2,” 2008.
[11] J. Han, M. Ha, and D. Kim, “Practical security analysis for the

constrained node networks: Focusing on the dtls protocol,” in Internet
of Things (IOT), 2015 5th International Conference on the, Oct 2015.

[12] M. Sethi, J. Arkko, A. Kernen, and H.-M. Back, “Practical Consid-
erations and Implementation Experiences in Securing Smart Object
Networks,” Internet Engineering Task Force, Internet-Draft draft-aks-
lwig-crypto-sensors-00, Oct. 2015, work in Progress.

[13] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application
protocol (coap),” 2014.

[14] “Oma lightweight m2m,” 2016. [Online]. Available:
http://openmobilealliance.org/about-oma/work-program/m2m-enablers

[15] C. Kuo, M. Luk, R. Negi, and A. Perrig, “Message-in-a-bottle: User-
friendly and secure key deployment for sensor nodes,” in Proceedings
of the 5th International Conference on Embedded Networked Sensor
Systems, ser. SenSys ’07. New York, NY, USA: ACM, 2007.

[16] S. Santesson and H. Tschofenig, “Transport layer security (tls) cached
information extension,” Transport, 2015.

[17] R.Hummen, H.Wirtz, J.H.Ziegeldorf, J.Hiller, and K.Wehrle, “Tailoring
end-to-end ip security protocols to the internet of things,” in 21st IEEE
International Conference on Network Protocols(ICNP), Oct 2013.

387

Jose Alvarez and Stephane Maag
SAMOVAR, Telecom SudParis, Université Paris-Saclay

9 Rue Charles Fourier, 91000, Evry, FR
{jose alfredo.alvarez aldana,

stephane.maag}@telecom-sudparis.eu

Fatiha Zaı̈di
LRI-CNRS, Université Paris Sud, Université Paris-Saclay

15 Rue Georges Clemenceau, 91400, Orsay, FR
Fatiha.Zaidi@lri.fr

Abstract—Monitoring techniques have been deeply studied in
wired networks using gossip and hierarchical approaches.
However, when applied to a MANET, several problematics
arise. We present a hybrid distributed monitoring architecture
for MANETs. We get inspired of gossip-based and hierarchical-
based algorithms for query dissemination and data aggrega-
tion. We define gossip-based mechanisms that help our virtual
hierarchical topology to complete the data aggregation, and
then ensure the stability and robustness of our approach in
dynamic environments. We propose a fully distributed monitor-
ing protocol that ease the nodes communications. We evaluate
our approach by using NS3 and Docker.

1. Introduction

Network monitoring have been deeply studied in P2P,
DTN and others using gossip-based or hierarchical-based
approaches. However, when it is applied to a wireless
mobile ad hoc network (MANET), new problematics arise
mainly due to the absence of a centralized administration,
the inherent MANETs properties and the node mobility.
Some approaches propose a coordinator, nevertheless, due
to energy efficiency, infrastructure or other parameters, these
solutions are not always applicable.

While studying the monitoring of a network, the most
common and intuitive approach is to define a central node as
a coordinator for storage and processing of the observations.
This is notably proposed by [1], where the author surveys the
different communication mechanisms. These centralized ar-
chitectures might be efficient for certain type of topologies,
but become critical when considering dynamic topologies.
This is why there has been a lot of efforts on decentralized
monitoring. Gossip-based approaches show an extraordinary
robustness and stability in dynamic scenarios and changing
topologies. Nonetheless, depending on the scalability, the
cost and performance can be impacted. On the other side,
hierarchical approaches show an efficient performance, cost
and scalability, although the robustness and stability may de-
crease in dynamic scenarios. This shows that the two major
categories perform very good under different characteristics,
requirements and constraints of a network [7].

The main contribution of this paper is the proposal of a
hybrid algorithm for decentralized monitoring of MANETs.

We define an architecture combining gossip-based and
hierarchical-based algorithms for query dissemination and
data aggregation. We perform the gossip-based approach
to disseminate the query and in the process to build a
virtual hierarchical topology (VHT) for a time window.
Once the query is disseminated through all the network, with
the support of the VHT, a hierarchical-based aggregation
takes place. The second contribution of this paper is the
definition of a monitoring protocol that aims at helping a
decentralized monitoring process. Our expectation is not just
to provide a structure but also a mathematical background
for further model checking and testing. Our protocol has
been successfully assessed using NS3 and Docker.

The remaining of our paper is as it follows. In Section
2, we present our hybrid algorithm. In Section 3, we present
our implementation, with a semi-formal support for our
protocol. Next, in Section 4, we present some interesting
related works from which we got inspired. Finally, we
conclude and give some perspectives in Section 5.

2. Hybrid Monitoring Approach

Network monitoring can be described as “A number of
observers making observations, and wish to work together to
compute a function of the combination of all their observa-
tions” [1]. The goal is that all the nodes in the network
compute a value t !→ f(t) [R+∗ → X , X being the
domain targeted by f] in a given instant of time t in a
collaborative way. For our purposes, f is a linear and non-
complex function (e.g., the average CPU).

Our hybrid algorithm architecture consists in two net-
work states, the “query state” and the “aggregate state”.
The idea is to combine a gossip approach and a hierarchical
approach to achieve the monitoring of a property of the
network. The communication between the nodes to achieve
the monitoring of the network will be achieved through a
package previously defined. The idea is that a start node will
start the monitoring process by propagating a monitoring
query in a gossip approach. The approach chosen will be
described as epidemic. Each hop, the nodes will exchange
information creating a virtual hierarchical topology (VHT)
which will be valid only during the monitoring process.
Then based on this topology, the nodes will start aggregating

2016 IEEE 15th International Symposium on Network Computing and Applications

MANETs Monitoring with a Distributed
Hybrid Architecture

978-1-5090-3216-7/16/$31.00 ©2016 IEEE

388

the information by sending their results to the parent node.
Once the aggregation is done and has reached the start node,
there will be a global view of the measured property and the
VHT will no longer be usable. If the process starts again, a
new VHT will be derived. The purpose is to establish a VHT
during one time window, duration of the monitoring process,
to ease the analysis and the global view of the property.

2.1. Hybrid Architecture

2.1.1. Query State. The query state refers to the process of
propagating in an epidemic way the monitoring packet. This
state goal is to disseminate the query and the VHT layout to
allow the nodes in the network to do an accurate and efficient
aggregation in the next state. This query will be forwarded
in an epidemic approach to the nodes in the relay set. The
packet is explained in depth in Section 3, containing the
query itself but also the information to generate the VHT.
This will communicate all the network information to create
the VHT, which is the foundation of the following state of
the network. This process will go on until a node on the
edge of the network is reached.

Along this state, there are some specific challenges to
discuss. (i) The first challenge is if a node receives more
than one monitoring packet once it is already in a monitoring
state. For this, the node will take the first monitoring packet
and will discard all the subsequent monitoring packets.
(ii) The second challenge is, what if the propagation of
the query is interrupted by a node that remains in a cyclic
state. For this, we introduce a timeout for the packet to
avoid these problems. The idea is to provide a mechanism
to avoid loops in the communications. For this problem,
the timeout will be triggered and once reached, this node
will start the aggregation process by sending its result to
the parent node. (iii) The third challenge is the broadcast of
the packet itself. Due to the nature of the simple epidemic
dissemination approach, a packet will be forwarded to the
next hop of nodes but also to the parent node. We decided
that this will work as an acknowledgment of the child node
to the parent node. This way, the parent node will receive n
acknowledgments and he will know how many packets he
should wait for before changing to the aggregate state.

2.1.2. Aggregate State. Once the data is disseminated up
to the edge of the network, the edge nodes will change from
query state to aggregate state and will start sending recur-
sively their information to their parent up to the start node.
This process will be an aggregation of all the data of a node
and his children in order to collect the monitored values. The
aggregation will be computed in a hierarchical manner with
a combination when required of a gossip approach. A node
will compute based on his own observations the result of
the function f(x) that received from the query state. This
information will be aggregated with the same child nodes
information. In the edge nodes cases, where this state starts,
it will be done only with information from themselves.

Along this state, there are some specific challenges to
discuss. (i) The first challenge is when a parent node and

Initial Q1

Q2

A1A2A3

startMonitoring()/
SNDQuery

RCV Query/
SNDQuery

RCV QueryACK/
acc(ACK IP)

timeout()/
SNDAggregate

RCV QueryACK/
acc(ACK IP)

RCV Aggregate/
SNDAggregate

timeout()/
SNDAggregateRoute

timeout()/
SNDAggregateForward

timeout()/
AggregateForward

RCV AggregateACK/
done()

emptyForwards()/
error()

RCV AggregateACK/
done()

RCV AggregateACK/
done()

Figure 1: State machine definition of our protocol

a corresponding child node goes out of range from when
they first met. When the child node sends an aggregate
type of message and receives no acknowledgment it will
trigger a forward packet to the corresponding node. For this,
we will rely on the routing protocol of the network. This
makes our approach dependent on the routing layer of the
network and we will consider our own opportunistic routing
mechanism in forthcoming works. (ii) The second challenge
is when a parent node is off line. For this, we propose
that in the query state, a set of nodes are communicated
to every child node for them to have an alternative path.
Since the child node will have the relay set of the parent
node, he will fall back into one of these nodes to send
the information. Since it is a hierarchical approach, the
parent will send the information about his parents in the
VHT. (iii) The third challenge is when a node receives a
grandchild node aggregate information. For this, the node
will assume that the child node is off line and that he
will be aggregating that information. Given that the node
does not know the information of how many grandchild will
send information, he will also rely on the timeout before he
sends his own aggregate information. For every grandchild
packet he receives, he will restart the timeout to give time
for additional packages. If the timeout is reached, he will
continue with his aggregation process.

3. Experiments

3.1. Protocol Definition

The protocol definition, depicted in Figure 1, shows the
expected behavior of the protocol to support as base ground
for the hybrid monitoring architecture. The set of states is
Q = (Initial, Q1, Q2, A1, A3, A3). Where Initial is the
initial state. The states Q1 and Q2 refer to the query states of
the network. And the states A1, A2 and A3 refer to the ag-
gregate states of the network. The internal operations of the
automaton are startMonitoring(), acc(IP), timeout(), done()
and error(). The startMonitoring() refers to the process of
starting the monitoring. The acc(IP) refers to the process
of the node of accumulating the IP of the acknowledgment

389

messages source. This is used to identify while the query
is propagating if there are child nodes available for a given
node. If a node does not receive any acknowledgment, he
will continue the monitoring process by using a timeout.
The timeout() refers to the process of counting time since
the last package received. The done() refers to the restart
of the state of the node. Meanwhile, error() refers to the
process of not being able to send a message, which if it
happens, it means that the node itself is out of the network
range or a major outage is happening with the network. The
input and output operations of the automaton are determined
by sending (SND) and receiving (RCV) messages. The
possible messages to be sent or received are the query, query
ack, aggregate, aggregate ack, agregate route and aggregate
forward. The query message refers to the query itself and the
base ground of the query state. For simplicity purposes, in
the automaton, there is a distinction between the query and
the query ack message. But in reality, they are meant to be
the same package but received by a different node. This is
discussed in Section 2.1.1. The aggregate messages refer to
the aggregation process and the same principle applies as the
query messages. The aggregate ack message is an aggregate
message but received by a different node. Then we also
have two extra messages which are the aggregate route and
aggregate forward. The aggregate route message refers to the
process of routing a message through the network to the cor-
responding parent node in the VHT. As explained in Section
2.1.2, the idea is to make the hierarchical aggregation more
robust through the addition of a gossip routing approach to
route the package to the corresponding root node on the fly.
And finally, the aggregate forward message, which in the
case that the parent node is not found, probably because
the parent node went offline due to an outage or something
similar. In this case, the message will be forwarded to one of
the nodes defined in the relay set, which will be populated
by the grandparents and siblings.

3.2. Packet Definition

In order for the communication to be successful, we
need to define the monitoring packet. The packet will work
equally in both states of the network, query and aggregate
states, but different information will be sent depending on
the state containing a set of common properties. It needs
to contain some basic information in order to be useful
for the following nodes and hops. The definition of such
packet will be done using json. For each state of the nodes,
there will be a set of properties transmitted. There will be
a set of global properties that will always be transmitted.
These global properties are: 1) Type: the type of message
being sent, the set of values is listed in 3.1. 2) Parent: the
IP address of the parent node. 3) Source: the IP address
of the node sending the message. 4) Timeout: the timeout
value in milliseconds. For the query state the properties
transmitted are: 1) Function: the function f to compute.
2) Relay Set: the list of IPs for alternative paths, with at most
three items. For the aggregate state the properties transmitted
are: 1) Result: the result of the aggregation of the function f .

TABLE 1: Scenario 1 & 2 parameters

Scenario 1 Scenario 2

Number of nodes 10, 20, 25, 40, 50,
60, 75, 80 and 100

25

Network Space 500x500, 800x800
and 1,000x1,000

500x500

Network Positioning Grid (100m apart) Random
Running time 80s (init time 60s) 80s (init time 60s)
Emulation times 200 40
Mobility - RWP
Mobility Speed - 2m/s and 5m/s

2) Destination: the destination IP that should be the parent
IP for most of the cases, unless the parent node is off line,
then it will be a relay set IP. 3) Observations: the number of
aggregated observations. The json definition of the complete
package is the following:

{"type": "<type>", "parent": "<parent IP>", "source": "<source IP>",
"timeout": <ms>,
"query":{ "function": "<f(t)>", "relaySet": ["<IP list relay set>"] },
"aggregate":{ "outcome": "<monitoring result>", "destination": <destination IP>,
"observations": <number of observations> } }

3.3. Results

We evaluate our proposal using an emulator built in-
house based on DOCKEMU [9]. This emulator is a com-
bination between Docker and NS3, which allows to con-
duct highly scalable, replicable and robust experiments. The
testbed consisted in an implementation of the protocol in
the language Go, that was deployed on our emulator. The
idea was to determine the convergence time, by which we
mean the time it took from the moment that the monitoring
started by the root node, to the moment that the root node
was able to return a verdict. We defined two scenarios, one
scenario with no mobility and another with low mobility.
For this study, we are testing the implementation without the
mobility support. This means we do not consider states A2
and A3 of Figure 1. Scenario 1 and scenario 2 consider the
parameters of Table 1. For both scenarios the Mac Protocol
is 802.11a with a data rate of 54Mbps. Each node had
a range of ≈125m. Scenario 1 was designed to test the
convergence time, the scenario 2 to prove that due to the
high performance of the algorithm, we may monitor in a
mobile environment without the mobility support.

The emulator was running on top of an Amazon EC2
t2.large instance and Ubuntu 16.04. Versions in use were
Docker 1.12.1, NS3.25 and Go 1.6.2. The containers were
running as a base Ubuntu 16.04 LTS and IPv4.

3.3.1. Scenario 1. For our first scenario, we collected the
convergence time using a different root node as a starting
point in each run. We decided to use different root node se-
lected randomly to prove that it will work independently of
who the root node is. The results are summarized in Figure
2. We can point out that there is a clear relationship between
the number of nodes and the time it takes to converge. With
50 nodes to 100 nodes, the average value seems to stabilize
in around ≈2.15s. About the number of packets sent, we
empirically assumed that for the static environments, the
number would be twice the number of nodes. This can be
deducted because everyone will send their query message

390

Figure 2: Scenario 1 convergence results
TABLE 2: Scenario 2 results

Speed 2m/s Speed 5m/s
Average convergence time (ms) 2018.06 2123.63
Average observations (# nodes) 22.68 21.25
Success rate 0.8 0.4

one time and their aggregate message one time as well. The
variability of the nodes will occur when the mobility support
is added. For N nodes, the messages sent are 2∗N for static
environments. The average message size is ≈151 bytes.

3.3.2. Scenario 2. For the second scenario, we collected
the convergence time but also the amount of observations
collected by the root node at the end of each run. The results
are summarized in Table 2. We can observe that the nodes
converge about the same amount of time that they do in
a static environment. We observed that it would converge
but without all the possible observations on the network.
And on top of that, between the more the speed of the
nodes the lower the success rate would be. By success rate,
we define if the monitoring process was able to converge.
The algorithm has proved in static environments that is
capable of converging really fast, even though is not using
the mobility support, suggesting promising future results.

4. Related Works

MANET monitoring has been studied for many objec-
tives like their performances [2], to test them [3], their
security [4] and more recently their energetic efficiency [5].

Gossipico [10] is an algorithm to calculate the average,
the sum or the count of node values in a large dynamic
network. The foundation of the algorithm is through two
parts: count and beacon. The combination of these two
mechanisms provides the advantage for counting the nodes
inside a network in an efficient and quick way. Mobi-G
[8] is designed for urban outdoor areas with a focus on
pedestrian that moves around. The idea is to create the global
view of an attribute incorporating all the nodes in the net-
work. Nevertheless the accuracy decreases for an increasing
spatial network size. On the hierarchical categorization, we
can mention BlockTree [6], which is a fully decentralized
location-aware monitoring mechanism for MANETs. The
idea is to divide the network in proximity-based clusters,

which are arranged hierarchical. This approach scales with
the spatial network size and provides accurate results. In [7],
the main key points in architectural description for decen-
tralized monitoring mechanisms are depicted. However, it is
difficult to determine a better performer since both perform
better in diverse scenarios and workloads.

5. Conclusions
We have presented in this paper a hybrid algorithm for

monitoring decentralized networks that consists on the com-
bination of gossip-based and hierarchical-based algorithms.
The gossip-based approach is applied to disseminate the
query and the hierarchical approach is applied to aggregate
the data. Besides, with the help of a time-based hierarchical
approach, the computation of a global property is achieved.
We designed a scalable and configurable testbed using NS3
and Docker, based on DOCKEMU [9]. Our methodology
and results seem promising for a wide set of scenarios.

As future works, we intend to study the selection of the
root node. It could be based on location, energy, computing
power and other parameters, or to be an autonomous pro-
cess, proactively or reactively, or a manual process. Besides
we plan to introduce the mobility support and enhance the
testbeds to this specific cases. We also intend to consider
more complex functions in monitoring the MANETs inter-
operability. For this we need to define an optimal solution
to propagate a more complex function through our query
mechanism.

References
[1] G. Cormode. The continuous distributed monitoring model. ACM

SIGMOD Record, 2013.

[2] A. Mehrotra, A. Saxena, and M. Tolani. Performance comparison of
different routing protocols for traffic monitoring application. Inter-
national Journal of Computer Applications, 92(4), 2014.

[3] K. Merouane, C. Grepet, and S. Maag. A methodology for interop-
erability testing of a manet routing protocol. In 3rd Int. Conference
on Wireless and Mobile Communications, pages 5–5, 2007.

[4] A. Nadeem and M. P. Howarth. A survey of manet intrusion
detection & prevention approaches for network layer attacks. IEEE
communications surveys & tutorials, 15(4):2027–2045, 2013.

[5] S. Palaniappan and K. Chellan. Energy-efficient stable routing using
qos monitoring agents in manet. EURASIP Journal on Wireless
Communications and Networking, 2015(1):1, 2015.

[6] D. Stingl, C. Gross, L. Nobach, R. Steinmetz, and D. Hausheer.
Blocktree: Location-aware decentralized monitoring in mobile ad hoc
networks. In Local Computer Networks (LCN), 2013 IEEE 38th
Conference on, pages 373–381. IEEE, 2013.

[7] D. Stingl, C. Gross, K. Saller, S. Kaune, and R. Steinmetz. Bench-
marking decentralized monitoring mechanisms in peer-to-peer sys-
tems. In Proceedings of the 3rd ACM/SPEC International Conference
on Performance Engineering, pages 193–204. ACM, 2012.

[8] D. Stingl, R. Retz, B. Richerzhagen, C. Gross, and R. Steinmetz.
Mobi-g: Gossip-based monitoring in manets. In IEEE Network
Operations and Management Symposium (NOMS), pages 1–9, 2014.

[9] M. A. To, M. Cano, and P. Biba. Dockemu–a network emulation
tool. In IEEE 29th International Conference on Advanced Information
Networking and Applications Workshops, pages 593–598, 2015.

[10] R. Van De Bovenkamp, F. Kuipers, and P. Van Mieghem. Gossip-
based counting in dynamic networks. In International Conference on
Research in Networking, pages 404–417. Springer, 2012.

391

Secure Complex Monitoring Event Processing

Mehdi Bentounsi
LIPADE, Université Paris Descartes

Sorbonne Paris Cité, France

mehdi.bentounsi@parisdescartes.fr

Salima Benbernou
LIPADE, Université Paris Descartes

Sorbonne Paris Cité, France

salima.benbernou@parisdescartes.fr

Abstract—In this paper, we present EMaaS, for Event Man-
agement as a Service, a multi-tenant cloud service to outsource
the management of monitoring events in the cloud. Furthermore,
we provide a secure multi-party computation (SMC) protocol for
complex monitoring event processing. The protocol is integrated
to EMaaS and uses some properties of encryption schemes.
Finally, we evaluate the protocol security, and then discuss its
implementation.

Index Terms—Cloud Computing, Monitoring, Multi-Party
Computation, Encryption Schemes, Security by Design.

I. INTRODUCTION

Business processes (BPs) consist of companies’ core busi-

ness and are significant source of revenues. In such setting,

Business Process Management Systems (BPMSs) are software

platforms that support the definition, execution and tracking of

BPs [1]. Furthermore, BPMSs give health information about

the BPs they support at the runtime with the aim of helping

companies to (i) optimize and improve Quality of Service

(QoS) of their BPs, (ii) alert them in case of faults, and (iii)
identify the root causes of incidents.

BPs are implemented on top of IT infrastructures and are

highly dependent on their operations. Therefore, IT monitoring

software are integrated to BPMSs to recover and process

monitoring events generated by monitoring agents deployed

in infrastructures. From operational perspective, exploiting

monitoring events is time consuming and often requires human

operators to identify their origins and interpret their signifi-

cances. Thereby, a new generation of IT monitoring software

appeared with Nagios [2]. The goal was to limit number

of monitoring events by adding preprocessing filters at the

monitoring agent level. Thus, metrics are simply compared

to thresholds before generating monitoring events, e.g., “cpu
utilization is above 80%”.

Complex monitoring event processing (CMEP) is done

to have a higher level of knowledge on incidents. Indeed,

more complex faults, including several parameters at once,

can happen in infrastructures, e.g., “cpu utilization is
above 80%” in two separate servers which affects several

applications. Consequently, deployed agents in each server

can not detect the faults by analysing metrics separately. For

this purpose, a global correlation using a set of metrics and

predefined rules was proposed [3], [4], and several Event
Management Software (EMS) coming out on the market. We

can mention: IBM Tivoli Netcool/OMNIbus and BMC Event

Manager. However, the main obstacle to the broad adoption

of such systems by SMEs remains high capital expenditure

(CAPEX) and operational expenditure (OPEX).

Fig. 1. EMaaS Global Architecture.

EMaaS [5], [6], for Event Management as a Service, is a

cloud service which offers a sharing instance of EMS between

several SMEs in order to reduce CAPEX, and the outsourcing

of the operation to a specialized company in order to control

OPEX. As depicted in Figure 1, EMaaS is considered as a

multi-party cloud system [7], which consists in three parts:

(i) a public cloud platform, i.e., process curator, providing a

remote IT infrastructure to host the cloud service; (ii) a service

provider company that implements and operates the EMS

instances, i.e, process provider; and (iii) multiple organizations

outsourcing their EMS to the cloud, i.e, process consumers.

Basically, the security architecture of EMaaS is based on

the security perimeter of both process curator and consumers,

and the security of communication channel. Consequently,

this conventional security architecture ensures the security

against only external attacks. However, in a multi-party cloud

system as EMaaS, computations could occur between fully

trusted partners, partially trusted partners, or even between

competitors (see [8] for more details). In such context, when978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

392

two or more parties want to conduct computations based on

their private inputs, but neither party is willing to disclose

its own input to anybody else. This problem is referred to

as Secure Multi-party Computation problem (SMC) in the

literature [9].

To address these issues, we provide a SMC protocol to

ensure the security, i.e., confidentiality and integrity, of mon-

itoring events against curious and malicious adversaries, and

at the same time preserve data utility. Our contributions can

be summarized as follows: 1) We define a security model

of multi-party cloud system for complex monitoring event

processing taking into account semi-honest third party and

competitor attacks. 2) We provide a secure multi-party com-

putation protocol to ensure the confidentiality of monitoring

events against curious adversaries, and the integrity against

malicious competitors. 3) We discuss the integration of the

protocol in the architecture of EMaaS.

II. FORMALIZATION AND SECURITY DEFINITION

An EMS can be defined as a monitoring events database

coupled with a set of correlation rules. Formally,

Definition 1. (Monitoring Event) A monitoring event is a

timed sequence of data values regarding a given IT component.

A structured monitoring event is a tuple e = 〈v̄ci, v̄cm, ts〉
where: v̄ci = (vci0 , ..., vcii) are component identification values

with corresponding attributes āci ; v̄cm = (vcmi+1, ..., v
cm
n) are

metric values with corresponding attributes ācm ; and ts is a

temporal value indicating the starting timestamp of the event.

Definition 2. (Monitoring Events Table) Given a monitoring

events table T with a set of attributes {Ats, A1, . . . , An}, t [Ai]
refers to the value of attribute Ai for the tuple t. Attributes of

a table T are divided as follows:

• Timestamp Ats indicating when the information is col-

lected.

• Component-identifiers Aci represent attributes that can

be used (possibly with external information available to

the adversary) to identify the infrastructure component

associated with a tuple in a table. user id, IP address,

and hostname are examples of component-identifiers.

• Component-metrics Acm contain health information re-

gardling an infrastructure component. cpu utilization rate

is considered as health information.

Definition 3. (Correlation rules) A correlation rule can be

defined as a clause with a set of predicate, P , being in CNF

form with respect to a monitoring events table T , has the

following form:

P =
∧

1≤i≤n

⎛⎝ ∨
1≤j≤mi

P j
i

⎞⎠
where: P j

i is a single-literal clause having a form att op value
and op ∈ {=,≤, <,≥, >}. Each set of Pi’s are defined further

as: Pci = P1 ∧ ... ∧ Pα and Pcm = Pα+1 ∧ ... ∧ Pn, where:

Pci are only applicable to component-identifiers attributes Aci

when op ∈ {=}, and Pcm are only applicable to component-

metrics attributes Acm when op ∈ {=,≤, <,≥, >}.

Definition 4. (Adversary Model) We distinguish two adver-

sary models. Curious adversaries can eavesdrop on various

components of the system. These include: (i) the monitoring

events table which contains all information that the EMS stores

about the consumer, (ii) the communication channel which

has all information sent between the consumer and curator,

and (iii) the result of the processing. We consider adversaries

that can eavesdrop on consumer components as outside of our

attack model. However, malicious adversaries may not only

be able to eavesdrop on the communication channel but could

also insert fake monitoring events. We consider adversaries

that can change the monitoring events table and correlation

rules as outside of our attack model.

Definition 5. (Security Definition) To ensure confidentiality
we will show that the protocol uses a cryptosystem without

a key exchange, and the key-pair is stored inside the process

consumer security perimeter. Moreover, complex monitoring

event processing is done over encrypted component-identifiers

and the adversary should recover the key-pair or cryptanalysis

the system in order to infer them. To ensure integrity we will

show that there is a check in place (either by the server or by

the client) that an adversary with the specific resources cannot

pass without having to invert a one-way function.

III. SMC PROTOCOL FOR EMAAS

We outline a SMC protocol which consists of Five phases:

A) system setup phase, B) monitoring events anonymization

phase, C) correlation rules rewriting phase, D) results post-

processing phase, and E) key change phase.

A. System Setup

To initialize the protocol, each process consumer generates

a private key-pair and keyed hash function that are securely

stored, i.e., no key exchange is required. Thus, a key generator

KeyGenl(λ) outputs a key-pair (k, ḱ) of lenght l using a

security parameter λ and a hash function hashy(.). According

to the NIST, the longevity of such key-pair, in both symmetric

and asymmetric cryptosystems, is less than 2 years [10]. En-

cryption key-pair (k, ḱ) is unique for each process consumer.

Therefore, given two process consumers with corresponding

key-pairs (k1, ḱ1) and (k2, ḱ2), ciphertexts c, ć, and plaintexts

m, ḿ. We introduce collision propreties:

∀m : Encryptk1
(m) �= Encryptk2

(m)

∀c : Decryptḱ1
(c) �= Decryptḱ2

(c)

∃ḿ �= m : Encryptk1
(m) = Encryptk2

(ḿ)

∃ć �= c : Decryptḱ1
(c) = Decryptḱ2

(ć)

393

B. Monitoring Events Anonymization

We previously showed that a monitoring event contains

component-identification values and metrics. Metrics should

stay in clear without modification. This is due to the fact that

mathematical operations are basically done on these values.

However, component-identification values used to identify a

monitoring event must be encrypted using a deterministic
cryptosystem to ensure their anonymity and to guarantee data

utility (i.e., two consecutive encryptions of the same plaintext

output the same ciphertext). Based on the definition of a mon-

itoring event, we introduce a monitoring event transformation

function T to anonymize a monitoring event e by encrypting

component identification values and adding a control value to

authenticate events and avoid collision: T(e) = e∗, where e∗

represents the anonymized monitoring event. Formally,

Definition 6. (Monitoring Event Anonymization) Given a

key-pair (k, ḱ) and a monitoring event e = 〈v̄ci, v̄cm, ts〉. An

anonymized monitoring event e∗ = T(e) is defined as:

T(k,ḱ)(〈v̄ci, v̄cm, ts〉) = 〈Encryptk(v̄
ci), v̄cm, ts, ctl〉

where: Encryptk(v̄
ci) =

(Encryptk(v
ci
0), ..., Encryptk(v

ci
i)) are ciphertexts of

component identification values encrypted using the key-pair

(k, ḱ), v̄cm are metric values, ts is the starting timestamp,

and ctl = hashy(ts−1) is the keyed-hash value of previous

event timestamp.

After anonymization process, monitoring events are send

on-the-fly to process curator, through a VPN, to be stored

in the monitoring events table. The process curator is only

allowed to try to infer information about internal architecture

of process consumers and it is assumed not to return incorrect

or/and incomplete result, or alter the protocol in an attempt to

gain information. Moreover, the curator does not modify the

monitoring events table periodically updated by the process

consumers.

C. Correlation Rules Rewriting

Given the fact that monitoring events are anonymously

stored in the monitoring events table, correlation rules should

be rewritten (at the process consumer side) to take into account

the anonymized monitoring events. For that, single-literal

clauses Pci applicable to component-identifiers attributes Aci,

having a form att = value, are rewritten as follows: att =
Encryptk(value). This permits to identify monitoring events

when only equality operation is necessary.

However, regarding clauses Pcm applicable to component-

metrics attributes Acm, having a form att op value where:

op ∈ {=,≤, <,≥, >}, are not modified to permit mathemat-

ical operations. Moreover, transfering and processing these

information in clear will not permit to the adversary to

infer information about the internal architecture of the IT

infrastructure. Formally,

Definition 7. (Correlation Rule Rewriting) Given a key-pair

(k, ḱ) and a correlation rule P with respect to a monitoring

events table T where:

P =
∧

1≤i≤n

⎛⎝ ∨
1≤j≤mi

P j
i

⎞⎠
A correlation rule P ∗ with respect to an anonymized monitor-

ing events table T ∗ is defined as :

P ∗ = R(k,ḱ)(P)

P ∗ =
∧

1≤i≤n

⎛⎝ ∨
1≤j≤mi

Encryptk(P
j
i)

⎞⎠
If P j

i is applicable to a component-identifier Aci then

Encryptk(P
j
i) ≡ (att = Encryptk(value)) else

Encryptk(P
j
i) ≡ P j

i .

After rewriting process, correlation rules are stored in the

process curator. The process curator nor provider do not

modify the correlation rules set periodically updated by the

process consumers.

D. Results Postprocessing

The outputs of complex monitoring event processing will

be in the form of sets of anonymous event e∗. Anonymous

monitoring events sets should be recovered by the process

consumer, and then decrypted in order to generate alerts. For

this purpose, the key-pair (k, ḱ), generated at setup phase, is

used to de-anonymize monitoring events. Formally,

Definition 8. (Results Postprocessing) Given a key-

pair (k, ḱ) and an anonymous monitoring event e∗ =
〈Encryptk(v̄

ci), v̄cm, ts, ctl〉. A result monitoring event e
 =
T−1(e∗) is defined as:

T−1

(k,ḱ)
(〈Encryptk(v̄

ci), v̄cm, ts, ctl〉) =

〈Decryptḱ(Encryptk(v̄
ci)), v̄cm, ts, V erif(ctl)〉 =

〈v̄ci, v̄cm, ts, V erif(ctl)〉

Where the function V erif(ctl) permits to authenticate moni-

toring events.

E. Key change

The process consumer must change the key-pair (k, ḱ)
periodically. To do so a new key-pair (k◦, ḱ◦) is generated, and

during a period of time λ, monitoring events will be duplicated

and anonymized using both the old key-pair (k, ḱ) and new

key-pair (k◦, ḱ◦). Also for the correlation rules. At the end of

this period of time λ, only the new key-pair (k◦, ḱ◦) is used

to anonymize monitoring events and correlation rules.

394

IV. SECURITY ANALYSIS OF SMC PROTOCOL FOR CMEP

We briefly analyse the security of the proposed protocol.

More details will be given in an extended version of the paper.

Theorem 1. (Confidentiality) The protocol is as secure as
the symmetric cryptosystem used to cipher the compnent-

identification values.

PROOF SKETCH. Until the process consumer arrives to guar-

antee the confidentiality of the encryption/decryption key-pair

(k, ḱ), an adversary can not decipher component-identifiers

values for monitoring events and then infer sensitive informa-

tion. In addition, monitoring events are processed in the server

side as they are provided by the client and are never decipher

outside its security perimeter. However, the protocol is not

proven secure against brute force attacks, and according to

NIST recommendation the key-pair should be modified each

2 years.

Theorem 2. (Integrity) The protocol is as secure as the

keyed hash function used to calculate the control value in

anonymized monitoring events.

PROOF SKETCH. Until the process consumer arrives to guar-

antee the confidentiality of the keyed hash function hashy(.),
an adversary can not insert a new monitoring event instead of

a process consumer.

V. IMPLEMENTATION

To integrate the protocol to EMaaS, we used a transforma-

tion framework consisting in Three modules:

A. Correlation Rule Rewriting Module

Our approach to rewrite rules is based on a lightweight

agile parsing techniques supported by the TXL source transfor-

mation system. TXL [11] is a special-purpose programming

language designed to provide rule-based source transforma-

tion using functional specification and interpretation. TXL

programs have two main parts : a context-free grammar that

describes the syntactic structure of inputs to be transformed,

and a set of context sensitive, example-like transformation

rules organized in functional programming style. It consists

in Three phases:

1) A parsing phase to create an internal representation of

the correlation rule as a parse tree under control of

a context-free grammar. We use the SQL grammar to

construct parse trees.

2) A transformation phase to transform the parse trees cre-

ated by the parser under control of a set of example-like

transformation rules. At this stage, we identify attributes

that should be encrypted and we add corresponding

transformation rules using the key-pair (k, ḱ).
3) An unparsing phase to unparse the transformed parse

tree to text output with standard spacing and pretty-

printing under control of the grammar. We use the SQL

grammar to generate the new correlation rules.

B. Monitoring Events Anonymization Module

Plug-ins are implemented on existing monitoring tools in

order to anonymize events and transfer them to the probe

which syncs with the remote server. Using the key-pair (k, ḱ)
and a set of component identification attributes āci, the plug-

ins intercept monitoring events then encrypt corresponding

values. The keyed hash function hashy(.) permits to add a

control value to check and authenticate monitoring events.

C. Results Post-processing and Display Module

We show complex monitoring event processing results using

a web interface or a mobile application. In the two cases,

the web server and the web service are in the server side,

i.e., component identification values can not be decrypted.

Therefore, a plugin is necessary in the web browser (in

the client side) to permit to decipher identification values

and display alert. Based on the same principle, the mobile

application integrates a mechanism to store the key-pair (k, ḱ)
in order to decipher monitoring events and authenticate them

using hashy(.).

VI. CONCLUSION AND FUTURE WORK

This paper has introduced a SMC protocol for com-

plex monitoring event processing. Unlike conventional secu-

rity architectures, the protocol is secure in that component-

identification values are protected, it is “hard” for a curious to

infer sensitive information about process consumers IT infras-

tructure. Moreover, malicious can not perturb health informa-

tion of process consumers. As future work, we will evaluate

communication-computation-storage tradeoff between several

cryptosystems and different keylengths.

REFERENCES

[1] D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, and M. Shan,
“Business process intelligence,” Computers in Industry, vol. 53, no. 3,
pp. 321–343, 2004.

[2] C. Gaspar, “Deploying nagios in a large enterprise environment,” in LISA
2007, Dallas, Texas, USA, November 11-16, 2007, 2007.

[3] A. J. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma, and W. M.
White, “Cayuga: A general purpose event monitoring system,” in CIDR
2007, Asilomar, CA, USA, January 7-10, 2007, Online Proceedings,
2007, pp. 412–422.

[4] S. P. Miri, P. Garg, B. Schultz, S. K. Singhal, and M. Sivakumar, “Cross-
machine event log correlation,” 2013, patent WO/2013/039815.

[5] M. Bentounsi, “Business process as a service - bpaas: Securing data and
services,” Ph.D. dissertation, Université Paris Descartes, 2015.

[6] M. Bentounsi and C. S. Deme, “Procédé sécurisé d’analyse externe de
données d’exploitation d’une infrastructure de traitement de données,”
2015, french patent App 15.61009.

[7] M. Bentounsi, S. Benbernou, and M. J. Atallah, “Security-aware busi-
ness process as a service by hiding provenance,” Computer Standards
& Interfaces, vol. 44, pp. 220–233, 2016.

[8] W. Du and M. J. Atallah, “Secure multi-party computation problems
and their applications: a review and open problems,” in Proceedings of
the New Security Paradigms Workshop 2001, Cloudcroft, New Mexico,
USA, September 10-13, 2001, 2001, pp. 13–22.

[9] A. C. Yao, “Protocols for secure computations (extended abstract),” in
23rd Annual Symposium on Foundations of Computer Science, Chicago,
Illinois, USA, 3-5 November 1982, 1982, pp. 160–164.

[10] “Recommendation for key management,” National Institute of Standards
and Technology, Tech. Rep., 2012.

[11] J. R. Cordy, “The TXL source transformation language,” Sci. Comput.
Program., vol. 61, no. 3, pp. 190–210, 2006.

395

LIST OF AUTHORS

Agnihotri, Samar ... 246

Ahmad, Salman ... 22

Alchieri, Eduardo .. 89

Alston, Aubrey .. 85

Alvarez, Jose ... 388

Amarís, Marcos ... 326

Ança dos Santos, Maicon 31

Anceaume, Emmanuelle 216, 264, 318

Arantes, Luciana ... 1, 10

Araujo, Filipe ... 204, 363

Atwal, Kuldip Singh .. 148

Aïssaoui, François ... 170

Badache, Nadjib ... 232

Balu, Karan .. 52

Bao, Wei ... 162

Barve, Yogesh .. 153

Bassiouni, Mostafa .. 148

Bellamine Ben Saoud, Narjes 351

Ben Messaoud, Rim .. 249

Benbernou, Salima .. 392

Bentounsi, Mehdi .. 392

Benzaïd, Chafika ... 232

Bonnaire, Xavier .. 10

Bouhoula, Ahmed ... 76

Bourgeois, Julien ... 254

Caixinha, Daniel .. 140

Calyam, Prasad .. 22

Carvalho, Sidartha A. L. 242, 250

Cavalheiro, Gerson Geraldo H. 27, 31

Cavallero, Zac .. 118

Cerqueira de Abranches, Marcelo 343

Cheng, Ev ... 22

Christoforou, Evgenia 183

Colena, Mike .. 35

Cooperman, Gene 170, 351

Coriat, Florent ... 1

Correia, Miguel 39, 52, 60, 68, 191, 212

Cortés, Rudyar ... 10

Cunha, Daniel C. 242, 250

Daudjee, Khuzaima ... 237

de Camargo, Raphael Y. 326

Dehghani Samani, Hamid R. 334

Delicato, Flavia C. ... 162

Dolev, Shlomi .. 282

Domingues Garcia, Henrique 208

Drager, Steven L. ... 126

396

Du Bois, André .. 31

Duan, Sisi ... 272, 175

Dugeon, Olivier ... 113

Dupont, Sébastien ... 81

Dyab, Mohamed .. 326

Fernández Anta, Antonio 183, 224

Ferreira, Paulo ... 48

Filipe, Ricardo ... 363

Fladenmuller, Anne .. 1

Foerster, Klaus-Tycho 122

García-Martínez, Alberto 246

Gehani, Ashish .. 367

Georgiou, Chryssis .. 224

Ghamri-Doudane, Yacine 286, 294

Gillis, John ... 22

Gokhale, Aniruddha 153

Goldman, Alfredo 27, 326

Goldstein, Seth Copen 254

Gondim, João J. C. .. 89

Gouveia, Arnaldo .. 68

Gramoli, Vincent .. 310

Gran, Ernst Gunnar .. 101

Guedrez, Rabah ... 113

Guidoni, Daniel L. .. 18

Guleria, Ajay .. 148

Ha, Sean .. 118

Hager, Creighton ... 118

Hakiri, Akram .. 153

Hamdoun, Safa .. 286

Han, Jiyong .. 383

HoseinyFarahabady, M.Reza 334

Ivaki, Naghmeh ... 204

Jaeger, Demian .. 122

Jha, Sumit Kumar .. 126

Joaquim, André ... 212

Johnsen, Bjørn Dag ... 101

Kadioglu, Serdar .. 35

Kathiravelu, Pradeeban 140

Kazmi, Hasanat ... 367

Miyazawa, Flávio K. .. 93

Khendek, Ferhat .. 131

Kim, Daeyoung .. 383

Kochenderfer, Mykel 302

Konwar, Kishori M. .. 183

Lahoud, Samer ... 113

Lajoie-Mazenc, Thibaut.................................. 318

Lakhani, Hasnain .. 367

Laranjeiro, Nuno ... 204

Levin, Anna .. 81

Levitt, Karl .. 272

Lewis, Gene .. 302

Li, Wei .. 162

397

Li, Yun .. 272

Libório L. do Nascimento, Pedro P. 18

Lima, Rafael N. .. 242

Liu, Yaoqing .. 158

Lu, Chung-Chin .. 359

Ludinard, Romaric .. 318

Maag, Stephane ... 388

Magalhaes, Ashe .. 302

Magalhaes, Ashe .. 302

Marin, Olivier .. 1, 10

Massonet, Philippe .. 81

Matos, David ... 191

Mehta, Vineet .. 302

Meiss, Kourtney .. 22

Melo de Brito Carvalho, Tereza Cristina 43

Michot, Arnaud ... 81

Miers, Charles Christian 43

Mimura Gonzalez, Nelson 43

Mocquard, Yves 216, 264

Monteil, Thierry .. 170

Moussa, Mohamed Ali 294

Muscedere, Bryan ... 237

Mustafiz, Sadaf .. 131

Nan, Yucen .. 162

Natoli, Christopher ... 310

Naz, André ... 254

Nicely, Lucas .. 175

Nicolaou, Nicolas 183, 224

Okada, Thiago Kenji ... 27

Omezzine, Aya ... 351

Pacheco, Luis Alberto B. 89

Palma, Francis ... 131

Panwar, Nisha .. 282

Pardal, Miguel L. 52, 60, 212

Park, Kendall .. 22

Patil, Prithviraj ... 153

Pazzi, Richard W. .. 18

Pella, Stephanie Imelda................................... 109

Pessoa Negrão, André 48

Piranda, Benoît .. 254

Pires, Paulo F. .. 162

Rachedi, Abderrezak 286

Radhakrishnan, Srihari 237

Raposo, Diogo ... 60

Refaei, M. Tamer 85, 118

Robert, Samantha .. 264

Rodrigues, Luís .. 60

Rowe, Paul D. ... 302

Saïah, Amin .. 232

Schouery, Rafael C. S. 93

Sebbah, Samir .. 35

Sens, Pierre ... 10

398

Sericola, Bruno 216, 264, 318

Sghaier, Nouha .. 294

Shoker, Ali.. 199

Shyu, Ruey-Cheng .. 359

Silva, Eugénio A. ... 39

Silva-Filho, Abel G. 242, 250

Skeie, Tor ... 101

Solis Barreto, Priscila A. 89, 208, 343

Somnath, Ghosh .. 109

Stolz, David .. 122

Subramani, K. .. 126

Tahir, Rashid ... 367

Tari, Zahir .. 334

Tasoulas, Evangelos .. 101

Tazi, Saïd .. 170, 351

Tembine, Hamidou... 286

Texier, Géraldine... 113

Thompson, Richard B. 375

Thulasiraman, Preetha 375

Ticona Zegarra, Edson 93

Toeroe, Maria .. 131

Trystram, Denis... 326

Veeraraghavan, Prakash 109

Veiga, Luís .. 48, 140

Velasquez, Alvaro ... 126

Verma, Kshitiz ... 246

Villari, Massimo .. 81

Villas, Leandro ... 18, 93

Wadekar, Hitesh .. 158

Wang, Yidan .. 334

Wang, Yung-Chung .. 359

Wattenhofer, Roger ... 122

Weber, Dave ... 22

Wojciechowski, Piotr 126

Yazidi, Anis .. 76

Zaffar, Fareed ... 367

Zaïdi, Fatiha ... 388

Zhang, Haibin .. 175

Zomaya, Albert Y. 162, 334

399

