
SPADE - Scheduler for Parallel and Distributed Execution
from mobile devices

João Nuno Silva, Luís Veiga, Paulo Ferreira
INESC-ID / Technical University of Lisbon

{joao.n.silva, luis.veiga, paulo.ferreira}@inesc-id.pt

ABSTRACT
Mobile computing devices, such as mobile phones or even
ultra-mobile PC’s, are becoming more and more powerful.
Because of this fact, users are starting to use these devices
to execute tasks that until a few years ago would only be
executed on a desktop PC, e.g. picture manipulation, or
text editing. Furthermore, these devices, are by now almost
continuously connected, either by Wi-Fi or 3G UMTS links.
Nevertheless power consumption is still a major factor on
these mobile devices usage, restricting autonomy.

While users should be able to employ mobile computing
devices to perform these tasks with convenience, it would
improve performance and reduce battery drain if the bulk
processing of such tasks could be offloaded to remote hosts
accessible by the same user. To accomplish this, we present
SPADE, a middleware to deploy remote and parallel execu-
tion of some commodity applications to solve complex prob-
lems, from mobile devices, without any special programming
effort, and by simply defining several data input sets.

In SPADE, jobs are composed of simpler tasks that will
be executed on remote computers. The user states what files
should be processed by each task, what application will be
launched and defines the application arguments. By using
SPADE any user can, for instance, accelerate a batch im-
age manipulation by using otherwise idle remote computers,
while releasing the mobile device for other tasks.

In order to make SPADE usable by a wide set of computer
users we implemented two ideas: i) the execution code is a
commodity piece of software already installed on the remote
computers (e.g. image processing applications), and ii) the
definition of the data sets to be remotely processed is done
in a simple and intuitive way. The results are promising as
the speedups accomplished are near optimal, while reduc-
ing power consumption, and SPADE allows the easy and
efficient deployment of jobs on remote hosts.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distribu-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MPAC’08, December 1-5, 2008 Leuven, Belgium.
Copyright 2008 ACM 978-1-60558-364-8/08/12 ...$5.00.

ted Systems

General Terms
Computation offload, task scheduling, mobile devices

Keywords
Mobile computing, computation offloading, bag-of-tasks

1. INTRODUCTION
Mobile devices are becoming so powerful that some tasks

that previously were confined to desktop computers, are now
done while roaming. Mobile smart-phones are now power-
ful enough to execute real operating systems (e.g. Windows
Mobile, iPhone OS), allowing the execution of some produc-
tivity tools (e.g., text editing, image manipulation). Laptop
computers are also becoming more compact while having its
computing power increased. MID [6] devices or other ultra-
mobile devices, having display from 7 inches are now capable
of executing full featured desktop operating systems (Linux
or Windows).

Another characteristic of these devices, also borrowed from
desktop computers, is network connectivity. Due to 3G
UMTS and Wi-Fi wide availability, these devices can now
be almost constantly connected to the Internet. Such con-
nections are now cost effective and have speed on the order
of Mbit.

Even though these devices can execute most desktop ap-
plications, their execution speed is lower than on their desk-
top counterparts and drain more power from batteries than
less demanding applications. While batteries are becoming
more powerful, these new usage patterns reduce the effective
autonomy these devices have.

It would be good to still allow users to run such desktop
applications on their remote devices, while reducing power
usage and also reducing application execution time. This
can be accomplished taking advantage of, otherwise idle, re-
mote computers, also owned by the mobile user. The com-
munication between the mobile device and the remote desk-
top computer may use either Wi-Fi or 3G network links.

With SPADE, we present a tool that allows the remote ex-
ecution of common computing tasks on several remote com-
puters, otherwise executed on mobile devices. Users should
be able to speed the execution of tasks such as image ma-
nipulation by taking advantage of remote idle computers, re-
leasing the mobile device to other tasks and reducing power
consumption. We propose the application of techniques sim-
ilar to the ones used in Grid and Cluster computing, while

25

taking into account the particularities of mobile users.
On the area of scientific computing the offloading of com-

putations to more powerful remote computers is a good solu-
tion to speed lengthy jobs. Users are required to use specific
pre-installed applications. On a desktop environment, a user
owning several computers can install a cluster. The XGrid
middleware allows easy orchestration and job distribution
between computers. On mobile devices, if a user wished
to run applications with desktop speed, he would have to
initiate the computation on the remote computer using, for
instance, VNC. In this case, the data should be, not in the
mobile device, but already on the remote desktop computer.
The offloading of computations to remote hosts has been
proposed ealier, but involved the evaluation and adaptation
of application source code.

Remote execution of generic software packages may seem
impractical and without standard use, but there are several
applications whose data can be easily partitioned and sev-
eral instances of the application executed in parallel. The
scope of commodity software that can be executed in a more
powerful remote environment (single computer or cluster)
ranges from ray tracing systems (such as POV-Ray) to video
or image processing (ImageMagick) or even statistical pack-
ages. For instance batch image manipulations using the Im-
ageMagick package can be executed on another computer, as
long as it has the same software installed. The user defines
the arguments to apply to each image conversion, SPADE
uploads the images to a remote computer and invokes the
installed ImageMagick application there, conveying the ar-
guments defined by the user. The resulting files are down-
loaded after the conversion is complete.

In this paper we present SPADE, a system that facilitates
the execution of commodity software on remote idle comput-
ers in order to reduce the time it would take on a mobile de-
vice, while reducing power consumption. These jobs should
be executed by commodity applications, invocable from a
command line. They can be composed by a single lengthy
task or by multiple tasks whose parameters differ on only a
numerical values or file. The owner of the CPU providers
(and mobile device) must register their applications (e.g., R,
POV-Ray) on the SPADE system. When a mobile device
has a complex job to be executed on remote computers, the
user supplies SPADE with the different input files and the
parameters that should be provided to that task. SPADE
is responsible for uploading the necessary input files to the
remote host, executing the selected application and down-
loading the result file. If the user has a batch of files to be
processed, SPADE can also be used. The user only needs
to supply a generic command line that is parameterized to
each task. Such command lines can differ on the input file or
on a numerical value. SPADE will upload the files, with the
corresponding command line, to the remote available com-
puters. After processing, resulting files are downloaded back
to the mobile device, possibly on-demand.

The definition of usable applications and jobs, and how
they are possibly divided, is made using a simple user inter-
face, allowing any user with minimum computer knowledge
to do it. The selection of the available hosts, where remote
tasks are executed, is performed in a easy transparent way.

In the next section, we present current systems that try
to provide a way to use remote spare cycles. In section 3,
we enumerate the requirements a cycle sharing system must
comply with in order to become useful and widely used. In

Section 4, we describe the SPADE architecture, its imple-
mentation and execution. In the last sections we present
SPADE evaluation and draw some conclusions.

2. RELATED WORK
In the area of cluster computing, some developments have

been made on middleware to allow easy deployment of ap-
plications over several computers. One of those tools is
Xgrid [1]. Xgrid allows the use of several computers as a
cluster, providing a tool to launch and distribute parallel
computations. Even though XGrid allows an easy distribu-
tion of work, for each job, users have to write a configuration
file with corresponding parameters. There is no way to de-
fine generic parameters that are later instantiated to each
os the tasks.

On a grid, schedulers like Condor [8] or GLOBUS [5] allow
launching of lengthy jobs on remote computers, users write
a launching definition file and the middleware is responsible
for selecting the best available hosts to execute the tasks.
In order to use remote infrastructures users are required to
have the necessary authorizations and credentials. Ganga [4]
is a python application that allows graphical definition of
the tasks to be executed on a remote cluster. Users either
define a single lengthy task (processing application and pa-
rameters), or define all tasks that compose the jobs. When
defining several tasks, users must supply different parame-
ters to each one. There is no way to define a generic set of
arguments and parameterize them to each task.

Grid infrastructures have strong authentication mecha-
nisms that are required on a public conventional installa-
tion, having users with different requirements and roles. On
a simple environment where all computers (mobile device,
from where tasks are launched, and remote computers) are
owned and administered by the same user, such a heavy so-
lution is over demanding. Implementing a simpler authen-
tication method instead, security would still be guaranteed
with limited overhead.

Mobile grids may be a solution to the problem of offloading
lengthy tasks from mobile devices . Recent work on mobile
grids, such as Mobile OGSI.NET [3] or Akogrimo [11], has
been centered on the integration of services with mobile de-
vices. Their aim is to develop infrastructures to help the
deployment of distributed applications running on mobile
devices and accessing remote services.

The approach used to develop mobile computing systems,
consisted on splitting the application on components (e.g.
ICrafter [9]). The user interface runs on the mobile device
and the computing intensive parts running on a remote com-
puter. This approach reduces the burden on the mobile de-
vice but requires the application to be specially developed
targeting the mobile environment.

Process offloading has already proved to reduce power con-
sumption [10], but required the analysis and adaptation of
application source code as proposed by Zhiyuan Li [7]. The
system proposed performs code analysis in order to discover
functions that would be executed faster if offloaded to a re-
mote host. Rajesh Krishna Balan [2] presents a language to
simplify the adaptation of applications, so that they can be
easily offloaded from mobile devices, to allow cyber foraging.
The presented solution is composed of: i) a language to de-
fine how the application should be split; ii) a middleware for
management of every distributed application; and iii) stub
generators for the modules that should be offloaded. With

26

these modules, programmers can modify any application so
that part of it can be executed on a remote host.

In summary, even though such code offloading solutions
provides good results, they all require modifications at the
application source code level.

Presently, no tool allows the efficient execution of unmodi-
fied commodity applications from mobile devices, taking ad-
vantage of remote devices, to speed them and reduce power
consumption.

3. SPADE REQUIREMENTS
As a tool to offload computations to remote computers,

SPADE is most useful to those who have lengthy tasks to
perform: lengthy single task jobs, repetitive data analy-
sis, or long processing of large batches of files. Users with
such requirements range from scientists who need to process
batches of data, to the hobbyist who needs to create thumb-
nails for his collection of photos, or to designers who need to
generate a detailed image using ray tracing tools. All these
users have in common the fact that they are literate in some
sort of tool (statistical package, image manipulation tool or
image generator) but are not proficient in programming par-
allel or distributed applications.

The jobs we propose to accelerate, by executing them on
remote machines, should have data that is naturally par-
titioned: the scientist and the hobbyist have their data or
images in different files, while the artist knows how to tell
the ray tracer to generate only a small sub-set of the picture.

Without the existence of remote computers to host their
processing, the data files that are present on the mobile de-
vice would be processed slowly or would have to wait until
the user had direct access to a desktop computer. Besides
usability, in order for SPADE to be useful it is necessary that
whenever a user has a job to complete, there are enough re-
mote hosts willing to provide their idle CPU cycles. In order
to accomplish this, it is only necessary that applications to
be used are installed on desktop computers owned by the
mobile user.

3.1 Applications
One of the most relevant factors for the success of a sys-

tem like SPADE is the amount of applications that can be
executed in it. Such applications exist in most areas: statis-
tical analysis, simulation, image processing, image or video
generation.

R is a language environment for statistical computing and
graphics. This environment processes scripts written in the
R language. SPADE is useful in situations where a user
has several scripts to execute in the R environment or has a
script that must evaluate several data sets. In the R com-
mand line interface, a user can define the input and output
files as well as other R variables, allowing the easy interac-
tion of the SPADE system with the R program.

ImageMagick packages a set of image manipulation tools
that run with the same interface (command line arguments)
on most desktop operating systems. When a user wants
to apply the same transformation (for instance, color cor-
rection, or border generation) to a batch of images, one of
the ImageMagick applications would have to be executed
for each file. A non-expert user would sequentially process
every image while SPADE would execute each image trans-
formation on different hosts in parallel.

POV-Ray is a ray tracing image generator that processes

User Interface

Job Manager Host Discovery

Communication

Task Execution

User Interface

Host Discovery

Communication

Application
Manager

App1App2

Task Execution

13
2

4

5

Mobile device Cycle provider

Figure 1: SPADE System Architecture

text files describing 3D scenes and generates the correspond-
ing image. POV-Ray may also generate a sequence of images
that can be used to create a movie. It runs on a variety of
operating systems delivering the same results on every one
and has shell commands for the definition of the viewport
or the timestep to be rendered. Image rendering may take
advantage of a system such as SPADE, by distributing the
rendering of small parts of the final image on different com-
puters, while a movie generation could also be accelerated
by rendering each frame in parallel.

The LATEX typesetting language can also be used through
SPADE. The user supplies the input files (source, and image
files) that are processed on a remote host. Thus speeding
the compilation.

Obviously, other tools such as audio or video processing
tools can also be safely used with SPADE.

3.2 Input Data Definition
Besides the definition of jobs with only one task, SPADE

user interface allows the definition of jobs with multiple
tasks, each one possibly processing different data. We present
some examples of data partition requirements most SPADE
target users have:

• Each task processes a different input file, also gener-
ating a different output file. This category includes
batch image processing or statistical analysis of differ-
ent data sets.

• Each task has a numerical argument ranging from 0
to N. This numerical value can be a task identifier or
its transformation. In the case of a movie generation
with POV-Ray, this numerical argument may repre-
sent the timestep of the frame being generated within
the movie.

• Each task has several numerical arguments generated
as a function of the task identifier. The rendering of a
complex image can be parallelized giving to each task
the responsibility to generate a piece of the output
image. For instance, a task would render a view from
(0, 0) to (1023, 511) while another task would generate
the view from (0, 512) to (1023, 1023). This example
represents a two-dimensional space sweep but a one-
dimensional space sweep should also be possible.

Any combination of these examples could be used to define
a job task.

4. SPADE SYSTEM
A SPADE daemon must be running in each cycle provider

(desktop computer), on the mobile device (consumer com-

27

puter) only the client needs to be executing. Their architec-
ture is presented in Fig. 1.

As stated earlier, SPADE relies on commodity software
installed on the cycle providing computers. It is the re-
sponsibility of the Application Manager to keep a record of
the software accessible by remote SPADE clients. Before
receiving a processing task, the computer owner must regis-
ter the application in order to make it available do SPADE
(step 1 on the Cycle Provider). The user has to provide
the path to the application and its well know name (latex,
for instance). Whenever there is a task to be executed, this
module is contacted to provide the path to the executable.

Before submitting any job from the mobile device, the
user must register one desktop that will later be responsible
for executing those jobs (step 2). Other available remote
computers can be added manually or discovered through an
already registered computer.

The user provides the Job Manager module with all infor-
mation regarding the job to be executed over the network
(step 3). This information includes the application’s well-
known name, its arguments and the files (input or output
files) that should be transmitted over the network. The
user must also state how many tasks form the complete job.
Then, this module submits each task to the Task Execution
module and keeps track of every task state (not started,
started or finished). The Task Execution module chooses
where to execute each task (step 5). Remote computers
are selected from the information provided by the Host Dis-
covery module (step 4). The communication module is re-
sponsible for all communication and data transfer between
SPADE daemons.

4.1 SPADE Implementation
SPADE was implemented in Python; the XML-RPC li-

brary was used to perform all communication between SPADE
daemons (but any other programming language that pro-
vided some sort of RPC mechanism could have been used).
In Fig. 2, we present the UML class diagram of an executing
daemon.

SPADEBackend

HostDiscovery

Host RemoteTaskThread

JobApplication

UI

Task

SPADEDeamonThread

*

*

*

**
*

1

1

1

1

1

1

11
1

1

executeRemotely

solves

*

Figure 2: UML class diagram

SPADEBackend is the class that encapsulates all SPADE
daemon behavior. It receives requests from the user interface
module to register new applications and new jobs. SPADE-
Backend has a list of Applications containing the well known
name of each application and the path to the corresponding
executable.

Each Job object stores the corresponding application and
the set of tasks that make it. Each Task object contains all
the information necessary to its local or remote execution:
arguments, input files data and output file name.

The UI class handles all user interaction. This interface
was developed using wxwidgets, making it compatible with

several operating systems.
On every cycle provider, there is a Host Discovery mod-

ule that is responsible for the discovery of other daemons
on the same network. It was implemented with a simple
class (HostDiscovery) that performs network broadcasts in
order to find other SPADE daemons. On the mobile device
the Host Discovery module contacts the remote hosts whose
identifications were provided by the user, in order to fetch
the addresses of all the other cycle providers discovered .

In order to allow parallel execution of several tasks, for
every remote cycle provider that has the required applica-
tion, a remote RemoteTaskThread thread is created. Each
RemoteTaskThread contacts the corresponding SPADE dae-
mon, delivering the input files and the shell command and
receiving the result file.

4.2 Job Submission
Before any job submission to SPADE, it is necessary that,

on the cycle providers, the user has previously registered the
applications that can be executed. This is accomplished by
providing the location of the executable and a name.

In order to define the jobs that will be executed, the user
must first select the necessary application, the location of
the input files and what files should be transmitted to the
remote hosts. The user then has to fill the form presented
in Fig. 3 to define the command line of each task.

When filling the Command Line, Task Input File and Task
Output File the user can use %(ID)d placeholder to represent
the task identifier. Later, for each task this placeholder will
be replaced with the correspondent task identifier. In the
Command Line field the user can also use the %(INFILE)s

or %(OUTFILE)s placeholders that will later be replaced by
the actual input and output file names. These placeholders
allow the definition of a different command line for each task
but are not flexible enough.

In example presented in Fig. 3 the actual arguments for
each task would be:

-resize 200 img0.jpg thumb-img0.jpg

-resize 200 img1.jpg thumb-img1.jpg

...

-resize 200 img299.jpg thumb-img299.jpg

In order to allow the easy definition of a two-dimensional
space sweep, the user can define the limits of that space

Figure 3: Job submission user interface close-up

28

:SPADEBackend :HostDiscovery :SPADEDeamonThread

:Job

execute()

getHosts()

:RemoteTaskThread

getNextTask()

executeRemotely()

For each task
For each host

Figure 4: Job execution UML sequence diagram

(Min X, Max X, Min Y and Max Y and on how many slices
that space will be split in. On the Command Line, Task
Input File and Task Output File fields the user will use the
%(MINX)s, %(MAXX)s %(MINY)s or %(MAXY)s placeholders to
represent the limits of the space that each task is responsible
for. In the Parameter Substitution field the user can write
a simple function with a transFunc(i, nTasks) interface,
where i will be the actual task identifier and the nTasks

is the total number of tasks. For each task identifier, the
returned value will replace the %(NEWPARAM)s placeholder.
Then, actual values of each placeholder will be calculated
for each task, guaranteeing that all the parameter space is
covered.

4.3 Job Execution
Whenever a job is created by means of the form presented

in Fig 3, an object of class Job is created and populated with
all its tasks; each object of class Task will have the necessary
information: command line and input and output files. In
Fig. 4, we present a Job execution UML sequence diagram.
After the Job object creation and initialization, a thread is
created. This thread will get a list of hosts (get_hosts())
that have SPADE installed and the corresponding job ap-
plication . Then, for each host discovered, a RemoteHost-
Thread is created. Each one of these threads will fetch tasks
(getNextTask()) and send the necessary data to the remote
host (executeRemotely()).

In order to execute the task, the remote host must receive
the following information: the name of the input and output
files, the task identification and the command line without
the placeholders replaced. Besides this, the actual contents
of the input file should also be transferred to the remote
host.

After receiving all information and data the SPADEDea-
monThread creates a temporary directory and copies the
input file there. The actual command line is built taking
into account the executable location and the temporary di-
rectory where the input file is. The placeholders %(INFILE)s
and %(OUTFILE)s are replaced with the concatenation of the
temporary directory and the files names. After the gener-
ation of the actual command line the task is executed, the
result output file is read and its contents returned to the
cycle consumer host.

Every task may be in one of three possible states: not
started, started and finished. When a task is executed its
state changes from not started to started, until receiving
the result of its execution, the state of a task remains in the
started state, changing to finished after the reception of its

4.72
3.50

2.65

1.57

0

100

200

300

400

PC Laptop 1 2 3 4
Computers through SPADE

tim
e

(s
)

Figure 5: Job execution time (values on top of bars
represent speedups relative to Laptop time)

results. In order to guarantee that all tasks are executed,
after all tasks are initiated (no more tasks in the not started
state) the previously started tasks are sent to available re-
mote hosts. This way, duplicate results may be received,
but there is the guarantee that all tasks will finish.

4.4 SPADE Evaluation
In order to evaluate the usability of SPADE and the pos-

sible speedups we used SPADE to create thumbnails for 300
1600x1200 pixel JPG images, each one with 260Kb of size.
Each thumbnail is generated by executing the convert util-
ity from the ImageMagick suit, from this resulted a 4Kb file.
The mobile system used consisted on a eeePC laptop with
a 900 MHz Intel Celeron Mobile processor and 512 Mbyte of
memory running the Xandros Linux distribution. As cycle
providers (remote computers) we used Pentium 4 at 3.2 GHz
with 1 Gbyte of RAM computers running Microsoft Win-
dows XP. The laptop was connected to the cycle providers
by a Wi-Fi wireless link and 100Mbit network.

The time to sequentially convert all 300 images on the mo-
bile device is 450 s, on a desktop computer these conversions
took 100 seconds. The same job executed within SPADE but
on a single remote computer took about 280 s. For this job
the data transmission overhead is about 180 seconds. In this
extreme example the transmission time is almost twice the
processing time on a remote computer. Despite this, even
from the use of one remote computer substantial gains are
obtained. By using more remote hosts, the gains are more
noticeable as shown in Fig. 5 (speedup of 2.56 with only two
computers).

The offloading of jobs to remote computers also brings
gains on power consumption and battery duration. In order
to evaluate this, after fully charging the batteries, we exe-
cuted the maximum of thumbnails generations, until battery
depletion. This way we can evaluate what method (local or
remote processing) spends less energy.

Tasks Duration (m)
Idle 184

Local 7560 160
SPADE 9467 175

Table 1: Battery capacity

On table 1 we can observe that while executing the tasks
remotely, more tasks were executed, meaning that each re-
mote tasks spent less energy than the local counterpart.

29

The evaluated example is extreme (high data transmission
time versus remote processing time ratio), but good results
were obtained. On other scenarios, the results (speedups
and consumed power) can be even better.

With respect to usability factors, the job creation inter-
face is sufficient for most jobs a common user may have.
The user is capable of defining jobs, where each task re-
ceives as parameter the task identifier and where different
files are processed by each task as well as easily define a one
or two-dimensional space partition. The writing of the Pa-
rameter substitution function requires some programming
knowledge, but by providing some transformation function,
any user can adapt them to its needs.

5. CONCLUSIONS
We presented a system that offloads long computations

from mobile devices to remote computers, without requiring
any special programming skills from the user. This way, it
is possible to free the mobile device to other tasks, speed
the execution of those tasks and reduce the required power
consumption.

These tasks are those solved by commodity software that
can be invoked from the command line. These software
packages should be installed on several remote computers,
owned by the mobile computer user. SPADE speeds a job’s
execution by sending the data to one or several remote com-
puters. Each data file is processed on a remote computer.
The definition of these data files and every task parame-
ter is done in a simple but efficient way. The user neither
needs to know how to program distributed or parallel appli-
cations, nor has to deploy and install a centralized complex
infrastructure.

Our main contribution is the use of a mechanism that
allows easy offloading of time and power consuming tasks
from mobile devices to remote idle computers. From our
results even short tasks can be executed on remote hosts
with gains: i) the remote tasks total execution times (data
transmission and computation) are lower than if computed
on the local device, and ii) the electric power necessary to
transmit the data to a remote host is lower than the used
in a local computation. Taking this into account, SPADE
can be a viable solution to the execution of jobs from mobile
devices.

If connected by a slower network link, speedups can not
be as good. Transmission of batches of tasks and results
can overcome the network link speed. Instead of sending
one task at a time to each remote computers, the distri-
bution of tasks can be performed in two steps: i) sending
tasks in a batch to one remote computer, ii) distributing
tasks to worker computers through a local area network link.
The reception of results can also be performed in a similar
way: after a task finishes, its result is sent to the computer
responsible for aggregating them; later, the mobile device
downloads all the results from one single remote computer.

By using remote computers owned by the mobile user, the
threats associated with mobile code (both to the owner of
the tasks and to the owner of the host computer) are not
present: the computing environment is well known (guar-
anteeing the correctness of the results) as well as the code
to be executed remotely (guaranteeing the nonexistence of
malicious code). Even though, simple identification and au-
thorization mechanisms should be implemented.

SPADE can be used as a metascheduler, allowing the ex-

ecution of tasks on existing grid infrastructures. Jobs could
be uploaded to a remote computer (owned by the mobile
user) and forwarded to available computers within a grid
infrastructure. The mobile device would be released from
the burden of client grid software, but the user could still
benefit of higher performance.

6. REFERENCES
[1] Apple Computer, Inc. Xgrid - the simple solution for

distributed computing.
http://apple.com/macosx/features/xgrid/.

[2] R. K. Balan, D. Gergle, M. Satyanarayanan, and
J. Herbsleb. Simplifying cyber foraging for mobile
devices. In MobiSys ’07: Proc. of the 5th international
conference on Mobile systems, applications and
services, pages 272–285, New York, NY, USA, 2007.
ACM.

[3] D. Chu and M. Humphrey. Mobile ogsi.net: grid
computing on mobile devices. Grid Computing, 2004.
Proc. Fifth IEEE/ACM International Workshop on,
pages 182–191, November 2004.

[4] U. Egede, K.Harrison, R. Jones, A. Maier, J. Moscicki,
G. Patrick, A. Soroko, and C. Tan. Ganga user
interface for job definition and management. In Proc.
Fourth International Workshop on Frontier Science:
New Frontiers in Subnuclear Physics, Italy, September
2005. Laboratori Nazionali di Frascati.

[5] I. Foster. Globus toolkit version 4: Software for
service-oriented systems. In IFIP International
Conference on Network and Parallel Computing, pages
2–13. Springer-Verlag, 2005.

[6] Intel Corporation. Mobile internet devices (mids).
http://www.intel.com/products/mid.

[7] Z. Li, C. Wang, and R. Xu. Computation offloading to
save energy on handheld devices: a partition scheme.
In CASES ’01: Proc. of the 2001 international
conference on Compilers, architecture, and synthesis
for embedded systems, 2001. ACM.

[8] M. Litzkow, M. Livny, and M. Mutka. Condor - a
hunter of idle workstations. In Proc. of the 8th
Intl.Conf. of Distributed Computing Systems. IEEE
Computer Society, June 1988.

[9] S. Ponnekanti, B. Lee, A. Fox, P. Hanrahan, and
T. Winograd. Icrafter: A service framework for
ubiquitous computing environments. In Proc. of the
3rd Intl. Conf. on Ubiquitous Computing.
Springer-Verlag, 2001.

[10] A. Rudenko, P. Reiher, G. J. Popek, and G. H.
Kuenning. Saving portable computer battery power
through remote process execution. SIGMOBILE Mob.
Comput. Commun. Rev., 2(1):19–26, 1998.

[11] M. Waldburger, C. Morariu, P. Racz, J. Jähnert,
S. Wesner, and B. Stiller. Grids in a mobile world:
Akogrimo’s network and business views. Praxis der
Informationsverarbeitung und Kommunikation (PIK),
30(1):32–43, Jan 2007.

30

