
Partial Utility-Driven Scheduling for Flexible
SLA and Pricing Arbitration in Clouds

Jos�e Sim~ao and Lu�ıs Veiga,Member, IEEE

Abstract—Cloud SLAs compensate customers with credits when average availability drops below certain levels. This is too inflexible

because consumers lose non-measurable amounts of performance being only compensated later, in next charging cycles. We propose

to schedule virtual machines (VMs), driven by range-based non-linear reductions of utility, different for classes of users and across

different ranges of resource allocations: partial utility. This customer-defined metric, allows providers transferring resources between

VMs in meaningful and economically efficient ways. We define a comprehensive cost model incorporating partial utility given by clients

to a certain level of degradation, when VMs are allocated in overcommitted environments (Public, Private, Community Clouds).

CloudSim was extended to support our scheduling model. Several simulation scenarios with synthetic and real workloads are

presented, using datacenters with different dimensions regarding the number of servers and computational capacity. We show the

partial utility-driven driven scheduling allows more VMs to be allocated. It brings benefits to providers, regarding revenue and resource

utilization, allowing for more revenue per resource allocated and scaling well with the size of datacenters when comparing with an

utility-oblivious redistribution of resources. Regarding clients, their workloads’ execution time is also improved, by incorporating an SLA-

based redistribution of their VM’s computational power.

Index Terms—Cloud computing, community clouds, service level agreements, utility-driven scheduling, VM allocation, VM scheduling

Ç

1 INTRODUCTION

CURRENTLY cloud providers provide a resource selection
interface based on abstract computational units (e.g.

EC2 compute unit). This business model is known as Infra-
structure-as-a-Service (IaaS). Cloud users rent computa-
tional units taking into account the estimated peak usage of
their workloads. To accommodate this simplistic interface,
cloud providers have to deal withmassive hardware deploy-
ments, and all themanagement and environmental costs that
are inherent to such a solution. These costs will eventually be
reflected in the price of each computational unit.

Today, cloud providers’ SLAs already establish some
compensation in consumption credits when availability, or
uptime, fall below a certain threshold.1 The problem with
availability is that, from a quantitative point of view, it is
often equivalent to all-or-nothing, i.e., either availability
level fulfills the agreed uptime or not. Even so, to get their
compensation credits, users have to fill a form and wait for
the next charging cycle.

Some argue that although virtualization brings key bene-
fits for the organizations, full migration to a public cloud is
sometimes not the better option. A middle ground approach
is to deploy workloads in a private (or hybrid) cloud. Doing

so has the potential to limit costs on a foreseeable future
and, also important, keeps private data in-premises. Others
propose to bring private clouds even closer to users to pro-
vide a more environmentally reasonable, or cheaper to cool
and operate, cluster [1], [2].

1.1 Overcommitted Environments

Fig. 1 shows what means to bring the cloud closer to the
user. Small, geo-distributed near-the-client datacenters (pri-
vate, shared) save money, the environment, and reduce
latency by keeping data on premises. This kind of vision is
sometimes referred as community cloud computing (C3)
[3], which can take advantage of previous research in peer-
to-peer and grid systems [4]. Nevertheless, many of the fun-
damental research and the technological deployments are
yet to be explored.

From a resource management point of view, these new
approaches highlight two issues. In one hand, the deploy-
ment sites are more lightly resourced [5], [6], either because
the hardware is intrinsically less powered or the hardware
layer is made of unused parts of deployments already used
for other tasks. So, overcommitment, which is commonly
used in virtualized environments [7], [8], [9], will become
more frequent. Techniques such as dynamic resource alloca-
tion and accurate cost modeling must be researched to man-
age this kind of clouds. Because of the federated and low-
cost nature, overcommitment of resources is perhaps a more
common (and needed) scenario than in public clouds. Sec-
ond, in such environments therewill bemany classes of users
which, in most cases, are willing to trade the performance of
their workloads for a lower (or even free) usage cost.

To overcommit with minimal impact on performance
and maximum cost-benefits ratio, cloud providers need to
relate how the partial release of resources will impact in the

1. http://aws.amazon.com/ec2-sla/

� J. Sim~ao is with INESC-ID Lisboa and Instituto Superior de Engenharia de
Lisboa (ISEL). E-mail: jsimao@cc.isel.ipl.pt.

� L. Veiga is with INESC-ID Lisboa/Instituto Superior T�ecnico, Universi-
dade de Lisboa. E-mail: luis.veiga@inesc-id.pt.

Manuscript received 4 Feb. 2014; revised 4 Oct. 2014; accepted 1 Nov. 2014.
Date of publication 20 Nov. 2014; date of current version 7 Dec. 2016.
Recommended for acceptance by I. Bojanova, R.C.H. Hua, O. Rana, and
M. Parashar.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TCC.2014.2372753

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. 4, OCTOBER-DECEMBER 2016 467

2168-7161� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

workload performance and user satisfaction. While users
can easily decide about their relative satisfaction in the pres-
ence of resource degradation, they cannot easily determine
how their workloads react to events such as peak demands,
hardware failures, or any reconfiguration in general.

As private clouds become more frequent in medium and
large scale organizations, it is necessary to promote a fair
use of the available resources. Usually, these organizations
are made of several departments, working on different proj-
ects. Each project has a budget to rent computational shared
resources. For example, Intel owns a distributed compute
farm that is used for running its massive chip-simulation
workloads [10]. The various Intel’s projects that need to use
the infrastructure purchase different amount of servers. Also
in this context, it is relevant to know how each department
values or prioritizes each of its workloads, which will influ-
ence the price they are willing to pay for the execution
environment.

All-or-nothing resource allocation is not flexible enough
for these multi-tenant multi-typed user environments, espe-
cially when users may not know exactly how many resour-
ces are actually required. While no one complaints because
there is no real market, it does not mean there is no room
for improvements in more flexible pricing models that can
foster competition and entry of smaller players. Like other
telecommunications and commodity markets before, such
as electricity, the still emergent Cloud market is still seen by
some as an oligopoly (hence not a real market with an even
playing field) because it still lacks a large number of big
suppliers [11]. From the provider or owner point of view,
this is important if there can be cost reductions and/or there
are environmental gains by restricting resources, which will
still be more favorable than simply delaying or queuing
their workloads as a whole.

Both memory and CPU/cores [9], [12], [13] are common
targets of overcommitment. The two major approaches
consist of adapting the resources based on current observa-
tion of the system performance or using predictive meth-
ods that estimate the best resource allocation in the future
based on past observations. Others incorporate explicit or
implicit risk-based QoS requirements and try do decide
which requested VMs should be favored but depend on
non-deterministic parameters (e.g. client’s willingness to
pay) and make uncommon assumptions about the
requested VM characteristics (e.g. homogeneous types)
[14], [15]. Moreover they do not consider the partial utility
of applying resource allocation, i.e., that reducing shares
equally or in equal proportion may not yield the best over-
all result.

1.2 Scheduling Based on Partial-Utility

In this work we propose to schedule CPU processing capac-
ity to VMs (the isolation unit of IaaS) using an algorithm
that strives to account for user’s and provider’s potentially
opposing interests. While the users want their workloads to
complete with maximum performance and minimal cost,
the provider will eventually need to consolidate workloads,
overcommitting resources and so inevitably degrading the
performance of some of them.

The proposed strategy operates when new VM requests
are made to the provider, and takes the user’s partial utility
specification, which relates the user’s satisfaction for a given
amount of resources, and correlates it with the provider
analysis of the workload progress given the resources
applied. This gives an operational interval which the pro-
vider can use to maximize the user satisfaction and the need
to save resources. Resources can be taken from workloads
that use them poorly, or do not mind in having an agreed
performance degradation (and so pay less for the service),
and assign them to workloads that can use them better, or
belong to users with a more demanding satisfaction rate
(and so are willing to pay more).

We have implemented our algorithm as an extension to
scheduling policies of a state of the art cloud infrastructures
simulator, CloudSim [8], [16]. After extensive simulations
using synthetic and real workloads, the results are encour-
aging and show that resources can be taken from work-
loads, while improving global utility of the user renting cost
and of the provider infrastructure management.

This paper extends a previous one [17] by (i) enhancing
and detailing the cost model and discussing how different
utility matrices can be compared; (ii) comparing the pro-
posed strategy with a more comprehensive list of utility-
oblivious algorithms; (iii) detailing the implementation in
CloudSim; (iv) presenting the results of a larger set of data-
center configurations. In summary the contributions of this
work are the following:

� An architectural extension to the current relation
between cloud users and providers, particularly use-
ful for private and hybrid cloud deployments;

� A cost model which takes into account the clients’
partial utility of having their VMs release resources
when in overcommit;

� Strategies to determine, in a overcommitted scenario,
the best distribution of workloads (from different
classes of users) among VMs with different execu-
tion capacities, aiming to maximize the overall utility
of the allocation;

� Extension of state of the art cloud simulator. Imple-
mentation and evaluation of the cost model in the
extended simulator.

1.3 Document Roadmap

The rest of the paper is organized as follows. Section 2 starts
by framing our contributions with other related works. In
Section 3 we describe our utility model and in Section 4 the
scheduling strategies are presented. Section 5 discusses the
extensions made to the simulation environment in order to
support our requisites. Section 6 discusses the development
and deployment in the simulation environment of CloudSim,

Fig. 1. Cloud deployments: From heavy clouds to small, geo-distributed
near-the-client datacenters.

468 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. 4, OCTOBER-DECEMBER 2016

and presents the results of our evaluation in simulated work-
loads. Section 7 presents our conclusions andwork to address
in the future.

2 RELATED WORK

With the advent of cloud computing, particularly with the
infrastructure-as-a-service business model, resource sched-
uling in virtualized environments received a prominent
attention from the research community [18], [19], [20], [21],
[22], addressed as either a resource management or a fair
allocation challenge. At the same time the research commu-
nity has built simulation environments to more realistically
explore new strategies while making a significant contribu-
tion to repeatable science [8], [16], [23].

The management of virtual machines, and particularly
their assignment to the execution of different workloads, is a
critical operation in these infrastructures [24]. Although vir-
tual machine monitors (VMM) provide the necessary mecha-
nisms to determine how resources are shared, finding an
efficiency balance of allocations, for the customer and the pro-
vider, is a non trivial task. In recent years a significant amount
of effort has been devoted to investigate new mechanisms
and allocation strategies, aiming to improve the efficiency of
Infrastructure-as-a-Service datacenters. Improvements to
allocation mechanisms at the hypervisor level, or in an
application’s agnostic way, aim to make a fair distribution of
available resources to the several virtual machines running
on top of an hypervisor, with intervention over CPU and
memory shares or I/O-relatedmechanisms [7].

We can organize this research space in two main catego-
ries: (i) scheduling with energy awareness, which is usually
transparent to the client; (ii) scheduling with negotiated ser-
vice-level objectives, which has implications in the client
and provider goals. In this paper we focus on the second
category, but both topics can benefit by our approach. The
following is a briefly survey of these two areas.

Scheduling with energy awareness. A low-level energy-
aware hypervisor scheduler is proposed in [25]. The sched-
uler takes into account the energy consumption measured
based on in-processor events. It considers the dynamic
power, which can change with different scheduling deci-
sions (unlike leakage power which is always constant). A
common approach is to use dynamic voltage and frequency
scaling (DVFS). Typically, a globally underloaded system
will have its frequency reduced. But this will have a nega-
tive and unpredictable impact on other VMs that, although
having a smaller share of the system, are using it fully. To
avoid inflicting performance penalties on these VMs, recent
work [26] proposes extensions to the credit scheduler so
that the allocated share of CPU to these smaller but over-
loaded VMs remains proportionally the same after the
adjustment. Nevertheless, recent findings [27] show that fre-
quency scaling and dynamic voltage have a small contribu-
tion on the reduction of energy consumption. Instead,
systems based on modern commodity hardware should
favor the idle state.

Others determine which is the minimum number of serv-
ers that needs to be active in order to fulfill the workload’s
demand, without breaking the service level objectives [8],
[28], [29]. Meng et al. [28] determine which are the best VM

pairs to be co-located based on their past resource demand.
Given historic workload timeseries and an SLA-based char-
acterization of the VM’s demand, they determine the num-
ber of servers that need to be used for a given set of VMs.
Beloglazov and Buyya [8] detect over and under utilization
peaks, and migrate VMs between hosts to minimize the
power consumption inside the datacenter. Mastroianni
et al. [29] have similar goals with their ecoCloud, but use a
probabilistic process to determine the consolidation of VMs.
These solutions usually impose constraints on the number
of VMs that can be co-located and do not use client’s utility
to drive allocation, missing the opportunity to explore com-
binations with advantage to both parties, provider and cli-
ents, that is, higher revenue per resource (which is on the
provider’s interest) and more progress for each dollar payed
(which is on the clients’ interest).

Scheduling with service-level objectives. Clouds inherit the
potential for resource sharing and pooling due to their
inherent multi-tenancy support. In grids, resource alloca-
tion and scheduling can be performed mostly based on ini-
tially predefined, a priori and static, job requirements [20].
In clouds, resource allocation can also be changed elastically
(up or down) at runtime in order to meet the application
load and effective needs at each time, improving flexibility
and resource usage.

To avoid strict service level objectives violations main
research works can be framed into three methods: (i) statis-
tical learning and prediction; (ii) linear optimization meth-
ods; (iii) and economic-oriented strategies.

Resource management can also be based on microeco-
nomic game theory models, mostly in two directions: i)
forecast the number of virtual machines (or their character-
istics) a given workload will need to operate [30], [31] and
ii) change allocations at runtime to improve a given metric
such as workload fairness or the provider’s energy costs
[22]. Auction-based approaches have also been proposed
in the context of provisioning VMs [32], [33], [34] when
available resources are less abundant than requests. Com-
mercial systems such as the Amazon EC2 Spot Instances
have adopted this strategy. Costache et al. [35] proposes a
market where the users bid for a VM with a certain
amount of resources. To guarantee a steady amount of
resources, their system migrates VMs between different
nodes which has the potential to impose a significant per-
formance penalty [36].

In [14] clients choose the SLA based on a class of risk,
which has impact on the price the client will pay for the
service—the lower the risk the higher the price. Based on
this negotiation, an allocation policy would be used to
allocate resources for each user, either minimizing the
risk (of the client) or the cost (of the provider). They are
however unable to explicitly select the VM or set of VMs
to degrade. In [15] a method is presented to decide which
VMs should release their resources, based on each client
willingness to pay for the service. This approach is simi-
lar to our work but they assume that some amount of
SLA violations will occur because they demand the victim
VM to release its full resources. They try to minimize the
impact on the user’s satisfaction, based on a probabilistic
metric, decided only by the provider. Moreover, they
assume homogeneous VM’s types and with explicitly

SIMeAO AND VEIGA: PARTIAL UTILITY-DRIVEN SCHEDULING FOR FLEXIBLE SLA AND PRICING ARBITRATION IN CLOUDS 469

assessed different reliability levels, which in uncommon
in cloud deployments.

Seokho et al. [37] focus on datacenters that are distrib-
uted across several sites, and use SLAs to distribute the
load among them. Their system selects a data center accord-
ing to a utility function that evaluates the appropriateness
of placing a VM. This utility function depends on the dis-
tance between the user and the datacenter, together with
the expected response time of the workload to be placed.
Therefore, a VM request is allocated in the physical machine
that is closest to the user and has a recent history of low uti-
lization. For network bounded workloads, their system
could integrate our approach by also considering the partial
assignment of resources, eventually exchanging locality
(and so, smaller network delays) by, for example, a small
deferment in the workload finish time.

SageShift [38] targets the hosting of web services, and
uses SLAs to make admission control of new VMs (Sage)
based on the expected rate of co-arrival requests. In addi-
tion, it presents an extension to an hypervisor scheduler
(Shift) to control the order of execution of co-located VMs,
and minimize the risk of failing to meet the negotiated
response time. Also in the case of Sage, no alternative strat-
egy exists when the system detects that a new VM cannot
strictly comply with a given SLA.

Flexible SLAs. In conclusion, our work is the first that we
are aware of that clearly accepts, and incorporates in the
economic model, the notions of partial utility degradation
in the context of VM scheduling in virtualized infrastruc-
tures, such as data centers, public, private or hybrid clouds.
It demonstrates that it can render benefits for the providers,
as well as reduce user dissatisfaction in a structured and
principled-based way, instead of the typical all-or-nothing
approach of queuing or delaying requests, while still able to
prioritize user classes in an SLA-like manner.

3 A PARTIAL UTILITY MODEL FOR CLOUD

SCHEDULING

Our model uses a non-linear, range-based, reduction of util-
ity that is different for classes of users, and across different
ranges of resource allocations that can be applied. We name
it partial utility.

To schedule VMs based on the partial utility of the clients
we have to define the several elements that constitute our
system model. The provider can offer several categories of
virtual machines, more compute or memory optimized. In
each category (e.g. compute optimized) we consider that
the various VM types are represented by the set
VMtypes ¼ fVMt1 ; VMt2 ; VMt3 ; . . .VMtmg. Elements of this set

have a transitive less-than order, where VMt1 < VMt2 iff

VirtualPowerðVMt1Þ < VirtualPowerðVMt2Þ. The function

VirtualPower represents the provider’s metric to advertise
each VM computational power, along with details about a
particular combination of CPU, memory and storage capac-
ity. For example, Amazon EC2 uses the elastic compute unit
(ECU) which is an aggregated metric of several proprietary
benchmarks. Other examples include the HP cloud compute
unit (CCU).

Currently, infrastructure-as-a-service providers rent vir-
tual machines based on pays-as-you-go or pre-reserved

instances. In either case, a price for a charging period is estab-
lished, e.g. $/hour, for each VM type. This value, determined
by the function PrðVMtiÞ, is the monetary value to pay when
a VM of type ti is not in overcommit with other VMs (from
the same type or not). Considering that for a given VM
instance, vm, the type (i.e., element of the set VMtypes) can be
determined by the function VMTypeðvmÞ, and therefore the
price can be determined by PrðVMTypeðvmÞÞ.

3.1 Degradation Factor and Partial Utility

For each VM, the provider can determine which is the deg-
radation factor, that is, which percentage of the VM virtual
power is diminished because of resource sharing and over-
commit with other VMs. For a given VM instance, vm, this
is determined by the function DfðvmÞ. In scenarios of over-
commit described in the previous section, each user can
choose which fraction of the price he/she will pay when
workloads are executed. When the provider must allocate
VMs in overcommitment, the client will be affected by hav-
ing its VMs with less allocated resources, resulting in a
potentially perceivable degradation of performance of its
workload. So, overcommitment and the degradation factor
refer to the same process but represent either the provider’s
or the client’s view. We will use these expressions inter-
changeably throughout the paper.

When overcommit must be engaged, the same client will
pay as described in Equation (1), where the function Pu rep-
resents the partial utility that the owner of the VM gives to
the degradation. Both these terms are percentage values,

CostðvmÞ ¼ PrðVMTypeðvmÞÞ
� ð1�DfðvmÞÞ � PuðDfðvmÞÞ : (1)

Although this equation naturally shares the goals of
many SLA-based deployment [15], it takes into account spe-
cific aspects of our approach, as it factors the elements taken
from the partial utility specification (detailed in the follow-
ing paragraphs). For example, if DfðvmÞ is 20 percent and
PuðDfðvmÞÞ is 100 percent it means that the client is willing
to accept the overcommit of 20 percent and still pay a value
proportional to the degradation. But if in the same scenario
PuðDfðvmÞÞ is 50 percent it means the client will only pay
half of the value resulting from the overcommit, i.e.,
PrðVMTypeðvmÞÞ� ð1� 0:2Þ � 0:5 ¼ PrðVMTypeðvmÞÞ � 0:4.

In general, overcommit can vary during the renting
period. During a single hour, which we consider the charg-
ing period, a single VM can have more than one degrada-
tion factor. For example, during the first hour no
degradation may be necessary while during the second and
the third hour, the provider could take 20 percent of the
computation power. So, because a VM can be hibernated or
destroyed by their owners, and new VMs can be requested,
Df must also depend on time. To take this into account,

Dfhðvm; iÞ is the inth degradation period of hour h. Jin et al.
[11] also discusses a fine grained pricing schema although
they focus on the partial usage waste problem, which is com-
plementary to the work discussed in this paper.

Internally, providers will want to control the maximum
overcommitment which, in average, is applied to the VMs
allocated to a given client and, by extension, to the all datacen-
ter. Equation (2) is able to measure this using the aggregated

470 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. 4, OCTOBER-DECEMBER 2016

degradation index (ADI) for a generic set of VMs. This metric
can range from 0 (non degraded) to 1 (fully degraded),

ADIðVMSetÞ

¼ 1�
P

vm 2 VMSetð1�DfðvmÞÞ � VirtualPowerðvmÞP
vm 2 VMSet VirtualPowerðvmÞ

:

(2)

3.2 Classes for Prices and Partial Utility

Clients can rent several types of VMs and choose the class
associated to each one. Classes have two purposes. The first
is to establish a partial utility based on the overcommit fac-
tor. The second is to set the base price for each VM type. Cli-
ents, and the VMs they rent, are organized into classes
which are represented as a set C ¼ fC1; C2; C3; . . . ; Cng. Ele-
ments of this set have a transitive less-than order (<) where
C1 < C2 iff base-priceðC1Þ < base-priceðC2Þ. The function base-
price represents the base price for each VM type. The class
of a given virtual machine instance vm is represented by the
function classðvmÞ, while the owner (i.e., the client who is
renting the VM) can be determined by ownerðvmÞ.

Each class determines, for each overcommit factor, the
partial utility degradation. Because the overcommit factor
can have several values we define R as a set of ranges:
R ¼ f�0::0:2½; ½0:2::0:4½; ½0:4::0:6½; ½0:6::0:8½; ½0:8::1�g. As a result
of theses classes of SLAs, the Pu function must be replaced
by one that also takes into account the class of the VM, along
with the interval of the overcommit factor, as presented in
definition 3. Doing so, Puclass is a matrix of partial utilities.
Each provider can have a different matrix which it advertises
so that clients can choose the best option,

Puclass : C �R! ½0::1�: (3)

Note that, currently, our model assumes that the partial
utility matrix is defined regarding the total virtual power
of a VM, namely, CPU, memory and storage capacity. If
some overcommitment must be done in any of these
dimensions, we consider them equal or do a simple aver-
age of them. This value is then used to determine the over-
all partial utility of the VM’s new allocation. However, a
more generic (and complex) model could be used, where a
matrix like the one defined in Equation (3) could be speci-
fied for each of the dimensions of the VM. This would
result in a vector of partial-utility matrices, whose final
value would have to be aggregated to be used in Equa-
tion (1). This is seen as future work.

The Pr function for each VM must also be extended to
take into account the VM’s class, in addition to the VM’s
type. We define a new function, Prclass, as presented in
Equation (4). Similarly to the matrix of partial utilities, each
provider can have a different pricematrix,

Prclass : C � VMtypes ! R: (4)

In summary, the proposed partial utility model and
the associated cost structure is based on three elements:
i) the base price of each VM type, ii) the overcommit fac-
tor, iii) the partial utility degradation class associated to
each VM.

3.3 Total Costs

For a given client, the total sum cost of renting is simply
determined by the total cost of renting each VM, as pre-
sented in Equation (5), where RentVMsðcÞ represent the
VMs rented by client c,

RentingCostðcÞ ¼
X

vm 2 RentVMsðcÞ
VMCostðvmÞ: (5)

The cost of each VM is presented in Equation (6) where N
is the number of hours the VM was running, and P the
number of overcommitment periods in hour h. If after allo-
cation the VM’s degradation factor remains constant, then
P equals 1,

VMCostðvmÞ ¼
XN
h¼1

XP
p¼1

PrclassðclassðvmÞ; VMTypeðvmÞÞ
P

�

� ð1�Dfhðvm; pÞÞ�
� PuclassðclassðvmÞ; Dfhðvm; pÞÞ

(6)

The provider’s revenue is given by how much all clients
pay for the VMs they rent. The provider wants to maximize
the revenue by minimizing the degradation factor imposed
to each virtual machine. Because there are several classes of
VMs, each with a particular partial utility for a given degra-
dation factor, the provider’s scheduler must find the alloca-
tion that maximizes (6). There are different ways to do so
which we analyze in Section 4.

3.4 Practical Scenario

As a practical scenario we consider that the partial utility
model has three classes of users (High, Medium, Low)
according to their willingness to relinquish resources in
exchange for a lower payment. More classes could be added
but these three illustrate:

� High users that represent those with more stringent
requirements, deadlines, and that are willing to pay
more for a higher performance assurance but, in
exchange, demand to be compensated if those are
not met. Compensation may include not simply
refund but also some level of significant
penalization;

� Medium users who are willing to pay but will accept
running their workloads in VMs with less resources
for the sake of lesser payment, and other externali-
ties, such as reduced carbon footprint impact, but
have some level of expectation on execution time,
and;

� careless Low users who do not mind waiting for their
workloads to complete if they pay less;

Partial utility profiles could also be organized around
cloud providers, and assume that each provider would be
specialized in a given profile. For example, flexible would
represent shared infrastructures with no obligations, and
many well dimensioned private clouds; business public
clouds or high-load private or hybrid clouds; critical clouds
where budgets and deadlines of workloads are of high

SIMeAO AND VEIGA: PARTIAL UTILITY-DRIVEN SCHEDULING FOR FLEXIBLE SLA AND PRICING ARBITRATION IN CLOUDS 471

relevance, and penalties are relevant; SLA-Oriented top sce-
nario where penalties should be avoided at all cost. For sim-
plicity we focus on a single cloud provider that supports
several classes of partial utility which clients can choose
when renting VMs, as illustrated in Fig. 2.

For the three classes of our example, the cloud provider
can define a partial utility matrix, represented by M in (7).
This matrix defines a profile of partial utility for each level
of resource degradation (resources released) that can be
used to compare strictness or flexibility of the resource man-
agement proposed,

High Medium Low

M ¼

½0::0:2½ 1:0 1:0 1:0

½0:2::0:4½ 0:8 1:0 1:0

½0:4::0:6½ 0:6 0:8 0:9

½0:6::0:8½ 0:2 0:6 0:8

½0:8::1½ 0:0 0:4 0:6

0
BBBBBB@

1
CCCCCCA
:

(7)

The provider must also advertise the base price for each
type of VM. We assume there are four types of virtual
machines with increasing virtual power, for example, micro,
small, regular and extra. The matrix presented in (8) deter-
mines the base price ($/hour) for these types of VMs,

High Medium Low

P ¼

micro 0:40 0:32 0:26

small 0:80 0:64 0:51

regular 1:60 1:28 1:02

extra 2:40 1:92 1:54

0
BBB@

1
CCCA:

(8)

3.5 Comparing Flexible Pricing Profiles in a Cloud
Market

In a market of cloud providers that are nearer the client,
such as the cloud communities that start to emerge [39],
clients will be more mobile and independent of each

provider. In this way, clients will more frequently have to
look for best prices and partial utilities distributions. To
this end, based on matrices P and M, Equation (9) defines
a new set of matrices for each VM type. In this set, the
matrices represent, for each VM type, the multiplication of
a price’s vector (a line in the P matrix) by the matrix of
partial utilities of the provider. Note that C is the ordered
set of user’s classes,

PMtype ¼ 8classes 2 C : Ptype;classes �M: (9)

Fig. 3 illustrates an instance of this new set for the VM
types previously described. The differences are increas-
ingly significant as we increase the capacity (and conse-
quently the prices) of the VMs. While these matrices
represent related pricing profiles, they can be used by cos-
tumers to compare and arbitrate over different providers,
either for a given user class and VM size, or for global
aggregate assessment. This further allows users to graphi-
cally navigate through the providers’ pricing profiles. In
particular, this make it possible to explore the pricing pro-
file of a given provider, and determine the reallocation of
resources a user is willingly to have, in order to fulfill a
given level of cost constrains.

4 PARTIAL UTILITY BASED SCHEDULING FOR IAAS
DEPLOYMENTS

In general, the problem we have described is equivalent to a
bin packing problem [40]. So, the scheduling process must
impose constraints, on what would be a heavy search prob-
lem, and be guided by heuristics for celerity. We consider as
relevant resources of a host, and requirements for a virtual
machine, the following: number of cores, the processing
capability of each core (expressed as millions of instructions
per second—MIPS, MFLOPS, or any other comparative refer-
ence), and memory (in MB). The following algorithms focus
on the first two requirements but a similar strategy could be
used for memory. They allocate new requested VMs to these
resources, taking into account the partial utility model
described in the previous section.

Algorithm 1 presents what is hereafter identified as the
base allocation algorithm. It takes a list of hosts and a virtual
machine (with its resource requirements) that needs to be
allocated to physical hardware or otherwise fail. It will
search for the host with either more or less available cores,
depending on the order criterion (F). When a greater-than
(>) criterion is used, we call it first-fit increasing (FFI) since
the host with more available cores will be selected. When a
less-than (<) criterion is used we call it first-fit decreasing
(FFD), since the host with less cores still available will be

Fig. 2. A practical scenario of using flexible SLAs in a market-oriented
environment.

Fig. 3. Matrices combining price and utility for the different VM types and partial utilities.

472 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. 4, OCTOBER-DECEMBER 2016

selected. This base allocation will eventually fail if no host is
found with the number of requested MIPS, regardless of the
class of each VM. In this situation a classic provider cannot
fulfill further requests without using extra hardware, which
may simple not be available.

Algorithm 1. Generic base allocation: First-Fit
Increasing/Decreasing

Require: hosts list of available hosts
Require: vm VM to be allocated
Require: F order criterion
1: function BASESCHEDULING(hosts,vm)
2: currCores 0 or þ1 depending on criterion
3: selectedHost null
4: for all h 2 hosts do
5: if AVAILABLECORESðhÞ F currCores then
6: if ISCOMPATIBLEðh; vmÞ then
7: currCores AVAILABLECORESðhÞ
8: selectedHost h
9: end if
10: end if
11: end for
12: if selectedHost 6¼ null then
13: ALLOCATEðselectHost; vmÞ
14: return true
15: end if
16: return false
17: end function

Function ALLOCATE checks if a VM can be allocated in a
given host (h). Current allocation strategies either i) try to
find the host where there are still more physical cores than
the sum of virtual ones, and each individually has enough
capacity to hold the VM; ii) try to find the host with a core
where the VM can fit even if shared with others; iii) degra-
date all the VMs in the host to fit the new VM until no
more computational power is available in the host. In the
first two cases, if the conditions are not met the allocation
will fail. In this case, unused cores is used in the sense that
they are still available to allocate without incurring in
overcommit. All the physical cores will be in use, as usual,
but they will not be used to 100 percent capacity. So if, for
example, four cores have an average of 25 percent CPU
occupation, we consider it equivalent to saying there are
three unused cores (i.e., still available to allocate without
overcommit).

In the last case, the allocation will succeed but not taking
the best choices for the new utility model proposed in
Section 3. Function ISCOMPATIBLE uses the same strategies but
only determines whether the conditions hold, leaving the
effective allocation to the ALLOCATE function.

4.1 Analysis of the Scheduling Cost of the
Utility-Oblivious Scheduling

Algorithm 1 iterates over M hosts looking for the one with
minimum or maximum available cores. In either case this
algorithm determines a compatible host in O(M) iterations.
The ISCOMPATIBLE function depends on the total number of
cores, C, to determine, in case i) if there is any unused core
and, in case ii) if any core still has available MIPS. After

determining the host where to allocate the requested VM,
function ALLOCATE, can also complete with the same asymp-
totic cost. So, in summary, Algorithm 1 has a cost of
OðM � CÞ.

4.2 Partial Utility-Aware Scheduling Strategies

When there are no hosts that can be used to allocate the
requested VM, some redistribution strategy must be used,
while maximizing the renting cost as defined in Section 3.
This means that the provider can use different strategies to
do so, by giving priority to larger or smaller VMs (regarding
their virtual power) or to classes with higher or lower base
price.

We have extended the base algorithm so that, when a VM
fails to be allocated, we then have to find a combination of
degradation factors that makes it possible to fit the new
VM. Four strategies/heuristics were implemented to guide
our partial utility-driven algorithm. They differ in the way a
host and victim VM is selected for degradation. They all
start by taking the host with more resources available, that
is, with more unitary available cores and with more total
computation power (MIPS).

Algorithm 2 presents the modifications to the base algo-
rithm to enable partial utility allocation strategies. After a
host is selected, a set of VMs must be chosen from the list of
allocated VMs in that host, i.e., operation selectVMs pre-
sented in Algorithm 3. These VMs are selected either by
choosing the ones from the smallest size type (which we call
min strategy) or the ones with the biggest size (which we
call max strategy). This is controlled by using VMtypes sorted
in ascending or descending order. In both cases there are
variants that combine with the lowest partial utility class
(w.r.t. the definition of Section 3), either in ascending or
descending order regarding its partial utility class, i.e.,
min-class andmax-class.

Algorithm 2. Partial utility allocation strategies

Require: hosts hosts ordered by available resources
Require: vm new VM to be allocated
Require:maxADI maximum aggregated degradation index
1: function VMUTILITYALLOCATION(hosts,vm)
2: if BASESCHEDULINGðhosts; vmÞ ¼ true then
3: return true "No need to overcommit VM(s)
4: end if
5: selection null
6: hosts sort hosts in ascending order of available

resources
7: for all h 2 hosts do
8: needed REQUESTEDðvmÞ�AVAILABLEðhÞ
9: vmList ALLOCATEDVMSðhÞ
10: selection SelectVMsðvmList; neededÞ
11: if ADINDEXðhosts; selectionÞ < maxADI then
12: for all ðvm; dfÞ 2 selection do
13: CHANGEALLOCATIONðvm; dfÞ
14: end for
15: return true
16: end if
17: end for
18: return false
19: end function

SIMeAO AND VEIGA: PARTIAL UTILITY-DRIVEN SCHEDULING FOR FLEXIBLE SLA AND PRICING ARBITRATION IN CLOUDS 473

Algorithm 3. Partial utility allocation by min/max VM
type and minimum class price

Require: VMtypes ascending/descending list of VM’s types
Require: vmList list of VMs allocated in host
Require: target virtual power needed to fit all VMs
1: function SELECTVMSðvmList; targetÞ
2: selection null
3: sum 0
4: vmList sort vmList in ascending order of

price0s class
5: while sum < target do
6: for all t 2 VMtypes do
7: for all vm 2 vmList :VMTYPEðvmÞ ¼ t do
8: rvm NEXTRANGEðvmÞ
9: selection selection [ðvm; rvmÞ
10: sum sum þ VIRTUALPOWERðvmÞ � ð1� rvmÞ
11: if sum � target then
12: break
13: end if
14: end for
15: end for
16: end while
17: return selection
18: end function

4.3 Analysis of the Partial-Utility Scheduling Cost

Algorithm2 goes through the list of hosts trying to find a com-
bination of VMs whose resources can be reallocated. For each
host, VMs are selected based on Algorithm 3. The cost of this
procedure depends on a sort operation of N VMs,
OðN lg ðNÞÞ, and a search in the space of minimum degrada-
tions to reach a target amount of resources. This search
depends on r intervals in matrix (7) and t classes for prices
(currently, three, as presented in Section 3.4), with a cost of
OðrtNÞ. This results in an asymptotic cost of OðrtN þ
N lg ðNÞÞ ¼ OðN lg ðNÞÞ. Overall, the host andVMs selection
algorithm cost belongs to OðM lg M þMN lg NÞ. Because
there will be more VMs (N), across the datacenter, than hosts
(M), the asymptotic cost isOðMN lg ðNÞÞ. In the next section,
we briefly present the more relevant details of extending the
CloudSim [8] simulator to evaluate these strategies.

5 IMPLEMENTATION DETAILS

We have implemented and evaluated our partial utility
model on a state of the art simulator, CloudSim [16].

CloudSim is a simulation framework that must be program-
matically configured, or extended, to reflect the characteris-
tics and scheduling strategies of a cloud provider.

The framework has an object domain representing the ele-
ments of a data center (physical hosts, virtual machines and
execution tasks). Extensibility points include the strategy to
allocate physical resources to VMs and allocation of work-
loads to resources available at each VM. Furthermore, at the
data center level, it is possible to define howVMs are allocated
to hosts (including energy-aware policies) and how execution
tasks are assigned to VMs. Fig. 4 highlights the new classes
added to the simulation environment, which range from
exploring extension points, like the virtual machine allocation
to hosts, to enrichments of the object model to include partial
utility related types (e.g. VM type, specification tables).

Regarding the CloudSim’s base object model we have the
PUVm type which incorporates information regarding its
partial utility class. The scheduling algorithms were imple-
mented as extensions of two main types: VmAllocation-
Policy and VmScheduler. The former determines how a
VM is assigned to a host while the latter determines how
the virtual machine monitor of each host allocates the avail-
able resources to each VM. It can use and re-use different
matrices of partial utility classes and VM base prices,
defined in the type that represents the partial utility-driven
datacenter.

The type in CloudSim that represents the dynamic use of
the available (virtual) CPU is the Cloudlet type. Because
cloudlets represent work being done, each cloudlet must
run in a VM with the appropriate type, simulating work
being done on several VMs with different computational
power. So, regarding the Cloudlet class, we added infor-
mation about which VM type must be used to run the task.
To ensure that each cloudlet is executed in the correct VM
(degraded or not), we also created a new broker (extended
from DatacenterBroker).2

6 EVALUATION

In this section we evaluate the proposed scheduling based
on partial utility. To do so, we first describe the datacenters
used in the simulation and the VM types whose base price
was already presented in Section 3.4. The datacenters are
characterized by the number and type of hosts as described
in Table 1. We used three types of datacenters hereafter

Fig. 4. Highlighted extensions to the CloudSim simulation environment.

TABLE 1
Hosts Configured in the Simulation

DC size Hosts Cores HT MHz Mem (Gbytes)

Size-1 10 2 no 1,860 4
10 2 no 2,660 4

Size-2 20 4 yes 1,860 8
20 4 yes 2,660 8

Size-3 40 4 yes 1,860 8
40 4 yes 2,660 8

Number of hosts per configuration, number of cores per host, computational
capacity, hyper-threading, Memory capacity.

2. Source code available at https://code.google.com/p/partial-
utility-cloudsim/

474 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. 4, OCTOBER-DECEMBER 2016

known as Size-1, Size-2 and Size-3. Each datacenter configu-
ration is representative of a specific scenario we want to
evaluate. The configuration Size-1 represents a typical con-
figuration of a cloud community datacenter [41], where
low-end processors are used. Configuration Size-2 repre-
sents a set of clusters owned by our research labs where
raw computational capacity is around 300 cores. The simu-
lation uses quad-core processes with hyper-threading and
a computational capacity per core in the range used by
Xeon processors with this number of cores. Configuration
Size-3 doubles the number of hosts, keeping their computa-
tional configuration.

Available VM types are presented in Table 2. To enrich
the simulation scenario VMs have different sizes, simulating
the request of heterogeneous virtual hardware. This is a
common practice in the literature [8], [16], [23], [31]. The
configurations chosen for each VM type will put our strate-
gies to the test when a new VM request can not be fulfilled.
The number of cores depends on the size of the datacenter.
We simulate different scenarios where the number of cores
per VM will increase as more physical resources are avail-
able. Configuration Size-1 uses VMs with 1 core. Configura-
tion Size-2 and Size-3 were simulated with VMs having two
and four cores respectively. Each virtual core, of each VM
type, will have the CPU power presented in Table 2.

We used an increasing number of VMs trying to be allo-
cated. Each requested VM has a type (e.g.micro). We consid-
ered VM’s types to be uniformly distributed (realistic
assumption) and requested one type at a time. The follow-
ing sections highlight the differences between the current
allocation strategies and the ones that can cope with the pro-
posed flexible SLAs.

6.1 Utility Unaware Allocation

Figs. 5 and 6 show the effects of using two different alloca-
tion strategies for host selection, and other two regarding
the use of cores, but still without taking into account each
client’s partial utility. Each x-axis value represents a total
number of VMs requested, r, and the value in the corre-
sponding left y-axis is the datacenter occupation (MIPS and
Memory) obtained when r� f number of VMs are able to

run, with f � 0 being the number of not allocated VMs. The
host selection is based on the first-fit increasing and First-Fit
Decreasing algorithms, described in Section 4. In each of
these approaches we present the total percentage of MIPS
and memory allocated, in the left y-axis, for each set of
requested VMs. Regarding the sixth series, FFI/FFD Failed
MIPS, its results are plotted in the right y-axis.

In Fig. 5 each VMM (one for each host) allocates one or
more cores to each VM and does not allow any sharing of
cores by different VMs. In Fig. 6 each VMM (one for each
host) allocates one or more cores to each VM and, if neces-
sary, allocates a share of the same core to a different VM.

In both cases, the datacenter starts rejecting the alloca-
tion of new VMs when it is about at 66 percent of its raw
processing capacity (i.e., MIPS) and at aproximatly 53 per-
cent of its memory capacity. Although there are still
resources available (cores and memory) they are not able
to fit 100 percent the QoS of the requested VM. As
expected, the core sharing algorithm promotes better
resource utilization because the maximum effective alloca-
tion is 73 percent of the datacenter, regarding raw process-
ing capacity, and 59 percent, regarding memory capacity.
The effective allocation of core-based sharing still contin-
ues to increase, at a slower rate, because there are smaller
VMs that can be allocated.

Fig. 8 shows the counting of VM failures grouped by the
VM type and VMM scheduling strategy. The simulation
uses hosts with different capacities and heterogeneous
VMs, for realism, as workloads are varied and resources not
fully symmetric, as it happens in many real deployments in
practice. The allocation strategy that enables sharing of
resources is naturally the one with fewer failed requests. In
the configured Size-1 datacenter, the no-core sharing strat-
egy starts rejecting VMs when a total of 40 is requested. In
both cases, the bigger VMs (i.e., the ones requesting more
computing power) are the ones with a higher rejection rate.

Table 3 (with results for an added number of VM
requests) also shows, in the “Hosts” column, the number of
extra hosts that would be necessary to fit the rejected VMs.
These extra hosts are determined by summing all the
resources not allocated and dividing by the resources of the
type of host with more capacity (i.e., assuming a perfect fit
and ignoring the computational cost of determining such a
fit). The solution proposed in this paper avoids these extra
hosts by readjusting the allocation of new and accepted
VMs, following the utility and price matrices negotiated
with the client.

Fig. 9 shows the evolution of hosts’ utilization. This
figure presents the result of allocating a total of 76 VMs. It
shows that when using FFD with a core sharing approach,
the number of unused hosts drops more slowly, while with

TABLE 2
Characteristics of Each VM Type Used in the Simulation

micro small regular extra

Virtual CPU Power (�103 MIPS) 0.5 1 2 2.5
Memory (Gbytes) 1 1.7 2.4 3.5

Fig. 5. Base algorithm with no core sharing between different VMs.

Fig. 6. Base algorithm and core sharing between different VMs.

SIMeAO AND VEIGA: PARTIAL UTILITY-DRIVEN SCHEDULING FOR FLEXIBLE SLA AND PRICING ARBITRATION IN CLOUDS 475

the FFI approach all hosts start being used with less VMs
allocated. If the datacenter is running a number and type of
VMs below its rejection point, the FFD scheduling is better
because hosts can be turned off or put into an idle state.

6.2 Over Subscription

Looking again to Figs. 5-6, at the time when 58 VMs are
requested, both strategies leave a significant part of the
datacenter unused.

Fig. 7 shows the results for the over subscription algo-
rithm (hereafter known as BaseþOverSub), described in
Section 4, that is oblivious to client’s classes, because it
releases resources from all VMs until no more computa-
tional power is available in the host. Given that this strategy
looks at the host with more cores, ignoring the total compu-
tational power, it departures immediately from the poten-
tial allocation, because resources are released from VMs
even when there is computational power available in other
hosts. However, when more than 40 VMs are requested, it
will grow more than the previous two allocation strategies.

Differently from the previous two strategies, it will not
fail allocations, as can be seen in the right y-axis regarding
the series “Failed MIPS (Section axis)”. Nevertheless, the
effective allocation still has margin to grow. More impor-
tantly, using this approach, there is no way to enforce the
SLA negotiated with the clients. This has a significant
impact in the provider’s revenue as we will demonstrate
next when we present the results for our strategies that take
into account the type of VMs, their classes, and the partial
utility negotiated.

6.3 Utility-Driven Allocation

In utility-driven allocation, all requested VMs will eventu-
ally be allocated until the datacenter is overcommitted by a
factor that can be defined for each provider. Along with the
type, VMs are characterized by a partial utility class (e.g.
high), as described in Section 3. In the following results, in
each set of allocated VMs there are 20 percent of class high,
50 percent of class medium and 30 percent of class low.

In this section we will show how the proposed approach
behaves, regarding two important set ofmetrics: a) allocation
of VMs and b) execution of workloads by the allocated VMs.
The first set of metrics is mainly important for the provider,
while the second set of metrics is primarily of interest to the
client. We compare utility-unware allocations with two heu-
ristics presented in Section 4 -max-class andmin-class.

6.3.1 Allocation of VMs

Regarding the provider side metrics, we measure the num-
ber of failed VM requests, the resource utilization percent-
age and the revenue (per hour). In all of the metrics, our
strategies are at least as good as the BaseþOverSub strat-
egy, while specifically regarding revenue, we have average
increases around 40 percent.

First, we compare our approaches with the base algo-
rithm described in Section 4, regarding the number of VMs
that were requested but not allocated. Fig. 10a shows that,
while the base algorithm fails to allocate some VMs when
40 or more VMs are requested, the other five utility-driven
strategies can allocate all requests in this configuration of
the datacenter (note the collapsed series). Fig. 10b presents
similar results for a Size-2 datacenter. In this case, after 180
VMs, the Base allocation algorithm rejects VMs of type extra
and regular.

Second, we evaluate how available resources are utilized.
Regarding this metric, Fig. 11 shows the percentage of
resource utilization with an increasing number of VMs being
requested for allocation. Three observations are worth not-
ing: a) although with base allocation strategy some VMs are
not scheduled, as demonstrated in Fig. 10, others can still be
allocated and can use some of the remaining resources;
b) second, it is clear that our strategies achieve better
resource utilization, while allocating all VMs; c) as the size of
the datacenter increases, the strategy BaseþOverSub lags
behind to use all available resources. Our strategies can reach
the peak in a similar fashion, across all sizes of datacenters.

Fig. 8. Types, sizes and counting of requested but not allocated VMs.

TABLE 3
Summary of VMs Requested But Not Allocated and the Number of Additional Hosts When Cores Are Not Shared

Base No Core Sharing Base Core Sharing

VMs Failed E R S M Hosts Failed E R S M Hosts

38 0 (0%) 0 0 0 0 +0 0 (0%) 0 0 0 0 +0
42 2 (5%) 1 1 0 0 +1 2 (5%) 1 1 0 0 +1
60 20 (33%) 5 5 5 5 +10 10 (17%) 5 5 0 0 +5
76 36 (47%) 9 9 9 9 +18 18 (24%) 9 9 0 0 +8

Fig. 7. Over subscription, equal degradation and unaware of client’s
classes.

476 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. 4, OCTOBER-DECEMBER 2016

The third and last metric evaluated for the provider is
the revenue. Fig. 12 shows how the revenue progresses
with an increasing number of total VM requests. It clearly
demonstrates the benefits of using a degradation and par-
tial utility-driven approach, showing that the provider’s
revenue can indeed increase if the rejected VMs (above 40
in the Size-1 datacenter and above 180 in the Size-2 data-
center) are allocated, even if only with a fraction of their
requested resources (i.e., subject to degradation driven by
partial-utility ranges).

Comparingwith the utility-oblivious redistribution, which
also allocates all requested VMs (i.e., BaseþOverSub), the
increase of revenues in a Size-1 type datacenter can go up to a

amaximum of 65 percent ($35:8 to $59:0). In the case of a Size-
2 datacenter it can reach a maximum of 53 percent ($294:3 to
$451:2), and 54 percent ($580:1 to $895:8) in a Size-3 configura-
tion. When the comparison is done starting from the point
where VMs are rejected by the base strategy, the medium
increase in revenue is 45 percent, 40 percent and 31 percent,
for each datacenter configuration, which results in an average
increase in revenue of 39 percent when considering all reve-
nue increases across all datacenters.

We also compare the scheduling heuristics with a random
and an optimal allocation. The random method chooses the
server according to a random order. At a given server it will
iterate over a random number of the available VMs (at most 50
percent), until it can take the necessary resources. This strategy
stays below or slightly above BaseþOverSub (which also
does not rejects VMs) but exhibits worst results than any of
our heuristics. The optimal allocation was determined by
exhaustively testing all the combinations of resource realloca-
tion (a very slow process) and at each step choosing the one
with better revenue. Our two main partial utility-driven heu-
ristics are the ones that come closer to this allocation.

6.3.2 Effects on Workloads

Finally, and regarding the execution time, we have evalu-
ated the scheduling of VM resources to each profile based
on the partial utility. The data used was collected from

Fig. 11. Compared resource utilization.

Fig. 10. Number of requested but not allocated VMs.

Fig. 9. Unused hosts.

Fig. 12. Compared revenue.

SIMeAO AND VEIGA: PARTIAL UTILITY-DRIVEN SCHEDULING FOR FLEXIBLE SLA AND PRICING ARBITRATION IN CLOUDS 477

workloads executed during 10 days by thousands of Planet-
Lab VMs provisioned for multiple users [8], [42]. Each of
these workloads are represented by traces with the percent-
age of CPU usage of a given VM running in the PlanetLab
network, during a day. We use n of these workloads where
n is the number of requested VMs. In our simulation envi-
ronment, each trace is assigned to a single VM allocated
with each strategy.

The average execution time of the workloads in each VM
is presented in Fig. 13, while the median execution time of
the workloads in each VM is presented in Fig. 14, for the
three datacenter sizes. The CPU time used by the workloads
running on the allocated VMs is based on the simulation
clock managed by CloudSim.

In the base strategy, as some requested VMs will be
rejected because no host can be found with the complete
requirements, there will be VMs that receive more than one
PlanetLab VM trace. In the simulation, when these PlantLab
VMs are being reproduced, they receive a fraction of the
available CPU, proportionally to the number of co-located
PlanetLab VMs.

The results show that with more VMs allocated, even if
with less allocated resources than the ones requested, as it is
the case, both the average and the median execution time of
tasks running on VMs allocated with our partial utility-
driven scheduler is below the execution times achieved
with the base strategy.

When comparing BaseþOverSub with our best strategy
(i.e., min-class), we can observe that the former has a mar-
ginally better average execution time while the latter has a
slightly better median, rendering the differences seemingly
non-significant. Nevertheless, as shown before in Section 6.3,
the BaseþOverSub strategy is unable to reach the best rev-
enue for the provider and cannot provide any economic
benefits for the clients given its utility unawareness.

7 CONCLUSION

There is an increasing interest in small, geo-distributed and
near-the-client datacenters, what is sometimes known as
community cloud computing. In these deployments, over-
committing resources is a relevant technique to lower envi-
ronmental and operational costs. Nevertheless, users may
be just as happy, or at least content, with slightly or even
significantly reduced performance if they are compensated
by lower cost or almost cost-free.

In this paper, we have proposed a cost model that takes
into account the user’s partial utility specification when the
provider needs to transfer resources between VMs. We
developed extensions to the scheduling policies of a state
of the art cloud infrastructures simulator, CloudSim [8],
[16], that are driven by this model. The cost model and
partial utility-driven strategies were applied to the over-
subscription of CPU. We have measured the provider’s
revenue, resource utilization and client’s workloads execu-
tion time. Results show that, although our strategies par-
tially degraded and release the computational power of
VMs when resources are scarce, they overcome the classic
allocation strategy which would not be able to allocate
above a certain number of VMs.

We see an interesting path regarding future work on
this topic. From an experimental point of view we plan
to incorporate this approach in private cloud solutions
such as OpenStack3 and extend the evaluation of the
model to other resources, namely the network band-
width. We also want to enhance the scheduling process
to incorporate progress information collected from work-
loads, eventually using historical data, such that resour-
ces can also be taken from workloads that use them less
efficiently. This will need further extensions to the execu-
tion model of CloudSim.

Fig. 14. Compared median execution time.

Fig. 13. Compared average execution time.

3. http://www.openstack.org/

478 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. 4, OCTOBER-DECEMBER 2016

ACKNOWLEDGMENTS

The work reported in this article was supported by national
funds through FCT—Fundaç~ao para a Ciência e a Tecnolo-
gia, under projects PTDC/EIA-EIA/113613/2009, contract
Pest-OE/EEI/LA0021/2013 and the PROTEC program of
the Polytechnic Institute of Lisbon (IPL).

REFERENCES

[1] J. Liu, M. Goraczko, S. James, C. Belady, J. Lu, and K. Whitehouse,
“The data furnace: Heating up with cloud computing,” in Proc.
3rd USENIX Conf. Hot Topics Cloud Compu., 2011, pp. 15–15.

[2] A. Khan, L. Navarro, L. Sharifi, and L. Veiga, “Clouds of small
things: Provisioning infrastructure-as-a-service from within com-
munity networks,” in Proc. IEEE 9th Int. Conf. Wireless Mobile Com-
put., Netw. Commun., 2013, pp. 16–21.

[3] A. Marinos and G. Briscoe, “Community cloud computing,” in
Proc. 1st Int. Conf. Cloud Comput., 2007, pp. 472–484.

[4] J. N. Silva, P. Ferreira, and L. Veiga, “Service and resource discov-
ery in cycle-sharing environments with a utility algebra,” in Proc.
IEEE Int. Symp. Parallel Distrib. Process., 2010, pp. 1–11.

[5] B. Saovapakhiran and M. Devetsikiotis, “Enhancing computing
power by exploiting underutilized resources in the community
cloud,” in Proc. IEEE Int. Conf. Commun., 2011, pp. 1–6.

[6] A. Khan, U. Buyuksahin, and F. Freitag, “Prototyping incentive-
based resource assignment for clouds in community networks,”
in Proc. IEEE 28th Int. Conf. Adv. Inform. Netw. Appl., May 2014,
pp. 719–726.

[7] C. A. Waldspurger, “Memory resource management in VMware
ESX server,” SIGOPS Oper. Syst. Rev., vol. 36, pp. 181–194, Dec.
2002.

[8] A. Beloglazov and R. Buyya, “Optimal online deterministic algo-
rithms and adaptive heuristics for energy and performance effi-
cient dynamic consolidation of virtual machines in cloud data
centers,” Concurrency Comput.: Prac. Exp., vol. 24, no. 13, pp. 1397–
1420, 2012.

[9] O. Agmon Ben-Yehuda, E. Posener, M. Ben-Yehuda, A. Schuster,
and A. Mu’alem, “Ginseng: Market-driven memory allocation,”
in Proc. 10th ACM SIGPLAN/SIGOPS Int. Conf. Virtual Execution
Environ., 2014, pp. 41–52.

[10] D. G. Feitelson, Ohad Shai, and Edi Shmueli, “Heuristics for
resource matching in intel’s compute farm,” in Proc. 17th Workshop
Job Scheduling Strategies Parallel Process., 2013, pp. 116–135.

[11] H. Jin, X. Wang, S. Wu, S. Di, and X. Shi, “Towards optimized
fine-grained pricing of IaaS cloud platform,” IEEE Trans. Cloud
Comput., vol. PP, no. 99, pp. 1–1, 2014.

[12] Y. Zhang, A. Bestavros, M. Guirguis, I. Matta, and R. West,
“Friendly virtual machines: Leveraging a feedback-control model
for application adaptation,” in Proc. 1st ACM/USENIX Int. Conf.
Virtual Execution Environ., 2005, pp. 2–12.

[13] Z. Gong, X. Gu, and J. Wilkes, “Press: Predictive elastic resource
scaling for cloud systems,” in Network and Serv. Management
(CNSM), 2010 Int. Conf., oct. 2010, pp. 9–16.

[14] M. Macias and J. Guitart, “A risk-based model for service level
agreement differentiation in cloud market providers,” in Distrib.
Appl. Interoperable Syst., 2014, pp. 1–15.

[15] H. Morshedlou and M. R. Meybodi, “Decreasing impact of SLA
violations: A proactive resource allocation approach for cloud
computing environments,” IEEE Trans. Cloud Comput., vol. 2, no.
2, pp. 156–167, Apr. Jun. 2014.

[16] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “Cloudsim: a toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provi-
sioning algorithms,” Softw. Pract. Exper., vol. 41, no. 1, pp. 23–50,
Jan. 2011.

[17] J. Sim~ao and L. Veiga, “Flexible SLAs in the cloud with a partial
utility-driven scheduling architecture,” in Proc. IEEE 5th Int. Conf.
Cloud Comput. Technol. Sci., vol. 1, Dec. 2013, pp. 274–281.

[18] L. M. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynamically
scaling applications in the cloud,” SIGCOMM Comput. Commun.
Rev., vol. 41, no. 1, pp. 45–52, Jan. 2011.

[19] R. Buyya, S. K. Garg, and R. N. Calheiros, “SLA-oriented resource
provisioning for cloud computing: Challenges, architecture, and
solutions,” in Proc. Int. Conf. Cloud Serv. Comput., 2011, pp. 1–10.

[20] J. N. Silva, L. Veiga, and P. Ferreira, “A2HA—automatic and
adaptive host allocation in utility computing for bag-of-tasks,”
J. Internet Serv. Appl., vol. 2, no. 2, pp. 171–185, 2011.

[21] J. Sim~ao and L. Veiga, “VM economics for Java cloud computing:
An adaptive and resource-aware java runtime with quality-of-exe-
cution,” in Proc. 12th IEEE/ACM Int. Symp. Cluster, Cloud Grid
Comput., 2012, pp. 723–728.

[22] V. Ishakian, R. Sweha, A. Bestavros, and J. Appavoo, “Cloudpack:
Exploiting workload flexibility through rational pricing,” in Proc.
13th Int. Middleware Conf., 2012, vol. 7662, pp. 374–393.

[23] S. Malik, S. Khan, and S. Srinivasan, “Modeling and analysis of
state-of-the-art VM-based cloud management platforms,” IEEE
Trans. Cloud Comput., vol. 1, no. 1, pp. 1, Jan.- Jun. 2013.

[24] J. Sim~ao and L. Veiga, “A classification of middleware to support
virtual machines adaptability in IaaS,” in Proc. 11th Int. Workshop
Adaptive Reflective Middleware, 2012, pp. 5:1–5:6.

[25] N. Kim, J. Cho, and E. Seo, “Energy-credit scheduler: An energy-
aware virtual machine scheduler for cloud systems,” Future Gener-
ation Comput. Syst., vol. 32, no. 0, pp. 128–137, 2014.

[26] D. Hagimont, C. Mayap Kamga, L. Broto, A. Tchana, and
N. Palma, “Dvfs aware cpu credit enforcement in a virtualized
system,” in Proc. Middleware, 2013, vol. 8275, pp. 123–142.

[27] E. Le Sueur and G. Heiser, “Dynamic voltage and frequency scal-
ing: The laws of diminishing returns,” in Proc. Int. Conf. Power
Aware Comput. Syst., 2010, pp. 1–8.

[28] X.Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, andD. Pendarakis,
“Efficient resource provisioning in compute clouds via VM multi-
plexing,” in Proc. 7th Int. Conf. Autonomous Comput., 2010, pp. 11–20.

[29] C. Mastroianni, M. Meo, and G. Papuzzo, “Probabilistic consoli-
dation of virtual machines in self-organizing cloud data centers,”
IEEE Trans. Cloud Comput., vol. 1, no. 2, pp. 215–228, Jul. 2013.

[30] K. Tsakalozos, H. Kllapi, E. Sitaridi, M. Roussopoulos, D. Paparas,
and A. Delis, “Flexible use of cloud resources through profit maxi-
mization and price discrimination,” in Proc. IEEE 27th Int. Conf.
Data Eng., 2011, pp. 75–86.

[31] R. Mian, P. Martin, F. Zulkernine, and J. L. Vazquez-Poletti,
“Estimating resource costs of data-intensive workloads in public
clouds,” in Proc. 10th Int. Workshop Middleware for Grids, Clouds
e-Science, 2012, pp. 3:1–3:6.

[32] H. Xu and B. Li, “Dynamic cloud pricing for revenue maxi-
mization,” IEEE Trans. Cloud Comput., vol. 1, no. 2, pp. 158–171,
Jul. 2013.

[33] D. G. S. Zaman, “Combinatorial auction-based dynamic VM pro-
visioning and allocation in clouds,” in Proc. 3rd Int. Conf. Cloud
Comput. Technol. Sci., 2011, pp. 107–114.

[34] A. Andrzejak, D. Kondo, and S. Yi, “Decision model for cloud
computing under SLA constraints,” in Proc. IEEE Int. Symp. Model-
ing, Anal. Simul. Comput. Telecommun. Syst., 2010, pp. 257–266.

[35] S. Costache, N. Parlavantzas, C. Morin, and S. Kortas, “On the use
of a proportional-share market for application SLO support in
clouds,” in Proc. 19th Int. Parallel Process., 2013, vol. 8097, pp. 341–
352.

[36] F. Xu, F. Liu, H. Jin, and A. Vasilakos, “Managing performance
overhead of virtual machines in cloud computing: A survey, state
of the art, and future directions,” Proc. IEEE, vol. 102, no. 1,
pp. 11–31, Jan. 2014.

[37] S. Son, G. Jung, and S. Jun, “ An sla-based cloud computing that
facilitates resource allocation in the distributed data centers of a
cloud provider,” J. Supercomput., vol. 64, no. 2, pp. 606–637, 2013.

[38] O. Sukwong, A. Sangpetch, and H. Kim, “Sageshift: Managing
SLAs for highly consolidated cloud,” in Proc. IEEE, Mar. 2012,
pp. 208–216.

[39] P. Mell and T. Grance. (2009). The NIST definition of cloud com-
puting. [Online]: Available: http://csrc.nist.gov/publications/
nistpubs/800-145/SP800-145.pdf

[40] M. R. Garey, R. L. Graham, and D. S. Johnson, “Resource con-
strained scheduling as generalized bin packing,” J. Combinatorial
Theory, Series A, vol. 21, no. 3, pp. 257–298, 1976.

[41] A. Khan, U. Buyuksahin, and F. Freitag, “Prototyping incentive-
based resource assignment for clouds in community networks,”
in Proc. IEEE 28th Int. Conf. Adv. Inform. Netw. Appl., May 2014,
pp. 719–726.

[42] K. Park and V. S. Pai, “CoMon: A mostly-scalable monitoring sys-
tem for planetlab,” SIGOPS Oper. Syst. Rev., vol. 40, no. 1, pp. 65–
74, Jan. 2006.

SIMeAO AND VEIGA: PARTIAL UTILITY-DRIVEN SCHEDULING FOR FLEXIBLE SLA AND PRICING ARBITRATION IN CLOUDS 479

Jos�e Sim~ao received the master degree in 2008
and is a junior researcher at INESC-ID Lisboa.
He is working towards the PhD degree at the
Engineering School of the University of Lisbon
(IST). He is a lecturer at the Engineering School
of the Polytechnic Institute of Lisbon (ISEL),
where he teaches programming technologies.
His main research interests include resource
management in clusters and cloud infrastruc-
tures, with a special focus on scheduling algo-
rithms and virtualization technologies. He has

also interest in computer security having participated in a project with
the Portuguese National Security Office.

Lu�ıs Veiga is a tenured assistant professor at
Instituto Superior T�ecnico (IST), ULisboa, a
senior researcher at INESC-ID, and a group man-
ager of GSD for 2014-2015. He coordinates
locally the FP7 CloudForEurope project, partici-
pates in FP7 Timbus project on digital preserva-
tion and virtualization. He has lead two National
funded research projects on P2P cycle-sharing
and virtualization, and has coordinated two on
distributed virtual machines and multicore pro-
gramming, and evaluated FP7 and third-country

project proposals (Belgium). He has more than 85 peer-reviewed scien-
tific publications in journals, conferences, book chapters, workshops
(Best Paper Award at Middleware 2007 and Best-Paper Award Runner
Up at IEEE CloudCom 2013). He was a general chair for Middleware
2011, and belongs to Middleware Steering and Program Committee. He
was Virtualization track co-chair for IEEE CloudCom 2013, and a local
chair for Euro-Par 2014 track on Distributed Systems and Algorithms.
He was an “Excellence in Teaching in IST” mention recipient (2008,
2012, 2014), and awarded Best Researcher Overall at INESC-ID Prize
(2014) and Best Young Researcher at INESC-ID Prize (2012). He is a
member of the Scientific Board of Erasmus Mundus European Master
and Joint Doctorate in Distributed Computing. He is a chair of the IEEE
Computer Society Chapter, IEEE Section Portugal for 2014-2015. He is
a member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

480 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. 4, OCTOBER-DECEMBER 2016

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

