Semantic-Chunks
A Middleware for Ubiquitous Cooperative Work

Luis Veiga and Paulo Ferreira
INESC-ID/IST, Distributed Systems Group, Rua Alves Redol N. 9,1000-029 Lisboa, Portugal
{luis.veigal|paulo.ferreira} @inesc-id.pt

ABSTRACT Since several (or all) of the replicas may be independently up-
To be productive, cooperative work has to be supported efficientl)pated (.accessed.a.md mOd'f'e.d).’ t.he issue of replica consistency ngitu-
so that users do achieve their goals. This requires solving the wellfaly arises. Traditional pessimistic approaches are based on locking
known fundamental problem of replicas consistency. resources. They are not suited for ubiquitous computing since ap-
Update-basedsolutions are easy to use transparently with com- Plications, possibly disconnected from the network, perform long
mercial applications, but consider every modification in a documengluration data manipulations. S _
as a new document update, thus fostering conflicts and hinderin% OP“”?'S“C e}pproaches allqw CO”C“”e”F mod|.f|cat|ons on differ-
concurrency. Operational-basedolutions promise increased con- nt replicas, in the expectation that gonfllcts will never or seldom
currency, by interleaving compatible modifications from different oceur. I;_the(;e are any, the system WI||| attempt at rec_oncmr:jg tg_em_
users. They require central reconciliation algorithms, and cannot b ter. This advantage is evl.e” more re eva:g N pervasive sn ud lqui-
applied to commercial applications without further instrumentation. tous computing since applications are seldom connected, and even
We propose the notion of a semantic chunk, i.e., a semanticallyVhen they are, it may be impossible to access a specific machine
annotated document region with application relevance, that is pro(e'g" a central server), like in the case of a spontaneous ad-hoc ne

moted to a full-right entity w.r.t. consistency information and en- WO’ . . .
forcement. This unit, being smaller than a file and semantically, Data consistency enforcement and update reconciliation techniques

richer, allows greater concurrency and better update merging wit nclude: i) determining causality among updates performed on dif-

less aborts than current solutions. erent replicas and epidemically propagated [21, 2] among different
peers; and ii) replaying of logged operations performed by different
client nodes [12, 19].

Keywords Leveraging knowledge from application, data and usage seman-

C.2.4 [Distributed Systems]: Distributed Applications tics is a useful technique to improve replication management and
consistency enforcement. It helps reducing the number (and cost) of

General Terms update conflicts, and cuts down the amount of user’s work lost when

Design, Performance reconciliation of conflicting updates is impossible.

Semantics, w.r.t consistency, has been previously addressed by: i)
using type and application-specific reconciliation procedures
1. INTRODUCTION (opaque, i.e., non-transparent to the middleware) invoked when a

Information sharing is a fundamental aspect to computer supportetPnflict is detected, that process the conflicting updates and decide
cooperative work (CSCW) [9], and has been one of the main goald'hich update will prevail [21]; and ii) using application activity (op-
of distributed systems research. This has become even more Sg’ra_tlons, logged or inferred) and their semantic constrglnts (declared
recently, in the related fields of mobile, pervasive and ubiquitous®’ inferred) to centrally re-order (re-schedule) them in a way that
computing. More and more people perform work and exchanggMinimizes conflicts [12, 19].
data using their laptops, PDAs or mobile phones, even without be-

ing connected to a central network (e.g., using Bluetooth). In this] 1 Shortcomings of Current Solutions

context, data-replication has been a prime technique used for in- The issue of supporting ubiauitous cooperative work. in the con-
formation sharing. It improves availability, performance, and cost- upp g ubiquitous coop ’ .
text of collaborative document edition, involves roughly three kinds

effectiveness. of problems: i) enforcing replica consistency in an environment with
Locally replicated data is always readily available to applications P o rcing replic ency
de-centralized replication, while favoring update concurrency and

(even when the network is down), with access times orders of mag-

nitude lower than non-local data, and avoids frequent, and possiblsuccessful update commits and merging; ii) allowing the users to

lengthy and costly connections to the underlying network (specially)(Ise the same off-the-shelf office applications they already do, while

so in the case mobile devices with GSM, CDMA or GPRS Connec_guaranteelng_flexmle mter-optlerablh}y between these and the replica-
tivity) tion and con_'slstency systems; and iii) reduce wasted storage and net-

: L . . . work bandwidth. Although these sub-problems have been addressed
Data replication has been comprehensively addressed in variou 31l or just one) in previous work, we propose a novel approach that
projects and systems where applications are based either on file Juste prev ’ prop vel app '

? N We argue, is better suited for abovementioned activities.
databases, objects, application components, and structured docu- ; " . .
. . There are the two main families of approaches to consistency in
ments (refer to [8] for a detailed review). . o . ; -
mobile and ubiquitous environments. The firgpdate-basedis

Permission to make digital or hard copies of all or part of thrknfor easy to integrate transparently wighrerydaycommercial applica-
personal or classroom use is granted without fee providetdbpies are tions but considers every modification in a document, however small,
not made or distributed for profit or commercial advantage aatidbpies as a new document update, thus fostering conflicts and hindering
bear this notice and the full citation on the first page. Toyooherwise, to concurrency. The secongperational-basedpromises increased

republish, to post on servers or to redistribute to listgufes prior specific ¢oncyrrency by attempting to interleave compatible modifications
permission and/or a fee.

RM'05. November 28-December 2, 208Eenoble, France f_rom different users. However, _|t requires costly reconcnlatl(_)_n alg_o-
Copyright 2005 ACM 1-59593-270-4/05/11$5.00 rithms, and has issues w.r.t. integration and inter-operability with

everydaycommercial applications. Hence, it is difficult to apply

to them, without further instrumentation. Merge procedures can be Office Applications documem T

used inupdate-bassystems to reduce conflicts but they are opaque A DO
to the rest of the middleware. They behave like black-boxes, difficult :
to port and reuse, and their code must be blindly trusted. They ar®)
inflexible, unadaptable w.r.t. having a clear interface with which th < v Application Enhancement Layer , >
middleware could parameterize the conciliation task with additionakv % @
information (e.g. gathered from context). g Applicati paeasaasaasaasaaas L 2
We try to establish a middle-ground between these two "opposs Agg Kt::tilgr? : AppAdapter os o
ing” approaches, avoiding the problems of each one, while retainin@ P AR | L
the advantages of both. From thperational-basedpproach, we —= Modules TTTITIT T gl >_§
take increased concurrency, but without the need to modify applicag ‘g
tions. From theupdate-base@pproach, we take transparency wW.rtOQ | VA Semantic-Chunk Manager <_I’§
applications, but attempt at reducing update conflicts. %) c
To improve efficiency of cooperative work, application semantics= | v Chunk Database <_l>g
must be considered w.r.t. data replication and consistency. Leve % O
aging application semantics has been previously considered mainE | A v File System Extension {1 J
for purposes of operation logging, and designing merge procedure®
In this work, we make use of the structural and usage semantics of _
documents and applications (i.e., the emphasis is on the structure of) . .
the data that applications manipulate, and user behavior, regardless Figure 1: Semantic-Chunks System Architecture.
of the internal operations they perform). Therefore there is no need
to log operations, just manage updates. cooperative document edition (or cooperative document edition in

Techniques to exploit content similarities among different files, ubiquitous computing). In this model, users make use of mobile
and especially, among versions of the same file, in order to saveevices (typically laptops and PDAS) to create, edit, and exchange
storage space and bandwidth, have been used prior in [14, 2]. documents, performing cooperative work based on office-like ap-

. : plications. Users access and (possibly) modify locally, documents
1.2 Contribution and Paper Structure that may have been either created locally, or replicated from another

We propose a novel approach to system support for cooperativgser's device. Users may also (re-)replicate a locally replicated doc-
work in ubiquitous environments, namely collaborative documentyment to another device.
edition. It is embodied in the notion of a semantic-chunk (semantic- \we do not assume the presence of a fixed network infrastruc-
regions in general, targeted to a chunk-based system [14]), i.e., fyre (either wired or wireless-based). Users must then rely on the
semantically-annotated document region with application relevancejmited wireless networking capabilities available on their devices.
that is promoted to a full-right entity w.r.t. consistency information These are short-ranged, low-bandwidth (e.g., Bluetooth), furtier a
and enforcement. gravated by the device’s reduced battery life-time. Thus, users must

It fulfils the requirements of reduced memory and network usageengage preferably in spontaneous and short-duration ad-hoc ketwor
It provides the same level of optimistic consistency offered by cur-communication, in a variety of situations.
rent solutions, but with greater concurrency and flexibility, thus, less yser activities include not only collaborative text edition (that re-
prone to update conflicts. It especially suited for, and easily lendgeijves the primary focus in the paper) but also other popular office-
itself to document edition applications. Finally, we describe how ke applications like the edition of spreadsheets, web content, slide-
an adaptive middleware based on semantic-chunks can be integratg@sed presentations, etc. In the remainder of this paper, we will use
with popular office applications, using their restricted reflective ca-the termdocuments an abbreviation fatructured documenBoth
pabilities (namelyautomatior). the above mentioned types of documents may be encompassed by

The rest of the paper is organized as follows. In the next Secthjs notion, with the necessary and relevant adaptations.
tion, we present thoroughly the architecture of Semantic-Chunks

w.rt., successively: i) system overview, ii) storage and communi-2.1 Overview of a Semantic-Chunks System
cation, iii) application data structure, iv) middleware for application o system architecture of Semantic-Chunks is depicted in Fig-
enhancement, and v) consistency enforcement. Section 3 describggs 1 |t js is not bound to a specific platform or set of applica-
the main aspects regarding the proposed implementation, followeglong since we intend it to be applicable generically. Nonetheless,
by Section 4, where we introduce some related work and projectSye present a typical implementation in Section 3. Users operate es-
Section 5 wraps the paper up by offering some discussion, drawingentiajly unmodified office applications, extended by an adaptable

conclusions and uncovering possible lines of future work. middleware layer that makes use of applications’ reflective capabili-
ties, namelyautomation
2. ARCHITECTURE Semantic-Chunks middleware mediates the applications and the

We now briefly introduce some basic notions that are used througloperating system or virtual machine environment they run on. File
out the rest of the paper, and will be explained more thoroughly inSystem Extension provides a (virtual) file system abstraction for
the next sub-sections. Chunks (or data-chunks) are portions of filegsers to create, copy, delete files on (virtual) folders managed by
that have content-derived (instead of offset-derived) boundaages Semantic-Chunks in their device, or on nearing devices also enabled
introduced in LBFS [14]. A semantic-chunk manages a semanticallyvith Semantic-Chunks. The Chunk Database stores chunks, i.e.,
relevant document region. The content of a semantic-chunk is an akariable-sized fragments of document data. The Semantic-Chunk
ray of data-chunk IDs, thus referencing the data-chunks that actualliManager aggregates one or more chunks of data (as needed) that
hold the content of the document region. comprise logical units of documents, according to application se-

The operating environment and usage model addressed in Semamtiantics (e.g., sentences, paragraphs, sections, spreadshsktan
Chunks is one of ubiquitous CSCW, namely, ad-hoc network-basedegions, etc.). Semantic-chunks, themselves, are also aggregated in

| Semantic-Chunk Manager | | Semantic-Chunk Database | | Chunk Database |

] s4 s8 [s1 . . . [

> s1 is2 [[s5 is7 f—>ren +—>1h2 " h7 h9 ‘he f—>==* .

] sl2 s15 ™ —

~—>[s4 58 511> sl is2 Jemas R ,

[] si6 . . [] si4 s11]

——>[s12 "s13 515 isl4 > +—%h1: h5 :h8 1—>h3 h10 | >=== — cl1 L]

[s20 1 s |

—T | s16 ‘s17 $35 1590 ! s77 | —mmw —T>_h4 hill mms T cl0 c4 -

] sz0 40 — s4a__.)]]

——>[s63 525 "] 5341 533 | puus +—>[h2 "h7 ‘h9 hi1 [—>=+= 7 E

[599 — s L

{25 is40 |—aun ~+—»|h4 | 7*7

L £ = hash table of arrays L hash table of arrays L] ! hash table
a) b) ©)

Figure 2: Logical Architecture of Storage in a Semantic-Chunks Sgtem.

higher-level semantic-chunks. A top-level semantic-chunks is theThis way, they are mostly invulnerable to insertions, deletions, or
entry-level of a structured document. A large-sized document conether modifications, occurring in other regions of the file (e.g., in
tent can be incrementally fetched, and incrementally rendered, athe beginning of the file). Only the neighboring chunks might be
users need it, or as updates arrive. affected.

Whenever the office applications need to retrieve data from (or Chunk boundaries are determined resorting to Rabin fingerprints[16].
write to) the file system, those calls are intercepted by the File Sys€onceptually, file contents are scanned with an overlapping window
tem Extension and it instructs the Application Enhancement Layer tq48 bytesin length), and this determines a binary polynomial rep-
interface with the office application (via its reflective capabilities) in resentation of the data modulo another pre-determined polynomial
order to fetch from (or inject in) it content (according to read or write (one that is irreducible). This operation is performed efficiently with
operations). This content is, conversely, structurally injected bacla sliding-window. The space of fingerprint values for regions can
(or fetched from) to the Semantic-Chunks Manager (and hence, iflbe segmented in two (not necessarily contiguous) subsets, so that
the Chunks Database). THmop-backapproach is key to maintain certain values trigger the creation of a chunk boundary.
application transparency. To address the specifics of each applica- Chunks are identified by a hash value of their contents, using
tion, basic mediation is extended by specific Application AdaptationSHA-1 [22] algorithm. Only the first 64its of the SHA-1 hash
Modules. value are taken as a chunk hashing key. Thus, every chunk has a

Communication with other mobile devices (in order to replicate (just) 8 bytesized identification key, while its size may range hun-
files, propagate updates, etc.) is performed through a Web-Servicetreds of bytes. This is instrumental in reducing storage occupation
based Communication Services bridge. Interaction with other deand bandwidth usage, as we explain next.
vices can be performed at a variety of levels, as portrayed in Fig- Whenever two neighboring devices need to exchange document
ure 1. These interactions may be exchanging (for either propagationontents (previously divided in chunks), e.g., while replicating a
or update purposes) of basic data-chunks, incrementally reconstrucdocument, they exchange first the chunk keys they hold (regarding

ing semantic-chunks, downloading Application Adapters, etc. that file) and transmit only the contents of the chunks they do not
. . . hold already, hence saving bandwidth.
2.2 Basic Storage and Communication Whenever a user copies a file, creates a new version of a file,

PDAs are devices with several resource constrains. Storage, bandr receives an update from another user, it is expectable that most
width, processing power and battery life, are of premium impor- of the file contents remain relatively similar (i.e., apart the changes
tance. In the context of this work, we address solely storage angberformed). Similarity among files residing in local storage is thus
bandwidth limitations. leveraged because when the new version or file is saved, most of its

PDAs have no real (hard-)disks. Thus, there is no mass-memorgontents are already in the Chunk Database. Therefore, instead of
support, since they are usually equipped with memory that is limitedcopying the whole file contents, most of time, it just creates addi-
in size (normally, 32 or 64 MB). Therefore, file system is actually tional references to existing chunks, hence saving storage.
simulated in the PDA's memory. Although, there are Flash-memory . .
cards (CompactFlash, SecureDigital, etc.) extensions ranging to ana-‘?’ Appllcatlon Data Structure
over 1 GB. However, these capacities are not common in most PDAs. Naturally, applications are unaware of chunks. This is needed

To address storage limitations, information redundancy must besince normally, they just see flat files (regardless of their internal
exploited without incurring in high performance penalties (that couldformat specific to the application). Although using chunks enables
overload the processor and drain battery faster, as well). Data conthe reduction of storage and bandwidth usage, it does not allow ex-
pressionper se besides performance demands, is not incrementatracting and leveraging any kind of semantic information, from the
i.e., even small changes in the beginning, middle, or end of a docapplications or documents.
ument affect the whole of the compressed version (since file must To address this, each document is decomposed in semantically rel-
be compressed again). Thus, data similarities among different verevant regions i.e., document regions that are significant to the doc-
sions of the same document, and even among different documentament structure, to application semantics, and to typical usage be-
are leveraged without compression. havior. These semantic-regions are called semantic-chunks because

The basic storage substrate is therefore provided by a Chunk of the underlying Chunk Database. They are defined hierarchically
Database, as presented in [14]. An example is presented in Figure 2nd are application-semantics dependent, following naturally from
c. ltis structured as a hash-table of chunks. Chunks are portions dhe hierarchical structure of office-like documents.
files that have content-derived (instead of offset-derived) baigsla Application-based semantic-chunk borders may be defined as sec-

tions, paragraphs, sentences in text documents, cell areas inspreate divided in fewer levels than documents larger sized. Larger doc-
sheets, objects and geometry in CAD tools, functions and declarasments can accommodate more semantic-chunks and more hierar-
tion zones, in programming source code editing, etc. This managechical levels, without significant penalties, comparatively, in terms
ment is easy for applications because they know best the data and ité storage.

structure. To allow incremental content replication, in order to save storage,

Figure 2-b depicts a Semantic-Chunk Database. It is a hash-tabline system must be able to replicate semantic-chunks as they are
of Level-1semantic-chunks (with data-chunks beind.avel Q. At needed by the application, requested by the user, and accommodate
Level 1 semantic-chunks are arrays of chunk-1D, referencing thoseéhem as they arrive. The application enhancement layer is in charge
chunks that actually hold the contents of the semantic-chunk. Aof inserting stub content (possibly with scripting to trigger download
chunk can be shared by multiple semantic-chunks, belonging to angontent) to replace, w.r.t. rendering, document regions that are miss
number of files. A semantic-chunk may also be shared by multipleing, while the comprised semantic-chunks and data-chunks holding
versions of the same file. their content are still not available.

Figure 2-a depicts the Semantic-Chunk Manager, where higher- The application enhancement layer is in charge of mediating the
level semantic-chunks are stored. The content of a higher-levelrg@mexport of document content (extraction) to corresponding semantic-
chunk is an array comprised of IDs of other semantic-chunks. Thischunks and, for each semantic-chunk render its contents. The 8eman
structure allows an hierarchy with arbitrary number of levels. A file, Chunk Manager will then store it, possibly updating other semantic-
besides other information regarding file system attributes, is simplychunks, and associate it with consistency information. A converse
regarded as a top-level semantic-chunk. Semantic-Chunks are ideprocedure is performed to mediate the import of document content
tified by a GUID based on document name and device of creation. (injection) from semantic-chunks to be rendered in screen.

Conceptually, to search for a specific semantic-chunk, the SemanticThis layer is also responsible for importing and exporting docu-
Chunk Manager must be queried first, to check if it is a high-levelments from/to directories that are not managed by Semantic-Chunks.
semantic-chunk. If not found, then the Semantic-Chunk Databasé handles the specifics of converting documents to and from their
must be queried. In practice, all semantic-chunks are fetched fronmative format. These tasks can also be performed resortiag-to
the Semantic-Chunks Manager, and whether it belongevel Oor tomation
is a higher-level semantic-chunk, a pointer to the appropriate array The adaptability of the middleware stems from the fact that it
is returned, along with level info. can be automatically adapted to other applications and their formats.

Semantic-chunks are transmitted either i) as a sequence of chunkihis is performed resorting to Communication Services download-
(much as files in LBFS, or ii) as a sequence of other (lower-level)ing new plug-able application adaptation modules, either from fixed
semantic-chunks. The hierarchy of semantic-chunks in each doaetwork or from another device. This may be performed upfront
ument is XML-described, whenever it is transmitted, as part of aor triggered when a folder managed by Semantic-Chunks receives a
web-service invocation. Each semantic-chunk has associated with ftle of a format yet unknown. Type identification is still performed
meta-data, namely regarding consistency. solely based on file name extension (.doc, .xIs, etc.).

Thus, in Semantic-Chunks (analogously to LBFS chunks), when Replication and consistency sub-systems are unaware of the dif-
two neighboring devices need to exchange document contents, thdgrent semantic-chunks representations, so the base system is kept
first exchange semantic-chunks, and then, if the receiver does natnchanged as new types of document formats are introduced. Itis up
have them, they exchange the comprising lower-level semantic-churikghe application extensions, in a well defined cooperation with the
This may trigger exchange of more semantic-chunks (new ones anstorage and propagation system, to ultimately decide the actual con-
others that may have been updated). Ultimately, exchanging newent organization that will be presented to users. In this way the sys-
content may also cause transmission of data-chunks. tem is open and extensible, driven by an adaptive middleware layer

Itis very frequent in collaborative edition of long-sized documents and leveraging application reflective capabilities (even if limited).
(i.e., several chapters or sections, regardless of actual file sate) thBy exploiting this semantic knowledge about data structure and typ-
some users only deal with a subset of fractions of the file (the onegcal usage, in a transparent way w.r.t to the underlying semantic and
they are collaborating in). Still, with current systems, every singledata-chunk propagation system, favoring system modularity.
one of them is compelled to store a copy of the complete file. In The usage of application automation API can be regarded as a
Semantic-Chunks, a document may be rendered without needing abrm of reflective capabilities (even if limited). The code invoking
of its lower-level semantic-chunks (and corresponding data-chunksthis API gains, through them, access to the very structure and content
because, while the content is unknown, the document structure i@hat may be changed) of the documents, and functionalities of the
already known, and the middleware can adapt accordingly. application itself. This portrays aspects of introspection and modifi-

cation that comprise reflective capabilities.
2.4 Middleware and Application Enhancement

The main goal of the application enhancement layer is to en2-5 Data ConS|stency
hance application functionality without changing application code Chunks, while allowing savings in storage and bandwidth, do not
(neither extending nor instrumenting it explicitly). This layer of provide, by themselves, support for document consistency exforc
the middleware has a number of responsibilities, broadly: i) managenent. This problem has been specifically addressed in the context of
document structure, ii) manage document content within Semanticanother work [2], where a chunk-based system is extended with con-
Chunks managed folders, and iii) manage exporting/importing docsistency enforcement applied at file level. On the other hand, asso-
uments to/from non-managed folders. ciating consistency information with all chunks in the system would

W.rt. managing document structure, it is the responsibility of be very inefficient, and with other problems, since chunk content
the application enhancement layer, through an adequate applicatianay be shared among several files.
adaptation module, to detect the basic structure of a document once In Semantic-Chunks, consistency is enforced at the semantic-chunk
it is inserted in a folder managed by Semantic-Chunks. level, instead of at file level. Thus, consistency enforcement is per-

Semantic-chunk division must be performed with criteria in or- formed by the Semantic-Chunk Manager. Semantic-chunks natu-
der to minimize overhead due to increased number of higher-levetally suit themselves to the typical editing operations performed by
semantic-chunks. Thus, documents with reduced content and siagsers, i.e., centered in a fraction of the document sections, and inside

them, inserting, removing or editing some paragraphs, etc. Thisway3. IMPLEMENTATION ISSUES

update and consistency information is kept on a semantic-chunk gran-The development of a preliminary Semantic-Chunks prototype is
ularity. This is a ideal subdivision to provide increased concurrencycyrrently underway. It targets laptop machines, while taking porta-
in document edition, withstanding more updates and modificationsjlity to PDAs into account. It makes use of Bluetooth connectivity,
while reducing update conflicts. This is achieved by avoiding, or at Net Framework and .Net Compact Framework (.Net CF), and Of-
least, reducing false-sharing conflicts existing in other approachegice applications. In this section we present its main design aspects

(in systems where updates are regarded as a whole) arising froplain the issues involved, the limitations found, and the decisions
concurrent, yet unrelated, updates performed on documents. taken.

Consistency meta-data, associated with semantic-chunks is en- communication Servicesare developed in C#, and use native
coded in an open, XML-based, flexible manner. In addition to use Net (and .Net CF) support for web-service invocation. Requests
causality information, it can accommodate user voting schemes, alpcejved from other peers are answered by .Net Active SengasPa
thoritative updates, user leases, and custom hint messages. Semangigded in C#, running on 1S or on a Mobile Web Server [15].
chunks inh‘erit, by default, qnd without overhead, consistency meta- Fijje System Extensioris deployed as an IFS (Installable File Sys-
data of their parent semantic-chunks. _ _ tem), coded in C++, to manage folder initialization, directory main-

Causality information annotating semantic-chunks is based on - tenance, navigation through subfolders, and file operations them-
version-vectors (that may be compressed and subject to other optielves. To leverage the use of managed code (usable both in .Net
mizations [17, 21, 10]). Version vectors are applied hierarchicallyang .Net CF), most of the file system extension code is coded in C#
to semantic-chunks. Semantic-chunks are updated when its contegh s invoked from the core C++ code via a documeritéerop
data-chunks are modified (if it belongsltevel-1, or when there are ook [5, 20].
insertions or deletions in its array of lower-level semantic-chunks. The main code o€hunk-DatabaseandSemantic-Chunk Man-
When the struc_ture of a higher-level semantic-chunk remains UNageris developed in C#. This eases development w.r.t. C++, mainly
changed, even in the presence of changes to lower-level chunks coBecause it is straightforward to integrate it with the Communica-
tent, there is no need to transmit the higher-level semantic-chunkjgn services (that make use of the native support, in .Net and .Net
again, just the lower-level ones that were modified. This preventscE for web-service invocations). Semantic information annotating
having to transmit all the semantic-chunks in a document every tim&emantic-chunks, regarding consistency, is XML-coded and is also
is Subject to localized modifications. parsed and processed by C# code.

Semantic-chunks mat be subject to user voting schemes. When There is a reference count field associated with each data-chunk
users are confronted with (divergent) update conflicts, causatinforang each semantic-chunk. It is incremented/decremented whenever
mation cannot help. To solve this, users can insert, and retrievey semantic-chunk creates/drops a reference to a lower-level semantic
semantic annotations to the semantic-chunk stating their vote (possinunk or to a data-chunk. When it reaches zero, the semantic-chunk
bly with associated weight) for a particular update candidate. Usergy gata-chunk can be garbage collected by the middleware, since it
vote based on the content they read and their Opinion onit. This Use‘s no |0nger part of any of the documents stored. This is performed
provided semantic information advises other users of which updatqaaz“y (i.e., when free memory reaches a low threshold).
to use and, if the number of replicas is immutable, may even allow Binary data, like data-chunks content, is sent over web services
automatic decision by the middleware. We stress that this voting iyhich imposes some penalties, and it is still an open issue [3]. Al-
not based on an algorithm as in other epidemic propagation schemegmatives could be: i) using a lower-level communication protocol
but on semantic information annotated by users. o exclusively to send binary content, and use web-services for higher

Files and semantic-chunks may be subject to authoritative usag¢eyvel communication, or ii) refine Semantic-Chunks Manager to gen-
This allows a specific user (owner or creator), or set of users (adgrate (longer) XML-only descriptions of data-chunks content.

mi.n.s), to arbitrarily force their updates through other users with less The Application Enhancement Layeris mainly coded in C#. It
privileges. has some parts in VB.Net for clearer interaction with VBA-based Of-

Semantic-chunks may be appended with semantic-data regardingce automation, in order to extract and inject content, stubs, and se-
lease of preference. Itis a period of time indicated by an user, duringnantic hints w.r.t. consistency. Document files and semantic-chunks
which, he/she expects to produce another update to the semantigre exchanged as XML representations of comprising semantic and
chunk. This way, other users are advised that, if completed withingata-chunks, much as a stripped-down version of OpenOffice [1]
time, this next update will have precedence to others w.r.t. conflictsfgrmat. Except for the Pocket Outlook Managed API, Pocket Of-

Users can also annotate semantic-chunks with custom hint mesice still lacks substantial automation support. This is a feature long
sages that will pop-up in the corresponding document region to inqwaited due to the large number of applications and documents that
form other users. Several semantic annotations, possibly of differyse it. Nonetheless, convergence with the desktop versions has been
ent types, may be combined for any semantic-chunk. The middlemqying forward (e.g., use of native Office file formats).
ware can adapt consistency granularity to suit file owner preferences Finally, while data-chunk contents follow the document w.r.t. con-
overriding default behavior. tent and formatting, these are coded in an way independent of the ac-

An update is comprised of a set of semantic-chunks that have beefya) Office file format that is proprietary, binary and rather opaque.
modified. Updates are propagated in two ways, either i) implicitly, Thys, when possible, it is easier to use automation to extract content
epidemically whenever two peers meet with neighboring devices, oghan parsing/generating files. The latter is inadequate for a Semantic-
ii) explicitly, whenever two or more peers meet and the file owner chynk system because the Office format has some idiosyncracies
broadcasts a new update to explicitly overwrite all other replicas. (e g., saving a figure in a file, far from the position where it saves the

The ability to enforce consistency on a granularity larger than log-text that surrounds it). To address this format incompatibility, when
ging every singular operation performed, and smaller thitor- 5 file is copied to a folder that is not managed by Semantic-Chunks,
notingcomplete file updates, while also exploiting additional seman-jt myst be rendered by Office and saved with the regular application
tic information defined by users, is key to provide high concurrency.format. This may also be performed resorting to automation.
low number of update conflicts, avoid centralized reconciliation, and

ensure transparency w.rdverydayoffice applications.
4., RELATED WORK

Semantic-Chunks is related to number of other projects regardindjbraries as Application Adaptation Modules (e.g., parser/writer for
replication and consistency. Due to lack of space, we only addresRich Text File, a format understood by Pocket Word).
some. For a comprehensive survey, we refer to [18]. We also intend to investigate the application of the Semantic-
Bayou [21] is based on mobile-aware databases. Consistency i8hunks approach to another CSCW applications for content and
enforced by performing update operations in the same, well-definedocument edition (e.g., an ad-hoc, ubiquitous Wiki system; OpenOf-
order at all servers. This achieves eventual consistency amorggser fice applications with OOBasic enhancement layer).
Application-specific conflict resolution is performed by opaque de- We also wish to further develop Semantic-Chunks w.r.t. consis-
pendency checks and merge procedures. tency guarantees, different consistency enforcement appauic:
LBFS [14] was the first system to exploit file content similarities providing update hints for conflict resolution.
in order to save storage and bandwidth. It did not consider consis- We want to test the system with a typical set of users, once a
tency, that was addressed in Haddock-FS [2], with file granularity. complete user-friendly prototype is finished. Finally, we intend to
Operations performed by applications are logged by IceCube [12measure improvements in concurrency and successful committed

19], in different clients, and later sent to a generical central recon-updates w.r.t. previous approaches.

ciliation server. It heuristically performs sound re-scheduling of op-
erations in order to minimize conflicts, based on constrains for eac
pair of operations.

The work presented in [7] aims to achieve substantial reductions
in update transmission latencies, allowing sending updates with in-
creasing level of fidelity, by leveraging information about document
structure and content adaptation. [

Replication of XML documents, in mobile environments, has been
addressed in the context of Xmiddle [13].

With respect to other reflective middleware, sematic information
regarding QoS non-functional aspects is extracted and defineddeclafS]
atively by contracts in [4]. Compatible contracts can be combined
straightforwardly. Conflicts among requirements from different con- [6]
tracts are solved based on priority. An hierarchical approach is also
used in [6], in this case, to define channels in a publish/subscribe[7]
messaging model. Using semantic information in the context of
transactions (another way of enforcing consistency), has been ad-
dressed in [11], to meet varying transactional requirements from ap-[8l
plications.

4]

[9

5. CONCLUSION

In this paper we presented a novel approach to replication, con[-1
currency, and consistency enforcement, with a proposed implemen-
tation. Semantic-chunks are a novel approach to cooperative dodt]
ument edition in ubiquitous environments. sémantic-chunks a
document region with relevance to applications and users, furthepi2]
annotated with semantic consistency information, in part provided
by users. Since it is smaller than a file and semantically richer,
it allows greater concurrency and better update merging with Iesé .
aborts than current solutions. While providing more flexible con-
sistency enforcement, Semantic-Chunks imposes a fraction of add[14]
tional storage overhead w.r.t. LBFS (that does not enforce consis-
tency) and HaddockFsS. 15

Semantic-chunks do not impose modifications to applications, nor
specific merge procedures, nor centralized conflict resolution. They
are both intuitive and flexible w.r.t. users, and transparently manage g
able by the middleware.

We establish a middle-ground between two widely adopted fam-
ilies of approachesjpdate-basedndoperational-basedThus, the ~ [17]
problems of each one are avoided, while retaining the advantag
of both. From theoperational-basedpproach, we take increased [1g]
concurrency, but without the need to modify applications. From the
update-basedpproach, we take transparency w.r.t applications, but
attempt at reducing update conflicts.

Being designed as a middleware layer, between the operating sys-
tem and the applications, Semantic-Chunks architecture and implgz1]
mentation are developed following adaptive and reflective middle-
ware techniques.

As future work, we intend to circumvent present Pocket Office’s [22]
lack for automation support, by using content extraction/injection

k=]

Using openoﬁ:e org’s me ata format. http://books.evc-cit.inémk.php,
OReilly & Associates, Inc., jul 2004.
J. Barreto and P. Ferreira. A highly available replicated file system for
resource-constrained windows ce .net device8rdninternational Conference
on .NET Technologie2005.

] A.Bosworth, D. Box, M. Gudgin, M. Nottingham, D. Orchard, and J.Bctmer.

Xml, soap and binary data.
http://www.xml.com/pub/a/2003/02/26/binaryxml.html, feb 300

R. Cerqueira, S. Ansaloni, O. Loques, and A. Sztajnberg. Deploying
non-functional aspects by contract. The 2nd Int'l Workshop on Reflective and
Adaptive Middleware, Middleware 200Rio de Janeiro, Brazil, june 2003.

M. Combs. Unmanaged to managed calls - call managed code from unmanaged
code. http://www.codeproject.com/dotnet/bridge.asp, The Code Proj@sg, 2

E. Curry, D. Chambers, and G. Lyons. Introducing reflective techniques to
message hierarchies. Tie 2nd International Workshop on Reflective and
Adaptive Middleware, Middleware 200Rio de Janeiro, Brazil, june 2003.

E. de Lara, R. Kumar, D. S. Wallach, and W. Zwaenepoel. Collaboration and
multimedia authoring on mobile devices.It’| Conference on Mobile Systems,
Applications, and Services (MobiSySan Franciso (CA), USA, May 2003.

P. Ferreira and L. Veiga. Mobile middleware: Seamless service access via
resource replication. Technical report rt/08/2005 (extended version of the chapter
included in Mobile Middleware, A. Corradi and P. Bellavista eds., CRC Press
2005), INESC-ID Lishoa, april 2005.

1. Greif, editor. Computer-Supported Cooperative Work: A Book of Readings
MORGAN KAUFFMAN, 1988.

Y.-W. Huang and P. S. Yu. Lightweight version vectors for pervasive caoimpu
devices. Innternational Conference on Parallel Processing Workshops
(ICPPW'00) 2000.

R. Karlsen and A.-B. Jakobsen. Transaction service management: An approach
towards a reflective transaction serviceThe 2nd Int'| Workshop on Reflective
and Adaptive Middleware, Middleware 20@io de Janeiro, Brazil, 2003.

A. Kermarrec, A. Rowstron, M. Shapiro, and P. Druschel. The icecube approach
to the reconciliation of divergent replicas. 28th ACM Symposium on Principles
of Distributed Computing (PODC’01Newport, RI, USA, August 2001.

C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich. Xmiddle: A
data-sharing middleware for mobile computiigrel. Pers. Commun.
21(1):77-103, 2002.

A. Muthitacharoen, B. Chen, and D. Marés. A low-bandwidth network file
system. InProceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP '01)pages 174-187, October 2001.

N. Nicoloudis and D. Pratistha. .net compact framework mobile web server
architecture. http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnnetcomp/html/NETCFMA.asp, Monash University, Caulfield tralis &
MSDN, Microsoft, jul 2003.

M. O. Rabin. Fingerprinting by random polynomial functions. Repeii3-81,
Center for Research in Computing Technology, Harvard University, Cambridge,
MA, USA, june 1981.

D. Ratner, P. Reiher, and G. Popek. Dynamic version vector maintenancé UCL
Technical Report CSD-970022, june 1997.

8] Y. Saito and M. Shapiro. Optimistic replicatiohCM Comput. Sury37(1), 2005.

M. Shapiro, N. Preguiga, and J. O’'Brien. Rufis: mobile data shariimgws
generic constraint-oriented reconciler|EEE International Conference on
Mobile Data Management (MDM 2004un 2004.

M. Struys. Asynchronous callbacks from native win32 code.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnnetcomp/html/AsynchCallbacks.asp, PTS Software/MSDN, Dec 2003.
D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and C. H.
Hauser. Managing update conflicts in bayou, a weakly connected replicated
storage system. IRroceedings of the fifteenth ACM symposium on Operating
systems principlepages 172-182. ACM Press, 1995.

N. T.Il. S. U.S. Department of Commerce/N.I.S.T. Fips 180-1. secure hash
standard. Springdfiled, VA, april 1995.

