Mobility and Wireless Support in OBIWAN

Luis Veiga

Paulo Ferreira

{luis.veiga,paulo.ferreira}@inesc.pt
INESC/IST, Rua Alves Redol N° 9, Lisboa, Portugal

http://www.gsd.inesc.pt

Abstract

The need for sharing is well known in a large number
of distributed collaborative applications in a mobile en-
vironment. For this purpose, we have been developing
a platform called OBIWAN! that: i) allows the appli-
cation programmer to decide the mechanism by which
objects should be invoked, remote method invocation or
invocation on a local replica, ii) allows incremental (on-
demand) replication of large object graphs, iii) provides
hooks for the application programmer to implement a
set of application specific properties such as transac-
tional support or updates dissemination, iv) supports
the migration of execution flows allowing the implemen-
tation of mobile agents, and v) supports the concept of
a computing dynamic horizon in which resources in a
broader sense (memory, disks, printers, internet access,
data and even code) can be found in other neighbor de-
vices and used accordingly.

1 Introduction

There is a clear need for data sharing and collaboration
support in a large number of applications in different
domains. In OBIWAN, we focus on applications in the
area of co-operative work within virtual organizations;
for example, a virtual enterprise grouping several com-
panies from different countries, a virtual marketplace,
a widely distributed software development team, a dis-
tributed game involving people anywhere in the world,
etc.

This need for information sharing is increasing along
two main axis: wide area (i.e., across the Internet) and
mobility (i.e., portable computers, webpads, personal
digital assistants, smart cellular phones, etc.). As a
matter of fact, besides the growing number of desktop
computers connected to the Internet, there are other
devices, generally called information appliances (info-
appliances, for short) that are gaining enormous popu-

TOBIWAN stands for Object Broker Infrastructure for Wide
Area Networks.

phone: 351 21 3100292

larity; personal digital assistants (PDAs) are just one of
them.

The role of these info-appliances, currently handling
agendas, calendars, etc. will certainly grow as more
computing power and communications capability can be
included [5, 6]. In particular, the foreseen increase of
bandwidth in wireless communication makes the con-
nection of these info-appliances to the Internet a reality
[4].

We envisage a general scenario in which a user wants
to access data using a PC in his office, using a laptop
while in the airport or in the hotel, using a PDA in a
taxi, etc. The user wants to live in this “data ubiquitous
world” with no other concern besides doing his own work
and, as much as possible, to keep on working in spite
of any system problem that may occur (e.g. network
partitions).

So, there is a constant need to access shared data no
matter where you are and the info-appliance you use,
and users want the same degree of responsiveness and
performance as in a fully high-bandwidth low-latency
wired connected environment. Sometimes these require-
ments may be impossible to fulfill but the system should
be able to minimize the number of such occurrences.

As a matter of fact, mobile computing is character-
ized by significant and rapid changes in its supporting
infrastructure and, in particular, in the quality of service
available from the underlying communication channels;
wireless links provide lower bandwidth, possibly higher
error rates than wired networks, and periods of discon-
nection and intermittent or variable connectivity may
occur.

For example, if accessing data on some remote ma-
chine is not possible for some reason, the application
should not stop working; instead, it should, at least,
automatically propose the user an alternative access to
such data from another machine, even if such data is
not up to date.

Another example is related to network partitions.
While these are rare in stationary local area networks,
they occur in greater number in wide area mobile net-
works. Most applications consider them to be failures

pnn(ev SiteA- thend Deskiop

hard disk

ran, manag SteF PainPiot
internet

printer

hard disk m
tran. manag

internet

rinter

hard disk
SiteE- DeskmpPC internet

scanner

ntemet hard disk
| Site C-Mobie Wap | | Ste D- Poraie PC | internet
1ARemote \
tran. manag
o
Providero
/ \ IDemandero:
wmwuememm \
Prodero- (e
IDemandero—\ IDemandero—|

\Demamse
BproxyOut ProweReneSBPOXYIN) proideg
IDemander¢

/

nterface IDemander
intertace [Provider void setProvider(IProvider);
Object get(mode) void updateMember(Object replica,
void put(Object) Object member);

interface IProviderRemotd) (interface IDemandee
Object get(mode) void setProvider(IProvider);
void put(Obect) void setDemander(IDemander);
Object demand();

Figure 1: Main structures of OBIWAN.

that are exposed to users. In the mobile environment,
applications will face frequent, lengthy network parti-
tions. Some of these partitions will be involuntary (e.g.,
due to a lack of network coverage) while others will be
voluntary (e.g., due to a high dollar cost). Mobile ap-
plications should handle such partitions gracefully and
as transparently as possible. In addition, users should
be able, as far as possible, to continue working as if the
network was still available. In particular, users should
be able to modify local copies of global data.

2 OBIWAN

The overall objective of the OBIWAN project is to de-
sign and implement a system that: (i) is well suited
to support distributed applications with strong sharing
needs in a mobile environment, and (ii) facilitates ap-
plication development by releasing programmers from
the need to handle complex system issues such as fault-
tolerance, memory management, etc., while providing
the right level of abstraction and functionality to deal
with unexpected situations.

We believe that the notion of a generic object broker
infrastructure provides the means to the kind of sharing
described above. Intuitively, to describe our object bro-
ker infrastructure, we can say that OBIWAN supports

applications that manipulate an ocean of objects; these
objects are scattered over a variety of locations and info-
appliances, can flow among such appliances, and contain
innumerable references connecting them.

OBIWAN provides support for the following: i) al-
lows the application programmer to decide the mech-
anism by which objects should be invoked, remote
method invocation or invocation on a local replica, ii) al-
lows incremental (on-demand) replication of large object
graphs, iii) provides hooks for the application program-
mer to implement a set of application specific properties
such as transactional support or updates dissemination,
iv) supports the migration of execution flows allowing
the implementation of mobile agents, and v) supports
the concept of a computing dynamic horizon in which
resources in a broader sense (memory, disks, printers,
internet access, data and even code) can be found in
other neighbor devices and used accordingly.

We believe that all this functionality allows the ap-
plication programmer to deal with situations that fre-
quently occur in a (mobile) wide-area network, such as
disconnections and slow links.

2.1 Architecture

Figure 2 illustrates the architecture of OBIWAN. It
shows four sites (A....F) with arrows among them mean-
ing that, at some instant, they know each other. Thus,
they can exchange information and, for example, use
the resources of each other. We present with more de-
tail the objects (and the references among them) for
sites C and D. Close to each site we also present infor-
mation describing the site resources such as hard disk,
transaction manager, wired connection to the internet,
ete.

Stubs and skeletons are created by the underlying
virtual machine (Java in the current implementation).
Objects A, B and C are created by the programmer;
their replicas, A’, B’, and C’ are created upon the pro-
grammer’s request. All other objects, i.e. proxies-in and
proxies-out, are part of the OBIWAN platform and are
transparent to the programmer. Figure 2 also shows,
for each object and proxy, the interfaces implemented:

e TA, IB and IC: these are the remote interfaces of
objects A, B and C, respectively, designed by the
programmer; they define the methods that can be
remotely invoked on these objects.

e IProvider: interface with methods that support the
creation and update of replicas; method get results
in the creation of a replica and method put is in-
voked when a replica is sent back to the process
where it came from in order to update its master
replica.

e IDemander and IDemandee: methods that support
the incremental replication of an object’s graph;

e [ProviderRemote: remote interface that inherits
from IProvider so that its methods can be invoked
remotely.

2.2 Replication

OBIWAN provides support for objects in the sense that
they can be invoked either remotely, via remote method
invocation (RMI) [1, 7], or locally via local method in-
vocation (LMI) based on a replication mechanism that
brings objects to the info-appliance where an applica-
tion is running [2].

This replication mechanism is incremental in the
sense that only those objects that are really needed are
effectively replicated (not the whole graph which can
be very large); the application does not have to wait
for the replication of every object it needs, as this is
done in parallel in the background (with a pre-fetching
approach).

The flexibility of the invocation mechanism allows the
application programmer to develop his application so
that it resists to network failures, and allows the user to
work disconnected from the network (either voluntary
or not). As a matter of fact, as long as those objects
needed by an application (or an agent) are locally acces-
sible, there is no need to be connected to the network.
In addition, by replicating objects in the info-appliance
where an application using them is running, the over-
all performance can be improved w.r.t. an approach in
which objects are always invoked via RMI.

Finally, note that the programmer can easily replace,
in run-time, remote by local invocations on replicas,
thus improving the performance of his application and
its adaptability.

2.3 Migration

In addition, OBIWAN also supports the migration of
execution flows making possible the implementation of
mobile agents. However, since threads and stacks are
not first class objects in Java, the programmer must
provide synchronization points (checkpoint invocation)
in which the agent execution can be freezed, its state
serialized and transferred for ulterior reactivation upon
arrival on another machine.

Agents activities should be monitored for twofold se-
curity reasons. Some machines may not allow certain
actions to some agents based on their origin and migra-
tion path. On the other side, agents should be able to
choose among several available paths from one machine
to another.

2.4 Hooks

We provide, in OBIWAN, a series of hooks through
which, a number of mostly orthogonal facilities can be
provided to applications/agents. These include memory
management, policies for coherence of replicas, security

and privacy, interaction with other objects outside OBI-
WAN.

Memory is at premium in mobile environments. Al-
though memory capacity of mobile devices increases
steadily, it will always be relatively limited compared
to portable and desktop computers. With this premiss
in mind, some old axioms must fall or at the very least,
be relaxed. Due to severe memory limitations, even live
data should be reclaimed in order to provide free mem-
ory so that applications/agents can continue to function.
This data, however, should not be simply discarded but
instead swapped-out whenever possible, e.g. saved else-
where in some more capable, portable or desktop com-
puter. Naturally, this raises some old issues, like trash-
ing, but in a new environment. Efficient policies should
be developed based on a mix of adaptable behavior and
application programmer’s hints.

In a replicated environment with possibly long dis-
connected periods, coherence of replicas poses some dif-
ficulties. Pessimistic and synchronous models should
be provided to maintain old applications sematic but
with the unavoidable performance penalties. These
should not be encouraged in the next generation ap-
plications/agents. They should be based in optimistic,
mostly asynchronous models that allow computation to
proceed, even in the presence of old data, and per-
form ulterior conciliation of data at merging time. This
should be achieved in an automatic fashion for common
data manipulations, with application specific treatment
or even with user intervention. Several transactional
models should be provided and could be combined in
the same application/agent to access data with differ-
ent freshness and exclusiveness requirements.

In such a complex new environment, security can no
longer consist in a series of simple access control and au-
thentication permissions for hardware, data, programs
and communication media. Information flows through
different, possibly scattered machines. Security related
information must obviously be secured, as well. More
S0, security concepts should be enlarged to bear obliga-
tion policies, i.e., permissions are no longer just a func-
tion of application/agent identity and desired resources
but also of past execution. Previous actions should be
denied and their results relegated if they are not fol-
lowed by other demanded actions. This can be achieved
by using transaction rollbacks. However, this security
information must travel untouched through a series of
machines. In order to accomplish this, security data and

application/agent logs should be successively encrypted
with several machines private keys. Any machine could
consult these logs to uphold security obligation policies
but none of them, and more importantly the applica-
tion/agent, could tamper with the information produced
by others.

To leverage existing applications and document for-
mats, some form of interaction with other objects out-
side OBIWAN should be provided. This can easily be in-
corporated in ProxyIn and ProxyOut objects that have
automation code to load, save, manipulate and convert
most document types, e.g. Word, Excel and PowerPoint
documents [3].

2.5 Resource Discovery and Usage

Traditionally, applications’ resources have always been
seen as the set of hardware resources used by the ap-
plication/agent from those available in the running ma-
chine or from a well-known set of neighbor machines
as those in a LAN. The latter usually include printers
and hard disk storage, sometimes internet access, sel-
dom memory and processing power and rarely code.

We purpose the adaptation of the concept of known
horizon to computing. Thus, we think that the re-
sources available to an application/agent should not
be restricted to those installed in the running device
(computer, PDA, etc.). They should include all that
are accessible within acceptable time frames (the hori-
zon) from all devices the application/agent is aware of.
Proximity-triggered notification should be used to fre-
quently update current horizon definition in each device.

Furthermore, resources should be considered in a
broader sense and include as much computation ele-
ments as possible. They should include CPU power,
specific code in the from of services, extended memory,
communication media, etc.

Whenever required hardware becomes available,
logged application/agent requests to it should be ac-
tivated. Additionally, every time fresh data or more
recent and sophisticated code comes near, they should
be transparently acquired for improved results and func-
tionality.

This relaying-based access to resources and propaga-
tion of computation results raises new issues, namely
security ones, that we want to pursue our research
on. Applications/agents and the runtime should be
able to monitor possible vulnerabilities as malicious re-
sources usage, un-trusted code location, data relay paths
through machines without the desired trust level.

2.6 Implementation

All these services will be integrated within automatically
generated proxies.

These result form the composition of simple, asyn-
chronous policies through interface semantic self-
description and automatic adaptable implementation.

This self-descriptive information can be viewed as an
extension of the interface contract since it provides se-
mantic information about interface methods. Naturally,
such information should be encoded in a rich yet simple,
versatile and largely adopted language like XML.

Refusal of classic distributed algorithms that rely on
some kind of consensus or agreement should be con-
sidered. Emphasis on information exchange and asyn-
chronous behavior within the computing horizon should
be preferred as they are more suited to this environment.
More so, proximity of other devices should trigger op-
portunistic behavior in the sense that resources newly
available should be used when and only when they be-
come available. This contradicts the classic point of
view where resources should be available when applica-
tion/agent needs them.

References

[1] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wob-
ber. Network objects. Software Practice and Ezxperience,
S4(25):87-130, December 1995.

[2] Paulo Ferreira, Marc Shapiro, Xavier Blondel, Olivier Fam-
bon, Jo ao Garcia, Sytse Kloosterman, Nicolas Richer, Mar-
cus Robert, Fadi Sandakly, George Coulouris, Jean Dollimore,
Paulo Guedes, Daniel Hagimont, and Sacha Krakowiak.
PerDiS: design, implementation, and use of a PERsistent
DIstributed Store. Recent Advances in Distributed Systems,
Springer Verlag LNCS, Eds. S. Krakowiak and S.K. Shrivas-
tava, 1752, February 2000.

[3] Christopher K. Hess, Francisco Ballesteros, Roy Capmbell,
and M. Dennis Mickunas. An adaptive data object service
for pervasive computng environments. In Proceedings of the
Sixth USENIX Conference on Object-Oriented Technologies
and Systems (COOTS’01), San Antonio (USA), January 2001.

[4] Malcom W. Oliphant. The mobile phone meets the internet.
Software Practice and Ezperience, 36(8):20-28, August 1999.

[5] John Muray Reuter. Inside Windows CE. Microsoft Program-
ming Series. Microsoft Press, 1998. ISBN 1-57231-854-6.

[6] Bill Venners. Inside the Java Virtual Machine. Java Masters
Series. McGraw-Hill, 1997. ISBN 0079132480.

[7] Ann Wollrath, Roger Riggs, and Jim Waldo. A distributed
object model for the java system. In Conference on Object-

Oriented Technologies, Toronto Ontario (Canada), 1996.
Usenix.

