
UNIVERSIDADE TÉCNICA DE LISBOA
INSTITUTO SUPERIOR TÉCNICO

OBIWAN: Middleware for Memory Management of
Replicated Objects in Distributed and

Mobile Computing

Luı́s Manuel Antunes Veiga
(Mestre)

Dissertação para obtenção do Grau de Doutor em
Engenharia Informática e de Computadores

Orientador: Doutor Paulo Jorge Pires Ferreira

Júri
Presidente: Reitor da Universidade Técnica de Lisboa

Vogais: Doutor Arlindo Manuel Limede de Oliveira
Doutor José Manuel da Costa Alves Marques
Doutor Richard Elliot Jones
Doutor José Augusto Legatheaux Martins
Doutor Paulo Jorge Pires Ferreira
Doutor Rui João Peixoto José

Outubro 2006

.

Dissertação realizada sob a orientação do

Prof. Paulo Jorge Pires Ferreira

Professor Associado do Departamento de Engenharia Informática

do Instituto Superior Técnico da Universidade Técnica de Lisboa

Publications

The work and results presented in this dissertation were partially supported, in chronolog-
ical order, by Microsoft Research and by the Portuguese Science and Technology Foundation
(Fundação para a Ciência e Tecnologia, Ministério da Ciência e do Ensino Superior). They are partially
described in the following peer-reviewed scientific publications:

International Journals

1. Complete Distributed Garbage Collection, An Experience With ROTOR. (Selected papers
from Rotor Workshop) Luı́s Veiga, Paulo Ferreira. In IEE Research Journals - Software,
vol. 150(5), October 2003.

2. OBIWAN - Design and Implementation of a Middleware Platform. Paulo Ferreira, Luı́s
Veiga, Carlos Ribeiro. In IEEE Transactions on Parallel and Distributed Systems, vol.
14(11), November 2003.

Book Chapters

3. Mobile Middleware - Seamless Service Access via Resource Replication. Paulo Ferreira,
Luı́s Veiga. In The Handbook of Mobile Middleware, Paolo Bellavista and Antonio
Corradi, Auerbach Publications, Taylor and Francis-CRC Press, October 2006.

International Conferences and Workshops

4. Mobility and Wireless Support in OBIWAN. Luı́s Veiga, Paulo Ferreira. In Advanced Topic
Workshop on Middleware for Mobile Computing, 3rd IFIP/ACM Middleware Confer-
ence, Heidelberg, Germany, November 16, 2001.

5. Incremental Replication for Mobility Support in OBIWAN. Luı́s Veiga, Paulo Ferreira. In
22nd IEEE International Conference on Distributed Computing Systems (ICDCS’02),
Vienna, Austria, July 2-5, 2002.

6. Mobility Support in OBIWAN. Luı́s Veiga, Paulo Ferreira. In 2nd Microsoft Research
Summer Workshop, Cambridge, UK September 9-11, 2002.

7. RepWeb: Replicated Web with Referential Integrity. Luı́s Veiga, Paulo Ferreira. In 18th
ACM Symposium on Applied Computing (SAC’03), Melbourne, Florida, USA, March
9-12, 2003.

8. Complete Distributed Garbage Collection, An Experience With ROTOR. Luı́s Veiga, Paulo
Ferreira. In 2nd Microsoft Research Annual SSCLI Workshop, Redmond, WA, USA,
September 17-19, 2003.

9. Turning the Web into an Effective Knowledge Repository. Luı́s Veiga, Paulo Ferreira. In
6th International Conference on Enterprise Information Systems, Porto, Portugal, April
14-17, 2004.

10. Transaction Policies for Mobile Networks. Nuno Santos, Luı́s Veiga, Paulo Ferreira. In 5th
IEEE International Workshop on Policies for Distributed Systems and Networks (Policy
2004), New York, NY, USA, June 7-9, 2004.

11. Loosely-Coupled, Mobile Replication of Objects with Transactions. Luı́s Veiga, Nuno San-
tos, Ricardo Lebre, Paulo Ferreira. In Workshop on Qos And Dynamic Systems. 10th
IEEE International Conference on Parallel And Distributed Systems (ICPADS), New
Port Beach, CA, USA, July 5-9, 2004.

12. PoliPer: Policies for Mobile and Pervasive Environments. Luı́s Veiga, Paulo Ferreira. In 3rd
Workshop on Adaptive and Reflective Middleware, 6th ACM/IFIP/USENIX Middleware,
Toronto, Ontario, Canada, October 18-22, 2004.

13. Asynchronous Complete Distributed Garbage Collection. Luı́s Veiga, Paulo Ferreira. In
19th IEEE international Parallel and Distributed Processing Symposium (IPDPS), Den-
ver, CO, USA, April 4-8, 2005.

14. Extending .Net Remoting with Distributed Garbage Collection. Paulo Pereira, Luı́s Veiga,
Paulo Ferreira. In 2nd International Conference on Innovative Views of .Net Technolo-
gies (IV.Net 2006), Brazil, October 21, 2006.

Other Publications

15. Garbage Collection Curriculum. Paulo Ferreira, Luı́s Veiga. In MSDN Academic Al-
liance Curriculum Repository, Object ID 6812, powerpoint document containing 144
slides, available at http://www.msdnaacr.net/curriculum/pfv.aspx?ID=6182, Microsoft,
July 2005.

Resumo

Actualmente, o desenvolvimento de aplicações para ambientes móveis é complexo pois os
programadores têm de lidar com várias questões de nı́vel-sistema (e.g., funcionamento em modo
desligado, gestão de memória, variabilidade no ambiente). Isto impede-os de se cingirem à
lógica aplicacional, com consequentes perdas de produtividade e robustez das aplicações.

Nesta dissertação propomos uma plataforma middleware (OBIWAN) que permite melhorar
a produtividade dos programadores e a robustez das aplicações, abordando três aspectos: su-
porte à execução de aplicações distribuı́das através da replicação incremental e transparente de
objectos, reciclagem distribuı́da de memória, e suporte ao nı́vel-sistema para a adaptabilidade
de aplicações.

A replicação proposta permite às aplicações, em sistemas distribuı́dos e móveis, contin-
uarem a operar durante perı́odos de desconexão ou reduzida largura de banda, com melhor de-
sempenho quando comparado com acesso remoto, sem necessidade de modificar as máquinas-
virtuais em uso.

A reciclagem automática de memória (GC) liberta os programadores da gestão manual de
memória. Propomos a primeira solução completa de GC distribuı́do para objectos replicados.
Os algoritmos propostos são escaláveis, não interferem com as aplicações, e são facilmente in-
tegráveis nos sistemas actuais.

Para permitir a configuração do ambiente de execução a diferentes dispositivos e recursos
nestes sistemas, a arquitectura proposta suporta a adaptabilidade e flexibilidade exigidas em
ambientes móveis.

Palavras chave:

sistemas distribuı́dos, mobilidade, middleware, replicação, reciclagem automática de
memória distribuı́da, adaptabilidade.

Abstract

Developing applications for mobile environments is difficult because the programmers are
currently forced to deal with various system-level issues (e.g., operation in disconnected mode,
memory management, variability of surrounding environment). This prevents them from fo-
cusing on application logic, with consequent lower productivity and reduced application ro-
bustness.

We propose a middleware platform (OBIWAN) that helps programmers’ productivity and
application robustness, addressing three issues: support for execution of distributed appli-
cations by means of transparent incremental replication, distributed garbage collection, and
system-level support for application adaptability.

Replication allows applications to keep on working while disconnected or with low-
bandwidth access, with improved performance when compared with remote access. We pro-
pose incremental replication of object graphs, handling object-faults in distributed and mobile
systems, without requiring modifications to underlying virtual machines.

Garbage collection (GC) releases programmers from manual memory management. We pro-
pose the first complete distributed GC solution for replicated objects. The algorithms proposed
are scalable, non-disruptive to applications, and are easily integrated with current off-the-shelf
systems.

A natural follow-up of these subjects is to address the automatic adaptation and configura-
tion of the execution environment, to different devices and available resources in these systems.
The architecture proposed provides the necessary entry-points, supporting the flexibility and
adaptability required by mobile applications.

Keywords:

distributed systems, mobility, middleware, replication, distributed garbage collec-
tion, adaptability.

Agradecimentos
Gostaria de agradecer enfaticamente ao meu orientador cientı́fico, Prof. Paulo Ferreira, por

acreditar no meu trabalho e pelos frequentes incentivos e palavras de encorajamento, quer para
o decurso do trabalho desta dissertação, quer para o restante da minha actividade cientı́fica
e docente. O parágrafo anterior aplicava-se em 2001, aquando da realização do mestrado, e
mantém-se de igual forma hoje.

Aos membros da Comissão de Acompanhamento de Tese: Prof. José Legatheaux Martins,
Prof. José Alves Marques, Prof. Arlindo Oliveira e Prof. Paulo Ferreira.

Ao Departamento de Engenharia Informática do IST, pelo usufruto de 29 meses de Dispensa
de Serviço Docente, nas pessoas do seu actual Presidente, Prof. José Alves Marques, e dos Coor-
denadores do Programa de Doutoramento em Engenharia Informática, em cujo consulado este
trabalho teve lugar: Prof. Joaquim Jorge e Prof. Alberto Silva.

À Fundação para a Ciência e Tecnologia, à Microsoft Research, e à Fundação Luso-
Americana para o Desenvolvimento, pelo apoio financeiro prestado.

A todos os membros, em geral, do Grupo de Sistemas Distribuı́dos do INESC-ID em Lisboa,
presentes e passados.

Ao Eng. Nuno Santos pelo frutuoso trabalho em equipa tanto na investigação como na
docência.

Aos membros do GSD com quem tenho colaborado no âmbito de artigos cientı́ficos, projec-
tos de investigação e discussão de ideias: Prof. Carlos Ribeiro, Prof. Rodrigo Rodrigues, Eng.
João Garcia, Eng. João Silva, Eng. João Barreto, Eng. Ricardo Lebre.

Aos alunos que tive oportunidade de co-orientar na realização do seu Trabalho Final de
Curso, pelo seu entusiasmo e empenho: Engs. Nuno Santos, Ricardo Mendes, Ezequiel Alabaça,
Gustavo Guerra, Miguel Cartó, João Salavessa, José Cunca, Paulo Gonçalves, José Lopes, Tiago
Bernardo, e Edgar Marques.

Ao Prof. David Matos, pela graciosa disponibilização do template utilizado na redacção desta
dissertação.

Aos meus amigos por sempre o terem sido. Àqueles que, embora não conhecendo pessoal-
mente, foram o apoio preci(o)so nas horas de trabalho mais solitário, aos músicos.

A todos os membros, presentes e passados, do colectivo progressivo Solarys.

A meus pais, Manuel Joaquim e Ana Maria, e irmãos, Carlos e Ana.

A Andreia, pelo apoio, carinho, compreensão, e pelas horas de companhia perdidas.

Luı́s Manuel Antunes Veiga
Parque das Nações, 23 de Outubro de 2006

Contents

I Global Overview 1

I.1 Introduction 3

I.1.1 Motivation, Goals and Challenges . 3

I.1.2 Proposed Approach . 5

I.1.3 Problems to Address . 8

I.1.4 Contributions . 9

I.1.5 Document Roadmap . 11

I.2 OBIWAN Architecture 13

I.2.1 OBIWAN Middleware Components . 15

I.2.2 Data Structures . 18

II Incremental Object Replication 21

II.1 Related Work on Data Sharing 25

II.1.1 Data Sharing Systems . 25

II.1.1.1 System Architecture . 26

II.1.1.2 Programming Model . 28

II.1.1.2.1 Files . 29

II.1.1.2.2 Tuples . 30

II.1.1.2.3 Relational Databases . 31

II.1.1.2.4 Objects . 32

II.1.1.2.5 Components . 33

II.1.1.2.6 Mobile Agents . 33

II.1.1.2.7 Structured HTML/XML Documents 34

i

II.1.1.2.8 Summary . 34

II.1.1.3 Data-Sharing Model . 34

II.1.1.3.1 Remote Invocation . 35

II.1.1.3.2 Publish-subscribe . 36

II.1.1.3.3 Migration . 37

II.1.1.3.4 Caching . 37

II.1.1.3.5 Replication . 38

II.1.1.3.6 Hybrid approaches . 38

II.1.1.4 Propagation of Modifications . 39

II.1.1.5 Portability and Implementation Issues . 40

II.1.1.6 Summary . 43

II.1.2 Case-Study of Relevant Systems . 43

II.1.2.1 Research Projects . 44

II.1.2.1.1 Bayou . 44

II.1.2.1.2 Rover . 44

II.1.2.1.3 Thor . 45

II.1.2.1.4 IceCube . 45

II.1.2.1.5 Mobisnap . 46

II.1.2.1.6 Javanaise . 46

II.1.2.2 Industry Standards and Commercial Products 48

II.1.2.2.1 Java . 48

II.1.2.2.2 Microsoft .Net . 49

II.1.2.2.3 Other Object-oriented approaches 50

II.2 Architecture 53

II.2.1 Transparent Object-Fault Handling . 54

II.2.1.1 OBIWAN Interfaces . 55

II.2.1.1.1 Interface IProvider . 56

II.2.1.1.2 Interface IDemandee . 57

II.2.1.1.3 Interface IDemander . 57

II.2.1.1.4 Interface IProviderRemote . 58

II.2.1.1.5 Application-code Interfaces . 58

ii

II.2.2 OBIWAN Application Programming Interface for Replication 58

II.2.3 Prototypical Example of Incremental Replication 59

II.2.3.1 Initial Situation . 59

II.2.3.2 Incremental Replication of Object A . 60

II.2.3.3 Object-Fault Detection and Incremental Replication of Object B 61

II.2.3.4 Replacement of BProxyOut . 63

II.2.4 Incremental Replication with Variable Depth . 64

II.2.5 Object Clustering . 65

II.2.6 Other Issues . 65

II.2.6.1 Communication Between Processes . 66

II.2.6.2 Serialization . 66

II.2.6.3 Object Identity . 67

II.2.6.4 Object Instantiation . 67

II.2.6.5 Public Class Fields . 67

II.2.6.6 Supporting Inheritance . 68

II.2.6.7 Existing Libraries . 68

II.2.6.8 Detection of Object Modification . 68

II.2.6.9 Replication Modes . 69

II.3 Implementation 73

II.3.1 OBIWAN Desktop Implementations . 74

II.3.1.1 OBIWAN.Java . 75

II.3.1.2 OBIWAN.Net . 76

II.3.2 OBIWAN for Mobile Constrained Devices . 78

II.3.2.1 M-OBIWAN . 79

II.3.2.1.1 Web-Bridge . 79

II.3.2.1.2 XML Object Serialization . 80

II.3.2.1.3 API Transparency . 82

II.3.3 Common Implementation Aspects . 82

II.3.3.1 Data Structures . 82

II.3.3.2 Object Identity . 83

II.3.3.3 Interface IProvider . 84

iii

II.3.3.3.1 Method get . 84

II.3.3.3.2 Method put . 85

II.3.3.4 Serialization and Instantiation . 87

II.3.3.5 Proxy objects . 87

II.3.3.6 Inheritance . 88

II.3.3.7 API methods . 89

II.3.3.8 Class Extension . 89

II.3.3.9 Support for Execution Migration . 91

II.3.4 Support for Application Servers and Persistence 92

II.3.4.1 OBI-Web . 92

II.3.4.2 OBI-Per . 93

II.3.5 Transactional Support . 93

II.3.6 Support for Integrated Development Environments 94

II.4 Evaluation 97

II.4.1 Performance Evaluation . 97

II.4.1.1 OBIWAN Desktop prototypes . 97

II.4.1.1.1 OBIWAN.Java . 97

II.4.1.1.1.1 Performance of Cluster Replication 100

II.4.1.1.2 OBIWAN.Net . 102

II.4.1.2 M-OBIWAN / OBI-Web / OBI-Per . 104

II.4.1.2.1 OBI-Per . 107

II.4.2 Example Applications . 109

II.5 Conclusion 113

III Automatic Memory Management of Distributed and Replicated Objects 115

III.1 Related Work on Distributed Garbage Collection 119

III.1.1 Local Garbage Collection (LGC) . 120

III.1.1.1 Reference Counting . 121

III.1.1.2 Tracing . 121

iv

III.1.1.2.1 Mark-and-Sweep . 122

III.1.1.2.2 Copying Collectors . 122

III.1.1.2.3 Incremental Tracing . 123

III.1.1.3 Hybrid Approaches . 124

III.1.1.3.1 Partitioned Tracing . 124

III.1.1.3.2 Generational Collectors . 124

III.1.1.3.3 Train Algorithm . 125

III.1.1.3.4 Ulterior Reference Counting . 125

III.1.1.4 Integration with Execution Environment 126

III.1.2 Distributed Garbage Collection (DGC) . 127

III.1.2.1 Reference Counting . 128

III.1.2.1.1 Distributed Reference Counting 129

III.1.2.1.2 Weighted Reference Counting . 129

III.1.2.1.3 Generational Weighted Reference Counting 130

III.1.2.1.4 Indirect Reference Counting . 131

III.1.2.1.5 Reference Listing . 131

III.1.2.1.6 Hierarchical Approaches to Distributed Reference Counting . . 133

III.1.2.1.7 Reference Counting with Information-Tuples 133

III.1.2.2 Tracing . 133

III.1.2.2.1 Sequential Distributed Tracing 133

III.1.2.2.2 Concurrent Distributed Tracing 134

III.1.2.2.3 Mark-and-Sweep with Time-stamps 134

III.1.2.2.4 Logically Centralized Tracing . 135

III.1.2.3 Garbage Collection of Distributed Cycles of Garbage 136

III.1.2.3.1 Trial Deletion . 136

III.1.2.3.2 Object Migration . 137

III.1.2.3.2.1 Controlled Object Migration 138

III.1.2.3.3 Group Tracing . 138

III.1.2.3.4 Distributed Back-tracing . 139

III.1.2.3.5 Monitoring Mutator Events . 140

III.1.2.3.6 Distributed Train Algorithm . 140

v

III.1.2.3.7 Cycle Detection with Group Merger 142

III.1.2.3.8 Mark Propagation With Optimistic Back-Tracing 143

III.1.3 GC in Transactional and Persistent Systems . 144

III.1.3.1 Atomic Garbage Collection . 144

III.1.3.2 Fault-tolerant Replicated Copy . 145

III.1.3.3 Transactional Reference Listing . 145

III.1.3.4 Transactional Mark-and-Sweep . 145

III.1.3.5 PMOS: Train Algorithm for Persistent Systems 146

III.1.3.6 Partitioned GC of Large Object Stores . 147

III.1.3.7 Partition Selection Policies . 147

III.1.3.8 GC Consistent-Cuts for Databases . 148

III.1.4 Distributed GC in Replicated Memory Systems 149

III.1.4.1 GC for DSM assuming memory consistency 150

III.1.4.2 GC for DSM non-interfering with consistency 150

III.1.4.3 Garbage Collection in Larchant . 151

III.1.4.4 DGC for Wide Area Replicated Memory 153

III.1.5 Conclusion . 154

III.2 Algorithms 157

III.2.1 DGC-Consistent Cuts . 159

III.2.1.1 Algorithm . 159

III.2.1.1.1 Data Structures . 160

III.2.1.1.2 Messages . 161

III.2.1.1.3 Cycle Detection . 162

III.2.1.1.4 Optimizations . 165

III.2.1.2 Prototypical Example . 167

III.2.1.3 Analysis of Algorithm Properties . 171

III.2.2 Algebra-based Distributed Cycle Detection . 174

III.2.2.1 Algorithm . 174

III.2.2.1.1 Data Structures . 176

III.2.2.1.2 Messages . 176

III.2.2.1.3 Cycle Detection . 177

vi

III.2.2.1.3.1 Stop-the-World DCD . 177

III.2.2.1.3.2 Concurrent DCD . 178

III.2.2.1.3.3 Cycle-Detection Algebra 180

III.2.2.1.3.4 Detecting Mutator-DCD Concurrency 182

III.2.2.1.4 Optimizations . 183

III.2.2.2 Prototypical Example . 185

III.2.2.2.1 Example A: Detecting a Simple Cycle 185

III.2.2.2.2 Example B: Detecting Mutually Referenced Cycles 188

III.2.2.2.3 Example C: Detecting a Mutator-DCD Race 191

III.2.2.3 Analysis of Algorithm Properties . 193

III.2.3 DGC-Consistent Cuts for Replicated Memory . 196

III.2.3.1 Overview . 197

III.2.3.2 Replicated Memory Model . 198

III.2.3.2.1 Memory Organization . 198

III.2.3.2.2 Mutator model . 198

III.2.3.2.3 Coherence Model . 199

III.2.3.3 Acyclic Distributed Garbage Collection . 200

III.2.3.3.1 Replication Awareness . 200

III.2.3.3.2 Data Structures . 201

III.2.3.3.3 Messages . 202

III.2.3.3.3.1 Unreachable/Reclaim message validity and
In/OutPropList optimization 202

III.2.3.3.4 Safety Rules . 203

III.2.3.4 Algorithm for Cyclic Distributed Garbage Collection 204

III.2.3.4.1 Data Structures . 204

III.2.3.4.2 Messages . 205

III.2.3.4.3 Cycle Detection . 206

III.2.3.4.4 Optimizations . 209

III.2.3.5 Prototypical Example . 211

III.2.3.6 Analysis of Algorithm Properties . 214

vii

III.3 Implementation 219

III.3.1 Complete Distributed Garbage Collection for .Net 219

III.3.1.1 Acyclic DGC . 220

III.3.1.1.1 LGC and Acyclic DGC Integration 221

III.3.1.1.2 Remoting Code Instrumentation 222

III.3.1.2 Distributed Cycle Detection . 223

III.3.1.2.1 DGC-Consistent Cuts . 223

III.3.1.2.2 Algebra-based Distributed Cycle Detection 225

III.3.2 DCC-RM in OBIWAN . 225

III.3.2.1 Acyclic DGC . 225

III.3.2.1.1 LGC and Acyclic DGC Integration (Union Rule) 227

III.3.2.2 Cycle Detection . 229

III.3.3 Referential Integrity and DGC in Web systems . 229

III.3.3.1 Background . 230

III.3.3.1.1 Dynamic Content . 230

III.3.3.1.2 Current Approaches . 231

III.3.3.2 Web Architecture and DGC Integration . 232

III.3.3.3 Deployment . 234

III.3.4 DGC Simulator . 236

III.3.4.1 Module gc-lib.lsp . 236

III.3.4.2 Module cda-dcd.lsp . 237

III.3.4.3 Module problem.lsp . 237

III.3.4.4 Visualization Tool . 237

III.4 Evaluation 241

III.4.1 Performance Results in .Net and OBIWAN . 241

III.4.1.1 Overhead of acyclic DGC rules . 242

III.4.1.2 Snapshot Creation . 243

III.4.1.3 Snapshot Compression . 246

III.4.1.4 Overhead due to Enforcement of Union Rule 249

III.4.2 Evaluation of DGC in Web-systems . 253

III.4.2.1 Performance . 253

viii

III.4.2.2 Usability and Integration . 255

III.4.3 Algorithm Comparative Evaluation . 256

III.4.4 Analysis of Algorithm Portability . 258

III.4.4.1 Runtime Intrusion . 258

III.4.4.1.1 Local GC . 258

III.4.4.1.2 Acyclic DGC . 259

III.4.4.1.3 Cycle Detection . 260

III.4.4.2 Coupling of GC components . 260

III.4.4.2.1 One-size-fits-all . 260

III.4.4.2.2 LGC and Acyclic DGC . 260

III.4.4.2.3 Acyclic DGC and Cycle Detection 261

III.4.4.2.4 LGC and Specialized Cycle Detection 261

III.5 Conclusion 263

IV Adaptability in Memory Management 265

IV.1 Architecture and Implementation 269

IV.1.1 Policy Management . 270

IV.1.1.1 Policy Engine . 271

IV.1.1.2 Event Handling . 271

IV.1.1.3 Context Management . 272

IV.1.1.4 Policy-Managed Object Replication . 273

IV.1.2 Object-Swapping . 274

IV.1.2.1 Management of Swap-Clusters . 274

IV.1.2.2 Swap-Cluster Swapping-Out . 277

IV.1.2.3 Swap-Cluster Reload . 278

IV.1.2.4 Integration with GC Mechanisms . 278

IV.1.3 Implementation . 279

IV.1.3.1 Adaptability . 279

IV.1.3.2 Object-Swapping . 279

ix

IV.2 Evaluation 283

IV.2.1 Example Scenarios . 283

IV.2.2 Example Policy . 284

IV.2.3 Policy-Managed and Adaptive Middleware . 286

IV.2.4 Aggressive Memory Management Techniques . 291

IV.2.5 Evaluation of Object-Swapping . 292

V Conclusion 295

V.1 Conclusion 297

V.1.1 Future Work . 299

A Biblographic References 301

x

List of Figures

I.2.1 OBIWAN model overview: applications manipulate oceans of objects. 13

I.2.2 OBIWAN Network Architecture . 14

I.2.3 OBIWAN Middleware Components. 16

I.2.4 Data structures supporting both object replication and memory management in
OBIWAN. Light gray objects and data structures refer to OBIWAN middleware. 17

II.2.1 Interfaces supporting incremental object replication in OBIWAN. Light gray in-
terfaces in application objects are implemented by OBIWAN. Light gray objects
and data structures refer to OBIWAN middleware. 56

II.2.2 (a) Incremental Replication: Initial situation . 59

II.2.3 (b) Incremental Replication of object A. Objects created in this step are shaded. . 60

II.2.4 (c) Incremental replication of Object B showing intermediate step of replace-
ment of BProxyOut. Objects created on this step are shaded. 62

II.2.5 (d) Final situation with object B replicated and BProxyOut discarded. Objects
created on this step are shaded. 63

II.3.1 Overview of OBIWAN implementations. 73

II.3.2 Integration of OBIWAN prototype implementations. Each prototype indicates
other prototypes, and external software, it relies on. 74

II.3.3 UML class diagram for OBIWAN.Java implementation. 75

II.3.4 UML class diagram for OBIWAN.Net implementation. The shaded part of the
diagram highlights the main differences w.r.t. OBIWAN.Java. 77

II.3.5 UML class diagram for M-OBIWAN implementation. The shaded part of the diagram
highlights the main differences w.r.t. desktop prototype OBIWAN.Net. 78

II.3.6 M-OBIWAN Web-bridge mediation. 79

II.3.7 Internal structure of OBIRep elements. Example depicted w.r.t. to an hypo-
thetical object A. 83

II.3.8 OBIWAN Support for Application Servers and Persistence. 92

II.3.9 OBI-Web Service Manager and Service Template for Visual Studio. 93

xi

II.3.10 OBIWAN Support for Application Development. 94

II.4.1 OBIWAN.Java Performance Results. 99

II.4.2 OBIWAN.Java performance (Result Decomposition for 1024-byte objects).
Bandwidth is measured from the point of view of client process (P1): i) IN -
from P2 to P1, ii) OUT - from P1 to P2. 101

II.4.3 OBIWAN.Net Performance Results. 103

II.4.4 M-OBIWAN/OBI-Web Performance Results. 105

II.4.5 M-OBIWAN/OBI-Web Performance Results with warm Bluetooth network. . . . 107

II.4.6 OBI-Per performance. 108

II.4.7 M-OBIWAN / OBI-Web applications. 109

II.4.8 OBI-Per Interactive Building Creator. 110

III.1.1 DGC Structures: Stubs and Scions. 128

III.2.1 Integration of the distributed garbage cycles detector with the reference-listing
algorithm. 160

III.2.2 DGC-Consistent Cut and process snapshots as seen by the DCD. 163

III.2.3 Summarization of an object graph for snapshot compression. 166

III.2.4 Examples A1 and A2: distributed cycles of garbage for which the DCD has all
the information available. 168

III.2.5 Example B. Initial Situation: No snapshot has been received from process P1. . . 169

III.2.6 Example B: Steps ii) and iii). The DCD receives increasingly updated informa-
tion from process P1. 170

III.2.7 Algorithm overview . 175

III.2.8 Identifying dependencies in cycles. 178

III.2.9 DCD processing of independent snapshots. 179

III.2.10 CDM Matching and Forwarding. 181

III.2.11 A simple distributed garbage cycle. 186

III.2.12 Two mutually-linked distributed garbage cycles. 189

III.2.13 A race between mutator and cycle detection. 191

III.2.14 Algorithm overview . 197

III.2.15 Safety problem of DGC algorithms which do not handle replicated data: Z is
erroneously considered unreachable. 201

III.2.16 DCC-RM and process snapshots as seen by the DCD. 207

xii

III.2.17 Summarization of an object graph into InboundSet and OutboundSet. 209

III.2.18 Cyclic distributed garbage comprising replicated objects. Object W has been
previously replicated from process P3 to process P1. 211

III.3.1 General architecture of system deployment. 232

III.3.2 Example web graph with several versions of previously dynamically generated
content. 234

III.3.3 Simulator appearance: Before and After LGC. 239

III.4.1 Performance overhead due to acyclic DGC safety rules (times in ms) 243

III.4.2 Performance results of Snapshot Creation. 244

III.4.3 Results of Snapshot Compression for synthetic 150 MB heaps. 248

III.4.4 LGC overhead, due to enforcement of Union Rule, during 100 LGC executions. . 250

III.4.5 Distribution of links per file for two sample web sites. 254

III.4.6 Scattering of files based on number of links and parsing time. 254

IV.1.1 OBIWAN Middleware Components. 270

IV.1.2 Object-Swapping to nearby devices. 275

IV.1.3 Object graph of a process comprising four swap-clusters. 276

IV.1.4 Object graph of a process after swapping-out of swap− cluster 2. 277

xiii

xiv

List of Tables

II.1.1 System design vectors and alternatives. 27

II.1.2 Design alternatives for related data-sharing research projects. 47

II.1.3 Analysis of related data-sharing research projects w.r.t. the goals and challenges
described in Chapter I.1. 48

II.2.1 Interface IProvider . 57

II.2.2 Interface IDemandee . 57

II.2.3 Interface IDemander . 58

II.2.4 Interface IProviderRemote . 58

II.2.5 OBIWAN Application Programming Interface for Replication. 59

II.2.6 OBIWAN API methods and corresponding sequences of invocations of
IProvider methods. 70

II.3.1 Web-Services provided by the M-OBIWAN web-bridge. 80

II.3.2 Interface IXMLTransport . 81

II.5.1 Design alternatives of OBIWAN, according to the taxonomy of Chapter II.1. . . . 113

V.1.1 Analysis of OBIWAN middleware w.r.t. the goals and challenges presented in
Chapter I.1. 298

xv

xvi

I
Global Overview

(this page was intentionally left blank)

I1Introduction

A beginning is a very delicate time... – in “Dune”, Frank Herbert

...historical perspective...

Personal computing emerged during the 1980s. Desktop machines, with reasonable com-
puting power, have only become common, in the homes of developed countries, during the
latter half of the decade. In institutional and corporate organizations, though, their spreading
had begun earlier. The 1990s witnessed the global dissemination of networking, and with it, of
classic distributed computing. First, pursuing the trend (that initiated still in the earlier decade)
of connecting computers, in local networks of offices and organizations. Even though the In-
ternet with e-mail services and various file transfer infrastructures (Bhushan 1971) had existed
for a long time at universities, it was nonetheless only later during the decade, that wide area
distributed systems became a commodity, with the advent of the World Wide Web (Berners-Lee
1994; Berners-Lee et al. 1994).

A similar tendency has been observed in the fields of mobile and pervasive computing. Al-
though mobile computing has been a field of active research for over a decade (Satyanarayanan
1996), it was only in recent years that mobile access to computer networks has manifolded, both
in number of users and variety of applications, as far as the general public is concerned. Per-
vasive computing, as such, has been postulated as early as 1988 and described in (Weiser 1991;
Weiser 1993), championing for disappearing (or invisible) computing, where a myriad of tiny de-
vices would seamlessly cooperate. Pervasive computing can be regarded as a possible evolution
of mobile computing, which has only recently became prevalent with ad-hoc networks, and
standards for short-range wireless communication such as Bluetooth and RFID.1 In this sense,
mobile computing promises computing anywhere, anytime. Pervasive computing, on its turn,
could be described as computing all-the-time, everywhere. While the fields of distributed, mo-
bile and pervasive computing share common aspects, the work presented in this dissertation is
focused primarily on the areas of distributed and mobile computing.

I.1.1 Motivation, Goals and Challenges

...the case for mobile computing...

The fundamental paradigm shift from classic distributed computing to mobile computing
lies in the notion that a user should no longer be forced, in order to operate with a computer or

1Radio Frequency IDentification.

4 CHAPTER I.1. INTRODUCTION

a network, to be physically close to a stationary machine that is connected to the fixed network.
Additionally, even if there are many such fixed access machines available, the user due to its
movements may still choose to transfer his/her data among different machines.

We witness presently, and for some time now, to a vast dissemination of portable devices
(e.g., laptops, tablet PC’s, PDAs) made available by various manufacturers. This makes mobile
and pervasive computing a reality. However, compared to classic distributed computing, mobile
computing raises additional difficulties:

• variable node topology (that is assumed to be static in the classic distributed scenario);

• slower, possibly unreliable connections, frequent disconnections (including voluntary
ones to reduce cost);

• mobile devices (e.g., PDAs) often have limited resources such as processing power, mem-
ory, and storage capabilities (e.g., PDAs have no disks);

• limited battery lifetime.

These difficulties result from the fact that mobile networks are characterized by the mobility
and intermittent activity (due to shut down or disconnection) of one or more hosts. Nonethe-
less, it is well known that a large number of applications in these environments need to share
information. However, programmers do have a real hard task while developing mobile dis-
tributed applications in which sharing is needed. Furthermore, programmers are forced to deal
with system level issues such as data replication, memory management, consistency, durability,
availability, security, etc.

In summary, middleware support for mobile computing should offer the following func-
tionality and properties:

1. To leverage mobile devices computing-power, and its resources in general. In fact, recent
evolution in mobile devices power and resources makes them viable platforms to perform
a large number of tasks (besides just simple interface devices);

2. To minimize and/or prevent dependency on continuous connection to servers. Applica-
tions should be able to perform useful work even when disconnected from the network;

3. To allow efficient, productive and broad-based application development for these environ-
ments. In other words, to avoid the obligation to use a strict file, or query-based kind of
application. Instead, a rich object-orientation approach should be provided.

Thus, the overall goal of this work is to facilitate application development for mobile
computing and wide-area networks, i.e., to ease programmers’ lives. We propose an approach
based on an object-oriented middleware platform to achieve this. The main advantage that
stems from using middleware is obviating the need to modify the underlying operating system
and virtual machine. Object-oriented programming is arguably the most widespread paradigm
for application development.

I.1.2. PROPOSED APPROACH 5

To achieve the aforementioned goal there are still some challenges to address:

• Frequent disconnection - this is addressed with data replication.

• Programming reliability (referential integrity) and memory limitations - this is addressed
with automatic memory management.

• Variability in the environment - this is addressed with support for policies and mechanisms
to provide adaptability to applications.

More specifically, within each one of these challenges, there are a number of problems to
address. We present them in detail in Section I.1.3.

I.1.2 Proposed Approach

In this section we present the main aspects of our proposed approach to address the goals
and challenges mentioned above. W.r.t. each aspect, we present a case for its importance, offer-
ing a number of arguments justifying its relevance. We address: i) support for replication, ii) use
of object-oriented programming, iii) deployment via middleware, and iv) non-intrusiveness of
the middleware.

...the case for replication...

Traditional distributed applications are client-server based. These can either be always con-
nected, i.e. need a permanent connected channel or be occasionally connected. In the context of
mobile computing, an always-connected approach is not an adequate solution for economic and
technical reasons, and w.r.t. performance. Economically, users may not wish to be online all the
time due to communication costs. Technically, signal power may be insufficient, in some areas,
to maintain constant connectivity and a strongly-coupled approach limits flexibility and scala-
bility. Moreover, being always online imposes important energy drains, which limits autonomy.
W.r.t. performance, applications will be able to execute faster if data and code are collocated,
instead of on separate machines.

With such a client-server solution, availability is strictly dependent on connectivity, i.e., con-
nection breakdown forces applications to stop. In the case of limited areas where wireless con-
nectivity is almost permanent, and deemed inexpensive by users, network bandwidth may still
be significantly lower than on a fixed network. Even if there is high bandwidth available, local
access to data will still be faster than accessing remote data.

On the other hand, in most cases, mobile devices are still regarded as small color-screen,
sound-enabled clients mainly used for interface purposes. This is the case with common mobile
database-oriented applications where data queries are performed, ultimately, on the servers.
Clients running on devices simply ask for user input and present query results in a more or less
structured and visually appealing manner. This increases load on the servers and dependency
on connectivity.

6 CHAPTER I.1. INTRODUCTION

Data replication is a well-know technique for improving data availability and application
performance as it allows to collocate data and code. Thus, data availability is ensured because,
even if the network is not operational, data remains locally available; in addition, application
performance is potentially better (when compared to a remote access/invocation approach) as
all accesses to data are local. Thus, data replication as an enabling mechanism, is specially suited
for mobile computing environments, in a variety of scenarios.

...the case for object-oriented programming...

In general, applications may be developed according to several different paradigms. These
depend on the different abstractions supported by the programming language, corresponding
application programming interface, and the underlying mobile middleware. For example, the
middleware may simply provide a file system API, or it may support more complex abstractions
such as tuples, relational entities, or objects.

One relevant issue regarding such paradigms is their ability, or lack of it, to support arbi-
trary graphs of data. In general, w.r.t. all data representation abstractions aforementioned, data
graphs are the most flexible way to represent and manipulate (via navigation) structured appli-
cation data, despite specific scenarios where others are either specially suited, or the only ones
available for simplicity. The existence of data graphs has a strong impact when deciding which
and how data must be replicated.

The object-oriented paradigm naturally supports such notion of data graphs in the form of
object graphs, and navigation via object referencing and de-referencing. Obviously, the same
applies to structured files whose contents include references to other files (e.g., graphs of HTML
files connected by URLs, or XML documents storing pieces of data that reference elements in dif-
ferent XML documents). Whereas relational entities can refer to each other by means of foreign
keys, therefore creating a graph, applications access such data by performing explicit queries.
Thus, there is no navigation on such a graph as it happens with object-based applications.

Object-oriented programming is therefore the best suited approach to manipulate graph-
based data because it concomitantly leverages :

• a well established foundation of programming languages,

• arguably the widest audience of practitioners/programmers already versed in it.

• a vast repository of existing code and applications that may thus be used in and adapted
to mobile environments.

Thus, support for object oriented programming is an important requirement for widespread
mobile application development.

...the case for middleware supporting object replication...

When left to the programmer, such system level issues like the ones mentioned earlier (data
replication, memory management, consistency, durability, availability, security, etc.) are the

I.1.2. PROPOSED APPROACH 7

cause of errors, low productivity and useless applications. Middleware layers, residing between
the operating system (or, when present, virtual machines) and applications, release the program-
mer from these system-level issues. However, when using a middleware platform, programmers
are often forced to use a particular programming paradigm which may not be the most suited
to the particular application being developed. Currently, dealing which such paradigm diver-
sity implies: i) either using different middleware platforms, with obvious inconveniences such
as integration problems and learning costs, or ii) when restricted to one middleware platform
the programmers are forced to deal with system-level issues such as handling the creation of
replicas and the corresponding consequences in terms of object faulting, memory management,
among other details.

A common example is that of situations in which an application would be preferably devel-
oped using mobile agents instead of traditional remote object invocation (RMI). There are also
circumstances in which, instead of invoking an object remotely, it would be more adequate, in
terms of performance and network usage, to create a replica of the object and invoke it locally.

Due to the present and foreseen ubiquity of mobile devices, programmers should be able to
develop applications for mobile environments, making use of replication, leveraging the most
of their knowledge (i.e., object-orientation paradigm, programming languages, development
environments) while retaining the flexibility to address (not so) unexpected, while frequent,
situations correctly. Thus, in the context of this dissertation, we are interested mainly in the
development of middleware to correctly support data replication (as a mechanism) to object-
oriented programming (as a paradigm) .

This methodology, object-oriented programming enhanced with object replication, may be
applied to the development of applications of several kinds. Possible examples include applica-
tions with geographically dispersed data sources, with replicated data and mobile users. This
is the case in the fields of cooperative work for engineering projects, design, etc., performed by
virtual organizations. There are also entertainment applications, such as games, that manipu-
late large volumes of structured data, where mobile users (players) only load, or have access
to, a fraction of the whole universe, during a given time. Applications resorting to simulated
environments, embodying the notions of navigation, spatial placement, and hierarchy of scene
elements, naturally lend themselves to represent data as a replicated object graph. Mobile agents
that need to replicate data between hosts can also profit from this approach. Other examples in-
clude collaborative mind-mapping tools (Mueller et al. 2003) that allow several users to visualize
and manipulate object graphs representing concepts, ideas, or tasks.

The notion of replicated graph is also present in the context of collaborative applications for
content authoring and management. In these applications, regardless of their thematic, data is
ultimately represented via structured (connected) elements and files, coded in HMTL and/or
XML (e.g., web sites, distributed XML repositories (Abiteboul et al. 2003), Wikis (Cunningham
and Leuf 2001; Curran et al. 2004)).

...the case for non-intrusive middleware...

Finally, portability and programmability are also relevant aspects that must be taken into
account by the mobile middleware. As a matter of fact, mobile environments are characterized

8 CHAPTER I.1. INTRODUCTION

by the heterogeneity of devices, operating systems, virtual machines, etc. So, the mobile middle-
ware should be, as much as possible, independent from such differences in order to be portable
to a wide range of platforms.

Programmability means that the middleware should release application programmers from
dealing with system level issues while providing an API familiar to programmers used to de-
velop distributed applications in general. Thus, the mobile middleware should not imply the
modification of neither the operating systems nor the virtual machines, and should not impose
radically new APIs.

I.1.3 Problems to Address

There are several relevant difficulties that must be solved to take full advantage of replica-
tion, in this case, in the context of object-oriented programming for mobile environments. In this
dissertation we address the following:

Replica Management: Replica management is related to the fundamental issues of knowing
which and how data should be replicated. The fact that mobile devices impose severe constraints
in terms of memory and communication resources raises the importance that the data to be
replicated should be the one that is really needed, so that memory is not wasted. Replication
should also be performed while attempting to mitigate network limitations (e.g., latency).

Memory Management: Memory management is related to two issues: i) to preserve referential
integrity of the object graph (by freeing the developer from error-prone explicit memory man-
agement), and ii) to ensure that the memory of computers (including mobile devices such as
PDAs, laptops, etc.) is occupied with useful data. This implies freeing the memory occupied by
useless replicas. Thus, replicated data that is no longer needed must be automatically detected
and reclaimed, thus releasing the memory occupied, which can be done by garbage collecting
such replicas.

Adaptability: Adaptability is the capability that applications have to control and adapt to the
available resources (memory, network, etc.) in order to better deal with the variability of mobile
environments; such variability affects network bandwidth, network connection or disconnec-
tion, amount of available memory, etc. Therefore, it is advantageous that the underlying mid-
dleware supports flexible mechanisms to enable applications to react and adapt. This way, they
can withstand the dynamics of mobile environments (e.g., variable network availability, amount
of free memory on the device). In particular, regarding memory limitations in mobile devices,
mechanisms should be provided that allow swapping-out useful data to remote computers.

The above mentioned issues are more and more relevant as we move from a traditional
wired network of desktop computers to an environment formed by mobile devices able to wire-
lessly connect to the fixed network or take part in ad-hoc networks. As a matter of fact, mobile
devices, when compared to desktop computers, are much more resource-constrained in terms

I.1.4. CONTRIBUTIONS 9

of memory, network availability and bandwidth, battery, etc.; in addition, applications running
on such devices face a much more dynamic environment given the natural movement of users
and devices.

Note that many other issues are equally important (Satyanarayanan 1996), such as security,
consistency, power management, fault-tolerance, but these are out of the scope of this disserta-
tion.

There are a number of systems that address one or more of the above mentioned problems.
However, none of them addresses all the problems in an integrated manner, while providing a
portable approach. There are systems that provide support for replication but lack either trans-
parency w.r.t. traditional object-oriented programming, or enforcement of referential-integrity,
or adaptability w.r.t the number of replicated objects each time the network is accessed. There
are systems that provide distributed garbage collection but lack either safety or completeness
in the presence of replicated objects. Finally, w.r.t. adaptability, most systems lack support for
object-swapping and the ones that do support it, achieve this using approaches that require
changes to existing virtual machines.

I.1.4 Contributions

The work presented in this dissertation was developed mainly in the context of OBIWAN
(Object Broker Infrastructure for Wide Area Networks), a middleware platform designed by the au-
thor to support the development of applications using object-oriented languages, enabled with
object replication, adequate memory management, and adaptability. OBIWAN also provides
support for mobile agents.

This dissertation presents contributions in the following areas:

Support for Object Replication: Novel support for object replication in mobile environments
without imposing changes to the underlying virtual machine (Veiga and Ferreira 2002a; Veiga
and Ferreira 2002b; Ferreira et al. 2003; Veiga et al. 2004). Incremental object replication and
dynamic object clustering provide the necessary flexibility to deal with mobile environments.

• Transparent and flexible handling of object-faults in distributed systems.

• Incremental replication of graphs of objects.

• Dynamic clustering of replicated objects.

• Support for external data consistency mechanisms (e.g., optimistic transactions) applied to
replicated objects, as employed in (Santos et al. 2004).

Distributed Garbage Collection: Scalable, asynchronous and complete garbage collection for
distributed systems with and without replication. Two novel algorithms for distributed garbage
collection and the first viable solution to achieve complete distributed garbage collection for
replicated object systems.

10 CHAPTER I.1. INTRODUCTION

• Distributed garbage collection algorithms, for distributed objects in wide area systems,
able to detect and reclaim distributed cycles of garbage. The first algorithm uses a cen-
tralized detection approach (Veiga and Ferreira 2003a; Veiga and Ferreira 2003b), also em-
ployed in (Pereira et al. 2006). The second algorithm is able to perform de-centralized
detection (Veiga and Ferreira 2005a).

• Distributed garbage collection algorithm, for wide area systems, able to detect and reclaim
distributed cycles of garbage comprising replicated objects (Veiga and Ferreira 2005b).

Adaptable Object Replication and Memory Management: A policy-based system applied to
management of object replication and memory management, alongside with other mechanisms
to handle memory shortage in mobile devices (Veiga and Ferreira 2004a; Veiga and Ferreira
2005c).

• Dynamic adaptation of the parameters of object replication mechanisms, such as the
amount of objects to replicate at a given time, to account for variations of the execution
environment in mobile networks with constrained devices (e.g., available memory, band-
width, connection quality, neighboring devices, application counterparts running in dif-
ferent devices).

• Transparent object-swapping, an aggressive memory management mechanism that consists
in the de-localization of objects reachable to applications. It addresses, and masks from
programmers, and (as possible) from users, the memory limitations of constrained devices.

Additional implementation work regarding Object Replication:

• Implementation of OBIWAN for laptop and desktop machines, and for resource con-
strained devices in mobile networks.

• Integration of OBIWAN with i) a commercial web and application server; ii) persistent
repositories (both relational and OO-based); and iii) a commercial application develop-
ment environment (Visual Studio.Net 2005).

Additional implementation work regarding Distributed Garbage Collection:

• Implementation of Complete Distributed Garbage Collection algorithms for the Microsoft
Shared Source Common Language Runtime (also known as Rotor), and for OBIWAN.

• Application of distributed garbage collection algorithms, able to detect distributed cycles
of garbage, to enforce referential integrity and perform complete memory management in
web systems (Veiga and Ferreira 2003c; Veiga and Ferreira 2004b) with dynamic content
generation, both with and without replication.

• Distributed Garbage Collection Simulator implemented in Lisp.

I.1.5. DOCUMENT ROADMAP 11

I.1.5 Document Roadmap

The rest of this dissertation is organized as follows. It comprises five parts. The next chap-
ter of Part I introduces an architectural overview of the OBIWAN object replication middleware
platform (OBIWAN) and the environment it addresses. It introduces the main middleware com-
ponents and data structures used throughout the rest of the document.

Part II describes the support for incremental object replication. Part III addresses the au-
tomatic memory management of distributed and replicated objects, i.e., distributed garbage
collection algorithms. Part IV addresses adaptability of the middleware to changes in the en-
vironment. Part V concludes the dissertation presenting conclusions and introducing on-going
and future work.

Parts II and III account for the most part of this dissertation. They share a common inner
structure. They include individual chapters with: i) related work, ii) architecture/algorithms,
iii) implementation, iv) evaluation, and v) conclusions.

12 CHAPTER I.1. INTRODUCTION

I2OBIWAN
Architecture

This chapter presents the architecture of OBIWAN. It presents its rationale, usages and ap-
plication development model. It describes its middleware components and main data structures,
and how they are integrated. It is presented with increasing level-of-detail, in Figures I.2.1, I.2.2
and I.2.3, showing respectively: i) an overview of the OBIWAN application and usage model, ii)
its network architecture and how data and functionality are spanned across nodes, and iii) the
component structure of OBIWAN middleware running on particular each node. The architec-
ture depicted here is common to the remaining parts of this dissertation. It also elucidates the
aspects that will be detailed in the remainder of this document.

Figure I.2.1: OBIWAN model overview: applications manipulate oceans of objects.

OBIWAN addresses the general scenario in which a user will want to access data using a
desktop PC in his office, using a laptop while in the airport or in the hotel, using a PDA in a taxi,
etc. The user wants to live in this “data ubiquitous world” with no other concern besides doing

14 CHAPTER I.2. OBIWAN ARCHITECTURE

his own work and, as much as possible, to keep on working in spite of any system problem that
may occur (e.g., network partitions).

The overall objective of the OBIWAN project is to design and implement a system that: (i)
is well suited to support mobile distributed applications with strong sharing needs in a mobile
environment, and (ii) facilitates application development by releasing programmers from the
need to handle complex system issues such as replication, memory management, etc., while
providing the right level of abstraction and functionality to deal with unexpected situations.

OBIWAN is centered upon the notion of a generic object broker infrastructure to provide
the means to support this sharing scenario. Intuitively, through this object broker infrastructure,
OBIWAN supports applications that manipulate an ocean of objects. This is illustrated with the
example portrayed in in Figure I.2.1.

Objects are arranged in the form of object graphs. Applications navigate in this ocean of ob-
jects by following references enclosed in objects. These graphs may be created and manipulated
by means of object-oriented languages or composed of web documents.

Figure I.2.2: OBIWAN Network Architecture

I.2.1. OBIWAN MIDDLEWARE COMPONENTS 15

OBIWAN gives to the application programmer the view of a network of computers in which
one or more processes run (see Figure I.2.2). Processes may hold objects (forming object graphs)
and agents1 (w.r.t. agents, we call such processes hosts). An object can be invoked locally (af-
ter being replicated) or remotely. Object graphs may thus span processes, as portrayed in Fig-
ure I.2.2. Mobile agents can be created and then freely migrated as long as some security policy
allows. Objects may be scattered over a variety of locations and info-appliances, may be repli-
cated among such appliances, and contain innumerous references connecting them.

Typically, applications invoke objects locally replicated into the computer where they are
being executed. However, if desired they can explicit perform direct invocations on remote
objects, without previously replicating them.

In general, every computer may hold objects and run user applications. In practice, the con-
tribution of computers to object storage and application execution may be unbalanced. Extreme
cases include servers that may act exclusively as object repositories, and mobile devices (possi-
bly resource-constrained) that serve mainly to execute applications, thus replicating objects from
other computers as needed by the users.

OBIWAN is a peer-to-peer middleware platform in the sense that any process may behave
either as a client or as a server at any moment. In particular, w.r.t. replication this means that a
process P can either request the local creation of replicas of remote objects (P acting as a client)
or be asked by another process to provide objects to be replicated (P acting as a server).

I.2.1 OBIWAN Middleware Components

OBIWAN consists in a set of middleware component modules (see Figure I.2.3) which pro-
vide runtime services to applications and to other higher-level services. Runtime services ex-
ecute on top of a virtual machine in every node. These are services that are available to the
application regular code if explicitly wanted, but were designed to be used by code automati-
cally generated that extends application code.

In the context of this dissertation, the most important modules are Object Replication and
Memory Management (that are deployed on top of a set of core modules):

• Object Replication: This module provides the mechanisms for handling object-faults
transparently, and supporting incremental object replication and dynamic clustering of
replicated objects. This module is presented in Parts II and IV.

• Memory Management: This module is responsible for the distributed garbage collection,
integration with the local garbage collector provided by the virtual machine, and object-
swapping. Distributed garbage collection (both acyclic and cyclic) are described in Part III,
while Part IV presents Object-Swapping. Memory management depends on object replica-
tion to be aware of which objects have been replicated in and out of the process.

The adaptability of these mechanisms is provided by a set of core modules that support the
definition and enforcement of declarative policies:

1In OBIWAN, an agent is a composite of mobile code and the objects that comprise agent’s state.

16 CHAPTER I.2. OBIWAN ARCHITECTURE

Figure I.2.3: OBIWAN Middleware Components.

• Policy Engine: The policy engine is the main inference component that manages, loads,
and deploys declarative policies to oversee and mediate responses to events occurred in
the system. It is described in detail in Part IV.

• Event Handling: In OBIWAN, notifications to applications and to the various system mod-
ules, are performed with resort to events. This module registers the relevant events, de-
fined by policies, that may occur in the system (more details in Part IV);

• Context Management: This module abstracts resources and manages the corresponding
properties whose values vary during applications execution (more details in Part IV).

Additionally, on top of the core modules, OBIWAN also considers the following modules
that may be deployed via pre-defined policies:

• Security: The security module monitors all interactions between event-handling (trusted
and linked to the policy engine) and every other module in the system. This module is out
of the scope of this dissertation and will not be described in detail.

• Extended Class Loader: This module analyzes and extends application classes to make
them replication-enabled, and generates code for proxies (Shapiro 1986). It makes use
of an external application, obicomp, the OBIWAN compiler. This module is described in
Part II, and also mentioned in Part III.

I.2.1. OBIWAN MIDDLEWARE COMPONENTS 17

OBIWAN Mobile Middleware

local root (stack or static variables)

A
'

BproxyOut

X

Process P1

inPropList

A P2 0

inPropList

A P2 0

B

C

AproxyIn

BproxyIn

A

Process P2

A P1 0

outPropList

y

local root (stack or static variables)

GC stub
 GC scion
 object
proxy
inPropList/outPropList

propObj
 propProc
 sentUmess/recUmess
propObj
 propProc
 sentUmess/recUmess

Virtual Machine / Operating System

Figure I.2.4: Data structures supporting both object replication and memory management in
OBIWAN. Light gray objects and data structures refer to OBIWAN middleware.

• Code Management: This module is an extension to the Extend Class Loader that allows
the interception of class loading, during runtime, to detect and ensure that application
code has been handled to run with OBIWAN. It is out of the scope of this dissertation.

• Persistence: This module handles persistent storage of object graphs. It makes use of an
external tool and is described in Part II.

• Transactional Support: The transactional support module provides services to allow ap-
plications to manipulate objects within optimistic transactions. It is out of the scope of this
document.

• Communication Services: This module abstracts all interactions with other nodes running
OBIWAN, namely for object replication and exchanging DGC messages. It makes use of
remote invocation mechanisms provided by the underlying virtual machines.

18 CHAPTER I.2. OBIWAN ARCHITECTURE

I.2.2 Data Structures

The fundamental data structures of the OBIWAN middleware, relevant to the remainder of
this dissertation, are depicted in Figure I.2.4. It portrays a prototypical situation where process
P1 is accessing objects that are being replicated from process P2. The middleware data structures
defined and maintained by the Object Replication and Memory Management modules are:

Object Invocation:

• Objects: Applications invoke mostly local objects (such as X and Y), and replicated ob-
jects (e.g., A and A’). Replicated objects are those whose classes have been extended (or
enhanced) to be handled by OBIWAN.

• Proxies: Proxies mediate remote execution and help in supporting object replication. Prox-
ies may be proxy-out or proxy-in. A proxy-out stands in for an object that is not yet locally
replicated (e.g., BProxyOut stands for B’ in P1). For each proxy-out there is a correspond-
ing proxy-in.

Replication management:

• InPropLists: Entries in this list indicate which objects have been replicated from another
process.

• OutPropLists: Entries in this list indicate which objects have been replicated to another
process.

Each entry of the inPropList/outPropList contains the following information: propObj
is the reference of the object that has been replicated into/to a process; propProc is the
process from/to which the object propObj has been replicated.

Additionally, associated with each entry, there is a sentUmess/recUmess bit indicating if a
unreachable message (for DGC purposes) has been sent/received (more details in Part III).

Memory management:

• Stubs: A GC-stub describes an outgoing inter-process reference, from a source process to
a target process (e.g., from object X in P1 to object Y in P2).

• Scions: A GC-scion describes an incoming inter-process reference, from a source process
to a target process (e.g., to object Y in P2 from object X in P1).

GC-stubs and GC-scions do not impose any indirection on the native reference mecha-
nism, i.e., they do not interfere either with the structure of references or the invocation
mechanism. They are simply GC specific auxiliary data structures.

Thus, GC-stubs and GC-scions should not be confused with (virtual machine) native stubs
and scions (or skeletons) used for remote method invocations (RMI), that are used by prox-
ies.

I.2.2. DATA STRUCTURES 19

Through the management of these data structures, the middleware is able to keep track of
objects being replicated and existing references among them. There are other data structures
private to each module that will be presented when each module is described in detail, in the
following parts of this document.

Summary of Chapter: In this chapter we presented the architecture of OBIWAN. We intro-
duced a high-level description of its application model and network architecture. We briefly
described each of the OBIWAN middleware components and the fundamental data-structures
that support its main aspects: i) incremental object replication, ii) distributed garbage collection,
and iii) adaptability. This architecture is inherent to the rest of the dissertation, where each of
these aspects is addressed in detail.

20 CHAPTER I.2. OBIWAN ARCHITECTURE

II
Incremental Object Replication

(this page was intentionally left blank)

Replicants are like any other machine... – in “Blade Runner”, Ridley Scott, adapted from “Do Androids Dream of Electric

Sheep?”, Philip K. Dick

Part II is dedicated to incremental object replication. Initially, we present the relevant re-
lated work concerning support for data sharing, broadly considered. Afterwards, we present
a detailed architecture of the mechanisms provided by OBIWAN that allow portable, efficient,
adaptable, and transparent (yet flexible) object replication.

Subsequently, a number of prototype implementations are presented (OBIWAN.Java, OBI-
WAN.Net, and M-OBIWAN). Special focus is also given to OBIWAN integration with appli-
cation servers (OBI-Web), and support for object persistence (OBI-Per). Regarding compliance
with commercial integrated development environments for object-oriented programming, we
cover a Visual Studio plug-in (OBI-VS).

Later on, both qualitative (adequacy) and quantitative (performance) evaluations are pre-
sented (when meaningful) for each of the developed prototypes. This part of the dissertation
ends with some conclusions regarding object replication.

(this page was intentionally left blank)

II1Related Work on
Data Sharing

Information sharing through data sharing is a fundamental aspect to computer supported
cooperative work (CSCW) (Greif 1988), and has been one of the main goals of distributed sys-
tems research. This has become even more so, recently, in the related fields of mobile, pervasive
and ubiquitous computing. More and more people perform work and exchange data using their
laptops, PDAs or mobile phones, even without being connected to a central network (e.g., using
Wi-Fi (Crow et al. 1997) or Bluetooth (Haartsen et al. 2000)).

Support for data-sharing is a cross-cutting issue in system design. It must be taken into
account at a variety of levels, with different design approaches concerning each one. Since this
is a very broad field, we bound the analysis of existing work to those subjects and systems more
closely related to our own.

This chapter is organized as follows. The next section briefly describes a taxonomy frame-
work to characterize data-sharing systems, according to a number of main system design aspects
(vectors). The following sections describe each vector, and as each one may be implemented in
different manners (alternatives). For each alternative, we introduce some relevant related sys-
tems that opted for it in their design. Following its description, this taxonomy is also depicted
in a summary table. Therefore, each system may be briefly described by a signature consisting of
the vectors addressed (or not) and chosen alternatives. We then present a set of relevant related
research systems and commercial technologies in greater detail.

II.1.1 Data Sharing Systems

To develop a systematization characterizing data-sharing systems, we analyze the following
system design aspects or design vectors:

• System architecture.

• Programming model.

• Data-sharing model.

• Propagation of modifications.

• Portability and implementation-level issues.

We selected these design vectors because they are the ones more relevant to our work w.r.t.
incremental object replication. There are several other important system design aspects, e.g.,
consistency, security, fault-tolerance, etc., that are outside the scope of this dissertation.

26 CHAPTER II.1. RELATED WORK ON DATA SHARING

In particular, consistency enforcement is a very important subject in data-sharing, but or-
thogonal to this work. It has been extensively addressed in the literature (Barghouti and Kaiser
1991; Barbara 1999; Jing et al. 1999; Mascolo et al. 2002a; Serrano-Alvarado et al. 2004;
Androutsellis-Theotokis and Spinellis 2004; Saito and Shapiro 2005). Consistency enforcement
oversees/manages how data may be independently accessed and updated by participating
nodes, while providing satisfactory guarantees about data recency (or freshness), w.r.t. applica-
tions and users. It is also responsible for avoiding or minimizing divergence of data and update
conflicts.

System architecture deals with the organization, deployment, and role of participating
nodes of the system, as well as the nature of their interactions.

Programming model focuses on how shared-data is represented, and structured. It also
describes the kinds of operations that can be performed by the applications accessing and ma-
nipulating it.

Data-sharing model describes how the shared-data is effectively made available to applica-
tions running on participating nodes. It determines if there can be several instances of shared-
data items, and if so, the qualitative nature of those different instances. It also deals with the
policies and mechanisms managing the creation, deployment and destruction of the different
instances.

Propagation of modifications defines how modifications performed by applications on
shared-data are represented and made available to other participating nodes, and how this is
influenced by extracting semantic information associated with data, application and/or users.

Portability describes to what extent users and application developers must accommodate
changes to their chosen operating and development environment (namely w.r.t. the prescribed
programming model), in order to use and develop applications targeting the system.

Table II.1.1 presents the system design vectors and all their corresponding alternatives.
Choosing certain alternatives in one vector may also frequently lead to specific alternatives in
other vectors, e.g., mobile agents and migration.

II.1.1.1 System Architecture

Data sharing may be supported in different ways. Participating nodes may be organized
and interact in different manners. We distinguish the following alternatives w.r.t. system archi-
tecture:

• Centralized server or data repository.

• Generalized client-server model.

• Peer-to-peer model.

II.1.1. DATA SHARING SYSTEMS 27

Vector Alternative

System Architecture
Centralized

Client-Server
Peer-to-Peer

Programming Model

Files
Tuples

Databases
Objects

Components
Mobile Agents

Structured HTML/XML files

Data-Sharing Model

Remote Execution
Publish-Subscribe

Migration
Caching

Replication

Propagation of Modifications
Update-based

Operation-based
Hybrid

Portability/Implementation Issues

Operating system.
Virtual machine.

Application binary code.
Application source code.

API replacement.
Special-purpose programming language.

Table II.1.1: System design vectors and alternatives.

Centralized: The most traditional and less flexible architecture is based on having a logically
centralized server or data repository. There may be a number of other participating nodes, but
they all behave as clients of this central server. There is a tight association to the server, as clients
usually connect to the same server, where all the shared-data is ultimately stored, or all the func-
tionality (services offered) resides. Although logically centralized, the server may be physically
replicated for performance and fault-tolerance reasons. It needs not be a single machine. Com-
mon examples of systems following this architecture include commercial database servers (Date
1999), holding data that is accessed and modified by several client nodes running applications.

Client-Server: A generalized client-server architecture (Sinha 1992) is more flexible than a cen-
tralized server approach. It still maintains a clear difference between client nodes that mainly
address human interaction, and server nodes that store shared-data and/or provide services.
Nevertheless, with this architecture, the complete data-space and functionality do not reside in
a single server. Instead, they may be spread over a number of servers. Partition of data and
services may obey to several criteria (e.g., geographical distribution, logical data structure, and
organizational/institutional ownership of data). Naturally, there may be alternative servers for
the same data and services due to the performance and availability reasons. In a typical com-
putation, a client may contact any number of these servers to obtain data, execute some task
with it, and store results. In a client-server architecture, to share data among clients, it must

28 CHAPTER II.1. RELATED WORK ON DATA SHARING

always be performed by intermediation of one or more servers. Clients may perform exclu-
sively user-interaction (thin-client), or include some application functionality (full/fat-client).
Web applications, developed and deployed following a three-tiered approach, are a common
example of a generalized client-server model with multiple clients and multiple servers.

Peer-to-Peer: Since the designation peer-to-peer is used rather broadly in the literature, we de-
fine peer-to-peer (Androutsellis-Theotokis and Spinellis 2004) architecture primarily as one in
which any participating node may behave, both as a client and/or as a server (even simultane-
ously). Thus, a peer-to-peer approach is generally more flexible than a client-server one, since
each participating node is able to interact with any of the other nodes. Peers, in principle, have
equal ability to store data and offer services to others. Every one cooperates by storing shared-
data, providing services, or locating other peers and routing communication. However, in prac-
tice, different resource capabilities of nodes determine that this contribution will be unbalanced
(e.g., super or ultra-peer nodes that store and serve higher volumes of data than regular peers).
Systems with peer-to-peer architectures may also incorporate the ability to actively self-organize
their network topology as participating nodes enter and leave the system, or to variations in con-
nectivity.

Additionally, systems may have only a fraction of nodes carrying both client and server
code, while others more restricted in resources (e.g., PDAs, mobile-phones) behave mainly (or
solely) as clients. This way, some nodes appear as peers to other peer nodes and as typical
servers to limited client-only nodes. These systems can also be considered following a peer-to-
peer architecture, or a hybrid of client-server and peer-to-peer architectures. A typical example
is the nomadic scenario for mobile and pervasive computing.

Traditionally, computational grid infrastructures (Foster and Kesselman 1997; Foster and
Kesselman 1998; Baker et al. 2002) have been deployed according to a client-server architec-
ture. Presently, however, they have been incorporating more and more traits of peer-to-peer
architectures, assuming also a hybrid nature. In these systems, client nodes, operated by users,
submit jobs to specific server machines (grid controllers, schedulers, etc.) that, in turn, negotiate
with other peers (normally representing their own private clusters) where to deploy jobs, tasks,
resources and store results (Talia and Trunfio 2003; Pallickara and Fox 2003; Andrade et al. 2005).

II.1.1.2 Programming Model

Applications can be developed according to several different programming paradigms that
define the structure of shared-items and the operations that may be performed on them. Many
of these paradigms were originally defined without distribution in mind. Since then, several
have been extended to mobile and distributed scenarios. Such extensions are provided by the
middleware. Thus, there are different abstractions supported by the underlying mobile mid-
dleware that, accordingly, provide the corresponding application programming interface (API).
For example, the middleware may simply provide a file system API, or it may support more
complex abstractions such as tuples, relational entities, objects, or components.

One relevant characteristic of such paradigms is their ability, or lack of it, to support arbi-
trary graphs of data. As a matter of fact, the existence of data graphs has a strong influence in

II.1.1. DATA SHARING SYSTEMS 29

how data is accessed and manipulated and, thus, how it must be shared. This programming
model in which applications handle arbitrary data graphs is most widely used and is highly
flexible.

The object-oriented paradigm naturally supports such notion of data graphs; the same ap-
plies to files whose contents include references to other files (e.g., graphs of HTML files con-
nected by URLs), i.e., structured files. As already stated in Part I, the work presented in this
dissertation focuses on object-oriented programming, mainly, and structured HTML/XML files.

Nonetheless, for completeness, in the rest of chapter we also address the data represen-
tations and semantics adopted by several relevant projects in the area of mobile and dis-
tributed computing. For instance, we also consider the file model because file system support
is widespread and is well known both by users and application programmers. In this model
the mobile middleware offers a file-based API (extended with specific functionalities for file-
sharing) in which there are no references between files.

Data used by applications can be structured in various ways. These alternatives in structure
reflect, and simultaneously determine, the different sets of operations, as well as their properties,
that can be performed on data.

Generally, the more structured the data is, the more sophisticated are the operations that
can be performed on it. Furthermore, these operations may be described with higher levels of
abstraction and expressiveness.

We now present the most relevant data representations used and their semantics. They are
introduced by increasing order of expressiveness, from flat files to XML documents. Likewise,
possible operations range from hard-coded file read, write and seek operations, to rich trans-
formations performed in XML documents, possibly specified in declarative form. We refer to
several relevant systems that have been developed in the past supporting the data-sharing with
the following data representations and semantics:

• Files.

• Tuples.

• Databases.

• Objects.

• Components.

• Mobile Agents.

• Structured HTML/XML files.

II.1.1.2.1 Files

Files, as far as the operating system is concerned, are flat in structure. Their format is man-
aged by functionality hard-coded into applications or libraries. Therefore, applications are lim-
ited to using file system primitives such as read and write (either buffered or random) and seek.

30 CHAPTER II.1. RELATED WORK ON DATA SHARING

There is no built-in support for inner data structures. The main advantage of using files for
data-sharing stems also from its simplicity and availability in almost any operating system.

Earlier efforts in distributed file-systems include Network File System (NFS) (Network
Working Group 1989; S. Shepler 2003), and Andrew File System (AFS) (Howard et al. 1988).
Present commercial products include the Common Internet File System (CIFS) (Leach and Perry
1996; Hertel and Hertel 2003). CVS (Cederqvist et al. 2002), although based on a central repos-
itory, is a widely used system that allows version control, for collaborative file edition, in dis-
tributed environments.

Relevant projects of mobile and distributed computing support for file sharing include
CODA (Kistler and Satyanarayanan 1992; Satyanarayanan 2002), which was the first to address
the issue of disconnected work in distributed file systems. Further work has been devoted in
Odyssey-CMU (Kumar and Satyanarayanan 1993; Noble et al. 1995; Noble et al. 1997), concern-
ing application adaptability in mobile environments.

Ficus (Popek et al. 1990), Rumor (Guy et al. 1999), and Roam-UCLA (Ratner et al. 2001;
Ratner et al. 2004) also represent a line of very interesting work concerning distributed file
systems with growing concerns w.r.t. mobility. Other recent work on file systems for mobile
environments includes Rufis (Shapiro et al. 2004) and FEW (Preguiça et al. 2005).

OceanStore (Kubiatowicz et al. 2000; Rhea et al. 2003) is an example of a large-scale dis-
tributed storage system, employing a peer-to-peer architecture. The objects stored are regarded
as opaque files, divided in data-blocks (Rhea et al. 2003).

II.1.1.2.2 Tuples

Tuples are aggregation records of a variable number of fields which, originally, could only
store strings and numerical values. Tuples offer a structured approach based on a sound model
for distributed programming. Tuples are stored in a shared tuple-space that may span several
nodes, merging concepts from shared memory and message passing systems. The operations
performed on tuples are insertion(out), read(rd), destructive read or tuple consumption(in), and
live tuple creation(eval) that dynamically creates a tuple from results returned from spawned
processes.

The main advantage of using tuples for distributed application programming is the inherent
structure provided while maintaining simplicity. In addition, use of insertion and consumption
operations frequently obviates the need for locks in variables. Nevertheless, tuple spaces are
not ordered. If several tuples match the template provided in rd/in operation, there are no guar-
antees which one will be fetched. Hypothetical references among tuples are not explicit, only
interpreted as such by applications. Therefore, referential integrity is not upheld.

Tuples were originally introduced in Linda (Gelernter 1985; Ahuja et al. 1986; Carriero and
Gelernter 1986). More recently, its principles have been adopted in Jini JavaSpaces (Eric Freeman
1999), and in TSpaces (Wyckoff 1998), supporting indexable fields for optimized searching. Tu-
ples are also used in Java (van Reeuwijk and Sips 2002; van Reeuwijk and Sips 2005), extending
the language syntax, to avoid the memory overhead associated with class instances in Java(e.g.,

II.1.1. DATA SHARING SYSTEMS 31

references to class and synchronization monitor in all objects), when implementing even simple
data-structures.

Tuple systems for mobile and distributed computing include Limbo (Davies et al. 1997)
and L2imbo (Davies et al. 1998a; Davies et al. 1998b), Tuples On The Air (Mamei et al. 2003),
One.World (Grimm et al. 2000; Lemar 2001; Grimm et al. 2004), Limone (Fok et al. 2004) and are
announced in Enterprise TSpaces (IBM 2003). Work described in (Liskov 1989; Patterson et al.
1993) is focused on fault-tolerance for tuple spaces.

II.1.1.2.3 Relational Databases

Broadly defined, the term database can be be applied to any data sharing system based
exclusively on query and update operations, regardless of data structure. A database may then
be just a flat collection of opaque items, attainable via explicit identification (e.g., item name,
item unique-ID).

Systems that do not target a specific programming model, and that present an architec-
ture independent of data structure and APIs used (i.e., application-agnostic), are sometimes
presented either as database systems, or file and object-based. Nonetheless, we include sys-
tems in the database programming-model when neither a file-system API, nor specific support
for object-orientation and graph navigation, is implied (e.g., IceCube (Kermarrec et al. 2001;
Preguiça et al. 2003b), and Deno (Keleher and Çetintemel 2000; Çetintemel et al. 2003)).

Since operations on database data may be tagged as query/read and update/write, con-
sistency and reconciliation mechanisms can be defined independently of data representation.
An interesting family of databases is that of relational databases. Relational databases comprise
structured tables containing records with pre-defined number and type of fields. They provide
a more structured data space than tuples, following relational algebra.

For relational databases in particular, operations on data are declaratively defined by SQL-
queries for insertion, update and removal of records. Data on different tables can be joined by
matching field values. Referential integrity, uniqueness and record ordering is provided. Sev-
eral queries can be composed into transactions guaranteeing ACID properties (Gray and Reuter
1993) that may be relaxed in order to provide extra flexibility, e.g., in mobile environments (Lu
and Satyanarayanan 1995).

While relational entities can refer to each other by means of foreign keys, thus creating a
graph, applications usually access such data by performing queries. Thus, there is no navigation
on such a graph as it happens with object-based applications.

One influential work regarding data-sharing is Bayou (Demers et al. 1994; Terry et al. 1995;
Petersen et al. 1997; Terry et al. 1998), that addresses the merging of concurrent updates per-
formed during disconnection periods. Relational databases in mobile computing have also been
addressed in Mobisnap (Preguiça et al. 2003), and SQLIceCube (Preguiça et al. 2003a).

32 CHAPTER II.1. RELATED WORK ON DATA SHARING

II.1.1.2.4 Objects

Object-orientation is the most widely used approach aimed at providing a structured and
type-safe data representation, within programming languages. Objects contain typed fields and
properties. Class and interface types define the methods that can be invoked on an object. Ob-
jects can contain references to other objects. This allows the creation of object graphs. Applica-
tions essentially navigate in the object graphs, starting from some root object and transversing
references to other objects. Object-orientation allows type inheritance (with and without imple-
mentation inheritance), polymorphism, aggregation and composition (Brooch 1993).

Operations performed on objects are frequently expressed in high-level languages such as
Java (Arnold and Gosling 1996) and C# (Archer 2002), for example. Besides regular constructs
from imperative languages (e.g., selection blocks, loops), object-oriented languages provide ob-
ject instantiation, reference manipulation and method invocations. Furthermore, some object-
oriented languages provide reflection mechanisms that allow inspection of type and value in-
formation. This information is associated to fields, properties, methods, classes, etc., and to
various extents, reflection allows their manipulation and modification.

This is arguably the most widely adopted programming model. Naturally, object-
orientation in mobile and distributed computing has been addressed in several research projects
such as Thor (Liskov et al. 1992; Gruber et al. 1994; Liskov et al. 1999), Larchant (Ferreira
and Shapiro 1995), PerDiS (Ferreira et al. 2000), OBIWAN (Veiga and Ferreira 2002a; Ferreira
et al. 2003), M-OBIWAN (Veiga et al. 2004; Santos et al. 2004), DERMI (Pairot et al. 2004),
Javanaise (Caughey et al. 2000; Hagimont and Boyer 2001), Gold-Rush (Butrico et al. 1997), Al-
ice (Haahr et al. 2000), Pro-Active (Baduel et al. 2002), Aroma (Narasimhan et al. ; Narasimhan
et al. 2001), the ORCA shared-object system (Bal and Tanenbaum 1990; Bal et al. 1992), and
Manta (Maassen et al. 2000), among others. However, not all have addressed with the same
level of concern the challenges raised by mobility environments.

Today, the most relevant technologies addressing object-oriented programming in dis-
tributed systems are Java RMI (Wollrath et al. 1996), .Net Remoting (McLean et al. 2002), and
SOAP (Box et al. 2000).

Object-orientation may also be combined with concepts originating from the database
world. This is the case with object-oriented databases (Atkinson et al. 1989; Zdonik and Maier
1990), and shared-objects with transactions. Object-oriented Databases are simultaneously
database systems (providing a query language, persistence) and object-based systems (enabling
navigation through object graphs, type inheritance, polymorphism, etc.). Earlier examples in-
clude Exodus (Carey and DeWitt 1986), O2 (Lecluse et al. 1988; Deux et al. 1990; Deux et al.
1991), Gemstone (Butterwoth et al. 1991). Examples of recent work include Ozone (Braeutigam
et al. 2002) and DB4O (db4objects, Inc. ; Paterson et al. 2006).

Persistence in object-oriented systems may also be achieved, with less flexibility, by lever-
aging existing relational databases, employing object-relational mapping. Examples include
OJB (Apache Foundation 2002), Hibernate (Iverson 2004), and implementations of the JDO (Java
Data Objects) (Russel 2002; Russel 2003) and JDO 2 (Russel 2005; Russel 2006) specifications.
Microsoft .Net ObjectSpaces (Esposito 2004) and LINQ.Net (Box and Hejlsberg 2006) are related
proposals for object persistence in Windows platforms.

II.1.1. DATA SHARING SYSTEMS 33

II.1.1.2.5 Components

Programming based on components can be regarded as the next step in object-orientation. A
component is an aggregation, wrapping several objects that are functionally related for a certain
task. In this model there are no freely referenced objects across components. Graph navigation
is restricted to within the component.

With components, the development of applications and services can be assisted by a set
of tools that enable component combination. The runtime should be able to associate (bind)
compatible components so that they work together. For this, components must be registered
and expose some form of manifest, stating what they perform, possible dependencies, and how
they can be combined.

An influential work in component-based data-sharing is that of the Rover Toolkit (Joseph
et al. 1995; Joseph et al. 1997). In Rover, relocatable data objects (RDO), can be regarded as
components, since they typically expose specific functionality, possibly encapsulating a private
graph of objects. Earlier work includes SOS (Makpangou and Shapiro 1988), where applications
are structured around fragmented-objects, components defined by a specific language (FOG).

Components have also been addressed in Roam-DoCoMo Labs (hua Chu et al. 2004), and
SyD (Prasad et al. 2004). In DOORS (Preguiça et al. 2001), components are called coobjects,
which are pre-defined aggregations of other data objects, and responsible for a specific part of
the application functionality.

Components have been proposed as the basis of present enterprise computing, e.g., CORBA
Component Model (Object Management Group 2002), Enterprise Java Beans (Malena and
Hapner 1999; EJB 3.0 Expert Group 2006), OSGi Framework (Alliance 2003), and .Net with
COM+ (Platt 1999; Löwy 2001; McKeown 2003).

II.1.1.2.6 Mobile Agents

The concept of agent is used in the literature in quite an encompassing fashion. Its mean-
ings range from plain mobile code (classes or code snippets), to sophisticated software entities
equipped with artificial intelligence capabilities (www.fipa.org 2002) that may act on behalf of
human users in online interactions/transactions.

In the context of this dissertation a mobile agent is a software component (carrying code
and data, the agent’s state) that is extended with a private control thread. Optionally, an agent
instead of carrying code may contain only a reference to a location where its code can be down-
loaded from. Mobile agents must run inside a agent execution environment deployed in each
host system. Agent execution can be suspended and later resumed. Mobile agents may move
across nodes, either decided by the system or autonomously. This implies suspending agent
execution, transferring code, data, and execution context to another node, and resuming agent
execution on arrival.

There is a great number of proposed mobile-agent systems (Rodrigues da Silva et al.
2001) such as Voyager (ObjectSpace 1997), Aglets (Lange and Oshima 1998), General Magic’s

34 CHAPTER II.1. RELATED WORK ON DATA SHARING

Odyssey (General Magic 1997), Lime (Murphy et al. 2001), Mars (Cabri et al. 2000), and Agent-
Tcl (Gray 1995).

II.1.1.2.7 Structured HTML/XML Documents

Structured documents such as XML (W3C-XML ; Eckstein 2001) and HTML (W3C-HTML ;
Niederst 1999) files are the data representation with the most implementation and presentation
independence. These representations are heavily based on influential work developed in the
context of SGML (ISO 1986).

They have an internal structure based on hierarchical nodes, possibly with references to
nodes or other documents. This structure is exposed to applications reading (parsing) these
files. One of the main advantages of these data representations is that they are text-file based,
easing portability to any platform.

The usage of HTML documents is tightly related to web browsing and content producing.
XML, however, can be used for data representation in any environment and for any application.

Applications can navigate on graphs of HTML documents (a common task in web browsing)
through URLs referencing other documents. With XML documents, operations can be expressed
in XPATH, XPointer, and XSLT, allowing attribute query and update, navigation, and content
transformation (Tennison 2001).

Sharing of web content, besides web caching (see Section II.1.1.3.4) and plain mirroring of
web sites, has been addressed in LOCKS (Rosenthal and Reich 2000; Reich and Rosenthal 2001;
Maniatis et al. 2003; Maniatis et al. 2005), RepWeb (Veiga and Ferreira 2003c), (Veiga and
Ferreira 2004b) (taking into account dynamically generated content), and in Replets (Zhou et al.
2004) (regarding servlet objects). XML data-sharing has been addressed in XMIDDLE (Capra
et al. 2001; Mascolo et al. 2001; Mascolo et al. 2002b).

II.1.1.2.8 Summary

Every data representation has one or a number of fields of application where it is most
suited. However, due to their relatively broader adoption, there are two programming models
that with greater impact: i) the object model, due to its wide acceptance in almost every aspect
of application programming and, ii) the file model, since it provides the most basic abstraction
and most systems support it. However, in this dissertation, we only address the object model
and structured documents.

II.1.1.3 Data-Sharing Model

Applications can access shared data and services, provided by different nodes, according
to several different models. Key issues regarding a data-sharing model are co-location of data
and code, and placement of data in nodes that perform interaction with application users. We
discuss the following data-sharing models that may be provided to applications and users:

II.1.1. DATA SHARING SYSTEMS 35

• Remote invocation.

• Publish-subscribe.

• Migration.

• Caching.

• Replication.

Note that, however, nothing prevents a specific realization of a particular data-sharing
model from using a different model in its underlying implementation, e.g., using remote exe-
cution to support data replication.

The choice of a particular data-sharing model has implications in several aspects such as
performance, communication, availability, data recency/freshness, resource demand and con-
sumption.

II.1.1.3.1 Remote Invocation

In this data-sharing model, applications running on a node cannot have direct access to
data located at other participating nodes. Remote execution is the most traditional data-sharing
model. It has long been adopted by several systems with centralized and client-server architec-
tures. It is based on the notions of stub (Birrell and Nelson 1984) and proxy (Shapiro 1986) for
transparency.

Several programming models have been extended to support remote execution. In mod-
els based on imperative languages, remote execution is referred as Remote Procedure Call
(RPC), such as Sun/ONC-RPC (R. Srinivasan 1995), while in object-oriented programming, it
is commonly referred as Remote Method Invocation. Initial research work on this area includes
SOS (Makpangou and Shapiro 1988), Soul (Shapiro 1991b), and Network Objects (Birrell et al.
1993b). Java RMI (Wollrath et al. 1996)1, .Net Remoting (McLean et al. 2002), already mentioned,
are leading technologies w.r.t. commercial products. Earlier efforts include DCE (Leser 1992),
CORBA (Siegel 1996), and DCOM (Sessions 1998).

More recently, XML has also been used to provide inter-operability among participating
nodes with different execution environments (operating system, virtual machine, program-
ming language), in the context of Web Services, e.g., XML-RPC (Winer 1999; Udell 1999) and
SOAP (Box et al. 2000).

In database systems, remote execution is performed by Stored Procedures, that may be
coded in SQL, or in an object-oriented language (Java (Arnold and Gosling 1996), C# (Archer
2002)). In Ozone (Braeutigam et al. 2002), client applications always invoke persistent objects by
means of remote invocation (Java RMI).

Remote execution has been adapted to address frequent disconnection scenarios. This
is achieved using queued RPC invocations, as proposed in Rover (Joseph et al. 1997).

1Remote Method Invocation.

36 CHAPTER II.1. RELATED WORK ON DATA SHARING

DERMI (Pairot et al. 2004) provides remote method invocation for objects deployed over P2P
overlays.

II.1.1.3.2 Publish-subscribe

In the Publish-subscribe (Eugster et al. 2003) data-sharing model, there are three kinds of
data: advertisements, subscriptions, and publications of events (pub-sub is also related to event-
based programming). An event is simply a notification that something interesting to the system,
applications or users, has occurred. In this model, data items are immutable, i.e., once created
they cannot be modified, only consumed and discarded.

Events may be identified by name, type/category, or additional meta-information. Events
may also contain time information and additional application-specific data. Participating nodes
may behave as publishers or subscribers for specific events.

Initially, publishers may send other participating nodes advertisements of the events they
publish. Of the latter, those that have interest in being notified of future occurrences of the event,
may subscribe to it, i.e., register their interest. When the publisher determines that a specific event
has occurred, it sends (publishes) notifications of the event to the subscribing nodes.

With respect to programming model, event message-data and processing may be based on
arbitrary text or binary content, object-based data, XML-based data, or invocations (such as
callbacks).

Event subscription can be performed based on a variety of aspects, namely topic/subject
(plain text or using XPATH expressions), object type, content (presence of specific properties
or conformity to an object template), predicate function. Nodes may subscribe to composite
events (Bacon et al. 1995; Bacon et al. 2000; Li and Jacobsen 2005), i.e., subscribe to combinations
of distinct events to be notified only when the composite events occur.

Data dissemination and storage in pub-sub systems may be realized resorting to any of the
proposed system architectures: i) centralized in user interface design, ii) client-server, or iii) peer-
to-peer. Subscription of events must be recorded; it may be on the subscriber, the publisher (e.g.,
callbacks), on broking servers, or spread across the network as in peer-to-peer architectures.

An evaluation criteria of publish-subscribe systems is to what extent they allow publishers
and subscribers to be logically decoupled in terms of time, space, and/or synchronization.

Examples of distributed publish-subscribe systems include work in (Bacon et al. 1995; Hay-
ton et al. 1996) and, more recently, Jedi (Cugola et al. 2001), Siena (Carzaniga et al. 2000),
ToPSS (Petrovic et al. 2003) and PADRES (Fidler et al. 2005). Publish-subscribe in mobile envi-
ronments has been addressed in (Huang and Garcia-Molina 2004).

Scribe (Castro et al. 2002) performs event notification on P2P overlays, and is further ex-
tended for publish-subscribe in (Tam et al. 2003). DERMI (Pairot et al. 2004) is an example of an
object-based middleware on top of a peer-to-peer pub-sub system, upon which remote invoca-
tions are modeled. Tuple-based systems with asynchronous notifications also follow a pub-sub
data-sharing model.

II.1.1. DATA SHARING SYSTEMS 37

II.1.1.3.3 Migration

Migration is a data-sharing model that allows data items to be transferred across different
nodes, so that they become closer to better available resources, other related data items, or for
interaction with users. With migration, despite data transfer being essentially a copying opera-
tion, there is no change in the number of instances of the shared-data item. Thus, at transfer, it
is copied to a destination node and eliminated in the source node.

Migration is extensively used in conjunction with the mobile agent programming model, for
agent wandering, or simply for task migration.

Migration is also used with component programming model. It is useful to improve avail-
ability and scalability. In Rover components may migrate from server nodes to client nodes prior
to impending disconnection, to improve availability. Components may be migrated among ap-
plication servers to perform load-balancing (Frenot et al. 2002; Kapitza et al. 2005) for better
scalability, namely in enterprise computing.

The two following data-sharing models allow the existence of several instances of the same
shared-data item. However, there are some differences that will be made clear next.

II.1.1.3.4 Caching

Caching is a data-sharing model that allows and effectively leverages the existence of several
instances of the same data item, placed at different nodes. One instance is referred to as original,
while the others as cached copies. These instances continue to embody a single logical data-item
that is copied solely to facilitate sharing. This avoids the performance, latency and availability
penalties that applications might incur from using, for instance, a remote-execution model to
access a shared data item. Caching has been traditionally employed in systems with centralized
server or client-server architectures.

A cached copy of a shared-data item does not enjoy the same qualitative nature of the orig-
inal. The original resides at a specific node, called home node, and is preserved until explicitly
deleted. Cached copies at other nodes, however, may be temporary with a specific time du-
ration, may be silently discarded (forwarding to the original), subject of replacement policies,
etc.

Caching has been extensively used in web systems (Wang 1999; Rodriguez et al. 2001; Iyer
et al. 2002), to accelerate download. It is performed by groups of cooperating servers, possibly
organized hierarchically.

An important distributed system with object caching is Thor. This system provides a hybrid
and adaptive caching mechanism handling both pages and objects. In Thor, a number of server
nodes hold a distributed object graph. Thus, objects reside at servers and are cached at clients
only for increased performance and reduced latency. Cached copies at clients cannot be further
copied elsewhere, except to be returned to its home server when updated.

Most object-oriented databases (OODBs) (Zdonik and Maier 1990), for example such as
O2 (Deux et al. 1990; Deux et al. 1991), GemStone (Butterwoth et al. 1991), employ some form

38 CHAPTER II.1. RELATED WORK ON DATA SHARING

of caching. There has been some work on object caching in CORBA (Kordale et al. 1996) as well.
Cascade (Chockler et al. 2000) proposes an hierarchical cache system for CORBA objects.

II.1.1.3.5 Replication

Data replication also makes use of several instances of the same data-item. However, as
opposed to caching, with replication, each instance of a data-item (a replica) is not transitory and
is in fact considered, as a first-class entity in the system. A replica should only be discarded
when all replicas of the shared-item are considered useless. Nonetheless, in some cases, one of
the replicas may be considered as a master replica, namely for consistency purposes. Replicas
may also create other replicas of their data to be handed to other nodes.

Locally replicated data is always readily available to applications (even when the network
is down), with access time orders of magnitude lower than non-local data, and avoids frequent,
and possibly lengthy and costly connections to the underlying network (specially so in the case
mobile devices with GSM, CDMA or GPRS connectivity).

Chapter I.1 has already presented the main arguments for data replication. It has been
a prime model adopted for data-sharing. It improves availability, performance, and cost-
effectiveness. Data replication has been applied to client-server architectures and is fundamental
in peer-to-peer systems.

Data replication has been used with virtually almost every programming model. It has been
comprehensively addressed in various projects and systems, such as: CODA, Ficus, Rumor,
Roam-UCLA, Rufis, Few, One.World, Enterprise-Tspaces, Bayou, Deno, IceCube, OceanStore,
Mobisnap, SQLIceCube, Javanaise, GoldRush, Larchant, Perdis, OBIWAN, DERMI, replicated
CORBA, LOCKSS, XMIDDLE, Replets, RepWeb. Systems based on Distributed Shared Mem-
ory (Li and Hudak 1986; Li and Hudak 1989) systems also make use of replication.

Replication of RMI Server Objects has been studied in (Baratloo et al. 1998), while replication
of components in the context of Java-based enterprise computing has been covered in (Kistijan-
toro et al. 2003).

II.1.1.3.6 Hybrid approaches

Systems may use a hybrid of data-sharing models. They can use different data-sharing
models for different types of shared-items (e.g., migration for mobile agents and replication for
private data the agent may hold), or switch between data-sharing models (e.g., when connected,
switch from caching, migration or replication to remote-execution model). They may also use
a number of data-sharing models in combination (e.g., migration with caching or replication).
DERMI provides migration, caching and replication.

In Oceanstore, replicas of shared-data items are maintained in several nodes for increased
availability and proximity to client nodes. Additionally, shared data is cached in several, or
all intermediary nodes in the network, as it passes through them. Oceanstore performs intro-
spective replica management. Replicas may be migrated to different nodes to accommodate
demand.

II.1.1. DATA SHARING SYSTEMS 39

II.1.1.4 Propagation of Modifications

There are the two main families of approaches to represent and propagate modifications per-
formed on shared-data. These are particularly relevant in the context of caching and replication
data-sharing models. Propagation of modifications can be:

• State-based.

• Operation-based.

The state-based approach propagates changes made to shared-data simply by providing the
new content of the shared data after modification.

The operation-based approach propagates modifications as a sequence that describes the
relevant operations that were performed on the data. Remote invocation is a data-sharing model
that adopts an operation-based approach to propagate modifications to (remote) data.

The actual representation of these operations may be dependent of the programming model
used. The greater this dependency is, the greater is the semantic information provided with
the operations. Nonetheless, an application-agnostic approach simply regards read and write
operations.

State-based approaches have the advantage of being easier to implement, mostly non-
intrusive to applications, and several modifications can be combined in a single update. How-
ever, state-based approaches are vulnerable to small modifications performed on large objects.
These difficulties can be mitigated by sending only the differences between new and previous
values, possibly compressed.

Operation-based approaches are more expressive, in the sense that some broad or scattered
modifications on data can be represented very efficiently as operations (e.g., inserting scattered
sentences in a very large text document). Nevertheless, they require application instrumentation
in order to record (i.e., logging) the operations performed, or that these applications are already
operation-based (e.g., SQL databases, file system directory maintenance).

State-based approaches are more suited to systems based on sophisticated programming
languages where representative operations (i.e., semantics associated with each modification)
may be very difficult or impossible to extract correctly. Furthermore, they are also preferable in
systems where it may be prohibitive to log every operation performed (e.g., an object-oriented
language program may perform hundreds of interdependent read and write operations on a
graph of objects for common tasks that include graph transversion, search, and modification).

Operation-based approaches are widely used in systems where users perform common in-
teractions with a well-defined semantics (file-systems, meeting scheduling, document edition,
stock management, etc.). This approach also provides interesting properties in the context of
consistency (e.g., operation changing, re-ordering).

The two approaches can be combined into hybrids. A node may store a short history of
differences between original and modified data (i.e., diffs), that may be transmitted instead of
the new state, where a common previous (but recent) state is known by both. Several diffs may

40 CHAPTER II.1. RELATED WORK ON DATA SHARING

be applied in sequence. In certain conditions, operations performed may be extracted from
the analysis and comparison of two versions of a shared-data item (e.g., extracting insertion,
modification and deletion of lines in text files).

In systems based on remote-execution, propagation of modifications is inherently operation-
based. In Publish-subscribe systems, shared-data is mostly read-only. Publications are just con-
sumed by subscribers, while modifications to subscriptions are propagated in operation-based
manner.

In systems based on migration, caching and/or replication, modifications can be propagated
in a directed manner (e.g., sending modifications to the nodes where shared data was originally
obtained from, or to other alternate nodes), or indirectly as in epidemic (Petersen et al. 1997)
propagation (where modifications are exchanged in pair-wise anti-entropy sessions when two
nodes meet).

Relevant examples of systems that propagate modifications to shared-data as operations in-
clude Bayou, IceCube and Deno. On the other hand, Ficus, Roam, Thor, OBIWAN, and web
caching systems are examples of systems that propagate modifications to shared-data by send-
ing the content of updated state. Coda uses a state-based approach for modifications on files,
and an operation-based approach for directory maintenance operations.

II.1.1.5 Portability and Implementation Issues

Every system, while addressing each (not necessarily every) vector in system design by
employing a certain alternative, must interact ultimately with the computing environment in
nodes. Often, this requires modifications to the environment. Such modifications may surface
at a number of levels, with variable visibility. We highlight the following:

• Operating system.

• Virtual machine.

• Application binary code.

• Application source code.

• API replacement.

• Special-purpose programming language.

These modifications may manifest themselves to node administrators, application develop-
ers and application users. These categories may overlap, e.g., for a PDA, application user and
node administrator are the same person.

Operating System: The lowest level that may require modification is the operating system.
This is needed when a system requires that operating system functionality be extended. This

II.1.1. DATA SHARING SYSTEMS 41

may involve recompilation of part of the operating system. Alternatively, the OS may be ex-
tended by installation of new modules. For instance, file-system extension (e.g., to enable
caching and replication) in Windows platforms may be deployed via Installable File Systems.

Distributed shared memory systems require an extended page-fault handling mechanism
capable of fetching pages from the network. This mechanism is also used in pointer swizzling
and orthogonal persistence for programming languages (Wilson 1990; White and Dewitt 1992;
Wilson and Kakkad 1992; Hosking and Moss 1993; Sousa et al. 1993).

Modifying the operating system has several disadvantages: it requires administration priv-
ileges and the effort must be done for every operating system targeted by the system. De-
pendence on extension mechanisms provided by a specific operating system, although more
portable and requiring less privileges, still prevents deployment on other operating systems.

Virtual Machine: An attractive alternative to changing the operating system is the use of
a widely deployed virtual machine (VM), such as JVM (Lindholm and Yellin 1996),2 or .Net
CLR (Platt 2001).3 Applications developed targeting a specific VM are obviously more portable,
since they can be developed to a unified running environment, regardless of the different imple-
mentations of the VM w.r.t. different hardware, architectures and operating systems.

In fact, the virtual machine becomes the operating system, as far as applications and de-
velopers are concerned. Nonetheless, it may be necessary to extend the virtual machine itself,
which raises issues similar to those of the previous alternative. The need to use a modified
virtual machine is restrictive to application deployment. This is also the case when a system
requires its own non-standard virtual machine, or running environment (e.g., Thor, GemStone,
O2), since applications cannot be run elsewhere.

Application Code: Supporting a specific alternative of a design vector can also be achieved by
extending application code. Code extension includes modification of application code as well
as automatic generation of additional code (e.g., proxies) to be included in the application. This
may or may not require access to the source code of applications.

W.r.t. binary code, some libraries used by applications may be replaced by customized ver-
sions that intercept function calls, adding some specific behavior. A typical approach is to re-
place part of the C-runtime library to intercept the invocation of specific functions (e.g., file and
memory management).

Byte-code enhancement is a representative example of binary code extension. It is used
in persistence frameworks for object-based systems, such as Hibernate, where it is performed
at runtime when classes are first loaded, and in JDO reference and most compliant implemen-
tations, during compilation. Recent versions of OJB4 also generate proxies using a byte-code
manipulation library.

2Java Virtual Machine.
3Common Language Runtime.
4Version 1.0.4.

42 CHAPTER II.1. RELATED WORK ON DATA SHARING

Code extension may also be performed on the source-code, i.e., via source-code augmen-
tation. In OBIWAN, source-code is augmented to add object-fault handling and incremental
replication. Binary code extension has the advantage of neither requiring access nor imposing
modifications to source code. However, developers cannot see the modifications made to their
code which may hinder the debugging process.

Automatic generation of additional application code may be performed directly (e.g., it has
been used to generate RMI stubs and skeletons) or via source-code generation and ulterior com-
pilation (e.g., proxies in OBIWAN, Ozone, and earlier versions of OJB, and stubs for C++, Java,
and Smalltalk in Thor).

OJB and other object-relational mappers also extend application source code by generating
SQL statements in order to read/write object contents from/to relational databases. In the spe-
cific context of applications written for Java, .Net, and CORBA, the use of reflective capabilities
and techniques is invaluable in class analysis for code and behavior extension.

API and Programming Languages: The adoption of a given alternative for a design vector,
in some systems, may also impose the use of a new application programming interface. This
will allow additional flexibility and productivity in the development of new applications, at
the expense of requiring porting existing applications that were not developed using the new
API (e.g., Read-Write APIs from Bayou, Deno, and Pro-Active). This may be a time-consuming
process, even with the aid of tools for automatic conversion.

In this alternative, we also include the tasks associated with supporting a specific API, such
as developing dependency checks and merge procedures in Bayou, defining and extracting op-
erations performed by applications in order to use IceCube, etc.

OJB and JDO implementations require the creation of XML files, containing mappings of
class descriptions and associations that describe how and where object fields should be fetched
from the database. In certain configurations, OJB requires classes to implement methods ac-
cording to Javabeans calling convention (e.g., getXXX, setXXX) to populate object fields. As
an alternative, it can use reflection to inspect and assign fields, with additional invocations and
performance overhead.

In Hibernate, applications must be aware of the replacement of collections (e.g., List, Vector)
of objects, with instances of a custom Collections API.

PERST (McObject 2003) requires that application classes derive explicitly from a common
top-level class: Persistent . To prevent loading complete graphs into memory, PERST also
requires the programmer’s intervention by: i) overriding recursiveLoading methods, and
ii) invoking Persistent.load explicitly.

DB4O, while entirely based on reflection, also requires explicit use of a specific API, in or-
der to load additional objects from storage (using db.activate(obj,depth)). This is not
required in cascade mode in which DB4O loads the entire reachability graph into memory, when
an object is first accessed.

At the highest level, a system may impose the use of a specialized programming language,
such as Theta for defining object structure and method code in Thor, and query languages in

II.1.2. CASE-STUDY OF RELEVANT SYSTEMS 43

many object-oriented databases.

The level of intrusion is greater for system administrators on one end of the range (oper-
ating system) and greater for application developers on the other (special-purpose language).
Desirably, this ensures that intrusion to users is kept to a limited degree. We believe that system
dissemination will be favored if it is possible to minimize the two trends of intrusion. Arguably,
this balance is optimized by using application code extension. Thus, middleware should not
imply the modification of neither the operating systems nor the virtual machines, and should
not impose radically new APIs.

II.1.1.6 Summary

In this section we presented a taxonomy framework for characterization of data-sharing
systems, w.r.t. relevancy to our work. For each vector and related alternatives, we laid out its
relevant features and offered examples of systems that adopt them.

Even though most combinations are possible, there are a number of dominant approaches
in specific scenarios. More recent file-sharing systems are dominantly peer-to-peer, based on
replication, propagate modified parts of files (diffs), and may replace the normal file-system
API. High-end relational databases follow a client-server architecture, with centralized-storage
(server), using SQL language for remote invocation of queries (while having some support for
replication) that also represent modifications on data. The dominant approach in the world-
wide-web is based on a client-server architecture, file-based, with several levels of caching (web-
proxies), using the HTTP protocol (Network Working Group 1996). Modifications are propa-
gated by updating complete files on proxies.

Mobile computing usually follows a hybrid of client-server and peer-to-peer architectures,
and is based on either files, databases, objects, or components. Usually, replication or caching
are employed to tolerate disconnection periods. Modifications can be propagated using an
operation-based approach (e.g., for databases, and files (Preguiça et al. 2005)), or transferring
updated-state (e.g., for objects and also file-based systems). Portability aspects range from ex-
tending operating system with drivers, to mandating the adoption of a specific API.

II.1.2 Case-Study of Relevant Systems

This section offers a case-study of some relevant projects related with this work. First, we de-
scribe some research projects from academia, including early influential works and more recent
projects. Then, we characterize them against the proposed taxonomy in Table II.1.2 and analyze
them w.r.t. the goals of this dissertation. Finally, we offer some insight on relevant commercial
products, including pioneering efforts and current technologies.

44 CHAPTER II.1. RELATED WORK ON DATA SHARING

II.1.2.1 Research Projects

II.1.2.1.1 Bayou

Bayou (Demers et al. 1994; Terry et al. 1995; Petersen et al. 1997; Terry et al. 1998) presents
an architecture based on mobile-aware databases, used for data-sharing among mobile users,
with high availability. It introduces the innovative notions of eventual consistency and epidemic
propagation.

Each server contains a log of operations, and stable and tentative versions of the database
state. Stable state reflects the execution of operations already committed. Tentative state reflects
the execution of operations known by the server but not committed yet. It allows applications
to make progress but those operations may still be rolled-back and re-done later, if necessary.
Replicas are updated by epidemic propagation. When two servers meet, they exchange opera-
tions stored in their logs, appending the ones still unknown to each one.

Replica consistency is enforced by performing Write operations in the same, well-defined
order at all servers. This achieves eventual consistency among servers, ensuring that all replicas
will converge to equivalent states, although offering no guarantees on promptness. It employs a
protocol that ensures stabilization even in the presence of conflicts. Application-specific conflict
resolution is performed by special types of methods: dependency checks and merge procedures
that are application-specific. A dependency check is run before an operation is applied, detecting
possible conflicts. If it fails, a merge procedure is executed modifying the conflicting operation
in a way that still serves the user’s intended purpose (e.g., rescheduling a reunion at a later hour,
or to a nearby room). Query and update operations, as well as dependency-checks and merge
procedures can be coded in SQL.

Final decision on the ordering of operations, including conflict resolution, is performed by
a designated server, the primary or home node. It may be a high-end server that is always
available for a majority of users, or a user’s laptop with priority over others. Every server must
maintain a replica of the complete database. This may be unfeasible or undesirable with some
mobile devices (Mascolo et al. 2002a).

II.1.2.1.2 Rover

The Rover (Joseph et al. 1995; Joseph et al. 1997) toolkit is a framework for the development
of both mobile-transparent and mobile-aware applications. It addresses intermittent connectiv-
ity and bandwidth limitations in mobile environments, while optimizing communication among
nodes. It introduces the notions of relocatable data objects (RDO) and queued remote procedure
calls (Q-RPC).

RDOs are described as objects comprising data and code that can migrate both ways be-
tween clients and servers. Usually, RDO are more than plain objects since they may encapsulate
large parts of application functionality. These are the main components to be defined by the
developers of mobile applications (e.g., mail and news reader, web-proxy, mobile transparent
file-system).

II.1.2. CASE-STUDY OF RELEVANT SYSTEMS 45

RDOs communicate among each other by means using Q-RPC. This allows applications to
proceed, making non-blocking remote invocations, even in disconnection periods. All outgo-
ing and incoming remote calls are logged. Request and reply of a single Q-RPC may be sent
using different connections. Applications can inspect the progress of ongoing Q-RPC. Commu-
nication is optimized by a network scheduler that allows message batching, prioritization, and
application-specific data compression. It minimizes energy consumption, delay, and communi-
cation cost.

II.1.2.1.3 Thor

Thor (Liskov et al. 1992; Gruber et al. 1994; Liskov et al. 1999) is a distributed object oriented
database (OODB). Objects reside in one or more servers forming a distributed persistent heap.
Applications act as clients of Thor. They cache objects locally and execute methods on them,
within transactions. When transactions are committed, modified objects are sent back to their
servers. Cached copies are created lazily. As object references are transversed, page-faults are
triggered and handled.

When an object is cached, Thor caches the whole page containing the object. It employs a
hybrid and adaptive caching (HAC) mechanism (Castro et al. 1997) that partitions the cache dy-
namically, handling both pages and objects. It retains pages with observed high locality through-
out, otherwise it maintains only its most accessed objects.

Thor defines a format for objects in memory and their storage on file. Disk usage is opti-
mized by means of a modified object buffer (MOB) that delays writing modified objects to disk.
The MOB is flushed lazily as it fills up, writing several pages (i.e., segments) in a single disk
operation. In addition, Thor provides a type-safe programming language (Theta), a concur-
rency scheme (CLOCC),5 and a distributed garbage collector that manages client caches and the
persistent store (referred in Part III.1).

II.1.2.1.4 IceCube

The IceCube (Kermarrec et al. 2001; Preguiça et al. 2003b) project aims at solving reconcilia-
tion of concurrent updates on different replicas, as an optimization problem. Applications run-
ning on clients manipulate replicated data and perform operations on it. Operation are logged
and later sent to a generical reconciliation server, a centralized repository holding authoritative
versions of all data items. IceCube performs reconciliation, by computing a schedule based on
logged operations received from all replicas. Once completed, the calculated schedule is then
sent to all other replicas to be replayed.

Scheduling is performed according to a dependence-graph that represents all the constrains
among pairs of update operations, such as pre-conditions. Dependence-graphs combine con-
strains regarding data-types, applications, users, and system-wide. These constrains are appli-
cation and data-type specific, and can be semantically rich, while the scheduler is independent

5Clock-based Lazy Optimistic Concurrency Control.

46 CHAPTER II.1. RELATED WORK ON DATA SHARING

of any specific application. Examples of constrains include dependence, implication, and choice.
In order to reduce the search space, IceCube also supports a commutativity relation among op-
erations.

Scheduling is optimized using heuristics. When there are several possible correct schedules,
the system ranks them, and selects the one with the highest utility (i.e., optimum), as defined
by an application metric (e.g., maximize the number of committed operations, prioritize some
types of actions).

II.1.2.1.5 Mobisnap

Mobisnap (Preguiça et al. 2003) is a database middleware system designed to transparently
support applications running on mobile environments. It allows different clients concurrently
updating the database by usage of mobile transactions, though modification of persistent data
is only done at the central server (that acts as a primary replica).

Mobile transactions are expressed in unmodified PL/SQL, improving on previous re-
sults (Preguiça et al. 2000). It allows replication of relational-model data in the clients and
semantically infers from client transactions, the necessary constraints (reservations) which, with
a good degree of confidence, prevent conflicts and allow transaction completeness, indepen-
dently, when these are replayed at the central server.

Reservations are a kind of semantic lock on data, associated with a time validity (lease).
They are issued and enforced by a primary replica. They represent rights to use and/or modify
data. Types of reservation include: escrow for data subject to division (e.g., stocks), slot for record
insertion with pre-defined content, value-change, value-use, and anti-lock to prevent reservations
w.r.t. the same records being issued to other clients.

Each replica maintains a tentative and committed version of the database, as in Bayou.
Transactions completed at clients may be tentative-committed or reservation-committed. The
former have completed successfully but there is no guarantee the same will happen when re-
played at the primary replica. The latter ensure successful completion at the primary, provided
they are replayed before the expiration of the lease.

II.1.2.1.6 Javanaise

Javanaise (Caughey et al. 2000; Hagimont and Boyer 2001) is a platform that aims at provid-
ing support for cooperative distributed applications on the internet. It caches objects in order to
avoid costly remote method invocations, using application-dependent object clustering.

Application development in Javanaise is centered on the notion of clusters that are pre-
defined aggregations of related objects. Classes of objects heading clusters must explicitly in-
herit, at least, from one of two interfaces: CacheableCluster, PersistentCluster . The
programmer must be fully aware of clusters and is responsible for the decomposition of the
distributed object graph into individual clusters. Nonetheless, clusters can be deployed dynam-
ically.

II.1.2. CASE-STUDY OF RELEVANT SYSTEMS 47

Project System Programming Data-sharing Propagation Portability
Architecture Model Model of Modifications

Bayou CS / P2P database replication op-based (SQL) Bayou API
Rover CS components remote-invocation op-based (QRPC) Rover API

migration/caching
Thor CS objects caching state-based libraries (veneer)/ API

(modified objects) and language (Theta)
Mobisnap CS / centralized database replication op-based (SQL) extended db-engine

repository
IceCube CS / centralized agnostic replication op-based constrains API

repository
Javanaise CS objects caching state-based cluster API

components (modified objects)

Table II.1.2: Design alternatives for related data-sharing research projects.

Local (intra-cluster) objects cannot be shared among different clusters. They are only known
within their containing cluster and cannot be referenced from outside. Cluster objects mediate
all inter-cluster references and invocations. Methods of cluster classes may only take as argu-
ments, and return as results, references to other cluster objects. Clusters thus resemble compo-
nents as RDOs in Rover.

Javanaise extends Java RMI with caching mechanisms. The application development fol-
lows a similar approach with some modifications in source code. A proxy generator is then
used to generate indirection objects and a few system classes supporting a consistency protocol,
e.g., single-writer-multiple-readers.

Analysis The design alternatives employed by the research systems described in the section
are summarized in Table II.1.2. Taking into account the goals and challenges enunciated in
Chapter I.1, we can also perform a comparative analysis of the systems presented, evaluating
if and how projects address each one. We recall these goals and challenges in the form of the
following requirements:

1. Usage of Local Resources: leverage the usage of existing local resources (CPU, memory)
effectively.

2. Support for Disconnected Work: minimize dependency on the availability of network
connection, e.g., by employing replication techniques.

3. Transparent Support for Commercial OO Languages: allow application development us-
ing widely adopted object-oriented languages (e.g., C++, Java, C#).

4. Platform Portability: impose modifications neither to operating systems nor to dominant
commercially available virtual-machines (e.g., Java and .Net).

5. Enforcement of Referential Integrity: improve programming reliability by preventing
dangling references.

6. Adaptability: provide mechanisms to control resource consumption on running nodes
(e.g., memory, network).

48 CHAPTER II.1. RELATED WORK ON DATA SHARING

None of the systems addresses all of the requirements. In some cases, one or more require-
ments were not even specifically targeted in their design. Nonetheless, they are obviously useful
in their particular context. Table II.1.3 summarizes the results, indicating for each requirement,
whether a system either: i) fulfills it completely (Yes), ii) addresses it partially (Limited), or iii)
disregards it (No). To facilitate table readability, additional explanations are provided with indi-
vidual footnotes below the table.

Project Usage of Support for Transparent Support Platform Enforcement Adaptability
Local Disconnected for Commercial Portability of Referential

Resources Work OO Languages Integrity
Bayou Yes Yes No Yes a No No
Rover Yes Yes Limited b Limited c No d Yes e

Thor Yes Limited f Limited g No h Yes Limited i

Mobisnap Yes Yes No j Yes k Limited l Yes m

IceCube Yes Yes No n Yes No No
Javanaise Yes Limitedo Limited p Yes No q Yes r

aPosix and Java-based implementations.
bImposes Rover API and RDO decomposition.
cMobile-transparent File System for Rover Toolkit needs a OS-kernel module for client application.
dDoes not enforce referential integrity among components.
eProvides pre-fetching and caching strategies, network optimization, and application-specific compression.
fClient requires that objects be already in cache and needs to be connected in order to receive invalidations.
gBoth the structure of objects and their methods must be defined in Theta, a Thor-specific object-oriented language. Applications

that make use of objects may be developed using stubs for C++, Smalltalk or Java.
hThor provides its own virtual machine and its adaptation to JVM or .Net CLR would require modifying these virtual machines.
iAdapts the size of fetch-groups containing objects to be sent to the clients, based on cache hits of segments sent previously,

without parameterizing neither for memory nor bandwidth usage.
jApplications are coded using extended PL-SQL.
kJava middleware on top of commercial RDBMS.
lMust be explicitly specified using SQL constrains.

mClients replicate subsets of tables, i.e., possibly only a fraction of rows and columns or each table.
nDeveloper must specify relevant operations to the scheduler and log them.
oRequires connectivity to enforce pessimist consistency, e.g., single-writer-multiple-readers, in cached clusters.
pRequires developer to define static object clusters, and disallows references between objects internal to different clusters.
qRelies on Java RMI DGC that may drop referenced objects after lease expiration.
rAllows dynamic deployment of clusters.

Table II.1.3: Analysis of related data-sharing research projects w.r.t. the goals and challenges
described in Chapter I.1.

II.1.2.2 Industry Standards and Commercial Products

In this section, we present a brief overview of object-oriented and component-based data-
sharing platforms, commercially available. They are mainly focused on Java and .Net technolo-
gies.

II.1.2.2.1 Java

Support for data-sharing in early editions of the Java (Lindholm and Yellin 1996) platform
was limited to object serialization, data-base connectivity (JDBC), and Java RMI (Wollrath et al.

II.1.2. CASE-STUDY OF RELEVANT SYSTEMS 49

1996). Serialization and JDBC allow applications to store and retrieve object graphs from per-
sistent storage (files and relational databases, respectively) and over the network, while RMI
allows distributed object invocation.

The Java Data Object specification (Russel 2002; Russel 2003) is a more evolved approach
to data persistence. It is the corollary of earlier research and commercial projects (see Sec-
tion II.1.2.2.3) in the fields of object-relational mapping, and object-oriented databases. It defines
an API, containing a number of interfaces and classes, that application programmers should
follow when defining classes whose instances are to be stored persistently. Furthermore, it de-
scribes how compliant implementations of the specification should rule the interaction between
persistent storages and the Java runtime. This shields application programmers from dealing
with the details of code related to persistence and the database.

In its initial version, JDO offered no recommendation on how to optimize bandwidth and
memory usage, when client applications load objects from remote persistent stores. In its current
version (Russel 2005; Russel 2006), JDO already includes support for partial loading of object
graphs from the database, delayed (or lazy) object activation, and the definition of groups of
objects that should be loaded collectively.

The Enterprise Edition of the Java platform (Shannon 2001; Shannon 2003; Shannon 2006) is
a suite of specifications and API to support the execution of Java-based software in the context
of large-scale enterprise systems. Its main emphasis are on scalability, performance, and inter-
operability.

A key element of Java EE is the Enterprise Java Beans (EJB) specification (Malena and Hap-
ner 1999; EJB 3.0 Expert Group 2006) that describes an architecture for the execution of server-
side components on application servers. EJB provides a set of services to running components
that include persistence, transaction management, messaging, and load-balancing. The applica-
tion server is also in charge of managing security.

Programmers define persistence and transactional properties, associated with components,
declaratively by inserting annotations in the code. Persistence in Java EE has been ini-
tially (Malena and Hapner 1999) closely related to relational databases. The current version (EJB
3.0 Expert Group 2006) shows signs of convergence with the approach portrayed in JDO, moving
from container-managed persistence to transparent entity-based persistence.

II.1.2.2.2 Microsoft .Net

Data-sharing in the .Net Framework (Platt 2001) has been developed along parallel lines
with Java. Naturally, since it has appeared roughly five years later, it already included broader
support for data-sharing, when compared with the Java initial inception. Its Base Class Library
(BCL) includes support for distributed object invocation (Remoting Services), web-services, and
access to relational and XML databases (ADO.NET).

Microsoft .Net ObjectSpaces (Esposito 2004) and LINQ.Net6 (Box and Hejlsberg 2006) are
two approaches aiming object-oriented persistence. ObjectSpaces is focused on providing trans-

6.Net Language Integrated Query.

50 CHAPTER II.1. RELATED WORK ON DATA SHARING

parent persistence of object graphs, using a similar approach to JDO. LINQ.Net provides a set
of query operators to be applied on data collections. It extends C# 3.0 with SQL-like constructs,
extended to handle objects (e.g., transversal, filtering, and projection), seamlessly integrated in
the syntax of the language, thus subject to metadata annotation (attributes), compile-time syn-
tax checking, and static typing. These were previously unavailable when using SQL queries
embedded in C# character strings.

The .Net approach to large-scale enterprise computing, COM+ (Löwy 2001; McKeown 2003),
also adopts component-based programming. It offers a suite of services, exposed to C# via the
System.EnterpriseServices name-space, such as resource pooling and application recy-
cling, transactional support (relying on MTS),7 load-balancing, messaging (relying on MSMQ),8

event logging, and security.

COM+ services are also available to Windows applications based on native code (e.g., com-
piled from C++). Both ADO.Net and COM+ are based on earlier technologies, such as ADO (Mi-
crosoft 1996) and COM, DCOM (Sessions 1998) respectively, that actually pre-date the release of
the .Net Framework.

SQLServer 2005 (Nunn 2005), and SQLServer 2005 Mobile that runs on mobile devices, have
support for database replication and reconciliation using resolvers. Resolvers may be SQL-based
stored procedures or COM components implementing a specific interface: ICustomResolver .

II.1.2.2.3 Other Object-oriented approaches

Gemstone (Butterwoth et al. 1991) is an early and influential commercial object-oriented
database that supports C, C++ and Smalltalk. It initially included many aspects that are still
present in current products. It performs caching both at the object and page level, with shadow-
copying of modified pages.

It defines a query and data-manipulation language, and provides transactional support, op-
timistic concurrency control, and a visual schema-designer. Management of the persistent stor-
age is performed by a stop-the-world mark-and-sweep garbage collector. Currently, GemStone
Enterprise is an object-oriented distributed cache available for Java and Smalltalk integrated
with the GemStone/S application server.

O2 (Lecluse et al. 1988; Deux et al. 1990; Deux et al. 1991) is another interesting early com-
mercial effort to object databases. It has many of the features provided by GemStone. It also pro-
vides C and C++ mappings and its own query language. It includes a high-performance garbage
collector (see Section III.1.3.8). Both O2 and Gemstone ensure persistence-by-reachability, i.e. all
objects directly or indirectly reachable from a persistent root, and only those, are considered
persistent, and thus preserved at the database.

OJB (Apache Foundation 2002), Hibernate (Iverson 2004), and its .Net port, NHibernate,
are successful and widely deployed solutions to object persistence, based on object-relational
mapping. Ozone (Braeutigam et al. 2002) and DB4O (db4objects, Inc. ; Paterson et al. 2006) are

7Microsoft Transaction Server.
8Microsoft Message Queueing.

II.1.2. CASE-STUDY OF RELEVANT SYSTEMS 51

two object-oriented databases used in many open-source and even commercial efforts. DB4O is
very popular for small and medium-size projects because it is fully based on reflection and very
easily set-up. It provides an in-memory object database, as well as object caching and replication.

Although successful to a certain extent, these systems have some shortcomings. Ozone does
not support object replication nor caching at client applications. Persistent objects never leave
the object server and are always invoked, by applications, via proxies. Ozone has a specification
for integration with a persistence-aware garbage collection. However, the documentation does
not state any actual implementation.

OJB, Hibernate and DB4O do not provide full persistence-by-reachability but allow some
form of cascade-saving in which objects referenced by an object being persisted, possibly with a
optional depth, are also persisted. However, objects not directly referenced or beyond a specified
depth, will be neither persisted nor updated.

They also require explicit object deletion and do not enforce referential integrity, but in the
simplest cases. Referenced objects may be prematurely deleted from persistence storage. Con-
versely, objects inaccessible from application roots may be preserved if not otherwise explicitly
deleted. In practice, the programmer though in a GC-enabled environment, must perform mem-
ory management manually, w.r.t. persistence.

Summary of Chapter: In this chapter, we presented the related work concerning support for
data-sharing. We addressed existing research projects and commercial technologies in the con-
text of a proposed taxonomy. This taxonomy comprises various system-design aspects: i) sys-
tem architecture, ii) programming model, iii) data-sharing model, iv) propagation of modifica-
tions, and v) portability/implementation issues. For each system-design aspect, we described its
scope, and the different alternatives that can be adopted to implement it. As each of alternative
was described, we made reference to relevant systems that employ it.

Additionally, we provided a study of a number of relevant research and industry systems
characterizing them in the context of the proposed taxonomy. We focused on a number of early
influential, and recent research projects, such as Bayou, Rover, Thor, IceCube, Mobisnap, and
Javanaise. We highlighted their main features and characterized them against the taxonomy
proposed earlier in the chapter.

Finally, we analyzed these projects in the context of the challenges and goals directing the
work of this dissertation: i) usage of local resources, ii) support for disconnected work, iii) trans-
parent support for object-oriented languages such as Java and C#, iv) platform portability, v)
enforcement of referential integrity, and vi) adaptability. For each project and challenge/goal,
when applicable, we provided details indicating full, limited or no support. We concluded
with an overview of commercially available data-sharing platforms, both object-oriented and
component-based, focused mainly on Java and .Net technologies.

52 CHAPTER II.1. RELATED WORK ON DATA SHARING

II2Architecture

In order to applications to function, the middleware must first make available the replicated
objects they need. Desirably, the replication mechanism provided by the middleware should
be efficient (concerning computing, memory and network resources), while transparent and
flexible to programmers.

This chapter describes object replication in OBIWAN. It is organized as follows. First, we ad-
dress the limitations of replicating full object graphs and present the advantages of incremental
replication. Then, we describe how OBIWAN handles object-faults transparently, presenting the
interfaces defined by its middleware core, and the OBIWAN API. Following, we provide a pro-
totypical example of incremental replication, and describe object replication with variable depth
and object clustering. We conclude with some details regarding how a number of other issues
(e.g., communication, serialization, class inheritance) are addressed in OBIWAN, and explaining
the various replication modes in OBIWAN.

...the case against full replication...

W.r.t efficiency, it is clearly inappropriate to offer a replication mechanism that simply down-
loads object repositories to clients (i.e., processes replicating objects). This is the case if object
replication is performed simply by serializing all the object graph in the originating computer
and send it to the destination computer. Such an approach is available when using Java (Arnold
and Gosling 1996) or .Net (Platt 2001) platforms.

This approach presents some important drawbacks that we address next. It wastes memory
and may even prevent application execution on clients running on mobile devices with memory
restrictions. Large object graphs, if completely replicated, will exceed memory capacity in these
devices. It also imposes high latency on applications. Replication of large object graphs freezes
clients with slower network links. To address this, applications, or even users, must explicitly
replicate an object graph in advance, which limits application flexibility. Otherwise, initial delay
on application start is very high. This also limits application adaptability, and imposes reduced
concurrency since applications are always believed to use complete graphs (data repositories)
even if they do not access them fully. Finally, useless replication, besides wasting memory and
bandwidth, it wastes user’s time.

Object replication differs from replication with other programming models (e.g., files). The
difference results from the fact that, with the object model, applications access data solely by nav-
igating on the object graph, i.e., they do not access objects arbitrarily but following references.
Such navigation does not occur with other programming models (e.g., when applications access

54 CHAPTER II.2. ARCHITECTURE

plain unstructured files). Therefore, deciding how, and which objects to replicate, is strongly
dependent on the navigation performed by the application. This aspect should be taken into ac-
count and, if possible, leveraged. Thus, the mobile middleware must handle incremental object
replication, i.e. the partial replication of object graphs.

...the case for incremental replication...

The incremental replication of object graphs has clear advantages w.r.t. the replication of the
whole reachability graph in one step. It uses memory efficiently since only the objects actually
needed are replicated. This is specially tailored to mobile devices with reduced memory.

It increases network efficiency by imposing lower latency (replicating fewer objects) upon
applications. Applications can invoke immediately new object replicas without waiting for the
whole graph to be available. Some object replicas may be pre-fetched, with variable depth that
can be optimized to suit the environment. It also has lower bandwidth costs, since replication
of complete graphs happens rarely. Incremental replication also allows increased concurrency
since different clients (possibly running different applications) may access different parts of ob-
ject graph.

Therefore, the situations in which an application does not need to invoke every object of a
graph, or the computer where the application is running has limited memory and/or network
bandwidth available, are those in which incremental replication is most useful.

However, there are situations in which it may be better to replicate the whole graph; for
example, if all objects are really required for the application to work, if there is enough mem-
ory, and the network connection will not be available in the future, it is better to replicate the
transitive closure of the graph. The middleware must allow the application to easily make this
decision at run-time, i.e. between incremental or transitive closure replication mode.

Incremental replication should be transparent to programmers. This means that they should
be allowed to write code mostly free of replication concerns, besides some support API that can
bootstrap the replication process. Therefore, programmers should not be forced to programmat-
ically divide the object graph in several parts to be replicated independently. Furthermore, it
should impose minimal changes to their API, to ease porting of legacy applications. In sum-
mary, object replication should not impose changes neither to the VM, nor to application code
written by developers.

Thus, when an application running on a client (e.g., a mobile device) navigates on an object
graph, its execution proceeds normally, navigating through the graph, as long as all objects are
local. However, when it transverses an object reference, if the target object is not yet locally
replicated, this generates an object-fault that must be served by the middleware.

II.2.1 Transparent Object-Fault Handling

In order to be transparent and not to impose changes to a particular VM, object-fault han-
dling is performed by the middleware with the cooperation of extended application code (i.e.,

II.2.1. TRANSPARENT OBJECT-FAULT HANDLING 55

code included in application classes). Nonetheless, code to be inserted in application classes can
be automatically generated to free the programmer from that task, implementing a number of
interfaces defined in OBIWAN.

Broadly, object-fault handling must be able to perform three tasks:

• Detect object-fault, i.e., that an object is being invoked while it is not yet replicated.

• Resolve the object-fault. This implies obtaining a replica of the object from another process.

• Replace the proxy (as far as the calling object is concerned), with the newly obtained object
replica, and resume execution. This implies invoking the intended method on the object
replica.

The ideal place to detect object-faults is in proxies. Thus, proxies can serve multiple pur-
poses: i) they prevent the serialization of the whole graph, ii) detect object fault when they are
invoked for the first time, iii) instruct object replication and trigger proxy replacement (so that
future invocations are direct invocation on objects and not mediated by proxies).

The creation of object replicas is delegated on the object classes themselves (since only they
have access to private fields). Use of reflection on this matter limits the applicability of incre-
mental replication (some environments may not provide reflection) and hinders performance
(slows down the replication process and application execution) and imposes heavier CPU load
on processes.

Proxy replacement is performed by reference patching. References to the proxy are replaced
by references to the newly obtained object replica. This is instructed by the proxy invoking
methods (up-calls) provided by the referencing objects.

Figure II.2.1 depicts the OBIWAN architecture (Veiga and Ferreira 2002a; Ferreira et al. 2003),
portraying the same scenario presented in Chapter I.2, but with increased detail on the support
for incremental replication.

II.2.1.1 OBIWAN Interfaces

Incremental object replication is performed in OBIWAN by middleware code. It imple-
ments (or is invoked by) a number of core interfaces: IProvider , IDemandee , IDemander ,
and IProviderRemote . Such interfaces are defined by OBIWAN and implemented by prox-
ies and objects.1 Interface IProvider is implemented by application objects and handles the
creation and update of object replicas. Interface IDemandee is implemented by proxy-out ob-
jects and encapsulates the handling of object-faults. Interface IDemander is implemented by
application objects and allows the replacement of references to proxies, with references to ob-
ject replicas. Interface IProviderRemote is implemented by proxy-in objects and allows the
remote invocation of methods of interface IProvider .

1By use of automatic code generation.

56 CHAPTER II.2. ARCHITECTURE

local root (stack or static variables)

A
'

BproxyOut

IDemandee

IB

IA

IProvider

IDemander

X

Process P1

IB

IProvider

IDemander
 B

C

AproxyIn

BproxyIn

A

IA

IProvider

IDemander

Process P2

IC

IProvider

IDemander

IProviderRemote

IA

IProviderRemote

IB

y

local root (stack or static variables)

A P1 0

outPropList
inPropList

A P2 0

inPropList

A P2 0

OBIWAN Mobile Middleware

GC stub
 GC scion
 object
proxy
inPropList/outPropList

propObj
 propProc
 sentUmess/recUmess
propObj
 propProc
 sentUmess/recUmess

Virtual Machine / Operating System

interface

implemented

by programmer

interface

implemented

by OBIWAN

Figure II.2.1: Interfaces supporting incremental object replication in OBIWAN. Light gray inter-
faces in application objects are implemented by OBIWAN. Light gray objects and data structures
refer to OBIWAN middleware.

For simplicity, and where there is no ambiguity, when we say that an object implements a
certain interface, we obviously mean that the object is an instantiation of a class that implements
that interface. These are core interfaces in the sense that programmers do not invoke them
directly. In fact, they are defined to provide transparency in object replication. Programmers
only need to invoke methods of the OBIWAN API (see Section II.2.2).

II.2.1.1.1 Interface IProvider

Interface IProvider (v. Table II.2.1) supports the creation and update of replicas.

Method get results in the creation of a replica, with internal references to other objects
(handled by OBIWAN) replaced by references to proxies-out.

II.2.1. TRANSPARENT OBJECT-FAULT HANDLING 57

Object get(int mode, int depth);
void put(Object obj, int mode, int depth);

Table II.2.1: Interface IProvider .

Method put is invoked when a replica is updated with the content of another replica (e.g.,
when a master replica receives updates from a different process).

Arguments mode allows choosing different replication strategies (e.g., incremental replica-
tion, object clustering, replica refresh), while arguments depth allows to specify other replica-
tion depths (e.g., more than on object at a time). Both will be explained in Sections II.2.4, II.2.5,
and II.2.6.9.

II.2.1.1.2 Interface IDemandee

Object demand(void);
void setProvider(IProvider prov);
void setDemander(IDemander dem);

Table II.2.2: Interface IDemandee .

Interface IDemandee (v. Table II.2.2) is implemented by proxy-out objects.

Method demand encapsulates the handling of the object-fault that occurs when the proxy
is first invoked as if it was an object replica. It is responsible for actually obtaining a replica of
the object it stands for. This may actually imply several actions (e.g., contacting objects in other
processes, invoking middleware code, and/or triggering a specific event).

Method setProvider is used to associate a proxy-out object with its corresponding proxy-
in object.

Method setDemander is used to associate a proxy-out object with the object replica that
references it. Later, when the proxy is resolved, it will be notified that a replica is available.

Besides implementing interface IDemandee , proxies must implement the same interfaces
implemented by the class they serve as proxy for. These methods, in turn, invoke method
demand.

II.2.1.1.3 Interface IDemander

Interface IDemander (v. Table II.2.3) allows the update of references inside replicated ob-
jects. These methods are invoked when proxies are resolved.

Method setProvider is an ”up-call” used to create (or change) the association (e.g., refer-
ence, objectID) of an object replica with another replica it may invoke either to refresh its content
from it, or to update it with its own.

58 CHAPTER II.2. ARCHITECTURE

void setProvider(IProvider prov);
IProvider getProvider(void);
void updateMember(Object replica, Object member);

Table II.2.3: Interface IDemander .

Method updateMember is an ”up-call” used to replace references to a proxy-out object,
with references to the newly created object replica. This method is invoked by proxy-out objects
when an object-fault is resolved. It receives a reference to the proxy and to the new replica.
It scans all fields for those that reference the proxy, and updates them so that they reference
the new replica instead. After this, the newly created object replica is accessed without any
indirection.

Note that there is no collision among methods setProvider of interfaces IDemandee and
IDemander , since no object implements both these interfaces.

II.2.1.1.4 Interface IProviderRemote

Object get(int mode, int depth);
void put(Object obj, int mode, int depth);

Table II.2.4: Interface IProviderRemote .

Interface IProviderRemote inherits from IProvider so that its methods can be invoked re-
motely, i.e., from a different process. It hides from interface IProvider any details regarding
distribution.

II.2.1.1.5 Application-code Interfaces

Interfaces IA, IB, and IC are the public interfaces of objects A, B and C, respectively, de-
signed by the programmer. They define the methods that can be invoked on these objects. 2

These interfaces must be also implemented by proxy-out and proxy-in objects for classes A,B,
and C.

II.2.2 OBIWAN Application Programming Interface for Replication

As already mentioned, application programmers never need to invoke OBIWAN interfaces
explicitly. The OBIWAN library provides a number of overloaded class (static) methods that

2The same reasoning applies to objects X and Y; but given that they are not involved in the replication scenario,
we do not consider them.

II.2.3. PROTOTYPICAL EXAMPLE OF INCREMENTAL REPLICATION 59

Object GetObject(string objName, int mode, int depth);
void PutObject(string objName, Object obj, int mode, int depth);

Table II.2.5: OBIWAN Application Programming Interface for Replication.

allow application programmers to replicate and update object graphs, based on i) object ad-
dresses (e.g., URLs, that are presented in Table II.2.5), ii) objects already replicated, iii) proxies,
or iv) lookup on a name service.

These methods will, in turn, also invoke corresponding methods get and put on corre-
sponding proxy-in objects. There are other overloaded methods to account for most common
cases (e.g., to allow omitting certain parameters).

II.2.3 Prototypical Example of Incremental Replication

Root
 Root

IARemote

A

IProviderRemote

IA

IA

IProvider

IDemander

B

C

IB

IProvider

IDemander

IC

IProvider

IDemander

AProxyIn

Process P1
 Process P2

inPropList
inPropList
 outPropList

Figure II.2.2: (a) Incremental Replication: Initial situation .

II.2.3.1 Initial Situation

Taking into account the architecture presented in Figure II.2.1, we now describe a prototyp-
ical example that illustrates the incremental replication of an object graph from process P2 to
process P1, the occurring object-faults, and their corresponding resolution.

The initial situation (a), portrayed in Figure II.2.2 is the following: i) P2 holds a graph of
objects A, B and C; ii) object A is registered in a name server, which returns a proxy-in to it
(AProxyIn) that can be invoked remotely, and iii) P1 holds a remote reference to object AProxyIn,
that was obtained from a name server, since object A is the root of an object graph.

60 CHAPTER II.2. ARCHITECTURE

Objects A, B and C in P2 were created by the programmer or loaded from persistent store.
Their replicas (A’, and later B’, and C’) are created upon request originated in P1 (either explicitly
by the programmer or triggered by an object-fault). All other objects, i.e. proxies-in and proxies-
out are part of the OBIWAN platform and are transparent to the programmer, except AProxyIn.

Figures II.2.2 and following show, for each process, the content of data structures regarding
replication (i.e., InPropList and OutPropList). For each object, the interfaces implemented
by it are also shown.

This example starts with the application running in P1 requesting the creation of replica A’.
This may be performed resorting to method GetObject with the remote reference (to AProx-
yIn). This will in turn invoke AProxyIn.get remotely. Initially, object replication must always
start with this bootstrap phase, when there are no previously replicated objects.

II.2.3.2 Incremental Replication of Object A

Root
 Root

IARemote

A

B
A'

IProviderRemote

IA

IA

IProvider

IDemander

C

BproxyOut

IA

IProvider

IDemander

IDemandee

IB
 IProviderRemote

IB

IB

IProvider

IDemander

IC

IProvider

IDemander

AProxyIn

BProxyIn

Process P1
 Process P2

inPropList

A P2 0

inPropList

A P2 0
 A P1 0

outPropList

Figure II.2.3: (b) Incremental Replication of object A. Objects created in this step are shaded.

Upon invocation of AproxyIn.get in P2, this method will result in the execution of the
following steps:

1. invoke method A.get

2. method A.get starts by creating A’ in P2, and copying all data of primitive fields from A
into A’;

For each reference A holds (only to B in this case), perform the following steps:

3. create the corresponding ProxyIn objects (only BProxyIn in this case) in P2; in the construc-
tor of BProxyIn, set an internal reference pointing to B;

II.2.3. PROTOTYPICAL EXAMPLE OF INCREMENTAL REPLICATION 61

4. create a ProxyOut object for each ProxyIn created in the previous step (only BProxyOut in
this case) in P2;

5. set the internal reference of A’ (of type IB) so that it points to BProxyOut;

6. invoke BProxyOut.setProvider(BProxyIn) so that BProxyOut points to BProxyIn;

7. invoke BProxyOut.setDemander(A’) so that BProxyOut also points to A’;

After every reference in A has been handled as described in the previous steps:

8. create (since it does not exist yet) an entry for A in the OutPropList of process P2. This
entry accounts for the fact that object A is being replicated to process P1.

9. method A.get returns the new objet replica A’.

10. method AProxyIn.get terminates simply by also returning A’.

11. as a result, A’ and BProxyOut are automatically serialized by the underlying virtual ma-
chine and sent to P1.

12. when replica A’ is instantiated in P1, an entry for A is created (since it does not exist yet)
in the InPropList of process P1. This entry accounts for the fact that object A has been
replicated from process P2.

This results in situation (b) in Figure II.2.3 where the just created objects are shaded. Proxy-in
objects never leave the process where they are created; they are not serialized. This prevents the
whole graph from being replicated to process P1. Thus, proxy-out objects act as the frontier of
the graph already replicated.

II.2.3.3 Object-Fault Detection and Incremental Replication of Object B

Later, the code in A’ may invoke any method, which is part of the interface IB (exported
by B), using its internal reference. For simplicity, we will call this method m. As a result,
it will actually invoke method (e.g., BProxyOut.m) on BProxyOut (that A’ sees as being B’).
For transparency, this requires that the system supports an “object-fault” mechanism. All the
methods of interface IB in BProxyOut, follow a similar behavior: they i) invoke method BProx-
yOut.demande to handle the object-fault, ii) then invoke the intended method on the object
replica just obtained (e.g., B’.m), and iii) finally returning the result to the calling object (that will
not be aware that B’ did not exist yet).

The detailed steps for handling the object-fault regarding object B, are the following (object
invocations and their outcome, such as creation of objects, references, and updates to structures
regarding replication, are presented with step number, in Figure II.2.4):

1. method BProxyOut.m starts by invoking its demand method BProxyOut.demand

62 CHAPTER II.2. ARCHITECTURE

Root
 Root

IARemote

A

B
A'

IProviderRemote

IA

IA

IProvider

IDemander

C

IA

IProvider

IDemander

IProviderRemote

IB

IB

IProvider

IDemander

IC

IProvider

IDemander

AProxyIn

BProxyIn

Process P1
 Process P2

B'

IB

IProvider

IDemander

CproxyOut

IDemandee

IC

IProviderRemote

IC
 CProxyIn

BproxyOut

IDemandee

IB

A P1 0

outPropList

B P1 0

inPropList

A P2 0

inPropList

B P2 0

(1)

(2)

(3)

(5)

(6)

(7)

(8)

(3)
(4)

(5)

(6)

(3)

(3)
 (3)

Figure II.2.4: (c) Incremental replication of Object B showing intermediate step of replacement
of BProxyOut. Objects created on this step are shaded.

Since object B is not yet replicated (there is no entry regarding B in the InPropList of P1):

2. BProxyOut invokes method BProxyIn.get (BProxyIn is BProxyOut’s provider), to obtain a
replica of object B, that will proceed in a similar way as explained previously for object A.

3. BProxyIn.get invokes B.get that will proceed in a similar way as described prior for A.get:
creates B’, CProxyOut, CProxyIn and sets the references between them; once this method
terminates, as illustrated in Figure II.2.4, B’, BProxyOut and CProxyOut are all in P1,
CProxyIn is in P2, and BProxyOut points to B’; note that A’ and BProxyOut still point
to each other; an entry for B is created in the OutPropList of process P2, accounting for the
fact that B is being replicated to process P1.

4. when replica B’ is instantiated in P1, an entry regarding B is created (since it does not exist
yet) in the InPropList of process P1. This entry accounts for the fact that object B has been
replicated from process P2.

II.2.3. PROTOTYPICAL EXAMPLE OF INCREMENTAL REPLICATION 63

Root
 Root

IARemote

A

B
A'

IProviderRemote

IA

IA

IProvider

IDemander

C

IA

IProvider

IDemander

IProviderRemote

IB

IB

IProvider

IDemander

IC

IProvider

IDemander

AProxyIn

BProxyIn

Process P1
 Process P2

B'

IB

IProvider

IDemander

CproxyOut

IDemandee

IC

IProviderRemote

IC
 CProxyIn

A P1 0

outPropList

B P1 0

inPropList

A P2 0

inPropList

A P2 0

B P2 0

Figure II.2.5: (d) Final situation with object B replicated and BProxyOut discarded. Objects
created on this step are shaded.

II.2.3.4 Replacement of BProxyOut

Once object B is replicated from P2 into P1, the application can resume execution. This
requires that B’ is invoked with the same method (recall method m), as originally intended, that
was invoked on BProxyOut. Furthermore, since object replica B’ is already available, future
method invocations from A’ should not have to be mediated by BProxyOut, that should be
discarded. Thus, A’ must now reference B’ instead of BProxyOut. Replacing BProxyOut with B’,
and resuming execution is performed by the following steps:

5. BProxyOut invokes B’.setProvider(this.provider) so that B’ also points to BProxyIn; this
is needed because the application can decide to update the master replica B, by invok-
ing method B’.put that in turn will invoke BProxyIn.put, or to refresh replica B’ (method
BProxyIn.get);

6. BProxyOut invokes A’.updateMember(B’,this) so that A’ replaces its reference to BProxy-
Out with a reference to B’;

7. finally, BProxyOut invokes the same method on B’ that was invoked initially by A’ (that
triggered this whole process) and returns accordingly to the application code;

8. from this moment on, BProxyOut is no longer reachable in P1 and will be reclaimed by the
garbage collector of the underlying virtual machine.

64 CHAPTER II.2. ARCHITECTURE

Figure II.2.5 illustrates situation (d) after BProxyOut has been reclaimed by the garbage
collector of the underlying virtual machine. It’s important to note that, after situation (d), further
invocations from A’ on B’ will be normal direct invocations with no indirection at all. Later, when
B’ invokes a method on CProxyOut (standing in for C’ that is not yet replicated in P1) an object
fault occurs and will be solved with a set of steps similar to those previously described.

II.2.4 Incremental Replication with Variable Depth

The replication mechanism just described is very flexible in the sense that allows each object
to be individually replicated. However, this has a cost associated with the latency imposed by
having to send a replication request over the network for each object being replicated.

This could be avoided since it is expected that other objects referenced by the one being
replicated will also be accessed in the near future. Therefore, it would be advantageous to repli-
cate part of the graph, i.e., those objects that are indirectly referenced (to a certain depth) from
the object whose fault is being handled. Thus, it should be possible to perform incremental
replication of more than one object at a time.

To address this, OBIWAN allows an application to replicate objects using variable replica-
tion depths larger than one (e.g., 25, 100). This is an intermediate solution between: i) having
the possibility of incrementally replicate each object, or ii) replicating the whole graph. This is
achieved by invoking method get of interface IProvider recursively, until the specified depth is
fulfilled. This way, an object creates a replica of itself and instructs all objects referenced by it, to
do the same. The result is a partial copy of the object graph, up to a certain depth. Objects at the
specified depth are not replicated. In their place, a proxy-out object is created.

Obviously, if there are not enough objects to satisfy a certain replication depth, incremental
replication will behave as replication of the complete transitive closure, i.e., it will replicate all
reachable objects.

The actual value used for depth parameter may be explicitly provided by the programmer
or delegated to OBIWAN. OBIWAN decision is ruled by the policies loaded (possibly taking
the execution context into account) in the system and is addressed in detail in Part IV. Thus,
incremental replication in OBIWAN is highly dynamic.

When replicating objects with depth larger than one, some replication steps can be omitted.
Without loss of generality, in the previous example, the creation of BProxyOut would not be
needed (thus, it would not be performed). This is because replicas A’ and B’ would be created
in the same replication request and transferred (together with CProxyOut) to process P1. This is
because ProxyOut objects are only created when the replication depth reaches zero.

W.r.t proxy-in objects, there must be created specific proxies for each of the objects being
replicated (e.g., AProxyIn, BProxyIn, CProxyIn in P2). The object replicas created and trans-
ferred to P1 also carry references (i.e, remote references) to these proxies-in. These references
allow direct individual access to remote objects A,B, and C from process P1 (e.g., for remote
invocation, content refresh, or direct update).

II.2.5. OBJECT CLUSTERING 65

Registration of replicas of intermediary objects in InPropList must be performed when these
objects are replicated into process P1. This may be performed in several ways that will be made
clear in Sections II.2.6.4 and II.3.3.4.

Incremental replication with variable depths reduces application latency and the number of
times it must access the network, while profiting from available bandwidth.

II.2.5 Object Clustering

In spite of the advantages provided by incremental replication, replicating objects with
depths larger than one still creates individual proxy-in objects for each of the objects being repli-
cated.

There is a cost associated with the creation of such individual proxies since extra objects are
being created. This may be unnecessary since an application might not need neither to access
these objects remotely, nor update them individually. To minimize this cost, OBIWAN allows
an application to replicate and regard a set of objects as a whole, i.e., a cluster. This is achieved
using a predefined value in argument mode of method get of interface IProvider .

A cluster is a set of objects that are part of a reachability graph, with a single pair of proxy-
out/proxy-in objects. For example, if an application holds a list of 1000 objects, it is possible
to replicate a part of the list so that only 100 objects are replicated and a single pair of proxy-
in/proxy-out is effectively created and transferred between processes. This makes replication
faster but no longer allows neither refresh, nor update of individual replicated objects transpar-
ently. It also disables direct access to remote objects.

As with incremental replication without clustering (with variable replication depth), the
depth of each cluster of objects may be dynamically defined.

In summary, OBIWAN provides the following alternatives to object replication:

• object-fault handling, i.e., replicate objects as needed, one at-a-time.

• incremental replication with variable depths.

• incremental replication with object clustering, also with variable depths.

• full-graph replication, i.e., transitive-closure mode.

In Chapter II.4 we present the performance results for relevant scenarios.

II.2.6 Other Issues

There are a number of aspects that must be taken into account when implementing incre-
mental replication on top of a specific virtual machine. This section offers an overview of some
important architectural aspects and the issues they raise, leaving the details of how they are
addressed in the context of each implementation, to the next chapter. These aspects include:

66 CHAPTER II.2. ARCHITECTURE

1. communication between processes, w.r.t. the availability of a remote method invocation
mechanism.

2. serialization mechanism provided by the virtual machine, w.r.t. transference of object
replicas and proxies-out.

3. object identity, w.r.t. ensuring that application code sees only one (and always the same)
replica of each object, as it would happen in a non-replicated environment, where an object
is embodied by a single instance.

4. object instantiation, w.r.t. detecting when replicas are received in a process, in order to
update data structures regarding replication.

5. public class fields, w.r.t. providing transparency of proxy objects.

6. supporting inheritance, w.r.t. performing incremental replication of fields belonging to
classes in different levels of a class hierarchy.

7. existing libraries, w.r.t. handling objects of classes not extended by OBIWAN.

8. detection of object modification, w.r.t. providing information regarding modified objects
to other modules implementing additional functionality (e.g., transactions).

9. replication modes, w.r.t. how to instruct methods of interface IProvider to perform in
different contexts (e.g., incremental replication vs object clustering, execution in the client
vs server).

II.2.6.1 Communication Between Processes

Invoking IProviderRemote objects located in a different process must ultimately rely on
some form of distributed communication among processes.

If this service is provided by the underlying virtual machine, in the form a remote method
invocation mechanism (i.e., invoking individual objects remotely), it may be used directly. If
just a remote procedure call mechanism is available (i.e., it is not possible to invoke individual
objects), it must be adapted. This will be addressed in the next chapter. If none is available, an
alternative mechanism must be used instead.

Thus, different implementations of OBIWAN may implement access to IProviderRemote

objects (proxies-in) differently. Nonetheless, the fundamental architecture decisions remain un-
changed.

II.2.6.2 Serialization

We assume that, when some form of RPC or RMI mechanism is available, it is also accompa-
nied by a form of serialization (even if limited). This is needed in order to be able to transfer the
content of replicated objects, namely when more than one object is being replicated at-a-time.

II.2.6. OTHER ISSUES 67

Virtual machines for desktop computers provide full object serialization while virtual ma-
chines for mobile devices (e.g., Java Micro Edition and .Net Compact Framework) do not. In the
next chapter, we describe how OBIWAN can be implemented in both these scenarios.

II.2.6.3 Object Identity

Obviously, there must be a way to determine if two object replicas refer to the same object.
Thus, objects must have a globally unique ID given to them when they are involved in repli-
cation for the first time (either being replicated, or proxies to them being created). This field
associates different replicas of the same object (e.g., when replicated objects in P1 are refreshed
with more recent content available at P2, or when objects in P2 are updated with the content of
replicas that were modified in P1). Furthermore, this global unique ID is helpful in determining
if different proxies stand in for the same object.

II.2.6.4 Object Instantiation

When objects are replicated from and to a process for the first time, it is necessary to register
this fact in the corresponding entries in the OutPropList and InPropList, respectively.

When object replicas are created, during execution of method get of interface IProvider,
it is possible to test if the object has already been replicated and, if not, create and insert the
corresponding entry in the OutPropList.

When object replicas arrive to (or are received in) a process, it is necessary to verify if the ob-
ject has been replicated before. If it has not, an entry referring to it is created in the InPropList of
the process. This can be performed when objects are instantiated during de-serialization, if this
mechanism is customizable. If not, it must be performed explicitly when objects are instantiated.

The different ways to achieve this with automatically generated code are discussed in the
next Chapter.

II.2.6.5 Public Class Fields

The use of proxies-out raises an architectural issue w.r.t. class design. Since both proxies-
out and objects share an interface but not an implementation (e.g., B’ and the corresponding
BProxyOut share IB but have different implementations) objects can only be manipulated by
means of method invocation (i.e. no direct access to internal data). Thus, classes should not
have public fields that could be accessed by other objects, since these will not be available in
proxies-out that, by definition, do not carry object data.

In the case of Figures II.2.1 to II.2.5, this means that the code written by the programmer
in A’ can not access directly internal data of B’. This is due to the fact that B’ may not exist yet;
instead, there is BProxyOut in P1 that implements IB but in such a way that it detects the fault
of B’; then, BProxyOut will create B’ so that the invocation can proceed normally.

68 CHAPTER II.2. ARCHITECTURE

We find this not to be an important restriction. As a matter of fact, this is a sensible way of
manipulating objects, only through methods, thus ensuring encapsulation. Note that this aspect
is also present, for example, in Microsoft ActiveX components (Microsoft 1996) and Java Beans
(Englander and Loukides 1997).

Additionally, this can be circumvented in languages that support property fields in their
syntax (e.g., C# or VB.Net). These languages allow the definition of public methods (set and get)
that are used by the programmer with the same syntax as public object fields.

II.2.6.6 Supporting Inheritance

OBIWAN architecture for incremental object replication does not force programmers to de-
rive their classes from a specific top-level class that replaces the base object class of the virtual
machine. Programmers are free to use inheritance while developing/writing classes, since OBI-
WAN solely mandates that the classes implement a set of interfaces.

Furthermore, OBIWAN architecture allows the programmers to define class hierarchies so
that objects are incrementally replicated, where the private fields of superclasses are also incre-
mentally replicated (not just the fields of the subclass). OBIWAN ensures that only one replica
is actually created for each object, regardless of the number of superclasses it inherits from.
OBIWAN also ensures proxy replacement at superclasses. This support should not, and needs
not, rely on runtime reflective capabilities to circumvent field protection. OBIWAN code in
subclasses does not use reflection to access private fields of superclasses (more details in Sec-
tion II.3.3.6).

II.2.6.7 Existing Libraries

To be supported by OBIWAN, w.r.t. incremental replication, classes must have been previ-
ously extended as mentioned in Chapter I.2. Thus, classes belonging to (unextended) existing
libraries are regarded, by default, simply as private data of other objects recognized by OBI-
WAN.

II.2.6.8 Detection of Object Modification

OBIWAN supports the update of partial or full graphs of objects. However, to some ap-
plications or higher level components, it may be useful to flag modified objects individually.
Programmers may explicit inform OBIWAN that an object has been modified, or provide hints
to OBIWAN of which methods may potentially modify object state.

This information can be used by transactional support in order to send to another process
only the objects that were actually modified. These can be copied (with their references treated,
i.e., replaced by proxies if they refer to objects not included in the set of object being updated),
inserted in a single structure (e.g., an array) and sent to the process where the updates should
be committed.

II.2.6. OTHER ISSUES 69

II.2.6.9 Replication Modes

OBIWAN defines a number of flag constants to characterize replication modes (recall the
first argument of methods of interface IProvider and its extension IProviderRemote). Some
of them may be also used by programmers when invoking OBIWAN API methods GetObject

and PutObject . Several modes (if not incompatible) can be combined within the same replica-
tion operation. The supported modes are:

• TRANSITIVE CLOSURE: This replication mode instructs OBIWAN to replicate complete
object graphs, i.e., not incrementally.

• INCREMENTALREPLICATION: This is the default replication mode in OBIWAN. Incre-
mental object replication uses the depth specified explicitly by the programmer or pro-
vided by an OBIWAN property. In incremental replication mode, objects are only repli-
cated once for each pair of processes. If during the replication of a partial graph, OBIWAN
reaches an object that was already replicated, it simply returns a proxy for it, since it is
already available at the client process.

• CLUSTERING: In this replication mode, OBIWAN behaves as in INCREMEN-
TAL REPLICATION mode, with the exception that only one proxy-in object is created for
each cluster that is replicated. When a cluster is replicated, the objects beyond the speci-
fied depth are replaced by proxies-out. These proxies-out reference proxy-in counterparts
that serve as heads to other clusters. Cluster depth may also be explicitly defined or left to
OBIWAN to decide.

• CLIENT MODE: This replication mode informs methods of interface IProvider that they are
being invoked in the context of one process that triggered object replication (or is sending
updates).

• SERVERMODE: Complementary to CLIENT MODE, this replication mode informs meth-
ods of interface IProvider that they are being invoked in the context of the process that
is being requested to perform object replication or to receive updates. This and the pre-
vious mode also instruct OBIWAN which data structures to manipulate, w.r.t. regarding
replication (i.e., InPropList and OutPropLists).

• REFRESH: This replication mode instructs OBIWAN that the objects being replicated will
refresh (i.e., update the contents of) object replicas already available at the requesting pro-
cess. Therefore, the default behavior associated with INCREMENTAL REPLICATION and
CLUSTERING must be overridden w.r.t. avoiding the replication of the same object twice
between the same pair of processes. To achieve this, the object replicas are created in
the process receiving the request (via execution of method get of interface IProvider) and,
once received at the requesting process, are used to update the content of the already exist-
ing objects (via execution of method put of interface IProvider). Thus, refreshing of object
replicas requires a sequence of two operations: first, that object replicas be created (method
get) in one process and, then, applied as updates (method put) in the other.

• UPDATE: Conversely to mode REFRESH, this mode instructs OBIWAN that the replicated
objects available at the requesting process will be transferred to another process in order

70 CHAPTER II.2. ARCHITECTURE

to update its replicas (e.g., a master replica). Updating replicas at another process requires
that object replicas are created (method get) in the requesting process and applied as up-
dates (method put) in the receiving process.

• RE USEOBJECT: This replication mode is used to support incremental object replication
in the presence of class inheritance. It instructs method get invoked in each superclass
not to create additional replicas of the object being replicated. It should reuse a replica
already created during the same replication operation, and update its fields concerning
the superclass.

Since programmers only invoke directly methods of the OBIWAN API (GetObject and
PutObject), and not methods of interface IProvider , API methods must sequence the ex-
ecution of methods get and put of interface IProvider , with the appropriate parameters,
according to each situation (i.e., replicating objects incrementally, refreshing object replicas, or
sending updates).

Table II.2.6 describes, for each situation, the sequence of invocations that takes place at the
client and server. The default replication mode is assumed to be INCREMENTALREPLICATION

and therefore can be omitted. Details and parameters regarding object clustering, replication
depth, and inheritance are omitted since they do not entail changes to the invocation sequences
presented. Proxy indirection is also omitted as it is implied when execution flow moves between
client and server.

Situation Client Server

Incremental GetObject(name,mode,depth);
Object get(SERVER MODE | mode,depth);

Replication (replicated subgraph is returned to client)
(returned objects are instantiated at client)

(execution continues)

Refreshing GetObject(...,REFRESH,...);
Object get(SERVER MODE|REFRESH,...);

Replicas (replicated subgraph is returned to client)
(returned objects are instantiated at client)
(refresh local replicas at client invoking...)
put(CLIENT MODE|REFRESH,...);

(execution continues)

Sending PutObject(...,UPDATE,...);
Updated get(CLIENT MODE|UPDATE,...);
Replicas (replicas of updated objects sent to server)

(updated replicas instantiated at server)
(update objects at the server invoking...)
put(SERVER MODE|UPDATE,...);

(execution continues)

Table II.2.6: OBIWAN API methods and corresponding sequences of invocations of IProvider
methods.

II.2.6. OTHER ISSUES 71

Summary of Chapter: In this chapter, we presented in detail the architecture of transparent
object-fault handling, and incremental object replication in OBIWAN. The architecture is based
on a set of OBIWAN core interfaces which enable these mechanisms: i) IProvider related to
the creation and update of object replicas, ii) IDemandee w.r.t. object-fault handling by proxy
objects, and iii) IDemander allowing proxy replacement, once the corresponding object is repli-
cated. These core interfaces are implemented by middleware code in proxies-out, proxies-in, and
application objects, which is automatically generated. The programmer is oblivious of them. To
ensure transparency to the programmer, proxy-out objects must also implement the same inter-
faces as application objects. Invocation of a proxy-out triggers object replication. Additionally,
we presented the OBIWAN API exposed to programmers.

We provided a detailed illustrated prototypical example showing how object-fault detection,
and incremental replication work, portraying the sequences of steps involving the creation of
object replicas, proxies, and pointing out invocations of methods described in the OBIWAN
interfaces. We further described object replication with variable depth and object clustering.
The mechanisms described are portable and can be implemented in widely deployed virtual
machines, such as Java and .Net.

We also addressed some relevant issues, such as support for communication between pro-
cesses and object serialization, which are leveraged by OBIWAN if they are provided by the
underlying VM; otherwise, they must be addressed by the OBIWAN implementation. Support
for class inheritance without resort to reflective capabilities during runtime is also motivated.
Finally, we described the various replication modes in OBIWAN, and how the OBIWAN API
orchestrates the execution of OBIWAN core interfaces.

72 CHAPTER II.2. ARCHITECTURE

II3Implementation

Incremental object replication in the the OBIWAN architecture has been implemented and
tested in a number of prototypes, and example applications. Figure II.3.1 depicts an overview of
the prototype implementations of OBIWAN, w.r.t. the specific issues addressed, and function-
ality provided by each one. These prototypes can be divided in two groups, depending on the
support they provide for mobile constrained devices (e.g., PDAs).

Two prototypes: i) OBIWAN.Java (Veiga and Ferreira 2002a; Ferreira et al. 2003), and ii) OBI-
WAN.Net (Veiga and Ferreira 2002b) target exclusively laptop and desktop computers, running
on top of the Java Virtual Machine, and .Net Common Language Runtime, respectively.

The remaining prototypes M-OBIWAN, OBI-Web, OBI-Per (Veiga et al. 2004; Santos et al.
2004) all build on top of the OBWIAN.Net prototype. The M-OBIWAN prototype enables mobile
constrained devices to run client processes, in the sense that they can replicate objects from other
processes, and send updated objects to them later. To serve object requests, mobile constrained
devices must have a Mobile Web Server (Nicoloudis and Pratistha 2003) running.

Support for serving object graphs directly from a web-based application server is addressed
in the OBI-Web prototype, while persistence for object repositories is described in OBI-Per. OBI-
VS is a plug-in to integrate OBIWAN.Net, and related prototypes, with the Visual Studio devel-
opment environment.

The prototypes implemented do not require any modification of either JVM or CLR inter-
nals. This fact is key for OBIWAN portability. Figure II.3.2 describes how the prototype im-
plementations of OBIWAN are integrated, and how each one communicates with instances of

OBIWAN

architecture

OBIWAN

architecture

OBIWAN.Java

OBIWAN.Net

OBIWAN.Java

OBIWAN.Net

M
-
OBIWAN

OBI
-
Web

M
-
OBIWAN

OBI
-
Web

OBI
-
Web
OBI
-
Web

OBI
-
Per
OBI
-
Per

OBI
-
VS
OBI
-
VS

d
e
s
k
t
o
p

m
a
c
h
i
n
e
s

r
e

s
o

u

r
c

e

-
c
o

n

s
t

r
a

i
n

e
d

m

o
b

i
l
e

d

e
v

i
c

e
s

w

e

b

-
 a

 c

 c

 e

 s

 s

p

e
r
s
i
s
t
e
n

c
e

V
i
s
u
a
l

S
t
u
d
i
o
i
n
t
e
g
r
a
t
i
o
n

Figure II.3.1: Overview of OBIWAN implementations.

74 CHAPTER II.3. IMPLEMENTATION

OBIWAN.Net

.Net Framework

C#

OBIWAN.Net

.Net Framework

C#

J
a
v
a

R

M

I

.
N

e
t

R

e
m

o

t
i
n

g

S
O

A

P

OBIWAN.Java

Java 2 SE

Java language

OBIWAN.Java

Java 2 SE

Java language

M
-
OBIWAN

.Net Compact Framework

C#

M
-
OBIWAN

.Net Compact Framework

C#

S
O

A

P

PDA

OBIWAN.Java

Java 2 SE

Java language

OBIWAN.Java

Java 2 SE

Java language

OBIWAN.Net

.Net Framework

C#

OBIWAN.Net

.Net Framework

C#

OBI
-
Web

OBIWAN.Net

Internet Information Services

OBI
-
Web

OBIWAN.Net

Internet Information Services

OBI
-
Per

OBI
-
Web

SQLServer / db4o

OBI
-
Per

OBI
-
Web

SQLServer / db4o

Figure II.3.2: Integration of OBIWAN prototype implementations. Each prototype indicates
other prototypes, and external software, it relies on.

identical and different prototypes.

Communication between processes is performed resorting to Java RMI (Remote Method In-
vocation), .Net Remoting Services, and SOAP (Simple Object Access Protocol). The reason for
using SOAP is twofold: i) it allows platform inter-operability between Java and .Net implemen-
tations; ii) it also serves as the only option of communication for implementations on mobile
constrained devices, as they have very limited communication services.

The next two sections are dedicated to the description of the OBIWAN desktop prototypes
(OBIWAN.Java and OBIWAN.Net) and M-OBIWAN, respectively. Section II.3.3 thoroughly de-
scribes the implementation aspects common to all the prototypes, i.e., the core of incremental
object replication in OBIWAN. The remaining sections of the chapter briefly present details and
extensions specific to the other prototypes (OBI-Web, OBI-Per), and support for integrated de-
velopment environments.

II.3.1 OBIWAN Desktop Implementations

The differences between OBIWAN.Java and OBIWAN.Net are not extensive, since the two
underlying virtual machines offer similar characteristics. Thus, the next subsections will de-
scribe only the implementation details that are not common, and highlight the differences be-
tween the two prototypes.

II.3.1. OBIWAN DESKTOP IMPLEMENTATIONS 75

Figure II.3.3: UML class diagram for OBIWAN.Java implementation.

II.3.1.1 OBIWAN.Java

The OBIWAN.Java prototype runs on top of Java 2 Standard Edition (version 1.3 and above).
It includes the implementation in Java of: i) the OBIWAN interfaces (IProvider , IDemander ,
IDemandee), ii) OBIRep data structures, iii) OBIWAN utility class (with API methods and other
helper functions), and iv) obicomp.java compiler. Thus, OBIWAN.Java is provided a set of
.class files, and a shell script/batch file.

The diagram in Figure II.3.3 shows the result of class extension, by obicomp.java , on an
example class (List). OBIWAN interfaces are constant, so they do not have to be generated
every time.

Communication between processes is performed using Java Remote Method Invocation
(RMI) and Java Serialization. Thus, OBIWAN interface IProviderRemote extends in-
terface java.rmi.Remote . Proxies-in belong to class IListProxyIn , and extend class
java.rmi.UnicastRemoteObject , which is a base class for remote objects in Java. Classes
List and IListProxyOut must implement interface java.io.Serializable .

Class List must extend the Java Serialization mechanism in order to allow register-
ing objects in the OBIRep structures, when the objects are replicated into a process, for
the first time. This is achieved, via customization of Java Serialization, by implementing
methods writeObject and readObject . Implementation of method writeObject sim-
ply delegates to method defaultWriteObject of the ObjectOutputStream provided

76 CHAPTER II.3. IMPLEMENTATION

as argument. Method readObject delegates to method defaultReadObject of the
ObjectInputStream provided as argument and then, checks the OBIRep of the process with
the object’s globally unique ID (hereafter referred simply as objectID).

The obicomp.java compiler is a shell script (or batch file) that invokes a number of java
classes in sequence (OBICreateInterface , OBIProxyGenerator , and OBIParser). It ini-
tially scans the file in search of a specific comment (/*[OBIWAN]*/) prepended before either a
class or field name. This informs obicomp.java that the class should be extended and which
fields should be replicated incrementally. After the class is compiled, it is analyzed using Java
reflection mechanisms, w.r.t. inheritance, field types, and public methods.

Generation of proxy classes is performed by an autonomous class that creates the source
files and writes code that implements the patterns described. After this, the proxy classes are
compiled using javac . The proxy-in class is also fed to rmic , the Java RMI compiler1.

Extension of application class (e.g., List) is performed by source code augmentation, i.e.,
by a class that inserts into and modifies text in the class source file, after it is saved in a backup.
All code generated by obicomp.java is enclosed in special comments to ease debug. After this
the extended class can be recompiled and the extension process is finished.

II.3.1.2 OBIWAN.Net

The OBIWAN.Net prototype runs on top of .Net Framework (version 1.0 and above). It
includes the implementation in C# of: i) the OBIWAN interfaces (IProvider , IDemander ,
IDemandee), ii) OBIRep data structures, iii) OBIWAN utility class (with API methods and other
helper functions), and iv) obicomp.net compiler. Thus, OBIWAN.Net is provided as an assem-
bly, and a shell script/batch file.

The diagram in Figure II.3.4 shows the result of class extension, by obicomp.net , using the
same example class (List). The main differences from OBIWAN.Java are highlighted. OBIWAN
interfaces are constant, so they do not have to be generated every time.

Communication between processes is performed using .Net Remoting Services, and .Net
Serialization (with Binary formatter). OBIWAN interface IProviderRemote simply ex-
tends interface IProvider .2 Proxies-in belong to class IListProxyIn , and extend class
System.MarshalByRefObject , which is a base class for remote objects in .Net. Classes List

and IListProxyOut must be tagged with attribute [Serializable] .

Class List extends the .Net Serialization mechanism,to allow registering objects in the
OBIRep structures. This is achieved, via customization of .Net Serialization, by implement-
ing interface IDeserializationCallback with method OnDeserialization . It simply
checks the OBIRep of the process with the objectID of the object being replicated.

The obicomp.net compiler, similarly to obicomp.java , is a batch file that invokes a
number of .Net programs in sequence. After the class is compiled, it is analyzed using .Net

1This final step is no longer needed in recent versions of Java.
2There is no need to tag interfaces explicitly as remote in .Net.

II.3.1. OBIWAN DESKTOP IMPLEMENTATIONS 77

Figure II.3.4: UML class diagram for OBIWAN.Net implementation. The shaded part of the
diagram highlights the main differences w.r.t. OBIWAN.Java.

reflection mechanisms w.r.t. inheritance, field types, public methods, and custom attributes.
The obicomp.net compiler can analyze classes coded in any language supported by .Net.
However, currently, it only generates C# code. Nonetheless, supporting other languages (e.g.,
VB.Net) is only required for class extension. OBIWAN library and proxy generators need not be
changed since .Net CLR executes byte-codes, regardless of the source language used.

Classes and fields are tagged (by the programmer) with a special attribute ([OBIWAN]) that
is accessible to reflection. This informs obicomp.net of classes to be extended and fields to be
replicated incrementally.

Generation of proxy classes is performed by an autonomous class that creates the source
files and writes code that implements the patterns described. After this, the proxy classes are
compiled using csc .

Extension of an application class (e.g., List) is also performed by source code augmenta-
tion, i.e., by a class that inserts and modifies text in the class source file. All code generated by
obicomp.net is enclosed in special regions (with #region/#endregion tags) to ease debug.
After this the extended class can be recompiled and the extension process is finished.

78 CHAPTER II.3. IMPLEMENTATION

II.3.2 OBIWAN for Mobile Constrained Devices

The available Java and .Net virtual machines for mobile constrained devices (Java 2 Micro
Edition or KVM, and .Net Compact Framework) have a number of limitations, when compared
with the desktop versions, namely w.r.t. remote invocation mechanisms and object serializa-
tion. These are due, mainly, to the reduced capabilities of the devices and to minimize memory
footprint of the virtual machines themselves.

Java 2 Micro Edition defines two profiles for mobile constrained devices: i) CLDC (Taival-
saari 2000; Taivalsaari 2003),3 and ii) CDC (Courtney 2001; Courtney 2005). 4 CLDC has no
support for Java RMI but provides support for web-services invocation. CDC offers an optional
RMI package but this profile targets high-end PDAs and set-top boxes. Thus, for common PDAs
and mobile phones, there is no support for RMI.

The .Net Compact Framework (Wigley et al. 2003) does not provide neither remote method
invocation (i.e., .Net Remoting) on objects, nor general-purpose object serialization.

These limitations exclude some of the mechanisms upon which the implementation of OBI-
WAN desktop prototypes was based. To address these limitations, we extended the OBI-

Figure II.3.5: UML class diagram for M-OBIWAN implementation. The shaded part of the diagram
highlights the main differences w.r.t. desktop prototype OBIWAN.Net.

3Connected Limited Device Configuration.
4Connected Device Configuration.

II.3.2. OBIWAN FOR MOBILE CONSTRAINED DEVICES 79

WAN.Net prototype. Similar adaptations can also be applied on the CLDC profile. This would
make OBIWAN portable to the complete universe of J2ME (as opposed to an implementation
based on RMI).

II.3.2.1 M-OBIWAN

In order to run OBIWAN on mobile constrained devices, we developed a specific prototype
M-OBIWAN, based on OBIWAN.Net. It runs on top of .Net Compact Framework (although
nothing prevents it from running on .Net Framework, in a desktop environment, as well). Cur-
rently, M-OBIWAN only allows object replication, not direct invocation on remote objects from
mobile constrained devices.

The diagram in Figure II.3.5 shows the result of class extension, by obicomp.net , us-
ing the same example class (List). The main differences from OBIWAN.Net are highlighted,
and explained next: i) the use of a web-service bridge encapsulated by RemotePeer classes,
and ii) XML serialization using object-wrappers, encapsulated by code implementing interface
IXMLTransport .

II.3.2.1.1 Web-Bridge

Since the communication services of .Net CF provide basic support for web-service invoca-
tion, M-OBIWAN includes a web-bridge component to mediate access from mobile constrained
devices to desktop computers. This is depicted in Figure II.3.6.

Desktop computers (when they act as servers) are unaware of the differences of clients,
i.e., whether they are mobile constrained devices or not. They behave in the same manner as
described earlier, i.e., they are invoked via .Net Remoting services. The web-bridge masks this
heterogeneity by performing, w.r.t. the servers, as any other client would. In essence, the web-
bridge serves as an intermediary between a proxy-out and its corresponding proxy-in. This is
performed transparently w.r.t. both of them.

Mobile

Client

Server A
 Server B

Server E
Server D
Server C

Web

Bridge 2

Web

Bridge 1

Web

Bridge 3

Mobile

Client

Mobile

Client

fixed network

fixed network

wireless link

GetObject

GetObject

PutObject

operations

performed

operations

performed

Figure II.3.6: M-OBIWAN Web-bridge mediation.

80 CHAPTER II.3. IMPLEMENTATION

Wrapper
GetObjectWS(string host, string name, int mode, int depth);

void PutObjectWS(string host, string name, Wrapper wrapper,
int mode, int depth);

Table II.3.1: Web-Services provided by the M-OBIWAN web-bridge.

The web-bridge is a set of web-services (see Table II.3.1) running on top of Internet Infor-
mation Server (available at desktop computers). Mobile constrained devices simply act as web-
service clients. Web-bridges may interact and relay request to others.

The web-services mimic the methods of interface IProviderRemote . The differences are
that exchanged objects are of a fixed type (Wrapper), and that explicit references to host and
object name (or objectID) are required. This information is explicitly needed by the web-bridge
in order to invoke the corresponding proxy-in. In desktop implementations, this information is
implicit in remote references. However, as stated previously, these are not supported in .Net CF.

Thus, when a proxy-out wants to invoke a proxy-in, it must instead invoke a RemotePeer

object that also implements interface IProvider , and that stands in the place of a remote ref-
erence of .Net Remoting. This RemotePeer object knows the identification of the proxy-in
counterpart and provides that information (along with the other arguments it receives) when it
invokes the corresponding web-service method.

The code inside the web-services must, in turn, obtain a remote reference to the correspond-
ing proxy-in by invoking the remote method GetProxyByName on the intended server. After
that, it can invoke the intended method (get or put) on the proxy-in obtained, with the argu-
ments received. The web-bridge is also responsible for converting data between the different
serialization formats involved (binary, used with RMI to communicate with desktop nodes; and
wrapper-based, used with SOAP to communicate with mobile constrained devices).

The web-bridge in M-OBIWAN is stateless. Thus, the mobile constrained device may re-
connect later using a different web-bridge. This allows mobile constrained devices to operate in
environments with connectivity restricted to a local area.

Wrappers are used to serialize object replicas in a way that circumvents limitations of .Net
CF, and are described with further detail in the next section. Each class is automatically ex-
tended with code that is able to replicate and update its state using wrappers. The web-bridge
exchanges only wrappers with the mobile constrained devices.

II.3.2.1.2 XML Object Serialization

Object serialization in .Net CF is limited to the minimum required to support the invocation
of web-services. In particular, there is no support for binary serialization. XML serialization is
limited to public fields of objects.

It is not acceptable to force application programmers to expose all object fields as public
(that would be required), in order to be able to replicate them to a mobile constrained device.

II.3.2. OBIWAN FOR MOBILE CONSTRAINED DEVICES 81

Furthermore, XML serialization handles references in a very simplified manner, as it does not
handle full SOAP formatting. Referenced objects are simply included in referring objects, form-
ing an XML hierarchy. Therefore, object identity is not enforced since the same object may be
serialized more than once, and it does not handle cyclic subgraphs.

Thus, M-OBIWAN also includes specific code to support full object serialization in XML,
preserving object identity, via the automatic implementation, for each class handled by OBI-
WAN, of a specific interface IXMLTransport , presented in Table II.3.2.

Wrapper toXML(void);
void fromXML(Wrapper wrapper);

Table II.3.2: Interface IXMLTransport .

Methods toXML and fromXML manipulate instances of class Wrapper . Wrapper objects
carry class type information, and an array of WrapperElement objects, one for each field being
serialized. These elements may contain primitive types or references to other Wrapper objects.
This is a better option than simply creating, for each class, a mirror class with all its fields declared
as public, as this would still not preserve object identity, and would hinder the programming
model.

Wrappers are created and unwrapped, only by the web-bridge and the mobile constrained
devices. Both application classes and proxy-out objects know how to handle wrappers. After a
subgraph of objects has been replicated (returned by method get of a proxy-in), it is returned
to the web-bridge. The web-bridge then invokes method toXML on the object that heads the
subgraph to convert its wrappers that are serialized correctly to XML. This process is reversed
when objects are being sent back to desktop nodes as updates.

Object Wrapping: With application classes, after the wrapper is created, it is filled with fields
of primitive types (including the objectID). Fields of reference-types are wrapped by invoking
method toXML recursively. No depth parameter is needed since it is assumed that all objects are
to be converted to wrappers. The techniques employed to handle subgraphs converging to the
same object, and cyclic subgraphs, are the same employed in object replication, as described in
detail in Section II.3.3.8. References to objects already wrapped are replaced by their objectID.

Reference-fields of type IProviderRemote (both in object replicas and proxies-out, that
target a proxy-in) are actually remote references; thus they are ignored, since they are not sup-
ported in .Net CF. In the case of reference-field demander , within a proxy-out object, it is con-
verted to the objectID of the referenced object.

Object Unwrapping: Before a wrapper is unwrapped, its class type information is consulted
and an instance of the appropriate class is created. Then, method fromXML is invoked on the
instance, with the wrapper provided as argument. Before reference-fields are unwrapped, the
appropriate objects are instantiated. Method fromXML is invoked recursively until all wrappers

82 CHAPTER II.3. IMPLEMENTATION

have been unwrapped and the corresponding objects instantiated. Whenever an object is instan-
tiated, it is registered in the OBIRep. This is a step equivalent to customization of serialization
in the desktop prototypes (described in Sections II.3.1.1 and II.3.1.2).

Before unwrapping a proxy-out, a check is made to verify if the corresponding object has
already been unwrapped to get a reference to it. When a proxy-out is unwrapped it gets a
reference to its demander, from the OBIRep, using its objectID that was included in the wrapper.

Reference-fields of type IProviderRemote (that were not wrapped) are set to reference a
new object (of class RemotePeer) that includes the objectID of the object. Its implementation
(methods get and put) invokes the web-bridge, in turn.

The remaining of the code generated by OBIWAN, that performs object-fault handling and
incremental replication is unaware of the differences w.r.t. serialization and communication.
They simply invoke methods of interface IProviderRemote .

II.3.2.1.3 API Transparency

The OBIWAN API is unchanged to application programmers in M-OBIWAN. However, in
M-OBIWAN, communication is delegated to invoking web-services, instead of remote objects
directly. Programmers never invoke web-services explicitly. A configuration file stores the web-
bridge address.

Thus, in addition to OBIWAN.Net, obicomp.net only has to extend classes, by automat-
ically generating code that implements interface IXMLTransport . The rest of the actions are
performed by the web-bridge and the M-OBIWAN library.

II.3.3 Common Implementation Aspects

This section describes the details of relevant implementation aspects of the OBIWAN core
that are common to all the prototypes.

II.3.3.1 Data Structures

For performance reasons, InProp and OutPropList structures are actually implemented in
two levels as extended hash-tables (named OBIRep) of lists. In each process, there is an ex-
tended hash-table that maintains a structure (an OBIRep element) for each object that has been
replicated from and/or to other processes. In this sense, the OBIRep functions as a top-level
object table (w.r.t. OBIWAN) of the process.

Each OBIRep element stores: i) a direct reference to the object in that process, ii) one list
of InProp entries, and iii) a list of OutProp entries (both w.r.t. the object). Thus, InPropLists
and OutPropLists are implemented separately, each one concerning only a single object (see
Figure II.3.7). This approach simplifies and speeds-up the most common task. It consists in
accessing, regarding a particular object, a specific InProp or OutProp entry, in the context of an
on-going replication operation among two processes.

II.3.3. COMMON IMPLEMENTATION ASPECTS 83

...

...

A

objRef

inPropList

outPropList

objectID

processID

sentUmess

next

objectID

processID

recUmess

next

...

...

A

objRef

inPropList

outPropList

objectID

processID

sentUmess

next

objectID

processID

sentUmess

next

objectID

processID

recUmess

next

objectID

processID

recUmess

next

w
e
a
k

r
e
f
e
r
e
n
c
e

t
o

o
b
j
e
c
t
OBIRep element

OBIRep

hash
-
tables

Information regarding replicaiton of object A

K
e
y
:

o
b
j
e
c
t
I
D

K
e
y
:

h

a
s
h
-

c
o
d
e

Figure II.3.7: Internal structure of OBIRep elements. Example depicted w.r.t. to an hypothetical
object A.

The hash-tables are extended in the sense that they allow that references to objects be re-
trieved from it, using one of two alternative keys: hash-code and objectID. The implementation
of OBIRep actually contains two hash-tables, each referencing the same OBIRep elements, with
each of the mentioned keys.

When an object is first registered in the OBIRep, because it is being replicated (in or out)
an entry (i.e., an OBIRep element) regarding its existence is created and inserted in the OBIRep

hash-tables. This is performed using the objectID (created by OBIWAN) field as key in one of
hash-tables and, in the other, using the hash-code (provided by the virtual machine) of the object
replica. This allows access to information concerning the replication of an object, both using the
objectID field (e.g., to check if an object has been replicated earlier) and directly via a reference
to a replicated object.

InProp and OutProp lists in a OBIRep element are initially empty. Each entry stores, in the
context of replication, and as presented in Chapter I.2: i) the objectID of the object, and ii) the
process counterpart (where the object was replicated from or to). There is one entry in these lists
for each process that the object has been replicated from and/or to. Other implications of these
structures w.r.t. memory management are described in Part III.

II.3.3.2 Object Identity

ObjectIDs are attributed to objects when they are involved in a replication operation, to a
different process, for the first time (recall Section II.2.6.3). This includes either replicating the
object to another process, or creating a proxy-out/proxy-in pair, targeting the object, for ulterior

84 CHAPTER II.3. IMPLEMENTATION

replication. This gives the object a name that is shared by all replicas of the same object that may
be created in the future.

This operation is performed lazily. There is no need to generate an objectID for an object
that is not replicated in, nor referenced from, another process. The objectID of an object or
proxy is exposed via an interface that is automatically implemented. This objectID is also used,
when resolving a proxy-out, to check if the corresponding object was already replicated into the
process.

Each process maintains a global counter (an integer) that is provided and incremented each
time a new objectID is required. This value is unique within a process and, if object graphs are
persistent, it is also made persistent to preserve uniqueness.

ObjectIDs must be globally unique (i.e., w.r.t. every other process), and must be generated
independently by each process (i.e., without involving communication among processes). To
this effect, in OBIWAN implementation, objectIDs combine a 32-bit ID number fixed to each
process, with the current value of the object counter of the process (also limited to 32 bits), to
compose a 64-bit globally unique objectID. Whenever possible, a process ID may be derived
from the IP address of the computer it is running on.

II.3.3.3 Interface IProvider

Middleware code contained in methods get and put of interface IProvider has access
to the private fields of the object’s class, since classes are automatically extended in order to
implement the interface. Therefore, this code can manipulate the private fields of the object
where the methods are invoked, and to other objects of the same class.

Methods of IProvider rely on a replication context set-up before they are invoked. This
replication context includes selecting the proper type (InProp or OutProp entries) in OBIRep

data structures, and targeting the initial object to be replicated or updated. This takes into ac-
count the process counterpart involved in the replication operation, and the replication mode
chosen. This set-up is performed by methods of the OBIWAN API, following the rules presented
in Section II.2.6.9, whose implementation is presented in Section II.3.3.7.

II.3.3.3.1 Method get

Method get is invoked on objects when they are being replicated to another process (in
SERVERMODE)5 or when objects are being sent as updates to another process (in CLIENT MODE).
This determines which propagation list in the OBIRep element will be used primarily. The
one containing OutProp entries is used in SERVERMODE, and the one with InProp entries in
CLIENT MODE.

When method get is invoked on an object it first checks if TRANSITIVE CLOSUREreplica-
tion mode was required. If it has not, then it must check the parameter for replication depth. If it

5Replication modes are implemented as const ants in C# and static final fields in Java, e.g.,
OBIWAN.ReplicationModes.CLIENT MODE.

II.3.3. COMMON IMPLEMENTATION ASPECTS 85

is zero, then the object is not replicated and method get creates a proxy-out/proxy-in regarding
the object as described in Chapter II.2.

If the object has already been replicated, or if a proxy-pair regarding it, has been created
before to any other process, the object already has its objectID field initialized. If not, it is created
then and a corresponding OBIRep element is created. The objectID is then passed to the proxy-
out constructor. After the proxy-out/proxy-in pair is created, the method simply returns the
reference to the proxy-out (that will stand as the object replica).

If the method continues, method get must determine if flag REFRESHis included in the
replication mode. If this flag is not included, then, method get will not replicate objects that
were already replicated to the same process previously. Otherwise, this test is never performed.

When this test is needed, it is performed by checking in the OBIRep (using its own hash-
code as key), for an entry regarding that process, in the propagation list. If such entry already
exists, then a proxy-out/proxy-in, regarding the object, is returned instead as described earlier.

If it has not, it inserts an entry in the propagation list, in the corresponding OBIRep element,
and initiates the replication of the object: i) if required, creates a new instance of the object’s
class (via a default constructor) and copies its objectID, ii) copies all fields of primitive types and
reference-types not handled by OBIWAN (that are thus regarded as private to the object being
replicated), iii) invokes method get (recursively) for each field of reference-types handled by
OBIWAN, passing the same parameters as received, only with decremented replication depth,
and iv) if CLUSTERINGis not activated, creates a proxy-in for the object and sets it as the replica’s
provider (using interface IDemander).

This delegates, by recursion, the replication of the referenced objects. For each of the repli-
cated objects, if it is a proxy-out, it sets its demander (checking and invoking interface IDe-
mandee) properly.

If REFRESHmode is used, OBIWAN code must force the replication of objects that were
already replicated to the same process. Nonetheless, it must still ensure that the same object
is not replicated more than once in the same replication operation. This accounts correctly for
subgraphs converging to the same object. It also handles cyclic subgraphs correctly. This is
achieved using an auxiliary ObiRep (named TempProp) that is also checked and updated when
an object is being replicated. If it has already been so, in the context of the current replication
operation, the already created replica is reused (instead of creating a new one), and replication
along that path terminates.

If different paths converge to the same object, reaching it with different replication depths,
only the depth of the first path reaching it is honored, i.e., the first branch reaching an object
determines if it is to be replicated or not.

II.3.3.3.2 Method put

Method put is invoked on objects when they are being refreshed (in CLIENT MODE), or
when they are being updated with replicas modified in another process (in SERVERMODE). This

86 CHAPTER II.3. IMPLEMENTATION

determines which list in the OBIRep element will be used primarily. The one containing Out-
Prop entries is used in SERVERMODE, and the one with InProp entries in CLIENT MODE.

While method get creates replicas of the objects, method put must be applied on an ob-
ject that already exists (otherwise, it could not be invoked). Thus, whenever an object field,
previously holding a null reference, is updated with a non-null value, it is being modified to
reference either a pre-existing object, or a newly replicated one. The last case raises the issue of
object promotion that will be addressed later in this section.

When method put is invoked on an object, it first checks if TRANSITIVE CLOSURErepli-
cation mode was required. If it has not, then it must check the parameter for replication depth.
If it is already zero, then the object is not updated, and execution of method put simply termi-
nates (method put has no return value). Replication mode CLUSTERINGhas no influence in the
behavior of method put.

If execution continues, when method put is invoked on an object (e.g., A), a replica to that
object is passed as argument (e.g., A’). Method put will update the fields of primitive types, and
of reference-types not handled by OBIWAN, of object A simply by copying them from replica A’.
W.r.t. to fields of reference-types handled by OBIWAN, method put behaves, for each of them,
as follows.

First, method put must check if the field in updated replica A’, actually references proxy-out
objects. If replica A’ references a proxy-out, method put attempts to translate it by checking the
OBIRep with the objectID stored in the proxy. If the object already exists, object A is updated
to reference it. If not, the proxy-out is kept, and its demander field is updated (via method
setDemander of interface IDemandee , so that it references A), and object A is also updated to
reference the proxy. Method put terminates along this path.

If the field of replica A’ references another updated replica, method put may continue. It
must check if the object referenced by A, and the replica referenced by A’, concern the same
object. If not, object A must be switched to reference the object that matches (i.e., has the same
objectID) the replica referenced by A’. A reference to it can be obtained from the OBIRep. This
applies an update on a reference field in object A, so that it now references a different object.

Either way, updating the object graph may continue simply by following the recursion, i.e.,
invoking method put on the referenced object, with the referenced replica, and decremented
depth, as arguments.

In the context of method put, if UPDATEmode is not used, it is implied that internal fields
of replicated objects should not be updated, except in the case when they originally held null

references. This way, it only integrates new objects in the object graph, without refreshing or
updating objects already replicated.

If UPDATEmode is used, then the graph containing the updates may have subgraphs con-
verging to a single object, or cyclic subgraphs. To account for this, the process used is analogous
to that previously described for method get with mode REFRESH. This is achieved using an
auxiliary TempProp that is checked when a replica is being used to update an object. If it has
already been so, in the context of the current replication operation, then method put along this
path terminates.

II.3.3. COMMON IMPLEMENTATION ASPECTS 87

Replication modes REFRESHand UPDATEare maintained for symmetry and clarity: one for
API method GetObject , and the other for API method PutObject .

Replica Promotion: An object replica is considered promoted, when it is the first replica of
that object to be instantiated in the process. From then on, this replica becomes the actual object
(w.r.t. this process) and other replicas of the same object, received later, will always be used just
to update it.

Object promotion takes place automatically when the replicated objects are instantiated. If
they are not registered in the OBIRep, they are registered then. Thus, whenever method put

consults the OBIRep to obtain a reference to an object that is being updated (i.e., for which an
updated replica has been received from another process), this check is always successful. If it
returns the replica (i.e., the object didn’t exist before in this process), it is promoted, in the sense
that it is integrated in the graph maintained by the process, available to applications. To account
for this, when method put is invoked on an object to update it with itself, method put simply
continues the recursion and does not modify the object.

The replication of promoted objects integrated in a subgraph being updated, is registered in
InProp entries (instead of the OutProp entries), i.e., they are regarded as initially belonging to the
process where the object graph was replicated from. This is ruled by the use of SERVERMODEin
the replication operation.

II.3.3.4 Serialization and Instantiation

Once created by the execution of method get , replicated subgraphs must be transferred to
other processes. This is performed automatically by the underlying virtual machine. It takes
place when a method that was invoked remotely (e.g., method get of a proxy-in) returns the
object replicas. The same happens when the object replicas are provided as parameters to a
method invoked remotely (e.g., method put of a proxy-in). Additionally, object transfer may
also be subject to an intermediate step of XML wrapping, as in M-OBIWAN.

Upon reception of the subgraph at the other process, the comprised objects are either auto-
matically instantiated by the de-serialization mechanism or during unwrapping. Registration of
objects in the OBIRep and creation of InProp or OutProp entries, when needed, is performed by
code automatically generated by OBIWAN. It leverages the possibility provided by both desktop
virtual machines to customize the serialization/de-serialization process, with added behavior,
without having to re-implement basic object serialization. In the case of M-OBIWAN, this is
performed by XML unwrapping code that is also automatically generated.

II.3.3.5 Proxy objects

Proxies-in are implemented as non-serializable objects, i.e., objects that never leave
the process where they were created. When proxies-out and object replicas reference an
IProviderRemote object, they are in fact referencing a non-serializable object. Thus, these ref-
erences are the ones that set the boundary of the serialization process. This is how, in OBIWAN,

88 CHAPTER II.3. IMPLEMENTATION

subgraphs are effectively replicated, without serializing the whole object graph maintained by
the process.

II.3.3.6 Inheritance

If a class inherits from another class that was also extended by OBIWAN, the interface
IProvider is implemented by each of them. However, invocations from other objects always
invoke the most specialized implementation, i.e., the implementation of the sub-class at the end
of the inheritance chain. Thus, the implementation of methods of interface IProvider in de-
rived classes must perform an additional step: to invoke the same method on the superclass
(possibly recursively). This preserves encapsulation in the sense that each class knows how to
replicate itself, and avoids making all class fields protected (even those explicitly defined as pri-
vate by the programmer), as well as redundant code. This also provides modularity, since if the
implementation of the superclass changes, there is no need to change the implementation (i.e.,
re-generate the code) of the derived class.

When method get is invoked in a sub-class at the end of an inheritance chain, after it creates
the object replica and sets its private fields, it invokes method get on the superclass of the object
with flag RE USEOBJECTincluded in the replication mode. Prior to this, it must register the
just created object replica in an inheritance-specific, lazily created, auxiliary OBIRep (named
PropReuse).

Method get of the superclass, when invoked with flag RE USEOBJECTmust get a reference
to the same object replica already created, from PropReuse. If the superclass is also a derived
class, this method will also invoke method get on its superclass and so on. Obviously, method
get invoked with flag RE USEOBJECTneed not return a value, since the object replica was
already created. Thus, it returns null .

In method put , the recursive behavior is similar with an exception. There is no need neither
for flag RE USEOBJECTnor PropReuse, since when the object being updated is invoked, it
obviously already exists.

Similarly, method updateMember of interface IDemander , that is invoked when a proxy is
being replaced by a replicated object, must also delegate its execution to each superclass.

To support inheritance, proxies-out and proxies-in also must implement all the public meth-
ods defined by all the classes in the inheritance chain. This way, any invocation of the proxy-out
(via any of the implemented interfaces) will trigger object-fault handling.

W.r.t. to private fields storing the objectID of the object, and its provider, they should be
shared by, and accessible to any derived class. This prevents each class in the hierarchy from
having these private fields duplicated, since they are only needed once for each object, regardless
of the length of the class inheritance chain. Thus, these members are defined as protected and
are only defined in classes that do not inherit from other classes extended by OBIWAN.

II.3.3. COMMON IMPLEMENTATION ASPECTS 89

II.3.3.7 API methods

Methods GetObject and PutObject of the API provided by OBIWAN, are implemented
as static methods of the OBIWAN library class. The flags of the various replication modes are
also implemented as bit-field public constants of the OBIWAN class.

As already mentioned in Section II.2.6.9, the complete execution of each one of the API
methods delimits a replication operation. Methods GetObject and PutObject perform, if
required by the replication mode(s) chosen, the sequential execution of methods get in one
process, and put in the other, according to Table II.2.6.

For example, in the case of an invocation of method GetObject , with replication mode
REFRESH, this results in the invocation of method get on the other process (by remote invoca-
tion of a proxy-in), and its result provided as parameter for the invocation of method put on a
local object. Conversely, in the case of replicas being sent as updates to another process, method
get is invoked locally, and method put will be invoked remotely on a proxy-in.

In the process where the API functions are called (a client, for this purpose), they set-up
the replication context by: i) registering the identification of the other process involved in the
replication operation and, ii) if necessary by the replication mode, by instantiating an empty
TempProp to be used by methods get or put (v. Section II.3.3.3).

The OBIWAN API includes a method for registering objects with a well known textual name.
It also includes overloaded utility methods GetProxyByName that can be invoked remotely.
These methods receive a well known name, and return a proxy-in for the object that was regis-
tered with it. If the argument is a 64-bit objectID, the OBIRep is searched instead.

II.3.3.8 Class Extension

In order to be handled by OBIWAN, an application class must be extended and the corre-
sponding proxy-in and proxy-out classes created. Class extension is automatic and consists in
the insertion and modification of class fields, and the automatic generation of code implement-
ing a number of interface and specific methods. This is performed by the obicomp compilers.

Classes: For each class (e.g., List for a simply or doubly-linked list) being handled by OBI-
WAN, obicomp must:

• Create the interface IList from the public methods of List and generate the code defin-
ing the interface.

• Modify class definitions to implement the necessary interfaces: IList , IProvider and
IDemander .

• If the class does not inherit from another class handled by OBIWAN, add a protected field
objectID , and implement method getObjectID that exposes it.

• If the class does not inherit from another class handled by OBIWAN, add a protected field
provider .

90 CHAPTER II.3. IMPLEMENTATION

• Modify the declaration (i.e., type) of reference fields whose types are classes handled by
OBIWAN, so that they reference the corresponding interfaces (e.g., interface IA, etc., in-
stead of class A, etc.).

• Modify method parameters and return types accordingly, as well.

• Generate code to implement methods of interface IProvider .

• Generate code to implement methods of interface IDemander .

• Generate special method(s) for serialization customization.

We need to ensure transparency in order that application code never manipulates references
to proxy-out objects. This way, object comparisons and reference comparisons can be performed
using the native mechanisms and operators of the underlying virtual machine.

Therefore, since each proxy-out is private to its demander (i.e., each proxy-out is only refer-
enced by one object), OBIWAN must ensure that an object never returns a reference to a proxy-
out, yet to be replaced. This is accomplished as described in the next paragraphs.

One protected boolean field is added to the class (repIncomplete) if it does not already in-
herit from any other class handled by OBIWAN. This flag is set to true when the object replica is
being created, if it references any proxy-out. This only happens when replication depth reaches
zero, or some object has already been replicated and is not being refreshed.

In every method that returns a reference to a class handled by OBIWAN (one that may
actually reference a proxy), obicomp inserts a prologue that checks field repIncomplete . If it
is true , it simply invokes a private method that triggers replacement of all the reference fields
that are proxies-out. This is performed by invoking method demande on each proxy.

This action is performed only once for each object, and only for those objects at the boundary
of a subgraph being replicated. This way, applications never manipulate references to proxies-
out. They are unaware of their existence, only the OBIWAN middleware sees them.

Proxy-Out: To create a proxy-out class (e.g., IListProxyOut , the proxy-out corresponding to
class List), obicomp must:

• Generate class definition implementing the required interfaces:

– The one of the corresponding class (IList).

– The ones from superclasses also handled by OBIWAN (a proxy-out must be able to
stand-in for any superclass).

– IDemandee from OBIWAN.

• Insert private fields provider , demander , and replica .

• Generate methods of interface IDemandee .

• Generate the methods of the class interfaces that start by invoking method demande, del-
egate on the replica when available, and invoke method updateMember .

II.3.3. COMMON IMPLEMENTATION ASPECTS 91

Proxy-In: To create a proxy-in class (e.g., IListProxyIn , the proxy-in corresponding to class
List), obicomp must:

• Generate class definition, indicating it should not be serialized, and enable it for remote
invocation.

• Declare the implementation of the required interfaces:

– The one of the corresponding class (IList).

– The ones from superclasses also handled by OBIWAN (a proxy-in must be able to
stand-in for any superclass).

– IProviderRemote from OBIWAN.

• Insert private field provider .

• Generate methods of get and put of interface IPRoviderRemote .

• Generate the methods of the class interfaces that delegate on the object referenced by the
proxy-in (provider).

In summary, the programmer only has to write the code of the application class. The class
extension process and creation of proxy classes is automatic.

II.3.3.9 Support for Execution Migration

OBIWAN.Java and OBIWAN.Net provide support for the migration of execution flow
through a specific interface named IRestartable ; it is automatically implemented by
obicomp.java and obicomp.net . Programmers just need to implement method run . In OBI-
WAN.Java, it extends the java.lang.Runnable interface, while in OBIWAN.Net, it serves as
a System.Threading.ThreadStart delegate.

Since thread stacks are not first class objects (neither in .Net nor Java) the programmer must
provide hints, regarding places in the code, in which agent’s execution can be frozen, its state
serialized, and transferred for ulterior reactivation upon arrival to another process.

Thus, at certain points of execution, the programmer must invoke method checkpoint

of interface IRestartable (recall that all methods of this interface are automatically imple-
mented).6 The checkpoint method implements synchronization, so that it is safe to freeze the
execution flow on an object, serialize its data, transmit it, and re-activate it in another process
through the creation of a new dedicated object thread.

Prior to invoking the checkpoint method, it is the programmer’s responsibility to set the
object in a stable state that does not rely on stack frame information, i.e. the object can be re-
started correctly (from an application’s semantic point of view) in another process.

6A similar approach, using byte-code enhancement, is employed in other work (Handorean et al. 2005), which is
also presented in Part IV w.r.t. adaptability.

92 CHAPTER II.3. IMPLEMENTATION

PDA

S
O
A
P

Internet

OBI
-
Web /

OBI
-
Per

OBI
-
Web /

OBI
-
Per

W

e

b

-
B

r
i

d

g

e

Main

AppDomain

w

e

b

-
s

e

r
v

i
c

e

s

SOAP

S
O
A
P

AppDomain 1

Service 1

objects

Db4oPerst

Storage

db4o API

AppDomain 2

Service 2

objects

SQLPerst

Storage

ADO.Net

...

db4o

repository

SQLServer

database

TCP/IP

TCP/IP

Internet Information Services

Figure II.3.8: OBIWAN Support for Application Servers and Persistence.

II.3.4 Support for Application Servers and Persistence

Figure II.3.8 presents, in greater detail, the implementation of OBI-web and OBI-Per. Appli-
cations running on client devices (PDA, laptops, etc.) replicate objects from an application server
running the OBI-Web and OBI-Per prototypes. The relevant details of OBI-Web and OBI-Per are
described in the next sections.

II.3.4.1 OBI-Web

We leverage the use of IIS to host and manage services that provide object repositories.
We call them object services since they are not stand-alone processes. However, each of them
exposes the remote methods of OBIWAN API, via its own object. The syntax of host names is
extended so that an object service is identified as <host>/<serviceName> .

Thus, in the case of OBI-Web, a web-bridge that provides a number of object services is no
longer stateless, as in M-OBIWAN. Nonetheless, the interactions between the web-bridge and
object services, are performed as in the case of stand-alone processes (i.e., there are no direct
invocations, from the web-bridge, of code inside the object services). The web-bridge simply
maintains a correspondence between object service names and their application domains, in
order to relay requests. It does not maintain information regarding individual objects. In partic-
ular, OBIRep structures are private to each object service.

Each object service runs within its own application domain (e.g., AppDomain1, AppDo-
main2 in Figure II.3.8), which provides isolation w.r.t. other object services in case of failure.
Since the web-bridge and object services run on different application domains, communication
between the web-bridge and each of them, must resort to .Net Remoting. Figure II.3.9 illustrates:
i) the OBI-Web Service Manager, in charge of loading, unloading and configuring object services,
and ii) the selection of a Visual Studio template to facilitate the development of OBI-Web object
services.

II.3.5. TRANSACTIONAL SUPPORT 93

a. Service Manager. b. Service Template.

Figure II.3.9: OBI-Web Service Manager and Service Template for Visual Studio.

II.3.4.2 OBI-Per

Object services in OBI-Web, and OBIWAN processes, may create the objects they manipulate
and allow other processes to replicate, in a programmatic manner. Since this is time-consuming
for programmers, OBI-Web automatically loads and saves object graphs, hosted by object ser-
vices, using file-based persistence (by means of binary or XML serialization).

In alternative, object services may store object graphs persistently on object-oriented or re-
lational databases. This support is provided by OBI-Per that extends the OBI-Web Service Man-
ager and manages interaction with external persistence support. It defines an implementation of
interface IProvider that communicates with an OBI-Per persistence manager to load and store
objects. OBI-Per persistence managers are depicted in Figure II.3.8: Db4oPerstStorage , and
SQLPerstStorage . They extend a common abstract class (PerstStorage), while adapting
w.r.t. the specific details of a particular external persistence tool.

The OBI-Per implementation of interface IProvider returns returns customized proxies
that resolve object-faults by loading the objects from persistent store. ObjectIDs are stored in
persistent store and used as keys. When objects are loaded from persistent repository, they
already have an objectID, which must have been given earlier. Therefore, to ensure uniqueness,
objects are registered in the OBIRep of the object repository, although initially, without any
associated InProp/OutProp entry.

II.3.5 Transactional Support

OBIWAN supports the incremental replication of large object graphs, including into mo-
bile constrained devices. Additionally, it allows the creation of dynamic clusters of data,
while providing hooks (through events) for the application programmer, to implement a set
of application-specific properties. An example usage of such hooks is the transactional support
described in (Santos et al. 2004). It is built upon the basic infra-structure and provides relaxed
transactional semantics and updates dissemination.

94 CHAPTER II.3. IMPLEMENTATION

a. OBIWAN Interactive Compiler (obicompGUI). b. OBIWAN integration with Visual Studio 2005 (OBI-VS).

Figure II.3.10: OBIWAN Support for Application Development.

II.3.6 Support for Integrated Development Environments

Support for application development in OBIWAN was initially restricted to using obicomp

tools. Figure II.3.10-a depicts obicompGUI , an interactive front-end for the OBIWAN compiler,
that allows the developer to load classes, select which fields should be incrementally replicated,
and generate code for class extension and proxies.

OBIWAN has also been incorporated in a commercial integrated development environment:
Microsoft Visual Studio 2005. The OBI-VS plug-in targets OBIWAN prototypes executing on top
of .Net (OBIWAN.Net, M-OBIWAN, OBI-Web, OBI-Per). It is depicted in Figure II.3.10-b with
the project templates it provides for console and windowed applications, class libraries, and
object services. In OBI-VS, all phases previously performed by obicomp tools (class analysis
using reflection, parsing, source code generation and extension) have been adapted, in order to
make use of the System.CodeDom name-space, and be triggered by MSBuild files.

The System.CodeDom name-space provides a set of classes that makes possible to create
and manipulate a syntactic tree7 representing the overall structure of, and syntactic elements
included in, source files coded in .Net languages. MSBuild is the base tool for application
compilation in the .Net Framework. It is used by both the command-line compilers (e.g., csc)
and by Visual Studio 2005. It uses XML files to describe the contents of projects (.csproj)
such as files, libraries and resources, as well as to describe the compilation tasks (.targets)
necessary to build them.

MSBuild files are used to deploy OBI-VS in order to include class analysis and exten-
sion tasks, required by OBIWAN, in the application build process of Visual Studio. By de-
fault, project files reference a built-in compilation file: Microsoft.CSharp.targets . In
the case of OBIWAN applications, project files reference a different compilation file that im-
ports from Microsoft.CSharp.targets , and extends its behavior. After the project is
built using the default compilation task performed by Visual Studio (CoreCompile), it loads

7Actually implemented as a directed acyclic graph for optimization purposes.

II.3.6. SUPPORT FOR INTEGRATED DEVELOPMENT ENVIRONMENTS 95

OBIWANCodeGeneration , a user-defined compilation task coded in C#, whose Execute

method invokes OBIWAN code.

OBI-VS is activated during the build process when the meta-data attribute [OBIWAN] is
encountered. A CodeDom tree is created for each class tagged with the [OBIWAN] attribute,
using an open-source C# parser, based on the one included in Mono (Novell 2004).8 It has been
extended to handle code inside methods, instead of just signatures of methods and declara-
tions of fields and properties. Class extension is performed by inserting the appropriate nodes
(namely: declarations of IProvider and IDemander interface inheritance, fields, and auto-
matically implemented methods with respective code) in the CodeDom tree, by following the
approach described previously in Section II.3.3.8. Proxy generation is performed by creating a
new CodeDom tree and filling it with the corresponding declarations and code.

Finally, the approach used to incorporate the OBI-VS plug-in for Visual Studio could also
be used to integrate the OBIWAN.Java prototype with build tools such as ant (that uses XML
files to express dependencies and build rules), and to specify and deploy plug-ins in Java-based
integrated development environments, such as Eclipse.

Summary of Chapter: In this chapter, we described the implementation of OBIWAN in a num-
ber of prototypes (OBIWAN.Java, OBIWAN.Net, M-OBIWAN) targeting the Java and .Net vir-
tual machines in different environments. The OBIWAN.Java and OBIWAN.Net prototypes, im-
plemented in Java and C# respectively, execute on desktop and laptop computers in the context
of wide-area distributed networks. The M-OBIWAN prototype is targeted at the .Net Compact
Framework and executes on mobile resource-constrained devices (such as PDAs) used in mo-
bile and pervasive computing. We described how the prototypes inter-operate and communicate
over the network.

We presented in detail the implementation of the OBIWAN middleware core that follows a
common pattern in all the prototypes: i) data structures managing replication, ii) OBIWAN in-
terfaces IProvider , IDemandee , and IDemander , and iii) other relevant issues such as object
identity, serialization and instantiation, and class inheritance. The code implementing the inter-
faces is automatically generated by obicomp compilers. Special detail was given to the exten-
sion of application classes, describing how interfaces IProvider (methods get and put) and
IDemander are implemented. We also demonstrate how the code for proxies-out and proxies-in
is generated.

We show how the limitations of existing virtual machines for mobile constrained devices
(e.g., absence of remote method invocation and proper object serialization) are circumvented by
using a communication bridge based on web-services, and automatic conversion of objects into
wrappers, using XML. We also addressed the integration of OBIWAN with application servers
(OBI-Web) and persistence tools (OBI-Per). Finally, we described how OBIWAN can be deployed
within a commercial integrated development environment (e.g., Visual Studio), in order to fully
automate application development in OBIWAN.

8An open source Unix version of the .Net runtime and compilers.

96 CHAPTER II.3. IMPLEMENTATION

II4Evaluation

This chapter describes the evaluation of incremental object replication with OBIWAN, both
quantitatively and qualitatively. The main part of the chapter is dedicated to performance mea-
surements of incremental object replication of the OBIWAN prototypes. Then, we briefly de-
scribe some example applications developed on top of OBIWAN.

II.4.1 Performance Evaluation

The performance results are presented following the same structure adopted in the previous
chapter. First, we present the performance results of the prototypes that target exclusively desk-
top computers (OBIWAN.Java and OBIWAN.Net). Then, we present the results of M-OBIWAN,
OBI-Web, and OBI-Per together.

II.4.1.1 OBIWAN Desktop prototypes

In this section we present experimental results of incremental replication in OBIWAN.Java
and OBIWAN.Net, with and without clustering with varying parameters. All the results were
obtained with Pentium III and Pentium II PCs, with 128 MB of main memory each, connected
by a 100 Mb/sec local area network, running JDK 1.3, and .Net Framework 1.0.

II.4.1.1.1 OBIWAN.Java

To study the performance of incremental replication in OBIWAN.Java, we performed several
experiences of incrementally replicating into process P1 (that acts as a client), a list of objects
from process P2 (that acts a server).

We use objects of several sizes, intended to be representative of small, medium, and large
objects in common applications: 64 bytes, 1024 bytes and 16 Kbytes, respectively.

We use a list with 1000 objects that is created initially in process P2. Each element of the list,
besides containing a reference to the next element, also holds a byte array as private data, that
simply adds the corresponding payload to the object. In each experience, all the objects in the
list are of the same size.

The application running in P1 starts by obtaining a reference to the head of the list (using
a well-known name). Then, it iterates over the list, as it invokes a method on each object of the
list, until it reaches its end.

98 CHAPTER II.4. EVALUATION

When the object being invoked is not yet replicated into P1, OBIWAN automatically repli-
cates it, and optionally a number of following objects using a certain depth. When an object is
being replicated, the object payload (a byte array) is not explicitly copied (i.e., cloned), it is just
referenced by the new replica. Cloning is unnecessary because the payload will be copied when
the object replica is serialized.

The depths used in the experiments are 1, 25, 100, 250, 500, and 750. The list is thus replicated
into process P1, in several steps, each step replicating 1, 25, 100, 250, 500, or 750 objects at once.

The results are presented on the left-hand side of Figure II.4.1. The time values include the
creation of object replicas, and proxy-out standing for the object that will be replicated in the
next phase, as well as corresponding proxies-in. They also include the cost to serialize, transfer,
and de-serialize all the object replicas and proxy-out, all with internal remote references to their
corresponding proxy-in (its provider). In this case, each object can still be updated individually,
and invoked remotely, since there is the creation of a proxy-in for each object being replicated.

From the left-hand side of Figure II.4.1, we can observe that:

• The steps observed are due to the creation of replicas, proxies-in and proxy-out, and trans-
ference of replicas, and proxy-out. Each time an object-fault is detected, a number of ob-
jects are replicated before execution may resume. This delay appears in the Figure as a
step.

• The creation and transference of replicas along with the corresponding proxy-in/proxy-
out pairs is more significant than object invocations. Naturally, the actual cost of iterating
over the list’s elements, once they are replicated, is negligible. When more than one object
is replicated at once, there is no noticeable slope in the graph, during object invocations,
just until the next time replication takes place.

• Although the incremental replication of one object each time is the most flexible alter-
native, it is the least efficient for large number of invocations, especially for small and
medium sized objects. This is due to network latency, that imposes a penalty for every
access, regardless of the amount of data being transferred.

• The incremental replication of 25 to 100 objects at once is the most efficient alternative,
w.r.t. to all object sizes. Depths in this range balance serialization complexity and network
latency (more details in Section II.4.1.1.1.1). With these replication depths, the difference
between replicating objects of 64 or 1024 bytes becomes almost insignificant.

• The incremental replication of 750 or 500 objects at once is less efficient because of the high
cost of creation and transference of the corresponding replicas and proxy-out/proxy-in
pairs. It imposes a more noticeable delay to applications, both initially and every time
objects are replicated. Furthermore, the probability of some of the replicated objects never
actually being invoked is higher. This wastes work, and memory at the client, specially in
the case of large objects.

In conclusion, to improve the execution time of applications, when only a part of the objects
will be effectively needed, it is clearly advantageous to replicate the objects incrementally as

II.4.1. PERFORMANCE EVALUATION 99

64 byte Objects

0

1000

2000

3000

4000

5000

6000

0
 100
 200
 300
 400
 500
 600
 700
 800
 900
 1000

invocations

t
i

m

e

(

m

s

)

1

25

100

250

500

750

64 byte objects with clustering

0

50

100

150

200

250

300

350

0
 100
 200
 300
 400
 500
 600
 700
 800
 900
 1000

invocations

t
i

m

e

(

m

s

)

25

100

250

500

750

a. OBIWAN.Java Performance 64-byte. b. OBIWAN.Java Performance 64-byte clustered.

1024 byte Objects

0

1000

2000

3000

4000

5000

6000

0
 100
 200
 300
 400
 500
 600
 700
 800
 900
 1000

invocations

t
i

m

e

(

m

s

)

1

25

100

250

500

750

1024 byte objects with clustering

0

50

100

150

200

250

300

350

400

450

500

0
 100
 200
 300
 400
 500
 600
 700
 800
 900
 1000

invocations

t
i

m

e

(

m

s

)

25

100

250

500

750

c.OBIWAN.Java Performance 1024-byte. d. OBIWAN.Java Performance 1024-byte clustered.

16K Objects

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0
 100
 200
 300
 400
 500
 600
 700
 800
 900
 1000

invocations

t
i

m

e

(

m

s

)

1

25

100

250

500

750

16K objects with clustering

0

500

1000

1500

2000

2500

3000

0
 100
 200
 300
 400
 500
 600
 700
 800
 900
 1000

invocations

t
i

m

e

(

m

s

)

25

100

250

500

750

e.OBIWAN.Java Performance 16 K-byte. f. OBIWAN.Java Performance 16K-byte clustered.

Figure II.4.1: OBIWAN.Java Performance Results.

100 CHAPTER II.4. EVALUATION

they are invoked. However, there should be replicated more than one object each time, i.e., a
small number of them (e.g., 25), sufficient to amortize latency effectively, without incurring the
application in significant delay.

II.4.1.1.1.1 Performance of Cluster Replication

We also study the performance of incremental replication with object clustering. The ex-
periments are similar. The list and object sizes are the same as in the previous experiments.
The application running in process P1 behaves identically, i.e., it simply iterates over the list,
invoking a method on each object, until it reaches the end if the list.

Thus, when the object being invoked is not yet replicated, the system automatically repli-
cates the next 25, 100, 250, 500, or 750 objects. The difference is that objects are replicated in
groups, i.e. clusters with several sizes: 25, 100, 250, 500, or 750 objects.

This means that, for each of these clusters, all objects are replicated as a whole. There is only
one proxy-in/proxy-out pair being created. Consequently, each object can not be individually
updated but object replication is faster. This is so since much fewer objects are created and
transferred, and the number of references among them is also smaller.

The results are presented in the right-hand side of Figure II.4.1. In each case, the time values
include the creation and transference of all the replicas; notice that, for each cluster, only a single
corresponding proxy-out/proxy-in pair is created.

From Figure II.4.1, we can conclude that:

• The performance results are much better, when compared to the previous section.

• This improvement is due to the fact there is only one proxy-out/proxy-in pair being cre-
ated and transferred for each cluster. Thus, there is significant less object creation and
transference (about half), and reference-setting between objects. The most significant per-
formance cost is data serialization (done by the Java virtual machine) and network com-
munication.

• The improvement also suggests that the creation and initialization of proxies-in and the se-
rialization and de-serialization of remote references (that is practically absent in clustering
mode) is responsible for a significantly fraction of replication time.

• When compared to the previous section, the performance results are not that sensitive to
the amount of objects being replicated each time (i.e. the curves are closer). This is due to
the same reason as in the previous item.

Discussion In order to better understand the reasons for the differences observed in Fig-
ure II.4.1, w.r.t. object replication with and without clustering, we instrumented OBIWAN code
and customized Java RMI, in order to obtain precise timings for each relevant aspect of ob-
ject replication (replica creation, serialization, de-serialization and network transfer), as well as
bandwidth usage.

II.4.1. PERFORMANCE EVALUATION 101

29
32

120

38
 321

375

972

168

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Split Times without Clustering

Network
 38
 168

Replica creation
 120
 972

De-Serialization
 32
 375

Serialization
 29
 321

100
 500

15

23

10

30

78

94

10

130

0

50

100

150

200

250

300

350

Split Times with Clustering

Network
 30
 130

Replica creation
 10
 10

De-Serialization
 23
 94

Serialization
 15
 78

100
 500

a. Split Times without clustering. b. Split Times with clustering.

1

100

250

500

IN

OUT

572102

148194

126910

106442

8349696

3215360

3160064

2961408

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

bytes

Depth

Bandwidth without Clustering

IN
 8349696
 3215360
 3160064
 2961408

OUT
 572102
 148194
 126910
 106442

1
 100
 250
 500

1

100

250

500

IN

OUT

538092

17880

6654

2916

8339456

3123200

2652160

2570240

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

bytes

Cluster Size

Bandwidth with Clustering

IN
 8339456
 3123200
 2652160
 2570240

OUT
 538092
 17880
 6654
 2916

1
 100
 250
 500

c. Actual Bandwidth usage without clustering. d. Actual Bandwidth usage with clustering.

Figure II.4.2: OBIWAN.Java performance (Result Decomposition for 1024-byte objects). Band-
width is measured from the point of view of client process (P1): i) IN - from P2 to P1, ii) OUT -
from P1 to P2.

RMI customization was performed by installing an alternative RMISocketFactory

that uses an extended socket (CountSocket) class. These sockets use extended
FilterOutputStream and FilterInputStreams . They sit on top of existing input and
output streams (of the underlying virtual machine) and simply count the number of bytes ex-
changed via them.

Instrumentation of OBIWAN code to obtain timings of the different phases of object repli-
cation was automatically generated and consists of inserting code in the beginning and end
of methods of interfaces IProvider , and IDemandee in objects, proxies-out and proxies-in.
This code simply registers a time, with a short text description (e.g., differentiating proxies from
objects). This additional code obviously introduces some overhead (w.r.t. to the findings on
Figure II.4.1) but it is marginal, and it manifests rather evenly over the tested cases.

The results are portrayed in Figure II.4.2. The top graphs show time decomposition for the

102 CHAPTER II.4. EVALUATION

different phases of object replication for a single replication operation (either 100 or 500 objects
at a time, with and without clustering). Object size is 1024-byte (the intermediate size) in all
cases.

It is clear that, without clustering, replica creation, serialization and de-serialization, take
more time and that this effect is cumulative and not linear (i.e., total times for replicating 500
objects are more than five-fold those of replicating 100 objects).

With clustering, replica creation is quite inexpensive and even difficult to measure. Serial-
ization and de-serialization costs together surpass that of network transfer. All the three increase
quasi-linearly from 100 to 500 object clusters.

Without clustering, network times are not much greater, since the object payload partially
masks the cost of transferring the additional remote references. However, replica creation, seri-
alization and de-serialization times are much greater (specially in the case when 500 objects are
replicated). This is due to the large overhead introduced by creating and initializing proxies-in
(that are Java Remote objects), serializing an object graph containing so many remote references
(100 and 500, respectively), and reconstructing them on de-serialization time.

The graphs at the bottom of Figure II.4.2 illustrate bandwidth usage in bytes when iterating
the complete 1000 object list, replicating 1, 100, 250 and 500 objects at a time, with and with-
out clustering. These measurements include not only traffic regarding actual object data being
transferred, but also every other RMI-related traffic (remote invocations, remote reference set-
up, etc.).

It is clear that incremental replication of one object at a time, clearly wastes bandwidth (uses
between 2.8 and 3.2 times more than with 500 objects). In general, replicating more objects at
a time reduces the total inbound (from P2 to P1) bandwidth used. This is because there are
fewer remote invocations taking place (2, 4, 10, or 1000). The lower bound value would be just
slightly higher than 1024000 bytes, i.e., the combined total payload of all objects in the list. RMI
is less efficient than this optimum, mainly due to the insertion of type and remote invocation
information in serialized data.

The graphs also show that the outbound (from P1 to P2) bandwidth usage if far greater
without clustering, than with clustering. The significant values are those of replicating 100, 250,
and 500 objects each time. It uses between 8.2 and 36.5 times more bandwidth. This is due to
RMI traffic ”behind-the-scenes” regarding remote references being de-serialized and set-up.

II.4.1.1.2 OBIWAN.Net

We now present the performance results of the OBIWAN.Net prototype. They are briefer
than those of OBIWAN.Java, since they exhibit mainly the same tendencies observed for OBI-
WAN.Java, and discussed earlier.

Figure II.4.3 shows the results for incremental replication with OBIWAN.Net. The two
graphs at the top refer to incremental replication of 64 and 1024-byte objects, without cluster-
ing. They follow the same tendency than OBIWAN.Java. Nevertheless, the results are better in
all aspects:

II.4.1. PERFORMANCE EVALUATION 103

64 byte Objects

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0
 100
 200
 300
 400
 500
 600
 700
 800
 900
 1000

invocations

t
i

m

e

(

m

s

)

1

25

100

250

500

750

1024 byte Objects .Net

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0
 100
 200
 300
 400
 500
 600
 700
 800
 900
 1000

invocations

t
i

m

e

(
m

s

)

1

25

100

250

500

750

a. OBIWAN.Net 64-byte. b. OBIWAN.Net 1024-byte.

1024 byte Objects with clustering

0

100

200

300

400

500

600

700

800

0
 100
 200
 300
 400
 500
 600
 700
 800
 900
 1000

invocations

t
i

m

e

(

m

s

)

25

100

250

500

750

1024 byte objects with clustering (warm .Net remoting)

0

100

200

300

400

500

600

700

0
 100
 200
 300
 400
 500
 600
 700
 800
 900
 1000

invocations

t
i

m

e

(

m

s

)

25

100

250

500

750

c. OBIWAN.Net 1024-byte with clustering. d. OBIWAN.Net 1024-byte with clustering and warm Remoting.

Figure II.4.3: OBIWAN.Net Performance Results.

• Incremental replication of one object at a time performs significantly better (a speed-up of
almost 1.30, for 64-byte objects).

• The improvement is less noticeable when 25-100 objects are replicated each time (speed-up
of 1.14 for 1024-byte objects).

• The performance is much better than with OBIWAN.Java when the number of objects be-
ing replicated is high (i.e., 250, 500, and 750).

• The curves in the graph (except for incremental replication of one object each time) are less
separated.

These aspects can be explained by a number of reasons. Execution in OBIWAN.Net is faster,
since code is just-in-time compiled, i.e., after the first invocation of a method, the code executed
in future invocations is compiled code. This favors the creation of both replicas and proxies-in.
Furthermore, the .Net CLR handles recursion better than the Java VM, since performance does
not degrade, and it supports replication depths even larger than 750.

104 CHAPTER II.4. EVALUATION

The graph of Figure II.4.3-c explore object replication with clustering, for medium-sized
objects (1024-bytes). Comparing these with the results of OBIWAN.Java:

• In general, they are worse, with a slowdown ranging from 1.25 (for clusters of 250 objects)
to 1.76 (for clusters of 25 objects).

• The results for clusters of 25 objects are significantly worse than those for larger cluster
sizes.

• There is a much higher initial latency when replication starts, when compared to OBI-
WAN.Java. This difference was also observable without clustering but was not so signifi-
cant.

These results indicate that when the burden of proxy-in creation is avoided, and despite
execution in .Net being faster than Java, OBIWAN.Java performs better than OBIWAN.Net. This
apparently indicates that communication with Remoting Services in .Net is less efficient than
with Java RMI. In particular, it has a heavier initialization time, the first time a remote object
is invoked (not present in RMI). However, this is due to the fact that, in .Net, a reference to a
remote object can be created lazily, i.e., without actual communication, delaying it until the first
actual invocation. Thus, this introduces an additional delay not measured in OBIWAN.Java

To mitigate the effects of this, we also measured the performance of object clustering in OBI-
WAN.Net with ”warm” Remoting, in a number of tests . This is achieved by performing a prior,
empty remote invocation on an object in P2, without any object replication taking place. This
way, the first time that object replication takes place, the initialization delay of .Net Remoting is
no longer reflected in the measurements. The results, except for clusters of 25 objects, become
similar to those of OBIWAN.Java

Summary The performance of incremental replication, without clustering, is much better with
OBIWAN.Net than with OBIWAN.Java. Thus, in the case of applications where the programmer
wants to refresh, update, or perform remote invocations on objects individually, it is the best
option.

With object clustering, OBIWAN.Java outperforms OBIWAN.Net, without prior initializa-
tion of .Net Remoting Services. When this is done, the results become more similar, dominated
by network transfer.

II.4.1.2 M-OBIWAN / OBI-Web / OBI-Per

In this section we present experimental results of incremental replication in the M-OBIWAN,
OBI-Web, and OBI-Per prototypes. The performance tests were executed with the following
infrastructure: a Pentium 4, 2.8 Ghz, 512 MB PC, and a IPAQ 3360 Pocket PC, equipped with 64
MB RAM.

They were connected via wireless through a USB Bluetooth adapter at 700Kbps. This band-
width value represents raw bandwidth. In .Net Compact Framework Framework, the commu-
nication between the PDA and the web-bridge is XML-formatted. Therefore, the useful band-
width, when compared to a binary transport, represents only a fraction of this value.

II.4.1. PERFORMANCE EVALUATION 105

64-byte objects

0

10

20

30

40

50

60

70

80

90

100

110

120

0
 20

40

60

80

10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

invocations

ti
m

e
 (

s
)

5

10

25

50

75

98

64-byte objects

(server running within IIS)

0

10

20

30

40

50

60

70

80

90

100

110

120

0
 20

40

60

80

10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

invocations

ti
m

e
 (

s
)

5

10

25

50

75

98

a. 64-byte objects. b. 64-byte objects integrated with IIS.

1024-byte objects

0

10

20

30

40

50

60

70

80

90

100

110

120

0
 20

40

60

80

10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

invocations

ti
m

e
 (

s
)

5

10

25

50

75

98

1024-byte objects

(server running within IIS)

0

10

20

30

40

50

60

70

80

90

100

110

120

0
 20

40

60

80

10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

invocations

ti
m

e
 (

s
)

5

10

25

50

75

98

c. 1024-byte objects. d. 1024-byte objects integrated with IIS.

16K objects

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

400

425

0
 20

40

60

80

10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

invocations

ti
m

e
 (

s
)

5

10

25

50

75

98

16K objects

(server running within IIS)

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

0
 20

40

60

80

10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

invocations

ti
m

e
 (

s
)

5

10

25

50

75

98

e. 16 KB objects. f. 16 KB objects integrated with IIS.

Figure II.4.4: M-OBIWAN/OBI-Web Performance Results.

106 CHAPTER II.4. EVALUATION

We analyzed prototypes’ performance with a micro-benchmark similar to the one used for
the OBIWAN desktop prototypes. An application running on the PDA (process P1 acting as a
client) performs a series of iterations executed on a list with 300 elements, stored in a desktop
computer (process P2, acting as a server), with different payloads (64-byte, 1024-byte, and 16KB
each), timing each invocation (see Figure II.4.4).

As the list of objects is iterated, on each object, a method is invoked. When the object is not
yet replicated, the replication mechanism takes over and replicates the object where the fault
occurred. Additionally, a configurable number of other objects is also replicated. In the end of
each test, 300 objects have been replicated.

The same experiments were performed both with P2 running as a separate process, in M-
OBIWAN; and inside IIS as a separate .Net Application Domain (AppDomain), in OBI-Web.
In both cases, the communication between the web-bridge and P2 is performed via Remoting
Services, with binary serialization. However, in the second case, an optimized version is used,
since the web-bridge and P2 run in separate application domains, but sharing the same process.
Finally, we evaluate the impact of adding persistence support, with OBI-Per.

The replication mechanism was configured, by means of different policies, to replicate ob-
jects, on-demand, with a depth of 5, 10, 25, 50, 75 and 98 objects each time. This way, every time
a proxy is replaced and the corresponding object is replicated, a number of others, referenced by
it, are also replicated. The limit depth, 98, is imposed by stack restriction on .Net CF. The graphs
of Figure II.4.4 show that:

• Replication performance is mostly latency-bound. Thus, the worst results are obtained
with replication of 5 and 10 objects each time. It is specially noticeable with 64-byte objects.
With larger payloads (16 KB), the effects of latency are naturally almost entirely masked.

• Incremental replication is more efficient when 25 or more objects are replicated each time.
This is due to same reasons explained in the previous item.

• When object payload is raised from 64 to 1024 bytes (a sixteenfold increase), performance
drops only by a factor of 1.6, on average.

• When object payload is raised from 1024 bytes to 16 KB (another sixteenfold increase),
performance drops, roughly, by a factor of 7.

• The differences between M-OBIWAN (on the left) and OBI-Web (on the right) only become
apparent when the object size is very large, for typical applications running in mobile
constrained devices (16 KB). Executing P2 in an application domain within the IIS process,
produces a speed-up that is always below 1.14.

• The first replication phase always takes more time than the following ones, throughout all
graphs, even when very few (five) and small (64-byte) objects are replicated.

Naturally, incremental object replication of objects masks communication latency and mini-
mizes memory usage by applications. The number of objects incrementally replicated each time,
for near optimal results, needs not be too large (25 or 50). The best results are achieved with

II.4.1. PERFORMANCE EVALUATION 107

64-byte objects

(warm Bluetooth)

0

10

20

30

40

50

60

70

80

90

100

0
 20
 40
 60
 80
 100
120
140
160
180
200
220
240
260
280
300

invocations

t
i

m

e

(

s

)

5

10

25

50

75

98

1024-byte objects

(warm Bluetooth)

0

10

20

30

40

50

60

70

80

90

100

110

0
 20
 40
 60
 80
 100
120
140
160
180
200
220
240
260
280
300

invocation

t
i

m

e

(

s

)

5

10

25

50

75

98

a. 64-byte objects with Bluetooth warm network. b. 1024-byte objects with Bluetooth warm network.

Figure II.4.5: M-OBIWAN/OBI-Web Performance Results with warm Bluetooth network.

higher replication depths (75 or 98). However, using these depths could waste more memory if
only a few of the objects that are replicated, are actually accessed. Once more, XML-based se-
rialization, imposed by .Net CF current limitations, is responsible for some wasted bandwidth1

and increased processing-time due to parsing.

Finally, there is also a noticeable additional latency when the application starts replicating
objects. To further investigate this, we repeated the experiments regarding M-OBIWAN (ini-
tially presented in Figure II.4.4-a and -c, with a slight modification. The results are portrayed
in Figure II.4.5. In these experiments, the application initially performs replication of a small
number of objects from a different list, that is not measured. Only after this initial replication
is complete, does the the application starts iterating the test list. This way, object replication is
performed using a ”warm” (i.e., already completely established) Bluetooth connection. The dif-
ferences observed correspond to a fixed-cost, i.e., the Bluetooth connection set-up time (around
8500 ms).

II.4.1.2.1 OBI-Per

The evaluation of the introduction of persistence support in OBIWAN is divided in two
parts. The first measures raw performance of the two persistence solutions used: i) SqlPerst-
Storage, using relational-based SQLServer; and ii) Db4oPerstStorage, using db4o, that is object-
based. The second one measures the impact of the integration of persistence in overall perfor-
mance, as perceived by applications. The results are presented in Figure II.4.6.

To evaluate the performance of the two persistence solutions, we performed a series of tests
that consist in storing 1000 objects of different sizes (64, 1024, 2048, and 4096 bytes), and then
retrieving them back. The connections to SQLServer and db4o are explicitly (re-)opened and
closed, before and after each sequence of read or write operations.

1When compared to binary serialization, the bandwidth required to serialize an object in XML is considerably
higher.

108 CHAPTER II.4. EVALUATION

Db4oPerstStorage

0

1

2

3

4

5

64
 1024
 2048
 4096

object size

t
i

m

e

(

s

)

GET

PUT

SqlPerstStorage

0

1

2

3

4

5

6

7

8

9

10

64
 1024
 2048
 4096

object size

t
i

m

e

(

s

)

GET

PUT

a. Performance of db4o persistence. b. Performance of SQLServer persistence.

replication + activation (64 bytes)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

0

3

0

6

0

9

0

1

2

0

1

5

0

1

8

0

2

1

0

2

4

0

2

7

0

3

0

0

invocations

t
i

m

e

(

s

)

5

10

25

50

75

98

replication + activation (1024 bytes)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

0

3

0

6

0

9

0

1

2

0

1

5

0

1

8

0

2

1

0

2

4

0

2

7

0

3

0

0

invocations

t
i

m

e

(

s

)

5

10

25

50

75

98

c. 64-byte objects with persistence. d. 1024-byte objects with persistence.

Figure II.4.6: OBI-Per performance.

The results shown in Figure II.4.6-a, and -b refer to total times after the two sequences (writ-
ing and reading), for each object size. W.r.t. reading objects from persistent storage, SqlPerstStor-
age performs better for smaller objects (especially for 64 and 1024-byte objects, with speed-up of
1.66 and 1.45). However, Db4oPerstStorage performs much better for writing objects, especially
smaller ones. Speed-ups range from 4.27 to 9.25.

To evaluate the impact of introducing persistence support in common applications, we re-
peated the performance tests of M-OBIWAN and OBI-Web, now in OBI-Per, for objects sized
256 and 1024 bytes, using Db4oPerstStorage (see Figure II.4.6-c and -d). In these tests, P2 (that
initially holds the objects and acts as a server) no longer loads the objects prior to application
execution in P1. Instead, it only loads an initial object from persistence storage, and then the
remaining objects are loaded only when their are needed for the first time. In this case, this hap-
pens when P1 tries to replicate another number of objects. All the experiments were performed
with a ”warm” Bluetooth connection.

When objects are being replicated in P2, they are first loaded from persistent storage, and
then method get of interface IProvider is invoked on them. The replication depths used are
the same as before (5, 10, 25, 50, 75, and 98) and the same depth is used to load objects from per-
sistent storage. As an example, using a replication of 25, method get is invoked only after those
objects are loaded from storage. The most efficient approach would obviously be to perform

II.4.2. EXAMPLE APPLICATIONS 109

a. M-OBIWAN Replication Timer. b. M-OBIWAN Event-viewer

Figure II.4.7: M-OBIWAN / OBI-Web applications.

this in advance, as it would hide the resulting overhead. Even so, the results are not signifi-
cantly worse. This is due to additional disk latency since the effect is more pronounced when
the number of accesses is higher (using smaller replication depths), but it is mostly dominated
by network latency and communication.

II.4.2 Example Applications

This section briefly presents a number of example applications developed using the OBI-
WAN implementations presented earlier. Regarding object replication, the amount of code the
developer has to know about is restricted to OBIWAN API methods : i) GetObject once, in the
beginning; and ii) PutObject, when sending updated objects to the server, e.g., before closing
application.

The initial example application, developed for a preliminary OBIWAN.Net prototype, con-
sists of interactive tree-view explorer (Veiga 2002) that replicates nodes incrementally as their
are visited by the user. It allows node creation, deletion, and modification of associated textual
data. When instructed by the user, updated objects are transferred to the server. Figure II.4.7-a
depicts a replication timing application used to obtain M-OBIWAN/OBI-Web/OBI-Per perfor-
mance measurements, running on resource-constrained devices (e.g., PDA).

The Event-Viewer application, presented in Figure II.4.7-b runs on a PDA and is devel-
oped on top of OBI-Web, using obicomp . It allows users to create, share, and update schedules
and additional information regarding cultural events. Data is organized as an object graph and
stored in XML file. Users can determine the object server and the depth of the incremental repli-
cation mechanism. The list of events is replicated incrementally by user wish. Each event has
further detailed information that is also replicated on demand, when a specific field is inspected.

Figure II.4.8 presents an simple Interactive Building Creator and Navigator developed on
top of OBI-Per, that also runs on a PDA. The user is able to navigate and edit buildings previ-
ously constructed, or build new ones from scratch. Buildings are represented as object graphs

110 CHAPTER II.4. EVALUATION

a.Main Screen of Building Navigator.

b. Room Creation. c. Door Creation.

Figure II.4.8: OBI-Per Interactive Building Creator.

stored persistently. Users navigate among rooms, of different types, by following doors con-
necting them. A building is interactively created by alternate sequences of navigating through
rooms, and creation of new rooms and doors. Doors are created by connecting two existing
rooms. Rooms may have any number of doors. The user is informed of the path followed dur-
ing a session. Users can freely modify an existing object graph by changing room and door
details, delete doors and rooms, and change the pair of rooms connected by a given door.

Summary of Chapter: In this chapter, we presented the evaluation of the OBIWAN proto-
types. The results obtained support the feasibility of the approaches followed. We started by
studying the performance of incremental replication and object clustering in OBIWAN.Java and
OBIWAN.Net, and then presented the performance results regarding M-OBIWAN and related
prototypes.

II.4.2. EXAMPLE APPLICATIONS 111

We performed several experiments with OBIWAN.Java replicating objects of illustrative
sizes (64-byte, 1024-byte and 16KB) incrementally, and with varying replication depths (25, 100,
250, 500, 750). We also measured the performance of replication with object clustering, using
the same values for cluster sizes. The main findings were that: i) replication performs best with
depths between 25 and 100, ii) replication depths of 500-750 are the least efficient, and iii) ob-
ject clustering clearly outperforms incremental replication, by avoiding the creation of a large
number of proxies-out and proxies-in.

Concerning OBIWAN.Java, we provided an additional analysis, by determining how repli-
cation times are split among relevant phases: i) replica creation, ii) serialization, iii) de-
serialization, and iv) network transfer, w.r.t. different replication depths and cluster size. This
measurements further demonstrated the penalties associated with creation and serialization of
proxy objects, when compared to just the creation of replicas.

The performance evaluation of OBIWAN.Net followed along the same line adopted for OBI-
WAN.Java, by varying object size, replication depth, and cluster size. They exhibit the same
tendencies observed in OBIWAN.Java. When comparing the two prototypes, the main results,
w.r.t. incremental replication were that in OBIWAN.Net: i) incremental replication has a 30%
speed-up w.r.t. OBIWAN.Java, ii) incremental replication with optimum depths (25-100) offers
a speed-up of 14% w.r.t. OBIWAN.Java, iii) as replication depths grow, the improvements over
OBIWAN.Java become more noticeable due to more efficient handling of recursion. W.r.t cluster-
ing, the results in .Net were initially worse. Nonetheless, once lazy creation of remote references
in .Net Remoting (as opposed to in Java RMI) was masked, the results became similar.

In the context of mobile environments, with wireless communication, we measured the per-
formance of object replication in M-OBIWAN and OBI-Web. We followed an approach anal-
ogous to the one described earlier for desktop prototypes. In M-OBIWAN, replication depths
were lower due to limited CPU, memory and bandwidth, always below 100. The results ob-
served show the best replication depth to be 25, and that there is significant penalty imposed
due to Bluetooth connection setup. The impact of providing support for object persistence in
OBI-Per has been evaluated, and is not significant since total replication times were dominated
by network transfer. Finally, we presented an overview of example applications developed on
top of OBIWAN.

112 CHAPTER II.4. EVALUATION

II5Conclusion

Part II of this dissertation was dedicated to Incremental Object Replication in OBIWAN.
We proposed a portable way of performing object-fault handling, and incremental replication in
distributed and mobile environments. It neither imposes changes to the virtual machine, nor the
use of a specific or enhanced virtual machine. It runs on stock versions of the two most widely
used virtual machines (Java and .Net).

We presented the related work concerning support for data-sharing. We addressed existing
research projects and commercial technologies in the context of a proposed taxonomy. In the
context of this taxonomy, OBIWAN is characterized as follows, in Table II.5.

Project System Programming Data-sharing Propagation Portability
Architecture Model Model of Modifications

replication non-intrusive to VM
OBIWAN CS / P2P objects (also remote invocation state-based code transparency

and migration) (minimal API)

Table II.5.1: Design alternatives of OBIWAN, according to the taxonomy of Chapter II.1.

We presented in detail the architecture of transparent object-fault handling, and incremental
object replication in OBIWAN. It is based on a set of OBIWAN core interfaces enabling these
mechanisms, which are implemented by middleware code in proxies-out, proxies-in, and appli-
cation objects, which are automatically generated. We further described object replication with
variable depth and object clustering. All the mechanisms described are portable. Additional
code to extend classes is automatically generated and hidden from the developer that does not
have to know or edit it.

Applications manipulate replicated objects at full-speed, so there is no indirection neither
when accessing object fields, nor when invoking object methods. When objects are not repli-
cated, proxies occupy minimum storage, only the necessary to identify the corresponding object.
Thus, proxies do not inherit from application classes, instead they implement a common inter-
face. Therefore, there is no need for proxies to store as many fields as the actual objects. Even if
they were null, this would waste memory (e.g., in a class with ten fields, the proxy would have
to maintain ten null references).

There is no use of the reflection mechanisms of the underlying virtual machine during pro-
gram execution, in order to access object fields or methods, since it would slow down appli-
cations considerably. In particular, transversing object graphs to create and update replicas is
performed resorting to custom-purpose middleware code, which is automatically generated,
and runs at full-speed; instead, transversing a graph using reflection mechanisms during run-
time would slow down the replication process. Utilization of reflection is restricted to the class

114 CHAPTER II.5. CONCLUSION

enhancement/extension phase performed by obicomp compilers.

OBIWAN has been implemented in a number of prototypes (OBIWAN.Java, OBIWAN.Net,
M-OBIWAN) targeting the Java and .Net virtual machines in different environments. The pro-
totypes execute on desktop and laptop computers in the context of wide-area distributed net-
works, and on resource-constrained devices (e.g., PDAs) used in mobile and pervasive comput-
ing. The limitations of existing virtual machines for mobile constrained devices (e.g., absence
of remote method invocation and proper object serialization) have been circumvented by us-
ing a communication bridge based on web-services, and automatic conversion of objects into
wrappers, using XML. OBIWAN has been integrated with application servers (OBI-Web) and
persistence tools (OBI-Per). OBIWAN has been deployed within a commercial integrated devel-
opment environment (e.g., Visual Studio), in order to fully automate application development.

The performance evaluation of the OBIWAN prototypes has been thorough and provided
several results that were analyzed in depth. The tests consisted of several experiments with OBI-
WAN prototypes replicating objects of illustrative sizes incrementally, and with varying repli-
cation depths and cluster-sizes, in the context of both distributed and mobile environments.
The performance results support the feasibility of the approaches described in this dissertation.
Finally, the usability of OBIWAN has been evaluated by developing a number of example appli-
cations on top of it.

III
Automatic Memory Management of
Distributed and Replicated Objects

(this page was intentionally left blank)

Soylent Green is made out of people!... – in “Soylent Green”, Richard Fleischer, adapted from “Make Room! Make

Room!”, Harry Harrison

Part III addresses the automatic memory management of distributed and replicated objects,
i.e., distributed garbage collection algorithms. After a brief introduction, we present related
work regarding garbage collection, mainly concerning the distributed algorithms. Both com-
plete and incomplete algorithms are presented. This stems from the fact that most of current
complete algorithms are derived from the combination of efficient but incomplete ones, with
special cycle detectors.

Following, we present three novel algorithms for complete distributed garbage collection.
The first two refer to a distributed object scenario (both a centralized and a de-centralized cycle
detection approach). The third one is an algorithm for complete garbage collection of replicated
objects.

Then, the main aspects regarding the implementations are explained. The initial sections
dedicated to implementation relate to application to object-oriented systems, while the latter
ones concern application to web (HTML-based) systems. In both these types of systems, the
notion of reference and reference graph is crucial, thus the relevance of the web scenario.

Both scenarios, with and without replication, are addressed, and performance measure-
ments are presented. Part III closes with conclusions regarding the work developed w.r.t. auto-
matic memory management.

(this page was intentionally left blank)

III1
Related Work on

Distributed Garbage
Collection

Automatic memory management, commonly known as garbage collection (GC), is a mature,
yet challenging and dynamic research area whose early works date back to more than 40 years
ago (McCarthy 1960; Collins 1960). Nonetheless, it is still a field of active and relevant research,
also enjoying steadily increasing industry adoption in recent programming languages (e.g., Java,
.Net and most object-oriented scripting languages), including distributed environments as in
Java RMI (Wollrath et al. 1996) and and .Net Remoting (McLean et al. 2002).

It is widely recognized that manual memory management (explicit allocation and freeing
of memory by the programmer) is extremely error-prone leading to: i) memory leaks, and ii)
dangling references. Memory leaks consist on data that is unreachable to applications but still
occupies memory, because its memory was not properly released. Memory leaks in servers and
desktop computers are known to cause serious performance degradation. In addition, memory
exhaustion arises if applications run for a reasonable amount of time (Willard and Frieder 1998;
Willard and Frieder 2000).

Dangling references are references (e.g., pointers) to data whose memory has already been
(erroneously) freed. Later, if an application tries to access such data, following the reference
to it, it fails (i.e. referential integrity is not ensured). Such failure occurs because the data no
longer exists or, even worse, the application accesses other data (that has replaced the one erro-
neously deleted) without knowing. Dangling references are well known to occur in centralized
applications when manual memory management is used (Wilson 1992).

Besides providing programming soundness, modern GC offers performance benefits
against manual memory management, and even against no memory management at all. GC
contiguous allocation out-performs free-list allocation, and provides locality benefits since the
other two options degrade object locality (Blackburn et al. 2004a).

Support for distributed cooperative work implies object sharing. The memory management
of these distributed (and possibly persistent) objects is even more difficult to perform manually,
and error-prone. Therefore, a number of distributed garbage collection (DGC) algorithms have
been proposed in the literature and surveyed in (Plainfossé and Shapiro 1995; Jones 1999; Jones
and Lins 1996; Abdullahi and Ringwood 1998; Shapiro et al. 2000; Ferreira and Veiga 2005).

In distributed systems, memory leaks in one computer may occur due to object references
present in other computers. Furthermore, cyclic garbage complicates memory management
even more, specially in distributed and/or persistent systems. Dangling references are also more
common in a distributed environment. Such errors are harder to detect in distributed systems
supporting replicated and/or persistent objects.

In summary, manual memory management leads not only to applications performance

120 CHAPTER III.1. RELATED WORK ON DISTRIBUTED GARBAGE COLLECTION

degradation and fatal errors but also to reduced programmer productivity. Thus, garbage col-
lection, both centralized and distributed, is vital for programming productivity and system reli-
ability.

Given that our contributions address distributed garbage collection (both for distributed
and replicated systems), we address primarily previous work dealing with DGC. Nonetheless,
we present a brief summary of local garbage collection techniques, i.e., GC for centralized sys-
tems, since some DGC algorithms are based on the adaptation of the former, to the distributed
scenario. Then, we present DGC algorithms for distributed systems based only on remote
method invocation (see Section III.1.2). Following, we present GC algorithms specific to sys-
tems with transactional and persistence semantics (see Section III.1.3). We continue with DGC
algorithms for systems with data replication (see Section III.1.4), and we finish with some con-
cluding remarks.

III.1.1 Local Garbage Collection (LGC)

In a centralized system, i.e., in the context of a single process, the only objects effectively
available to an application are those that are reachable from some considered GC root-set, either
directly, or indirectly, by transversing one or more references. Typically, GC root-set includes
global1 variables and thread stacks (i.e., local variables, method parameters).

Therefore, reachable objects are the only ones subject to being read or modified by the ap-
plication. Thus, they are said to be live. All remaining objects are unreachable to the application
and considered dead, i.e., garbage, and are only wasting memory and should be automatically
discarded, by the garbage collector (Wilson 1992; Jones and Lins 1996).

In GC terms, an application is regarded as a mutator, an abstract entity with only one relevant
operation: reference-assignment. This may result in: i) creation of a new reference to an object
just created, ii) duplication of an already existing reference, or iii) discarding a reference to an
object. Both i) and iii), or ii) and iii) may result from a single reference assignment. A side effect
of iii) is that some objects may become unreachable.

A GC algorithm aims at three fundamental properties: i) safety, ii) liveness, and iii) com-
pleteness. An algorithm is safe when it does not reclaim reachable objects. Liveness, in GC,
means that it eventually reclaims some garbage. An algorithm is considered complete if it even-
tually reclaims all garbage.

Garbage collectors can be broadly categorized in three main families: reference-counting
(with several variations), tracing collectors, and hybrids of these two previous families (Plain-
fossé and Shapiro 1995).

1In object-oriented languages, these are static variables.

III.1.1. LOCAL GARBAGE COLLECTION (LGC) 121

III.1.1.1 Reference Counting

The basic idea of the Reference-counting algorithm (Collins 1960; Collins 1961; Cohen and
Trilling 1967; Cohen 1981; Christopher 1984) is the following: a counter is associated to each
object denoting the number of references to it. When an object is created, a single reference
points to it and its counter is accordingly set to one. Each time a reference is duplicated, the
reference-count in the object is incremented. When a a reference to an object is discarded its
reference-count is decremented. When its reference-count reaches zero, the object is no longer
reachable and may be safely reclaimed by the local garbage collector.

This algorithm is mostly incremental, by nature, since its operations are interleaved with
normal mutator action. However, object reclamation may, in turn, trigger decrements of
reference-counts, with possible additional object reclamation, recursively. To limit collector la-
tency, only a subset of newly-found unreachable objects should be considered each time, thus
bounding pause time (Weizenbaum 1962; Glaser and Thompson 1987; Glaser 1987), and defer-
ring reclamation. This maintains some floating garbage, i.e., garbage already identified but not
yet reclaimed.

Reference-count maintenance imposes an additional overhead on every reference-
assignment operation. It is observable that, for many objects, the net effect of a series of
reference-count modifications is null (e.g., references from stack for parameter passing, and
function return). Thus, it could be deferred (Deutsch and Bobrow 1976) (i.e., deferring identifica-
tion) and become unnecessary later, with performance benefits (Baden 1983). Since the reference-
counts may be temporarily inaccurate, special care is taken. Alternatively, all reference-count
increments can be performed before any decrements (Bacon et al. 2001).

The storage overhead associated with reference-counts may be limited and, in the extreme,
kept as a single-bit (Wise and Friedman 1977), since a majority of reference-counts does not
surpass value one. Upon saturation of its reference-count (for any number of bits), the object
will never be reclaimed, and another algorithm is needed to re-calculate reference-counts.

Reference-counting generates fragmentation, as free space recovered from reclaimed ob-
jects is interspersed with reachable objects. Reference-counting algorithms are not able, without
specific adaptations, to identify and reclaim cyclic garbage (McBeth 1963). That is because, in
cyclically referenced structures, an object may effectively be unreachable, yet its reference-count
may still be greater than zero (e.g., a doubly-linked list).

Reference-counting algorithms are safe and live. They are not complete since they are unable
to reclaim cyclic garbage.

III.1.1.2 Tracing

Tracing algorithms traverse the reference graph from the GC root-set, to identify which ob-
jects are reachable to the mutator. The objects that were not transversed are unreachable objects,
and can be reclaimed. Tracing algorithms fall under two main sub-categories: i) mark-and-
sweep, and ii) copying collectors.

122 CHAPTER III.1. RELATED WORK ON DISTRIBUTED GARBAGE COLLECTION

Tracing collectors are safe, live and trivially able to reclaim cyclic garbage, i.e., they are
complete. Therefore, most local garbage collectors are of this kind.

III.1.1.2.1 Mark-and-Sweep

A mark and sweep collector performs two phases (McCarthy 1960): i) a marking phase that
traces the graph starting from the GC root-set marking every object found, and ii) a sweep phase
that examines all the heap reclaiming unmarked objects.

During the mark phase, every reachable object is marked (e.g., setting a bit in the object
header) and scanned for references. This phase terminates when there are no more reachable ob-
jects left to mark. During the sweep phase, the collector detects which objects were not marked
and inserts their memory space in the free-list, for future re-allocation. Marked objects are un-
marked to prepare the next collection. When this phase terminates, there is no more memory to
be swept.

This algorithm introduces fragmentation, and the cost of object reclamation, during the
sweep phase, is proportional to heap size. To avoid fragmentation, an extra compaction phase
may be performed (Cohen and Trilling 1967; Carlsson et al. 1990). Objects that are found reach-
able after the marking-phase are moved together, in order to be contiguously grouped on one
end of the object heap.

III.1.1.2.2 Copying Collectors

A copying collector also traces the object graph from the GC root-set but copies each object
reached to another location (Fenichel and Yochelson 1969; Minsky 1963). Reclaimed memory is
compacted which eliminates fragmentation. Heap compaction is thus performed on-the-fly w.r.t.
tracing. Object allocation is performed by sequentially advancing a pointer.

The heap is divided in two disjoint semi-spaces called from-space and to-space. During muta-
tor execution objects are allocated sequentially in from-space. Upon collection start, the collector
moves reachable objects to the to-space. The objects left in from-space when every reachable object
has been moved, are unreachable objects. The roles of the semi-spaces is swapped, i.e., flipped,
atomically w.r.t. the mutator. The to-space becomes the from-space and vice-versa.

A clever implementation is due to (Cheney 1970) in which objects immediately accessible
from the GC root-set are moved to to-space first. From this initial set, GC performs a breadth first
traversal of the object graph, using two pointers (free , and scan). Every object in the to-space
is scanned for references to objects still in the from-space. Each object reached is moved to the
to-space, in the memory location pointed by free , that is updated accordingly.

All references in the scanned object are updated with the new locations of the moved objects.
A forwarding pointer pointing to the location of the copied object in to-space is left in its old
location, so that the algorithm remembers where the object has been copied to. When an object in
from-space is to be re-scanned (via another reference), it is not copied again and the reference to it
is simply patched, with the remembered value. Further optimizations are described in (Reingold
1973; Clark 1976).

III.1.1. LOCAL GARBAGE COLLECTION (LGC) 123

A natural inconvenient of the copy algorithm is that only half of the memory space available
is used at any point in time: the to-space is a wasted resource between collections.

III.1.1.2.3 Incremental Tracing

To reduce pause times, tracing and copying collectors can be made incremental, i.e., have
their execution interleaved with the mutator (Steele 1975; Steele 1976; Dijkstra et al. 1978). The
main issue w.r.t incremental tracing, or copying, is how to ensure the correct behavior of the
collector when it and the mutator, interleaved, access and/or modify the same objects, before
full collection is complete.

The problem with this interleaving lies in that while the collector is tracing the object graph,
it may be modified as a result of mutator activity, without the collector knowing. This may lead
to some reachable objects not being found by the collector.

One of the earliest solutions to this problem was the tricolor marking algorithm (Dijkstra
et al. 1978), that provides an abstraction, applicable both to mark-and-sweep and copying al-
gorithms. In this algorithm, objects are initially colored white. Coloring may be implemented
by mark-bits, or by moving objects. Members of the GC root-set are conceptually black. Thus,
when the collection is finished reachable objects are all colored black.

There is a third colour, gray, to signal an object that has been reached by the collector tracing,
but some objects referenced by it, might not have been yet. When a gray object has been scanned
it becomes black and its descendents are colored gray. In a copy collector the gray objects are
those that have already been moved to to-space but have not yet been scanned. A collection
terminates when there are no more gray objects to handle.

The invariant for correctness is the following: black objects may never reference white ob-
jects, since the latter will be wrongly considered unreachable. Yet, this could happen if a black
object is modified after it has been scanned by the collector, and made to reference an object not
yet scanned (a white object). If all the other references to the white object are destroyed, it will
be incorrectly reclaimed. Therefore, either references to white objects, or modifications to black
objects, must be tracked by the collector. This is achieved via synchronization, with the use of
read and write barriers, respectively.

Read barriers are used in (Appel et al. 1988; Baker 1978; Brooks 1984; Queinnec et al.
1989; Zorn 1989; Huelsbergen and Larus 1993) to prevent the mutator from seeing white ob-
jects. In (Baker 1978), when a pointer to a white object is read, this action is trapped, and the
object is colored gray (i.e., moved to to-space).

Write barriers are used in (Appel et al. 1988; Boehm et al. 1991; Demers et al. 1990; Dijk-
stra et al. 1978; Steele 1975; Yuasa 1990) when the mutator attempts to modify a black object.
In (Nettles et al. 1992), the mutator always accesses and modifies objects in from-space, while
the collector is copying reachable objects to to-space. When a black object (i.e., an object already
copied and scanned) is further modified by the mutator, this is trapped by the write-barrier that
logs and reapplies the modifications to the object in to-space, before flipping the spaces.

124 CHAPTER III.1. RELATED WORK ON DISTRIBUTED GARBAGE COLLECTION

III.1.1.3 Hybrid Approaches

A number of algorithms implement an hybrid approach of tracing and some form of
reference-counting (even when not stated as such). In essence, they apply tracing techniques
only to subsets of the object graph, to improve responsiveness and/or avoid performing useless
work. Techniques akin to reference-counting (e.g., remembered-sets) are used, complementary,
to manage references among objects belonging to different subsets.

Since these solutions partition the object space in several subsets, and operate on them in-
dependently, these techniques provide a starting point for some GC algorithms targeting the
distributed scenario (addressed later in this chapter). Examples of algorithms resulting from the
hybridization of reference-counting and tracing include (Martinez et al. 1990; Lins 1992a; Lins
1992b).

III.1.1.3.1 Partitioned Tracing

With partitioned tracing, the whole memory is divided in several subsets called partitions.
Each partition is traced independently from the others and cross-partition references are man-
aged with a reference-counting algorithm (Bishop 1977; Moss 1989; Maheshwari and Liskov
1997c). The use of multiple independent partitions is very useful in large persistent (see Sec-
tion III.1.3) and/or distributed (see Section III.1.2) systems, because each partition (or process)
may be collected in parallel and independently. Small partitions are easy and fast to trace and
allow earlier reclamation of intra-partition garbage. However, they introduce higher communi-
cation and storage overhead in managing inter-partition references.

III.1.1.3.2 Generational Collectors

Generational collectors are based on the empirical observation that newer objects have
higher mortality (Lieberman and Hewitt 1983; Moon 1984; Ungar 1984; Ungar and Jackson 1988;
Hayes 1991; Lins 1992b). Therefore, in many applications, most objects are reachable only for a
very short period of time. Additionally, a fraction of the objects are very long-lived. Thus, gen-
erational collectors reduce the pause time due to GC, by reducing the amount of memory that
has to be collected more frequently. Both mark and sweep and copy algorithms can be made
generational.

This way, objects are discriminated in a number of partitions (at least two), that are called
generations, managed accordingly to object age. Whence created, objects belong to generation
zero, the youngest. As they survive collections, they are promoted to higher ranking, i.e., older
generations. Younger generations are collected more often than older ones, since they are ex-
pected to contain more garbage objects.

References from objects belonging to older generations targeting objects in younger genera-
tions are kept in a remembered-set, that is included in the GC root-set of the younger generation. In
order to construct remembered-sets, cross-generation references are detected using write-barriers
or indirect pointers.

III.1.1. LOCAL GARBAGE COLLECTION (LGC) 125

III.1.1.3.3 Train Algorithm

The Incremental Generational Collector proposed in (Hudson and Moss 1992) aims at re-
ducing GC pause times even further. It is applied to the older generation, (i.e., mature objects
that survived collection in the younger generation - the nursery).

The Mature Object Space (MOS) is divided in cars of fixed memory size. The collector re-
claims at most one car each time it runs. Cars are grouped in trains with variable number of cars,
and are totally ordered, since trains are ordered and cars are ordered (within a train). Objects sur-
viving nursery collection are inserted in cars in any train that is not being collected. The algorithm
moves objects closer and closer to the cars and trains they are referenced from. Intra-car garbage
(cyclic or acyclic) is collected by tracing. This algorithm clusters related objects (referenced and
referring) in the same car or, at least, in the same train.

Train collection is always performed on the first train. References to the first train are exam-
ined, in the GC root-set or from other trains. If there are none, the whole train is garbage and is
reclaimed, otherwise the first car of first train is examined. Trains record references from objects
in higher trains in their remembered-set.

References to the first car are examined as cars record references from objects in higher cars
(including higher trains). If there are none, the whole car is garbage and is reclaimed; otherwise,
objects are moved to the highest car they are referenced from. When there is not enough space
in a car, each object is moved to a higher car or to a new one. If there are references from objects
in the nursery, the object is moved to a later train.

When there are no more references to first car the whole car is garbage and may be reclaimed.
Analogously, when there are no more references to any of the cars in a train, the whole train is
garbage and all its cars may be reclaimed.

The functioning of this algorithm is graphically visualized and analyzed in (Printezis and
Garthwaite 2002).

III.1.1.3.4 Ulterior Reference Counting

Ulterior Reference Counting (Blackburn and McKinley 2003) addresses the trade-offs be-
tween tracing and reference-counting. Tracing algorithms are complete and provide higher
throughput via the generational approach, but impose higher maximum pause times due to
full-heap collections. Reference-counting is incomplete and provides lower throughput due to
costly pointer operations (partially addressed in (Deutsch and Bobrow 1976)) but offers higher
responsiveness, without pauses due to full heap collections.

The two approaches are combined where they are best suited: i) generational tracing for
newly allocated objects (nursery), that ignores reference modifications, copying surviving objects
to mature space, and ii) deferred reference-counting for mature objects (mature space), general-
ized to heap objects (adding to registers and stack variables), with a variant of trial deletion to
detect cycles in the mature space to ensures completeness.

Integration of the two spaces and the two algorithms is performed as follows. Nursery ob-
jects referenced by mature objects (remembered-set) are included in the tracing root-set. Mature

126 CHAPTER III.1. RELATED WORK ON DISTRIBUTED GARBAGE COLLECTION

objects referenced by nursery objects could be subject to a high number of reference-count in-
crements/decrements. These are avoided by deferred reference-counting that also ”discards”
modifications performed on short-lived objects.

III.1.1.4 Integration with Execution Environment

Reference-counting algorithms trivially need compiler support to insert specific instructions
to update reference-counts when references are created, modified, and/or destroyed. Tracing
algorithms must be capable of finding references from the GC root-set and inside each reachable
object. The integration of a GC algorithm with the execution environment can be accomplished
in a number of ways, described next.

If the execution environment provides runtime type information (e.g., Lisp, Smalltalk, Java,
.Net), it is possible to differentiate references from raw-data (Wentworth 1990). When type in-
formation is not available (eg. C, and C++), solutions include: i) use of a pre-processor (Edelson
1992a), ii) compiler generating type information for each type (Boehm 1991; Ferreira 1991; Sam-
ples 1992), iii) take advantage of specific language features (Edelson 1992b; Detlefs 1992), like
smart-pointers in C++, or iv) the collector is conservative (Boehm and Weiser 1988; Bartlett 1988;
Boehm 1993) and regards any properly aligned bit pattern that could be the address of an object
as an actual reference.

The last option may hinder completeness, wastes memory, increases pause times, prevents
moving objects, with consequent fragmentation. Nonetheless, sometimes, it is the only feasible
approach (Weiser et al. 1989).

Another conservative approach is presented in (Willard and Frieder 1998) with the global
interception of manual memory management libraries to monitor allocated memory and peri-
odically run the GC to identify memory leaks in log-running server applications.

Multiprocessor machines with shared memory use concurrent versions of algorithms, so
that a number of processors may be executing application or mutator code, while other(s) are
executing GC code. These algorithms are, originally, extensions of the incremental algorithms
presented, with several threads running GC code. Recent work on GC for multiprocessor cen-
tralized systems includes (Domani et al. 2000; Levanoni and Petrank 2001; Lins 2002a; Azatchi
and Petrank 2003; Lins 2005; Levanoni and Petrank 2006; Muthukumar and Janakiram 2006).
The relevancy of these algorithms is expected to increase with the ongoing advent of multi-core
processors.

The line of work presented in (Herlihy and Moss 1992; Detlefs et al. 2001; Detlefs et al. 2002;
Sundell 2005) aims at developing garbage collection algorithms for systems with non-blocking
(lock-free and wait-free) fairness guaranties to processes. However, they are not complete since
they are exclusively based on reference-counting techniques.

The local garbage collector used in the the Java VM is generational. For younger generations
(named eden, survivor1, survivor2), a copying collector, that compacts the object heap, is used. For
the mature space, the older generation, Java uses a mark-and-sweep algorithm with compaction.
Alternatively, it can be configured to use the train algorithm. The LGC included in the .Net
CLR is a mark-compact hybrid that is generation-based, and manages three object generations.

III.1.2. DISTRIBUTED GARBAGE COLLECTION (DGC) 127

For parallel machines, the Java VM uses one GC thread for each processor, to collect younger
generations. This is optimized for very large heaps (e.g., in the order of several GB).

III.1.2 Distributed Garbage Collection (DGC)

Distributed garbage collection is a requirement for distributed object systems, that has been
extensively addressed (Plainfossé and Shapiro 1995; Jones and Lins 1996; Abdullahi and Ring-
wood 1998; Shapiro et al. 2000; Ferreira and Veiga 2005). In these systems, distributed garbage,
including distributed cycles, is frequent (Wilson 1996; Richer and Shapiro 2000).

In addition, when considering persistence, distributed garbage simply accumulates over
time degrading performance. This is not simply an issue of disk space. Other aspects such as
storage management, object loading on primary memory, serialization, etc. suffer performance
degradations with the extra load imposed by the existence and increase of garbage.

In distributed object systems, there is a mutator, running on each process, performing refer-
ence assignments, either intra-process or inter-process. A distributed garbage collector is a set
of components (one running in each process) that keeps track of inter-processes references.

The root-set of the distributed garbage collector (GC root-set) is the union of the local root-
sets (GC local-roots) of all processes, that include global variables and thread stacks. Live objects
are those that are reachable from the GC root-set, either directly or indirectly by transversing
references in one or more processes, i.e., in one or more hops. The remaining objects are garbage
since they cannot be accessed by the mutator running in any of the processes.

The distributed garbage collector is thus responsible for identifying live and dead objects in
distributed systems. To do so, it manages reachability information (local, remote, and global) about
objects. An object is reachable locally if it is reachable from the GC local-roots of its enclosing
process. An object is reachable remotely if it is targeted by an inter-process (i.e., remote) reference.
An object is reachable globally if it is live, i.e., if it is reachable either directly or indirectly, by
transversing references in one or more processes, from a GC local-root.

Obviously, all objects reachable locally are also, trivially, reachable globally. However, the
reverse is not true: an object may be be reachable globally, while being unreachable locally, be-
cause it is only referenced remotely, by live objects in other process(es). While local and remote
reachability can be decided independently in each process, non-trivial global reachability can-
not. Therefore, when there are remote references to an object in a process, that process can no
longer decide locally whether that object is garbage. It must combine its local information with
information provided by other (referring) processes.

Distributed garbage, as local garbage, may be acyclic or cyclic. Distributed cyclic garbage
may, in turn, be comprised of connected subgraphs of cyclic and acyclic garbage, in any order,
spanning several processes.

In distributed garbage collection algorithms, inter-process references are managed by aux-
iliary data structures. In the majority of the literature, it is established to name them stubs and
scions. We recall the definition of the fundamental DGC data-structures (see Figure III.1.1) al-
ready presented in Part I.2. A scion (entry-item) represents an incoming reference, i.e., a reference

128 CHAPTER III.1. RELATED WORK ON DISTRIBUTED GARBAGE COLLECTION

pointing to an object in the scion’s process. A stub (exit-item) represents an outgoing remote ref-
erence, i.e., a reference pointing to an object in another process.

X
 Y

scion
stub

process P1

process P2

...

...

...

...

Figure III.1.1: DGC Structures: Stubs and Scions.

A distributed garbage collector should not manage intra-process references. Although both
intra and inter-process references can be managed by the same collector, it has been determined
that the best performance and scalability is obtained by employing an hybrid approach. In
each process, there is a dedicated DGC component (usually reference-counting) to manage inter-
process references; and a local garbage collector (Foster 1989; Dickman 1991; Juul and Jul 1992)
(preferably, one that is complete, usually tracing) to manage references internal to the process.
Thus, this hybrid approach is used throughout the literature, except for a number of excep-
tions (Mohamed-Ali 1984; Hughes 1985), since it is more practical.

Distributed garbage collectors, can be categorized in four main families, w.r.t. distributed
garbage: i) reference-counting (with several variations), ii) tracing collectors, iii) hybrid ap-
proaches, and iv) specialized distributed cycle detectors.

Even though they are complete, tracing algorithms do not scale well to distributed sys-
tems as they traditionally impose greater disruption (synchronization and pause times) to ap-
plications in order to perform correctly. Therefore, most solutions rely on reference-counting
algorithms for DGC due to scalability and performance reasons. Distributed reference-counting
algorithms are scalable but do not reclaim cyclic garbage spanning several processes.

This raises the issue of completeness w.r.t. DGC, i.e., how to identify and reclaim distributed
cycles of garbage. This has been often addressed with combined approaches, comprising an
acyclic distributed garbage collector based on reference-counting, and a detector of distributed
garbage cycles which is tracing-based.

III.1.2.1 Reference Counting

In this section we present distributed garbage collection algorithms that adapt the reference-
counting technique, initially developed for local GC, to distributed systems. The algorithms
are presented as successive efforts on avoiding the safety problems introduced by distribu-
tion, namely race-conditions between messages driving increment and decrement of reference-
counts.

III.1.2. DISTRIBUTED GARBAGE COLLECTION (DGC) 129

III.1.2.1.1 Distributed Reference Counting

A very simple adaptation of reference-counting to the distributed scenario was initially pre-
sented in (Nori 1979). Reference-counts are maintained, for each object targeted by remote ref-
erences, at the process where the object resides.

Whenever a remote reference is created, duplicated or eliminated, an explicit message must
be sent to the process holding the referred object. These messages result in the increment or
decrement of the reference-count associated with the object.

This algorithm is highly vulnerable to communication anomalies (e.g., message loss and
duplication). Replayed messages hinder algorithm completeness (w.r.t. increments) or safety
(w.r.t. decrements). Lost messages prevent safety (w.r.t. increments) or completeness (w.r.t.
decrements).

Even if messages are neither lost nor replayed, this algorithm is prone to distributed races
between GC messages that prevent safety: i) decrement/increment, and ii) increment/decrement.
These races occur when three processes are involved in reference creation and deletion: i) P1,
sender, that holds a remote reference to object z (in P3), being duplicated to ii) P2, receiver, and
iii) P3, owner, where object z resides.

Decrement/increment races occur when P1 duplicates its reference to z, sends it to P2, and
then deletes its reference. If the decrement message from P1 arrives before the increment message
that will be sent by P2, when it receives the reference, z will be prematurely reclaimed. Incre-
ment/decrement races take place when P1 duplicates its reference to z and sends it to P2, that
immediately deletes it. If the increment message from P1, sent before sending the reference to
P2, is delayed, it will arrive after the decrement message that was sent by P2. In this case, z is
also wrongly reclaimed.

These problems are addressed in (Lermen and Maurer 1986) by using explicit acknowledge-
ments messages for each increment/decrement message, before the next message is sent, thus
introducing causality in communication among three nodes. However, this hinders algorithm
performance and prevents its scalability.

The solutions presented next avoid the above mentioned races, while obviating the need for
causality in communication, by avoiding the existence of competing messages, i.e., messages
with causing antagonistic transitions (such as increment and decrement).

III.1.2.1.2 Weighted Reference Counting

An evolution to the previous algorithm is proposed in both in (Bevan 1987) and in (Watson
and Watson 1987): it performs reference accounting without using counters. Instead, in this
algorithm, each remote reference has an associated variable weight (ref-weight). The process
holding the referred object (P3, owner) maintains information about the sum of ref-weights of all
the references to the object, i.e., total-weight.

These weights obey to the following conditions. Ref-weights evolve monotonically (decreas-
ing) and total-weights also evolve monotonically (decreasing from an initial top-value). Thus,
there are no distributed races. Top-value is usually a positive number of the form 2n.

130 CHAPTER III.1. RELATED WORK ON DISTRIBUTED GARBAGE COLLECTION

When the first remote reference to an object is initially created (e.g., to P1), it is awarded
top-value as its ref-weight. Accordingly, total-weight of the object, at P3, is also set to top-value.
When a reference is duplicated to another process (e.g., P2), its associated ref-weight is split in
half with the new remote reference. This involves no communication with the owner process P3
(as opposed to using an increment message). If P2 already holds a remote reference to the same
object, it simply adds to it, the incoming ref-weight.

When a remote reference is deleted (e.g., in P1), a decrement-weight message is sent to P3,
as the owner of the object, containing its ref-weight. P3 decreases total-weight associated to the
object, by this value. Thus, total-weight, for each object, is always equal to the sum of all ref-
weights. When total-weight reaches zero, the object is reclaimed.

There is a limit to reference duplication. When ref-weight of a reference reaches 1, the ref-
erence can not be duplicated further, i.e., an underflow occurs. This can be solved by using an
extra indirection element to the remote reference, with ref-weight set to top-value, allowing fur-
ther reference duplication. This situation introduces an indirection while invoking the object
remotely; it is permanent and it may accumulate to a large number of references and objects
(domino problem).

In this algorithm, reference elimination is still handled centrally (i.e., by sending messages
to the owner process of the object). However, reference duplication is handled solely by the
interaction of the two processes involved. No communication is needed to the process where the
referred object resides. Thus, distributed races among reference duplication and elimination do
not exist (since there are no increment messages). Nonetheless, it still is vulnerable to message
loss and duplication.

As is the case with distributed reference-counting, Weighted Reference Counting is not able
to reclaim distributed cycles of garbage. It can be combined with a tracing algorithm (Lins
and Vasques 1991; Lins and Jones 1993; Jones and Lins 1992; Lins 2002b), when references are
eliminated, to achieve completeness.

III.1.2.1.3 Generational Weighted Reference Counting

This algorithm (Goldberg 1989) introduces another approach to solve underflows in ref-
weights. Each reference is represented by a copy-counts and a generation. Initial references belong
to generation zero. When a reference is duplicated, its copy-count is increased and the new ref-
erence is assigned to the next generations. Total-weight associated with an object is extended to
account for the number of references duplicated, per generation: total-copies(n).

Eliminating a reference implies decrementing total-copies(n) of the corresponding generation,
and incrementing total-copies(n+1) of the upper generation, by the exact number of times that
the deleted reference has been duplicated. This can produce some negative values on some
total-copies fields. Nevertheless, an object is reclaimed only when all total-copies fields are zero.

This algorithm avoids indirection at the expense of space overhead. Unfortunately, it is
subject to overflow in copy-counts, though they occur with a much lower probability than the
underflows of the previous algorithm.

III.1.2. DISTRIBUTED GARBAGE COLLECTION (DGC) 131

III.1.2.1.4 Indirect Reference Counting

Indirect Reference Counting (Rudalics 1990; Piquer 1991) stores in each remote reference, the
process where it was duplicated from (parent). Additionally, each reference holds a copy-count
stating how many times it has been duplicated to other processes.

When a reference is duplicated, its copy-count is incremented. The newly created reference
is initialized with a null copy-count, and registers the existing one as its parent. A succession
of reference duplications where each newly created reference is further duplicated produces an
inverted tree of indirections, whose root is the process where the remote reference was initially
created.

When a reference is eliminated, the copy-count of its parent is decremented. If it reaches zero,
that node of the inverted tree, may be reclaimed.

The main limitation of this algorithm lies in the fact that it only allows the deletion of ref-
erences located at the leave nodes of the inverted tree of indirect references. This prevents re-
claiming garbage at intermediary nodes (that constitutes floating garbage), where references no
longer being used are maintained, until all the duplicated references in child nodes have been
eliminated. This problem has been addressed by attempting to reorganize the inverted tree of
indirections (Moreau 1998a; Moreau 2001). Another advance, ensuring algorithm correctness in
the presence of object migration, has been addressed in (Piquer 1996).

Although providing a uniform solution to both underflow and overflow problems, and the
distributed races presented earlier, this algorithm introduces storage overhead w.r.t. previous
algorithms.

III.1.2.1.5 Reference Listing

Regardless of whether they are exempt from distributed races, all previous algorithms are
still vulnerable to lost and duplicated messages. This is because messages are not idempotent.
Thus, message idempotence is key for algorithm safety and completeness in the presence of
communication failures, providing some degree of fault-tolerance. This is achieved with refer-
ence listing (Shapiro et al. 1990; Shapiro 1991a; Shapiro et al. 1992a; Shapiro et al. 1992b; Birrell
et al. 1993a; Birrell et al. 1993b; Maheshwari 1994).

In Reference-listing, there are neither counters nor weights associated with remote refer-
ences. Instead, each process stores, for each object targeted by remote references, an exhaustive
list of the referring processes. This reference-list is kept free of duplicates since multiple remote
references from the same process are represented by the same element in the list, regarding the
referring process.

When a remote reference is created or duplicated to a process, the referring process must
be inserted in the reference-list of the owner process. This equates to conceptually sending an
insertion message.

Eliminating a remote reference implies that the (formerly) referring process must eventu-
ally be removed from the reference-list associated with the object. This equates to conceptually
sending a removal message.

132 CHAPTER III.1. RELATED WORK ON DISTRIBUTED GARBAGE COLLECTION

Insert and remove messages are idempotent as opposed to increment and decrement messages.
Inserting an element in a list several times produces the same net result: the element is inserted
in the list. The same is true for removals. On the other hand, repeating increment or decrement
operations would corrupt reference-counts. By use of insert and remove, message duplication
is handled safely. Nonetheless, correct ordering between insert and remove messages must be
enforced to prevent possible premature object reclamation. This is achieved by numbering mes-
sages in sequence.

There are two main approaches to the actual implementation of reference-listing (SSP-
Chains and Network Objects). We start by the latter that is acknowledgedly a simplification
of the former in some ways. In Network Objects (Birrell et al. 1993a; Birrell et al. 1993b), there
are explicit insert (dirty) and remove (clean) messages. Thus, for simplicity, when a reference is
duplicated, the receiver (e.g., P2) process must send an explicit insert message to the owner pro-
cess (e.g., P3). This message must arrive before any possible possible remove message from the
sender process (e.g., P1), otherwise the object could be prematurely reclaimed. This needs that
P1 maintains the object in P3 reachable until he receives acknowledgment from P2.

Within a process (e.g., P1), when all the objects containing remote references to a particular
object, in another process (e.g., P2), become unreachable, this means that remote reference is no
longer being used in P1. This is detected by the local GC in P1, and the corresponding remove
message is sent to P2. Remove messages may be delayed and batched, but they must be explicitly
acknowledged for liveness. Both kinds of messages carry sequence numbers to ensure message
ordering.

In SSP-Chains (Stub-Scion Pairs) (Shapiro et al. 1990; Shapiro 1991a; Shapiro et al. 1992a;
Shapiro et al. 1992b), remote references are represented by pairs of stubs and scions, possi-
bly chained, that are created automatically when references are transmitted. Remote objects,
nonetheless, are always invoked directly.

When a remote reference to an object is first created, a scion is created in the owner process
(e.g., P3), and the corresponding stub is created in the referring process (e.g., P1). If P1 dupli-
cates the reference to another process (e.g., P2), there is no need to contact P3. P1 simply creates
a new scion that is chained to the existing stub. When P2 receives the reference, it creates the
corresponding stub. Thus, the remote reference in P2 to an object in P3 is represented (w.r.t.
DGC) by the chain of the two stub-scion pairs described. This eliminates delays in duplicating
references among processes with the additional cost of indirections in DGC information. These,
however, can be short-circuited, i.e., flattened lazily.

There are no explicit remove messages. Every time the local GC runs, it generates a new
set of stubs, representing all remote references still in use by the process. From time to time,
each process sends to other processes it contains references to, a special messages (NewSetStubs),
with the list of its stubs corresponding to scions in that process. Deleted references are inferred
when comparing stubs with their corresponding scions. Every scion without the corresponding
stub may be safely eliminated. This avoids the need to re-send and acknowledge lost delete
messages. NewSetStubs messages may be dropped, since only the most recent is required. To
ensure ordering, NewSetStubs messages are also time-stamped.

III.1.2. DISTRIBUTED GARBAGE COLLECTION (DGC) 133

III.1.2.1.6 Hierarchical Approaches to Distributed Reference Counting

The use of an hierarchical approach to DGC was initially presented in the context of dis-
tributed reference counting, with Group Reference Counting (Ichisuki and Yonezawa 1990). In
this algorithm, the programmer must explicitly define object groups (also called regions or are-
nas), containing the objects where it is foreseeable that cycles will occur. It is thus of limited
usefulness. An additional reference-count is maintained for the whole group, accounting solely
for references from objects outside the group. When the reference-count of the group reaches
zero, regardless of the reference-counts of each individual object (which may be non-zero, e.g.,
in a cycle), the GC knows it is safe to reclaim the whole group.

The same notion has been later applied to processes, with Hierarchical Distributed Refer-
ence Counting (Moreau 1998b). Processes are conceptually aggregated in domains (e.g., those
running in the same cluster of computers) for DGC purposes. This algorithm is also able to
shortcut chains of reference indirections. It also reduces the size of tables for reference listing
(restricted to the number of processes within the same domain) and optimizes DGC message
traffic.

III.1.2.1.7 Reference Counting with Information-Tuples

Reference-counts associated with objects are extended to reference-count vectors, called
information-tuples, in (Philippsen 2000). Each element in the reference-count vector informs
of how many times a reference to the object has been exported/imported to/from all other pro-
cesses.

This algorithm avoids message races and acknowledgements at the expense of extra space
for storage for reference-count vectors, and longer reference import/export messages (that con-
tain information-tuples). Nonetheless, it provides low latency on garbage detection and uses
less storage (since information-tuples are updated and combined, not recorded, as reference ex-
port/import messages are sent/received).However, since it is solely based on a generalization
of reference-count, it is not complete, w.r.t. distributed cycles of garbage.

III.1.2.2 Tracing

In this section we present distributed garbage collection algorithms that adapt the tracing
technique, initially developed for local GC, to distributed systems. The algorithms are presented
as successive efforts on minimizing the need to block mutators, and synchronization among all
participating processes when performing DGC.

III.1.2.2.1 Sequential Distributed Tracing

The straightforward adaptation of a tracing garbage collector for distributed systems was
proposed by (Mohamed-Ali 1984). Mutators must be stopped at every process before the dis-
tributed marking phase can begin. At any point, any process may decide to initiate a collection

134 CHAPTER III.1. RELATED WORK ON DISTRIBUTED GARBAGE COLLECTION

(e.g., because it is almost out of memory). This decision must be transmitted to a coordinator
process. This role may be statically assigned or decided dynamically, in this case, requiring a
distributed consensus.

Upon notification of the request, the coordinator process instructs all mutators to stop, and
initiate the marking phase. Marks are propagated from GC local-roots along both intra and inter-
process references. References are transversed and objects marked using a depth-first approach
in order to minimize memory usage.

Once the marking phase is terminated in all processes, and there are no more marking mes-
sages in transit, the sweep phase can be performed independently by each process.

III.1.2.2.2 Concurrent Distributed Tracing

Stopping the mutator of every process and requiring that all processes perform DGC si-
multaneously imposes considerable performance penalties, application disruption, and limits
scalability to large numbers of processes.

The algorithm proposed in (Hudak and Keller 1982) is a distributed version of the tri-color
incremental garbage collection (Dijkstra et al. 1978), with the additional constraint of existing a
single root for the whole distributed object graph (which is suited to the functional programming
environment that the algorithm addresses).

This adaptation consists of transforming each recursive marking step in an autonomous task
executed concurrently with the others. For this, each process keeps a list of active mutator tasks
and another list with GC tasks. GC tasks terminate only after the termination of all the tasks
spawned from it. Mark phase termination implies distributed consensus, and the sweep phase
can start only after termination of marking phase in all processes.

The meaning of the three colors used (white, grey, black) is also adapted to the distributed
scenario. In this case, the color gray is used to identify already marked objects but whose recur-
sive tasks spawned from it have not finished yet. This algorithm still demands global synchro-
nization between the two phases, and the high number of marking tasks spawned creates high
network traffic and processor load .

III.1.2.2.3 Mark-and-Sweep with Time-stamps

Global propagation of time-stamps until a global minimum can be computed was first pro-
posed in (Hughes 1985) to detect distributed cycles of garbage. This algorithm proposes a gen-
eralization of marks to accommodate numerical time-stamps, instead of just a small fixed set of
options (e.g., reachability-bits, colors).

In this algorithm, local GC in each process propagates time-stamps from scions to stubs,
following local reachability paths. Before a local collection, each GC local-root is marked with
the current time. GC local-roots and scions are traced in decreasing order of time-stamps, which
ensures that each stub may be marked only once in each local collection, while retaining the
highest time-stamp of the roots and scions that lead to it.

III.1.2. DISTRIBUTED GARBAGE COLLECTION (DGC) 135

Thus, the marks associated with live objects are increased, while the ones of garbage objects
remain constant, once they become unreachable. The DGC component propagates marks from
stubs to their corresponding scions in other processes, to achieve the same result globally. Upon
reception of a marking message (bearing updated time-stamp of a stub), the corresponding scion
time-stamp is updated if the value received is greater than its current time-stamp. If updated,
the old scion time-stamp is used to possibly update the redo2 value of the process, noting the fact
that this newly received time-stamp has not been propagated locally yet.

When the receiver acknowledges reception of all messages, the sender can update, i.e. in-
crease, its redo value to the largest time-stamp it has propagated. If a global minimum for redo
values in all processes can be computed, this can establish a threshold to determine if a given
object is garbage. This is because, in such conditions, its time-stamp will not possibly increase
in the future.

This algorithm is complete and allows concurrent marking in all processes, requiring syn-
chronization only when deciding on a new global minimum redo. Nonetheless, it is not scalable
for several reasons. Determining the minimum redo value depends on a global termination al-
gorithm (Rana 1983). The clocks in processes must be synchronized, message latency bounded,
and it needs the cooperation of all processes in order to progress. If even just a single one of
them does not, the value of global minimum will effectively freeze, and no new garbage can
thus be detected from that moment on, even if that process does not contain garbage.

III.1.2.2.4 Logically Centralized Tracing

The algorithm presented in (Liskov and Ladin 1986) introduces a centralized approach to
DGC, in which distributed garbage collection is performed by a logically centralized server,
receiving graph information from all processes. The centralized server performs complete dis-
tributed garbage collection and informs processes of objects (i.e., scions) to delete. This garbage
collection service, though logically centralized, may be physically replicated for increased avail-
ability and performance. Replicas exchange information via ”gossip” (Fischer and Michael 1982)
messages.

Each process performs asynchronous local garbage collection (LGC) and computes acces-
sibility information of scions (inlists) and stubs (encoded in locally known paths), as well as
references in transit. The central service continuously collects accessibility information from
each node and maintains a view of the global graph. When requested, it informs each process
of which scions it should delete, since there are no longer any stubs pointing to it. The view
of the global graph is inconsistent but follows a conservative approach to ensure safety w.r.t.
garbage collection. All messages must be time-stamped, should have bounded latency, and pro-
cess clocks must be loosely synchronized.

This algorithm does not require global synchronization of nodes, as there are no global dis-
tributed phases, nor it needs all processes to participate continuously. To detect distributed
cycles of garbage the central service may require receiving several messages from each process,
with added delay, and communication/processing load. Thus, it can suffer from congestion

2The redo value in each process stores the maximum value received in messages and already propagated locally.

136 CHAPTER III.1. RELATED WORK ON DISTRIBUTED GARBAGE COLLECTION

because it performs all DGC tasks, and not only those related to cycle detection. Therefore,
reclamation of acyclic distributed garbage may also be delayed unnecessarily.

The initial version of this algorithm has some problems w.r.t. safety, described in (Rudalics
1990). These problems were later addressed in a revised version of the algorithm described
in (Ladin and Liskov 1992). It uses the technique proposed in (Hughes 1985), and described in
Section III.1.2.2.3, but in this case the time-stamp minimum is calculated centrally.

Requirements of clock synchronization, bounded message latency, and the fact that the cen-
tral server performs all the work w.r.t. DGC, make this algorithm unscalable to wide-area sce-
narios. In these scenarios, it may be unpractical to enforce clock synchronization, it is very
difficult to limit message latency, and dependence on a central server will slow down GC in
most processes.

III.1.2.3 Garbage Collection of Distributed Cycles of Garbage

There are two types of distributed garbage collection algorithms to detect and reclaim dis-
tributed cycles of garbage objects: i) full-scope, and ii) suspect-based detectors. Full-scope de-
tectors detect all existing cycles simultaneously. They impose additional work globally to the
system, even when and where there are no cycles to detect. Continuous extra-cost (in terms of
time, space, and messages) leads to wasted work. All tracing algorithms are, by nature, of this
type.

Suspect-based detectors (or per-cycle detectors) try to identify cyclic garbage, starting with
an object suspect of belonging to distributed garbage. In each detection, they identify at most
one distributed cycle of garbage, instead of all at once, as full-scope algorithms do. Heuristics
are needed to select a candidate object (e.g., distance from GC root-set, local un-reachability).
The cycle detector confirms if the object actually belongs to a distributed cycle. Several cyclic
graph detections may run concurrently. These algorithms impose specific work for each cycle
detection but restricted only to processes related with cycle being detected.

We will describe algorithms of both types. Suspect-based detectors include those that use: i)
trial deletion, ii) object migration, iii) back-tracing, and iv) group merger. Full-scope algorithms
include those that employ: i) group tracing, ii) monitoring mutator events, iii) distributed train,
and iv) mark propagation with optimistic back-tracing. The algorithms are presented following
a quasi-chronological order. This helps the description since there are algorithms of different
types that employ techniques that are related (e.g., group tracing and group merger, back-tracing
and optimistic back-tracing), while providing improvements over previous work.

III.1.2.3.1 Trial Deletion

The work presented in (Vestal 1987) proposes trial deletion to detect distributed cyclic
garbage. Besides reference-counts for each object, it maintains an additional reference-count,
specific for trial deletion, in each object. These reference-count fields are used to propagate the
hypothetical effect of trial (simulated) deletions. Trial deletion starts on an object suspect of be-
longing to a distributed cycle, heuristically chosen. The algorithm then simulates the recursive

III.1.2. DISTRIBUTED GARBAGE COLLECTION (DGC) 137

deletion of the candidate object and all referenced objects. When, and if the trial counts of every
object of the sub-graph drop to zero, a distributed cycle has been successfully found. It may
then be safely deleted as it is certain that there are no other references from objects outside the
suspected cycle.

This algorithm imposes the use of reference counting for LGC (which is seldom chosen); this
is an important limitation. The recursive freeing process is unbounded, since the size of a cycle
is not anticipated. Poor candidate election (e.g., a live object) will lead to wasted trial deletions
of a large number of objects in many processes. Furthermore, it is unable to detect mutually
referencing distributed cycles of garbage.

III.1.2.3.2 Object Migration

Migrating objects to a single process in order to convert a distributed cycle into a local one,
that is traceable by a basic LGC, has been used or otherwise suggested by several authors (Bishop
1977; Shapiro et al. 1990; Maheshwari and Liskov 1995; Piquer 1996; Maheshwari and Liskov
1997b). The main task of a migration-based DGC algorithm is cycle consolidation, i.e., co-locate
all objects belonging to a distributed garbage cycle in a single process.

In (Bishop 1977), cycle consolidation is initiated with a suspect object chosen heuristically
(e.g., locally unreachable, long time without invocations, increase in reference deletion messages
received by the process since the object was created or last used). Then, every object belonging
to the hypothetical cycle is migrated to one of its referring processes. Once the distributed cycle
is confined to a single process, any tracing algorithm is able to reclaim it. Reference-counting
extended with cycle consolidation ensures completeness.

Globally, object migration, for the sole purpose of DGC, is a heavy requirement for a system,
needs extra and possible lengthy messages (bearing the actual objects) among participating pro-
cesses, and all processes must adhere to the same homogeneous architecture. It may take several
iterations to consolidate a single cycle. It is very difficult to accurately select the appropriate pro-
cess that will contain the entire cycle. Additionally, cycles that contain many objects, if copied
into a single process in charge of tracing them, may cause it to overload. Furthermore, heuristics
to decide object migration and destination process are not optimal. Thus, some live objects may
be migrated alongside with garbage ones, and it is difficult to select the process to receive the
entire cycle, while minimizing the cost of object migrations. Some of these limitations have been
addressed differently in following work, presented next.

The work presented in (Shapiro et al. 1990) introduces two optimizations. It restricts the
directions of objects migration using a total order among nodes, thus ensuring all objects in a
cycle will converge to the same process, i.e., the upper-bound process (e.g., with the highest pro-
cess identifier) in that subset of processes. This prevents a single process from being overloaded
with all cycles, though higher-ranking processes will often have higher load. Objects are only
migrated virtually, in the sense that they are not physically transferred among processes, but
simply marked as belonging to a different logical space. However, tracing of logical spaces that
are now spread among processes will incur in additional network traffic.

An alternative approach that allows the use of reference-counting algorithms is proposed

138 CHAPTER III.1. RELATED WORK ON DISTRIBUTED GARBAGE COLLECTION

in (Gupta and Fuchs 1993); a fixed process is designated as the dump, where all objects belong-
ing to cycles are migrated to. It obviates the need to know referring processes explicitly, but
introduces a single-point of load and failure (the dump). Some live objects are still migrated to
the dump unnecessarily.

III.1.2.3.2.1 Controlled Object Migration A more efficient migration heuristic based on dis-
tance from GC local-roots is introduced in (Maheshwari and Liskov 1995).3 The distance of an
object is the minimum number of inter-process references from a GC local-root leading to the
object. GC local-roots have zero distance and new scions have initial distance of one. The LGC
propagates increased (unitary increments) distances from scions to stubs. Scions are traced in
increasing order, and since each object is traced once, only the minimum distances will be prop-
agated. Thus, the distance of garbage objects grows unbounded.

Once the distance exceeds a pre-determined threshold (T), the object is eligible for migra-
tion. Small values of T may cause unnecessary migrations, while large values will delay cycle
detection. A small multiple of the expected maximum distance should be used. An object to be
migrated is batched along with other objects referenced by it, and with greater distance values,
as they are likely to be garbage as well.

The selection of the destination process is also heuristic and based on hints that are prop-
agated along with distance values. Initially, they contain the processes of stubs reachable via
suspected objects. Only the highest process identifiers are propagated, thus ensuring conver-
gence of the selection process, similarly to (Shapiro et al. 1990). This minimizes migration of
objects to different processes, as it transfers groups of objects in a single message, but it intro-
duces additional complexity with propagation of distances and hints.

III.1.2.3.3 Group Tracing

Group Tracing proposes an hierarchical approach to DGC based on a tracing algorithm.
Distributed tracing is performed within groups of processes (Lang et al. 1992), that may be
created and managed dynamically and belong themselves to other higher-level groups. Groups
may have any number of processes and may intersect, thus sharing processes. Tracing is initiated
only when LGC cannot reclaim enough memory.

In this algorithm, group tracing is performed on top of a distributed reference-counting
mechanism, since scions keep reference-counts. The LGC at each process propagates reachability
marks locally from scions to the stubs they reference. There are two sequential tracing phases
in each process, one named hard and another named soft. Hard marks denote objects that are
referenced from outside the group (conservatively regarded as roots), or from GC local-roots
within the group. Soft reachability marks mean the object is referenced from within the group.

DGC propagates hard marks from stubs to the corresponding scions in other processes in the
group. This phase terminates when the group is stable, i.e., where there are no more messages

3This heuristic was also independently presented one month later in (Fuchs 1995), for an algorithm with a different
approach, but it is not often considered.

III.1.2. DISTRIBUTED GARBAGE COLLECTION (DGC) 139

in transit, with hard marks, and there is no data (regarding marks) being produced in any of the
group processes. This is hard to establish and requires a form of distributed consensus. After
stabilization, every scion marked soft is neither reachable from outside the group nor from any
GC local-root in any of the processes of the group. Therefore it may be explicitly deleted to
break the distributed cycle. Distributed reference counting will reclaim the garbage, since it is
now acyclic.

This algorithm does not require every process to participate in cycle detection, as opposed
to (Hughes 1985) and failure of processes is handled by the dynamism of group creation. A new
group is formed with the surviving processes that allows detection to continue. This approach is
scalable to large numbers of small groups, but not to higher-level groups spanning many nodes,
since they require a distributed consensus by the participating processes on the termination of
the global trace and every object is marked individually. Questions regarding the safety of this
algorithm, w.r.t. concurrency between mutator activity and cycle detection, have been raised
in (Maheshwari and Liskov 1997a).

III.1.2.3.4 Distributed Back-tracing

Distributed Back-tracing was initially proposed in (Fuchs 1995), but not implemented. This
initial approach does not provide a mechanism for calculating back-tracing information (i.e.,
inverse reference graph), which is assumed to already exist.

The work in (Maheshwari and Liskov 1997a) follows the same approach, while presenting
an implementation, and an optimized mechanism to calculate back-tracing information. Dis-
tributed back-tracing starts from suspected objects (of belonging to a distributed cycle of garbage
using the heuristic devised in (Maheshwari and Liskov 1995)), marking objects, until it finds GC
local-roots (aborting cycle detection) or when all objects leading to the suspect have already been
back-traced, meaning that a distributed garbage cycle has been correctly detected.

There are two mutually recursive procedures available in each process: one to perform local
back-tracing and another one is in charge of remote back-tracing. Local back-tracing is per-
formed on objects holding outgoing remote references (i.e., those referencing stubs). Each of
them is appended with a leader field, indicating other local objects that directly or indirectly
reference it, and that are targeted by incoming remote references (i.e., with associated scions).
Stubs and scions are collectively regarded as iorefs. Leader fields are calculated as a result of local
tracing. Thus, individual objects need not have explicit backward references as in the model
proposed in (Fuchs 1995).

Distributed back-tracing is performed by remote invocation to propagate marks along iorefs
of the processes containing the suspected cycle. Distributed back-tracing thus results in a direct
acyclic chaining of recursive remote procedure calls. To ensure it is acyclic (i.e., to ensure termi-
nation and avoid looping during back-tracing that spans several processes), each ioref must be
marked with a list of trace-ids to remember which back-traces have already visited it. This also
ensures safety in the presence of multiple overlapping detections.

To ensure safety w.r.t. the mutator, reference duplication (both local and remote) must be
subject to a transfer-barrier that updates iorefs. The distributed transfer barrier may need to send

140 CHAPTER III.1. RELATED WORK ON DISTRIBUTED GARBAGE COLLECTION

extra messages that must be guarded against delayed delivery.

Chaining of remote procedure invocations along a possibly large number of processes, and
the need to keep state in processes about detections in course, hinders scalability and fault-
tolerance.

Distributed back-tracing is also used in (Rodriguez-Rivera and Russo 1997) for cycle detec-
tion in CORBA (Siegel 1996), addressing detailed implementation issues, on production systems
composed of commercial-off-the-shelf (COTS) software. This work introduces optimizations
such as: i) generational back-tracing (that consists in back-tracing from more recent objects first,
and more often than from mature objects), and ii) back-trace re-factoring, that reduces the num-
ber of redundant back-traces, namely of objects along the same reference path of others that
triggered previous back-traces.

III.1.2.3.5 Monitoring Mutator Events

Relevant mutator events (i.e., reference creation and destruction), and causal dependencies
among them, are monitored in (Louboutin and Cahill 1997) to perform DGC. It introduces a
lazy approach to DGC, in contrast with other algorithms that operate by eagerly registering
creation of inter-process references, through control messages. In this algorithm, all messages
are delayed until they become necessary.

Only reference creation and destruction involving remote references are relevant. Objects
targeted by remote references are designated global-roots. Analysis of mutator events is used
as an alternative to tracing the distributed object graph. Global-roots conceptually exchange
messages, one for each relevant event that equates to reference creation and destruction. These
events are recorded in each global-root but the corresponding messages are not sent immedi-
ately. Thus, multiple messages regarding creation and destruction of references may be batched
and sent lazily.

Each event is time-stamped with a respective direct dependency vector (DDV) that reflects
causal dependencies on operations performed by other global-roots. DDVs are logged, merged
with its causal predecessors, and propagated, until full vector-time is obtained for each global-
root. This enables calculation of the complete transitive closure of the graph. A complete causal-
cut of reference creations and destructions allows identification of distributed garbage (both
acyclic and cyclic).

This algorithm is complete. It is resilient to message loss and duplication, and lazy message
exchange avoids races and synchronization bottlenecks. However, it has unbounded latency for
all garbage detection (not just for cyclic garbage) and increased space overhead to store mes-
sage logs. The use of individual vector clock logs, for each global-root (each object referenced
remotely), further exacerbates storage overhead.

III.1.2.3.6 Distributed Train Algorithm

An adaptation of the Train Algorithm to distributed scenarios is proposed in (Hudson et al.
1997). Objects reside in cars of fixed size and each car resides on a single node. Trains comprise

III.1.2. DISTRIBUTED GARBAGE COLLECTION (DGC) 141

several cars possibly spanning several processes. This allows detection of inter-process cyclic
garbage. Analogously to the centralized scenario, each process must have more than one train.
Cars, trains, and processes, must form a completely ordered set. The algorithm may be used
with or without object migration.

A pointer tracking mechanism in each process monitors events of creation, deletion and
transfer of references, and communicates them to the process involved (i.e., sender, receiver of
references and object owner). Events are optimized using several techniques: i) redundant cre-
ation and deletion messages are omitted, sending only those that may change object state from
unreachable to reachable (and vice-versa) in a process, ii) events are piggy-backed on other mes-
sages (e.g., remote invocations), iii) event compression in messages, and iv) event combination
in processes.

Each process maintains two tables with the cars that have references to its objects, that func-
tion as remembered-sets: i) an up-to-date version, and ii) the sticky version. The up-to-date version
is a subset of the sticky version. The sticky version, for completeness, records all cars that were
ever known to the process, along with a changed-bit. Each train has a master, the process where
it was created, that manages and eventually cleans up the train. The processes holding cars of a
train are linked in a logical token-passing ring.

The token is always held by one process of the ring, initially by the master process. Each
process receiving the token (e.g., P1 {P1}) either holds, or relays it as follows:

• i) if P1 has external references in the train sticky-remembered-set, it must hold the token
until it has none. Then it must re-start token with value {P1}.

• ii) If P1 has no external references in train sticky-remembered-set but changed-bit is true, it
re-starts token with value {P1} and resets changed-bit.

• iii) if P1 has no external references in train sticky-remembered-set and changed-bit is false, it
relays the token unchanged.

The token will make, unchanged, at most two rounds of the ring, the first one to reset
changed-bit at every process, and second one to accomplish garbage detection. In Rule iii), if
token value is {P1} already, the whole train is found to be garbage and can be reclaimed, since
the token took a complete circle of the ring, with empty sticky-remembered-sets and all changed-bits
reset. This acts like a distributed termination algorithm. To allow concurrency with the mutator,
w.r.t. inserting new cars in existing trains, cars in trains are always kept in two separate sets
(old and new epochs). Garbage detection is restricted to the old epoch. When this is eventually
reclaimed, new epoch flips and becomes the old epoch, and the new epoch is emptied.

This algorithm is complete and regarded as incremental, highly asynchronous, and mostly
concurrent with the mutator. However, the adaptation to distributed scenario introduces high
complexity and train management requires that processes maintain state about garbage detec-
tions in course, with additional complexity to account for cars joining/leaving the train while de-
tection algorithm is running. Moving cars (and possibly objects) causes increased inter-process
messaging, due to the fact that a single car, until being reclaimed, can be moved among several
trains, which imposes delay on garbage detection. Moreover, cyclic garbage may delay prompt

142 CHAPTER III.1. RELATED WORK ON DISTRIBUTED GARBAGE COLLECTION

detection of acyclic garbage if they reside in the same train. Trains may become very large, which
is unimportant for local GC, but becomes an important issue important in large scale distributed
scenario with long rings of processes managing trains.

In the unfavorable example where one train may contain distributed garbage cycles and
many other acyclic garbage elements, the detection of any may imply/depend on the detection
of all others. Thus, while eventual co-location of all cyclic garbage is guaranteed eventually, it
may take several moves/rounds between trains to be achieved.

The work in (Lowry and Munro 2002; Lowry 2004) proposes a new mechanism to perform
detection of isolated trains, i.e., trains that contain only garbage objects. The original mechanism
for performing this is deemed incorrect, subject to race conditions with the distributed pointer
tracking mechanism. This may result in wrongfully identifying a train as isolated when in fact
it has reachable objects. The solution introduces the notions of open and closed trains. Trains
oscillate between open and closed state. Cars can only be inserted in a train when it is open.
This imposes additional synchronization with pointer tracking while ensuring safety.

III.1.2.3.7 Cycle Detection with Group Merger

Distributed cycle detection within groups of processes is also addressed in (Rodrigues and
Jones 1998), with further detail on mechanisms for dynamic group creation and management.
Groups are created to be scanned as a whole and detect cycles exclusively comprised within
them. Groups of processes can also be merged and synchronized so that ongoing concurrent
detections can be re-used and combined.

Cycle detection is preceded by group creation, which is initiated with candidate selection.
When a candidate is selected, two strictly ordered distributed phases must be performed to trace
objects: mark-red and scan phases. Mark-red phase paints the distributed transitive closure of
the suspect objects with the color red. This must be performed for every cycle candidate. Termi-
nation of this phase creates a group. Afterwards, the scan-phase can be started independently
in each of the participating processes.

The scan-phase ensures that suspected objects are indeed un-reachable. Objects that are also
reachable from other processes (outside the group) are conservatively marked green (i.e., not
garbage). Green marks must be propagated to other processes in the group, following the local
and remote references. This consists of alternating local and remote steps. When two group
detections meet, they can either: i) merge, ii) overlap, or iii) retreat. Retreat happens when one
collection in mark-red phase meets a collection already in scan-phase (mark-green).

This algorithm has fewer synchronization requirements w.r.t. (Lang et al. 1992; Rodrigues
and Jones 1996), since it does not trace all objects in the processes, but only those belonging to
a potential cycle. The cycle detector must inspect objects individually. This demands strong
integration and cross-dependency with the execution environment and the local garbage col-
lector. Mutator accesses to objects involved in a group detection, during mark-green in scan
phase, can raise race conditions similar to tri-color local tracing. To ensure safety, all of an object
descendants may need to atomically be marked green. This blocks the application when it is

III.1.2. DISTRIBUTED GARBAGE COLLECTION (DGC) 143

actually accessing the objects. Processes need to store state about all ongoing group detections
comprising them.

III.1.2.3.8 Mark Propagation With Optimistic Back-Tracing

In (Fessant 2001), marks associated both with stubs and scions are continuously propagated
between sites as all cycles are detected. Instead of time-stamps as in (Hughes 1985), marks are
complex holding three fields (distance, range and generator identifier) and an additional color
field. Marks originate from generators that include scions and GC local-roots. Generators are
considered lexicographically ordered with GC local-roots as upper bound. Marks are also totally
ordered according to their generators. Marks from the same generator are considered greater if
they have smaller distance field.

GC local-roots first, and then scions, are sorted according to these marks. Objects are traced
twice every time the LGC runs starting from GC local-roots and scions: first in decreasing, and
then in increasing order of marks, towards stubs. Stubs require two marks. Mark propagation
through objects to the stubs is decided by min-max marking (this is heavier than simply reach-
bit propagation). One message propagates marks from stubs to scions. Thus, the two marks
associated with each stub are respectively the greatest and the smallest mark propagated to
it. Marks propagate from stub to corresponding scions by messages. Stub messages need to
include, besides marks, additional information about every single sub-generator reaching each
stub.

Cycle detection is started by generators that propagate marks, initiating in GC local-roots
and scions recently created or touched by the mutator. When a remote invocation takes place,
a new generator is created and its associated mark must be propagated along the downstream
distributed sub-graph. Generator records include creation time, a maximum range field (similar
to a time-to-live field) and a locator of the mark generator. White marks represent pure marks,
while gray marks indicate mixing of marks from different generators during a local trace.

When a generator receives back its own mark, colored white, a cycle has been safely de-
tected. If instead the mark is gray, this means other sub-paths lead to the same scion and sub-
generations must then be initiated. Sub-generators are created in the back-trace of the generator
that receives the gray mark. This lazy back-tracing mechanism can be very slow. To acceler-
ate this, an optimistic variation leverages knowledge about sub-generators triggering several
back-traces in different processes. Several back-traces can be performed in parallel.

Optimistic back-tracing is more efficient, yet, unsafe without further cautions. Possible er-
rors are prevented resorting to a special black color associated with marks in scions whose sub-
generator status is later revised. This ensures safety.

The resulting global approach detects all cycles simultaneously. While it avoids need to
initiate one detection each specific cycle candidate, cycle detection is achieved at the expense
of additional complexity and performance penalties. The mark propagation consists of a global
task being continuously performed; it has a permanent cost. Instead it could be deferred in time,
and executed less frequently. It imposes a specific, longer, heavier LGC that must collaborate

144 CHAPTER III.1. RELATED WORK ON DISTRIBUTED GARBAGE COLLECTION

with the cycle detector. Scions are always sorted, twice, and LGC performs min-max marking,
which is heavier than simply reach-bit propagation.

Furthermore, there is a tight connection and dependency among LGC, acyclic DGC and
distributed cycle detection. This is inflexible since each of these aspects is subject to optimization
in very different ways, and should not be limited by decisions about the others.

III.1.3 GC in Transactional and Persistent Systems

This section describes algorithms specifically developed for systems providing transactional
semantics and persistence4 to applications (i.e., mutators). These aspects are essentially orthog-
onal to the basic problem of identifying garbage (either directly or indirectly). Thus, it is not
surprising that algorithms for these systems are, at the core, extensions of algorithms of tracing
and reference-counting families. Thus, we address only the necessary adaptations specific to
these systems in order to ensure safety, while preserving performance.

We present both algorithms that operate in centralized repositories, as well as those for
distributed repositories (but without data replication that is addressed in the next Section). Once
again, transactional semantics and persistence are orthogonal to distribution.

III.1.3.1 Atomic Garbage Collection

Fault-tolerant GC in persistent centralized, single-partition stores, was first introduced
in (Kolodner et al. 1989), using copying collectors. This algorithm blocked the mutator dur-
ing collection, and was made incremental in (Kolodner and Weihl 1993).

In case of failure during GC, copying-based GC algorithms expose two vulnerabilities. For-
warding pointers, copied/moved objects, or both may be lost during failure. Thus, these tasks
must be performed atomically in order to be recoverable.

The GC registers in the log both the copying as well as reference-patching actions, for each
scanned object. Upon recovery, the previously stable state from-space is recovered and the log re-
played, recovering the state of to-space. The collector conservatively regards entries in the log of
running transactions as members of the GC root-set, to prevent objects from being prematurely
reclaimed before transactions commit.

An alternative approach is used in (Detlefs 1990; Detlefs 1991). Instead of logging every op-
eration, uses virtual memory mechanisms to trap memory writes (due to forwarding pointers or
mutator activity) as introduced by (Appel et al. 1988), and synchronously writes modifications
to disk to ensure correctness when failures occur.

4In persistent systems, persistence of an object is attained through reachability from a persistent root(Blondel et al.
1998).

III.1.3. GC IN TRANSACTIONAL AND PERSISTENT SYSTEMS 145

III.1.3.2 Fault-tolerant Replicated Copy

The algorithm proposed in (O’Toole et al. 1993) is based on previous work presented in (Net-
tles et al. 1992), enhanced with fault-tolerance. It stores original and forwarding pointers in a
dedicated table, resident in memory. Thus, objects in the from-space are never modified by the
GC, and continue to be accessed by the mutator, while reachable objects are copied to to-space.
Thus, the GC algorithm is considered non-destructive, as opposed to atomic GC algorithms.

Modifications on objects performed by the mutator are logged. When every object has been
copied, changes recorded in the log are reapplied and spaces are flipped. Fault-tolerance is thus
straightforward. Upon recovery, after a failure, the from-space can be safely recovered from stable
storage. Safety is preserved even if the table of forwarding-pointers and to-space are discarded.
However, all the work performed by the GC during the previous iteration is lost, and must be
restarted.

III.1.3.3 Transactional Reference Listing

The work in (Maheshwari 1994), was developed in the context of Thor (Liskov et al. 1992).
It presents a reference-listing algorithm, following the main aspects from SSP-Chains (namely,
indirect protection of objects when duplicating references, without the need to contact object
owner process), while extending it to address fault-tolerance in a transactional, persistent dis-
tributed object store, with multiple object repositories. The algorithm ensures safety in the pres-
ence of transactions.

There is no data replication, only caching. An object exists at only one server and may be
cached by client processes. Remote references always target objects in servers. References from
objects cached at clients to objects in servers are only temporary, i.e., they exist for the duration
of the (possibly distributed) transaction. Upon transaction commit, updated cached copies are
sent back to the servers. Persistent references are only those among objects residing at servers.

Scions whose corresponding stubs reside at other servers are kept in stable storage and
re-loaded on server recovery. Scions created on behalf of clients are not, as it would be very
expensive. Instead, each server keeps a list of clients in stable storage. Upon recovery, the
clients are contacted to inform of existing stubs so corresponding scions can be reconstructed.

The algorithm is fault-tolerant, and correctly manages object reachability in the context of
transactions and roll-back. It requires an atomic shutdown protocol that is not easily scalable. It
is used when all servers must agree when to deem a client as failed. This is needed, in order to
ensure safety, when discarding scions created on behalf of the failed client. It is not complete, it
does not reclaim garbage cycles comprising more than one server.

III.1.3.4 Transactional Mark-and-Sweep

Garbage collection in a centralized client-server transactional object store (Carey and DeWitt
1986) is addressed in (Amsaleg et al. 1995b; Amsaleg et al. 1999). It uses a variant of mark-and-
sweep, adapted to ensure safety in transactional scenarios.

146 CHAPTER III.1. RELATED WORK ON DISTRIBUTED GARBAGE COLLECTION

In this persistent store, clients also access objects within cached copies of database pages.
Instead of transferring updated objects only when transactions commit, as in the previous al-
gorithm, page transfer (containing objects) from client to server is allowed to happen asyn-
chronously, in any order, before transactions are completed. This improves efficiency and re-
duces commit delay, since update transfer can happen in the background. These optimizations
nonetheless raise safety issues w.r.t GC, namely: i) partial flush of multi-page updates, ii) trans-
action roll-back, iii) overwriting of collected pages.

Since the server, where the GC runs, may receive pages from clients with updated objects in
any order, it may have an inconsistent representation of inter-page references (e.g., it may have
a page holding an object but not the updated version of another page holding the reference to
the object) and thus incorrectly reclaim reachable objects. This is specially the case with newly
created objects. Moreover, in this transactional scenario, garbage is no longer a stable prop-
erty during transactions, since a newly unreachable object may be resurrected if the transaction
responsible aborts and rolls back.

The algorithm addresses the aforementioned problems as follows. Safety w.r.t. i) and ii) is
preserved by ensuring that objects newly created, or that became unreachable, in the context of a
transaction, are only eligible for collection after that transaction completes. This is implemented
by conservatively including in the GC root-set, two additional tables: i) PRT-pruned reference
table, that references all objects targeted by deleted references, and ii) COT-created object table,
that references newly created objects. When a transaction completes, both PRT and COT are
flagged for later removal. Finally, problem iii) is solved by ensuring that reclaimed space in
pages is only reallocated to new objects, when the freeing of that space is already reflected in
stable storage.

This algorithm is incremental, performs partitioned-tracing, and does not need to hold
transactional locks, while assuming that applications access objects holding the necessary locks,
in the context of ACID transactions. Fault-tolerance is handled by simply restarting GC from
scratch on server recovery. It is not complete as it is unable to collect inter-partition garbage
cycles.

III.1.3.5 PMOS: Train Algorithm for Persistent Systems

The train algorithm has also been adapted to persistent systems. In the centralized version,
PMOS (Moss et al. 1996; Munro and Brown 2001), cars are pages of the database. A page is both
the unit of caching and tracing. Incoming references to a car from other cars are maintained on
stable storage, while outgoing references to other cars are recalculated when the page is loaded
in memory, and later, also when the differences on modified pages are sent lazily back to disk.

The algorithm as its predecessor for non-persistent scenarios, operates by progressively
moving referenced and referring objects, clustering them in the same car (page) or in the same
train (set of pages). The algorithm is concurrent with the mutator, fault-tolerant, and complete.
Disk usage is not optimized since tracing a page or train may require moving objects to different
pages that may no be loaded in cache.

III.1.3. GC IN TRANSACTIONAL AND PERSISTENT SYSTEMS 147

A combination of distributed and persistent train algorithms is presented in DP-
MOS (Brodie-Tyrrell et al. 2004), for garbage collection of cluster systems.

III.1.3.6 Partitioned GC of Large Object Stores

Design and implementation of complete GC on single-site partitioned object stores is thor-
oughly addressed in (Maheshwari and Liskov 1997c). The algorithm was developed in the con-
text of Thor but addresses centralized storage only. GC collects one partition at-a-time. Inter-
partition references must be managed, and inter-partition cycles can occur. Inter-partition refer-
ences are managed using a form of reference-listing, efficiently encoded in trans-lists that saves
memory when storing incoming and outgoing data regarding remote references. Trans-lists are
kept on stable storage, and changes are encoded as differences ([sic] deltas) for later update to
disk.

Global tracing for collection of inter-partition cyclic garbage is piggy-backed on regular trac-
ing of each partition. Each one has a mark-bit and bitmap of marked objects (markmap) that are
kept on stable storage and subject to delta encoding of modifications. Objects once marked in
global marking phase, are never unmarked until the phase terminates. Partition may be marked
and unmarked several times, namely when it is needed to mark an object found to be targeted
by a inter-partition reference not yet considered. This converges so that all partitions eventually
are marked, and then marked objects can all be reclaimed as they are cyclic garbage.

The algorithm is fault-tolerant, incremental, and complete, since it detects cycles that span
more than one partition. It employs specialized approaches for detection of intra-partition (trac-
ing), acyclic inter-partition (reference-listing), and cyclic inter-partition garbage (global mark-
ing). It optimizes disk usage because it does not move objects across partitions and thus does
not need to patch references as copying collectors and PMOS.

The main drawback is that (e.g., contrary to PMOS) the algorithm collects all cyclic inter-
partition garbage only at the end of each global marking phase (e.g., PMOS may collect one or
several cycles confined within each train). Global marking phases are thus long, retrace the same
partition several times, and though incremental, will delay reclamation of all cyclic garbage.

III.1.3.7 Partition Selection Policies

Algorithms where partitions are independently traced may observe different performance,
namely amount of reclaimed memory and disk activity, depending on what partition is selected
to be traced, and how often tracing is performed. This has been comprehensively studied and
measured in (Cook et al. 1994; Cook et al. 1998), where several heuristics for partition selection
are designed and evaluated.

Significant partition selection heuristics are: i) mutated partition, ii) updated pointer, and
iii) weighted pointer. Heuristic i) selects for tracing the partition where most pointers were up-
dated since the last collection. Heuristic ii) selects the partition with the largest number of (pre-
viously) incoming references, that were deleted (overwritten) since the last collection. Heuristic

148 CHAPTER III.1. RELATED WORK ON DISTRIBUTED GARBAGE COLLECTION

iii) refines ii) further and weights differently each deleted reference, with the depth of the tar-
geted object. The closer it is to the root, the bigger the weight given to that reference, since it
may potentially detach more objects from the reachability graph. The partition with the high-
est weighted sum is selected for tracing. The performance of these heuristics is compared with
three other heuristics that place bounds, and assess quality of observed values: iv) random,
v) oracle (simulation that always selects the partition that contains the most garbage), and vi)
no-collection.

Experiments indicate that heuristics ii) and iii) are the most useful. Results show that
garbage collection penalty imposed on transaction throughput is minimized using heuristic ii),
being very close to perfect (oracle). Heuristic i) performs worse than no collection at all. Regard-
ing reclaimed space, heuristic ii) is once again the one that frees more space, and sooner. This
shows that a more sophisticated and complex heuristic (as iii) may not produce the best results.
W.r.t. partition collection frequency, the cost of tracing too often out-weights the benefits of re-
claimed garbage, that is less in each collection. Tracing too seldom, wastes space and increases
disk usage by the database.

III.1.3.8 GC Consistent-Cuts for Databases

GC-consistent-cuts (Skubiszewski and Porteix 1996; Skubiszewski and Valduriez 1997) are
proposed for GC of a centralized, single-partition object-oriented database (O2). The algorithm
is based on the premise that only reference overwriting (i.e., assignment with consequent modi-
fication) can create garbage and it detects these operations with resort to transactional synchro-
nization mechanisms, such as read/share and write/exclusive locks on pages.

Armed with this information, the garbage collector constructs GC-cuts, possibly more than
one in parallel. A GC-cut is a set of pages with at least one copy of every page in the database.
It may hold several copies of the same page if necessary. Copies of the pages are created at
different instants. While this helps to avoid mutator disruption, the various copies of the same
pages may be inconsistent. They may have different content that was valid only during different
transactions. The different copies of all pages in the cut, in combination with knowledge from
locks ensures consistency. The algorithm does not require any barriers to monitor mutator access
on pages, because it takes the necessary copies before, and after, a page is locked for writing.

If a page in the cut contains references to objects in another page, the latter must also be
included in the cut. CG-cuts are thus constructed incrementally, in parallel with the mutator.
When the CG-cut is complete, garbage can be identified and reclaimed. The cut is subject to
mark-and-sweep. Mark and sweep phase are sequential but concurrent with mutator, since they
are performed using copies of the pages. An object is considered garbage if and only if it is
garbage in every page in the CG-cut where it occurs. This is because references to the object
may have been modified in the context of several transactions and the algorithm cannot decide
which or if any will commit. Thus, conservatively, it looks for object reachability in any of the
pages. Objects found to be garbage are then deleted from the actual data pages.

The algorithm is incremental, concurrent with the mutator, and complete. However, the size
of a GC-cut is potentially unbounded since it may contain more than one copy of every page in
the database. Garbage reclamation is delayed until the GC-cut is complete. Thus, the amount

III.1.4. DISTRIBUTED GC IN REPLICATED MEMORY SYSTEMS 149

of memory required for the GC-cut, and the floating garbage that exists until a complete cut
can be constructed, may introduces memory overhead. Since it uses and strongly depends on
information about database locking mechanisms, it is difficult to apply this algorithm to different
environments.

III.1.4 Distributed GC in Replicated Memory Systems

This section describes garbage collection algorithms for distributed systems with data repli-
cation. Thus, several replicas of the same object may exist in different processes; the mutator in
each process is only able to access locally replicated objects. There is no remote invocation of
objects on other processes. These are fundamental differences w.r.t the scenario considered in
the previous section.

Such replicated systems impose additional difficulties on DGC algorithms, to safely handle
multiple copies of the same object and build a safe and correct view of the consolidated object
graph, i.e., accounting for all the references to, and from all the replicas. This enforcement reifies
a Union Rule (Ferreira and Shapiro 1995) that has been implemented, implicitly or explicitly, in
each algorithm for replicated memory systems.

This introduces a new dimension to the GC problem as explained next. In centralized and
non-replicated distributed systems, GC must worry with correctly accounting for the accesses
and modifications performed by the mutator on objects, during time. This is exacerbated in
distributed systems with the added asynchrony, message delay, communication failure, etc.

With replication, GC has to take into account an additional space dimension in the sense
that accesses and modifications to each object are no longer being performed on a single phys-
ical entity but on a number of replicas, physically disparate, but that comprise a single logical
entity. Notions such as reachability, an object being referenced by another, etc., must be ex-
tended to maintain safety of GC w.r.t. applications, despite replicated and possibly inconsistent
data. These issues are also present in the context of systems that allow object caching at client
processes (as some presented in the previous section), but they are less demanding since these
copies only last for the duration of a transaction.

Despite their commonalities, replicated memory systems vary greatly in scale, from mul-
tiprocessors with private memory,5 cluster-based DSM (Li and Hudak 1989)6 architectures, to
large-scale distributed replicated object stores, possibly also transactional and persistent. This,
together with different knowledge, dependency, and assumptions thereof, by the GC, regarding
consistency enforcement among replicas, motivate the different implementation of the Union
Rule, by the algorithms described next. The following sections present algorithms that progres-
sively drop assumptions about, and/or requirements imposed on the execution environment,
namely consistency enforcement, geographic scale, and communication protocols.

5Non-Uniform Memory Architecture.
6Distributed Shared Memory.

150 CHAPTER III.1. RELATED WORK ON DISTRIBUTED GARBAGE COLLECTION

III.1.4.1 GC for DSM assuming memory consistency

A number of initial works assume strong object (or memory) consistency when performing
garbage collection. In these systems the Union Rule is implicitly implemented by this assump-
tion, as they require all memory to be consistent for GC, even w.r.t. objects that are neither being
accessed nor modified by applications. This produces disruption to both GC and the mutator in
applications.

The algorithm proposed by (Le Sergent and Berthomieu 1992) is a multiprocessor copy-
ing collector adapted to DSM. It does not partition memory which imposes delay on garbage
reclamation, and needs to lock pages when they are being traced. The algorithm presented in
(Kordale and Ahamad 1993; Kordale et al. 1993) uses a mark-and-sweep approach and also
requires strong object consistency.

They interfere with the coherence engine and therefore impose severe performance penal-
ties, both to the GC and applications. Garbage collection is delayed by requiring it to analyze
only consistent data. Conversely, if the GC is allowed to lock data (especially if locks are ex-
clusive) while examining objects, it will compete with applications, even when they are not
modifying data, and slow them down.

III.1.4.2 GC for DSM non-interfering with consistency

To avoid the the intrusion and performance bottlenecks of the previous solutions, the strict
requirement of memory consistency, when performing GC, must be dropped. This has been
proposed initially in (Ferreira and Shapiro 1994a; Ferreira and Shapiro 1994b), and later also
in (Yu and Cox 1996). These works are based on the observation that the garbage collector, in
order to operate correctly, has looser consistency requirements than applications.

GC in the BMX System: The work presented in (Ferreira and Shapiro 1994a; Ferreira and
Shapiro 1994b) describes the design and implementation of a replication-aware GC algorithm,
for a weakly consistent, persistent distributed shared memory (DSM) system: BMX (Ferreira
and Shapiro 1993). The unit of replication is a bunch, i.e., a pre-defined group of contiguous
objects. All objects belong to a single bunch. A bunch may be replicated at several processes.
Nonetheless, granularity of data ownership, w.r.t. DSM, is still maintained at the object level.

Each replicated bunch maintains its own DGC structures (stubs and scions), w.r.t: i) other
bunches (inter-bunch stubs and scions), and ii) other replicas of the same bunch (intra-bunch).
DGC, i.e., inter-bunch GC, uses a reference-listing algorithm, thus it is not complete. Each repli-
cated bunch is collected by the GC, independently of other bunches, and other replicas of the
same bunch.

The Union rule is enforced by intra-bunch stubs and scions, that bind the replicas of the same
object together. These chains of stubs and scions, connecting replicas, always follow the inverse
path of owner-pointers, used by the entry-consistency protocol (Bershad and Zekauskas 1991).
An object at its owner process, even if unreachable, is never reclaimed while is still reachable
in other replicas of the same bunch. As an object becomes unreachable in non-owner replicated

III.1.4. DISTRIBUTED GC IN REPLICATED MEMORY SYSTEMS 151

bunches, the stubs and scions will be progressively eliminated until the object can be reclaimed.
Thus, GC relies heavily on the fact that only the owner of an object can modify, or may have
modified it, after the last invalidation. Armed with this knowledge, the GC is able to make
progress, in spite of inconsistent data, without interfering with the mutator.

For performance reasons, the local (intra-bunch) GC algorithm is based on a copying collec-
tor (O’Toole et al. 1993). Thus, special care is required, within each replicated bunch, w.r.t.: i)
copying replicated objects, between from-space and to-space, and ii) patching references to copied
objects. Thus, a live object is only copied at its owner-node, the only one where it may be mod-
ified, thus without requiring a DSM write-token. Object scanning is conservatively performed
in all (possibly inconsistent) object replicas, without requiring read-tokens. References to copied
objects are patched lazily, leveraging messages that are exchanged by the consistency protocol,
when a process attempts to access an object, after it has been locally invalidated.

To detect cycles of garbage objects that span more than one bunch, a partially complete
approach is employed, based on group-tracing (Lang et al. 1992) on bunches. It is very limited
as it is only able to detect a garbage cycle, if all its comprising bunches are replicated at the same
process, which may not occur and would impose storage overhead.

GC in TreadMarks The work described in (Yu and Cox 1996) also addresses DGC in the con-
text of a distributed shared memory system, TreadMarks (Keleher et al. 1994). It also avoids
interference with consistency enforcement and does not require locking objects, while these are
being traced. It leverages information exchanged between processes, by the lazy-release con-
sistency protocol (Keleher et al. 1992). Thus, this solution is closely tied with the consistency
protocol used, and is not general. The authors employ a conservative collector (adequate for
weakly-typed languages as C) that uses partitioned garbage collection. In this case, a partition
is always an entire process.

All messages exchanged between processes are scanned for possible contained references.
The DGC algorithm used is weighted reference-counting, prone to message duplication and
weight underflow. Inter-process references are managed via import and export tables. The Union
Rule is enforced in a similar way as the previous algorithm, by depart tables in each process.
Each entry in this table, refers to an object that has been previously replicated and modified, but
whose changes have not been propagated to the owner node yet. These objects are regarded as
roots for the LGC. Once again, this leverages knowledge about, and relies on, the consistency
protocol used.

The DGC algorithm used is not complete. Furthermore, the system is unable to promptly
reclaim any cycles of garbage that span processes. It must stop all the mutators and enroll in a
global sequential marking scheme, which is clearly unscalable, and thus actually impracticable.

III.1.4.3 Garbage Collection in Larchant

The algorithms presented in the previous section aim at minimizing interference with the
memory consistency protocol used. Nonetheless, they were designed while knowing, a priori,
how consistency would be enforced. Therefore, they take advantage of specific information

152 CHAPTER III.1. RELATED WORK ON DISTRIBUTED GARBAGE COLLECTION

about protocols to decide the moments when to perform GC work, while avoiding hindering
consistency enforcement and applications. Thus, while they do not interfere with consistency,
they are in fact dependent of a specific consistency protocol used, because they were designed
to integrate with it.

The mechanisms used are relatively inexpensive in the context of DSM systems. However,
they are largely impractical in other scenarios, where processes run in different geographic loca-
tions. This stems from the fact that the consistency protocols employed are not scalable outside
cluster environments (i.e., local area networks, with low latency and high bandwidth).

These assumptions must therefore be dropped in the context of large-scale systems where
the consistency protocols are not as strict (e.g., optimistic (Saito and Shapiro 2005)), or if the
GC algorithm is to be made completely general and independent irrespective of it. This was
first recognized in the context of the Larchant project (Ferreira and Shapiro 1995; Ferreira and
Shapiro 1996; Ferreira and Shapiro 1998). This work coined and formalized the Union Rule.

This work proposed a new DGC algorithm based on a set of safety rules that take into
account the existence of replicated objects, in a well-defined manner. In particular, the Union
Rule explicitly introduced, ensures the safety of the DGC algorithm, while not depending on
any information regarding any consistency protocol used.

The DGC algorithm uses reference-listing (Birrell et al. 1993b). All messages carrying objects
are scanned to account for references. Messages exchanged by the DGC, regarding creation and
deletion of inter-process references, are batched and sent lazily. For safety though, all scion
insertion messages must be sent before any scion removal messages, regarding the same object,
using a FIFO channel, which is generally assumed (provided by TCP).

The Union Rule is enforced using a special message, union message, sent to inform an object
owner of the all references contained in each of its replicas, located in other processes. The owner
node thus centralizes stubs regarding references contained in all replicas of an object. Therefore,
only the owner node is able to send messages regarding scion removal, when another object is
no longer referenced by any of the replicas.

To avoid distributed races, during reference creation and deletion, involving replicated ob-
jects, scion-insertion and removal messages must be delivered in causal order, as the following
example illustrates. When an object y is replicated in two processes (e.g., to P1, from owner P2),
containing reference to another object, z(P3), P1 is in charge of sending an insertion message to
P3, that may be sent lazily. If later, both replicas of y are modified so that they no longer contain
references to z(P3), P2 will send the corresponding removal message, only after it has received
the union message from P1, to uphold the Union Rule. However, since there are three processes
interacting, the removal messages from P2 to P3, although being sent after the insertion message
from p1 to P3, could arrive earlier, breaking algorithm safety. Therefore, these messages must
be delivered causally.

The Larchant prototype follows previous work (Ferreira and Shapiro 1994a). It allocates
objects within bunches and still uses an entry-consistency protocol. Nonetheless, the algorithm
is sufficiently general to be applied to other consistency protocols. Larchant allows multiple-
writer scenarios, and is oblivious of any locking information, while still encompassing the no-
tion of object owner, i.e., the process that is allowed to propagate an object to other processes.

III.1.4. DISTRIBUTED GC IN REPLICATED MEMORY SYSTEMS 153

Nonetheless, contrary to previous work, this process may not necessarily be the one with writing
permission. The causality requirements, regarding delivery of creation and deletion messages,
may be cheaply implemented, in the context of DSM, where only the object owner can modify
it. Cycle detection uses the same approach as in the BMX system.

Larchant has been the basis for the DGC algorithm implemented in the PerDiS project (Blon-
del et al. 1998; Ferreira et al. 2000). However, the solution proposed for DGC is not scalable to
wide-area networks, because it requires the underlying communication layer to support causal
delivery. In addition, it is not complete as it fails to detect and reclaim cycles of garbage, in
general.

III.1.4.4 DGC for Wide Area Replicated Memory

The work described in (Sanchez et al. 2001) drops the causality requirements imposed on
the communication protocol by Larchant. It is based on SSP-Chains (Shapiro et al. 1992a), while
remaining safe in the presence of replication.

It extends the Larchant algorithm by representing object replication in processes explicitly,
using specialized structures (called InProp and OutProp tables), instead of resorting only to
stubs and scions. This double nature of GC structures simplifies the design and improves the
algorithm in several ways, as described next.

First, it requires fewer safety rules, just three instead of the total five prescribed by Larchant.
This set of rules conservatively creates the scion-stub pairs of an inter-process reference imme-
diately before those references are exported or imported. This algorithm also achieves better
scalability, namely in wide-area scenarios, because it drops the requirement for causal message
delivery, by implementing the Union Rule differently.

The Union Rule is enforced by demanding all processes holding replicas of an object, that
are unreachable locally and from scions, to send an appropriate Unreachable message to the pro-
cess where they were replicated from. When a process has received Unreachable messages from
all the other processes that have replicated an object from it, and its replica is also unreachable
except from OutProp entries, it sends, lazily, Reclaim messages to other processes holding repli-
cas of the object. As a result, all the InProp and OutProp entries regarding the object are cleared,
and all the replicas are independently reclaimed, the next time an LGC runs in each process.

The algorithm DGC-WARM does not depend on any information about consistency for
safety, and does not rely on the notion of owner process. While in Larchant, only the object
owner may replicate the object to another process, this work drops that requirement and allows
any process to propagate object replicas. Thus, it must prevent reclamation of all other objects
referenced from any of the replicas. Additionally, there is no point where the DGC information
about a specific object (i.e., stubs regarding the references enclosed in all its replicas) is central-
ized. Stubs are scattered by the processes holding the actual references in each replica.

This algorithm it is not complete w.r.t. distributed cycles of garbage comprising replicated
objects. Since the contributions of this dissertation comprise a cycle detector for this algorithm,
its underlying model will be described in greater detail in the next chapter.

154 CHAPTER III.1. RELATED WORK ON DISTRIBUTED GARBAGE COLLECTION

III.1.5 Conclusion

Performance Issues The performance impact of local garbage collection has been thoroughly
addressed in work by (Zorn 1989; Zorn 1990a; Zorn 1990b; Zorn 1993), that the reader may refer
to. This continuous work implements and compares a number of alternative algorithms and
other integration mechanisms (barriers, conservativeness) used, w.r.t. CPU overhead, reference
locality, memory overhead.

However, there is no standard benchmark for testing and comparing distributed garbage
collection solutions, such as there is OO7 (Carey et al. 1993) for comparing object-oriented
databases, and TPC-C7 for relational databases.

Recent work in (Blackburn et al. 2004a) confirms performance benefits of garbage collection
over manual memory management because contiguous allocation out-performs free-list alloca-
tion. Present architectural trends will accentuate this advantage in the future. Garbage collection
even out-performs no memory management because it improves program locality, as live objects
are maintained close to each other in memory, confirming results of previous work in more re-
cent architectures. Generational collectors perform widely better, due to reduced collection time
(as opposed to whole-heap GC that degrades mark-and-sweep performance greatly). Therefore
they have been adopted in the two major virtual machines (Java and .Net).

The work in (Huang et al. 2004) further improves program locality, while monitoring actual
program behavior when transversing object graphs. The GC leverages this information to co-
locate groups of objects whose references among them are more frequently transversed. This
technique is named OOR-online object reordering.

GC-Spy (Printezis and Jones 2002) is a generic heap visualization framework initially de-
veloped for Java. It allows fine-grained inspection of the memory usage in the virtual machine
and LGC behavior, supporting: i) visualization of different heaps independently, ii) inspecting
trains, card-tables, free-lists, and iii) monitoring different GC-generations (e.g., nursery, mature
space). It has been recently ported to Rotor (Marion and Jones 2005).

The Memory Management Toolkit (Blackburn et al. 2004b) is a portable and extensible
framework that allows the development and evaluation of algorithms for LGC. It extends the
Java type system in order to implement memory addresses (instead of opaque references) in
Java. The MMTk provides a fair quantity of built-in GC mechanisms (e.g., free-list allocation,
large-object allocation) and policies (e.g., mark-sweep collection, copying collection, reference-
counting collection), which enable the design of new LGC algorithms by composition of policies
(e.g., Ulterior Reference Counting described in Section III.1.1.3.4).

The evaluation of GC in persistent stores has been addressed in (Amsaleg et al. 1995a),
pointing out there is no benchmark established, but for centralized systems (Carey et al. 1993).
Accordingly, the evaluation of distributed garbage collection algorithms has not been subjected
to the same exhaustive study as local GC. There is no widely used benchmark for DGC, and the
algorithms in the literature have been evaluated against others w.r.t. completeness, asynchrony,
scalability, messages exchanged, and disruption to mutator and local GC (Plainfossé and Shapiro

7Transactions-per-minute, from the Transaction Processing Council.

III.1.5. CONCLUSION 155

1995; Jones and Lins 1996; Abdullahi and Ringwood 1998; Shapiro et al. 2000; Ferreira and Veiga
2005).

Unification of Tracing And Reference-Counting: Recent work has proposed that the two tra-
ditional distinct families of GC algorithms (tracing and reference-counting) are, in fact, duals of
one another (Bacon et al. 2004). Both can be analyzed from a tracing, as well as a reference-
counting perspective. Tracing operates on live objects (i.e. matter), while reference-counting
operates on dead objects (anti-matter).

In tracing, transversal starts with mutator roots and detects all live objects. Tracing can be
regarded as a one-bit sticky reference count, in which it initializes reference-counts of objects to
zero and increments (only once) them when they are referenced from live objects. It requires
and extra sweep phase to collect dead objects

In reference-counting, transversal starts with anti-roots (that includes all objects whose
reference-count has been decremented to zero), and detects (i.e., in some sense, traces) further
downstream objects whose reference-count will reach zero. This is the complemental graph of
live objects except for cyclic garbage. In each iteration, reference-counts of objects are greater
than or equal to the real value. Therefore, GC decrements them when they are referenced from
garbage objects. It needs an extra-phase as well, in this case, to detect cycles (e.g., trial deletion).

Most high-performance GC algorithms are hybrids of some kind even when it this hy-
bridization is not trivial. In Deferred Reference Counting, Zero Count Tables (ZCT) are in fact
tracing elements. In Generational GC, remembered-sets are reference-counting elements; they are
a set-representation of non-zero reference-counts, complementary to a ZCT.

Distributed Garbage Collection for Active Objects: Distributed Garbage Collection has also
been applied in the contexts of active objects, actors, and agents. These concepts provide a unit of
encapsulation for both data (state) and task behavior (thread of control flow). They have been
employed for cooperative multitasking, namely in the field of Grid Computing.

In this context, the role of the DGC algorithm is to identify, terminate, and reclaim memory
and resources owned by inactive objects, i.e., those that are unreachable via root objects, and
blocked, without the possibility of further communication with other active objects or with users.
Fundamental and recent work on DGC for active objects includes (Hudak and Keller 1982; Kafura
et al. 1990; Kafura et al. 1995; Vardhan and Agha 2002; Wang and Varela 2006).

Final Remarks: Equivalence of distributed termination and distributed garbage collection al-
gorithms has been demonstrated in (Tel et al. 1987; Tel and Mattern 1993; Norcross et al. 2005).
This approach is also used in (Lowry and Munro 2002) to derive the mechanism for identifica-
tion of isolated trains.

Recently, in (Moreau et al. 2003; Moreau et al. 2005) a complete proof of safety and liveness
is provided for Birrel’s version of the reference listing algorithm (Birrell et al. 1993a; Birrell
et al. 1993b) on which Java RMI DGC is based. Although this algorithm is not complete, as it
cannot detect distributed cycles of garbage objects, it is arguably the most widely deployed DGC

156 CHAPTER III.1. RELATED WORK ON DISTRIBUTED GARBAGE COLLECTION

algorithm. Remoting services (McLean et al. 2002) in .Net uses an unsafe lease-based approach
to DGC.

Garbage collection is a cross-cutting issue in systems research. LGC deals with program-
ming correctness and system performance. DGC research motivates and exercises key aspects
of distributed algorithm design, such as: safety, asynchrony, scalability, liveness, termination,
and completeness. A three-tiered approach to garbage collection (local, acyclic and cyclic DGC)
further leverages these aspects. While many solutions have been presented along the years,
on-going research demonstrates that there still remain open issues on how to balance desired
properties for GC algorithms. Thus, GC is interesting in a theoretical as well as practical per-
spective.

Summary of Chapter: In this chapter, we presented a thorough survey of automatic mem-
ory management algorithms and/or techniques, known as garbage collection (GC). Initially,
we briefly overview GC for centralized systems, local garbage collection (LGC), and its main
algorithmic families that were defined in early times: i) reference-counting, ii) tracing and its
variations (mark-and-sweep, and copying collectors), and iii) hybrid approaches of both (e.g.,
train, and generational GC).

Then, we comprehensively addressed distributed garbage collection algorithms (DGC),
applicable to distributed object systems based on remote invocation, to manage distributed
graphs of objects. We presented algorithms based on adaptations, to the distributed sce-
nario, of reference-counting (e.g., distributed reference-counting, weighted reference-counting,
reference-listing), and tracing (e.g., mark-sweep using time-stamps, logically centralized trac-
ing), and a fair number of influential specialized approaches to detection of distributed cycles
of garbage (e.g., group-based detection, back-tracing, group-merger) which is a hard problem in
distributed systems, w.r.t. ensuring both completeness and scalability.

We also covered the most relevant approaches to GC in persistent and transactional systems,
and the new problems they raise, respectively, garbage continues to exist even after applications
terminate, and avoiding premature reclamation of objects that may become reachable again due
to transaction roll-back.

Finally, we addressed DGC in replicated memory systems which is a relatively more recent
field in GC, raising issues regarding safety and interference with consistency mechanisms. The
safety of DGC in presence of replicated, possibly divergent data, is handled by the use of the
Union Rule. Dealing with consistency mechanisms is accomplished by either leveraging knowl-
edge of their operation in order to minimize interference between GC and applications, or by
aiming to be completely orthogonal to them. This last option has been employed in the context
of wide area networks (e.g., PerDiS project).

We concluded with some considerations regarding performance issues and recent work fo-
cusing on the unification of the two original GC families: reference-counting and tracing.

III2Algorithms

This chapter describes three novel approaches for distributed garbage collection. They ad-
dress the issue of completeness, i.e., how to identify and reclaim distributed cycles of garbage.
They are combined approaches, in the sense that each of them comprises a detector of distributed
cycles of garbage, while assuming a pre-existing acyclic DGC algorithm (e.g., reference-listing,
and DGC-WARM).

The first two approaches are distributed cycle detectors that target distributed systems
without replication: i) one centralized approach named DGC-Consistent Cuts (Veiga and Fer-
reira 2003a), and ii) one de-centralized approach named Algebra-based Distributed Cycle De-
tection (Veiga and Ferreira 2005a). The third one comprises the first viable solution to com-
plete distributed garbage collection for replicated object systems, DGC-Cuts for Replicated Ob-
jects (Veiga and Ferreira 2005b).

Once a distributed garbage cycle is detected, the cycle detector instructs the acyclic DGC
component to explicitly delete some of its data structures (e.g., scions) that are preventing the
cycle from being collected. This technique is employed by all three algorithms presented in this
chapter. Once these structures are deleted, the cycle is broken into acyclic garbage. During the
following iterations of the acyclic DGC algorithm, the remaining of the cycle will be collected.
This operation of explicit deletion of DGC structures is safe, provided that the distributed cycle
detector is sound. This stems from the observation that: if the objects belonging to the dis-
tributed cycle are indeed garbage, they are already unreachable to the mutator. They simply
have not been identified as such, yet. Thus, program correctness is not affected.

The three algorithms have common goals. Safety and completeness are natural ones. Ad-
ditional ones include scalability, and non-interference with the operation of both mutators and
other GC components, namely, the imposition of specific solutions to local GC or to acyclic DGC.
Therefore, the proposed cycle detection algorithms must be general, in the sense that they can
be applicable to other existing systems.

Detection of distributed garbage cycles should be performed with lower priority, since cyclic
distributed garbage is less frequent and created at a lower rate. Therefore, cycle detection, while
required to be present for completeness, should not delay the more common cases in program
execution (mutator, LGC, and acyclic DGC) that are executed more often, and should not be hin-
dered or slowed down to account for cycle detection. In essence, they should be kept oblivious
of cycle detection existence.

The algorithms share some data structures (e.g., stubs, scions) and constructs (e.g., graph
summarization), while having adaptations to each case. Thus, for the sake of brevity, they are
not thoroughly explained in all sections. Instead, the extensions and/or modifications required
are highlighted.

158 CHAPTER III.2. ALGORITHMS

In the remaining of this chapter, we introduce, in sequence, each of the algorithms proposed,
in a dedicated section. Each of them starts with a brief global overview of the main ideas behind
the algorithm, followed by the presentation of the algorithm (its data structures, cycle detection
technique), and a prototypical example of its functioning. In Section III.2.3, cycle detection is
preceded by an overview of the acyclic DGC for replicated object systems it integrates with,
which is an extension of DGC-WARM (Sanchez et al. 2001). Each section ends with an analysis
of algorithm properties. Other aspects regarding actual algorithm implementation, and runtime
support for its deployment, are addressed in the next chapter.

III.2.1. DGC-CONSISTENT CUTS 159

III.2.1 DGC-Consistent Cuts

This section presents DGC-Consistent Cuts (Veiga and Ferreira 2003a; Pereira et al. 2006).
This approach is employed to perform detection of distributed cycles of garbage spanning
groups of processes. It introduces the notion of DGC-consistent cut, that may be regarded as
the extension of the GC-consistent-cut notion to a distributed scenario. GC-consistent cuts were
initially developed for centralized object databases (Skubiszewski and Valduriez 1997).

The algorithm detects distributed cyclic garbage occurring within a DGC-consistent cut. It
achieves this by employing a centralized approach, in the sense that there is a designated server,
the distributed cycles detector (DCD), which is contacted by application processes. It is respon-
sible for constructing DGC-consistent cuts, and detecting garbage cycles enclosed in them. The
detection of distributed cycles of garbage works on a view of the global distributed graph (i.e.,
the DGC-consistent cut) that is consistent for GC purposes. Furthermore, it is less restrictive
than a consistent cut, as defined by Lamport, w.r.t. causality among application processes.

Conceptually, the algorithm constructs a DGC-consistent cut by combining representations
of object graphs received from application processes. Then, the algorithm performs a conserva-
tive mark-and-sweep on the DGC-consistent cut. DGC-consistent cuts are optimized by means
of a technique referred as graph summarization. DGC-consistent cuts can be obtained without
requiring any distributed synchronization among the processes involved.

The algorithm eliminates limitations found in previous centralized approaches (Liskov and
Ladin 1986; Ladin and Liskov 1992), by neither requiring global clock synchronization among
participating processes, nor imposing bounded message latency. It also has fewer requirements
w.r.t. synchronization, and maintenance of state regarding cycle detections, when compared
with other group-based approaches (Lang et al. 1992; Rodrigues and Jones 1998). More details
are presented in Chapter III.4, regarding the evaluation of the algorithm, and comparison with
related work.

III.2.1.1 Algorithm

Figure III.2.1 presents an overview of distributed cycle detection in an example situation,
which comprises four processes running a distributed application. We assume there is a pre-
existing acyclic DGC algorithm deployed (e.g., reference-listing) and, thus, each process already
has a DGC component running.

Each process stores its DGC structures and, periodically, sends information about them to
other processes (e.g., NewSetsStubs messages). Using these messages, processes cooperate, by
pairwise interaction, to detect acyclic distributed garbage. This pairwise interaction needs not
be two-sided, i.e., a process P1 that sends DGC messages to another process P2, may or may
not receive DGC messages from it.

Since this mechanism based on reference-listing is not complete, there is a distributed cycles
detector (DCD), for cyclic DGC. Each process seldom sends to the DCD a conceptual represen-
tation of its enclosed object graph. This takes the shape of a compressed snapshot of the process.
This snapshot also includes information about DGC structures, extended in a way described in

160 CHAPTER III.2. ALGORITHMS

Distributed

Cycles

Detector

Distributed

Cycles

Detector

Compressed

Snapshot

Compressed

Snapshot

Process P1
Process P1
 Process P2
Process P2

Process P4
Process P4
Process P3
Process P3

DGC info
DGC info

DGC info
DGC info

DGC info
DGC info

DGC info
DGC info

stubs

scions

Figure III.2.1: Integration of the distributed garbage cycles detector with the reference-listing
algorithm.

the next section. Armed with this information, the DCD performs the construction of a DGC-
consistent cut, upon which it executes a conservative mark-and-sweep (CMS). After the CMS,
the DCD is able to identify DGC structures (i.e., scions) keeping cyclic garbage from being col-
lected and instruct their deletion.

After the DCD receives a compressed snapshot from a process yet unknown to it (thus
widening the scope of detection), or an updated version of a compressed snapshot it already
holds, it can construct a new DGC-consistent cut and perform CMS on it. The DCD discards
older versions of compressed snapshots from each process, no longer in use, when it receives a
more recent one. If it receives a message carrying a snapshot from a process that is older than
what it already holds, it simply ignores it. Thus, incorporating snapshots always improves the
recency and scope of the DGC-consistent cut, and allows the algorithm to progress, thus possibly
detecting more distributed cycles.

A DGC-consistent cut necessarily portrays a situation that occurred somewhere in the past,
either recent or remote. The recency of a DGC-consistent cut, nonetheless, does not raise safety
issues because garbage is stable.

III.2.1.1.1 Data Structures

The DCD uses data structures already present in the acyclic DGC algorithm and defines new
ones that are exclusive to cycle detection. The data structures managed by the algorithm are:

III.2.1. DGC-CONSISTENT CUTS 161

• Scion: represents an incoming inter-process reference. In addition to the fields already de-
scribed in Chapter I.2, it is extended with a time-stamp. This is a numeric value provided
by a monotonic counter global to the enclosing process, when the scion is created.

• Stub: represents an out-going inter-process reference. It is also extended with a time-
stamp field that is equal to the time-stamp of its corresponding scion.

• Vector-clock: each process maintains a record of the highest time-stamp associated to
scions from other processes it knows of, including itself, thus constituting a vector-
clock (Mattern 1989).

• Snapshot: representation of the object graph of a process, including its stubs, scions, and
the vector-clock maintained by the process.

• DGC-Consistent Cut: a conservative juxtaposition of snapshots taken at uncoordinated
times, comprised of, at most, one snapshot concerning each process.

Scions, stubs, vector-clocks and snapshots are created and maintained at application pro-
cesses. DGC-consistent cuts exist exclusively in the context of the DCD.

The extension of stubs and scions just described is necessary for the purpose of DGC-
consistent cut creation. Nevertheless, it is also present in previous approaches to reference-
listing (Hughes 1985; Shapiro et al. 1990), in NewSetStubs messages, to avoid race conditions,
and can thus be leveraged.

NewSetStubs messages are time-stamped, with the highest scion time-stamp that the sender
process was aware of, when the set of stubs was generated. This associates a view of outgoing
inter-process references with the time it was taken to ensure its consistency. It ensures safety,
preventing the receiving process from incorrectly eliminating scions, whose corresponding stubs
were not yet created when the new set of stubs was generated (e.g., a remote invocation whose
reply message was still in transit).

III.2.1.1.2 Messages

The algorithm defines two types of messages: one that is informative and another one that
is operative:

• NewSnapshot: message sent from the cyclic DGC component of an application process,
to the DCD, carrying a snapshot.1 It can be sent lazily after a new, updated snapshot,
becomes available in the process.

• DeleteScion: message sent from a DCD to the cyclic DGC component of an application
process, instructing it to delete a specific scion that is found to belong to cyclic garbage.

1Actually, there may be more than one DCD process running. This and other optimizations are described in
Section III.2.1.1.4.

162 CHAPTER III.2. ALGORITHMS

Upon receiving a NewSnapshot message from a process, the DCD is able to infer, from the
sender identifier and the enclosed vector clock, whether there was a snapshot from that process
previously available. If not, it determines if the one received is indeed more recent then the
previous one. This verification handles possible message reordering correctly.

Upon receiving a DeleteScion message, an application process removes the scion indicated.
Once a distributed cycle of garbage is broken this way, the process may still receive NewSetStubs
messages from the process where the corresponding stub resides, still containing it. This is
because it may take several iterations of acyclic DGC to reclaim the rest of the broken cycle.
Nonetheless, this does not hinder correctness. Since the scion no longer exists, it will not be
recreated (as no more references to that object will be created because it is garbage), and the stub
enclosed in the message is simply ignored (as it is would normally be by the reference-listing
DGC component).

III.2.1.1.3 Cycle Detection

Cycle detection is performed by the DCD. It is divided in four distinct phases: i) snap-
shot reception, ii) DGC-consistent cut creation, iii) conservative mark-and-sweep (CMS), and iv)
sending of DeleteScion messages.

Snapshot Reception: The DCD is always ready to receive snapshots from processes. When a
snapshot is received, it is stored as a new version concerning the sender process. Therefore, the
DCD may perform Snapshot Reception concurrently with another phase.

Thus, reception of a newer snapshot from a process never causes any of the other phases to
stop, if they are already in progress. Naturally, when the DCD is otherwise idle, the reception
of a new snapshot may trigger phase ii). When a snapshot from a process is no longer neither
involved in phases ii) nor iii), it can be deleted by DCD if there is a newer version available.

DGC-Consistent Cut Creation: This is the crucial and most novel aspect of the algorithm.
A DGC-consistent cut is created by the DCD by assembling a set of snapshots received from
application processes. Note than a DGC-consistent cut needs not contain a snapshot from all
processes. This may affect the scope of detection but not its correctness. Cycles comprising
objects in such missing processes are not represented entirely. However, all other cycles are.

The difficulty in creating DGC-consistent cuts stems from the fact that snapshots from some
application processes may not be available, and that snapshots actually received from applica-
tion processes may have been created at uncoordinated times.

Smaller cuts comprising groups of processes that update their snapshots more often may be
created to increase detection promptness. Larger cuts spanning all processes that send snapshots
to the DCD will ensure completeness, but need not be created frequently.

A DGC-consistent cut is created without requiring a distributed consensus (Fisher et al.
1985) among the applications processes that send their graph descriptions to the DCD. It can be
used for cycle detection, even if its global view of the distributed object graph is made of local

III.2.1. DGC-CONSISTENT CUTS 163

P1

P2

P3

DCD

t

t

t

t

g
r
a
p
h

d
e
s
c
r
i
p
t
i
o
n

g
r
a
p
h

d
e
s
c
r
i
p
t
i
o
n

g
r
a
p
h

d
e
s
c
r
i
p
t
i
o
n

g
r
a
p
h

d
e
s
c
r
i
p
t
i
o
n

g
r
a
p
h

d
e
s
c
r
i
p
t
i
o
n

ta

P1

P2
 P3

P4 graph

description

not available

at DCD

tb
 DGC
-
Consistent Cut

P1

P2

P3

DCD

t

t

t

t

g
r
a
p
h

d
e
s
c
r
i
p
t
i
o
n

g
r
a
p
h

d
e
s
c
r
i
p
t
i
o
n

g
r
a
p
h

d
e
s
c
r
i
p
t
i
o
n

g
r
a
p
h

d
e
s
c
r
i
p
t
i
o
n

g
r
a
p
h

d
e
s
c
r
i
p
t
i
o
n

ta

P1

P2
 P3

P1

P2

P3

DCD

t

t

t

t

g
r
a
p
h

d
e
s
c
r
i
p
t
i
o
n

g
r
a
p
h

d
e
s
c
r
i
p
t
i
o
n

g
r
a
p
h

d
e
s
c
r
i
p
t
i
o
n

g
r
a
p
h

d
e
s
c
r
i
p
t
i
o
n

g
r
a
p
h

d
e
s
c
r
i
p
t
i
o
n

ta

P1

P2
 P3

P4 graph

description

not available

at DCD

tb
 DGC
-
Consistent Cut

Figure III.2.2: DGC-Consistent Cut and process snapshots as seen by the DCD.

graph descriptions (sent by the application processes) gathered at different and uncoordinated
moments. A DGC-consistent cut, while not required to be causally consistent, is still consistent
for GC purposes.

When a snapshot is included in a new DGC-consistent cut it is not copied but just referenced,
since the DCD never modifies them. It can thus be shared by several cuts. Once a snapshot is
included, newer versions of the snapshot will not be considered by ongoing creations. This
ensures liveness even in the improbable situation of a continuous flow of snapshot reception
from several processes.

Once a DGC-consistent cut is created, it can be forwarded to the next stage, i.e., phase iii),
or stored to be later combined with other DGC-consistent cuts (more details in the remaining of
this section).

In Figure III.2.2, on the left-hand side, we show in bold a cut that is not consistent for typical
DGC purposes; it results from the uncoordinated creation and sending of snapshots from each
application process to the DCD. It is clear that this cut is such that the creation of stubs and scions
is not consistent for DGC purposes; in addition, this cut does not correspond to a Lamport’s
consistent cut. Object graphs received by the DCD provide a view of the global graph that does
not correspond to a real one; the differences are due to the shaded stubs and scions. LGCs are
not represented as they can occur at any time.

However, based on such graphs, the DCD builds a DGC-consistent cut that allows it to
detect distributed cycles of garbage safely. This cut is consistent w.r.t. the finding of such cycles.
The line in bold represents the DGC-consistent cut. On the right-hand side of Figure III.2.2, the
global graph as perceived by the DCD, based on the graph descriptions received thus far, is
represented; shaded stubs and scions do not exist.

Thus, a DGC-consistent cut is a group of scions and stubs that provide a safe view of the
distributed object graph. This group of stubs and scions provide a safe view of the distributed
graph as long as the rules to define the root-set of the CMS (performed by the DCD) are re-
spected. In particular, these rules specify which scions are members of the root-set of the CMS,
as explained next.

Conservative Mark-and-Sweep: This phase is performed after a new DGC-consistent cut has
been created. Initially, the DCD analyzes the DGC-consistent cut with special care for consis-
tency and causality. Conservative mark and sweep is performed exclusively within the DCD,

164 CHAPTER III.2. ALGORITHMS

on the DGC-consistent cut. There is no exchange of messages with other processes, during this
phase. The marking is performed on a separate bit-map that includes one bit per each entry in
the DGC-consistent cut. This way, snapshots are untouched and may be referenced by multiple
cuts.

To be safe, CMS must take into account possible, and highly probable discrepancies, among
the moments when the snapshots of the different processes are taken and included in the DGC-
consistent cut. There is no coordination among them w.r.t. to this activity, as they take snapshots
at independent times. Thus, the CMS uses an extended set of global roots that, conservatively,
includes:

1. Objects that, in each application process, are directly reachable from the GC local-roots
(stack, etc.) must be obviously considered roots of the CMS.

2. Scions whose corresponding stubs are included in processes whose snapshot is not in-
cluded in the DGC-consistent cut (it may even be unavailable to the DCD). These scions
are members of the CMS root for safety reasons. As a matter of fact, such scions may no
longer have a corresponding stub, and be removed after reception of subsequent NewSet-
Stubs messages. Nonetheless, the DCD cannot know that for sure, using therefore a con-
servative approach.

3. Scions with time-stamp greater than the highest time-stamp (regarding the process where
the targeted object resides), known by the process holding the corresponding stub. This is
also a conservative approach. These scions are those whose corresponding stubs have not
yet been created when the referring process recorded its snapshot. These scions verify the
following condition:

scion.timestamp > V CPstub
[Pscion]

where scion.timestamp is the time-stamp given to the scion when it was created,
V CPstub

is the vector-clock maintained by the process holding the corresponding stub,
and Pscion is the identifier of the process holding the scion.

Thus, CMS is performed starting with the extended root-set, and tracing inter-process (from
stubs to scions) and intra-process (from scions to stubs) references. Intra-process references are
expectably more frequent and are subject to optimization. Naturally, tracing an inter-process
across snapshots from two processes, can only be performed if the corresponding stub-scion
pair exists in both of them, in the DGC-consistent cut. As the end result of the CMS, scions and
stubs belonging to garbage are not marked.

The DCD determines whether they belong to a distributed cycle and, for each cycle de-
tected, one of the comprised scions is selected and marked for explicit deletion. Only scions that
are simultaneously garbage and, still, referenced by stubs, can belong to a distributed cycle of
garbage. Then, one, any, or all of them, can be selected for deletion.

Those distributed garbage cycles that already existed when the earliest graph description
(included in the DGC-consistent cut being processed) was created, and are totally included in

III.2.1. DGC-CONSISTENT CUTS 165

the graph descriptions available at the DCD, are effectively detected and reclaimed. Thus, con-
sidering Figure III.2.2, all cycles that existed before tb , that are totally enclosed in processes P1,
P2, and P3, are detected by the DCD.

Sending of DeleteScion Messages: Once a scion has been selected for explicit deletion, a
DeleteScion message will be sent to the enclosing process. This message can be sent at any
time, without any race condition, because the scion regards a reference that can no longer be
transversed by the application, due to garbage being a stable property, i.e., once garbage, an ob-
ject can never become live again. Only one message is needed to break each cycle, as the acyclic
collector will then be able to reclaim all remaining objects belonging to the cycle. Messages
regarding the same process may be queued and sent in batch.

During the reclamation of the remaining acyclic garbage, after a scion has been deleted,
it may happen that its corresponding stub is still included in ulterior NewSetStubs messages.
According to reference-listing, this does not cause the re-creation of the scion (as this can only
happen via exporting a reference). Thus, the stub is ignored and will eventually disappear as
the remaining acyclic garbage is reclaimed.

W.r.t each distributed cycle found, the number of DeleteScion messages sent only influences
the bandwidth used and the speed of cycle reclamation. DeleteScion messages that were sent
and acknowledged, are recorded, using a best-effort approach, to prevent issuing multiple mes-
sages regarding the same scion. This may happen when the same cycle is detected in more than
one DGC-consistent cut.

III.2.1.1.4 Optimizations

The algorithm presented thus far is subject to three optimizations that are described in this
section: i) snapshot compression, ii) use of multiple DCDs in parallel, and iii) hierarchical com-
position of DCDs. These optimizations do not affect algorithm safety and improve both its
performance and scalability.

Snapshot Compression: Snapshots containing object graphs of processes, along with DGC in-
formation, may be very large, possibly amounting to tenths or hundreds of MB. Sending these
snapshots to the DCD process would consume network bandwidth heavily, and crumble appli-
cation performance and communication with other application processes (i.e., what distributed
computing is all about). Furthermore, once received at the DCD process, the cumulative size
of all the snapshots received would occupy a large amount of memory and disk process. Since
the DCD would perform the CMS over these large snapshots, cycle detection would become a
CPU-intensive operation, slowing it down drastically.

These problems are solved by summarizing the object graph (a snapshot) of each applica-
tion process, prior to sending it to the DCD, in such a way that, from the point of view of the
DCD, there is no loss of relevant information. This summarization compresses a snapshot of an
application graph into a set of scions and stubs, with their corresponding reachability associa-
tions. As a matter of fact, neither references among objects that are strictly internal to a process,

166 CHAPTER III.2. ALGORITHMS

A

B

C

D

E

F

W

X

Y

Z

L

M

N

O

P

Q

G

H

I

J

K

R

S

T

U

V

GC local
-
roots

A

B

C

D

E

F

W

X

Y

Z

L

M

N

O

P

Q

G

H

I

J

K

R

S

T

U

V

A

B

C

D

E

F

W

X

Y

Z

L

M

N

O

P

Q

G

H

I

J

K

R

S

T

U

V

Scion

Stub

Scion

Stub

Process P1
 Process P1 summarized

GC local
-
roots

Figure III.2.3: Summarization of an object graph for snapshot compression.

nor object scalar contents, are relevant for the DCD; thus, they are not explicitly represented in
the compressed snapshot. In the context of a compressed snapshot, a process may be regarded
simply as a set of scions, with each one, possibly referencing one or more stubs. Additionally,
each stub is marked if it is reachable from the GC local-roots. This is exemplified in Figure III.2.3.

The previous paragraph contains a simplification that will be used in the remaining of the
chapter. For clarity, when we say stubs that are reachable from a scion, or from the GC local-
roots, we actually mean: stubs accounting for out-going references enclosed in objects, that are reachable
from a specific object, targeted by an incoming remote reference (this one, represented by a scion), or by a
GC local-root.

This summarization is performed on every snapshot, locally to the process. The compressed
snapshot is then ready to be sent to the DCD process. Thus, while processes can take snapshots
by serializing local graphs, these uncompressed versions never leave the process. The DCD only
uses them in their compressed form, i.e., after graph summarization.

Snapshot compression reduces bandwidth usage severely as no actual object content is
transferred. The cost of transferring a snapshot is then proportional to the number of scions
and stubs in a process, and independent of the actual number and/or cumulative size of the
objects located in a process. Furthermore, it also minimizes complexity and memory usage at
the DCD process. This allows the DCD to detect distributed cycles faster, and manage more
snapshots, as opposed to what it would be able to, without snapshot compression. This allows
the detection of larger distributed cycles, spanning larger numbers of processes, and comprising
larger numbers of objects. Once compressed, a snapshot may be sent to several DCDs.

III.2.1. DGC-CONSISTENT CUTS 167

Multiple DCDs: Distributed cycle detection, for the purpose of cyclic garbage collection, is
performed by the DCD, in a centralized manner. Notwithstanding, nothing prevents there being
multiple DCD processes running at the same time, on different machines. A DCD may also be
co-located in the same machine where other application processes are running, though it runs
within its exclusive address space. It needs not be a dedicated machine. These issues do not
affect the correctness of the solution described. They are only relevant w.r.t performance, and
scalability.

Hierarchical DCDs: The DCD algorithm achieves completeness and scalability w.r.t. size of
distributed cycles, using an hierarchical approach. Without it, a single DCD is clearly not able to
manage snapshots from an unbounded number of processes. This, at least at a theoretical level,
would limit DCD completeness, e.g., a distributed cycle spanning all processes would not be
detectable, because the comprising snapshots would not fit in a single DCD process for CMS.

To circumvent this limitation, every DCD process, besides detecting distributed cycles, is
also able to produce a combined, higher-level snapshot (from a DGC-consistent cut), conser-
vatively compressing all snapshots into one that, for DGC terms, represents all processes as
one. Every inter-process reference (stubs and scions) involving processes whose snapshots are
not available to the DCD is maintained in the combined snapshot. However, inter-process refer-
ences comprised in the snapshots included in the DGC-consistent cut can be regarded as internal
references of the combined snapshot, and can therefore be summarized, as if they belonged to a
single process. This is different from the group-based approach described in (Lang et al. 1992)
that requires a single top-level group, containing all existing processes, tracing all reachable ob-
jects individually.

Hierarchical snapshots bound the growth of snapshot size, at the cost of only being able
to detect those higher-level distributed cycles that span enclosed snapshots. Thus, distributed
cycles fully comprised within a combined snapshot are not detectable at a higher-level DCD.
Nonetheless, they are detectable at the lower-level DCD, where the combined snapshot was first
created from an existing DGC-consistent cut.

III.2.1.2 Prototypical Example

In this section we further describe the algorithm operation with resort to three prototyp-
ical examples. In the first two, all the information required for cycle detection is available to
the DCD. W.r.t. the third one, this is not the case. Therefore, this example portrays how the
algorithm operates when information from some process, is either absent or outdated.

Objects are represented by their name (a letter) and their enclosing process (e.g., AP1). Data
structures have the process where they reside mentioned last (e.g., Stub(FP2)P1, for the stub in
P1).

Sub-graphs of connected objects may be represented in abbreviation (e.g.,
{{A, C, B}P1, {F, G, H}P2}), aggregated by its/their enclosing process. References may
be also explicitly described when relevant (e.g., BP1 → FP2).

168 CHAPTER III.2. ALGORITHMS

Q
P

R

S
 T

P4

A
 B

P1

C

D
 E

P2

F
 G

H

I
 J

L

O

M

K

N

P3

Q
P

R

S
 T

P4

A
 B

P1

C

D
 E

P2

F
 G

H

I
 J

L

O

M

K

N

P3

Figure III.2.4: Examples A1 and A2: distributed cycles of garbage for which the DCD has all the
information available.

Example A1 and A2: In the example A1 depicted in the left-side of Figure III.2.4, we assume
the DCD has already received snapshots from all processes (i.e., P1 .. P4), and constructed a
DGC-consistent cut that includes all of them.

The snapshot received by the DCD from process P1 includes the following information
(symbol ⇒ means evaluates to or returns, ≡ relates a field name and its value), where time-
stamps are omitted for simplicity:

• Scion(DP1)P1 ⇒ {StubsFrom ≡ {FP2}}

• Stub(FP2)P1 ⇒ {Local.Reach ≡ false}

Thus, the DCD knows there is a scion in P1 that leads to a stub regarding an object in
P2. The GC local-root referencing object AP1 existed earlier but has has been removed by the
mutator before P1 took its snapshot. Therefore, Stub(FP2)P1 is not reachable locally. Together
with the information provided by the snapshots of the other processes (P2..P4), the DCD is able
to reconstruct the view depicted in the figure.

After performing the CMS on the DGC-consistent cut, the DCD has an empty root-set, since
there are no stubs reachable locally. Therefore, the cycle is detected and the DCD may issue
DeleteScion messages regarding any of the scions (e.g., Scion(DP1)P1). From this moment on,
the acyclic DGC in P1 will no longer include Stub(FP2)P1 in future NewSetStubs messages. This
will result in the removal of Scion(FP2)P2. P4 and P3, in sequence, will eventually reclaim all
objects belonging to the initial cycle.

The example A2, depicted on the right side of Figure III.2.4, portrays a similar situation, but

III.2.1. DGC-CONSISTENT CUTS 169

Q
P

R

S
 T

P4

P1
 P2

F
 G

H

I
 J

L

O

M

K

N

P3

Figure III.2.5: Example B. Initial Situation: No snapshot has been received from process P1.

one in which there two alternate paths in the cycle. For instance, the information contained in
the snapshot sent by P4 would be:

• Scion(PP4)P4 ⇒ {StubsFrom ≡ {LP3}}

• Scion(QP4)P4 ⇒ {StubsFrom ≡ {OP3}}

• Stub(LP3)P4 ⇒ {Local.Reach ≡ false}

• Stub(OP3)P4 ⇒ {Local.Reach ≡ false}

While the information present in the snapshot from process P3, is:

• Scion(LP3)P3 ⇒ {StubsFrom ≡ {DP1}}

• Scion(OP3)P3 ⇒ {StubsFrom ≡ {DP1}}

• Stub(DP1)P3 ⇒ {Local.Reach ≡ false}

Even though the cyclic garbage in example A2 is more complex than that of example A1, a
DGC-consistent cut comprising snapshots from the four processes is still sufficient to detect the
distributed cycle. Since there no roots of reachability, because the root-set is empty, every scion
in the example belongs to cyclic garbage.

170 CHAPTER III.2. ALGORITHMS

Q
P

R

S
 T

P4

A
 B

P1

C

D
 E

P2

F
 G

H

I
 J

L

O

M

K

N

P3

Q
P

R

S
 T

P4

A
 B

P1

C

D
 E

P2

F
 G

H

I
 J

L

O

M

K

N

P3

Figure III.2.6: Example B: Steps ii) and iii). The DCD receives increasingly updated information
from process P1.

Example B: We now present an example in which the DCD has access to partial or outdated
information, about one of the processes holding objects comprised in distributed cyclic garbage.
In the initial situation portrayed in Figure III.2.5, the DCD has no information from P1 available.
It constructs a DGC-consistent cut with snapshots from processes P2..P4. Thus, even though
there are no GC local-roots in any of the processes (since the mutator in P3 has removed the one
referencing object LP3), during the CMS phase, Scion(FP2)P2 and Scion(IP2)P2 are promoted
to the root-set of the DGC-consistent cut.

Scion promotion is performed according to the safety rules presented earlier, because the
scions are targeted by stubs contained in P1, of which the DCD knows nothing about. Thus,
conservatively, it must consider those scions as roots, to ensure safety. This is represented by the
dashed grey arrows.

When the DCD performs CMS on the DGC-consistent cut, all objects become marked since
they all are reachable from FP2 or IP2. Thus, no cyclic garbage is detected, and no DeleteScion
messages are issued.

After a period of time, the DCD eventually receives a snapshot from P1, with the following
information:

• Scion(DP1)P1 ⇒ {StubsFrom ≡ {FP2}}

• Scion(EP1)P1 ⇒ {StubsFrom ≡ {IP2}}

• Stub(FP2)P1 ⇒ {Local.Reach ≡ false}, since object AP1 is no longer referenced from the GC

III.2.1. DGC-CONSISTENT CUTS 171

local-roots in P1 (the reference has been deleted by the mutator before the snapshot was taken).

• Stub(IP2)P1 ⇒ {Local.Reach ≡ true}, since the other reference from the GC local-roots in P1,
targeting object EP1, has been deleted by the mutator only after the snapshot in P1 was taken, as it
is indicated by the dashed cross.

The DCD is then able to create a new DGC-consistent cut containing snapshots from pro-
cesses P1..P4. Its root-set includes only Stub(IP2)P1, marked reachable locally, in the snapshot
from P1.

After performing the CMS, all objects belonging to the inner cycle {EP1, IP2, PP4, LP3} are
marked, while those belonging to the outer cycle are unmarked. This means the DCD is already
able to detect the outer cycle but needs more up-to-date information from P1 (though it does
not know that explicitly) in order to detect the inner cycle that is also garbage but not detectable
yet.

W.r.t. the outer cycle, the DCD can issue DeleteScion messages regarding scions identified
as garbage. As already mentioned, these messages may be queued and sent in batch lazily.
Therefore, process P1 may take another snapshot after that, which still contains the same scions
that were identified as cyclic garbage. Thus, when the DCD receives the new snapshot from P1,
it is able to identify both cycles, due to the following difference in the snapshot from P1.

Stub(IP2)P1 ⇒ {Local.Reach ≡ false}, since the previous reference from the GC local-roots in
P1 no longer exists and that fact has been registered in its snapshot.

If the DCD has recorded the DeleteScion messages issued previously, it will send
DeleteScion messages only regarding the inner cycle. Once the DeleteScion messages are re-
ceived by the intended processes, and the corresponding scions removed, the acyclic DGC
(reference-listing) will be able to reclaim the objects comprised in the two cycles detected.

III.2.1.3 Analysis of Algorithm Properties

In this subsection, we address the relevant properties of complete distributed garbage col-
lection, discussing them against the algorithm proposed: safety, liveness, completeness, termi-
nation, and scalability.

Safety: The DCD does not reclaim objects that may still be reachable to the mutator, due to the
safety rules enforced in the CMS. The DCD is resilient and conservative w.r.t. message loss and
delay (i.e., messages with graph descriptions). Replayed NewSnapshot messages cause no error
as they are idempotent. Nonetheless, for simplicity, they are ignored. Messages sent earlier, and
received out of order, are discarded; if considered, they would temporarily prevent algorithm
progress as DGC-consistent cuts would go back in time.

Concurrency between cycle detection and the mutator must be analyzed w.r.t. two aspects:
local and distributed. In local terms, snapshots are taken when the mutator is idle, or cre-
ated incrementally. Nonetheless, the DCD manipulates snapshots assumed to be coherent w.r.t.
each process. Regarding distributed invocations, that may swap references to objects among

172 CHAPTER III.2. ALGORITHMS

processes, there are no concurrency issues with the DCD; a DGC-consistent cut reveals cyclic
garbage that already existed when the enclosed snapshots were created, while the mutator only
manipulates live objects, which will be correctly accounted for during CMS.

Liveness: Liveness of the DCD naturally depends on processes updating their snapshots, and
the DCD executing CMS on DGC-consistent cuts containing those snapshots recently received.
This is guaranteed since DGC-consistent cuts are always created with the most recent version
available of each snapshot. Snapshot updates need not be performed often but processes with
mutator activity must eventually update their snapshots. Snapshot compression favors network
usage and DCD processing.

Completeness: To achieve completeness, the DCD must eventually encompass all processes,
in the sense that all of them must be included in DGC-consistent cuts. This is achieved using an
hierarchical approach, by construction of higher-level DGC-consistent cuts. Thus, all processes
are eventually considered, at some level, by a DCD, though not necessarily explicitly included
in the snapshots sent to it.

Every snapshot received at each DCD is always included in some DGC-consistent cut, at
some level. The DCD ensures that periodically, a top-level DGC-consistent cut is created that
directly or indirectly spans all the processes that sent snapshots to the DCD. This higher-level
cut may be sent to other DCDs it knows about.

The algorithm does not impose any pattern of cooperation among the participating pro-
cesses, it is only required that all processes are eventually accounted for, directly or indirectly,
in higher levels DGC-consistent cuts that may be exchanged among DCDs. Every DCD can
perform at any level, simply by receiving DGC-consistent cuts from other DCDs and creating
higher-level cuts, possibly exchanging them with other DCDs as well.

W.r.t. identification of garbage, even in the case where DeleteScion messages have not been
issued for all scions identified as garbage in one DGC-consistent cut, and individual disjoint
cycles have not been specifically identified, the algorithm still achieves completeness eventually.
The remaining scions will either be removed by the acyclic DGC (when they belong to the same
cycle) or will be explicitly instructed for deletion in ulterior cuts. This is so because the DCD
chooses, in first place, scions for which DeleteScion messages have not been issued yet.

Termination: CMS performed on each DCD terminates since it is performed resorting exclu-
sively to information available locally, and the termination of mark-and-sweep algorithm is triv-
ially sound, since there is no concurrency with the mutator in the context of the DCD.

Scalability: The discussion of algorithm scalability derives from some of the arguments for
completeness. The algorithm can scale to large numbers of processes because it imposes no
synchronization requirements nor communication among them. There may be multiple DCDs
running, possibly cooperating asynchronously in a loose hierarchy. Compressed snapshots are
smaller, use limited bandwidth are only seldom sent and can be subject to CMS even if stored

III.2.1. DGC-CONSISTENT CUTS 173

on disk(as in (Maheshwari and Liskov 1997c)). Snapshot compression favors network and pro-
cessing.

It’s worthy to note that with this information, the cycles detector does not perform a full
garbage collection (as in Liskov’s proposal (Liskov and Ladin 1986)). Moreover, multiple DCDs
are independent and not simply replicas of a centralized detector.

The deferred nature of the DCD is exclusively used to detect cyclic distributed garbage col-
lection. Snapshot compression and the possibility of multiple DCDs, in parallel as well as in a
loose hierarchy, contribute to algorithm scalability.

The hierarchical approach does not require a strict topology (e.g., tree) and any DCD process
can perform at any level of the hierarchy if it is contacted by others. There is no single top-level
root of the hierarchy.

174 CHAPTER III.2. ALGORITHMS

III.2.2 Algebra-based Distributed Cycle Detection

This section describes Algebra-based Distributed Cycle Detection (Veiga and Ferreira 2005a).
It introduces the notion of a Cycle-Detection Algebra (CDA) that fully describes a detection on-
course, without the need to maintain specific state in participating processes. It is used to build
DGC-consistent cuts in an incremental and distributed manner, without actually exchanging
process snapshots.

The algorithm detects distributed cyclic garbage ascertaining the reachability of suspected
objects, selected heuristically. It employs a de-centralized approach to test whether a cycle can-
didate indeed belongs to cyclic garbage. Processes forward Cycle Detection Messages (CDMs),
containing CDA elements, that determine which reference paths are followed, in order to find if
they form a distributed cycle of garbage. CDMs may be batched, and sent lazily, piggy-backed
on regular acyclic DGC messages (e.g., NewSetStubs).

The cycle-detection algebra allows the representation of sub-paths already traced, and de-
pendencies yet to be resolved, on which object reachability depends. Cycle detection messages,
upon arrival, are evaluated, and matched against the snapshot of the receiving processes. As
a result, detections may terminate, or a number of updated CDMs are forwarded to other pro-
cesses. The combination of a CDM and the several snapshots it has been matched against, con-
ceptually defines a DGC-consistent cut, incrementally built, that is named CDM-Graph. Several
CDM-Graphs, and thus detections, may be carried out concurrently, as there is no synchroniza-
tion among them. They may have processes and/or objects in common.

Intuitively, the algorithm operates as follows. It initiates cycle detection by issuing a CDM
regarding a scion targeting a suspect-object. If the CDM is forwarded, across a number of pro-
cesses and in the absence of mutator activity, back to the originating process with all its depen-
dencies resolved, then, a distributed garbage cycle has been found. Therefore, the scion targeting
the suspect-object can be safely deleted to break the distributed cycle.

The algorithm relies on heuristics to select candidates for cycle detection, as other suspect-
based approaches (Maheshwari and Liskov 1997a; Rodrigues and Jones 1998). Contrary to
these, the algorithm does not require processes to maintain state about ongoing cycle detec-
tions (Maheshwari and Liskov 1997a; Rodrigues and Jones 1998). Moreover, it does not re-
quire the collaboration of the LGC in each process, to propagate information regarding cycle
detection (Louboutin and Cahill 1997; Rodrigues and Jones 1998; Fessant 2001). W.r.t. DGC-
Consistent Cuts, this algorithm has the following advantages: i) cycle detection is completely
de-centralized, and ii) processes need only communicate with other process they have refer-
ences to.

III.2.2.1 Algorithm

Figure III.2.7 presents an overview of distributed cycle detection using an example situa-
tion analogous to the one previously presented in Section III.2.1. It comprises four processes
running a distributed application. We also assume there is a pre-existing acyclic DGC algorithm
deployed (e.g., reference-listing) and, thus, each process already has a DGC component running,
that stores its DGC structures and, periodically, sends NewSetsStubs messages.

III.2.2. ALGEBRA-BASED DISTRIBUTED CYCLE DETECTION 175

Process P1
Process P1
 Process P2
Process P2

Process P4
Process P4
Process P3
Process P3

DGC info
DGC info

DGC info
DGC info

DGC info
DGC info

DGC info
DGC info

stubs

scions

Compressed

Snapshot

Compressed

Snapshot

Compressed

Snapshot

Compressed

Snapshot

cycle detection

messages

Figure III.2.7: Algorithm overview

Since reference-listing is not complete, there is a distributed cycles detector (DCD), for cyclic
DGC. It is deployed in a de-centralized fashion. There is an instance of the DCD for each one
of such processes. In this case, each DCD component manipulates just one snapshot, the one
of its enclosing process, that is seldom updated. Older versions (in this case, only one) can be
promptly discarded. Even though snapshots are not exchanged among processes, they are still
compressed (as previously described) for increased efficiency.

The DCD in each process receives, evaluates, and possibly forwards CDMs. CDMs are sent
regarding a specific scion (its destination scion), and carry information about: i) transversed
stubs, and ii) dependency scions. Transversed stubs indicate a sub-path that has been traced,
across snapshots, during a cycle detection. Dependency scions indicate sub-paths that must
also be traced before a possible cycle can be safely detected. When a DCD receives a CDM, it
evaluates the CDM and determines if a cycle has been detected. If not, it must decide whether
to stop detection, or to forward the CDM.

A detection stops when the DCD discovers that : i) the sub-path being traced includes ob-
jects that are reachable from the GC local-roots of the process, or ii) there have been distributed
invocations on objects comprised in the sub-path being traced, or iii) it can no longer update the
CDM with new information, and a cycle has not yet been found. Either way, the DCD decides
to stop that detection because either there is no garbage cycle: situations i) and ii); or it cannot
progress any further with the available information, thus avoiding repeating work: situation iii).

176 CHAPTER III.2. ALGORITHMS

Otherwise, the DCD decides to forward a CDM, with updated content, to every process contain-
ing the counterpart scions of the stubs reached by the DCD, when it transversed the snapshot,
from the destination scion included in the CDM.

When a CDM is forwarded via a distributed cycle, transversing it completely and resolving
all dependencies, without detecting any GC local-roots nor interference with the mutator, the
DCD can safely determine that a distributed garbage cycle has been detected. Then, it may
instruct the cyclic DGC component, running on the same process, to remove the destination
scion referred in the CDM.

III.2.2.1.1 Data Structures

The DCD uses data structures already present in the acyclic DGC algorithm and defines
new ones that are exclusive to cycle detection. The extensions presented in the previous section,
with stubs and scions storing time-stamps, and processes keeping vector-clocks, may also be
employed, but are only of use to the acyclic DGC. They are not required by this algorithm. Thus,
the data structures managed by it, and their relevant extensions are:

• Scion: It is extended with a numeric field, an invocation counter (IC), for concurrency
purposes. This counter is incremented each time a remote invocation (or reply) is per-
formed through the corresponding remote reference. Its new value is piggy-backed in the
reply.

• Stub: It is extended with a numeric field, an invocation counter (IC), for concurrency
purposes. This counter is updated with the value piggy-backed in reply messages of
remote invocations.

• Snapshot: representation of the object graph of a process, including its stubs and scions.
In this algorithm, snapshots need not record the vector-clock maintained by the process,
even if it is used for acyclic DGC.

• Cycle-Detection Algebra (CDA) Element: representation of a cycle detection in course
(i.e., transversed stubs and dependency scions) that is evaluated within the context of a
process, to determine whether : i) a cycle has been detected, ii) detection should stop, iii)
the algebra element should be extended and the result forwarded to another process.

III.2.2.1.2 Messages

The algorithm exchanges only one kind of messages:

• CDM - Cycle Detection Message: message sent from the DCD component in one process
to its counterpart in another process, to continue further an ongoing cycle detection. This
message carries the identification of a scion in the receiving process (destination scion), and
a CDA element that contains information already assembled about the detection.

III.2.2. ALGEBRA-BASED DISTRIBUTED CYCLE DETECTION 177

Upon receiving a CDM, the DCD of a process ascertains if the destination scion is part of a
distributed cycle of garbage. Otherwise, it forwards updated CDMs or stops detection.

There is no need for an explicit DeleteScion message. The DCD that ultimately detects the
cycle needs only communicate with the acyclic DGC of the same process. It gives instructions to
delete the destination scion of the CDM received. This is the scion that led to the distributed cycle
being detected. Naturally, this may be implemented by exchanging an internal DeleteScion mes-
sage between two GC components. Nonetheless, it is a message in which the sender and receiver
are running on the same computer, thus no actual distributed communication is involved.

III.2.2.1.3 Cycle Detection

In this section, we describe the main idea of the DCD. We follow an intuitive description
that does not consider many subtle aspects; these are addressed in the remainder of this section.
However, it provides an easily understandable description of the main idea. For simplicity, we
first assume that all mutators are suspended; we call this, the stop-the-world DCD. Afterwards,
we do relax this requirement: concurrent DCD.

III.2.2.1.3.1 Stop-the-World DCD

Consider an hypothetical object x in process P1, depicted in Figure III.2.8, which is kept
alive solely because it is reachable from another process, i.e. it is not locally reachable in process
P1 (where x is allocated). If this object is not invoked for a certain amount of time we can make
a guess that this object is, in fact, part of a distributed cycle of garbage. However, we are not
sure about that. In order to reach a safe conclusion about x’s state (live or dead), we conceived
an algorithm that, intuitively, works as follows.

In process P1, the DCD determines which stubs (in process P1) are reachable from object
x. Those stubs that are locally reachable (directly or indirectly from GC local-roots in P1) are
immediately discarded from the point of view of the DCD; obviously, such stubs do not belong
to a distributed cycle of garbage. On the other hand, those stubs that are solely reachable from
object x, may be part of such a cycle.

Scions in process P1 that may also lead (directly or indirectly) to the local graph where x

is included, are accounted for as extra dependencies. We define dependency, in cycle detection
terms, as a scion that leads to the path being traced by the DCD, i.e., an alternate converging
distributed path. Global reachability of the path being traced depends, also, on the reachability
of such a scion. Therefore, if there is cyclic garbage, such a scion must also belong to it. This
dependency is accounted for, and must be eventually resolved by the DCD. While it is not, no
cycle has been safely identified yet. This situation is portrayed in Figure III.2.8: the remote
reference from w in P4 → x in P1 is an extra dependency of the cycle, i.e., it is preserving the
distributed cycle reachable.

So, the DCD sends a probe message along at least one of the above mentioned stubs. These
probes (that are in fact, CDMs) will reach the corresponding scions in remote processes.

178 CHAPTER III.2. ALGORITHMS

P1 P2

P3

ROOT ROOT

x

y

z

ROOT
P4

ROOT

w

Figure III.2.8: Identifying dependencies in cycles.

For clarity, but without loss of generality, assume each process only receives one CDM.
Nonetheless, different CDMs can be handled independently. Thus, in each one of such processes,
the DCD performs, for each CDM received, as described next. It determines which stubs (inside
the process) are reachable from the scion that received the CDM. Once again, those stubs that are
locally reachable are not considered by the cycles detector; thus, the CDM does not follow the
corresponding outgoing path. For those stubs that are reachable from the scion that received the
CDM, and are locally unreachable, the CDM follows the corresponding outgoing path to remote
processes. All other scions that may lead to any of the afore mentioned stubs, are included in
the CDM, i.e., they are considered as dependencies.

Thus, the CDM is i) either stopped because, in some process, the DCD discovers a stub that
is locally reachable, or ii) kept on going along the references path so that, eventually it will reach
the starting process X . When such event occurs, the CDM carries an algebra that describes the
distributed graph that was traversed.

This algebra may indicate that there are dependencies still to be resolved, i.e. references
pointing to the graph that was traversed. In this case, it is not safe to conclude that we have
discovered a distributed cycle; obviously, it is necessary to resolve such dependencies. The
details w.r.t. resolving dependencies in CDA elements are presented later in Section III.2.2.1.3.3.

However, if the graph is, in fact, a distributed cycle of garbage, then it has no such depen-
dencies yet to be resolved because all those alternate paths were fully and successfully traced.
Thus, the DCD in process X , based on the algebra before mentioned, can safely conclude that
it has found a distributed cycle of garbage. Therefore, all it has to do, is to delete the (local)
scion from which the CDM has been initiated. Then, the distributed acyclic garbage collector
will reclaim the remaining objects.

III.2.2.1.3.2 Concurrent DCD

Naturally, to assume that all mutators are suspended is not reasonable. So, periodically,
each process stores a snapshot of its internal object graph on disk. This snapshot is created

III.2.2. ALGEBRA-BASED DISTRIBUTED CYCLE DETECTION 179

P1 P2

P3

ROOT ROOT

x

y

z

P1

P2

P3

CDM
CDM

CDM

delete
root -> x

invoke y

create
root -> y

S2

S1

S3

t

t

t

P1: snapshot S1

x

y

z

c) Graph perceived by the DCDA.

P2: snapshot S2

P3: snapshot S3

a) Initial situation

b) Timeline

ROOT ROOT

ROOT ROOT

P1: snapshot S1

x

y

z

d) Real Graph

P2: snapshot S2

P3: snapshot S3

ROOT

ROOT ROOT

Figure III.2.9: DCD processing of independent snapshots.

by each process with no coordination w.r.t. other processes; thus, each process is completely
independent.

If we assume that a set of such snapshots, taken independently by each process, provides a
consistent view of the global distributed object graph, the DCD may proceed exactly as described
previously. However, such an assumption is not correct. Therefore, the DCD has to ensure that
the set of snapshots visited by a CDM compose, in fact, a consistent view for the purpose of
finding distributed cycles of garbage.

In other words, it is only required that the sub-graph being independently traced by a CDM
(to determine if it is a distributed garbage cycle) is observed consistently. This a weaker require-
ment than that of a consistent-cut in a distributed system due to: i) distributed cyclic garbage (as
all garbage) is stable, i.e., after it becomes garbage it will not be touched again by the mutator,
and ii) distributed cyclic garbage is always preserved by the acyclic DGC (that is why we need
a special detector), i.e., if the DCD does nothing, it still is safe.

Thus, we define CDM-Graph(x) as a GC-consistent view of a distributed sub-graph restricted as
follows: including object x, and enclosed in the combination of N process snapshots.

For DCD purposes, a CDM-Graph must respect the following invariant:there can be no invo-
cations along a CDM-Graph while the corresponding CDM is in transit. If we allow this to happen, it
means that the mutator is modifying the distributed graph in the back of the DCD. Consequently,
the DCD may erroneously conclude that it found a garbage cycle. Fig. III.2.9-a illustrates such a
case. The initial situation is that of a cycle formed by objects x, y and z in processes P1, P2 and

180 CHAPTER III.2. ALGORITHMS

P3, respectively. This cycle is not garbage because x is referenced from the GC local-roots in P1.

Now consider the sequence of events depicted in the timeline in Fig. III.2.9-b (S1, S2 and S3
are the instants when the corresponding processes create their snapshots with no coordination
at all). Suppose that the DCD starts in P2 by sending a CDM to P3. Concurrently, the mutator in
P1, invokes y in P2 and deletes the reference from the GC local-root that points to x. As a result
of this invocation, a new local reference is created in P2’s GC local-roots pointing to y. Once
this invocation finishes, P1 creates a snapshot of its graph (instant S1). Given that S2 and S3
were previously taken, the view of the distributed graph that is perceived by the DCD instances
(i.e., the CDM-Graph) is, in fact, the one represented in Fig. III.2.9-c, instead of the correct one
represented in Fig. III.2.9-d. This would lead to the erroneous detection of a distributed cycle
of garbage comprising objects x, y and z. This erroneous conclusion would be reached by the
DCD if the invariant above mentioned is not respected. In this case, an invocation took place
along the reference path P1 → P2 that had been previously stored in the snapshot and will be
included in the CDM-Graph when the CDM arrives to P1.

Given that snapshots are independently taken, the following situations may arise: 1) Stub

without corresponding Scion, 2) Scion without corresponding Stub, and 3) Stub with matching
Scion. The invariant dictating the construction of a CDM-Graph is enforced using the following
conservative safety rules (Situation ⇒ Action), when process snapshots are pairwise-combined
through CDM:

• 1: Stub without corresponding Scion (snapshot of the process holding the scion is not
current enough for the CDM-Graph) ⇒ Ignore CDM .

• 2: Scion without corresponding Stub (reference-creation message in transit, acyclic
garbage, or snapshot of the process holding the stub not current enough) ⇒ The CDM
is never sent since there is no stub in the CDM-Graph.

• 3a: Stub with matching Scion but there have been remote invocations, and possibly ref-
erence duplication, along the CDM-Graph after one of the snapshots was taken; it is not
consistently accounted for in the snapshot and the CDM ⇒ Terminate CDM-Graph con-
struction, i.e., terminate detection avoiding mutator-DCD race.

• 3b: Stub with corresponding Scion and there were no invocations after snapshot (safe to
continue CDM-Graph creation and cycle detection) ⇒ Proceed CDM-Graph construction,
combine CDM with process snapshot and continue detection.

III.2.2.1.3.3 Cycle-Detection Algebra

Cycle detections use an algebraic representation encoded in the CDM. The CDM content is
comprised of two sets (separated by →): i) a source-set holding compiled dependencies and, ii)
a target-set holding target objects that the message has been forwarded to so far.

For each CDM delivered to a process, the DCD performs an algebraic matching (eliminating
elements present in both sets of the CDM), thus resolving dependencies and reducing the CDA
element in the message. This allows the DCD to determine whether a distributed garbage cycle

III.2.2. ALGEBRA-BASED DISTRIBUTED CYCLE DETECTION 181

Insert in target
-
set

{…,A}
 {
…
,A,
X}

Insert in target
-
set

{…,A}
 {
…
,A,
X}

Scion

Stub

Scion

Stub

Incoming

CD Message

{...}
 {...,A}

Incoming

CD Message

{...}
 {...,A}

Insert in

source
-
set

{A}

Insert in

source
-
set

{A}

Account for extra

dependency

{C}

since it targets Y

Account for extra

dependency

{C}

since it targets Y

Insert in target
-
set

{…,A}
 {…,A,W}

Insert in target
-
set

{…,A}
 {…,A,W}

Insert in target
-
set

{…,A,C}
 {…,A,Y}

Insert in target
-
set

{…,A,C}
 {…,A,Y}

GC local
-
roots

A

B

C

D

E

F

W

X

Y

Z

L

M

N

O

P

Q

G

H

I

J

K

R

S

T

U

V

Process P1 summarized

Figure III.2.10: CDM Matching and Forwarding.

has been detected. A cycle is detected when, after the algebraic matching, the source-set is
reduced to an empty set. CDM matching also allows to find unresolved dependencies. These
are any unmatched elements left in the source-set.

In the situation portrayed by Fig. III.2.10, the DCD in process P1 received a CDM with
Scion(AP1)P1 as its destination scion. We assume that no cycle has been detected. Therefore, P1
should forward the CDM along the sub-paths reachable from object AP1.

Without loss of generality, and since only one process is depicted in the figure, we identify
stubs by the object that contains the corresponding out-going inter-process reference (instead of
the referenced object in another process). For simplicity, we assume they all target different ob-
jects, possibly in different processes. The objects containing out-going inter-process references,
that are reachable from object A, are W, X, and Y . None of them is locally reachable. Therefore,
according to the previously stated rules, an updated CDM should be forwarded along each of
them. Nonetheless, the forwarded CDMs (in this case, three) need not be sent immediately nor
simultaneously. They may be handled independently.

W.r.t the stub corresponding to the out-going remote reference contained in W , the CDA ele-
ment is updated simply by inserting the stub in the target-set. It now contains A and W , and this
is included in the CDM being forwarded along this stub (i.e. containing its corresponding scion
as the destination-scion of the CDM). Similar actions are performed w.r.t. the stub regarding the
reference contained in X .

The stub regarding the out-going reference in object Y requires an additional update to the

182 CHAPTER III.2. ALGORITHMS

CDA element, in the CDM being forwarded through it, to account for the extra-dependency it
adds to cycle detection. As a matter of fact, since object Y is also reachable from object C, if A

and Y belong to distributed cyclic garbage, so thus must also belong object C. This means that
the cycle being detected also depends on C belonging to it. Therefore, C is added as an extra
dependency, and inserted in the source-set of the CDA element, included in the CDM being
forwarded along the stub. Obviously, as in the previous cases, Y is included in the target-set,
since it corresponds to the stub forwarding the CDM.

III.2.2.1.3.4 Detecting Mutator-DCD Concurrency

Interaction between the mutator and the DCD is very limited. Cycle detection is performed
resorting to off-line, summarized descriptions of the memory graph in each process. Thus, there
is no contention between the mutator and the DCD. Mutator actions are not delayed due to
synchronization with cycle detection activity.

As it was mentioned in Section III.2.2.1.3.2, just combining independently taken graph snap-
shots, at every process, does not produce a consistent view of the distributed graph. However,
these snapshots of different processes are pair-wise combined (with arriving CDMs) just for the
purpose of detecting distributed cycles. Therefore, we do not require a global consistent view
(e.g., one that is produced by a causal cut) of the distributed graph.

For each detection in course, we need to ensure that every mutator event, performed on
the CDM-Graph, is completely represented in the set of snapshots (one for every process com-
prising the cycle). For instance, a distributed invocation involving two processes included in
the CDM-Graph must be represented in both their snapshots. This stems from the fundamental
property that: if a mutator has accessed the CDM-Graph after snapshots were created on any of
the processes, it means that the cycle is not garbage, at least not yet (as far as we can tell from
the information provided in the snapshots). If it is indeed a cycle, to be safe, we may need to
update the snapshots of one or more of the processes. In summary, the CDM-Graph cannot be
touched while detection is in course.

A distributed race between the mutator and the DCD can occur when the following se-
quence of events takes place:

1. There is a GC local-root in one process P1, targeting object x, therefore holding the cycle
reachable (so no actual garbage cycle exists).

2. A detection that will reach object x is already in course but has not yet reached process P1.

3. The mutator performs a remote invocation (possibly chained through various processes)
that switches the reachability from GC local-roots, instead of object x in P1, to another
object in one of the processes already visited by the detection.

4. New snapshot information becomes available at P1, now stating that object x is no longer
reachable locally.

5. When it reaches P1, the ongoing cycle detection will be able to trace, lazily, the whole cycle
without finding any GC local-root, thus, wrongly detecting a non-existing garbage cycle.

III.2.2. ALGEBRA-BASED DISTRIBUTED CYCLE DETECTION 183

Therefore, algorithm correctness in the presence of mutator activity lies in the ability of
determining if there has been mutator activity accessing the cycle itself. This is a natural reason
to abort cycle detection. However, safety must be preserved without incurring the mutator in
significant delays.

The word after, employed previously, does not imply any notion of <<global timing>>;
just causality between each pair of processes (determined by mutator events and restricted to
the CDM-Graph), solely for the purpose of each cycle detection. A particular case of this sit-
uation happens when, for instance, a CDM is delivered to a scion that is not yet inscribed in
the snapshot (it was created after the last snapshot was taken). In this case, this CDM is simply
discarded and the detection terminated.

There are two straightforward ways to uphold the CDM-Graph invariant w.r.t. the last two
rules (i.e., rules 3a and 3b) presented earlier: i) pessimistic: to freeze the mutator, or deny ac-
cess to the path already transversed while detection is in course, or ii) optimistic: to detect, at
a later stage, that this invocation has indeed occurred.2 The first option is clearly undesirable
as it disrupts applications with no justification (if the mutator wants to access objects, they are
clearly not garbage). The second option allows the mutator to run at full-speed at the expense
of possibly wasting some detection work (an hypothetical distributed cycle may be partially or
completely transversed by the detector, only to find out that meanwhile, a distributed invoca-
tion on that cycle has taken place). This is achieved by verification of invocation-counter fields
contained in CDMs and process snapshots.

The algorithm needs only to ensure safety in these cases (and it does) since they must be
infrequent when efficient heuristics are used to select cycle candidates. Thus, the solution con-
ceived consists on a barrier that detects invocations being performed in the back of the DCD.

A cycle detection starts assuming that the objects traced are, indeed, a cycle. If during the
flow of a CDM across a series of processes, those objects are invoked/accessed, there should be a
way to revise this assumption in the event of this new information. When compared to local GC,
a barrier (Wilson 1992) implies that an object modified by the mutator, after it was traced, must
be re-scanned to account for new descendants previously considered as garbage. Thus LGC must
correctly identify all live objects. In the case of the DCD, given that it identifies cyclic garbage
that is kept ”alive” by the acyclic DGC, the safe thing to do is costless: just do nothing. Thus, the
DCD barrier uses a simple invocation-counter (described in Section III.2.2.1.1) that allows the
DCD at P2 to detect that an invocation has taken place. Thus, the cycle under consideration is
not considered to be garbage. The use of invocation-counters is exemplified in Section III.2.2.2.3.

III.2.2.1.4 Optimizations

The algorithm presented can be improved by three classes of optimizations: i) snapshot
compression, ii) CDM queueing for ulterior combination, and iii) restricting CDM propagation.
These optimizations do not compromise neither the safety of the algorithm, nor the eventual
detection of all distributed cycles (i.e., completeness).

2With assembly-language synchronization primitives, this would correspond to using LOCK or LOAD-
LINK/STORE-CONDITIONAL, respectively.

184 CHAPTER III.2. ALGORITHMS

Snapshot Compression: As described in the previous chapter, snapshots of processes may be
very large. Snapshot compression, w.r.t. Algebra-based Cycle Detection, is not required for net-
work efficiency because snapshots are never exchanged among DCD in different processes. Still,
to save storage, and improve efficiency, snapshots are compressed via graph summarization. As
in the previous algorithm, graph summarization omits all object scalar content and references
strictly internal to the process. The DCD only uses snapshots in their compressed form.

Information about reachability associations, among stubs and scions in each process, is ex-
plicitly represented in bidirectional manner. There is a StubsFrom list for each scion, as in the
previous algorithm, as well as a ScionsTo list for each stub.

The StubsFrom list, for each scion, allows the DCD to determine, while detecting a cycle,
the next set of processes (targeted by out-going references) that should be probed (by the CDM)
in order to transverse the full cycle.

On the other hand, the ScionsTo list, in each stub, allows the DCD to determine extra de-
pendencies that must be also verified before the cycle is correctly identified. This extended
information contained in the compressed snapshot avoids the need to perform back-tracing,
from stubs to scions, which would be complex (requiring additional information in objects),
time-consuming, and repetitious.

Finally, the Local.Reach flag, in each stub, indicates the local reachability of the stub.3 This
ensures that a cycle comprising an object which is reachable from the GC local-roots, of its en-
closing process, is never wrongly identified as garbage. When such an object is found, cycle
detection along that path is terminated, with a negative result w.r.t. cycle detection.

Optimizing CDMs: CDM forwarding can be subject to optimization, using a best effort ap-
proach. When the reception of a CDM results in a number of updated CDMs being forwarded,
the DCD may queue some of them (e.g., all but one), and delay their forwarding for a period of
time (e.g., a time-out, or until the queue dimension reaches a threshold value). If the forwarded
CDMs are not transversing mutually-referenced garbage cycles, the CDMs in queue will even-
tually be forwarded, only later, which does not hinder completeness.

If, however, there are mutually-referenced cycles, some of the forwarded CDMs will even-
tually arrive back at the process where the previous ones were queued. If there have been no
changes to the process snapshot, the number of CDMs to be forwarded will be the same as
before. This time, though, there are already CDMs queued in the process, with the same desti-
nation scions. Queued CDMs with identical destination scions may be subject to suppression or
combination.

Suppression consists in dropping a CDM because another one, with the same destination-
scion, has strictly more information (i.e., the source and target-sets of the latter are strict super-
sets of those of the former). The former is deemed obsolete and hence needs not be forwarded.
The dropped CDM is usually the one that was queued, although this may not be the case if
several detections of the same cycle start with different candidates.

3In fact, local reachability of, at least, one of the objects containing the corresponding out-going inter-process
reference.

III.2.2. ALGEBRA-BASED DISTRIBUTED CYCLE DETECTION 185

CDMs with the same destination scion may also be combined, i.e., the source and target-sets
of the resulting CDM are obtained from the union, respectively, of the source and target-sets of
the individual CDMs. Suppression is actually a special form of combination, where the resulting
CDM is identical to one of the CDMs that were combined.

Group Awareness: If processes are organized in groups (e.g., one group containing processes
in the same LAN), the DCD may queue and delay forwarding CDMs destined to processes
outside the group (that would be expensive), and forward CDMs destined to members of the
group immediately (that are cheaper). This reduces the number of CDMs sent outside the group,
that in turn, result from the combination of several CDMs forwarded within the group.

III.2.2.2 Prototypical Example

In this section we present a number of prototypical situations that exemplify, and further
explain the main aspects of the algorithm presented. The examples follow the same presentation
order of the algorithm description. The first two examples are explained assuming the mutator
is stopped in all processes. This allows a description easier to understand. Issues regarding
concurrency with mutators are described in the third example.

For clarity, we use simplified language for certain expressions and aspects, when there is no
danger of confusion. In particular, objects are represented by their name (a letter) and their en-
closing process (e.g., AP1, see Fig.III.2.11). Sub-graphs of connected objects may be represented
in abbreviation (e.g., {{A, C, B}P1, {F, G, H}P2}), aggregated by its/their enclosing process.
References may be also explicitly described when relevant (e.g., BP1 → FP2).

Once again, throughout the examples, for clarity, when we say that: i) stubs are reachable from
a scion, or that ii) scions that lead to a stub, we are using simplified language. Actually, we mean:
i) stubs accounting for out-going references enclosed in objects, that are reachable from a specific object,
targeted by an incoming remote reference, or ii) scions, accounting for incoming remote references, whose
target objects point, directly or indirectly, to objects holding out-going remote references to a specific
remote object, represented by a stub, respectively.

For example, w.r.t Figure III.2.11 addressed in detail in Section III.2.2.2.1, we
would have the following information, maintained in process P2, regarding object F :
StubsFrom(FP2) = {QP4}, i.e., the stub in P2 that represents the remote-reference to QP4

is reachable from the scion targeting object FP2. This implies that the scion targeting object FP2

leads to the afore mentioned stub and therefore the following information is also maintained at
P2: ScionsTo(QP4) = {FP2} (more generally, we would have that ScionsTo(QP4) ⊇ {FP2}).
The previous examples use a simplified notation in order to be more intuitive. Nonetheless, we
will use a more formal notation in the remaining examples.

III.2.2.2.1 Example A: Detecting a Simple Cycle

The first example portrays a a simple situation, shown in Fig. III.2.11. There are four pro-
cesses involved: P1 through P4. Remote references (e.g., BP1 → FP2) are represented with their

186 CHAPTER III.2. ALGORITHMS

Q
P

R

S
 T

P4

A
 B

P1

C

D
 E

P2

F
 G

H

I
 J

L

O

M

K

N

P3

Figure III.2.11: A simple distributed garbage cycle.

associated stubs (e.g., at BP1) and scions (e.g., at FP2). There is a distributed garbage cycle since
object AP1 has ceased to be reachable from the GC local-roots in P1, and P1 has subsequently
taken a snapshot. As there are no other reachability roots, the whole cycle is garbage, yet unde-
tectable by acyclic DGC. The cycle can be represented by the following chain of objects (starting
and finishing in P2):

{{F, G,H, J}P2, {Q,R, S}P4, {O, M, K}P3, {D, C,B}P1}

In the example, the compressed snapshot at process P2 holds the following data (symbol⇒
means evaluates to or returns, ≡ relates a field name and its value):

Scion(FP2)P2 ⇒ {StubsFrom ≡ {QP4}}

Stub(QP4)P2 ⇒ {ScionsTo ≡ {FP2}, Local.Reach ≡ false}

This means that, in P2: i) Stub(QP4) is reachable from Scion(FP2), ii) Scion(FP2) leads to
Stub(QP4), and iii) Stub(QP4) is not reachable from the GC local-roots of P2.

Consider that a cycle detection is initiated with Scion(FP2)P2 as a candidate. We describe
now how the CDA elements (source-set and target-set) encoded in the CDM evolve, as the cycle
detection detection progresses. The steps performed and relevant state are the following:

1. P2 : Alg0 ⇒ {{FP2} → {}}, (FP2 chosen as candidate for cycle detection; it is the first dependency)

2. P2 : StubsFrom(FP2) ⇒ {QP4}, (stubs reachable from FP2).

III.2.2. ALGEBRA-BASED DISTRIBUTED CYCLE DETECTION 187

3. P2 : Alg1 ⇒ {{FP2} → {QP4}}, (result algebra after including new found stub; scion already
included).

4. P2 : Send Alg1 to P4, (send CDM to process P4).

5. P4 : Deliver Alg1

6. P4 : Algebra Matching for Alg1

In the previous step (#6), matching of source ({FP2}) and target ({QP4}) sets in the message
would produce, as expected, the following result:

6. P4 : Matching(Alg1) ⇒ {{FP2} → {QP4}}
7. P4 : Cycle Found ⇒ false

This is due to the fact there are no intersecting elements in the two sets, therefore, no match-
ing could be performed.

Following the flow of the CDM, consider now that similar steps (1...4) were performed, this
time, at P4. They would render the following result:

8. P4 : Alg1 ⇒ {{FP2} → {QP4}}
9. P4 : StubsFrom(QP4) ⇒ {OP3}

10. P4 : Alg2 ⇒ {{FP2, QP4} → {QP4, OP3}}
11. P4 : Send Alg2 to P3

And, once the CDM carrying Alg2 arrives at P3:

12. P3 : Deliver Alg2

13. P3 : Matching(Alg2) ⇒ {{FP2} → {OP3}}
14. P3 : Cycle Found ⇒ false

This result shows, after matching, the relevant information for cycle detection. It illustrates
that, until this point, cycle detection relies on establishing a path that eliminates dependency on
FP2, and that the wave front of detection is placed on OP3. This agrees with the intuitive result
that, starting in P2, no cycle can be safely detected in the path P2 → P4 → P3. Continuing
detection at P3:

15. P3 : StubsFrom(OP3) ⇒ {DP1}
16. P3 : Alg3 ⇒ {{FP2, QP4, OP3} → {QP4, OP3, DP1}}
17. P3 : Send Alg3 to P1

Upon CDM arrival at P1:

18. P1 : Deliver Alg3

19. P1 : Matching(Alg3) ⇒ {{FP2} → {DP1}}

188 CHAPTER III.2. ALGORITHMS

20. P1 : Cycle Found ⇒ false

And, preparing CDM for forwarding:

21. P1 : StubsFrom(DP1) ⇒ {FP2}
22. P1 : Alg4 ⇒ {{FP2, QP4, OP3, DP1} → {QP4, OP3, DP1, FP2}}
23. P1 : Send Alg4 to P2

When the CDM arrives at process P2:

24. P2 : Deliver Alg4

25. P2 : Matching(Alg4) ⇒ { {} → {} }
26. P2 : Cycle Found ⇒ true

At this moment, for the DCD, it is safe to assume that a cycle has been found and that object
FP2 belongs to it. Therefore, it is safe to instruct the acyclic DGC at P2 to delete the scion
accounting for the remote reference to FP2. Later, when the LGC runs on process P2, the stub
accounting for remote reference to QP4 will disappear. This will in sequence, after LGCs in each
process, reclaim the distributed cycle. Once again, in the previous steps, were any of the objects
reachable locally (in its enclosing process), that fact would be reflected upon the reachability
bit-flag in one or more stubs, and cause termination of the cycle detection.

III.2.2.2.2 Example B: Detecting Mutually Referenced Cycles

An important prototypical example of complex cyclic garbage is that of mutually-referenced
cycles (see Figure III.2.12). We describe how the DCD detects such cycles. Obvious steps, similar
to those in the previous example, are omitted for simplicity.

Let us assume that detection starts, once again, at object FP2. Then we have:

1. P2 : StubsFrom(FP2) ⇒ {VP5, KP3}
2. P2 : Alg1a ⇒ {{FP2} → {VP5}} and send to P5

3. P2 : Alg1b ⇒ {{FP2} → {KP3}} and send to P3

Since StubsFrom(FP2) has more than one element, several different CDM derivations are
created with different out-going paths (in this case: one regarding VP5 and other to KP3).

Upon arrival of CDM carrying Alg1a at P5 (we address Alg1b in the end of the example):

4. P5 : StubsFrom(VP5) ⇒ {TP4}
5. P5 : ScionsTo({TP4}) ⇒ {YP5}
6. P5 : Alg2a ⇒ {{FP2, VP5, YP5} → {VP5, TP4}}, and send to P4

III.2.2. ALGEBRA-BASED DISTRIBUTED CYCLE DETECTION 189

P6

ZA

ZD

ZC

ZE

ZB

P5

U
 V

W

X
 Y

Q
P

R

S
 T

P4

A
 B

P1

C

D
 E

P2

F
 G

H

I
 J

L

O

M

K

N

P3

Figure III.2.12: Two mutually-linked distributed garbage cycles.

Note that on step #5, an additional pass is performed. For every stub reachable from the
given scion, all other scions that may lead to the same stub (in this case YP5 → TP4), are also
accounted for as dependencies to be resolved. This information is readily available in the sum-
marized graph description in P5. In Section III.2.2.2.1, accounting for extra dependencies was
omitted. It would be redundant since there was an one-to-one correspondence between stubs
and scions (e.g., in step #2 of Example A: ScionsTo(StubsFrom((FP4)P2) ⇒ {FP4}) and, there-
fore, no extra dependencies were added.

Upon arrival at P4 and applying the algorithm, the outcome includes the following results
at each process:

7. P4 : Alg3a ⇒ {{FP2, VP5, YP5, TP4} → {VP5, TP4, DP1}}, send to P1

8. P1 : Alg4a ⇒ {{FP2, VP5, YP5, TP4, DP1} → {VP5, TP4, DP1, FP2}}, send to P2

When the CDM arrives at P2, one of the cycles has been transversed. Detection continuing
at P2 performs the following steps:

9. P2 : Deliver Alg4a

10. P2 : Matching(Alg4a) ⇒ {{YP5} → {}}}
11. P2 : Cycle Found ⇒ false

190 CHAPTER III.2. ALGORITHMS

Naturally, the algorithm is not able to infer that a cycle has been found. Moreover, matching
of Alg4a states that there still is an unresolved dependency on YP5. This agrees with Fig. III.2.12
where the reference ZDP6 → YP5 represents a branch of the rightmost cycle connecting with
the leftmost cycle. Cycle detection will proceed as presented next:

12. P2 : StubsFrom(FP2) ⇒ {KP3, VP5}
13. P2 : Alg5a,a ⇒ {{FP2, VP5, YP5, TP4, DP1} → {VP5, TP4, DP1, FP2, KP3}}, send to P3

14. P2 : Alg5a,b ⇒ {{FP2, VP5, YP5, TP4, DP1} → {VP5, TP4, DP1, FP2}}, send to P5

15. P2 : (Alg4a = Alg5a,b) ⇒ true, stop CDM forwarding for Alg5a,a, terminate branch

In the previous steps, in process P2, two different derivations of Alg4a were created. The
first one, Alg5a,a, created due to stub (KP3)P2 should be forwarded to P3. Regarding Alg5a,b, no
forwarding should occur and this branch of detection should be terminated. This stems from
the fact that this CDM derivation holds information about a cycle, the leftmost in Figure III.2.12,
that has already been traced, and that would be traced again if Alg5a,b was forwarded to P5.

Thus, no new information was obtained and there is no point in continuing. If not, it would
loop forever with the same outcome, i.e., denouncing a dependency of the leftmost cycle on
YP5. This ensures algorithm termination w.r.t cyclic garbage whose reachability is dependent of
upstream acyclic garbage not yet reclaimed by the acyclic DGC. However, this may not always
be the case. If there are alternate out-going paths emerging from the cycle, these should receive
a CDM with information about the complete inner cycle. This issue is described in greater detail
in Section III.2.2.3, when algorithm termination is analyzed.

Upon arrival of Alg5a,a at P3 we have:

16. P3 : Deliver Alg5a,a

17. P3 : Matching(Alg5a,a) ⇒ {{YP5} → {KP3}}
18. P3 : Cycle Found ⇒ false

Preparing the next CDM to forward:

19. P3 : StubsFrom(KP3) ⇒ {ZBP6}
20. P3 : Alg6a,a ⇒

{{FP2, VP5, YP5, TP4, DP1, KP3} → {VP5, TP4, DP1, FP2, KP3, ZBP6}}, send P6

Upon arrival of Alg6a,a at P6 we have, this time abbreviated:

21. P6 : Matching(Alg6a,a) ⇒ {{YP5} → {ZBP6}}
22. P6 : Cycle Found ⇒ false

23. P6 : StubsFrom(ZBP6) ⇒ {YP5}
24. P6 : Alg7a,a ⇒

{{FP2, VP5, YP5, TP4, DP1, KP3, ZBP6} → {VP5, TP4, DP1, FP2, KP3, ZBP6, YP5}}, send P5

And, upon arrival of Alg7a,a at P5 we have, finally:

III.2.2. ALGEBRA-BASED DISTRIBUTED CYCLE DETECTION 191

P6

ZA

ZD

ZC

ZE

ZB

P5

U
 V

W

X
 Y

Q
P

R

S
 T

P4

A
 B

P1

C

D
 E

P2

F
 G

H

I
 J

L

O

M

K

N

P3

1
 2

4

5

7

9

8

6

3
11

ii

i
iii

iv

10

Figure III.2.13: A race between mutator and cycle detection.

25. P5 : Matching(Alg7a,a) ⇒ {{} → {}}

26. P5 : Cycle Found ⇒ true

The distributed mutually referring cycles could have also been detected if derivation Alg1b

(see step 3) had been continued.

Several detections can be performed in parallel, at any rate of progress, and comprising any
number of processes, without conflict. Other situations mixing acyclic garbage (either upstream
or downstream) with cyclic garbage are also solved with the cooperation of the acyclic DGC
(prior to cycle detection and after, respectively).

III.2.2.2.3 Example C: Detecting a Mutator-DCD Race

To explain the behavior of the algorithm, in presence of concurrency due to distributed
invocations (that may cause creation of inter-process references), we use the example depicted
in Figure III.2.13. There are six processes (P1...P6). There are two independent sequences of
events: i) mutator-caused events (numbered 1...11), and ii) cycle detection events (numbered
i...iv). Algorithm safety consists in showing correct behavior in spite of any interleave of the
two sequences. We assume, for simplicity, that there are updated snapshots, in every process,
and available before event 1 and event i:

192 CHAPTER III.2. ALGORITHMS

If no more snapshots are taken, present information is sufficient in order to handle the situ-
ation safely: when CDM arrives at P1 (instant iii, regardless of mutator activity), the DCD will
be informed that Local.Reach(BP2) ⇒ true and will abort detection.

However, if the compressed snapshot in P1 is updated after event 11 (root erasure), and
before event iii, with 11 ≺ iii, there is a problem, described next. The combination of graph
information at P1, and cycle detection information forwarded from P2...P5...P4 in iii, will pro-
duce an inconsistent view of the distributed graph. Upon arrival of the CDM at P1, in this case,
we have Local.Reach(BP2) ⇒ false and, after algebra matching, the DCD will forward this
information in a CDM to P2 where the cycle will, eventually, be erroneously detected (since it is
now kept live by the GC local-root in P3).

In order to prevent this inconsistent behavior, the DCD must be informed of mutator activity
in any part of the path it will trace. We explain, now, how this race condition is avoided.

Recalling the definition of the algorithm’s data-structures, there is an additional invocation-
counter (IC) associated with every stub and scion. This extra field IC, included in every stub
and scion, is incremented and piggy-backed, each time a remote invocation (or reply) is per-
formed through the corresponding remote reference.

In the previous example, let us assume that we have, before events 1 and i as DGC info:

Stub(FP2)P1 ⇒ {IC ≡ x}

Scion(FP2)P2 ⇒ {IC ≡ x}

And, off-line, a compressed snapshot for cycle detection:

Stub(FP2)P1 ⇒ {ScionsTo ≡ {DP1}, Local.Reach ≡ true, IC ≡ x}

Scion(FP2)P2 ⇒ {StubsFrom ≡ {QP4}, IC ≡ x}

Consider, again, the sequence of events presented where race conditions can occur. CDMs
hold invocation-counters, only when they are relevant to this race condition, others are omitted:

1. t = i@P2 : Alg1a ⇒ {{{FP2, x}} → {VP5}}, and send to P5

2. t = ii@P5 : Alg2a ⇒ {{{FP2, x}, VP5} → {VP5, TP4}}, and send to P4

3. t ∈ {1..11}@ {P1..P3} :
(series of remote invocations initiated in P1 that

result in reference to JP2 being exported to P3;
AP1 becomes unreachable locally in P1;
The reference from the GC local − root to KP3 now holds the entire cycle globally reachable).

4. 11 ≺ t ≺ iii@P1 :
Take snapshot, perform graph summarization, now includes :
Stub(FP2)P1 ⇒ {ScionsTo ≡ {DP1}, Local.Reach ≡ false, IC ≡ x + 1}).

5. t = iii@P4 : Alg3a ⇒ {{{FP2, x}, VP5, TP4} → {VP5, TP4, DP1}}, and send to P1

6. t = iv@P1 : Alg4a ⇒ {{{FP2, x}, VP5, TP4, DP1} → {VP5, TP4, DP1, {FP2, x+1}}}, and send to P2

7. t Â iv@P2 : Matching(Alg4a) ⇒ {{{FP2, x}} → {{FP2, x + 1}}}

III.2.2. ALGEBRA-BASED DISTRIBUTED CYCLE DETECTION 193

8. Cycle Found ⇒ false, different IC values (x and x + 1) for FP2, detection abort

This use of invocation-counters also holds the following advantage: detections already in
course for real cycles are never aborted due to updates in summarized graph information con-
tained in snapshots; in other words, a detection in course, regardless of when it was initiated can
only be aborted if one of its subgraphs was actually touched by the mutator, after it has begun.
Thus, there are very loose synchronization requirements for cycle detection; it can be performed
lazily without disruption to applications.4

Race condition detection in the previous example can be optimized if P1 analyzes un-
matched invocation-counters, in the algebra it is about to send to P2. However, that is not
required to maintain safety.

In summary, the safety rules enforced are: i) CDMs sent to non-existent scions are discarded
and detection terminated and, ii) different invocation-counter values, in source and target sets
of a CDM, for the same object, cause detection to abort.

III.2.2.3 Analysis of Algorithm Properties

In this subsection, we address the relevant properties of a complete distributed garbage
collector discussing them against the algorithm proposed: safety, liveness, completeness, termi-
nation, and scalability.

Safety: The DCD does not reclaim objects reachable to the mutator because each CDM is only
forwarded along a stub if it is not reachable locally. Furthermore, if there are distributed invo-
cations along the hypothetical cycle being traced, these races are detected checking invocation-
counters.

The DCD is resilient to CDM loss, delay, re-ordering and replay. CDM loss does not prevent
safety. If CDMs never arrive, no distributed cycles can be detected and, therefore, no action is
taken by the DCD producing no error. It could, obviously, delay cycle detection.

Similarly, message delay influences cycle detection in two aspects: i) for a real cycle, the later
CDMs arrive at, and are forwarded from processes, the later the cycles will be detected; ii) for
a ”false” cycle, when CDMs are delayed, subsequent mutator events on the hypothetical cycle
being detected will abort cycle detection before it reaches again the initiating site.

The algorithm is safe w.r.t message replay because: i) CDM replay will either produce the
same negative results (on a ”false” cycle), ii) or will abort cycle detection if the cycle has already
been reclaimed. Note that there is no state in processes regarding ongoing detections that could
become corrupted with later CDM replay or reordering.

There are no ordering requirements, and therefore no competition, nor racing conditions,
among CDMs. Simultaneous detections of the same cyclic garbage graph can occur without

4Invocation-counters perform a similar function to virtual memory traps in concurrent LGCs (used to find out if
an object has been invoked/accessed after it was marked by the LGC(Wilson 1992)).

194 CHAPTER III.2. ALGORITHMS

error. This is due to the fact that snapshots in processes need not hold information about sent or
received CDMs.

Liveness: Algorithm liveness naturally depends on CDMs being forwarded by DCD and pro-
cesses updating their snapshots. When CDMs are queued, they are only so for a period of time,
until they are combined with, or suppressed due to, other CDMs. If this does not happen after
that period of time, the queued CDMs are forwarded. In a worst case scenario, this may delay
cycle detection, but does not preclude liveness.

Completeness: The algorithm achieves completeness in the sense that any cyclic distributed
garbage is eventually detected and reclaimed. Distributed garbage cycles comprise objects that
eventually will be described in the snapshots taken independently by processes. Since they are
garbage and, therefore, never invoked again, their invocation-counters will stop. Eventually, all
the right candidates will be selected. Therefore, a CDM being forwarded along the processes
comprising each of the cycles, will eventually match every dependency and terminate, regard-
less of concurrent mutator activity or snapshot update at any process.

Floating-garbage consists of just recently created distributed cycles that cannot be detected
until compressed snapshots, at processes, correctly reflect it. The algorithm is conservative in
these situations. Obviously, this is an inevitable phenomenon to GC in general. However, the
relevant issue in cycle detection is actually and effectively detecting them, since they are stable
(and therefore also long-lived).

CDM queueing and group awareness do not preclude completeness since CDMs are even-
tually forwarded or combined. CDM optimizations do not hinder completeness since the CDM
resulting from it, carries the same information, w.r.t. cycle detection, as the CDMs that were
combined, or suppressed.

The completeness, and efficiency of any suspect-based approach to cycle detection, ulti-
mately depends on the selection of candidates to be tested. Efficient selection of cycle candidates
is an issue on its own. Heuristics found in the literature (e.g., in (Maheshwari and Liskov 1995;
Maheshwari and Liskov 1997c; Rodrigues and Jones 1996)) may be used: local un-reachability,
distance from GC local-roots, recency of last invocation. For instance, invocation-counters could
be used to select, as candidates, objects not invoked for a long time among those that are not
reachable locally. Additionally, when a candidate is selected, it should be selected again only
after all other possible candidates have been.

Termination: Regarding termination, ongoing cycle detections terminate when: i) a dis-
tributed cycle is found, ii) a stub is found to be locally reachable (detection is terminated along
that path), iii) a race with the mutator is detected (detection is aborted), and iv) the incoming and
out-going CDMs are identical, i.e., no additional information is provided downstream for cycle
detection (thus, subsequent CDM forwarding along those stubs would be useless and therefore
terminated).

CDMs include saturation-bits (one for each element in the target-set) that are used in CDM
comparison. This way, the same message is never forwarded, with unchanged source and target

III.2.2. ALGEBRA-BASED DISTRIBUTED CYCLE DETECTION 195

sets, twice through the same path. This also allows detections, traveling through inner cycles, to
propagate along these cycles, accounting extra dependencies and target objects. Once informa-
tion about the whole inner cycle is collected, it can be forwarded outside the cycle through every
possible direction. This portrays a two-phase process. The first phase accounts for dependencies
and the second ensures their propagation.

The previous rules prevent CDMs from becoming ever-lasting and building up on each
other. CDM optimizations, such as CDM queueing for ulterior combination or suppression,
further prevent these situations. Termination does not require DCD in each process to maintain
state about all ongoing detections that span the process.

Scalability: The scalability of the algorithm stems mainly from the loose synchronization re-
quirements it imposes, since cycle detection is performed lazily, without interfering with DGC.
Ongoing cycle detections do not require storing additional state information at participating
processes (they are even ignorant of each other w.r.t. this aspect) regarding each one.

Cycle detection does not require causality information w.r.t distributed invocations involv-
ing processes, except for the invocation-counters in stub and scions. These can be updated with-
out imposing extra delay to applications (a single counter increment is masked by remote invo-
cation delay).

The algorithm does not require any process to send messages to processes other than those
it would normally communicate with, due to remote invocations and acyclic DGC. This is not
the case with other approaches based on: backtracking, optimistic backtracking, group creation,
or central detection.

CDMs can be piggy-backed in regular communication among processes (remote invoca-
tions, acyclic DGC messages). If used, CDM optimizations further reduce the number of CDMs
sent, improving scalability. CDM queueing and optimization are performed only as a best-effort
approach. Thus, they do not constitute a requirement to maintain state about detections. They
may be forwarded immediately, if necessary.

196 CHAPTER III.2. ALGORITHMS

III.2.3 DGC-Consistent Cuts for Replicated Memory

This section describes DGC-Consistent Cuts for Replicated Memory (Veiga and Ferreira
2005b)(DCC-RM), used to detect and reclaim distributed cycles in replicated memory, i.e., cycles
of garbage comprising objects replicated in several processes. This approach extends the notion
of DGC-Consistent Cuts (Veiga and Ferreira 2003a) to distributed systems with data replication,
thus serving as a complement to an acyclic DGC for replicated objects (Sanchez et al. 2001). It is
the first viable solution to complete DGC for replicated memory (RM) systems.

The memory management of distributed (and possibly persistent) graphs of replicated ob-
jects is a very difficult task. These graphs are large, widely distributed and frequently modified
through assignment operations executed by applications, in local replicas. In addition, data
replicated in many processes is not necessarily coherent making manual memory management
much harder.

The presence of replication further exacerbates the issue of completeness concerning the au-
tomatic memory management of replicated objects. As it will become clear in this section, it only
takes one replica of an object, being involved in a distributed cyclic garbage, to consequently en-
compass all other replicas of the same object in the cycle, preventing their reclamation, and of
all other objects referenced by them. Thus, distributed cyclic garbage involving replicated ob-
jects is, arguably, more frequent and wastes more storage, when compared with systems without
replication (Wilson 1996; Louboutin and Cahill 1997; Richer and Shapiro 2000).

The algorithm proposed employs a centralized approach, in which there is a dedicated
server, the distributed cycles detector (DCD), in charge of creating replication-aware DGC-
Consistent Cuts (i.e., DCCs-RM), by combining compressed snapshots received from application
processes. It detects cycles comprised within them, by performing a conservative mark-and-
sweep (CMS). It does so asynchronously, without requiring any distributed synchronization
among the processes comprising the cycles, and without delaying acyclic DGC. The algorithm
takes replication into account (by enforcing the Union Rule) while creating the cuts, and per-
forming CMS on them.

The DCC-RM approach cumulatively addresses the two fundamental problems concerning
DGC in RM systems: i) ensuring safety in presence of replication, and ii) achieving complete-
ness. Previous proposals found in the literature are either:

• not safe w.r.t. replication (see Section III.1.2).

• expressly stated as incomplete (Sanchez et al. 2001).

• only able to detect cycles that do not span processes, e.g., (Ferreira and Shapiro 1994a;
Ferreira and Shapiro 1996; Blondel et al. 1998), which is also incomplete.

• impose full-stop in all processes for sequential distributed tracing, e.g., (Le Sergent and
Berthomieu 1992; Kordale et al. 1993; Yu and Cox 1996), which is clearly not viable, more
so in wide area systems.

The algorithm achieves both safety and completeness by obeying the Union Rule (already
brought up in Section III.1.4) while performing CMS on the DCC-RM. Snapshot compression,

III.2.3. DGC-CONSISTENT CUTS FOR REPLICATED MEMORY 197

Distributed

Cycles

Detector

Distributed

Cycles

Detector

Process P1
Process P1
 Process P2
Process P2

Process P4
Process P4
Process P3
Process P3

DGC info
DGC info

DGC info
DGC info

DGC info
DGC info

DGC info
DGC info

stubs

scions

outProp

inProp

Compressed

Snapshot

Compressed

Snapshot

Figure III.2.14: Algorithm overview

performed seldom by processes, is also done obeying the Union Rule, thus capturing the implicit
associations among the various replicas of the same objects.

III.2.3.1 Overview

Figure III.2.14 lays out an overview of distributed garbage collection in a RM system. It
depicts four processes in an example situation analogous to the ones presented in the previous
sections. In this case, each process maintains references to objects located in other processes, and
replicates them to be invoked locally.

There is an acyclic DGC component running in each process, that is integrated with repli-
cation management, that handles DGC and object replication structures. It sends messages to
other processes to inform them of its DGC structures (e.g., NewSetStubs message, and Unreach-
able messages to handle GC of replicas), and to instruct them to perform modifications on their
own DGC structures (e.g., Reclaim messages).

As the acyclic DGC is not complete, there is a dedicated distributed cycle detector (DCD)
in operation to achieve completeness. From time to time, each process sends a compressed
snapshot to the DCD that includes extended information about DGC and replication structures.
As the DCD receives the snapshots, it creates DCCs-RM.

The DCD performs CMS on each DCC-RM created, to detect cyclic garbage, possibly involv-
ing replicated objects, that is completely comprised in the cut. The DCD drops older snapshots

198 CHAPTER III.2. ALGORITHMS

from processes when they are no longer referenced from any DCC-RM. The DCD breaks dis-
tributed cycles by issuing special messages, regarding DGC and replication structures.

The rest of this section is organized as follows. The next subsection characterizes the RM
model assumed by the DGC algorithm; it is rather abstract and general, so that the GC solu-
tions provided are widely applicable. In the remaining subsections we: i) briefly describe the
replication-aware acyclic DGC algorithm used, ii) present the algorithm for cycles detection and
reclamation, iii) introduce a prototypical example that is not handled by previous solutions in
the literature, and iv) discuss the algorithm properties.

III.2.3.2 Replicated Memory Model

We now describe a model for replicated memory that defines the environment for which the
DGC algorithms are conceived. It imposes minimal requirements; basically that these systems
support object replication. The model is rather general and can be mapped to existing architec-
tures and systems, both in local (e.g., DSM), or wide area networks (e.g., PerDis). It is used by
OBIWAN in its Replication Management and Memory Management modules.

A RM system is a replicated distributed memory spanning several processes. Instead of
performing remote invocations, processes access data always locally. In other words, application
code inside a process never sends messages explicitly. Transparently to the application code, the
RM runtime system is responsible to replicate data locally when needed.

Each participating process in the RM system encloses the following entities: memory, mu-
tator, and a coherence engine. In our RM model, for each one of these entities, we consider only
the operations that are relevant for GC purposes.

III.2.3.2.1 Memory Organization

An object is defined to be a consecutive sequence of bytes in memory. Applications can have
different views of objects and can see them as language-level class instances, memory pages,
data base records, web pages, etc.

The unit for replication is the object. Any object can be replicated in any process. A replica
of object X in process P is noted XP . Each process can hold a replica of any object for reading or
writing according to the coherence protocol being used. This does not preclude the possibility
of replicating several objects in a single operation; it simply does not impose it.

III.2.3.2.2 Mutator model

The single operation executed by mutators, which is relevant for GC purposes, is reference
assignment; this is the only way for applications to modify the graph of objects.

The reference assignment operation executed by a mutator in some process P is noted
X := Y P . This means that a reference contained in object X is assigned to the value of a ref-

III.2.3. DGC-CONSISTENT CUTS FOR REPLICATED MEMORY 199

erence contained in object Y .5 If Y points to an object Z in some other process, this assignment
operation results in the creation of a new inter-process reference from X to Z.

Obviously, other assignments can delete references transforming objects into garbage. For
example, in process P the mutator may perform (X := NULL)P ; this may result on some object
Z becoming globally unreachable, i.e. garbage, given that there are no references pointing to it.
In conclusion, assignment operations (done by mutators) modify the object graph either creating
or deleting references.

III.2.3.2.3 Coherence Model

The coherence engine is the entity of the RM system that is responsible to manage the co-
herence of replicas. The coherence protocol effectively used varies from system to system and
depends on several factors such as the number of replicas, distances between processes, and
others.

Ideally, the DGC should be orthogonal w.r.t. whatever mechanism is used to maintain repli-
cas coherent. Thus, the only coherence operation, which is considered relevant for DGC pur-
poses, is the propagation of an object, i.e. the replication of an object from one process to another.
The propagation of an object Y from process P1 to process P2 is noted propagateYP1→P2.

The propagation of an object is performed via an implicit propagate message that carries the
actual object content. When an object is propagated to a process, its enclosed references are
exported from the sending process to the receiving process. On the receiving process, i.e. the
one receiving the propagated object, the object’s enclosed references are imported.

We assume that any process can propagate a replica from another process into itself, when
the mutator causing the propagation holds a reference to the object being propagated. Thus, if
an object X is unreachable locally in process P1, the mutator in that process can not force the
propagation of X to some other process; however, if some other process P2 holds a reference to
X , it can request X to be propagated from P1 to P2.

In a RM system mutators may create inter-process references very easily and frequently,
through a simple reference assignment operation (see Section III.2.3.2.2). Note that when such
an assignment does result in the creation of an inter-process reference, this can only happen
because, in the local process, there was already an object replica containing that reference to
the remote object. Thus, inter-process references are created as a result of the propagation of
replicas. Such propagation leads to the export and import of references.

In each process, the coherence engine must hold two data structures, called inPropList and
outPropList. Usually, this information already exists in the coherence engine in order to manage
the replicas (e.g., they are included in the Replication Management module, in OBIWAN, and
have already been presented in Section I.2.2). Thus, they are not a special requirement imposed
by DGC, though their existence is leveraged by it.

5This notation is not fully accurate but it simplifies the explanation of the DGC algorithm. As a matter of fact, to
be more precise we should write X.ref = Y.ref (C++/C#/Java style notation). However, this improved precision is
not important for the DGC algorithm description and would complicate it un-necessarily.

200 CHAPTER III.2. ALGORITHMS

Each entry in these lists indicates the process from which each object has been propagated,
and the processes to which each object has been propagated, respectively. Thus, each entry of the
inPropList/outPropList contains the following information:

• propObj - the reference of the object that has been propagated into/to a process;

• propProc - the process from/to which the object propObj has been propagated;

• sentUmess/recUmess - bit indicating if a Unreachable message has been sent or received.
Unreachable messages refer to un-reachability from GC local-roots. They have already
been described in Section III.1.4.4 and will be addressed, in the context of this algorithm,
later in Section III.2.3.3.3.

For clarity and brevity, entries in the inPropList and outPropList will be hereafter referred
to as inProp/outProp entries, or simply as inProps/outProps.

It’s worthy to note that in the RM model, the only way a process can create inter-process
references is through the execution of two operations: (i) reference assignment, which is per-
formed explicitly by the mutator and (ii) object propagation, which is performed by the coher-
ence engine in order to allow the mutator to access some object.

As an example, in some DSM-based systems, when the mutator tries to access an object that
is not yet cached locally, a page fault is generated; then, this fault is automatically recovered by
the coherence engine that obtains a replica of the faulted object from some other process. In OBI-
WAN, this is performed by the incremental replication mechanism, triggered by the invocation
of ProxyOut objects.

III.2.3.3 Acyclic Distributed Garbage Collection

The acyclic DGC for the RM model is based on (Sanchez et al. 2001), with some extensions
and optimizations that are described in the remainder of the section. It is assumed that a tracing-
based LGC is running in each process, as it is common usage. LGC will be further mentioned
when describing interaction with DGC.

III.2.3.3.1 Replication Awareness

In Section III.1.4 we presented algorithms that are safe in the presence of replication, as
opposed to those in Sections III.1.2 and III.1.3 that are not. We now exemplify how a replication-
aware DGC operates.

Consider Figure III.2.15 in which an object X is replicated in processes P1 and P2. Now,
suppose that XP1 contains a reference to an object Z in another process P3, XP1 points to no
other object, XP1 is not reachable locally (i.e., to the mutator in P1), while XP2 is reachable
locally in P2.

Then, the question is: should ZP3 be considered garbage? Classical DGC algorithms (de-
signed for function-shipping systems) consider that ZP3 is effectively garbage. However, this is

III.2.3. DGC-CONSISTENT CUTS FOR REPLICATED MEMORY 201

process P1 process P2

X X

Z

local
root

process P3

local
root

local
root

Figure III.2.15: Safety problem of DGC algorithms which do not handle replicated data: Z is
erroneously considered unreachable.

wrong because, in a RM system, it is possible for an application in P2 to acquire a replica of X

from some other process, in particular, XP1. Thus, the fact that XP1 is not reachable locally in
process P1 does not mean that X is unreachable globally. As a matter of fact, according to the
coherence model, XP1 contents can be accessed by an application in process P2 by means of a
propagate operation.

Therefore, in a RM system, a target object Z is considered unreachable only if the union of
all the replicas of the source object, X in this example, do not refer to it.

III.2.3.3.2 Data Structures

The acyclic DGC collector manages a combined set of data structures containing typical
DGC structures, as well as data structures relative to replication management (defined by the
coherence model). Thus, it manages: i) scions, ii) stubs, iii) outProps, and iv) inProps.

Each data structure is extended to hold an additional time-stamp value, provided by a
monotonic counter global to the enclosing process. These time-stamp fields are mainly required
for cycle detection (i.e., for constructing DCCs-RM) but they also serve additional purposes, ex-
plained afterwards. The counter is shared among scions and outProps, in order to maintain a
total order, within each process, among events relevant to DGC. W.r.t. to stubs and scions, it has
already been described how these time-stamps prevent race conditions w.r.t. NewSetStubs mes-
sages (see Section III.2.1.1.1). In the case of outProps and inProps, time-stamps are also useful to
ensure safety, while optimizing storage, as further described in III.2.3.3.3.1.

202 CHAPTER III.2. ALGORITHMS

III.2.3.3.3 Messages

The acyclic DGC components running on each process exchange messages of the following
types:

• NewSetStubs: This message is distinctive of algorithms based on reference-listing, as the
case of this one. It has already been described in Section III.1.2.1.5, and further addressed
in Section III.2.1.1.1. It carries the identification of stubs, in the sender process, concerning
inter-process references targeting objects in the receiving process.

• Unreachable(obj, time − stamp): this message is sent to the process where an object
was originally replicated from when, in the sender process, it is reachable only from the
inPropList . This sending event is registered by changing a sentUmess bit in the corre-
sponding inPropList entry from 0 to 1. When a valid Unreachable message is delivered
to a process, this delivery event is registered by changing a recUmess bit in the corre-
sponding outPropList entry from 0 to 1. Validity of Unreachable messages is addressed
in the next paragraph III.2.3.3.3.1.

• Reclaim(obj, time − stamp): this message is sent to all processes that have previously
replicated an object from the sender process. It is sent when the object is reachable only
from the outPropList , and the sender process has already received valid Unreachable

messages from all the processes to which that object has been previously propagated. After
the messages are sent and acknowledged, the corresponding entries in the outPropList

are deleted; otherwise, nothing is done. When a process receives a valid Reclaim message
it deletes the corresponding entry in its inPropList (validity of Reclaim messages is
addressed next in paragraph III.2.3.3.3.1).

In summary, besides the message NewSetStubs, two other messages may be sent by the
acyclic DGC: Unreachable and Reclaim. On the receiving process, these messages are han-
dled by the acyclic DGC that performs the following operations: sets the recUmess bit in the
corresponding outPropList entry, and deletes the corresponding entry in the inPropList ,
respectively. Thus, a replicated object is effectively reclaimed (by the LGC) only after the corre-
sponding entry in the inPropList is deleted.

III.2.3.3.3.1 Unreachable/Reclaim message validity and In/OutPropList optimization

In the original approach proposed in (Sanchez et al. 2001), each time an object (e.g., X)
is propagated (i.e., replicated) between two processes (e.g., from P2 to P1), the corresponding
outProp is created in P2, and the corresponding inProp is created in P1. This takes place even if
the object has already been propagated before from P2 to P1. This is required to ensure safety,
and avoid race conditions, in the following situations.

Some time after the first propagation from P2 to P1, object replica XP1 may have become
unreachable locally in P1. The acyclic DGC in P1 notifies its counterpart in P2 of this event,
lazily, by sending a Unreachable message w.r.t XP1 some time afterwards. Later on, the mutator in
P1, transversing other references in its graph, may come across a reference to XP2 and, possibly,

III.2.3. DGC-CONSISTENT CUTS FOR REPLICATED MEMORY 203

refresh its replica XP1, thus re-propagating XP2 to P1. If P1 intends to re-use the existing replica,
P2 must still be informed and will reply with a propagate message, in this case with empty object
content.

Due to the asynchronous nature of the DGC w.r.t. the mutator, it may happen that the
Unreachable message is actually sent to P2 only after the second propagation occurs. This may
lead P2 to believe that XP1 is no longer reachable locally in P1, and if by that time, XP2 is also
unreachable locally in P2, both replicas may be reclaimed. This is clearly incorrect since XP1 is
being used by the mutator in P1. In the original proposal, this is handled by keeping multiple
inProps and outProps regarding the same object, one for each propagation, which ensures safety
in these situations, since the second pair of inProp/outProp entries would prevent the replicas
from being reclaimed. Thus, all Unreachable and Reclaim messages were considered valid upon
delivery.

The extension of inProps and outProps with an additional time-stamp field, besides helping
in the construction of each DCC-RM, allows the following optimization. Each time an object
is re-propagated between two processes (e.g., the same P1 and P2), the existing inProp and
outProp entries are re-used. The sentUMess bit of the outProp in P2 is reset, and the time-stamp
field is refreshed. This value is included in the propagate message, sent from P2 to P1 and used
to refresh the time-stamp field of the corresponding inProp in P1.

This poses the question of validity of Unreachable and Reclaim messages. These messages
must contain the time-stamp of the moment when the process decides to send them. For the
message to be valid, this time-stamp must be current, i.e., be related to the last time the object
was propagated. Thus, in the previous example, messages with older time-stamps are simply
ignored, i.e., they are deemed as invalid. This ensures safety, while avoid the need for storing
individual inProp or outProp entries each time an object is propagated, between the same pair
of processes.

Similarly, each Reclaim message also carries the time-stamp value of the outProp entry when
the process decided to send it. This ensures safety when receiving delayed Reclaim messages.

III.2.3.3.4 Safety Rules

Whatever the coherence protocol, there is only one interaction of the mutator with the acyclic
DGC algorithm. This interaction is twofold: i) immediately before a propagate message is sent,
the references being exported (contained in the propagated object) must be found in order to
create the corresponding scions, and ii) immediately before a propagate message is delivered,
the outgoing inter-process references being imported must be found in order to create the corre-
sponding local stubs, if they do not exist yet. Note that this may result in the creation of chains
of stub-scion pairs, as it happens in the SSP Chains algorithm (Shapiro et al. 1992b).

To summarize, the following rules are enforced by the acyclic DGC:

• Clean Before Send Propagate: Before sending a propagate message, enclosing an object Y ,
from a process P2, Y must be scanned for references and the corresponding scions created
in P2.

204 CHAPTER III.2. ALGORITHMS

• Clean Before Deliver Propagate: Before delivering a propagate message, enclosing an
object Y , to a process P1, Y must be scanned for outgoing inter-process references and the
corresponding stubs created in P1, if they do not exist yet.

From these rules, results the fact that scions are always created before the corresponding
stubs; and outProps are always created before their corresponding inProps. This is due to a
causality relationship (their creation is causally ordered) between them.

The algorithm also enforces the Union Rule, stated as follows:

• Union Rule: a target object Z is considered unreachable only if the union of all the replicas
of the source objects do not refer to it.

This rule is enforced by how the algorithm manages In/OutPropLists and handles Unreach-
able/Reclaim messages, as already described in Section III.2.3.3.3. A replica is considered un-
reachable only when all other replicas of the same object are also unreachable.

III.2.3.4 Algorithm for Cyclic Distributed Garbage Collection

This section describes the algorithm to detect cyclic garbage comprising replicated objects,
spanning across several processes. It describes the creation and handling of DGC-Consistent
Cuts for Replicated Memory (Veiga and Ferreira 2005b), that complements the acyclic DGC just
presented. Given that this approach is based on DGC-Consistent Cuts, already presented in
Section III.2.1, we highlight mainly those aspects related to replication-awareness.

III.2.3.4.1 Data Structures

The DCD requires that the data structures maintained by the acyclic DGC, i.e., stubs, scions,
inProps and outProps, be extended with time-stamps, as described before in III.2.3.3.2. Addi-
tionally, it defines the following data structures:

• Vector-Clock: each process maintains a record of the highest time-stamp associated to the
creation of scions and outProps, known from all processes constituting, including itself, in
a vector-clock (Mattern 1989).

• Snapshot: representation of the object graph of a process, including its stubs, scions, out-
Props, inProps, and the vector-clock maintained by the process. Snapshots are subject to
compression described in III.2.3.4.4.

• DCC-RM: a conservative juxtaposition of snapshots taken at uncoordinated times, com-
prised of, at most, one snapshot concerning each process, that is extended to be replication-
aware, thus conforming to the Union Rule.

III.2.3. DGC-CONSISTENT CUTS FOR REPLICATED MEMORY 205

The acyclic DGC component in application processes creates and maintains stubs, scions, in-
Props, and outProps. It also manages vector-clocks. The cyclic DGC component in each process
generates snapshots. DCCs-RM are created and used exclusively in the context of the processes
assigned to DCD. Besides DCCs-RM, the DCD has access only to snapshots received from ap-
plication processes. It never manipulates acyclic DGC structures directly.

III.2.3.4.2 Messages

The algorithm defines three types of messages: NewSnapshot, DeleteScion, and Declare-
Unreachable. The first one is descriptive and the last two are operative. NewSnapshot and
DeleteScion messages are similar to what was described in Section III.2.1.1.2, with the exception
that the snapshots included in NewSnapshot messages also carry information regarding object
replication. The messages of type DeclareUnreachable are defined as follows.

• DeclareUnreachable: message sent from a DCD to the cyclic DGC component of an ap-
plication process, instructing it to explicitly declare a specific inProp entry as regarding
an object that belongs to cyclic garbage. This equates to considering the object as neither
reachable from GC local-roots in the process, nor via scions, from other processes.

From this moment on, the acyclic DGC is able to make progress towards reclaiming the
distributed cycle. The process receiving the DeclareUnreachable message, after the next
LGC, will send a Unreachable message to the process holding the counterpart outProp
entry and this fact will be registered in both sentUMess and recUMess bits.

The approach employed to break links among objects comprised in cyclic garbage differs
w.r.t. scions and inProps/outProps. This stems from the following differences in the way these
structures are handled by the acyclic DGC.

W.r.t. scions belonging to cyclic garbage, they can be simply eliminated, by instruction of
the DCD, in the knowledge that their corresponding stubs do not protect objects from being
reclaimed by the LGC. Stubs are only created/preserved while objects are still reachable globally,
which is precisely what is annulled by deleting scions, thus breaking the distributed cycle. As a
result, the corresponding stubs will eventually cease to exist after future executions of the LGC.

W.r.t. inProps, as opposed to stubs, they are preserved until explicitly deleted via a valid
Reclaim message. Thus, the DCD cannot simply instruct deletion of outProps as this would
create inProp ”zombies”, that is, inProp entries, about which, no Reclaim message would ever
be received in the future. This would obviously prevent algorithm progression, thus hindering
liveness and completeness.

One other flawed alternative would be for the DCD to send instructions setting the
recUMess bit, in all outProps regarding an object found to be garbage. That, although saving
message traffic, would violate the acyclic DGC rules. It would imply sending Reclaim mes-
sages regarding outProps, for which Unreachable messages were never received. Furthermore,
it would imply deleting inProp entries that do not have the sentUMess bit set.

206 CHAPTER III.2. ALGORITHMS

III.2.3.4.3 Cycle Detection

Cycle detection is performed by the DCD. It is divided in four distinct phases: i) snapshot
reception, ii) DCC-RM creation, iii) conservative mark-and-sweep (CMS), and iv) sending of
messages for cycle dismantlement. These phases are analogous to the four phases presented in
DGC-Consistent Cuts (see Section III.2.1.1.3).

Snapshot Reception: This phase is performed in the same manner as has already been de-
scribed in Section III.2.1.1.3. This phase can be carried out concurrently with any other. The
DCD is always ready to receive snapshots from processes, possibly keeping several versions
from the same process. Once no longer involved in ulterior phases, older snapshots from each
process are discarded.

DCC-RM Creation: The DCD creates a DCC-RM by assembling one snapshot from a number
of processes, not necessarily from all that are available. The DCD is only able to detect cycles
fully comprised in a DCC-RM. The same aspects regarding size, scope, asynchronism, unco-
ordination and liveness, described in Section III.2.1.1.3 w.r.t. DGC-Consistent Cuts, also apply,
by construction, to DCC-RM creation. Once a snapshot is included in a DCC-RM, it is neither
modified nor replaced in the DCC-RM. When a DCC-RM is created it can be forwarded to phase
CMS (phase iii), and stored for later combination with other DCCs-RM or to be sent to other
DCDs.

In Figure III.2.16, we show in bold, on the left-hand side a cut which is not consistent for
causality purposes. It depicts a situation that could never have happened during the operation
of the acyclic DGC. It results from the reception of snapshots from different processes, taken and
sent to the DCD without coordination. Nevertheless, the DCD is able operate safely w.r.t. DGC,
during CMS.

Object graphs received by the DCD provide a view of the global graph that does not corre-
spond to a real one. The differences, i.e., the GC and replication structures that should also be
included in the DCC-RM, but are not represented in individual snapshots received by the DCD,
are shaded in the figure. Since they can occur at any time, executions of LGC are not represented.

The global graph as perceived by the DCD, is represented on the right-hand side of Fig-
ure III.2.16. The DCC-RM presented is thus a set of GC and replication structures that allows a
safe view, w.r.t. cyclic DGC, of the distributed object graph. The safety of this view stems from
the rules that define the root-set of the CMS (the next phase to be described).

There is a specialized heuristic in use when constructing a DCC-RM. When a snapshot from
a process is included in the DCC-RM, the DCD checks the availability of snapshots from other
processes involved in replication operations, i.e., processes that have replicated objects from/to
the process already included in the DCC-RM. The DCD adds to the DCD-RM the snapshots of
one or a few, randomly chosen among such processes, that are available at the DCD. This can be
performed efficiently because GC and replication structures, inside the snapshots, are grouped
by corresponding process.

III.2.3. DGC-CONSISTENT CUTS FOR REPLICATED MEMORY 207

The heuristic aims at the creation of a DCC-RM encompassing snapshots from processes
holding replicas of the same objects. This is required because a distributed cycle comprising
replicated objects can only be reclaimed if all replicas are found to be unreachable. When there
are required snapshots unavailable, or the size of the DCC-RM reaches a specified limit, the
DCD may store it for ulterior combination (more details in Section III.2.3.4.4)

Conservative Mark-and-Sweep: After the DCC-RM is constructed, it is subject to a
replication-aware CMS, that is performed within the DCD process. It ensures safety, taking
causality into account, w.r.t. GC and replication structures. This guarantees that the DCC-RM
is consistent for cycle detection. There is no exchange of messages with other processes, during
this phase. The marking is performed on a separate bit-map, as described before for CMS of
DGC-consistent cuts (v. Section III.2.1.1.3).

The extended root-set used in CMS is comprised of:

1. Those objects that, in each application process, are directly reachable from the GC local-
roots (stack, etc.) must be obviously considered roots of the CMS.

2. Scions whose corresponding stubs are included in processes whose snapshot is not in-
cluded in the DCC-RM, are also members of the CMS root-set, for safety reasons. As a
matter of fact, such scions may not have a corresponding stub (so they could be simply
discarded) but the DCD can’t say that for sure. Thus, it uses a conservative approach.

3. inProp and outProp entries, whose corresponding outProps and inProps belong to pro-
cesses not included in the DCC-RM, must also be considered as members of the CMS
root-set. This is a conservative approach, once again, to ensure safety.

4. Scions with time-stamp greater than the highest time-stamp (regarding the process where
the targeted object resides), known by the process holding the corresponding stub. This is
also a conservative approach. These scions are those whose corresponding stubs have not
yet been created when the referring process recorded its snapshot. These scions verify the
following condition:

scion.timestamp > V CPstub
[Pscion]

P1

P2

P3

CDP

t

t

t

t

g
r
a
p
h
d
e
s
c
r
i
p
t
i
o
n

g
r
a
p
h

d
e
s
c
r
i
p
t
i
o
n

g
r
a
p
h

d
e
s
c
r
i
p
t
i
o
n

g
r
a
p
h

d
e
s
c
r
i
p
t
i
o
n

ta

P1

P2
 P3

P4 graph

description

not available

at DCDP

tb

In

In

Out

Out

Out

In

Out
In

DCC-RM

Figure III.2.16: DCC-RM and process snapshots as seen by the DCD.

208 CHAPTER III.2. ALGORITHMS

Recall that scion.timestamp is the time-stamp given to the scion when it was created,
V CPstub

is the vector-clock maintained by the process holding the corresponding stub,
and Pscion is the identifier of the process holding the scion.

5. outProp entries, with time-stamp greater than the greatest value known in the process
holding the corresponding inProp entry (w.r.t. where the outProp resides). This is because
the snapshot of the process holding the inProp is not current enough. They are defined by
the following condition:

outProp.timestamp > V CPinProp
[PoutProp]

where outProp.timestamp is the time-stamp given to the outProp when it was created,
V CPinProp

is the vector-clock kept at the process holding the corresponding inProp,
and PoutProp is the identifier of the process holding the outProp.

6. inProp entries, with time-stamp greater than the greatest value known in the processing
holding the corresponding outProp entry (w.r.t. where the inProp resides). This is because
the snapshot of the process holding the outProp is not current enough. They are defined
by the following condition:

inProp.timestamp > V CPoutProp
[PoutProp],

where inProp.timestamp is the time-stamp the inProp obtained from corresponding out-
Prop,
V CPoutProp

is the vector-clock kept at the process holding the corresponding outProp,
and PoutProp is the identifier of the process holding the outProp.

Notice that the asymmetry between the last and previous conditions stems from the fact
that inProps get the time-stamps from their corresponding outProps, when the latter are
created.

The last three items in the CMS root-set enforce a conservative approach to ensure safety.
The scions in this situation are those whose corresponding stubs have not been created yet
when their enclosing application process generated its snapshot. Similarly, the outProp entries,
included in the root-set, are those whose corresponding inProp entries had not been created,
when the snapshot of their enclosing process was taken.

Note that the situations, described in the last three items, may occur because the graph de-
scriptions received by the DCD are snapshots taken at different moments at different processes,
with no coordination at all. This is a consequence of the fact that there is no need for global
synchronization among participating processes, w.r.t. generating snapshots and sending them
to the DCD.

Nonetheless, not all inProp and outProp entries in the DCC-RM are included in the root-
set of the CMS; only those required for safety. If that were the case, then no distributed cycle
comprising replicated objects could ever be detected.

Starting from the root-set of the DCC-RM, the DCD performs a replication-aware mark-
and-sweep, in such a way that inter-process references are traced only if the corresponding stub-
scion pair exists in the DCC-RM. Similarly, corresponding outProp and inProp entries, indicating
replication paths, are also traced by the CMS, bi-directionally. They are regarded as implicit

III.2.3. DGC-CONSISTENT CUTS FOR REPLICATED MEMORY 209

local-root

original graph
 summarized graph

local-root

InProp

OutProp
 OutProp

InProp

Inbound-Set
 Outbound-Set

Figure III.2.17: Summarization of an object graph into InboundSet and OutboundSet.

inter-process references, in order to uphold the Union Rule. Otherwise, the tracing on those
entries stops.

As a result of the CMS, GC and replication structures, belonging to distributed garbage
cycles fully comprised within the DCC-RM, are not marked. Next, we describe how detected
cycles are dismantled, i.e., broken.

Sending of Messages for Cycle Dismantlement: It is safe to explicitly delete scions, and de-
clare inProp entries as Unreachable, when they are found to be garbage, in order to break the
distributed cycles detected. Therefore, w.r.t. some of the unmarked structures, their correspond-
ing processes can be sent DeleteScion and DeclareUnreachable messages. This selection will not
hinder completeness, but just affect bandwidth and the speed of reclamation. Messages regard-
ing the same process may be queued and batched. Acknowledged messages are recorded, in a
best-effort approach, to prevent duplicate messages if the same cycle is detected in more than
one DCC-RM.

III.2.3.4.4 Optimizations

The three optimizations, presented in Section III.2.1.1.4 can also be applied to the algorithm:
i) snapshot compression, ii) multiple DCDs, and iii) hierarchical DCDs.

Snapshot Compression: Compression is applied to snapshots so that references strictly inter-
nal to process, and scalar object contents, are discarded to save bandwidth, storage and reduce
DCD load. As explained before, they are not relevant for DCD purposes. The compressed
snapshots contain stubs, scions, inProps and outProps. A compressed snapshot registers these
structures and all relevant associations, not only among scions and stubs, taking the Union Rule
into account.

210 CHAPTER III.2. ALGORITHMS

Summarization transforms a snapshot of an application graph into two sets: InboundSet

and OutboundSet. They play the same role as scions and stubs in the context of DGC-Consistent
Cuts. Thus, the InboundSet, in a snapshot, includes all the entries of the above mentioned data
structures that can propagate reachability marks inside a process, i.e., scions, and outProp and
inProp entries. The reason to include inProp entries along with outProp entries stems from the
need to uphold the Union Rule. This way, if a replica is marked as reachable, every other replica
of the same object must be so as well. Thus, reachability marks in CMS must be propagated both
ways, thus through outProp and inProp entries.

Accordingly, the OutboundSet in a process includes all the entries of the above mentioned
data structures that can propagate reachability marks outside a process, i.e., stubs, and inProp
and outProp entries. The need to include outProp entries along with inProp entries, is symmet-
rical to the previous case. It also stems from the need to uphold the Union Rule.

Additionally, every entry belonging to the InboundSet must include the set of entries of the
OutboundSet that are (transitively) reachable from it. This set is named OutboundFrom.

Finally, every entry in the OutboundSet must bear a special bit indicating local reachability,
i.e., if there is a transitive path from a GC local-root of the enclosing process, that can lead to this
entry.

The notions of InboundSet and OutboundSet are illustrated generally in Figure III.2.17. Note
that to uphold the Union Rule, inProp and outProp entries belong to both InboundSet and
OutboundSet of the summarized graph. This is made explicit in the original graph by using
double-direction arrows between these entries and the objects they refer to. In the summa-
rized version, this is made clear with different shadings: brighter for InboundSet and darker for
OutboundSet.

Multiple DCDs: As described before, even though the DCD performs cyclic garbage collec-
tion in a centralized manner, there is no impediment that multiple DCDs be used for increased
availability, performance and scalability.

Hierarchical DCDs: Completeness and scalability of the algorithm, w.r.t. size of distributed
cycles, is achieved using an hierarchical approach already discussed for DGC-Consistent Cuts.
We discuss now some additional points that are relevant, w.r.t. hierarchical DCDs, when using
DCC-RM to detect distributed cycles comprising replicated objects.

The algorithm does not require all objects, belonging to a cycle comprising replicated objects,
to be co-located in the machine, as in (Ferreira and Shapiro 1994a) where all bunches containing
replicas of an object must be co-located in the same process.

On the contrary, the algorithm’s requirement is only that all replicas of the objects, com-
prised in such a cycle, be encompassed by the snapshots included in a DCC-RM. This raises two
significant differences w.r.t. previous work. First, the DCD does not actually hold object content,
thus can handle a much larger number of processes. Second, even if the distributed cycle spans
a large number of processes, the size of the DCC-RM necessary to detect it may be lowered if it
is composed hierarchically based on lower-level DCCs-RM (possibly sent by other DCDs).

III.2.3. DGC-CONSISTENT CUTS FOR REPLICATED MEMORY 211

\

A

B

P1

W

D

O

W

K

P3

P2

F

H

I

OutProp
W P1 0

InProp
W P3 0

local

root

Stub

Scion

'

Figure III.2.18: Cyclic distributed garbage comprising replicated objects. Object W has been
previously replicated from process P3 to process P1.

III.2.3.5 Prototypical Example

We now describe how the DCD handles a prototypical example of a distributed cycle com-
prising replicated objects. The example portrayed is not detectable by previous work, without
incurring in full-stop of all the involved processes. We use the same notation and language sim-
plifications (namely with reachability among GC structures, within snapshots) employed for
previous examples.

Remote references are described by their corresponding stubs and scions (e.g., BP1 → FP2).
Objects replicated from/to processes (e.g., W ′

P1) are represented with their associated in-
Prop/outProp entries. Furthermore, the association among replicas of the same object, in differ-
ent processes, is made explicit by gray dashed lines. This eases visualization of the Union Rule
presented earlier.

A simple example of a distributed cycle, comprising replicated objects, can be seen in
Figure III.2.18. This cycle can be represented by the following (others possible) chain of objects
(starting and finishing in P2):

{{F, H, I}P2, {O, W, K}P3, {D, W ′, B}P1}
We chose to depict a scenario where all the snapshots required to detect the cycle are avail-

212 CHAPTER III.2. ALGORITHMS

able to the DCD, and are referenced by a DCC-RM. The operation of the algorithm in the absence
of information from certain processes has been described in III.2.3.4. It could be portrayed with
an example analogous to the one in Figure III.2.5.

Clearly, all objects belong to a distributed garbage cycle, since none of them is reachable
from any GC local-root (the one in process P1 targeting object AP1 has been deleted by the
mutator). Therefore, there are no sources of reachability marks. However, in this situation, the
acyclic DGC algorithm is unable to proceed, because it conservatively considers objects to be
live when they are reachable from scions.

Replicas WP3 and W ′
P1 must both be found unreachable for any (or both) of them to be

reclaimed. However, both of them are targeted by other objects (OP3, DP1 respectively) that are
reachable remotely (due to IP2, KP3 respectively).

Thus, the acyclic DGC algorithm presented earlier will never issue Unreachable and con-
sequently, Reclaim messages regarding replicas WP3 and W ′

P1. Conversely, without receiving
these messages, processes P1 and P3 will remain including stubs regarding remote references
(BP1 → FP2 and KP3 → DP1, respectively) in their NewSetStubs messages. Due to this
double inter-dependency, the acyclic DGC algorithm always perceives the objects included in
the example portrayed, as reachable globally (therefore, as live objects), while in fact, they are
no longer reachable to the mutator.

The summarized graph information at process P1 would hold the following data:6

• Inbound− Set(P1) ⇒ {Scion(DP1)P1, InProp(W ′
P1)P1}

• Outbound− Set(P1) ⇒ {Stub(FP2)P1, InProp(W ′
P1)P1}

• Scion(DP1)P1 ⇒ {OutboundFrom ≡ {Stub(FP2)P1, InProp(W ′
P1)P1}}, this means that,

in P1, Scion(DP1) leads to Stub(FP2) and InProp(W ′
P1) (describing replication via WP3).

• Stub(FP2)P1 ⇒ {Reach.LOCAL ≡ false}, this means that Stub(FP2) is not reachable
from the local root-set of process P1 (Reach.LOCAL is false). Note that while the stub
refers to an object located in process P2, the stub structure is kept at process P1 where the
remote reference actually exists.

• InProp(W ′
P1)P1 ⇒ {OutboundFrom ≡ {Stub(FP2)P1, InProp(W ′

P1)P1},
Reach.LOCAL ≡ false}

Recall that InProp(W ′
P1) belongs both to InboundSet and OutboundSet. It leads to

Stub(FP2) and InProp(W ′
P1). InProp(W ′

P1) leads to itself, since inProps and outProps
propagate reachability marks in both directions due to the Union Rule. In this case,
according to the information stored, it will propagate reachability marks to and from
OutProp(WP3). Furthermore, it is not reachable from the GC local-roots of P1.

6Symbol ⇒ means evaluates to or returns, ≡ relates a field name and its value.

III.2.3. DGC-CONSISTENT CUTS FOR REPLICATED MEMORY 213

Since inProps and outProps are always implicitly included in their OutboundFrom set, this
particular information could have been omitted. Furthermore, the knowledge that inProp
and outProp entries always belong to both InboundSet and OutboundSet can also be used
to further optimize data representation in snapshots.

For P2, we have:

• Inbound− Set(P2) ⇒ {Scion(FP2)P2}

• Outbound− Set(P2) ⇒ {Stub(OP3)P2}

• Scion(FP2)P2 ⇒ {OutboundFrom ≡ {Stub(OP3)P2}}

• Stub(OP3)P2 ⇒ {Reach.LOCAL ≡ false}

And, for P3:

• Inbound− Set(P3) ⇒ {Scion(OP3)P3, InProp(WP3)P3}

• Outbound− Set(P3) ⇒ {Stub(DP1)P3, InProp(WP3)P3}

• Scion(OP3)P3 ⇒ {OutboundFrom ≡ {Stub(DP1)P3}}

• Stub(DP1)P3 ⇒ {Reach.LOCAL ≡ false}

• InProp(WP3)P3 ⇒ {OutboundFrom ≡ {Stub(DP1)P3, InProp(WP3)P3},
Reach.LOCAL ≡ false}

The DCD is able to create a DCC-RM containing snapshots form processes P1..P3. After
performing CMS on the DCC-RM, none of the data structures is marked. This is because none
of them is reachable locally to the mutator, and there are no discrepancies among the snapshots,
w.r.t. GC and replication data-structures. Such discrepancies, if occurring, would require the
adoption of conservative approaches 4..6, when defining the root-set of the CMS, as presented
in Section III.2.3.4.3. Thus, the root-set of the CMS, in this case, is an en empty set. Also, it is
obvious, from the content of the three snapshots, that there are no reachability marks to actually
propagate, since GC local-roots are empty in all processes.

The DCD can thus issue DeleteScion messages regarding Scion(DP1)P1, Scion(FP2)P2 and
Scion(OP3)P3 and, issue a DeclareUnreachable message regarding InProp(W ′

P1)P1.

In the case of this particular example, the cycle could be broken by sending DeleteScion
message to P2 regarding Scion(FP2)P2, and a DeclareUnreachable message to P1, regarding
InProp(W ′

P1)P1

The following sequence of events could take place (others possible):

214 CHAPTER III.2. ALGORITHMS

1. P2: Scion(FP2)P2 is explicitly deleted.

2. P1: InProp(W ′
P1)P1 is explicitly declared as unreachable.

From now on, the DCD is no longer involved and the cooperation of the acyclic DGC
components of each process will reclaim the cycle.

3. P1: After the next LGC, an Unreachable message, regarding InProp(W ′
P1)P1, is sent to P3.

Once acknowledged, the sentUMess bit of the inProp entry is set.

4. P2: After the next LGC, Stub(OP3)P2 disappears, and is not included in the NewSetStubs
message to sent to P3.

5. P1: After the next LGC, Stub(FP2)P1 is maintained, because it is reachable from the
inProp entry and the LGC considers it until it is deleted (i.e., enforces the Union Rule),
regardless of the value of sentUMess bit.

Though maintained, Stub(FP2)P1 will be ignored if included in a NewSetStubs message
received by P2. Scion(FP2)P2 no longer exists, since it has been explicitly deleted, and
will not be recreated unless a reference to FP2 is exported again to another process. This is
clearly impossible with FP2 being garbage.

6. P3: Scion(OP3)P3 disappears, after NewSetStubs message is received from P2.

7. P3: Once the Unreachable message from P1 is received (step 3), recUMess bit of
outProp(WP3)P3 is set.

8. P3: Later, after the next LGC, object WP3 is found to be reachable exclusively from
outProp(WP3)P3, with recUMess bit set. Since the object has not been propagated else-
where, all the outProps have recUMess bit set. Accordingly, a Reclaim message is sent to
P1. Once acknowledged, outProp(WP3)P3 is deleted.

9. P1: The Reclaim message is received and InProp(W ′
P1)P1 is deleted.

10. P3: After the next LGC, Stub(DP1)P3 disappears, and is not included in the NewSetStubs
message to sent to P1.

11. P1: Scion(DP1)P1 disappears, after NewSetStubs message is received from P3.

With all scions, and inProp/outProp entries removed, the LGC in each process will be able
to reclaim all objects and free the memory occupied by them. The distributed cycle comprising
replicated objects has thus been successfully detected, broken, and reclaimed.

III.2.3.6 Analysis of Algorithm Properties

In this section, we address the relevant properties of a complete distributed garbage collector
discussing them against the algorithm proposed: safety, liveness, completeness, termination,
and scalability.

Naturally, since DCC-RM follows an approach analogous to DGC-Consistent Cuts, the ar-
guments presented earlier also apply.

III.2.3. DGC-CONSISTENT CUTS FOR REPLICATED MEMORY 215

Safety: The acyclic DGC and DCD algorithms are resilient to message loss, delay, re-ordering
and replay. Concerning the acyclic DGC, loss or delay of NewSetStubs, Unreachable and
Reclaim messages does not affect safety because objects deletion is only triggered by reception
of these messages. It may, however, delay garbage detection.

Message replay is innocuous since all messages are idempotent. This is trivial for valid
Unreachable and Reclaim messages. Invalid messages are discarded because of time-stamp
mismatch. NewSetStubs messages always carry information about the most recent scion known
when they were first sent. This way, a replayed NewSetStubs message will not prematurely
delete scions created more recently.

W.r.t. DCD, when it performs CMS, it is safe when considering scions, inProps and outProps
referring to processes that have yet not sent their graph descriptions to the DCD. It conserva-
tively considers them as CMS roots. Furthermore, scions, inProps and outProps, with time-
stamps greater than the highest corresponding value known in the process holding the stub,
inProp and outProp counterparts, are also conservatively considered as CMS roots.

There are no ordering requirements, and therefore neither competition nor racing condi-
tions, among messages sent to the DCD. Message loss will only delay garbage detection. Replay
of older messages may, however, prevent detection of newer cycles. This is solved when an up-
dated graph description is received by the DCD. Additionally, several independent DCDs may
execute without error.

Safety in in the presence of concurrency between the cycle detector and the mutator, w.r.t.
both object invocation (local), and replication (distributed) is ensured. The arguments for this
are analogous to those presented when analyzing the safety of DGC-Consistent Cuts in Sec-
tion III.2.1.3. Snapshots are assumed to be coherent w.r.t. each process, and the DCD only
handles snapshots. Thus there are no race situations between the DCD and ongoing object repli-
cations.

Liveness: Algorithm liveness, w.r.t. acyclic distributed garbage, relies on processes sending
NewSetStubs messages (containing live stubs) and Unreachable and Reclaim messages regard-
ing unreachable replicas. This is ensured since every process will eventually send these mes-
sages after execution of the LGC. The sentUMess bits of inProps are only set when Unreachable
messages are acknowledged. The outProps are deleted only when all Reclaim messages are
acknowledged. This ensures that the algorithm progresses.

W.r.t. to DCD, the algorithm liveness is obviously dependent on DCD receiving messages,
carrying compressed snapshots, by participating processes. Though not required often, pro-
cesses with mutator activity must eventually update their snapshots. Cycle dismantlement
messages must be delivered and acted upon by receiving processes. Indirectly, liveness is also
dependent on the acyclic DGC.

Completeness: The algorithm is complete in the sense that any cyclic distributed garbage
is eventually encompassed by a DCC-RM, detected and reclaimed. This is achieved creating
higher-level DCCs-RM, following the hierarchical approach described (also analyzed in Sec-

216 CHAPTER III.2. ALGORITHMS

tion III.2.1.3). The replication-aware heuristic adopted in DCC-RM creation further contributes
to this.

W.r.t. cycle dismantlement messages, completeness is trivially ensured when all scions and
inProps identified as garbage are sent the corresponding DeleteScion and DeclareUnreachable
messages. Nonetheless, the DCD is only required to issue messages for a fraction of those (e.g.,
just one scion), with uniform randomness. In ulterior DCCs-RM, if the cyclic garbage has not
yet been broken, different scions or inProps will be targeted, which will hurt the cycle further.

Eventually, all the necessary scions and inProps will receive DeleteScion and Unreachable
messages. In worst case scenario, this will amount to send every individual dismantlement
message in the first place. After that, the acyclic DGC will delete all its structures and the LGC
will reclaim all objects comprised in the cycle.

Floating-garbage consists of just recently created distributed cycles that cannot be detected
until snapshots, at processes, correctly reflect it. The algorithm is conservative in these situa-
tions. Obviously, this is an inevitable phenomenon to GC in general. However, the relevant
issue w.r.t. cycle detection is eventually detecting them, since they are stable (therefore, long-
lived), and created at a slow rate.

Termination: Regarding termination, cycle detections are trivially guaranteed to terminate due
to the centralized approach used for cycle detection. Once the DCD initiates CMS on a DCC-RM,
it will terminate promptly whether cycles are found or not. Propagation of reachability marks
during CMS is granted to finish, since it is performed locally and needs to visit each element
(belonging to Inbound− Sets and Outbound− Sets) only once.

Scalability: The acyclic DGC is scalable because it does not require the communication pro-
tocol to support causal delivery, since it is based on DGC-WARM (Sanchez et al. 2001) and
reference-listing.

W.r.t. DCD scalability, it stems mainly from the loose synchronization requirements, as cycle
detection is performed asynchronously w.r.t. application processes, and snapshot compression.
As discussed before, there may be multiple DCDs running, each one creating and analyzing
several different DCCs-RM. DCDs can create a DCC-RM hierarchically from existing ones, and
cooperate with other DCDs to manage DCC-RM at a higher-level. Furthermore, this hierarchy
needs not follow a strict topology.

Summary of Chapter: In this chapter, we presented three novel algorithms for distributed
garbage collection, focusing on the detection of distributed cycles of garbage. Two of them,
i.e., DGC-Consistent Cuts and Algebra-based Distributed Cycle Detection, are designed for dis-
tributed object systems based on remote invocation. Another one, DGC-Consistent Cuts for
Replicated Memory (DCC-RM) addresses distributed cycle detection in replicated memory sys-
tems, presenting the first viable solution for DGC completeness in such systems.

The three algorithms have some characteristics in common, such as relying on the existence
of components for acyclic DGC and LGC in each process, and the goals of safety, completeness,

III.2.3. DGC-CONSISTENT CUTS FOR REPLICATED MEMORY 217

scalability, and asynchrony. They also share a design which minimizes interference with exist-
ing support for LGC in virtual machines (i.e., they do not impose a particular approach to LGC),
and with applications. Furthermore, they all operate by explicitly deleting DGC structures (e.g.,
scions) that mislead the acyclic DGC into preserving the distributed garbage cycles. This op-
eration is safe since objects comprised in distributed garbage cycles are already unreachable to
applications.

In the first algorithm, DGC-consistent Cuts, distributed cycles of garbage are detected us-
ing a centralized approach. A designated server, the distributed cycles detector (DCD), which
is asynchronously contacted by application processes, is responsible for constructing DGC-
consistent cuts, and detecting garbage cycles enclosed in them. Conceptually, the algorithm
constructs a DGC-consistent cut by combining representations of object graphs received asyn-
chronously from application processes. Then, the algorithm performs a conservative mark-and-
sweep (CMS) on the DGC-consistent cut.

The second algorithm, proposes a DCD based on a Cycle Detection Algebra (CDA). It em-
ploys a de-centralized approach to test whether a cycle candidate indeed belongs to cyclic
garbage. Processes forward Cycle Detection Messages (CDM), containing CDA elements. CDMs
encode unresolved dependencies (i.e., converging sub-graphs to the cycle being tested), and de-
termine which reference paths should be followed, in order to find out whether they form a
distributed cycle of garbage. Cycle detection is initiated by issuing a CDM regarding a scion
targeting a suspect-object. If the CDM is forwarded, across a number of processes and in the
absence of mutator activity, back to the originating process with all its dependencies resolved,
then, a distributed garbage cycle has been found.

The third algorithm, DGC-Consistent Cuts for Replicated Memory (DCC-RM), extends the
notion of DGC-Consistent Cuts to distributed systems with data replication, thus serving as a
complement to an acyclic DGC for replicated objects, such as DGC-WARM. It operates by cre-
ating replication-aware DGC-Consistent Cuts (i.e., DCCs-RM), by combining compressed snap-
shots received asynchronously from application processes. It detects cycles comprised within
them, by performing a conservative mark-and-sweep (CMS), while enforcing the Union Rule
during DCC-RM creation, and when performing CMS on them. It does so asynchronously,
avoiding any distributed synchronization among the processes comprising the cycles, and with-
out delaying acyclic DGC.

Each algorithm was described in detail in a dedicated section. After a brief intuitive ex-
planation of how each algorithm works, we presented its data structures, messages exchanged,
the actual procedure employed for cycle detection, and applicable optimizations (e.g., snapshot
compression, hierarchical DCD). Each algorithm was further illustrated with a prototypical ex-
ample. Finally, we addressed relevant algorithm properties for each algorithm, such as safety,
completeness, liveness, termination, scalability.

218 CHAPTER III.2. ALGORITHMS

III3Implementation

The algorithms presented in the previous chapter were implemented in different environ-
ments to demonstrate their feasibility, and independence of a particular run-time. Therefore, the
algorithms are applicable to a variety of different scenarios where the notions of reference and
reference graph exist. The implementations address the following scenarios:

• .Net Remoting

• OBIWAN

• World Wide Web

• Simulation

The first two scenarios comprise the most important implementation work. They address
systems where data is organized in objects graphs (with distribution or replication), and the
mutator consists of applications developed with object-oriented programming languages (e.g.,
Java and C#). The DGC algorithms for distributed object systems were implemented for .Net,
and their implementation is described in Section III.3.1. The algorithm for replicated memory
systems was implemented on top of OBIWAN (operable in OBIWAN.Net and OBIWAN.Java
prototypes), and its implementation is presented in Section III.3.2.

The third scenario addresses the use of distributed garbage collection to ensure referential-
integrity, and optimize storage management, in interconnected web sites. It is addressed in Sec-
tion III.3.3. The fourth scenario, described in Section III.3.4, is used as a test-bed to develop algo-
rithm code free from system-dependent issues, obtain simulation outputs, and perform initial-
testing.

III.3.1 Complete Distributed Garbage Collection for .Net

This section describes the implementation of the algorithms presented in Sections III.2.1
and III.2.2 in the context of a distributed object system (.Net Remoting).

The two algorithms assume pre-existence of an acyclic DGC running, e.g., reference-listing.
However, .Net does not support distributed garbage collection (DGC). The current approach to
DGC in .Net is very simple, featuring only leases that are associated with remote objects. When
an object X is not invoked remotely for a certain amount of time (bigger than its lease) the ref-
erence pointing to X is ignored for reachability considerations; therefore, X may be reclaimed

220 CHAPTER III.3. IMPLEMENTATION

even if there is still a remote reference pointing to it. This means that safety is not ensured. Con-
versely, if X becomes unreachable before lease expiration, it will not be immediately reclaimed.
Thus, leases with long expiration time may create floating-garbage.

III.3.1.1 Acyclic DGC

Therefore, prior to implementing DCD, we require an acyclic DGC in .Net that is both live
(as leases ensure) and safe (which leases are not). This can be achieved using several techniques,
with different levels of run-time intrusion. Broadly, these techniques may be characterized as
whether they require source-code modifications to, and recompilation of, the run-time.

Since any other distributed cycle detector would require a pre-existing acyclic DGC, we ar-
gue that .Net Remoting should have been equipped with one built-in. Such an extension of .Net
capabilities is very important for supporting cooperative work among different users, using dis-
tributed object-oriented applications. Therefore, we implemented reference-listing, with the ex-
tensions described in Section III.2.1.1.1 regarding time-stamps, in the context of Rotor 1.0 (Stutz
2002), officially known as SSCLI,1 the shared-source version of .Net Common Language Run-
time. This work was developed in the context of a project supported by Microsoft (Veiga and
Ferreira 2003a).

The implementation of the algorithms can also be accomplished by using other techniques,
such as: i) by embedding DGC code in user code (as automatically generated in OBIWAN, and
described later), or ii) leveraging extension frameworks provided by the run-time (e.g., sink-
chain extension in .Net Remoting using, AOP)2 as described in (Pereira et al. 2006).

The acyclic DGC (ADGC) algorithm was implemented in Rotor combining modules writ-
ten in C++ and C#. These languages were chosen to favor integration, simplicity and efficiency.
The implementation includes virtual machine modification (for LGC and DGC integration) and
Remoting code instrumentation (to detect export and import of references). Virtual machine
modifications were implemented in C++. This is the language Rotor core (e.g., LGC) is imple-
mented in. Remoting instrumentation code was developed in C#, since high-level code of the
Remoting services is written in this language.

The existing lease mechanism was, for all practical matters, deactivated by modifying file
lifetimeservices.cs , in order to set lease-lifetime to a minimum value (1 ms), and prevent-
ing them from referencing objects.

The data structures representing sets of stubs and scions are implemented in C#, as syn-
chronized hash-tables, for efficiency, and maintained w.r.t. each process running. Code imple-
menting DGC explicit messages is grouped in a specific class GCManager. This code runs as a
low priority thread in each application process, and is responsible for composing and sending
NewSetStubs messages lazily. NewSetStubs messages from other processes are delivered when
a well-known remote method made available by class GCService is invoked from another pro-
cess. This method compares stubs received with existing scions, looking for scions whose stub
counterpart no longer exists.

1Shared-Source Common Language Infrastructure.
2Aspect-oriented Programming (Kiczales et al. 1997).

III.3.1. COMPLETE DISTRIBUTED GARBAGE COLLECTION FOR .NET 221

III.3.1.1.1 LGC and Acyclic DGC Integration

The ADGC algorithm must cooperate with the LGC, essentially, in two ways:

• the ADGC algorithm must prevent the LGC from reclaiming objects that are no longer
reachable locally, but are targeted by incoming inter-process references. This ensures that
scions actually prevent objects from being reclaimed.

• the LGC must provide, in some way, the ADGC with information about all remote objects
referenced by local objects. This is necessary to ensure that all stubs (representing outgoing
inter-process references) are correctly created and preserved.

The first requirement is trivially solved by adding scions to the GC root-set (that already
contains GC local-roots). Hash-tables containing scions (and stubs), for each application domain,
are maintained as global variables (i.e., referenced by a class static field in GCManager). Each
scion holds a strong reference to the object targeted by the incoming remote reference.

To fulfill the second requirement, we had to choose between two main options: i) to ex-
tend the LGC in Rotor, modifying its implementation, in order to make it able to create and
preserve stubs for every outgoing inter-process reference, or at least, provide this information to
the ADGC component that would create them, or ii) assuming that stubs are created when out-
going inter-process references are created (e.g., imported), and attempt later to indirectly detect
which references have disappeared and eliminate the associated stubs.

The first approach consists in modifying the code of LGC in Rotor so that every field (pos-
sibly containing a reference) in every live object is examined. If this reference happens to point
to an object that is a transparent proxy, it is an outgoing inter-process reference and the corre-
sponding stub must be created. The second approach consists simply on periodically monitor-
ing existing stubs, verifying that they are still valid, i.e., whether the Rotor transparent proxies
associated with them still exist. This is achieved using weak-references, that allow referencing
objects without preventing the LGC from reclaiming them.

Both approaches have their advantages and drawbacks. The first option would determine
stub deletion more quickly but it could impose larger pause-time on applications, since all stubs
would be re-created each time over. Furthermore, this requires implementation using low-level
programming (i.e., C/C++ language), in order to minimize this penalty. However, the advantage
of determining stub deletion more quickly is mitigated by the fact that ADGC processing is
essentially bound to the exchange of messages, and these are sent in a lazy manner, in order not
to disrupt running applications.

The second approach was adopted due to the following advantages : i) it does not impose
relevant modifications on the Rotor kernel, ii) it can be implemented using a high-level language
such as C#, iii) modifications are mainly restricted to the Remoting package, and iv) it does not
interfere with the LGC used, and is more general (thus, it can be integrated with any other).

It is implemented via modification of method CollectGeneration of class GCService ,
defined in file comutilnative.cpp . This is the method, in the Rotor kernel, responsible for
performing LGC. The modification consists in inserting, at the end of this method, a call to

222 CHAPTER III.3. IMPLEMENTATION

a static method, RunDGC. This method is defined in new class ClassRunDGC, placed on file
remotingservices.cs , under namespace Remoting .

The method invocation described is performed from C++ (i.e., native) code, within
Rotor core, into C# (i.e., managed) code. This dependency must be registered in
file mscorlib.h so that, later, the core can obtain a native reference to the C#
method. The method invocation must also be properly framed, i.e., a managed
code stack must be set-up prior to each invocation. This is achieved using helper
macros HELPERMETHODFRAMEBEGIN 0/HELPER METHODFRAMEEND. The invoked method
(RunDGC) simply delegates execution to an homonymous method defined by the DGC class
(GCManager). This invocation is not direct because the DGC can only be invoked with the
present application domain context already established. This is implicitly achieved by the inter-
mediary C# method that is unique across application domains.

Method GCManager.runDGC simply iterates existing stubs, testing if the contained weak-
references, targeting transparent proxy objects, are still valid. When they are not, the associated
stub is deleted from the hash-table and will not be included in future NewSetStubs messages.

III.3.1.1.2 Remoting Code Instrumentation

Instrumentation of code in Remoting services intercepts messages sent and received by pro-
cesses when performing remote invocations, so that scions and stubs are created accordingly.
In Rotor, messages exchanged by these services are created, intercepted, coded and decoded
in several stages, called sinks. A group of different sinks that sequentially process a message
constitutes a sink-chain.

Interception only takes place in remote invocations where MarshallByRef references are
exported or imported. Objects of classes extending MarshallByRef are the only ones that
can be referenced across application domains (in this case, across different processes). Thus,
every time a reference to an object extending MarshallByRef is exported/imported, it must be
accounted for DGC purposes.

The reference-listing algorithm demands scions to be time-stamped when they are created
and that the same time-stamp is applied to its counterpart stubs. This implies that scion time-
stamps must be included in remote invocation messages bearing remote references.

To accomplish this, custom headers were appended to Remoting messages, e.g.,
scionIndex, machine, processId to uniquely identify DGC structures associated with remote refer-
ences included in Remoting messages. These values must be propagated throughout the en-
tire sink-chain. Therefore, adaptations were made on base files such as basetransportheaders.cs,
corechannel.cs, message.cs, dispatchchannelsink.cs, binaryformattersink.cs.

Higher level files such as remotingservices.cs, tcpsocketmanager.cs, binaryformatter.cs and activa-
tor.cs were also modified primarily to invoke, when remote references are detected, specialized
methods included in the previous files.

III.3.1. COMPLETE DISTRIBUTED GARBAGE COLLECTION FOR .NET 223

III.3.1.2 Distributed Cycle Detection

In this section, we describe the relevant implementation details, regarding distributed cycle
detection in .Net, of the two algorithms: DGC-Consistent Cuts, and Algebra-based Distributed
Cycle Detection. The implementation of the second algorithm reuses code, or otherwise extends
it, from the first one, namely w.r.t. snapshot generation and snapshot compression. Therefore,
only the novel and different aspects are addressed.

III.3.1.2.1 DGC-Consistent Cuts

Snapshot Generation: Snapshot generation is encoded in C#. In order to be consistent, ob-
ject graph serialization must be performed while the application code is not running. This is
performed using the same technique described earlier. After the LGC, applications are still sus-
pended, since LGC in Rotor is a blocking one. Thus, before allowing the application to proceed,
a special method in managed code is invoked (DGCCuts.GenerateSnapshot). This method
serializes the object graph by serializing a GCSnapshot object, that references a series of previ-
ously registered objects, in this case, hash-tables containing scions, stubs, and registered appli-
cation roots (GC local-roots).

Applications need to register their roots so that objects that are reachable from them are
also serialized. Otherwise, the snapshot would only include objects reachable from scions. This
registration would be unnecessary if thread stacks were considered first class objects in .Net,
which are not. This limitation can be obviated by extending the implementation of the Threading
package, in order to provide a list of objects referenced from its stack.

Snapshot creation is not performed necessarily after every LGC. It is performed, in this case,
just one out of every 100 LGC executions. Object graph serialization is required only for cycle
detection. Thus, it only needs to be seldom done. This allows the serialization of the object graph
to be done in other more convenient situations, such as when the application stops waiting for
input, or is idle. It can be further optimized with operating system support; e.g., using copy-
on-write on graph pages. Serialization can then be performed lazily, in the background with
minimal delay, extra memory, and processor load.

Snapshot compression: Snapshot compression is coded in C# and has no interaction with the
LGC. It is performed, lazily and incrementally, in each process, after a new object graph has
been serialized, by a separate thread (which is almost always blocked). Alternatively, compres-
sion of snapshots stored persistently in files is performed by an off-line process executing the
same function. Snapshot compression is performed by tracing the object graph, using reflection
(introspection mechanisms in .Net). This was chosen mainly for simplicity and portability.

A straightforward approach to implement graph summarization is to trace the graph, start-
ing with each scion individually, and determining which stubs are reachable from that scion. An
additional trace determines reachability from GC local-roots. This approach may result in each
object being traced several times, possibly one for each existing scion.

224 CHAPTER III.3. IMPLEMENTATION

An alternative approach is to associate a set of flags (implemented as a bit-map) to objects,
with length equal to the number of scions plus one to record reachability from GC local-roots.
Each bit represents reachability from a specific scion. These bit-maps are updated and propa-
gated while objects are being traced. This trades space (bit-maps) for time (number of object
re-tracings).

Initially, all GC local-roots and scions are traced breadth-first, and objects directly referenced
from them have the corresponding bit set. All these objects have depth one, and are appended to
a list of objects to be marked. Each new object found is appended to the end of this list.

Graph summarization progresses, breadth-first, by taking the object at the head of the list
and checking, for each object referenced by the former, if its bit-map, as a set, contains all the
bits included in the bit-map of the former (possibly being identical). When this is not the case,
it means there are new bits that should be propagated (by bit-wise OR) and the latter object is
appended to the list for re-tracing.

The previous situation happens when reachability to an object, from a yet unknown scion,
has been established. When bit-maps are propagated, the number of object-scanning operations
saved, is equal to the number of bits set. Tracing the graph breadth-first maximizes this effect.
This way, each object is visited fewer times while propagating more marks (conversely, tracing
the graph depth-first would actually nullify savings).

When tracing is finished, the bit-map of each stub is analyzed. The stub is included in the
StubsFrom set of the scions, whose corresponding bit is set in the bit-map. StubsFrom sets are
also implemented as bit-maps.

Storage occupied by reachability bit-maps can be further optimized in two ways. First,
by using an extra indirection that allows reducing storage occupied by multiple, identical bit-
maps. This way, objects do not have private bit-maps. Instead, they reference one from a set of
active bit-maps. Storage saving is greater in graphs with very high density and confluence of
references. Second, in the expectably frequent case of very sparse bit-maps, as the number of
scions and stubs grows, bit-maps are replaced by a vector of indexes. We assume an index can
fit into 16 bits (i.e., it would allow to uniquely identify 65536 stubs or scions). Therefore, the use
of a vector of indexes would provide compression whenever the bit-map has less than 1/16th of
its bits set.

Cycle Detector: The DCD is implemented in C# as a separate process. The DCD (server) re-
ceives compressed snapshots from application processes (clients) and serializes them to files on
disk. The directory of processes and snapshot versions is maintained as a hash-table of lists,
whose nodes contain weak-references. When a snapshot is first referenced by a DGC-Consistent
Cut, it is loaded from disk. When a snapshot is no longer referenced by any cut, it is reclaimed
by the LGC. Its finalizer (i.e., finalization) method determines if the snapshot should be deleted
from disk, as newer versions become available. Higher-level snapshots, created hierarchically
from a DGC-Consistent Cut, are maintained during a period of time that can be parameterized.

CMS propagates reachability bits from stubs and uses an additional bit to mark visited ele-
ments. This ensures termination of the marking process, upon which, garbage scions are identi-
fied.

III.3.2. DCC-RM IN OBIWAN 225

III.3.1.2.2 Algebra-based Distributed Cycle Detection

This algorithms reuses the implementation of DGC-Consistent Cuts, requiring the exten-
sions described in the next paragraphs, and implements the cycle-detection algebra.

In Remoting services, the classes implementing scion and stubs must be extended to hold
an additional integer field, the invocation-counter, for DCD-mutator race detection. Invocation-
counters must be propagated throughout the entire sink-chain, from scions, to their correspond-
ing stubs. Invocation-counters are included in return messages of remote method invocations.
The modifications required are analogous to the ones previously described, in Section III.3.1.1.2.

The code for snapshot compression is reused, handling extended scions and stubs trans-
parently. After the snapshot is compressed, and additional phase is performed to populate
ScionsTo sets in stubs. Actually, this information is readily available from the bit-maps propa-
gated to stubs. Therefore, this does not impose any additional time overhead. Stubs require an
additional bit-map that may be subject to the optimizations described earlier.

Cycle Detection, i.e., matching of CDA elements, is implemented in C#. Cycle Detection
Algebra, carried in each CDM, is serialized using XML. The algebra representation is optimized
to minimize redundancy and ease matching. Thus, each scion/stub representation holds two
bits, indicating whether they are present in the CDM source and/or target set.

III.3.2 DCC-RM in OBIWAN

The DGC algorithm for replicated memory systems (DCC-RM), described in Section III.2.3,
was implemented on top of OBIWAN (operable in OBIWAN.Net and OBIWAN.Java proto-
types), within the Memory Management module. OBIWAN.Net can also be run on Rotor, since
they are compatible. All the modifications on objects and proxies, required by the DGC, are au-
tomatically handled by the OBIWAN compiler, obicomp (in its two versions: obicomp.java

and obicomp.net), already presented in Part II.

III.3.2.1 Acyclic DGC

Neither .Net nor Java have a replication-aware ADGC built-in. W.r.t. .Net, it does not in-
clude a full ADGC, as already described. Java includes a reference-listing, based on (Birrell et al.
1993a; Birrell et al. 1993b), with insert and remove messages for reference-list management. It
is extended with a lease approach for fault-tolerance (e.g., when a process terminates without
sending remove messages). Therefore, both acyclic and cyclic DGC components have to be im-
plemented. Nonetheless, data structures and functionality coded for the previous algorithms
(Section III.3.1) was reused or extended. This section describes the more relevant differences.

Code implementing acyclic DGC explicit messages is grouped in a specific class DGCMan-
ager in the Memory Management Module. This code runs as a low priority thread in each ap-
plication process, and is responsible for composing and sending NewSetStubs, Unreachable

and Reclaim messages lazily. NewSetStubs, Unreachable and Reclaim messages from other

226 CHAPTER III.3. IMPLEMENTATION

processes, are delivered when well-known remote methods made available by DGCManager,
are invoked by another process. Messages are sent by performing remote invocations, directly
or mediated by the web-bridge (in M-OBIWAN and derived prototypes), of these well-known
methods.

Managing Inter-process References: The code for hash-tables containing scions was re-used
from Section III.3.1. Each scion maintains a strong reference to the object which is referred by
the corresponding incoming inter-process reference. Stubs were extended, and are implemented
differently. Their internal weak-reference no longer points to a transparent proxy object, man-
aged by Remoting services. Instead, the weak-reference targets OBIWAN proxy-out objects.

Proxy-out objects encapsulate the means to replicate a specific object from a different pro-
cess. Therefore they act as inter-process references, in OBIWAN. However, in regular usage,
they are used only once, upon which the object is replicated. When proxies-in are created, and
proxies-out are de-serialized, i.e., instantiated in a process, they raise events, that are caught
by the Memory Management Module, which updates scion and stub information, respectively.
This upholds safety rules I and II of the algorithm (Clean Before Send Propagate, and Clean Be-
fore Deliver Propagate, v. Section III.2.3.3.4), by which all references contained in objects being
replicated, thus being exported and imported, must be accounted for in DGC structures. When
there are multiple proxy-out objects referring to the same object replica in another process (e.g.,
alternate reference paths), there is only one stub that maintains a list of weak-references.

When a proxy-out disappears, reclaimed by the LGC (because it is no longer referenced, e.g.,
the object it stood for was already replicated) the weak-reference in the stub becomes invalid.
When all proxies-out for the same object have been reclaimed, the stub is eligible for deletion.
This code could be inserted in the finalizer method of all proxy-out objects. However, deletion of
stubs needs only be performed exactly before the next set of stubs is generated, to be sent in a
NewSetStubs message. Therefore, this operation can be delayed until this moment.

When a new set of stubs is being generated, w.r.t. a process, all weak-references are tested
for validity. This technique, using weak-references, is similar to the one described in Sec-
tion III.3.1.1.1. Processes generate and send NewSetStubs messages after a pre-defined period of
time, or number of LGC executions. The occurrence of LGC is detected indirectly, using a dummy
garbage object. After the LGC, its finalizer method increments a global counter and re-creates
the dummy object, in order to detect the next LGC execution.

When a NewSetStubs message is received by a process, scions without stub counterpart
are deleted, since the corresponding stubs no longer exist (e.g., all proxies-out were resolved).
Nonetheless, proxies-in for the objects targeted by the scions are not removed (they may still be
used to mediate object update, since they were handed over from the proxy-out to the newly
created object replica).

Proxies-in are not needed to prevent replicated objects from premature reclamation, when
they are replicated to other processes. The implementation of the Union Rule, described next,
ensures this. Moreover, proxies-in are modified to maintain a weak-reference (instead of a nor-
mal, strong reference) to the target object. Otherwise, since proxies-in are maintained globally to

III.3.2. DCC-RM IN OBIWAN 227

the process, they would prevent reclamation of all objects, even those that would be otherwise
unreachable globally.

III.3.2.1.1 LGC and Acyclic DGC Integration (Union Rule)

The implementation of the Union Rule is greatly simplified if the LGC is able to provide
differentiated information regarding object reachability (e.g., from a selected group of objects as
InPropLists and OutPropLists). This information allows the DGC to know when it should send
Unreachable and Reclaim messages.

There is no support in existing LGC (both in Java and .Net) for this kind of extended reach-
ability information. On one hand, the ADGC needs to know when the object is no longer reach-
able to the mutator. On the other, the Union Rule forbids the object replica from being reclaimed.
This creates a contradiction to the LGC: i) detecting un-reachability from local roots results in possible
premature reclamation, while ii) maintaining additional references to object replicas prevents reclama-
tion, but also precludes the detection mentioned above. Though it would be possible to modify the
LGC (e.g., in Rotor) to provide this information, this would hurt OBIWAN portability, as it
would no longer run on a ”standard” virtual machine.

The Union Rule is thus implemented leveraging the limited LGC support available (e.g.,
weak references, finalizer methods), combined with additions to class extension performed by
obicomp . Enforcement of Union rule is embedded in object finalizers that call OBIWAN code,
as explained now.

InProp and OutProp entries regarding each object, are implemented under its corresponding
OBIRep structure (as described in Chapter II.3). Conceptually, each InProp and OutProp entry
maintains an additional reference to the object replica it refers to; when InProps are created, this
reference is a weak-reference. OutProps are created initially containing a strong reference. This
addresses issue ii), i.e., that InProp entries should not prevent object local un-reachability from
being detected.

We also need to address issue i), otherwise, replicas will be prematurely reclaimed, and
the Union Rule violated. This is achieved by the use of finalizer methods. When an object is
found unreachable by the LGC, sometime after, the object finalizer is run, if there is one. Thus,
when the finalizer is executed, the ADGC knows that the object is not reachable neither from
GC local-roots nor from scions (that maintain strong references). However, the object may still
be reachable from the InPropLists or OutPropList , and the Union Rule must be upheld. There-
fore, the OBIRep is checked for InProp entries. If there are any, the corresponding Unreachable
messages are issued, sentUMess bits are set, and the weak-reference, contained in the InProp,
is promoted to a strong reference, thus resurrecting the object replica, in LGC terms. From now
on, the object replica, though unreachable to the mutator in the process, will be maintained by
the InProp entry, until a Reclaim message is received. After this, there is no additional pro-
cessing overhead, w.r.t. upholding the Union Rule. When a Reclaim message is received, the
corresponding InProp entry is deleted, no longer protecting the object. If there are no additional
InProps, the object is reclaimed by the LGC.

Regarding OutProp entries, they initially contain a strong reference to the corresponding

228 CHAPTER III.3. IMPLEMENTATION

object. As a matter of fact, OutProp entries prevent the reclamation of an object until all replicas
created from it, are found unreachable in their processes. This is performed by collecting rec-
UMess bits. When an Unreachable message is received, the corresponding bit is set. When the
recUMess bits of all OutProps regarding an object are set, this means that global reachability of
all them is dependent exclusively on this replica: if it is reachable, all other should be preserved;
otherwise, all replicas, including this one should be deleted. This check is performed by demot-
ing the strong references in such OutProps, to weak-references. If the object replica is reachable
from GC local-roots or from scions nothing happens. Otherwise, its finalizer will eventually
be executed. The execution of the finalizer method will verify that there are OutProps, and for
each one, it will issue a Reclaim message, and delete the OutProp. After this, the object is at the
mercy of the LGC, as all other replicas will be in their processes, when Reclaim messages are
acted upon.

Recall that the combined code, checking InPropLists and OutPropLists is actually encapsu-
lated in a special method invoked by object finalizers. This invocation is automatically inserted
by obicomp , thus minimizing intrusion with application code.

Handling Re-propagation of an Object Replica: One issue separates OBIWAN.Net and OBI-
WAN.Java prototypes: when object replicas previously deemed as unreachable locally, become
reachable to the mutator again. This can happen if the process holding a replica that is un-
reachable locally, has references (direct or indirectly) to another replica of the same object in
other process (possibly the same where the object was initially replicated from). In such a sit-
uation, a process may hold a InProp and a stub regarding the same object. One regards object
replication, while the other indicates there are other inter-process reference(s) targeting the ob-
ject. When these references are followed, i.e., proxy-out objects are invoked, the proxy-out is
resolved and, according to the replication mode, either the local object replica is promptly used,
or it is refreshed with the contents of the object replica of the other process. Either way, the
object replica has become reachable to the local mutator again. This is signaled by resetting
sentUMess/recUMess bits and updating time-stamps, as described in Section III.2.3.3.3.1, and
resetting weak/strong references accordingly.

This poses a problem: how will local un-reachability of this object replica will be detected in
the future, to uphold the Union Rule. This depends on the possibility of executing object finaliz-
ers more than once. In .Net, this is possible. Therefore, method GC.ReRegisterForFinalize

is invoked when re-propagation occurs. This way, it is possible to simply demote the strong ref-
erence contained in the InProp (protecting the object replica until reception of Reclaim message)
to a weak-reference (re-installing the mechanism to detect local un-reachability in the future).

In Java, object finalizers may be run only once. Therefore, the same solution cannot be ap-
plied, and an alternative approach is followed. When a replica, previously found as unreachable
locally, is re-propagated, there is no object that is referencing it; otherwise, it would not be un-
reachable locally. This way, it is safe to reconstruct the object, that is, to instantiate a new object,
install it in the same OBIRep entry, and update it with the content of the existing replica (with
its references to object replicas, replaced with references to proxy-out objects)3 or another one

3This prevents the replica being reconstructed from possibly referencing an object whose finalizer method has

III.3.3. REFERENTIAL INTEGRITY AND DGC IN WEB SYSTEMS 229

(if the local one is being refreshed in the process). When proxies-out, regarding this replica, are
resolved they will invoke and return references to the new replica. Later on, when the replica is
found to be unreachable locally, its finalizer will be executed as expected, upholding the Union
Rule. The cost of this object reconstruction is only payed when a replica is re-propagated. Thus,
while not null, it can be amortized by communication costs, that are orders of magnitude greater.

Since in both cases, finalizers regarding the same object replica (in logical terms) may be run
several times, pre-existing finalizer code defined by the application, is still executed only once
by testing a flag that is kept in the OBIRep.

III.3.2.2 Cycle Detection

DCC-RM reuses C# code for generating and compressing snapshots. Snapshots are gen-
erated by serialization (reusing method DGCCuts.GenerateSnapshot) while providing an
extended set of roots, comprised of scions, stubs, InProps, OutProps, and registered application-
roots (GC local-roots). In the current implementation, snapshots are generated while the mutator
is otherwise stopped, i.e., not manipulating replicated objects. This is achieved by direct appli-
cation command (via an utility method, SnapshotCheck provided by OBIWAN). This method
simply checks a flag and generates the snapshot if it is set, resetting it after. The flag is set by
OBIWAN code, in the current implementation, after a parameterizable period of time expires,
and only if there have been changes to replication or DGC structures.

Snapshot compression code is reused by providing the elements of the InboudSet in the
place of scions, and the elements of the OutboundSet in the place of stubs. Because the sets
share elements (inProps and OutProps), the resulting compressed snapshot is compliant with
the Union Rule, and DCC-RM specification.

Tracing is performed as described in Section III.3.1.2.2, and the same optimizations apply. It
starts from GC local-roots, and elements in the InboudSet, regardless if they are scions, InProps,
or OutProps. All objects conceptually have an associated bit-map (wide enough to hold one bit
per each existing scion, InProp, OutProp, plus one bit to account for reachability from GC local-
roots). Bit-maps are propagated towards stubs, InProps, and OutProps. When one of them is
reached, tracing along that path stops.

The DCC-RM cycle detector is extended to adhere to the special heuristic described in Sec-
tion III.2.3.4. CMS code is reused, upon which garbage scions and InProps are identified.

III.3.3 Referential Integrity and DGC in Web systems

This section presents the main aspects of the application of DGC algorithms to web systems,
partially described in (Veiga and Ferreira 2003c; Veiga and Ferreira 2004b). It addresses the use
of DGC algorithms to enforce referential integrity and perform storage management in: i) web

already been run (an object which already triggered an Unreachable message). When the proxy-out is transversed, if
the referenced object has already been finalized (because an Unreachable message has been sent w.r.t. it), it will be
reconstructed, as described, and the proxy-out will return a reference to the new object.

230 CHAPTER III.3. IMPLEMENTATION

systems, with replication of static content (Veiga and Ferreira 2003c), and ii) with dynamic con-
tent generation, without replication (Veiga and Ferreira 2004b). These works, combined with
DCC-RM, can achieve completeness w.r.t. memory management, in the presence of both repli-
cation and dynamically generated content. All content replicated and/or dynamically gener-
ated, reachable from a definable root-set (e.g., bookmarks), is preserved. Unreachable content is
reclaimed.

III.3.3.1 Background

There are no large-scale mechanisms to enforce referential integrity4 in the WWW; bro-
ken links prove this. For some years now, this has been considered a serious problem of the
web (Lawrence et al. 2001). This applies to several types and subjects of content, e.g., i) if a
user pays for or subscribes some service in the form of web pages, he expects such pages to be
reachable all the time, ii) archived web resources, either scientific, legal or historic, that are still
referenced, need to be preserved and remain available, and iii) dynamically generated content
should also be accounted and it should be possible to preserve different execution results with
timing information.

There are several techniques useful in finding web pages with similar content (Lawrence
et al. 2001). Nevertheless, if the user has payed for, or subscribed to this service, he will consider
this broken-link failure as a breach of the service, contracted or agreed upon. So, this situa-
tion, apparently and regularly innocuous in more un-formal domains, can undermine content
providers reputation and imply severe losses and costs (Ingham et al. 1996).

As serious as this last problem, there is another one related to the effective loss of knowl-
edge. As mentioned in earlier works, broken links on the web can lead to the loss of scientific
knowledge, further aggravated as web contents get older (Lawrence et al. 2001).

Nevertheless, solutions that try to preserve every and anything can lead to massive storage
waste. Therefore unreachable web content, i.e. garbage, should be reclaimed and its storage
space re-used.

III.3.3.1.1 Dynamic Content

The weight of dynamically generated content versus static content has progressed enor-
mously. From a few statically disposed web pages, the WWW now encompasses millions of
dynamically generated pages, resorting to user context, customization, user class differentia-
tion. Today, the vast majority of web content is dynamically generated, shaping the so-called
deep-web, and this has been increasing for quite some time now (O’Neill et al. 2003; Bergman
2001). This content is frequently perceived by users as more up to date and accurate, therefore
having more quality. Since this content is generated on-the-fly, it is potentially different every
time the page is accessed. This may be due to different query parameters, different server and
session state, or simply because it changes with time.

4Preservation of every resource, still targeted by references, contained in other resources accessible from some
defined root.

III.3.3. REFERENTIAL INTEGRITY AND DGC IN WEB SYSTEMS 231

It is clear that this type of content cannot be preserved by simply preserving the script files
that generate it. This is specially relevant with content changing over time. It is produced by
script pages that, although invoked with the same parameters (identical URL), produce different
output, at every invocation, or periodically. Examples of these include stock tickers, citation
rankings, ratings of every kind, stocks inventories, so called last-minute news, etc. So, changes
in produced output, or in the underlying database(s), should not prevent users from preserving
content of interest to them, and keep easy access to it.

Although data is only lost when actual data sources (e.g., database records) are deleted, it
could become otherwise unavailable or inaccessible causing effective loss of information. Thus,
dynamic content, in itself, must also be preserved while it is still referenced and not just the
script pages that generate it. Furthermore, other pages pointed by URLs included in every reply
of these dynamic pages must be preserved, i.e., content dynamically referenced must be also
preserved while it is reachable.

III.3.3.1.2 Current Approaches

The task of finding broken links can be an automated using several applications (HostPulse
2002; LinkAlarm 1998; XenuLink 1997). However, these applications do not enforce referential
integrity because, while useful in detecting local and remote broken links, they cannot neither
prevent them from occurring, nor reclaim wasted storage.

Current solutions to the problem of referential integrity in the web are unable to cumula-
tively address the following issues:

• replication: they are unable to handle data replication correctly (Creech 1996; Ingham et al.
1995; Ingham et al. 1996; Moreau and Gray 1998), or impose strict replica consistency (An-
drews et al. 1995; Kappe 1995).

• dynamically-generated content: they neither preserve different versions of content gen-
erated from a dynamic web page, nor other documents referenced from it (Rosenthal and
Reich 2000; Reich and Rosenthal 2001; Creech 1996; Andrews et al. 1995; Kappe 1995;
Ingham et al. 1995; Ingham et al. 1996; Moreau and Gray 1998).

• storage reclamation: they either: i) preserve every content produced, regardless of be-
ing reachable from a specifiable root-set (Rosenthal and Reich 2000; Reich and Rosenthal
2001; Creech 1996; Andrews et al. 1995; Kappe 1995), or ii) when they include DGC, they
are not complete, i.e., they are unable to detect and reclaim distributed cycles of garbage
comprising web content (Ingham et al. 1995; Ingham et al. 1996).

• transparency w.r.t. existing web infra-structure: they impose specific authoring, visual-
ization and administration schemes to the web (Creech 1996; Andrews et al. 1995; Kappe
1995; Ingham et al. 1995; Ingham et al. 1996).

In summary, some systems currently supporting replication, do not address referential in-
tegrity, and consider broken-links as system or application failures that should be exposed to
users. Some solutions addressing the problem of referential integrity either do not take replica-
tion, or dynamically generated content, or storage management, into account.

232 CHAPTER III.3. IMPLEMENTATION

SRP

Browser

Browser
Browser

Browser
Browser

Browser
Browser

Browser
Browser

EWP

Browser
Browser

Browser
Browser

Browser
Browser

Server

Server
Server

EWP

EWP

SRP

SRP

EWP

Browser

S1

rest of the

WWW

EWP

Server

S2
 S3

Figure III.3.1: General architecture of system deployment.

III.3.3.2 Web Architecture and DGC Integration

In order not to impose the use of a new, specific, hyper-media system, the architecture pro-
posed is based on regular components used in the WWW or widely accepted extensions to them.
The system is designed following OBIWAN architecture (presented in Chapter I.2) mapped to
the web scenario, exemplified in Figure III.3.1. It comprises the following entities:

• web servers.

• clients - web browsing applications.

• extended web-proxies (EWPs) - these manage clients requests and mediate access to other
proxies.

• server reverse-proxies (SRPs) - intercept server generated content and manage files.

The adaptations of the OBIWAN network architecture (portrayed in Figure I.2.2) to the web
scenario (depicted in Figure III.3.1) are the following. Server reverse-proxies (SRPs) and ex-
tended web-proxies (EWPs) act as middleware layers, for replication and memory management
purposes. Browsers perform the role of client applications, and servers perform the role of
object repositories in OBIWAN. The main differences stem from the fact that the execution en-
vironment of web-proxies and web-servers is considered opaque, since modifying them would
hinder the portability of the system. Therefore, all middleware data structures and functionality
is maintained out of them, in separate processes (i.e., SRPs and EWPs). In OBIWAN prototypes
for Java and .Net, middleware structures (e.g., regarding replication) are maintained within run-
ning application processes.

The entities manipulated by the system are web resources in general. These come in two
flavors: i) HTML/XML documents (or pages) that can hold text and references to other web re-
sources, and ii) all other content types (images, sound, video, etc.). Resources of both types can

III.3.3. REFERENTIAL INTEGRITY AND DGC IN WEB SYSTEMS 233

be accessed, and replicated. The system ensures they are preserved while they are still reach-
able. HTML/XML documents can be either static or dynamically generated/updated. Other
web resources, though possibly dynamic as well, are not considered w.r.t. references to other
resources and are viewed, by the system, as leaf-nodes in a web resources graph. Thus, mem-
ory is organized a replicated memory system (described in Section III.2.3.2) comprised of web
resources connected by references (in the case of the web, these are URL links).

Static HTML/XML and other media (e.g., binary files) content may be freely replicated and
made to diverge by any authoring tool (e.g., versions of same document in different languages).
The Union Rule preserves all replicas while at least one of them is reachable. Propagation paths
allow navigation through replicas of the same document. Different versions of dynamically
generated content, produced by the same dynamic page, are also preserved. When dynamically
generated pages are replicated, the content previously generated is copied into the new replica.

We consider, mainly, as cases of web usage:

• i) web browsing without content preservation , i.e., standard web usage.

• ii) web browsing, possibly with replication, with book-marking desired explicitly by the
user, either in a page-per-page basis or transitively. This enforces referential integrity, pre-
serving all content reachable from the bookmark-set (i.e., the root-set).

A typical user in (e.g., at S1) browses the web, accesses and bookmarks some of the pages
from, for example, web-server (e.g., at site S2) (see Figure III.3.1). Nothing prevents running
the extended web-proxy (EWP) in the same machine as the web browser, though it would be
obviously more efficient to install a proxy hierarchy. From the user point of view, the client
side of the system is a normal web browser with an extra toolbar. This toolbar allows book-
marking the current web page (or a URL included in it) as a member of its root-set, and inform
the proxy of such. It also allows the user to replicate web resources (e.g., a HTML file) into his
computer, i.e., to create a stable local replica of the resource he is looking at. Replication is nearly
inexpensive w.r.t. time, taking advantage of the fact that file being browsed may be, implicitly,
already available in the local system cache.

Once book-marked, these documents may hold references to other (not book-marked) web
resources in site S2. Thus, it is desirable that such resources in site S2 remain available as long
as there are references pointing to them. Web resources in other servers (e.g., site S3), targeted
by URLs found in content from site S2 are also preserved, while they are still referenced. The
system ensures that web resources in sites remain accessible, as long as they are pointed from
some HTML/XML document. In addition, web resources, which are no longer referenced from
any other document, are automatically deleted by the garbage collector. This means that neither
broken links nor memory leaks (storage waste) can occur.

Figure III.3.2 presents an example web graph, with dynamically generated web content (the
two dynamic URLs on the left-hand side of the figure) preserved several times, represented like
pages over pages. These preserved dynamic pages hold references to different HTML/XML
documents, depending on the time (and session information) when they were book-marked.
Preserved dynamic content is always stored at the SRP to maintain transparency w.r.t. the server.

234 CHAPTER III.3. IMPLEMENTATION

A.html

B.html

X.php?a=37

WebServer

C.html

E.html

X.php?a=197

D.html

G.html

F.html

WebProxy

code

X.php?a=37

X.php?a=197

Figure III.3.2: Example web graph with several versions of previously dynamically generated
content.

III.3.3.3 Deployment

The prototype implementation was developed in Java. It deploys a stand-in proxy that
interprets HTTP-like custom requests to perform DGC operations and relies on a ”real”, off-the-
shelf web-proxy, running on the same machine, to perform everything else.

Preserving dynamically generated content raises a semantic issue about browser, proxy and
server behavior. When a dynamic URL, previously preserved, is accessed, two situations can
occur, depending on session information shared with the proxy: i) the content is retrieved as
a fresh execution , or ii) the user is allowed to decide, from previously accessed and preserved
content, which one he wants to browse. W.r.t. replication, a user may also want to navigate to
other replicas of the same document, following InProps/OutProps as implicit references.

The selection of these alternatives in navigation is implemented by the middleware code in
EWPs and SRPs. It allows two configurable default behaviors:

• when a URL regarding a dynamic or replicated web page is requested, the browser re-
ceives an automatically generated HTML reply, with a list of previously preserved content,
including other replicas it knows about, provided with date and time information.

• the very HTML code, implementing the link to the mentioned URL, is replaced with code
that implements a selection box, offering the same alternatives as the first option. The first
behavior is less computationally demanding on the proxies but the second one is more
versatile, in terms of user experience.

W.r.t. dynamically generated content, SRPs perform URL translations to access correspond-
ing files that hold the actual preserved content. As portrayed on the left-hand side of Fig-

III.3.3. REFERENTIAL INTEGRITY AND DGC IN WEB SYSTEMS 235

ure III.3.2, multiple such files may exist, preserving different contents generated by the same
dynamic page.

Local GC: The local garbage collector (LGC) is responsible for eventually deleting or archiving
unreachable web content. It must be able to crawl the server contents. The root-set of this
crawling process is defined at each site; it must include scion, InProp, and OutProp information
provided by the DGC.

Crawling is performed only within the site and lazily, in order to minimize disruption to the
web server. The crawler maintains a list of documents to visit. They are parsed and references,
found within them, to documents in the same server, are added to this list. When dynamic
content is found, the results of previous executions are all traced. References found are saved in
auxiliary files. These can be re-used later by the crawler, in another crawl, if the document was
not modified.

When it is necessary to update web page content (a modification to static or programmatic
page), it will be locked and signaled as the crawler must, for safety reasons, re-analyze it. This
is performed following the links included in both versions of such web-page (the previous and
the new one). Then, after the whole local graph has been analyzed, the new version of the DGC
structures replaces (flip) the previous one. Unreachable web documents and other resources can
then be archived or deleted.

Web resources can be created with any authoring tool. Once created in some site, web re-
sources must become reachable in order to be accessible for browsing. This can be done in two
ways: i) add a reference to the new resource in the local root-set, or ii) add a reference to the
new resource in some existing and reachable document. New documents and resources always
survive at least one GC execution before they can be reclaimed.

Acyclic DGC: The distributed garbage collector is responsible for managing inter-site refer-
ences and replicated web resources. Each EWP and SRP enforce the safety rules of the algorithm,
parsing the content transferred to create the appropriate GC data structures.

The sending of DGC messages is implemented by invocation of Java servlets, at the destina-
tion server. Client-only sites receive DGC messages piggy-backed in replies from servers. The
DGC component in each site acts upon received messages, possibly deleting scions, InProps,
and OutProps.

Cycle Detection: Code for snapshot creation reuses the web crawler responsible for LGC. It
incrementally copies all site content to a different location (e.g., directory tree, disk partition).
During snapshot creation, all page modifications must be recorded and modified pages must be
also copied and re-traced. Unmodified pages need not be re-scanned.

The location holding the snapshot contains a conservative view of the site. It may have some
files that are no longer reachable (e.g., they were referenced from files that were since modified).
This improves liveness w.r.t. snapshot creation. It does not hinder completeness, since the DCD
is only used for detecting cyclic garbage, not acyclic or local. Code for snapshot compression

236 CHAPTER III.3. IMPLEMENTATION

only handles snapshots already completed, and produces compressed snapshots in the format
used by DCC-RM in OBIWAN.Java.

III.3.4 DGC Simulator

The three algorithms were initially implemented in the context of a more general DGC sim-
ulator, developed in Lisp, used in GC-Portal (Ferreira and Veiga 2005), that allows easy proto-
typing of DGC algorithms, without the constrains of a particular environment, communication
libraries, or programming languages. It is defined in a main module, gc-lib.lsp , that may be
used or extended by other modules (e.g., cda-dcd.lsp , for Algebra-based Cycle Detection).

III.3.4.1 Module gc-lib.lsp

The gc-lib.lsp module provides a base representation of distributed object graphs. Ob-
jects are abstracted as an opaque payload and a list of references to other objects, possibly in
other processes. This representation of distributed objects graphs includes processes, objects,
LGC and DGC structures. It provides an implementation of simple DGC algorithms: reference-
listing (with time-stamps), and global and sequential tracing. LGC is performed atomically
using tracing, since the main goal of the simulator is to study the distributed aspects of GC,
namely distributed cycle detection. Reference-listing can be reused when implementing spe-
cialized cycle detectors that operate on top of it (e.g., DCD based on backtracking, migration,
cycle-detection algebra).

W.r.t. simulating communication among processes (e.g., remote invocations and DGC mes-
sages), all processes have two message queues, one for inbound and the other for outbound
messages. All interaction among processes is performed exclusively by posting and retrieving
messages in queues. In each iteration, the simulator randomly selects a queue of a process and
either transfers (for outbound queues), or delivers (for inbound) the first message in it. This en-
sures non-determinism, and allows interleaving with distributed invocations (explained next)
to examine algorithm safety and reproduce race conditions.

Messages follow a life-cycle of three phases: i) send (placed on outbound queue), ii) trans-
fer (moved to the inbound queue of the receiving process), and iii) deliver (fetched from the
inbound queue and acted upon in the receiving process). Messages are implemented as lists
whose first element is a function to be invoked in the context of the receiving process (i.e, whose
data structures are passed as parameters to the intended function), when the message is deliv-
ered.

The mutator is simulated by resorting to messages. These messages contain additional data:
i) a target process, ii) a target-object, and iii) a path-list (which is a list of numbers that repre-
sent positions of reference-fields to transverse in objects). When a process receives a mutator-
message, it analyzes the enclosed target-object and path-list. Each element in the path-list speci-
fies a reference, by position, to be transversed from the object being ”invoked”. When a reference
corresponding to a field position is transversed, it is removed from the path-list (its head), and
the remaining of the list (its tail) is applied to the referenced object. This continues until a nil

III.3.4. DGC SIMULATOR 237

reference is selected, or the path-list becomes empty. Optionally, The last object referenced may
be returned as a result, have one reference appended, or modified.

Each time the simulated mutator needs to cross a process boundary, it stops transversing
objects, and queues a message containing the target process and object, and the remaining of
the path-list that was not used. Upon message delivery at the destination process, that may
happen some time after, the distributed invocation continues. The same technique is used to
propagate return values of distributed invocations. The simulated mutator is rather general,
since it ensures that messages related to distributed invocations are completely asynchronous
w.r.t. messages exchanged by the DGC algorithm.

III.3.4.2 Module cda-dcd.lsp

Algebra-based Cycle Detection is implemented as message forwarding and CDA matching,
defined in module cda-dcd.lsp , on top of the simulated runtime provided by gc-lib.lsp .
Snapshot compression converts the object graph in each process into a list of stubs and scions.
Each scion and stub is extended with StubsFrom and ScionsTo lists, without any optimization.

CDMs are exchanged as queued messages. Upon delivery, the CDA matching function is
invoked against the snapshot of the receiving process. If there are any CDMs to be forwarded,
they are appended to the outbound queue of the process.

III.3.4.3 Module problem.lsp

Tests are encapsulated as problems that comprise a distributed graph and a DGC specification
that includes a DGC algorithm and, optionally, a cycle candidate. This module also defines
functions to create and compose test graphs, based on common topologies, such as linked-lists,
doubly-linked lists, trees, etc.

All steps performed by the simulator are sequenced for demonstration and debug. The main
sequencer randomly selects messages queues, as already described, for message transfer and
delivery. When there are no more queued messages, or a cycle has been detected, the sequencer
terminates.

III.3.4.4 Visualization Tool

The simulator is able to export snapshots (plain and compressed) both in XML and using
Lisp serialization (parenthesis-serialization). For parsing, only Lisp serialization is used. XML
serialization is used to interface with a visualization tool, developed in C# that allows the design,
update, and modification of distributed object graphs. When the visualization tool is used, the
GC simulator is executed, performs only one step (LGC, message deliver, etc.), and exports the
distributed graph again for visual update.

The C# application is able to parse XML representations of distributed graphs, to update its
internal state. It exports distributed graphs, using XML for storage, and using Lisp serialization,
implemented in C# (method toLisp() analogous to ToString()), to feed the simulator.

238 CHAPTER III.3. IMPLEMENTATION

Figure III.3.3 shows a typical interaction with the visualization tool. The top screen-shot
displays a distributed graph, spanning four processes, where some objects have been identified
as garbage, in the top-left process. The bottom snapshot shows the same distributed graph, after
interaction with the simulator, where those same objects have already been reclaimed.

Summary of Chapter: In this chapter, we presented the most important aspects of the imple-
mentation of the three algorithms proposed in the previous chapter, in a number of scenarios
where the notion of referential integrity is applicable.

First, we described the implementation of complete DGC for .Net Remoting, in the context
of the Rotor virtual machine (a shared-source version of .Net). Prior to the specifics of each
algorithm for distributed cycle detection, we presented the relevant details concerning the im-
plementation of a full acyclic DGC in Rotor (since the built-in DGC approach is not safe), and
the integration with its LGC. The necessary modifications to the Rotor VM, which are mostly
restricted to the Remoting package, were also described. They deal essentially with monitoring
inter-process references being exported and imported during invocation of remote methods. We
then described the common aspects of implementing cycle detection (i.e., snapshot creation and
snapshot compression), as well as some details on higher-level code, responsible for the creation
of DGC-consistent cuts, and the processing of the Cycle Detection Algebra.

Regarding complete DGC in replicated systems, we presented the implementation of DCC-
RM in the context of OBIWAN. We described how acyclic DGC rules are implemented, resorting
to code in proxy objects and finalization methods. We addressed the re-propagation of object
replicas in detail and presented solutions for the limitations, w.r.t. this purpose, found in existing
LGC for the Java and .Net virtual machines. The techniques employed were object reconstruc-
tion and re-register finalization. The whole implementation requires no changes to existing Java
and .Net VM, resorting exclusively to middleware code. It serves (together with AOP-DGC) also
as a demonstration of the portability of DGC-Consistent Cuts and Algebra-based DCD, although
having been implemented via extension of the VM.

We also described the main aspects concerning the implementation of DGC algorithms for
web systems. In this work, the emphasis was on handling dynamically generated content and
integration with existing web infrastructure (e.g., browser, servers, caching), without imposing
modifications to it. Finally, we presented the relevant aspects of a Lisp-based DGC simulator
and associated visualization tool, used during algorithm development and testing.

III.3.4. DGC SIMULATOR 239

Figure III.3.3: Simulator appearance: Before and After LGC.

240 CHAPTER III.3. IMPLEMENTATION

III4Evaluation

This chapter presents the evaluation of the DGC algorithms presented in Chapter III.2.
This evaluation focus quantitative as well as qualitative aspects. W.r.t. quantitative ones, we
present the performance results concerning the most relevant issues of the described implemen-
tations. Regarding qualitative aspects, we present a comparison between the proposed algo-
rithms and existing solutions found in the literature. This stems from the discussion offered in
Sections III.2.1.3, III.2.2.3, and III.2.3.6. We conclude with an evaluation of proposed and existing
solutions w.r.t. portability, i.e., the level of run-time intrusion and coupling imposed by each GC
solution.

The rest of this chapter is organized as follows. The next section describes the most relevant
performance results regarding the implementation of the three DGC algorithms, presented in
Section III.2. The results are focused on the following aspects: i) overhead of acyclic DGC rules,
ii) snapshot creation, iii) snapshot compression, and iv) enforcement of Union Rule in DCC-
RM. In Section III.4.2, we present a brief evaluation of DGC in web-systems, both in terms of
performance impact, as well as usability and integration. Section III.4.3 offers a comparative
evaluation of the three algorithms proposed in Section III.2, w.r.t. relevant related work in their
respective scenarios (distributed object systems in the case of DGC-Consistent Cuts and Algebra-
based DCD, and replicated memory systems w.r.t. DCC-RM). Finally, in Section III.4.4, we offer
an analysis, regarding the portability of GC solutions to existing virtual machines, encompassing
both relevant related work and our own.

III.4.1 Performance Results in .Net and OBIWAN

The most relevant performance results of the DGC implementation are those related to
phases critical to applications performance: i) enforcement of acyclic DGC safety rules, and
ii) snapshot serialization. These phases are those that could delay and potentially disrupt the
mutator, therefore applications.

DGC safety rules impose the creation of stub/scion pairs when inter-process references are
exported and imported. They are common to any acyclic DGC. This occurs when references
are passed as parameters or results of remote method invocations, in distributed object systems
such as .Net Remoting. Similarly, in replicated memory systems, such as OBIWAN, references
are also imported/exported, when contained in objects that are being replicated. In OBIWAN,
stub and scion creation is uphold by Safety Rules I and II.

We also present a performance study regarding snapshot compression, which can be per-
formed off-line. Therefore, we focus on the potential savings, w.r.t. memory and network band-
width, provided by this technique.

242 CHAPTER III.4. EVALUATION

W.r.t. the implementation of DCC-RM in OBIWAN, we analyzed the potential overhead
resulting specifically from the enforcement of the Union Rule of DCC-RM. Since it may also
cause delay to the mutator, though only in specific situations, it is thoroughly measured and
addressed, both in Java and .Net implementations.

III.4.1.1 Overhead of acyclic DGC rules

We measured the creation of stubs and scions when remote references are ex-
ported/imported during remote invocations, in Rotor. These operations are always performed
and cannot be fulfilled lazily. We tested worst case scenarios, discarding potentially long net-
work communication times, that could mask stub/scion creation overhead. The results were
obtained using a Pentium 4 Mobile 1600Mhz with 512 Mb RAM.

Figure III.4.1 shows results for increasing series of remote invocations of a remote method,
with 10 arguments (10 different references being exported/imported), where client and server
processes execute in the same machine. This forces the DGC to create 10 scions and stubs each
time the remote method is invoked. The overhead associated with the creation of stubs and
scions is evaluated in a worst-case scenario since: i) processes are running on the same machine
therefore without network communication delay, ii) there is no additional payload (e.g., seri-
alized objects) in messages besides inter-process references, and iii) the remote method being
executed is empty, without any actual processing. Performance penalty is within 7%-21% which
is acceptable for the functionality provided, i.e., a safe DGC (not a lease-based one) running on
Rotor.

The overhead is due to the creation of so may inter-process references, in the last-case, 10000
references. Nonetheless, the overhead stays consistently below 2.5 ms per reference being im-
ported/exported during remote invocation. This is confirmed by the maximum overhead ob-
served (1.218 ms) w.r.t. each reference interception (on the server-side to create scions, and on
the client-side to create corresponding stubs). In the presence of network communication, this
overhead would be mostly masked by network latency.

AOP-based DGC: The interception of inter-process references being exported/imported dur-
ing remote method invocations may be performed, in .Net, without modifying the virtual ma-
chine. The work in (Pereira et al. 2006) describes the implementation of DGC-Consistent Cuts,
using the aspect-oriented features provided by .Net (class ContextBoundObject), to extend
.Net Remoting. Objects from classes inheriting from ContextBoundObject are decorated with
attributes that trigger DGC code whenever they are invoked, or references to them are trans-
ferred between processes.

The increased portability comes with a cost, nonetheless. In the same worst-case scenario
described before, the performance penalty on object invocation has an average of 19.25% (which
is nil in Rotor), while reference import/export has an average penalty of 40% (compared to at
most 21% in Rotor). Again, these are results for the worst-case scenario described.

III.4.1. PERFORMANCE RESULTS IN .NET AND OBIWAN 243

1933

12417

58754

118890

2072

14731

70931

140191

0

20000

40000

60000

80000

100000

120000

140000

160000

10
 100
 500
 1000

remote invocations / propagations

T
i

m

e

(
m

s
)

Rotor
 Rotor with DGC

of invocations Rotor cost per operation Rotor w/ DGC overhead per operation Variation
10 1933 9.665 2072 0.695 7.19%
100 12417 6.209 14731 1.157 18.64%
500 58754 5.875 70931 1.218 20.73%

1000 118890 5.945 140191 1.065 17.92%

Figure III.4.1: Performance overhead due to acyclic DGC safety rules (times in ms)

III.4.1.2 Snapshot Creation

Snapshot creation needs not be performed frequently as it is only required for distributed
cycle detection. Nonetheless, the performance of snapshot creation (by means of serialization
of the object graph) was evaluated using three different tests: 1) binary serialization in Rotor, 2)
SOAP-based serialization in Rotor (using XML), and 3) binary serialization in the commercial
version of .Net. The results are depicted in Figure III.4.2.

As a micro-benchmark, we used two test-graphs: A) graphs with an increasing number
(100 to 10000) of linked dummy objects, i.e., just holding a reference to the next object in the list,
and B) the same graphs, with every object containing an additional inter-process reference (thus
involving the addition of at most 10000 stubs).

Test-graphs B portray a very conservative scenario, concerning the number of outgoing
inter-process references: each object holds a single remote reference. In normal circumstances,
the number of remote references in a process is several orders of magnitude lower than the num-
ber of local references. The results on Rotor (tests 1 and 2) revealed a significant performance
impact, while test 3, on a more realistic scenario (.Net CLR), provided better results.

244 CHAPTER III.4. EVALUATION

270
 531
 791
 1052
 1332

2644

5258

7871

10495

13079

26037

601
 1182
 1773
 2333
 2924

5898

9243

13580

17786

22502

45125

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

100
 200
 300
 400
 500
 1000
 2000
 3000
 4000
 5000
 10000

objects

T

i
m

e

(

m

s

)

A) Rotor
 B) Modified Rotor with remote refs

a. Test 1) Binary Serialization in Rotor: A) local references only,
and B) custom-serialization of proxy objects for remote references.

1823
 3665
 5428
 7230
 9033

18086

36072

54048

72404

90230

181130

2844
 5538
 8372
 10946
 13640

21040

42621

64072

85723

106573

213317

0

50000

100000

150000

200000

250000

100
 200
 300
 400
 500
 1000
 2000
 3000
 4000
 5000
 10000

objects

T

i
m

e

(

m

s

)

A) Rotor
 B) Modified ROTOR with remote references

b. Test 2) SOAP-based Serialization in Rotor: A) local references only,
and B) custom-serialization of proxy objects for remote references.

270
 531
 791
 1052

1332

2644

5258

7871

10495

13079

26037

0
 10
 10
 10
 20
 30
 50
 70
 100
 120
 250
0

5000

10000

15000

20000

25000

30000

100
 200
 300
 400
 500
 1000
 2000
 3000
 4000
 5000
 10000

objects

T
i

m

e

(

m

s

)

Rotor
 .Net

c. Test 3) Comparison of binary serialization in Rotor and .Net commercial version.

Figure III.4.2: Performance results of Snapshot Creation.

III.4.1. PERFORMANCE RESULTS IN .NET AND OBIWAN 245

Binary Serialization in Rotor (Test 1): Rotor serialization, using the native binary format (see
Figure III.4.2-a), takes at most 26037 ms, for test-graphs A. To serialize test-graphs B, it takes
45125 ms, roughly, 73% slower. This is due to the extra work in serializing one additional inter-
process reference, for each object in the graph (i.e., 10000 inter-process references).

Nevertheless, the modifications applied to Rotor enable serializing an inter-process remote
reference faster than serializing an additional dummy object. They are serialized as an additional
field containing the 64-bit objectID of the remote object. Therefore, the impact of serializing GC
structures is lower than that of objects.

SOAP-based Serialization in Rotor (Test 2): Snapshot creation using SOAP-based serializa-
tion (see Figure III.4.2-b) is a very time consuming task in Rotor. Serializing 10000 objects in
test-graph A takes more than 200 seconds, which is somewhat dismaying, considering the num-
ber of objects, and the fact that they contain no extra data besides references.

The performance impact w.r.t. test-graph B, thus including serialization times of inter-
process references, is roughly, 13% slower, when 10000 objects are serialized. This is due to
serializing one extra inter-process reference contained in each object. Performance penalties
have lower relative impact in SOAP-based serialization because of the higher inefficiency of this
serialization mechanism, w.r.t. binary serialization.

Comparison of Rotor and .Net commercial version (Test 3): The performance results w.r.t.
Rotor, depicted in Figures III.4.2-a and -b, are rather un-encouraging. Nonetheless, this is not
critical since it is only required for distributed cycle detection, and therefore, performed infre-
quently.

These results are a direct consequence of the very inefficient serialization code included
in Rotor. This code is regarded as serving purely demonstrational purposes. We believe this
to be intentional as Microsoft considers several aspects of the .Net CLR (Common Language
Runtime) as commercial product critical code. Namely, the serialization and LGC code shipped
with Rotor originates from a different code base, w.r.t. .Net CLR. This is specially significative
regarding SOAP-based serialization.

To illustrate this situation, we repeated serialization of test-graphs A, this time running with
production-level .Net serialization code, whose results are depicted in Figure III.4.2-c. Serializa-
tion times are, roughly, 100 times faster, thus encouraging. It takes on average 250ms, which
imposes significantly shorter pause times, reaching one full second with 40000 objects, thus
growing linearly.

W.r.t. test-graphs B, remote references are implemented as OBIWAN proxy-out objects.
Since these are user-level objects (as all objects in OBIWAN), no optimization is possible. There-
fore, in the worst-case scenario portrayed in test-graphs B, times double (i.e. 500 milliseconds).
Nonetheless, this needs to be performed only sporadically.

246 CHAPTER III.4. EVALUATION

III.4.1.3 Snapshot Compression

To evaluate the performance of snapshot compression, we used a synthetic benchmark
based on data taken from previous work on memory behavior in the Java virtual machine. We
will address only one of the algorithms, Algebra-based Cycle Detection, but a similar approach
can be used for the others. In the case addressed, the algorithm requires reachability information
to be stored both in scions and stubs. The quantities involved, and the calculations performed,
to estimate the size of a compressed snapshot, and consequent compression ratio, are described
next. Results would be better in DGC-Consistent Cuts and DCC-RM, that only require one-way
reachability information.

1. NObj : Number of objects in memory.

2. NScions: number of scions (i.e., distinct incoming inter-process references targeting objects in the
process).

3. NStubs: number of stubs (i.e., distinct objects located in other processes, targeted by inter-process
references, contained in objects of the process).

4. GraphSize =
∑NObj

i size(obji)

5. ScionSetSize =
∑NScions

size(scion)

6. StubSetSize =
∑NStubs

size(stub)

7. size(ScionReach) = size(scion) + d(NStubs + 1)/8e (since 1 byte = 8 bits)

8. size(StubReach) = size(stub) + d(NScions + 1)/8e

9. ScionReachSetSize =

︷ ︸︸ ︷
NScions∑

[size(scion) + d(NStubs + 1)/8e]

10. StubReachSetSize =

︷ ︸︸ ︷
NStubs∑

[size(stub) + d(NScions + 1)/8e]

11. SnapshotSize = GraphSize + ScionSetSize + StubSetSize

SnapshotSize =

︷ ︸︸ ︷
NObj∑

i

size(obji)+

︷ ︸︸ ︷
NScions∑

size(scion) +

︷ ︸︸ ︷
NStubs∑

size(stub)

12. CompressedSize = ScionReachSetSize + StubReachSetSize

CompressedSize =︷ ︸︸ ︷
NScions∑

[size(scion) + d(NStubs + 1)/8e] +

︷ ︸︸ ︷
NStubs∑

[size(stub) + d(NScions + 1)/8e]

13. CompressionRatio = SnapshotSize
CompressedSize

The memory behavior of Java programs has been studied in the literature (Dieckmann and
Holzle 1999; Kim and Hsu 2000; Bacon et al. 2002; Lo et al. 2002), using different (and some
times optimized) implementations of the Java virtual machine. In these tests, the average size of

III.4.1. PERFORMANCE RESULTS IN .NET AND OBIWAN 247

the Java heap is 150 MB. Average object size is small in Java (and expectably in .Net as well) as
the previous works demonstrate, averaging 30 bytes or less.

However, previous work does not consider character, byte, and reference arrays, as private
object data. They only consider the cost of storing primitive data and references to other objects.
If these indirect costs are attributed to object instances, then the average object size (for most
cases) will vary between 36 and 236 bytes (Lo et al. 2002). Therefore, both 64 and 128 bytes
are useful and practical estimations for average object size, occupying respectively, 16 and 32
memory words, 32-bit wide.

As typical heaps in the study have 150 MB in size, that would amount to almost 2.5 million
objects of 64 bytes. We assume that the number of objects referenced remotely, in large heaps,
will be in the order of thousands; we will consider two boundary scenarios to the ratio between
local and remote objects: between 100/1 and 2000/1.

To the best of our knowledge, there are no available measurements w.r.t. the actual density
of remote references in application graphs, i.e., the fraction of objects involved in remote refer-
ences when compared to total number of objects. The assumption employed is based on other
assumptions from several sources: i) books on Enterprise Java Beans (Monson-Haefel 2000),
other discussion fora related to EJB (Java Ranch 2001), RMI online documentation (Sun Microsys-
tems 2004), and RMI debug information available at (Sun Microsystems 2001). All these sources
suggest that medium-sized servers contain thousands of objects targeted by remote references.

To estimate the size occupied by scions and stubs, consider that a non-optimized represen-
tation of a stub or scion, without reachability information, requires at most:

• two 32-bit words for object header (classID, lock, hashCode, etc.).

• one word for IP address.

• one word for object ID, within the process.

• one word for invocation counter/time-stamp.

In the compressed snapshot, an additional reachability bit-map is required, whose maxi-
mum size in words, is max(NStubs,NScions)

32
. Thus, the base size of scions and stubs is 20 bytes,

with added reachability information, that is dependent on the number of stubs and scions.

We now present the calculation for a synthetic test-case: a 150 MB heap, with average object
size of 64 bytes, and a ratio of local to remote objects of 1000 to 1. We assume an equal number
of scions and stubs. The results are the following:

1. NObj = 2457600

2. NScions = 2458

3. NStubs = 2458

4. GraphSize = 157286400 bytes

5. ScionSetSize = 49160 bytes, with scions and stubs occupying 20 bytes each.

248 CHAPTER III.4. EVALUATION

Compressed Snapshots (150MB heap)

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

160,00

100
 200
 500
 1000
 2000

ratio local vs remote objects

S

n

a

p

s

h

o

t

s

i
z

e

i

n

M

B

(
l

i
n

e

a

r

s

c

a

l
e

)

64-byte

128-byte

Compressed Snapshots (150MB heap)

0,10

1,00

10,00

100,00

1000,00

100
 200
 500
 1000
 2000

ratio local vs remote objects

S

n

a

p

s

h

o

t

s

i
z

e

i

n

M

B

(
l

o

g

-
s

c

a

l
e

)

64-byte

128-byte

Size of Compressed Snapshots (MB)
Ratio of Local vs Remote objects 100 200 500 1000 2000

64-byte objects 144.94 MB 36.47 MB 5.95 MB 1.53 MB 0.41 MB
128-byte objects 36.47 MB 9.23 MB 1.53 MB 0.41 MB 0.11 MB

Compression Ratio
Ratio of Local vs Remote objects 100 200 500 1000 2000

64-byte objects 1.04 4.12 25.21 97.90 367.99
128-byte objects 4.12 16.25 97.90 367.99 1321.27

Figure III.4.3: Results of Snapshot Compression for synthetic 150 MB heaps.

6. StubSetSize = 49160 bytes

7. size(ScionReach) = 20 + d(2458 + 1)/8e = 20 + 307 = 327 bytes

8. size(StubReach) = 20 + d(2458 + 1)/8e = 20 + 307 = 327 bytes

9. ScionReachSetSize = 803766 = 785 KB

10. StubReachSetSize = 803766 = 785 KB

11. SnapshotSize = 157286400 + 49160 + 49160 = 157384720 bytes = 150.09 MB

12. CompressedSize = 803766 + 803766 = 1607532 bytes = 1.53 MB

13. CompressionRatio =
157384720
1607532 = 97.90 times

Following the previous example, Figure III.4.3 presents a study of how the size of com-
pressed snapshots varies with changes in average object size, and the ratio of local vs remote
objects. The graphs show the results contained in the top table, using linear and logarithmic
scales. The graphs show that the size of compressed snapshots decreases (and the compres-
sion ratio increases) geometrically, with the ratio of local vs remote objects. Doubling this ratio
produces compressed snapshots with a size four times smaller. Conversely, compression ratio
increases by a factor of four.

Break-even for 64-byte objects is reached with a ratio of local vs remote objects of 100. For
128-byte objects, the break-even is reached with a ratio of 50. However, note that the size of
compressed snapshots also varies geometrically with average object size. For a heap with the
same size, if the average object size doubles, there will be half the objects. This results in, for the

III.4.1. PERFORMANCE RESULTS IN .NET AND OBIWAN 249

same ratio among local and remote objects, a reduction of stubs and scions to half. Since the size
occupied for each scion and stub also halves (approx.), the resulting snapshot will be roughly 4
times smaller.

When the number of stubs reachable from each scion (and vice-versa) is 5%, reachability
bit-maps are replaced with a vector of indexes. This results in an improvement of 22,93%, thus
with a compression factor of 120.36 (instead of 97.90) in the previous example.

III.4.1.4 Overhead due to Enforcement of Union Rule

To assess the cost of enforcing the Union Rule in DCC-RM, resorting to user code inserted
in object finalizer methods (see Section III.3.2.1.1), we did a series of experiments, with varying
parameters. We used a Pentium 4 2.8 GHz with 512MB, equipped with .Net Framework 1.1 and
Java J2SE 4.0 (version 1.4.1).

The experiments portray a worst-case scenario that provides an upper-bound to the penal-
ties imposed. It is assumed that all objects in memory have been replicated from another process,
and that they are continuously: i) being detected as unreachable locally (thus, their finalizer is
executed), and ii) immediately made reachable to the mutator again (by means of a reference
being imported). When this happens, the object must be handled in order that, in the future,
local un-reachability will be detectable again. This is achieved using the techniques described in
Section III.3.2.1.1: i) object reconstruction, and ii) re-registering objects for finalization.

Thus, the experiments depict a worst-case scenario. In normal operation, this overhead is
not imposed to all objects, nor for every execution of the LGC or object invocation. An object
that is reachable locally imposes no additional overhead to LGC, attributable to the Union Rule.
Similarly, an object already detected as unreachable locally, imposes no additional LGC over-
head.

The overhead occurs during the transitions between local reachability and un-reachability.
When an object replica becomes unreachable locally, its finalizer must be executed to resurrect
the object and preserve it. When an object replica, that is unreachable locally, becomes reachable
again (due to reference import), one of the two techniques described must be used. In real sce-
narios, these transitions happen to each object, only in a very small fraction of LGC executions.
Moreover, this penalty would be completely masked if the content of the object replica is also
being refreshed from another process across the network.

The results of the experiments are presented in Figure III.4.4, with six graphs and corre-
sponding value tables. Each value is expressed in milliseconds and is averaged over three sepa-
rate runs. In each run, the LGC of the virtual machine was explicitly executed, in loop, 100 times.
This is achieved by invoking System.gc(); System.runFinalization() in Java, and in
C#, System.GC.Collect(); System.GC.WaitForPendingFinalizers() . The graphs
depict total execution times (a), c), and e)), and unitary cost per object (b), d), and f)), for in-
creasing number of objects (1000,10000, and 100000), and references contained in each of them
(1,10, and 25). All graphs are in logarithmic scale and contain five data series:

250 CHAPTER III.4. EVALUATION

LGC Total Time (1 reference per object)

1

10

100

1000

10000

100000

1000000

1000
 10000
 100000

objects

t
i

m

e

(

m

s

)

Empty Java LGC

DCC-RM Java

Reconstruction

Empty .Net LGC

DCC-RM .Net

Reconstruction

DCC-RM .Net

ReRegisterFinalize

LGC Unitary Cost (1 reference per object)

0,000001

0,00001

0,0001

0,001

0,01

0,1

1

1000
 10000
 100000

objects

t
i

m

e

(

m

s

)

Empty Java LGC

DCC-RM Java

Reconstruction

Empty .Net LGC

DCC-RM .Net

Reconstruction

DCC-RM .Net

ReRegisterFinalize

a. b.

LGC Total Time (10 references per object)

1

10

100

1000

10000

100000

1000000

1000
 10000
 100000

objects

t
i

m

e

(

m

s

)

Empty Java LGC

DCC-RM Java

Reconstruction

Empty .Net LGC

DCC-RM .Net

Reconstruction

DCC-RM .Net

ReRegisterFinalize

LGC Unitary Cost (10 references per object)

0,000001

0,00001

0,0001

0,001

0,01

0,1

1

1000
 10000
 100000

objects

t
i

m

e

(

m

s

)

Empty Java LGC

DCC-RM Java

Reconstruction

Empty .Net LGC

DCC-RM .Net

Reconstruction

DCC-RM .Net

ReRegisterFinalize

c. d.

LGC Total Time (25 references per object)

1

10

100

1000

10000

100000

1000000

1000
 10000
 100000

objects

t
i

m

e

(

m

s

)

Empty Java LGC

DCC-RM Java

Reconstruction

Empty .Net LGC

DCC-RM .Net

Reconstruction

DCC-RM .Net

ReRegisterFinalize

LGC Unitary Cost (25 references per object)

0,000001

0,00001

0,0001

0,001

0,01

0,1

1

1000
 10000
 100000

objects

t
i

m

e

(

m

s

)

Empty Java LGC

DCC-RM Java

Reconstruction

Empty .Net LGC

DCC-RM .Net

Reconstruction

DCC-RM .Net

ReRegisterFinalize

e. f.
LGC Total Time 1000 10000 100000

(1 ref/obj) Empty Java LGC 807,33 802,33 786,00
Java Reconstruction 1510,00 7494,00 63198,00

Empty .Net LGC 10,67 15,33 10,67
.Net Reconstruction 182,33 1839,00 17323,33

.Net ReRegisterFinalize 98,67 791,67 6739,33

LGC Unitary Cost 1000 10000 100000
(1 ref/obj) Empty Java LGC 8,07E-03 8,02E-04 7,86E-05

Java Reconstruction 1,51E-02 7,49E-03 6,32E-03
Empty .Net LGC 1,07E-04 1,53E-05 1,07E-06

.Net Reconstruction 1,82E-03 1,84E-03 1,73E-03
.Net ReRegisterFinalize 9,87E-04 7,87E-04 6,70E-04

(10 ref/obj) Empty Java LGC 750,00 749,67 770,67
Java Reconstruction 1875,00 12156,33 113317,67

Empty .Net LGC 16,00 16,00 16,00
.Net Reconstruction 593,67 6020,67 57755,00

.Net ReRegisterFinalize 146,00 1328,33 11786,33

(10 ref/obj) Empty Java LGC 7,50E-03 7,50E-04 7,71E-05
Java Reconstruction 1,87E-02 1,22E-02 1,13E-02

Empty .Net LGC 1,60E-04 1,60E-05 1,60E-06
.Net Reconstruction 5,94E-03 6,02E-03 5,78E-03

.Net ReRegisterFinalize 1,46E-03 1,32E-03 1,17E-03

(25 ref/obj) Empty Java LGC 760,67 750,00 786,33
Java Reconstruction 2541,33 20692,67 238718,67

Empty .Net LGC 15,67 21,00 15,33
.Net Reconstruction 1448,00 13859,00 83239,67

.Net ReRegisterFinalize 203,33 1771,33 16557,00

(25 ref/obj) Empty Java LGC 7,61E-03 7,50E-04 7,86E-05
Java Reconstruction 2,54E-02 2,07E-02 2,39E-02

Empty .Net LGC 1,57E-04 2,10E-05 1,53E-06
.Net Reconstruction 1,45E-02 1,39E-02 8,32E-03

.Net ReRegisterFinalize 2,02E-03 1,75E-03 1,65E-03

Figure III.4.4: LGC overhead, due to enforcement of Union Rule, during 100 LGC executions.

III.4.1. PERFORMANCE RESULTS IN .NET AND OBIWAN 251

• Empty Java LGC: Times regarding plain execution of Java LGC. In the first execution, the
totality of objects are reclaimed. The remaining executions are thus empty. It provides a
lower-bound on LGC execution-time in Java.

• DCC-RM Java Reconstruction: Times regarding Java LGC and, after each LGC execution,
finalizer code that performs reconstruction of all objects, and replacement of all internal
references, with proxies.

• Empty .Net LGC: Times regarding plain execution of LGC in .Net. It serves a purpose
analogous to Empty Java LGC.

• DCC-RM .Net Reconstruction: Times regarding .Net LGC combined with object recon-
struction in finalizer code.

• DCC-RM .Net ReRegisterFinalize: Times regarding .Net LGC and, after each LGC exe-
cution, finalizer code that simply re-registers the object for finalization, thus allowing the
finalizer to be continuously executed, avoid additional object and proxy creation.

Empty LGC: Empty LGC takes nearly constant time, irrespective of the number of objects ini-
tially created and the number of references contained in each of them (from 1 to 25). Thus, total
times for Empty LGC are approximately constant throughout graphs a), c) and e). Therefore, the
unitary cost, per object, of Empty LGC decreases linearly as the number of objects increases.

The LGC in .Net performs significantly better than in Java. The use of the built-in JIT1 in
.Net cannot alone explain a speed-up of around 50 times, since Empty LGC is mostly executing
VM code (that should already be assembled/binary), and not application code.

DCC-RM Java Reconstruction: Enforcing the Union Rule of DCC-RM in Java is restricted to
the use of one technique: object reconstruction. Graphs a), c) and e) show that the total time used
to reconstruct all objects, for the duration of 100 LGC executions, grows linearly for larger num-
bers of objects (10000 and 100000). Total times increase sub-linearly as the number of internal
references increases (i.e., the number of necessary proxy creations to replace internal references
to other replicas), doubling with a ten-fold increase in the number of references, and quadru-
pling with a 25-fold increase. This demonstrates that the insertion and execution of finalizer
code in such a large number of objects, during so many LGC executions, does not cripple LGC
performance and scales well.

Graphs b), d) and f) show that the unitary cost of each object reconstruction in Java remains
constant, in each graph, for larger numbers of objects reconstructed. There is a four-fold increase
in reconstruction time when the number of internal object references raises from 1 to 25. This
series contains the highest values w.r.t. unitary cost of LGC.

DCC-RM in .Net: W.r.t enforcing the union Rule of DCC-RM in .Net, there are two available
options, when objects previously found as unreachable locally, become reachable again to the

1Just-In-Time compiler.

252 CHAPTER III.4. EVALUATION

local mutator in the process. Objects may be reconstructed as in Java, or the objects may be reg-
istered again for finalizer execution, using method System.GC.ReRegisterForFinalize ,
abbreviated as ReRegisterFinalize.

DCC-RM .Net Reconstruction: The results regarding the enforcement of the Union Rule of
DCC-RM, using object reconstruction in .Net, follow the same trends as in Java. Total times
for LGC increase linearly with larger number of objects, and sub-linearly with the number of
internal references, in each object, that must be replaced with proxies. A ten-fold increase in the
number of such references produces a maximum slowdown of 3.33 times. When the number of
references increases to 25, the slowdown observed is 8.0 for 1000 objects, decreasing to 4.8, with
larger graphs (100000 objects). This indicates that the code inserted in object finalizers scales well
as the number of objects in the heap increases, and therefore does not disrupt LGC execution.

W.r.t. the unitary cost of enforcing the Union Rule, using object reconstruction in .Net, val-
ues are constant as the number of objects increases but, understandably, are higher for objects
with larger number of internal references. Even though, this increase is less than 8.5 times when
the number of references replaced, for each object, climbs from 1 to 25 (from 1.73 to 14.5 millisec-
onds).

The important difference w.r.t. using object reconstruction in Java and .Net is in the absolute
values of the penalty imposed. Total times for object reconstruction in .Net are, globally, much
smaller than in Java. The speed-up ranges from 1.75 (1000 objects, with one reference) to 8.3
times (1000 objects with 25 references). Speed-ups between 3 and 4 are common in the remaining
cases. The same relation holds when unitary costs between Java and .Net are compared.

DCC-RM .Net ReRegisterFinalize: The difference between .Net and Java implementations is
even greater if, in .Net, the Union Rule is enforced using multiple invocations of finalizer code
for each object. The results of re-registering objects for finalization follows the same trends
described for the other two analogous cases (Java Reconstruction and .Net Reconstruction).

The speed-up w.r.t. using object reconstruction in .Net, increases as the number of references
in each objects grows (from 1 to 25). This is due to the fact that finalizer registration has, in
theory, a fixed cost (just adding the object to a list), regardless of object size, while the cost of
object reconstruction is dependent on object size and number of references.2 Speed-ups observed
range from approximately two-fold (for 1000 and 10000 objects with one internal reference) to
7.8 times (for 10000 objects with 25 references each). In the case of maximum graph and object
size, the speed-up suffers a reduction but still outperforming object reconstruction in .Net by a
factor of five.

Enforcement of the Union Rule of DCC-RM in .Net using ReRegisterFinalize is so much
more efficient that it even beats the times, global and unitary, of Empty Java LGC, for smaller
graphs and with lower density of references (1000 objects,with any number of references per

2Nonetheless, there is an observable increase in unitary costs when the number of internal references increases.
Additionally, this unitary cost decreases slightly, as the number of objects increases, due to amortization of the base
penalty due to plain LGC.

III.4.2. EVALUATION OF DGC IN WEB-SYSTEMS 253

object, and 10000 objects, with one reference). This very significative effect also takes place in
.Net Reconstruction, only in a smaller extent.

Summary: The results presented show that, although there is no support in existing LGC, in
Java and .Net, to provide differentiated information regarding object reachability, it is feasible
to enforce the Union Rule resorting to user-level code. The experiments evaluate the combined
cost of the two operations required: i) detecting local un-reachability to preserve objects, and ii)
ensure that when an object becomes reachable to the local mutator, again, it will be possible to
detect local un-reachability again in the future (using object reconstruction and re-registration
for finalization). Even in the worst-case scenario portrayed (both in frequency of the operation
and absence of network communication), unitary costs are in the order of microseconds. Maxi-
mum values are of 25.4 in Java, and 14.5 for .Net, while the minimum are 6.32 for Java and 0.67
for .Net, which is actually lower than the unitary cost of Java in cases identified already.

III.4.2 Evaluation of DGC in Web-systems

This section presents a brief evaluation of the impact of adopting DGC algorithms (e.g., the
ones presented in Section III.2) in current web-systems, both in terms of performance, as well as
usability and integration. W.r.t. performance, we analyze the overhead introduced by DGC on
web document transfer, in Section III.4.2.1. This is due to SRPs intercepting replies from web-
servers in order to create and manage relevant DGC structures (e.g., scions). This is assessed
by using a synthetic benchmark comprised of real files from popular web-sites. The usability
of such a DGC-managed web-system, and its integration with today’s web architecture (namely
web-proxies and web-caching), is addressed in Section III.4.2.2.

III.4.2.1 Performance

Global performance, as perceived by users, is just marginally affected. In the case of URL-
replacing mechanisms mentioned before, they are already in practice in several web sites, and
users do not perceive any apparent performance degradation. The system makes use of similar
techniques to parse URLs included in dynamic web content. We should stress that, in terms of
performance, this is a much lighter operation that URL-replacing.

To evaluate performance penalties imposed by the use of DGC, we assessed increased la-
tency in web-servers replies, due to processing in the SRPs. We performed several tests with
two widely accessed sets of files, parsing the URLs included in them. These sets were obtained
by crawling two international news sites: bbc.co.uk and www.reuters.com with a depth of four.
These sets of files include both static and dynamically generated content. A Pentium 4 2.8 GHz
with 512MB was used.

The distribution of files, from both sites, according to the number of URLs enclosed, is
shown if Figure III.4.5. The www.reuters.com test-set comprised 313 files, including 57856 URLs.
On average, each file included 184 URLs, with a minimum of 49 and a maximum of 637. It took,
on average, 12.7 milliseconds more to serve each file, due to parsing.

254 CHAPTER III.4. EVALUATION

0

25

50

75

100

125

150

175

200

225

250

30
 60
 90
 120
 150
 180
 210
 240
 270
 300
 330
 360
 390
 420
 450
 480
 510
 540
 570
 600

number of links

n

u

m

b

e

r

o

f

f

i
l

e

s

Reuters

BBC

Figure III.4.5: Distribution of links per file for two sample web sites.

The bbc.co.uk test-set comprised 439 files, including 70401 URLs. On average, each file in-
cluded 160 URLs with a minimum of 114 and a maximum of 440. On average, it took 11.8
milliseconds to parse each file. These results provide a upper-bound of performance penalty be-
cause they assume all the URLs enclosed in a document refer to a different file, and that previous
information regarding URLs is either unavailable or outdated (e.g., due to document updates).

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

0
 100
 200
 300
 400
 500
 600
 700

number of links

p

a

r

s

i
n

g

t

i
m

e

(

m

s

)

Reuters

BBC

BBC (Linear Regression)

Reuters (Linear Regression)

Figure III.4.6: Scattering of files based on number of links and parsing time.

Figure III.4.6 shows, for each web-site, the distribution of time spent in parsing versus the
number of URLs found in each file. Linear regression allows discard of outstanding results.
Differences in tendency lines reflect mainly different density of URLs in files. Broadly, files from
site bbc.co.uk have higher density of URLs. Therefore, in this web site, a greater portion of file
text consists in URLs, since the average cost of parsing each file, amortized for every URL found,

III.4.2. EVALUATION OF DGC IN WEB-SYSTEMS 255

is smaller.

III.4.2.2 Usability and Integration

The WWW owes a significant part of its success until now, to the fact that it allows clients
and servers to be loosely coupled and different web sites to be administrated autonomously.
Therefore, our system, while providing interesting properties to a set of adhering sites, does not
impose total world-wide acceptance in order to function. Integration with the web can be seen
from two perspectives, client and server.

Regular web clients (i.e., not connected to any extended web-proxy) can freely interact with
server reverse-proxies, possibly mediated by regular proxies, to retrieve web content. However,
they cannot preserve web resources or interfere with the DGC in anyway. Thus, browsing and
referencing content will not prevent it from being eventually reclaimed, since these references
can be regarded only as weak-references. References contained in indexers are a particular case
of these weak-references.

Regular web applications in servers do need not be modified to make use of referential-
integrity and DGC services. However, once a file is identified as garbage, the proxy must have
some interface with the server machine to actually delete or archive the object. If proxy and
server reside on the same machine, this interface can be the actual file system.

Distributed caching is widely used on the web today. It is a cost-effective way to allow
more simultaneous accesses to the same web content and preserve content availability in spite
of network and server failures. Caching is performed, mainly, at four levels: I) web servers,
e.g., dynamically generated and periodically updated content, II) proxies of large internet ser-
vice providers, III) proxies of organizations and local area networks (several of these can be
chained), and IV) the very machine running the browser. Due to this structure, the web relies on
caching mechanisms that have an inherent hierarchical nature. This can be exploited to improve
performance (Chiang et al. 1999).

Hosts performing levels II and III caching are transparent, as far as the system is concerned.
They can be implemented in various ways provided they fulfill the HTTP protocol. To per-
form level I, we propose a solution based on analysis of dynamic content. Server replies are
intercepted by the SRPs and URLs contained in them are parsed, before the content is served
to requesting clients and proxies. This is not intrusive neither for applications nor for users.
Similar techniques have already been applied, as part of marketing-oriented mechanisms (e.g.,
bloofusion.com, custom web-server modules (Apache Software Foundation 1997)). These convert
dynamic URLs into static ones, to improve site ratings in search engines such as google.com. They
also allow web crawlers to index various results from different executions of the same dynamic
page.

Dynamic web content can also be pre-fetched, i.e., cached in advance (Swaminathan and
Raghavan 2000), based on user behavior identified and predicted using genetic algorithms. Re-
sults show that pre-fetching is effective mainly for files smaller than 5000 bytes. Such techniques
could be combined with our system in order to handle dynamic content more efficiently while
enforcing referential integrity.

256 CHAPTER III.4. EVALUATION

III.4.3 Algorithm Comparative Evaluation

Following the discussion of the relevant properties of the three algorithms (Sec-
tions III.2.1.3, III.2.2.3, and III.2.3.6), we present a comparative evaluation with other relevant
work found in the literature (already described in Chapter III.1). The three algorithms have a
number of advantages in common, w.r.t. previous work, discussed next.

The proposed algorithms do not require all processes to participate in cycle detection in
order to make progress, i.e. detect any cycle. Only those processes that comprise a cycle need
participate in its detection. They require no global synchronization among application processes
to perform cycle detection. The algorithms do not require that participating processes maintain
state about ongoing cycle detections. Other work depends on this information for safety, com-
pleteness, or termination.

Cycle detection requires no interference with the operation of the LGC and acyclic DGC.
Moreover, it does not impose the adoption of specific solutions for LGC or for acyclic DGC.
The algorithms do not delay acyclic DGC because of cycle detection. Cycle detection does not
impose a continuous burden to all processes. Since compressed snapshots are stored separately
from processes, they do not require neither continuous update whenever a LGC occurs, nor
synchronization with remote invocations. W.r.t. networking, bandwidth usage is limited due to
the use of compressed snapshots, and all messages regarding cycle detection may be sent lazily
and batched.

Interaction with the mutator is limited to when snapshots are generated. There is no need
of barriers being enforced in every cycle detection and distributed invocation, in order to ensure
safety. Furthermore, snapshots need not be taken frequently. They are good for any number of
cycle detections, until all previously existing cycles are detected. Therefore, when cycle detection
occurs, there is no interference neither with distributed invocations, nor with any other GC
activity.

Finally, we emphasize that the algorithms do not require any significant modifications to
pre-existing LGC and ADGC algorithms in a system. Therefore, they have been implemented in
the context of widely available, standard platforms, such as Java and .Net.

These advantages improve algorithm scalability, as analyzed in Chapter III.2 and portability
(that will be addressed in the next Section).

DGC-Consistent Cuts: The previous approach based on GC-consistent Cuts (Skubiszewski
and Porteix 1996; Skubiszewski and Valduriez 1997) can only be applied to centralized systems;
it is not distributed, and is strongly dependent on specific information provided by database
synchronization mechanisms. GC-cuts in databases must hold at least one, but possible more,
copies of every database page. Our DGC-cuts are limited to one copy of each object, and are
subject to compression. Thus, our DGC-cuts besides handling distributed graphs, are more
space-efficient.

The algorithm we propose does not impose any requirements neither on message latency,
nor on synchronization among participating processes w.r.t DGC, as opposed to previous cen-

III.4.3. ALGORITHM COMPARATIVE EVALUATION 257

tralized approaches or based on groups. Furthermore, w.r.t. group-based approaches, the algo-
rithm does not require processes involved in cycle detection to be explicitly enrolled in a specific
group, and that they register that fact in their state. In fact, processes are even unaware of which
and when cycle detection is taking place.

Algebra-based Distributed Cycle Detection: The algorithm does not require, as a particular
cycle detection progresses, that comprised processes be explicitly enrolled in a specific group.
It also does not require objects to migrate among processes, even if only conceptually (i.e., with
message exchange but without actual content transfer), in order to change groups. It is fully de-
centralized, in comparison with DGC-Consistent Cuts, and introduces the notion of an algebraic
matching procedure for distributed cycle detection.

The algorithm does not require propagation of any information, w.r.t. cycle detection, by the
LGC in processes, through local objects. As a matter of fact, in other de-centralized approaches
to distributed cycle detection, the LGC must propagate extended marks, dependency-vectors
(DDV), or additional color-bits. In fact, our algorithm is independent of the LGC executed in
each process.

It does not require, for its normal operation, that processes keep state about ongoing detec-
tions. In that respect, the algorithm is completely stateless, in the sense that CDM carry all the
information regarding each cycle detection. This way, processes may be involved in any number
of cycle detections simultaneously, and they are safely handled. Other works depend on this in-
formation to ensure safety and termination in the presence of multiple detections involving the
same process. In some cases, this information requires the exchange of additional messages to
be kept consistent.

The algorithm, although based on message forwarding, does not require any special type of
message to annul, or otherwise abort ongoing detections, in order to ensure safety. Invocation
counters are used to detect distributed races with the mutator. When a CDM is forwarded to a
process more than once (this must happen for at least one process, otherwise, it would not be
a cycle), and there were distributed invocations by the mutator in between (therefore, a false
cycle), invocation-counters will denounce mutator activity, in an optimistic manner.

In comparison with previous work, our algorithm, while being complete and scalable, is
more flexible. In fact, it imposes fewer and lighter restrictions w.r.t. synchronization among
processes, state at each process about detections in course, and intrusion with the mutator and
with the LGC.

DCC-RM for OBIWAN: DCC-RM is the first viable approach to DGC completeness in repli-
cated memory systems. Most of the DGC algorithms found in the literature, including the other
two proposed in this document, are not safe in the presence of replication. They do not encom-
pass the notion of Union Rule (recall Sections III.1.4 and III.2.3.3).

The approaches that are indeed safe, are either explicitly incomplete, w.r.t. distributed cy-
cles of garbage comprising replicated objects, or have weak claims on completeness, due to scal-
ability issues. These approaches demand that distributed cycles be fully replicated in a single

258 CHAPTER III.4. EVALUATION

process, in order to be detected, or impose full-stop to all processes in order to perform global
sequential marking. DCC-RM imposes no such strict limit on the size of detectable cycles, thus
being more scalable. Cycle detection is essentially asynchronous w.r.t. mutator, and other activ-
ities related to LGC and acyclic DGC.

DCC-RM inherits the properties and advantages of DGC-Consistent Cuts and DGC-WARM,
whose optimization was also described (see Section III.2.3.3.3.1). Therefore, it is safe, complete
and scalable for DGC in replicated memory systems. Furthermore, and contrary to previous
works that impose the use of a specific run-time, DCC-RM can be readily deployed (e.g., in-
cluded in OBIWAN) on existing commercial VMs, such as Java and .Net.

III.4.4 Analysis of Algorithm Portability

Most of the GC solutions3 found in the literature are developed towards very specific sys-
tems, namely research prototypes, where it is assumed the DGC developer has complete control
over the runtime. When applied to a widely deployed runtime (as Java and .NET), these solu-
tions frequently require significant modifications to the underlying virtual machine.

We present a comparative evaluation of proposed and existing work w.r.t. portability. It is
based on a qualitative overview of two main aspects that may hinder the adoption of a complete
GC-solution to any widely adopted runtime: i) runtime intrusion, and ii) coupling between com-
ponents of the GC-solution. Each of these aspects is decomposed in sub-aspects and, for each of
them, we introduce a scale of approaches with increasing degrees of portability and/or flexibility.
Some solutions may be mentioned at different degrees because of the different techniques they
employ.

III.4.4.1 Runtime Intrusion

Runtime intrusion is defined as the need to deviate from an existing runtime, in order to
provide it with a specific garbage collection solution. Such deviations may be caused by different
GC components, and have different degrees. Naturally, the optimum degree is not requiring any
intrusion at all, and this is the case when a specific solution is not explicitly mentioned.

III.4.4.1.1 Local GC

The most inflexible technique, with respect to LGC, when adopting a GC-solution is to im-
pose an heterodox LGC (Hudson et al. 1997; Louboutin and Cahill 1997), substantially different
from those typically included in the runtime.

A GC-solution may require the extension of reachability encoding of an existing LGC. This is
the case in solutions that require the LGC to incorporate in object headers, more bit-colors (Lang

3We use the term GC-solution to designate the set of components and algorithms involved in performing garbage
collection, both local and distributed, and their actual implementation.

III.4.4. ANALYSIS OF ALGORITHM PORTABILITY 259

et al. 1992; Rodrigues and Jones 1998) or additional marks, like time-stamps (Hughes 1985;
Louboutin and Cahill 1997; Fessant 2001), distances from GC local-roots and process iden-
tifiers (Maheshwari and Liskov 1995), or reachability-maps (Maheshwari and Liskov 1997a;
Liskov and Ladin 1986).

An existing GC may also be subject to extension of operation that is less intrusive than the
previous technique, either pre-pending or appending operations to the ones already performed
by the existing LGC, such as generating stub sets (Birrell et al. 1993a; Shapiro et al. 1992a), or
calculating backward references (Rodriguez-Rivera and Russo 1997).

A solution may impose direct instrumentation, in that the existing LGC must be sus-
pended (Rodrigues and Jones 1998; Maheshwari and Liskov 1997a) or triggered at specific mo-
ments (e.g., when coordinating with other GC components), possibly for a partial collection over
a fraction of the object graph (Rodrigues and Jones 1998).

Indirect instrumentation consists in using indirect mechanisms to detect when a local garbage
collection has taken place (e.g., using finalizer methods on a dummy object). This technique
is portable since it only resorts to user code.

DGC-Consistent Cuts (Veiga and Ferreira 2003a) and Algebra-based DCD (Veiga and Fer-
reira 2005a) fall under the category extension of operation, since these solutions were developed
with the goal of extending the Rotor virtual-machine. DCC-RM (Veiga and Ferreira 2005b) and
AOP-DGC (Pereira et al. 2006) require indirect instrumentation, since they only resort to user code
for interaction with the LGC.

III.4.4.1.2 Acyclic DGC

The most inflexible technique to implement a distributed garbage collector is to modify the
communication protocol, or impose the use of a specific one provided by a non-standard sys-
tem (Hughes 1985; Shapiro et al. 1992a; Bishop 1977; Hudson et al. 1997; Vestal 1987; Louboutin
and Cahill 1997; Fessant 2001; Lang et al. 1992; Rodrigues and Jones 1998) such as Thor (Ma-
heshwari and Liskov 1995; Maheshwari and Liskov 1997a; Liskov and Ladin 1986).

Alternatively, intrusion may be confined to modifying remoting mechanisms and its code (Fes-
sant 2001). If it is possible and allowed, DGC may be implemented resorting to interception of
library loading performed by the dynamic linker, either by extending or overriding the functional-
ity of components regarding communication and remote method invocation, without modifying
code (Rodriguez-Rivera and Russo 1997).

Portable techniques include extended communication mechanism, resorting to extensions al-
lowed by the runtime, such as custom sockets.

Finally, even non-intrusive extensions may be independent of the communication protocol
and restricted to extended remoting mechanisms, such as sink chain extensions.

The acyclic DGC in DGC-Consistent Cuts and Algebra-based DCD is implemented by mod-
ifying remoting mechanisms in Rotor virtual machine. The AOP-DGC solution makes use of ex-
tended remoting mechanisms: AOP support in .Net. DCC-RM places DGC code in OBIWAN Mem-

260 CHAPTER III.4. EVALUATION

ory Management module (user library), and proxies (automatically generated user-code). Thus,
it leverages existing remoting mechanisms, requiring no changes to .Net Remoting or Java RMI.

III.4.4.1.3 Cycle Detection

Some solutions, depending on the adopted algorithm(s) may require additional direct intru-
sion in the runtime, for the purpose of cycle detection, without allowing intrusive operations to
be delayed (thus, they become disruptive). Examples include suspending the mutator (applica-
tion) while performing bit-color propagation (Rodrigues and Jones 1998), and applying barriers
to inter-space invocations when back-tracing information is being calculated (Maheshwari and
Liskov 1997a).

In general, most solutions also require information regarding the GC local-roots of each
space, in order to differentiate objects targeted by local references, or just by inter-space refer-
ences. This may be achieved by modifying the LGC, or indirectly via hints provided by the
programmer. This is required because existing runtimes, neither inform about different levels of
reachability, nor provide reflection services with information about stack variables. This is the
approach used in all the GC solutions presented: DGC-Consistent Cuts, Algebra-based DCD,
DCC-RM, and also used in AOP-DGC.

III.4.4.2 Coupling of GC components

Coupling is defined as the degree of interdependency among different GC components
(namely LGC, acyclic DGC, and cycle detection), in the sense that the adoption of one approach
for one component, will mandate the adoption of the same or related approach to one, or both
the others. In essence, this assesses how monolithic a GC approach is, or how it may be flexi-
bly combined with others. This will determine the difficulty of deploying the algorithm when
modifications to the runtime (namely its LGC) are not an option. Furthermore, this may hinder
application performance and/or delay garbage reclamation since garbage of the three kinds is
not created at similar rates, and thus should be addressed with specialized approaches.

III.4.4.2.1 One-size-fits-all

The most inflexible solutions are those that mandate the use of the same algorithm, a specific
one for all three GC components (Hughes 1985; Hudson et al. 1997; Louboutin and Cahill 1997;
Fessant 2001), i.e. the use of a acyclic DGC algorithm, or cycle detector, effectively mandates the
use of the same algorithm for LGC purposes. Naturally, this seriously undermines the adoption
of these algorithms to an existing runtime, if one of the components cannot be modified or
extended.

III.4.4.2.2 LGC and Acyclic DGC

Some solutions demand strong integration of the components that perform LGC and acyclic
DGC. They may require the LGC to propagate information, through the object graph, received

III.4.4. ANALYSIS OF ALGORITHM PORTABILITY 261

by the acyclic DGC component, namely marks (Lang et al. 1992) and time-stamps (Hughes
1985; Louboutin and Cahill 1997; Fessant 2001), or otherwise provide inter-space reachability
information of objects to the DGC (Liskov and Ladin 1986).

III.4.4.2.3 Acyclic DGC and Cycle Detection

There are solutions that, while avoiding intrusive modifications to the LGC of an existing
runtime, use the same algorithm for acyclic and cyclic DGC (Hughes 1985; Hudson et al. 1997;
Louboutin and Cahill 1997; Fessant 2001; Liskov and Ladin 1986). This is not as prejudicial as
with the case of LGC, but it may prevent the use of a cycle detector if it imposes changes to an
existing acyclic DGC algorithm (e.g., reference-listing) integrated in the runtime. Furthermore,
using the same algorithm may delay the identification of acyclic garbage that should be per-
formed more frequently (e.g., (Hughes 1985; Hudson et al. 1997; Louboutin and Cahill 1997)).

At an intermediate level, the DGC must be able to cooperate with the cycle detector, e.g.,
performing simulated deletions (Vestal 1987).

Other solutions use specialized cycle detectors that do not interfere with normal, more fre-
quent, acyclic DGC operation, namely (Bishop 1977; Lang et al. 1992; Rodrigues and Jones 1998;
Maheshwari and Liskov 1997a; Rodriguez-Rivera and Russo 1997). Specialized cycle detectors
are used in DGC-Consistent Cuts, Algebra-based DCD, DCC-RM, and AOP-DGC.

III.4.4.2.4 LGC and Specialized Cycle Detection

The coupling between LGC and cycle detection, in the context of solutions that use the same
algorithm for acyclic and cyclic DGC was already addressed in the second headed paragraph.
With respect to solutions with specialized cycle detectors, those based on migration techniques
must be able to detach objects from the local graph and create the appropriate inter-space refer-
ences to preserve their reachability (Bishop 1977; Hudson et al. 1997; Maheshwari and Liskov
1995).

Trial deletion for cycle detection requires the LGC to provide tentative reachability information
about the outcome of simulated deletions (Vestal 1987).

Cycle detection with group-merger (Rodrigues and Jones 1998) requires the LGC to propagate
information throughout the object graph in a process, namely reachability bits (colors red and
green) of ongoing cycle detections.

Cycle detectors that need to be informed about local root-sets, do not necessarily preclude
the use of the runtime built-in LGC (Lang et al. 1992; Rodrigues and Jones 1998; Maheshwari
and Liskov 1997a; Rodriguez-Rivera and Russo 1997), as is the case with DGC-Consistent Cuts,
Algebra-based DCD, DCC-RM, and AOP-DGC.

Summary: In this section, we have analyzed the virtues and shortcomings of a number of
the most relevant GC-solutions found in the literature, with respect to runtime intrusion and
coupling among their components.

262 CHAPTER III.4. EVALUATION

There is no optimal solution, i.e., one that does not require any modification nor extension
of the runtime. Nonetheless, we believe that those with increased degrees of portability (i.e.
runtime intrusion) and flexibility (i.e. component decoupling), can be deployed realistically, i.e.,
in existing systems.

Summary of Chapter: In this chapter, we presented the quantitative and qualitative evaluation
of the DGC implementations presented in the previous chapter. The results obtained support
the feasibility of the approaches followed. We presented performance results, in the context
of distributed and replicated object systems, regarding the most relevant situations during GC
operation: i) overhead of acyclic DGC rules, ii) snapshot creation, iii) snapshot compression, and
iv) enforcement of Union Rule in DCC-RM.

The overhead due to enforcing acyclic DGC rules during reference export/import was mea-
sured in a worst-case scenario, i.e., running two processes in the same machine without resorting
to network communication. Results vary from 7% to almost 21% slowdown, which would be
mitigated by actual communication times.

The results regarding snapshot creation in Rotor were unencouraging, even though it is
only seldom performed, due to inefficiency in Rotor serialization code, assessed by comparing
it with the commercial version of .Net. Snapshot compression was evaluated using a synthetic
benchmark based on estimations of: i) heap sizes, ii) average object size, and iii) density of
remote references in a graph.

The overhead associated with enforcing the Union Rule was thoroughly measured both in
Java and .Net, with different number of objects and number of references inside each object.
They show it is feasible to enforce the Union Rule resorting to user-level code. Penalties range
from less than a microsecond to 25 microseconds.

Concerning web systems, we evaluated the impact of DGC in web-server performance, and
the adequacy of the integration proposed in the previous chapter, w.r.t., avoiding intrusion with
existing browser, servers, and web-caching.

This chapter ended with a qualitative comparison of each of the algorithms proposed, with
the relevant related work (frequently cited algorithms) in their application scenario. We also pro-
vided an analysis regarding the portability of GC solutions in a context where virtual machines
have become the de facto execution environment for the majority of applications.

III5Conclusion

Part III of this dissertation was dedicated to Complete Distributed Garbage Collection. We
presented a comprehensive solution to address memory management for distributed and repli-
cated object systems. We presented two novel algorithms for detection of distributed cycles of
garbage occurring in distributed object systems with remote invocation. We also presented the
first viable distributed garbage collection algorithm that is both safe in the presence of replica-
tion, and complete w.r.t. distributed cycles of garbage comprising replicated objects.

We presented a thorough survey of garbage collection (GC) algorithms and techniques. It
started with a brief overview of GC for centralized systems (i.e., local garbage collection), and
then we comprehensively addressed distributed garbage collection algorithms (DGC), applica-
ble to distributed object systems based on remote invocation, to manage distributed graphs of
objects. We addressed DGC in replicated memory systems, with special focus on issues regard-
ing safety and interference with consistency mechanisms, which are handled by the Union Rule.

The three algorithms presented share the goals of being safe, complete, scalable, and asyn-
chronous. They rely on the existence of components for acyclic DGC and LGC in each process,
and operate by explicitly deleting DGC structures (e.g., scions) preserving distributed garbage
cycles. Their design minimizes interference with existing support for LGC in virtual machines
(i.e., they do not impose a particular approach to LGC), and with applications. DGC-Consistent
Cuts employs a centralized approach. It uses a dedicated server, the distributed cycles detec-
tor (DCD), which is contacted by application processes. It constructs DGC-consistent cuts by
combining representations of object graphs received asynchronously from application processes.
Then, the algorithm performs a conservative mark-and-sweep (CMS) on the DGC-consistent cut.

Algebra-based Distributed Cycle Detection employs a de-centralized approach, based on a
Cycle-Detection Algebra (CDA), in order to test whether a cycle candidate indeed belongs to
cyclic garbage. Processes forward Cycle Detection Messages (CDM), containing CDA elements.
Cycle detection is initiated by issuing a CDM regarding a scion targeting a suspect-object. If the
CDM is forwarded, across a number of processes and in the absence of mutator activity, back to
the originating process with all its dependencies resolved, then, a distributed garbage cycle has
been found.

DGC-Consistent Cuts for Replicated Memory (DCC-RM), extends the notion of DGC-
Consistent Cut to distributed systems with data replication, thus serving as a complement to
an acyclic DGC for replicated objects, such as DGC-WARM. It creates replication-aware DGC-
Consistent Cuts (i.e., DCCs-RM), by combining compressed snapshots received asynchronously
from application processes. It detects cycles comprised within them, by performing a conser-
vative mark-and-sweep (CMS), while enforcing the Union Rule during DCC-RM creation, and
when performing CMS on them.

264 CHAPTER III.5. CONCLUSION

We implemented the algorithms described. DGC-Consistent Cuts and Algebra-based DCD
were implemented in order to provide complete DGC for .Net Remoting, in the context of the
Rotor virtual machine. Regarding complete DGC in replicated systems, we presented the im-
plementation of DCC-RM in the context of OBIWAN. Acyclic DGC rules are implemented re-
sorting to code in proxy objects and finalization methods. The whole implementation requires
no changes to existing Java and .Net VM, resorting exclusively to middleware code. We also
described the main aspects concerning the implementation of DGC algorithms for web systems,
such as handling dynamically generated content and integration with existing web infrastruc-
ture (e.g., browser, servers, caching) without imposing modifications to it.

We evaluated the DGC implementations both in quantitative and qualitative terms. The
results obtained w.r.t.: i) overhead of acyclic DGC rules, ii) snapshot creation, iii) snapshot
compression, and iv) enforcement of Union Rule in DCC-RM, support the feasibility of the
approaches followed. Concerning web systems, we evaluated the impact of DGC in web-
server performance, and the adequacy of its integration, w.r.t. avoiding intrusion with exist-
ing browsers, servers, and web-caching. We offered a qualitative comparison of each of the
algorithms proposed, with the relevant related work. The algorithms perform distributed cy-
cle detection asynchronously, avoiding any distributed synchronization among the processes
comprising the cycles, and without delaying acyclic DGC.

We also provided an analysis regarding the portability of the GC solutions to current virtual
machines. All the algorithms can be implemented without requiring modifications to existing
virtual machines. This has been demonstrated by the implementation of DCC-RM in OBIWAN.
The portability of DGC-Consistent Cuts and Algebra-based DCD has also been demonstrated
(resorting to support for aspect-oriented programming in .Net), although having been imple-
mented via extension of the VM.

Finally, although we have implemented the ADGC and DCD algorithms in Rotor and OBI-
WAN, our solutions are rather general. It is possible to apply the same ideas and, in particular
the notions of the DCG-Consistent-Cut and Cycle Detection Algebra, to other platforms sup-
porting distributed objects, and DCC-RM to other systems supporting object replication.

IV
Adaptability in Memory Management

(this page was intentionally left blank)

You will be assimilated into the Borg Collective...will adapt to service us... – in “Star Trek”, created by Gene Roddenberry

Part IV addresses adaptability of the middleware to changes in the environment. It focuses
on adaptive memory management mechanisms (other than garbage collection) specially tailored
for resource constrained devices, as those prevailing in mobile computing environments.

An extensible and dynamically, policy-driven, adaptable implementation of the M-
OBIWAN prototype is described. An aggressive memory management mechanism, Object-
Swapping, is presented in detail. An example scenario is described to evaluate middleware
policy-configurability, extensibility, and adaptability to changing environment, application be-
havior, and user decisions.

This Part presents some related work concerning: i) adaptable and reflective middleware,
including, but not limited to, object replication and memory management, as well as ii) other
aggressive memory management techniques to reduce memory usage by applications. The Part
closes with some conclusions.

(this page was intentionally left blank)

IV1Architecture and
Implementation

Due to their intrinsic nature, execution environments, in mobile and pervasive computing,
suffer from great and diverse variations during application execution. These variations can
either be qualitative (e.g., network connection or disconnection, specific devices like printers
in device neighborhood, consistency and security constrains) or quantitative (e.g., amount of
usable bandwidth, memory, power available).

Applications should be able to deal with this variability of execution environments. How-
ever, application programmers should not be forced to account for every possible scenario in
their coding. This is unfeasible for two main reasons: i) it is error-prone and difficult to cover all
potential situations, and ii) even if correctly performed, it is highly inefficient w.r.t. productiv-
ity. Furthermore, these changes often deal with system-level issues that deviate programmers
from what they are supposed to do: application-logic. Programmers should not explicitly code
non-functional concerns or aspects.

Therefore, this goal can only be achieved through automatic adaptation of applications and
adaptation of the execution environment itself. Reflective and adaptive middleware aims at
solving these issues by: i) mediating changes in the environment in a manner easily handled
by applications, and ii) reacting to changes by reconfiguring itself (either its code, internal state,
module organization) in order to effectively respond to changes.

To address these issues, we describe how the OBIWAN architecture supports the defini-
tion, enforcement and application of declarative XML-defined policies. Support for declarative
policies in OBIWAN is named PoliPer1 (Veiga and Ferreira 2004a). It allows OBIWAN to be
extensible, unifying the management of several runtime aspects in mobile and pervasive envi-
ronments, components and services. Adaptability in OBIWAN is achieved by the declarative
configuration of its modules and parameters, and their modification according to changes in the
environment that are considered relevant by applications.

The remainder of this chapter presents the architecture and implementation, in OBIWAN,
providing adaptability w.r.t. memory management. It describes two main aspects: i) policy
management to enable the adaptability of both the middleware and applications (PoliPer), and
ii) Object-Swapping.

1Policies for mobile and Pervasive Environments.

270 CHAPTER IV.1. ARCHITECTURE AND IMPLEMENTATION

IV.1.1 Policy Management

The OBIWAN middleware platform is capable of providing the needed flexibility for appli-
cation development and runtime adaptability, so that applications can cope with the multiple
requirements and usage diversity found in mobile settings. Its architecture is depicted in Fig-
ure IV.1.1 (it is the same as Figure I.2.3). The adaptability of applications to the particular running
scenario (connectivity, available memory, availability of other resources, and other expressed
constrains) is enabled by Policy Management in OBIWAN, based on the policies provided by
system administrators, application developers, or users.

Middleware adaptability in OBIWAN relies on the following features: i) a policy engine,
with the extensible capability to support the specification and enforcement of runtime manage-
ment policies; ii) an event-handling module to allow notification of application and modules, re-
garding situations they are interested in knowing about; iii) a context management module that
is used to store and update information about the execution environment and surroundings; iv)
a plug-able set of basic mechanisms supporting object replication, memory management, etc.; v)
a set of pre-defined policies that control the mechanisms previously mentioned.

Policies are stored and categorized by nature. A policy engine receives events generated
by OBIWAN modules and applications, evaluates policy rules and triggers events, handled by
actions based on evaluation results.

Figure IV.1.1: OBIWAN Middleware Components.

IV.1.1. POLICY MANAGEMENT 271

IV.1.1.1 Policy Engine

The policy engine is the main inference component that triggers or mediates responses to
events occurred in the system. Apart from all the other existing (and possibly new) modules,
security performs a special role, since it must be enforced by auditing or inspecting every system
interaction.

The policy engine holds a variable set of policies to be enforced in the system. Policies may
be encoded in XML files (an example is presented in Section IV.2.2), or created and deployed
programmatically using a set of utility methods.

Policies manage, in abstract, entities. Entities are organized in an open, extensible,
namespace-based hierarchy. The entity set includes resources, properties, events, user data and
context information. Examples of entities are:
resource.network.connectivity.bluetooth,
property.transaction.optimistic,
event.replication.replicate-in.object.begin.

The hierarchy allows easy management of related entity-sets (e.g., resource.network.*). Fur-
thermore, entity-groups can be referred to with resort to regular expressions like
event.{replication,transaction}.*.begin.

A policy is a tuple: {Rules, Properties, Events, Actions}.

Rules manage property changes, event triggering and handling with appropriate actions.
The definition of a rule must include:

• a domain: a set of entities it relates to.

• a condition of applicability: a custom-predicate to further filter rule application.

• an event to be triggered when the rule domain and condition of applicability are met.

By decoupling the domain, the condition of applicability and the actual action-code, the
system can adapt to changes in the environment and modify its own response accordingly. The
difference between domain and condition of applicability stems from static versus dynamic anal-
ysis that is performed in each case.

Properties are entities with associated value (variable or not). Events are specified by the
policy and registered in the event-handling module. Actions can be methods or code snippets,
normally pre-defined event-handlers.

IV.1.1.2 Event Handling

Notifications to applications and to the various system modules, are performed with resort
to events. Provided the necessary permissions, events can be defined either by policies (mainly)
or by applications. Events can be triggered either explicitly by applications, by the system mod-
ules, or by policies when rules are evaluated. Actions performed, when events are triggered,
allow OBIWAN and applications, to adapt to changes in the execution environment.

272 CHAPTER IV.1. ARCHITECTURE AND IMPLEMENTATION

An event is a triple: {Name, Source, UserData}.

As entities, events are organized in namespaces. As an advantage, it allows event-handlers
defined in policies to subscribe to specific events, as well as a whole family level of related
events, e.g.:
event.replication.replicate-in.object.begin,
event.replication.replicate-in.object.end or
event.replication.replicate-in.*

Thus, events are organized in a meaningful, yet open manner. It enables regular expres-
sion definition of events to subscribe to. This way, event names need not be fully known, or
indicated exhaustively by the subscriber. Nevertheless they are intercepted and handled by the
subscribers.

Event Filtering: Event jitter can be regarded as bumpiness in the continuous triggering of
events, possibly with contradictory response actions. This phenomenon is frequent in execu-
tion environments (such as with mobile and pervasive ones) with frequent changes in resources
and QoS2 available to applications. These changes can trigger possibly contradictory measures
and with short periods of time between them. Reacting to them too soon, too often, may hinder
system performance and application behavior.

In OBIWAN, this may be avoided with resort to properties (system, user or application de-
fined) that are evaluated both in the condition of applicability of the rule itself, and possibly
updated in the action handling the corresponding triggered event. This process effectively fil-
ters events to the degree of stability desired by applications, simplifying application-logic. A
straightforward example is a situation of intermittent connectivity where an application is con-
stantly being notified that connectivity is on, and then off. If the application needs a period of
stable connectivity, it can use a policy that monitors connectivity-related properties.

Policy actions hide these quick variations, and may notify the application only when there
is minimum signal strength or, in alternative, when some delta time has elapsed since the last
time connectivity was on.

IV.1.1.3 Context Management

The OBIWAN architecture includes a context management module. This module performs
resource abstraction and manages properties whose values vary during execution. Abstraction
enables representing physical machine resources as sets of primitive context properties. Exam-
ples include memory, connectivity, bandwidth available, etc. For flexibility, resources, as entities,
are also namespace-organized.

The actual mappings between basic/primitive resources and resource designations is per-
formed by the context manager. Each of these resources implies an architecture-dependent way
of measuring. This heterogeneity is masked, to the rest of the system, by a low-level component

2Quality-of-Service.

IV.1.1. POLICY MANAGEMENT 273

in the context manager. Properties can be aggregated. Thus, higher-level properties can have
their value derived from the combination of values from other, lower-level properties.

Situations like appearing devices, discovering remote resources or application counterparts
are also handled by the context manager. The relevant properties are updated and the appro-
priate events are triggered. In more general terms, any change to the properties (resources,
middleware state or user-defined properties) managed by the context manager can potentially
trigger associated events defined by the policies loaded.

We do not specifically address adapting resources (and possibly replacing them with vari-
ants) but solely on representing them, in a flexible manner, and monitor their changing proper-
ties. Events to be triggered and actions to address them are described in policies. Appropriate
policies configure context management and its events, in order to allow applications to be noti-
fied solely when these changes are stable or reach a certain threshold.

Resource management is not centralized. It is performed by the combination of security
policies that monitor resource requests, and context management that registers and notifies re-
source shortage.

IV.1.1.4 Policy-Managed Object Replication

OBIWAN supports the specification and enforcement of policies concerning the replication
of objects. Object replication is incremental and adaptive. Unless otherwise specified, it is per-
formed transparently to applications but can also be flexibly configured by them. In particular,
it allows the specification of:

• when to create a replica of an object (e.g., in imminence of disconnection).

• when to merge two or more replicas of the same object.

• the amount of objects to replicate at a given time (a cluster in OBIWAN).

• which branch of a graph should be further replicated.

• which objects should be swapped-out to a neighboring device.

The most relevant events are triggered with the replication (either in or out) of each single
object:
event.replication.replicate-in.object.begin
event.replication.replicate-in.object.end, and
event.replication.replicate-out.object.begin
event.replication.replicate-out.object.end

Additionally, there are two more sets of events with coarser granularity:
event.replication.*.cluster.*
event.replication.*.graph.*

274 CHAPTER IV.1. ARCHITECTURE AND IMPLEMENTATION

The first set handles clusters (groups of object replicated in a single time as a unit) and
the second one addresses complete graph branches. Different granularity of events, trig-
gered at different times, provide a basis for flexible management of different scenarios, e.g.,
latency/bandwidth tradeoffs.

IV.1.2 Object-Swapping

Mobile devices are so memory-constrained that, in some circumstances, even the memory
occupied by useful reachable objects must be freed. This may occur because, at a particular
instant, there are other more relevant replicas for which there is no memory available. This is
more evident in resource constrained devices but also occurs in desktop systems (Chihaia and
Gross 2004) even with large memory heaps.

The memory management premise of preserving live data must be enforced with a some-
what relaxed approach: there are situations where live data must be ”demoted” to accommodate
for other data being replicated that is considered, at that moment, more important. Data should
not be plainly discarded, but the memory occupied by it, should nevertheless be brought down.
This can be achieved in a number of ways (discussed in Section IV.2.4), while guaranteeing that
the data can be ”promoted” afterwards.

Our proposal consists in swapping-out such objects to other devices with more resources
available, in particular, free memory. Freeing the memory occupied by useful objects is delicate.
Given that such objects can be accessed by applications through navigation of the object graph,
the middleware must still ensure the referential integrity, while freeing such memory.

Figure IV.1.2 depicts a prototypical scenario in which a PDA is running applications, on
behalf of the user, on top of OBIWAN middleware. From time to time, the memory occupied by
the object graphs of applications reaches a threshold value, possibly near the limit of the memory
capacity of the device. At those moments, the OBIWAN middleware, evaluating the policies
loaded, decides to swap-out a set of objects to nearby devices, if there are any. This action frees
some memory while not discarding the swaped objects permanently. Later, each set of objects
previously swapped-out may be fetched back from the device where it was transferred.

The devices that receive swapped objects need not have neither OBIWAN nor even a virtual
machine installed. They need only be able to store and return a textual representation of the
serialized objects being swapped-out. If a device is able to store more than one set of swapped
objects, each set must be given a unique ID (e.g., a number, a file name). This functionality can be
provided via a simple web-service since the objects are serialized using XML. Therefore, objects
may be swapped to desktop and laptop PCs, other PDAs (if they have a web-server installed),
or future wireless devices, with extended memory capacity, present in the room.

IV.1.2.1 Management of Swap-Clusters

We propose an approach, that favors portability, and thus is more suited to be deployed on a
myriad of existing and future devices. It resorts exclusively to user-level code and therefore does

IV.1.2. OBJECT-SWAPPING 275

PDA

PDA

< >

< >

..............

..............

</ >

< >

..............

..............

</ >

</ >

< >

< >

..............

..............

</ >

< >

..............

..............

</ >

</ >

< >

< >

..............

..............

</ >

< >

..............

..............

</ >

</ >

< >

< >

..............

..............

</ >

< >

..............

..............

</ >

</ >

< >

< >

..............

..............

</ >

< >

..............

..............

</ >

</ >

< >

< >

..............

..............

</ >

< >

..............

..............

</ >

</ >

< >

< >

..............

..............

</ >

< >

..............

..............

</ >

</ >

< >

< >

..............

..............

</ >

< >

..............

..............

</ >

</ >

Figure IV.1.2: Object-Swapping to nearby devices.

not require modification of the underlying virtual machine, making it rather portable. It further
obviates the need to manage inter-process references among individual resident and swapped-
out objects. This has the negligible trade-off that every reference between objects in different
swap-clusters must be mediated by a proxy.

Taking into account the management of replicas described in Chapter II.2, clusters of objects
(or groups of clusters) are natural candidates to be swapped-out as they have been incrementally
replicated, previously, into the mobile device as a whole. Hopefully, when one of the objects
enclosed in the cluster becomes needed again, there is a high probability that the others will be
as well. So, later, they will be swapped-in as a whole.

A swap-cluster is the basic unit of swapping. Each one contains all the objects comprised
in a group of one or more object clusters, previously replicated. Swap-clusters are created by
regarding a number (also adaptable) of chained (via references) object clusters as a single macro-
object, i.e. a single swap-unit. For every reference linking two different swap-clusters, proxy-out
replacement (that takes place when objects are replicated) is not performed as usual.

The proxy-out object is replaced with the corresponding object replica, but another type of
proxy is also created. We call it a swap-cluster-proxy to distinguish it from proxy-out objects that
once replaced, are discarded. The swap-cluster-proxy, in turn, holds a reference to the newly
replicated object. This way, the reference returned by the middleware to application code does
not target an object replica, but a swap-cluster-proxy instead. Thus, for objects belonging to
different swap-clusters, a proxy always remains in the way.

Figure IV.1.3 depicts a situation in which the object graph of a process (P1) is divided in

276 CHAPTER IV.1. ARCHITECTURE AND IMPLEMENTATION

Swap
-
Cluster 1
Swap
-
Cluster 1
 Swap
-
Cluster 2
Swap
-
Cluster 2

Swap
-
Cluster 4
Swap
-
Cluster 4
Swap
-
Cluster 3
Swap
-
Cluster 3

1
-
>
2
1
-
>
2

0
-
>
1
0
-
>
1

0
-
>
3
0
-
>
3

3
-
>
2
3
-
>
2

2
-
>
4
2
-
>
4
 2
-
>
4
2
-
>
4

Process P1
(
Swap
-
cluster 0
)

Figure IV.1.3: Object graph of a process comprising four swap-clusters.

four swap-clusters: swap− cluster− 1 to swap− cluster− 4. Global variables (i.e., static fields),
and variables defined in static methods, are regarded as belonging to a special swap-cluster,
swap − cluster − 0. Swap − cluster − 1 and swap − cluster − 3 are reachable directly from the
variables of the application. Both of them contain objects that reference other objects contained
in swap−cluster−2. When there are multiple references to the same object, across the same pair
of swap-clusters, only a swap-cluster-proxy is required. This is the case in swap − cluster − 1.
Objects in swap− cluster− 4 are only referenced from objects in swap− cluster− 2. Each swap-
cluster may contain any number of objects since the depth of incremental replication may vary
over time. The only restriction is that a swap-cluster boundary must be placed only when a
proxy-out is replaced.

There is a performance penalty imposed by this approach, since there are extra invoca-
tions, due to the indirection maintained in swap-cluster-proxies. Nonetheless, this only happens
when an swap-cluster boundary is crossed. In favorable scenarios, they are only required with
frequency inverse to the average number of objects per swap-cluster (e.g., 1/20, 1/50, 1/100),
which could render them negligible.

Middleware code in swap-cluster-proxies also monitors reference-passing across swap-
cluster boundaries (analogously to monitoring of inter-process references), and creates/reuses
the appropriate swap-cluster-proxies. The middleware keeps track, for each swap-cluster,
of swap-cluster-proxies regarding it, and their usage. This provides information about in-

IV.1.2. OBJECT-SWAPPING 277

Swap
-
Cluster 1
Swap
-
Cluster 1

Swap
-
Cluster 4
Swap
-
Cluster 4
Swap
-
Cluster 3
Swap
-
Cluster 3

1
-
>
2
1
-
>
2

0
-
>
1
0
-
>
1

0
-
>
3
0
-
>
3

3
-
>
2
3
-
>
2

2
-
>
4
2
-
>
4
 2
-
>
4
2
-
>
4

Process P1 (
Swap
-
cluster 0
)

ReplacementObject 2
ReplacementObject 2

Figure IV.1.4: Object graph of a process after swapping-out of swap− cluster 2.

bound/outbound references from/to other swap-clusters, and basic data w.r.t. recency and
frequency, as these boundaries are transversed by the application mutator.

IV.1.2.2 Swap-Cluster Swapping-Out

When needed (e.g., for shortage of memory), the middleware may detach the objects belong-
ing to a specific swap-cluster from the application graph, while maintaining correctness. This
process is described by the following example depicted in Figure IV.1.4. It portrays the resulting
situation after detachment of a swap-cluster, in this case, swap− cluster 2.

A replacement-object for a swap-cluster (i.e., ReplacementObject − 2 which is simply an
array of references) is created and filled with references to every swap-cluster-proxy referenced
by swap−cluster−2. Then, every swap-cluster referencing objects contained in swap−cluster−2
will be made to reference ReplacementObject− 2 instead, by patching the internal references of
every swap-cluster-proxy targeting objects in swap− cluster − 2.

Once a swap-cluster (e.g., swap− cluster−2) is detached from the object graph (though still
referenced by middleware code), the enclosed objects are serialized to XML and sent to a nearby
device (e.g., via Bluetooth), along with a swap-cluster ID. The receiving device needs no other
infrastructure (e.g., specific VM, adhering to a specific middleware, holding application class

278 CHAPTER IV.1. ARCHITECTURE AND IMPLEMENTATION

files, etc., as opposed to other existing solutions) other than being able to receive XML data and
store it.

After a swap-cluster is swapped-out, the objects enclosed in it are completely detached from
the application graph, and eligible for collection by the local GC running on the device. Thus,
memory is released without destroying application graph integrity. Any swap-clusters may be
swapped-out using this mechanism.

IV.1.2.3 Swap-Cluster Reload

When a replacement-object is invoked, this means that the application is trying to access
an object that belongs to a swap-cluster, which was previously swapped-out. Since one of the
objects enclosed in the swap-cluster becomes needed again, there is a high probability that the
others will be as well. So, they are swapped-in back as a whole by demanding the same XML-
data, containing wrapped objects, that was sent earlier during swap-out.

All swap-cluster-proxies targeting objects enclosed in the swap-cluster being swapped-back
must be updated. To this purpose, their internal references are patched in order to target the
corresponding object replicas being swapped-in. Then, the replacement-object, as it is no longer
needed, becomes eligible for local reclamation. Therefore, after swap−cluster−2 is brought back
to P1, the resulting object graph would be similar to the one initially shown in Figure-IV.1.3.

IV.1.2.4 Integration with GC Mechanisms

The middleware prevents dead objects, belonging to swap-clusters that later became un-
reachable (unusable to the application), from consuming resources while being stored on the
swapping devices. Therefore, the middleware still manages DGC structures, and exchanges
DGC messages, w.r.t. to those objects.

However, the reachability of a swap-cluster must be considered as a whole. This entails that
when a replacement-object, standing in for a swap-cluster that has been swapped-out, becomes
unreachable locally, Unreachable messages must be sent on behalf of all object replicas enclosed in
it. Conversely, the replacement-object (and its associated swap-cluster) can only be considered
as unreachable globally when Reclaim messages have been received on behalf of all its enclosed
objects. Note that in this case, while Unreachable messages are sent in group, corresponding
Reclaim messages are received one at a time (i.e., only when all other replicas of each object are
found unreachable).

When ultimately deemed as unreachable globally, a swap-cluster may be dropped from the
swapping node, or set-aside if their content is still required for other purposes (consistency,
reconciliation, versioning, etc.). The replacement-object is simply reclaimed by the LGC.

The integration with GC mechanisms just described does not constitute a DGC infrastruc-
ture covering swapping devices. There are no explicit references among the objects residing
in devices running applications, and those serialized in swapping devices. All the decisions
are made locally to the application device (no reference-listing, no stub-scion pairs, etc.). The
swapping device is instructed just to store, return, or drop XML-data.

IV.1.3. IMPLEMENTATION 279

IV.1.3 Implementation

Adaptability and Object-Swapping in the OBIWAN architecture have been implemented on
top of the M-OBIWAN prototype, extending it (Veiga and Ferreira 2004a). It runs on .Net (for
desktop and laptop nodes) and .Net Compact Framework (for SmartPhone and PocketPC). The
primary programming language used is C#. Policies are coded in XML. Desktop machines have
Internet Information Services installed, and a small footprint mobile web-server (Nicoloudis and
Pratistha 2003) is used in PocketPC.

IV.1.3.1 Adaptability

Policies, rules, events, and properties are stored in specialized hash-tables, indexed
by full-name and their name-space components, to speed-up subscriptions using regular-
expressions. Policies coded in XML files are loaded by a custom XML parser coded in
C#.3 Name-spaces are identified using support for regular-expressions included in .Net
(System.Text.RegularExpressions).

Properties in the Context Manager may be associated either with an object that holds their
actual value, or with a delegate thus being procedural. In this case, the value of the property,
when inspected, is the value returned by the specified method. This allows properties to invoke
code that reads lower-level sensors, or to build combined higher-level properties. Examples of
procedural properties4 include: i) determining available memory, that relies on GC services, and
ii) testing connectivity, that checks a variable periodically updated, by a thread that tests DNS
address resolution.

The support for adaptability in OBIWAN relies on previous implementation work in OBI-
WAN. It requires only that the appropriate events, regarding object replication, be triggered.
This includes code in proxy-out and proxy-in objects, replication management (i.e., when creat-
ing OBIRep entries). These are very small extensions that are automated in code generation.

Based on this fundamental support, the Policy Engine, Event Handling and Context Man-
agement modules are able to orchestrate and monitor object replication, in order to allow for
extended behaviors, such as DGC and Object-Swapping.

IV.1.3.2 Object-Swapping

Code for swap-cluster-proxies is automatically generated by obicomp . It generates a spe-
cific class of swap-cluster-proxy, for each type defined by the application (analogous to genera-
tion of proxy-out and proxy-in objects described in Part II).

Thus, the class for each type of swap-cluster-proxy implements two interfaces: i) the
ISwapClusterProxy interface for common methods such as patch and detach , and ii) the
interface containing the public methods of the type (e.g., interface IA).

3This parser is based on code provided by .Net Framework Samples.
4These implementations rely solely on the .Net Framework. Obviously, other alternatives could be more efficient

yet less portable.

280 CHAPTER IV.1. ARCHITECTURE AND IMPLEMENTATION

The code generated for swap-cluster-proxies implements all methods of the application in-
terface (e.g., IA), with a similar code excerpt that verifies references being passed as parameters
and return values, while also relying on invoking the actual object replica it refers to. With ev-
ery referenced intercepted, this code verifies whether it is necessary to: i) create another swap-
cluster-proxy to wrap a reference from/to another cluster, ii) patch an existing swap-cluster-
proxy that is being handed to/from another swap-cluster, iii) dismantle a swap-cluster-proxy
received but that refers to an object within the same swap-cluster. Implementation of meth-
ods belonging to interface ISwapClusterProxy (e.g.,patch , detach) delegate to static meth-
ods of a class (SwapClusterUtils) that contains behavior common to all swap-cluster-proxy
types.

Object Identity: Within each swap-cluster, object identity is ensured because references to ob-
ject replicas are never compared against references to swap-cluster-proxies, referring to objects
in the same swap-cluster, due to rule iii) of the last paragraph.

Enforcing object identity when comparing references to objects in other swap-clusters (i.e.,
actually comparing references to swap-cluster-proxies) cannot rely solely on reference compar-
ison (operator ==). A simple example would be that of an object in swap − cluster − X , if
referenced from two different swap-clusters, will be necessarily represented by two different
swap-cluster-proxies (because they regard different source swap-clusters).

This is solved by overloading the reference comparison operator == in C#, for each class of
swap-cluster-proxy, with a method that verifies whether the two arguments received are swap-
cluster-proxies (i.e., implement interface ISwapClusterProxy), and actually refer to the same
object.

In other languages, such as Java, that do not allow this overloading, comparisons must rely
solely on method Object.Equals , that can be overloaded. Note that this limitation in Java
is only present when using Object-Swapping and does not affect regular object replication in
prototype OBIWAN.Java.

Optimizing Code for Iterations: The use of global variables, while iterating object graphs (e.g.,
lists) that may span several swap-clusters, causes the creation of a new swap-cluster-proxy for
each object returned, and consequent discard of the swap-cluster-proxy that the variable pre-
viously pointed to. In this cases, with a little help from the programmer, this behavior can be
optimized re-using always the same instance of swap-cluster-proxy (as it was indeed the actual
variable).

Class SwapClusterUtils provides a static method (assign) that may be invoked with
swap-cluster-proxies with source in swap− cluster−0. This method updates an internal field in
the swap-cluster-proxy that marks it, and changes its behavior. The next time the swap-cluster-
proxy intercepts a reference to be returned, instead of creating a new swap-cluster-proxy to be
returned to application code (discarding itself), it patches itself. This way, it now refers to the
object being returned by the application method that was invoked. Therefore, in practice, the
swap-cluster-proxy will return to application code a reference to itself (though already modified
internally), that minimizes creation of swap-cluster-proxies and optimizes iterations.

IV.1.3. IMPLEMENTATION 281

Swapping Manager: The SwappingManager class, by policy definition, is registered as a lis-
tener of all events regarding replication of clusters of objects, by using specific methods as ac-
tions. It also triggers specific events regarding object-swapping but that are presently not lis-
tened by any other module.

It manages swapping by maintaining information regarding all swap-clusters (loaded or
swapped), and all objects belonging to each one,5 stored in hash-tables. It also contains entries
for all swap-cluster-proxies w.r.t. references to/from each swap-cluster (using weak-references).
When a swap-cluster-proxy becomes unreachable, its finalizer invokes code that eliminates
entries referring to it.

Summary of Chapter: In this chapter, we presented the support in OBIWAN for middleware
and application adaptability to changes in the environment. For that, we described an exten-
sible and dynamically, policy-driven, adaptable implementation of the M-OBIWAN prototype.
We also presented an aggressive memory management mechanism, Object-Swapping, specially
tailored for resource constrained devices, prevalent in mobile computing environments.

5Information, regarding which swap-cluster an object belongs to, can be optimized if stored directly in OBIRep
entries.

282 CHAPTER IV.1. ARCHITECTURE AND IMPLEMENTATION

IV2Evaluation

This chapter describes the evaluation of the support in OBIWAN for adaptability, and object-
swapping, described in the previous chapter. The evaluation is centered on qualitative aspects.
It is based on example situations (Sections IV.2.1 and IV.2.2), motivating this kind of support,
that otherwise would not be handled, if static approaches were followed. We present some
relevant related work in Sections IV.2.3 and IV.2.4, and offer comparative discussion.

IV.2.1 Example Scenarios

A vast number of scenarios can be imagined to portray adaptable behavior of applications
designed with adaptability in mind. The developer is in charge of determining the situations the
application should respond and adapt to. Then, a set of policies should be defined. They will
configure the middleware to detect those situations, evaluate conditions of applicability, trigger
the appropriate events and run the corresponding actions.

Other relevant scenarios are those of dynamic adaptation, to some extent, of applications
that were designed without adaptability in mind. Furthermore, it is advantageous to be able to
specify how applications react to certain changes in the environment (e.g., connectivity, memory
shortage), without the need to write specific code for each and every one of them. This would
be redundant and difficult to extend. Thus, applications can be categorized, w.r.t. adaptability
to variations in the environment, along two main axis:

• Whether adaptability was taken into consideration when the application is designed.

• Whether there is the need to write application code, specifically to account for each situa-
tion.

These aspects will be the subject of the examples provided in the current and next sections.
With Policy-Management in OBIWAN, we can easily set up, for this purpose, the following
example scenario. A number of applications are running on a mobile constrained device (e.g.,
PDA). They have already replicated some data for local disconnected use. Application code sim-
ply navigates through object graphs; it is not otherwise aware of OBIWAN (i.e., the applications
running were not designed with adaptability in mind). In this example scenario, the following
policies are loaded and acting/reacting as follows, with increasing priority:

• Policy P1 determines, for each application and according to the available bandwidth, the
size/depth of each replication cluster.

284 CHAPTER IV.2. EVALUATION

• Policy P2 determines that whenever connectivity is back on, and the application has ac-
cessed a threshold fraction of the previously replicated objects, another cluster of objects
should be immediately pre-fetched.

• Policy P3 determines that when there is Bluetooth connectivity, GPRS access should not be
used, for economic reasons.

• Policy P4: Swap-out objects when low on memory and connected to home LAN (via Blue-
tooth).

• Policy P5 determines that whenever a threshold value of communication cost has been
reached, the user should be advised and pre-fetching should be disabled. From then on,
objects should only be replicated on-demand by applications.

This set of policies could be installed in the system: i) by default, ii) declaratively defined
by an application programmer, iii) setup by a system administrator, or iv) created by the user
through an interactive policy generation tool.

This example shows a situation where policies can dynamically manage middleware and
application execution, without the need to write new application code for adaptability to each
scenario. Furthermore, the applications could have been designed without adaptability in mind
altogether. In the example, application code needs simply to be extended in order to allow
incremental replication. More sophisticated behavior simply emerges from the concurrent en-
forcement of this set of policies by Policy-Management in OBIWAN.

IV.2.2 Example Policy

We present now, in greater detail, an example policy that could be used to monitor object
replication and network connectivity. This sample policy contains 2 rules, 2 properties, 3 event
declarations, and 4 actions, presented next.

<?xml version="1.0" encoding="utf-8"?>

<policyxmlns="http://tempuri.org/politica-A1.xsd" name="Test Policy

for Replication Handling" comments="...Testing...">

<rules>

<rule>

<condition eval="==" arg1="property.network.bandwidthClass" arg2="HIGH">

</condition>

<eventTriggered name="event.network.bandwidthClassChanged"

argType="property" argValue="arg1">

</eventTriggered>

</rule>

<rule>

<condition eval="!=" arg1="property.network.bandwidthClass" arg2="HIGH">

</condition>

<eventTriggered name="event.network.bandwidthClassChanged"

argType="property" argValue="arg1">

</eventTriggered>

</rule>

</rules>

<properties>

IV.2.2. EXAMPLE POLICY 285

<property name="property.system.availableMemory" type="number" value="0"

assemblyName="PoliPer"

className="PoliPer.ContextManagement.PropertyUtils._FreeMemory"

methodName="GetMemoryProperty">

</property>

<property name="property.replication.cluster.clusterSize" type="number" value="25">

</property>

<property name="property.network.connectivity" type="bool" value="false"

assemblyName="PoliPer"

className="PoliPer.ContextManagement.PropertyUtils._NetworkConnectivity"

methodName="GetNetworkConnectivity">

</property>

</properties>

<events>

<event name="event.replication.replication-in.object.begin">

</event>

<event name="event.replication.replication-in.object.end">

</event>

<event name="event.network.bandwidthClassChanged">

</event>

</events>

<actions>

<action name="anonymous" type="method" assemblyName="PoliPer"

className="PoliPer.PoliPer_Replication" methodName="ObjectBegin">

<subscriptions>

<subscription name="event.replication.replication-in.object.begin" priority="last">

</subscription>

</subscriptions>

</action>

<action name="anonymous" type="method" assemblyName="PoliPer"

className="PoliPer.PoliPer_Replication" methodName="ObjectEnd">

<subscriptions>

<subscription name="event.replication.replication-in.object.end" priority="last">

</subscription>

</subscriptions>

</action>

<action name="anonymous" type="method" assemblyName="PoliPer"

className="PoliPer.PoliPer_Replication" methodName="ObjectBeginEndTrace" multiEvent="true">

<subscriptions>

<subscription name="event\.replication\.replication-in\.object\.\w*" priority="last">

</subscription>

</subscriptions>

</action>

<action name="anonymous" type="method" assemblyName="PoliPer"

className="PoliPer.PoliPer_Replication" methodName="changeClusterSize">

<subscriptions>

<subscription name="event.network.bandwidthClassChanged" priority="last">

</subscription>

</subscriptions>

</action>

</actions>

</policy>

The policy file begins by defining two rules that aim at monitoring variations
in network bandwidth. The rules specify two situations, w.r.t. connectivity, that
are considered relevant, in this case. They prescribe that an appropriate event
(event.network.bandwidthClassChanged) be triggered, whenever the available band-
width (property property.network.bandwidthClass) changes to (and from) a specific
value (labeled as "HIGH"). In the context of this policy, the application and/or the middle-
ware are only interested in being advised when the user device enters, and leaves, a zone with

286 CHAPTER IV.2. EVALUATION

high network bandwidth available. The rules are evaluated when the policy if first loaded and
installed in the system, and whenever the entities involved in the conditions are subject to mod-
ifications.

Next, the policy installs properties on the context manager that monitor
available memory (property.system.availableMemory), and connectivity
(property.network.connectivity), stating their type and initial value. Since these
properties are procedural, the policy file also specifies the corresponding associated methods, to
be invoked whenever the properties are inspected. As described earlier in Section IV.1.3.1, these
methods may be implemented, in portable manner, using GC services and periodic connection
attempts, respectively.

The policy files continues by declaring three events it defines. All of them are triggered and
handled by code in the OBIWAN library or generated by obicomp . They are made public here
so that other policies may subscribe to them.

The last part of the policy file is dedicated to specifying actions. OBIWAN code (class
PoliPer.PoliPer Replication of the Replication Management module) subscribes to
replication events in order to perform actions before and after each object is replicated. Further-
more, it provides an example of an action that subscribes, using regular expressions, to all events
regarding object replication to the device. This action can be used for debugging purposes. The
last action defines a method to be invoked, when the transitions in available bandwidth, de-
scribed in the rules, take place. This method will, in turn, modify the current depth of replication
clusters. If an action consists of simple attributions of new values to properties, they can also
be stated directly, with actions of type implicit (defining methodName as internalSET),
together with property name and desired value, as additional attributes.

IV.2.3 Policy-Managed and Adaptive Middleware

Concerning adaptability and support for declarative policies, OBIWAN can be related to
several other middleware systems and technologies. This section provides an overview based
on their main goals.

Data Representation: There have been proposed several approaches for data representation
w.r.t. support for adaptability in applications. Composite Capability and Preferences Profiles
(CC/PP), described in (Nilsson et al. 2000; Klyne et al. 2003), define a vocabulary extension
of Resource Description Framework (RDF), that uses XML to encode properties and statements
regarding web resources (Brickley and Guha 1999; Brickley and Guha 2004). It is used to repre-
sent resource capabilities, and presentation preferences, of browsers so that servers are able to
adapt web content produced by them, to best suit client devices. A similar approach is also used
for expressing agent capabilities in the context of FIPA (www.fipa.org 2002). Tuples are used to
represent context information in (Mamei et al. 2003). In (Handorean et al. 2005), they are used
for session management and to perform binding to services.

Policies related to web-services can be expressed using the family of WS-Policy
schemas (Box et al. 2003; Bajaj et al. 2006), also using XML. This model allows the descrip-

IV.2.3. POLICY-MANAGED AND ADAPTIVE MIDDLEWARE 287

tion of capabilities provided by web-services, as well as constraints imposed by providers and
consumers. This allows web-service providers to announce their web-services with extra infor-
mation that may be queried by consumers performing web-service discovery. Matching infor-
mation from both facilitates inter-operability.

In OBIWAN, system entities like policies, properties and events are defined in a namespace-
based hierarchy combined with regular expressions. A related approach is used for security
policy files in the Java language. In Java, permissions are defined in a class hierarchy. Access
to system properties can be managed using wildcard substitution when referring to property
names. Java policy files are designed solely for security purposes, i.e., granting or denying access
to resources. In OBIWAN, the range of policy use is broader. Furthermore, the middleware and
applications can react to changes in the system (resource management, access control, etc.) with
definable programmatic actions.

Context and Resource Management: The Context-Toolkit (Salber et al. 1999; Dey 2001) was
one of the first projects to observe the importance of using a uniform approach, when design-
ing context-aware applications (Schilit et al. 1994). Initially, context-aware applications were
developed in an ad-hoc manner, by interfacing directly with technologies and hardware used to
gather context information (e.g., sensors). The project proposes the analogy between the design
of context-aware applications and graphical user interfaces (GUI). Thus, information regarding
context is accessed via context-widgets, as user interfaces are via GUI widgets.

Context-widgets are software components that encapsulate context w.r.t. applications, hid-
ing the complexity of interaction with sensors, and converting gathered information to suit the
requirements of applications (e.g., returning street names instead of geographical coordinates).
Applications can poll a context-widget to obtain its value, or subscribe to be notified of changes
in their value. Examples of widgets include Identity, Presence and Activity. Context-widgets im-
prove reusability. They can be combined using Context Aggregators, or mediated using Context
Interpreters, in order to provide applications with higher-level context information. Widgets
may be distributed and exchange information (context artifacts) using XML. This work does not
describe neither how to organize context-widgets (such as a name-space hierarchy), nor how to
refer to them using incomplete names (e.g., using regular expressions). It provides a framework
to develop context-aware applications but has no support for declarative policies to rule how
applications should react to changes in context.

The case for a reflective middleware for context-awareness and adaptability of applications
is presented in CARISMA (Capra et al. 2003). Context information is comprised of devices, re-
sources, application-defined properties, and user activity and ”mood”. Application developers
and users specify the changes in context information considered relevant to them using poli-
cies. Middleware adaptability stems from the fact that is configured by meta-data that can be
modified (i.e., applications can even change their own policies). The main goal of this work is
centered on identifying conflicts in policies (named profiles). Conflicts consist of ambiguities,
contradictions, or disagreements found in policies. They may occur internally to a policy, or
among policies defined in different devices, applications or by different users.

Conflicts among policies are addressed using an approach based on principles taken from

288 CHAPTER IV.2. EVALUATION

micro-economy. This is based on utility functions1 that are heuristic (defined using an abstract
syntax). Utility functions weight parameters such as memory, bandwidth, accuracy, availability,
etc. These functions can vary dynamically to reflect changes in user’s goals. Based on the util-
ity to each peer, the middleware chooses the policies that maximize the sum of utility values.
CARISMA is used to adapt messaging services to variations in the environment (e.g., available
bandwidth, battery power) and context information. The middleware automatically chooses
message format (with plain, compressed and encrypted text) according to available battery and
bandwidth, by evaluating the policies in all participating devices. Message alerts and talk re-
minders are also adapted (e.g., ring, vibration) according to available battery and whether the
user is indoors or outdoors.

Tuples on The Air (Mamei et al. 2003) uses tuples to represent context information and
to allow asynchronous communication between applications and components. Tuples are spa-
tially distributed in several tuples-spaces. Tuples are initially injected into the network. They
are propagated across nodes, according to application-specific patterns. These patterns deter-
mine if tuples are further propagated (forwarded), modified, combined with other tuples, or
suppressed. Patterns are implemented as abstract propagation rules parameterized by tuple
content. Rules dictate tuple scope, range and direction of propagation. Events are also repre-
sented by tuples and published as tuple injections in the distributed tuple-space.

The work described in (Huebscher and McCann 2004; Huebscher and McCann 2006)
presents the notion of Quality of Context (QoC), in the context of smart-homes, assuming that
the acquisition of context information is a costly operation. It also makes use of utility func-
tions but for a different purpose. When there are multiple sources (e.g., sensors, software com-
ponents, databases, polling against using recorded values, estimations) where to obtain context
information of compatible types, the middleware selects the one most appropriate, i.e., that suits
application requirements and minimizes cost (e.g., battery, network communication). Require-
ments are expressed as Quality of Context constrains, and expressed as function of precision,
probability of correctness, resolution/granularity, freshness, and refresh-rate. The middleware
chooses the context provider that maximizes satisfaction among applications instead of possibly
using multiple providers for the same type of information (each one requested by a different
application), thus saving resources.

Gaia (Roman et al. 2002a; Roman et al. 2002b) is a middleware (meta-operating system) that
manages context information associated with physical spaces, applications, and users, mapping
them on active spaces. Each user has its own virtual space comprised of sessions. Each session
manages the association of applications and data with the users. When a user crosses boundaries
of active space, Gaia maintains its sessions available, by mapping them to resources available in
the new active space.

Gaia allows the use of customization policies, both defined by users as well as default ones
provided by the system. All resources in the active space have a XML-description. It provides
a high-level scripting language based on Lua (Cerqueira et al. 1999). The very bootstrap of the
system is performed by executing a configuration script coded in Lua. Gaia is comprised of an
event manager, context service, and a space repository.

1In economic science, utility is the value of a good or service, as perceived e.g., by a consumer.

IV.2.3. POLICY-MANAGED AND ADAPTIVE MIDDLEWARE 289

It also includes a context-based file system (Hess 2002), a semantic file system (Gifford
et al. 1991) enriched with information gathered from context. Context service is inspired by
the Context toolkit (context providers act as context widgets), also allowing higher-level con-
text providers. Context data is expressed as predicate triplets (subject-verb-object). Rules are
expressed using first-order logic predicates.

Communication: The work in Appia (Miranda et al. 2001; Mocito et al. 2006) aims at adapting
communication protocols, used by applications. The variations in context information can be
local (e.g., device where the application is running), or distributed (e.g., neighboring devices).
Here, adaptability is regarded as the capability to select/switch among communication proto-
cols, according to context, from a pool of protocols previously configured and deployed.

Context information is stored as tuples (context categories). Policies are managed using an
economical approach. They are defined by parameters such as rewards, costs, and the probabil-
ity of occurrence, associated with each transition in context information. Users can not define
arbitrary policies with rules. Policies require that all possible states assumed by context infor-
mation be described upfront, and that all probability matrixes be pre-calculated.

One relevant example of adaptation is the usage of different communication protocols for
multi-cast, depending if the device is able to connect to a nearby LAN: i) a best effort protocol
that sends a sequence of point-point messages, or ii) a bridging protocol that sends only one
point-point message to a gateway node wired to a fixed network that is in charge of relaying
messages to other gateways and portable devices. When suitable, protocol ii) saves battery
power on the device.

Additional work on adaptability of a communication application is presented in (McFadden
et al. 2005). It allows the specification of relevant situations, determined by the evaluation of
predicates over selected context properties. When a situation occurs, the appropriate event is
triggered. The paper discusses the adaptation of a simple messaging application that is able to,
according to context-information, relay messages using different devices and protocols, accord-
ingly to the present location of the message recipient.

The work described in (Handorean et al. 2005) uses context information to perform session
management and service binding in ad-hoc networks. Context information is stored using a fed-
erated space of Java-tuples. It incorporates the notion of follow-me session that masks intervals of
disconnection, giving users an appearance of a continuous interaction with a service. In reality,
server threads are migrated to servers closer to user’s device.

Migration of server threads does not require changes to the virtual machine. It is based
on class extension and explicit synchronization check-points provided by the programmer that,
when executed, delegate on middleware code that serializes thread data to another server, and
restarts the thread. This approach uses similar techniques to those described in (Veiga and
Ferreira 2001; Veiga and Ferreira 2002b) (Section II.3.3.9), extending class byte-codes instead
of source-code.

In (Curry et al. 2003), a publish/subscribe messaging model is presented, defining channels
in a hierarchical manner. This hierarchy is reflective, dynamic and de-coupled from publish-
ers and subscribers. As a consequence, there is no guarantee that a specific channel will exist.

290 CHAPTER IV.2. EVALUATION

OBIWAN uses a namespace-based organization for entities (including events), that can be ac-
cessed hierarchically and, for increased flexibility, with resort to regular expression matching. In
OBIWAN, event publishers and subscribers are also fully de-coupled.

Mobile Transactions: With respect to mobile transactions, most research considers networks
where mobile hosts connect via wireless to fixed base stations (Barghouti and Kaiser 1991; Ra-
mamritham and Chrysanthis 1996; Walborn and Chrysanthis 1995). These solutions are typi-
cally client-server based and do not address the adaptability needs of applications so that they
can cope with the multiple requirements and usage diversity found in mobile settings.

However, there are mobile transaction systems that use semantic information to adapt the
behavior of transactions. For example, in Pro-Motion (Walborn and Chrysanthis 1995), data
is encapsulated in compacts allowing the definition of consistency rules to be applied to such
data set as a whole. In Clustering (Pitoura and Bhargava 1999), it is possible to specify consis-
tency degrees among replicated data. Moflex (Ku and Kim 2000) also provides a mechanism
for describing the associated behavior while crossing wireless cells. With Toggle (Dirckze and
Gruenwald 1998), it is possible to specify different atomicity and isolation degrees, by dividing
a transaction in vital and non-vital sub-transactions.

Security: One of the most important works addressing policy-management w.r.t. security is
Ponder (Dulay et al. 2001). It provides a general-purpose deployment model for security and
management policies. Its declarative language is able to express and specify some generic and
complex security policies such as role based access control (RBAC) policies. In particular, the
obligation policies provided by Ponder are used in an agent platform (Montanari and Tonti 2002)
to specify mobility policies of agents. In this platform application logic is completely separated
from migration logic.

Negotiation: In (Parlavantzas et al. 2003), resources are encapsulated and managed by an ex-
tensible framework. When necessary, resources are dynamically adapted within the middleware
to suit each requiring task. This operation is performed through negotiation. The middleware
keeps track of the associations among resources and tasks. Resource and context representation
in OBIWAN follows a related approach. Nonetheless, in OBIWAN, the focus is somewhat differ-
ent. Instead of resource management and adaptation, it aims at adapting to resource variations.

QoS non-functional aspects are extracted and defined declaratively by contracts
in (Cerqueira et al. 2003). Compatible contracts are combined straightforwardly. When conflicts
among requirements from different contracts arise, they are solved based on priority. Connec-
tors effectively externalize interactions and associations between objects. In OBIWAN, a contract
can be regarded as a set of policies.

Adaptability and Policy-Management in OBIWAN share some goals and mechanisms with
the works just described. Declarative policies are used for flexibility (e.g., negotiation, service
binding), and for adaptability to situations known in advance (e.g., different hardware capabil-
ities, service contracts). Context management is used to achieve dynamic adaptability of ap-

IV.2.4. AGGRESSIVE MEMORY MANAGEMENT TECHNIQUES 291

plications, and the middleware itself, in the presence of variations of the environment, while
applications are already running.

IV.2.4 Aggressive Memory Management Techniques

Freeing memory on mobile devices has been addressed previously. In (Messer et al. 2002;
Chen et al. 2003b), some objects are migrated to a nearby server machine from where will be
re-fetched later, if needed. To provide transparency to applications, such objects are replaced
by a surrogate. It imposes changes to the underlying VM. These include i) object tables must
account for objects residing in other machines; ii) modifications to CG behavior instrumenting
the GC to monitor on an object-by-object basis, which objects to swap-out; and iii) there must
be a distributed garbage collection (DGC) algorithm managing references among resident and
migrated objects. Even though these approaches are distributed, they do not address replication
and related issues (replica management, consistency, etc.).

In (Chen et al. 2003a), a mechanism is proposed to perform compression on the Java virtual
machine heap, where large objects (greater than 1.5 Kb) are compressed and decompressed.
In addition, large array objects are broken down into smaller sub-objects, each being “lazily
allocated” upon its first write access. Constant on-the-fly data compression performed on the
heap saves memory but imposes additional CPU load and energy cost, since compression is a
computational-intensive process. This solution also imposes the use of a modified VM.

The work in (Chihaia and Gross 2004) describes an analytical model for main memory com-
pression, based exclusively on software. Applying compression to pages in main memory was
first suggested in (Wilson 1991). The system reserves a number of pages in main memory that
act as an additional intermediate level in memory hierarchy (compressed memory pool). Pages
about to be swapped to disk are compressed and swapped to the compressed pool instead. Both
page compression and disk writing can be performed asynchronously. Nevertheless, even if
compression takes more time than disk writing, the gains obtained during page reload to main
memory (decompression is much faster than reading for disk) are much greater.

The only disadvantage is that the compressed-memory pool actually reduces the memory
available to applications. Therefore, the system must balance, according to application behav-
ior and needs, the size of the compressed memory pool. Thus, devoting too much memory
to the compressed-memory pool hurts performance as much as not reserving enough (Wil-
son 1991). In multi-core systems, one of the processors may be dedicated solely to compres-
sion/decompression activities. This solution is not suited for resource constrained devices as it
is directed mainly at workstations. Furthermore it requires modifications to the OS kernel which
hinders portability.

The .Net Micro Framework (Thompson and Miller 2006) is a very small .Net virtual machine
for embedded systems with very limited resources (e.g., wrist-watches). It employs several
techniques to reduce memory foot-print w.r.t. both application code and data. It maintains a
global string table that is shared to store names of types, methods and fields, to reduce RAM
(w.r.t. application code) and ROM (w.r.t. framework code) usage.

292 CHAPTER IV.2. EVALUATION

Another innovation provided by .Net Micro is the use of extended weak references. Refer-
ences of this type have precedence over regular weak references. A specialized garbage collec-
tor attempts to copy to available persistent memory (e.g., flash-memory in CF2 and SD3 cards)
unreachable objects that are targeted by extended weak references, instead of reclaiming them,
which is the case with objects targeted exclusively by regular weak references. This is performed
locally and is therefore limited by the total memory (main, and additional memory cards) of the
device.

IV.2.5 Evaluation of Object-Swapping

We presented Object-Swapping, a novel approach to reduce memory usage by replicated ob-
jects in mobile devices that is portable, and imposes fewer demands on the surrounding infras-
tructure, w.r.t. other approaches found in previous related work. It is compliant with LGC and
DGC managing replicated objects. As a negligible trade-off, our approach requires every refer-
ence between objects in different swap-clusters to be mediated by a proxy. Nonetheless, it does
not require modification of the underlying virtual machine on the mobile device. It further ob-
viates the need to manage inter-process references among individual resident and swapped-out
objects.

This solution has several benefits over a naive one that would have one proxy per each
object and all references mediated by them. Common application objects are small. So, this
could potentially double memory occupation when full-loaded or roughly the same as full. This
approach would also inevitably impose a higher performance penalty, due to indirections. Fur-
thermore, even when all objects were swapped, the proxies would still remain. To avoid this, no
proxies should exist and the object tables in the VM could be modified to account for swapped
objects. This approach still has some overhead but, more importantly, it is not portable.

With object-swapping, devices receiving swapped objects do not need to have VM or mid-
dleware installed. The swapping device is instructed simply to store, return or drop XML-data.
This favors portability since it does not require swapping devices to install a specific VM, or
even a middleware platform like OBIWAN, but simply store portions of text (XML-encoded)
data with a corresponding key (that would be the cluster name).

Summary of Chapter and Conclusion: In this chapter, we presented the evaluation of middle-
ware adaptability and object-swapping in OBIWAN. It employed a qualitative approach based
on motivating examples and discussion against the related work presented, regarding adapt-
ability and portability.

The evaluation of adaptability in OBIWAN resorted to a number of motivating example
situations, which portray variations in the environment that could not be handled by static mid-
dleware. These variations can be addressed by OBIWAN, managed by the appropriate poli-
cies, which were described. We described a prototypical example policy that monitors available

2CompactFlash.
3Secure Digital.

IV.2.5. EVALUATION OF OBJECT-SWAPPING 293

memory and network connectivity, in order to adapt the middleware by reconfiguring the pa-
rameters of replication mechanisms.

The evaluation of Object-Swapping was focused on portability, w.r.t. avoiding the need to
perform modifications on existing virtual machines. Nonetheless, we also addressed the most
important aspects that can influence performance, such as memory usage by swapping manage-
ment itself, and indirections on method invocations. The proposed approach minimizes over-
head while being the only one that achieves portability, resorting exclusively to the OBIWAN
middleware that executes as user-level code.

In the future, we expect a scenario where (much as wireless access points are becoming
omni-present) there will also be an increase in small memory-enabled devices with wireless
connectivity, scattered all-over, that are available to any user (either to store data or to relay
communications). Our approach is the best suited to this scenario.

294 CHAPTER IV.2. EVALUATION

V
Conclusion

(this page was intentionally left blank)

V1Conclusion

I’ve been waiting for you, Obi-Wan. We meet again at last. The circle is now complete... – in “Star Wars”, George Lucas

Part V closes this dissertation. It presents conclusions regarding the whole work presented
in the dissertation, and introduces some aspects of on-going and future work.

Presently, programmers are faced with a real hard task when developing mobile distributed
applications in which data-sharing is needed. They are forced to deal with system level issues
such as data replication, memory management, consistency, durability, availability, security, etc.

The overall goal of this work was to facilitate application development for mobile comput-
ing and wide-area networks, i.e., to ease programmers’ lives. We proposed an approach based
on an object-oriented middleware platform to achieve this. Object-oriented programming is ar-
guably the most widespread paradigm for application development. The main justification for
using a middleware approach is obviating the need to modify the underlying operating system
and virtual machine. We recall the goals and challenges that motivated this work, enunciated in
Chapter I.1, in the form of the following requirements:

1. Usage of Local Resources: leverage the usage of existing local resources (CPU, memory)
effectively.

2. Support for Disconnected Work: minimize dependency on the availability of network
connection, e.g., by employing replication techniques.

3. Transparent Support for Commercial OO Languages: allow application development us-
ing widely adopted object-oriented languages (e.g., C++, Java, C#).

4. Platform Portability: impose modifications neither to operating systems nor to dominant
commercially available virtual-machines (e.g., Java and .Net).

5. Enforcement of Referential Integrity: improve programming reliability by preventing
dangling references and memory leaks.

6. Adaptability: provide mechanisms to control and adapt resource consumption on running
nodes (e.g., memory, network).

The contributions of this dissertation were developed in the context of OBIWAN, a middle-
ware for memory management of replicated objects in distributed and mobile computing. OBI-
WAN provides a platform that supports the development of applications using object-oriented
languages, enabled with object replication, adequate memory management, and adaptability.
The OBIWAN middleware platform addresses all the challenges and goals presented in Chap-
ter I.1, summarized in Table V.1.

298 CHAPTER V.1. CONCLUSION

Project Usage of Support for Transparent Support Platform Enforcement Adaptability
Local Disconnected for Commercial Portability of Referential

Resources Work OO Languages Integrity
OBIWAN Yes Yes Yes a Yes b Yesc Yesd

aJava and C#.
bOBIWAN prototype implementations execute on unmodified Java, .Net and .Net Compact Framework virtual machines.
cEnforced by the algorithms that provide Complete Distributed Garbage Collection: DGC-Consistent Cuts, Algebra-based DCD,

and DCC-RM.
dOBIWAN replication parameters are ruled by declarative policies that take the variability of the environment into account and

adapt to available resources (e.g., available memory and connectivity). W.r.t., memory limitations in mobile constrained devices,
Object-Swapping in OBIWAN allows transparent swapping-out of useful objects enclosed in swap-clusters, to be reloaded when
re-accessed later.

Table V.1.1: Analysis of OBIWAN middleware w.r.t. the goals and challenges presented in Chap-
ter I.1.

The incremental replication mechanisms integrated in the OBIWAN middleware leverage
the usage of existing local resources in client machines (1), e.g., CPU and memory, and support
disconnected work (2), which were described in Part II.

The OBIWAN middleware allows developers to implement applications by employing com-
mercial object-oriented languages (3), such as C# and Java, to be executed on top of unmodified
versions of currently dominant virtual machines (4), such as JVM and .Net CLR.

The OBIWAN middleware enforces referential integrity (5), by employing the DGC algo-
rithms described in Part III. Finally, it enables adaptability of object replication mechanisms
and memory management (6), through the use of declarative policies, and object-swapping in
mobile constrained devices, which were described in Part IV.

In summary, this dissertation presented contributions in the following areas:

• Support for Object Replication: Novel support for object replication in mobile environ-
ments without imposing changes to the underlying virtual machine. Incremental object
replication and dynamic object clustering provide the necessary flexibility to deal with
mobile environments.

• Distributed Garbage Collection: Scalable, asynchronous and complete garbage collection
for distributed systems with and without replication. Two novel algorithms for distributed
garbage collection of distributed object systems, and the first viable solution to achieve
complete distributed garbage collection for replicated object systems.

• Adaptable Object Replication and Memory Management: A policy-based system ap-
plied to management of object replication and memory management, alongside with ag-
gressive memory management mechanisms, such as Object-Swapping, to handle memory
shortage in mobile devices.

V.1.1. FUTURE WORK 299

V.1.1 Future Work

The work presented in this dissertation motivates a number of directions for future work.
In particular, we plan to address the following subjects:

Performance:

1. A deeper study on the performance, bandwidth usage, latency, and bottlenecks of remote
invocation mechanisms (Java RMI, .Net Remoting, and others, both XML and binary-
based).

Replication:

2. Implement M-OBIWAN and related prototypes on Java virtual machine running on mobile
devices (J2ME, also known as KVM).

Distributed Garbage Collection:

3. investigate how the implementation can be further optimized, namely w.r.t. graph sum-
marization (possibly integrating it with incremental LGC provided with the VM).

4. addressing the formal correctness proof of the algorithms presented.

5. design of a de-centralized version of the DCC-RM algorithm.

6. development of heuristics for determining the minimal set of DeleteScion and DeclareUn-
reachable messages required to break a distributed cycle in one step.

7. apply the notion of Cycle Detection Algebra to other algorithms, such as those based on
back-tracing, obviating the need to maintain state in processes regarding ongoing cycle
detections crossing them.

8. apply the DGC algorithms developed to OODBs supporting distribution and replication,
such as Ozone and DB4O.

Adaptability:
9. support the concept of a dynamic computing horizon in which resources in a broader sense

(memory, disks, printers, internet access, data and even code) can be found in other neigh-
bor devices and used accordingly. The resources available to an application, or mobile
agent, should not be restricted to those installed in the running device (computer, PDA,
etc.). They should include all that are accessible within acceptable time and hop frames
(the horizon) from all devices the application/agent is aware of. Proximity-triggered noti-
fication should be used to frequently update current horizon definition in each device.

10. develop the concept of a contextlet, which encapsulates context information and associated
policies (with rules, events, and actions), to be exchanged among neighboring devices.

These directions of possible future work range from non-core performance and implemen-
tation aspects, usually addressable in the context of Final Year Projects and M.Eng. degrees (e.g.,
1, 2), to more theoretical work to be addressed either by the author (e.g., 4, 6), or in the context
of future M.Sc. (e.g., 3, 8, 9, 10) and Ph.D. (e.g., 5, 7) dissertations.

300 CHAPTER V.1. CONCLUSION

ABiblographic
References

Abdullahi, S. E. and G. A. Ringwood (1998). Garbage collecting the internet: a survey of dis-
tributed garbage collection. ACM Computing Surveys (CSUR) 30(3), 330–373.

Abiteboul, S., A. Bonifati, G. Cobena, I. Manolescu, and T. Milo (2003). Dynamic xml documents
with distribution and replication. In SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, New York, NY, USA, pp. 527–538. ACM Press.

Ahuja, S., N. Carriero, and D. Gelernter (1986). Linda and friends. Computer 19(8), 26–34.

Alliance, T. O. (2003). OSGi Service Platform, Release 3. IOS Press.

Amsaleg, L., P. Ferreira, M. Franklin, and M. Shapiro (1995a, October). Evaluating garbage col-
lectors for large persistent stores. In OOPSLA’95 W’shop on Object Database Behavior, Bench-
marks, and Performance, Austin, TX.

Amsaleg, L., M. Franklin, and O. Gruber (1995b, September). Efficient incremental garbage
collection for client–server object database systems. In Twenty-first Int’l Conf. on Very Large
Databases (VLDB95), Zurich, Switzerland.

Amsaleg, L., M. J. Franklin, and O. Gruber (1999). Garbage collection for a client-server persis-
tent object store. ACM Trans. Comput. Syst. 17(3), 153–201.

Andrade, N., L. Costa, G. Germoglio, and W. Cirne (2005). Peer-to-peer grid computing with
the OurGrid Community. Proceedings of the 23rd Brazilian Symposium on Computer Networks.

Andrews, K., F. Kappe, and H. Maurer (1995, april). The hyper-g network information systems.
J.UCS 1(4).

Androutsellis-Theotokis, S. and D. Spinellis (2004). A survey of peer-to-peer content distribution
technologies. ACM Comput. Surv. 36(4), 335–371.

Apache Foundation (2002). Apache object relational bridge - OJB.

Apache Software Foundation (1997, july). Module mod rewrite, url rewriting engine.

Appel, A. W., J. R. Ellis, and K. Li (1988, June). Real-time concurrent collection on stock multipro-
cessors. In Proc. of the SIGPLAN’88 Conf. on Programming Language Design and Implementation,
Atlanta GA (USA), pp. 11–20. ACM.

Archer, A. W. T. (2002). Inside C# (2 ed.). Microsoft Press.

Arnold, K. and J. Gosling (1996). The Java Programming Language. Addison-Wesley.

302 BIBLIOGRAPHIC REFERENCES

Atkinson, M. P., F. Bancilhon, D. J. DeWitt, K. R. Dittrich, D. Maier, and S. B. Zdonik (1989). The
object-oriented database system manifesto. In DOOD, pp. 223–240.

Azatchi, H. and E. Petrank (2003). Integrating generations with advanced reference counting
garbage collectors. In CC, pp. 185–199.

Bacon, D., S. Fink, and D. Grove (2002). Space-and Time-Efficient Implementation of the Java
Object Model. Proceedings of the 16th European Conference on Object-Oriented Programming,
111–132.

Bacon, D. F., C. R. Attanasio, H. Lee, V. T. Rajan, and S. Smith (2001). Java without the coffee
breaks: A nonintrusive multiprocessor garbage collector. In SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pp. 92–103.

Bacon, D. F., P. Cheng, and V. T. Rajan (2004). A unified theory of garbage collection. In OOPSLA
’04: Proceedings of the 19th annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, New York, NY, USA, pp. 50–68. ACM Press.

Bacon, J., J. Bates, R. Hayton, and K. Moody (1995). Using Events to Build Distributed Applica-
tions. 2nd International Workshop on Services in Distributed and Networked Environments.

Bacon, J., K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O. Seidel, and M. Spiteri (2000).
Generic support for distributed applications. Computer 33(3), 68–76.

Baden, S. B. (1983). Low-overhead storage reclamation in the Smalltalk-80 virtual machine. In
G. Krasner (Ed.), Smalltalk-80: Bits of History, Words of Advice, pp. 331–342. Addison-Wesley.

Baduel, L., F. Baude, and D. Caromel (2002). Efficient, flexible, and type group communication
in java. In Proc. of ACM Joint ACM Java Grande - ISCOPE 2002 Conference (JGI’02).

Bajaj, S., D. Box, D. Chappell, F. Curbera, G. Daniels, P. Hallam-Baker, M. Hondo, C. Kaler,
D. Langworthy, A. Nadalin, N. Nagaratnam, H. Prafullchandra, C. von Riegen, D. Roth,
J. Schlimmer, C. Sharp, J. Shewchuk, A. Vedamuthu, Ümit Yalçýnalp, and D. Orchard
(2006). Web Services Policy Framework (WS-Policy) Version 1.2. BEA Systems Inc., Inter-
national Business Machines Corporation, Microsoft Corporation, Inc., SAP AG, Sonic Software,
and VeriSign Inc..

Baker, H. G. (1978). List processing in real-time on a serial computer. Comm. of the ACM 21(4),
280–94. Also AI Laboratory Working Paper 139, 1977.

Baker, M., R. Buyya, and D. Laforenza (2002). Grids and Grid technologies for wide-area dis-
tributed computing. Software-Practice and Experience 32(15), 1437–66.

Bal, H. E., M. F. Kaashoek, and A. S. Tanenbaum (1992). Orca: A language for parallel program-
ming of dist. systems. ACM Trans. on Software Engineering 18(3), 190–205.

Bal, H. E. and A. S. Tanenbaum (1990, may). Orca: A language for distributed object-based
programming. SIGPLAN Notices 25(5), 17–24.

Baratloo, A., P. E. Chung, Y. Huang, S. Rangarajan, and S. Yajnik (1998). Filterfresh: Hot replica-
tion of java rmi server objects. In Proceedings of the 4th USENIX Conference on Object-Oriented
Technologies and Systems (COOTS). USENIX.

BIBLIOGRAPHIC REFERENCES 303

Barbara, D. (1999). Mobile computing and databases - a survey. IEEE Transactions on Knowledge
and Data Engineering 11(1), 108–117.

Barghouti, N. S. and G. E. Kaiser (1991). Concurrency control in advanced database applications.
ACM Computing Surveys 23(3), 269–317.

Bartlett, J. F. (1988, February). Compacting garbage collection with ambiguous roots. Technical
Report 88/2, Digital Western Research Laboratory, Palo Alto, CA (USA).

Bekkers, Y. and J. Cohen (Eds.) (1992, 16–18 September). Proc. of Int’l W’shop on Memory Manage-
ment, Volume 637 of Lecture Notes in Computer Science, St Malo, France. Springer-Verlag.

Bergman, M. K. (2001). The deep web: Surfacing hidden value. The Journal of Electronic Publish-
ing 7(1).

Berners-Lee, T. (1994, June). Universal resource identifiers in www - request for comments: 1630.

Berners-Lee, T., R. Cailliau, A. Luotonen, H. F. Nielsen, and A. Secret (1994). The world-wide
web. Commun. ACM 37(8), 76–82.

Bershad, B. N. and M. J. Zekauskas (1991, September). Midway: Shared memory parallel pro-
gramming with entry consistency for distributed memory multiprocessors. Technical Re-
port CMU-CS-91-170, Carnegie-Mellon University, Pittsburgh, PA (USA).

Bevan, D. I. (1987, June). Distributed garbage collection using reference counting. In Parallel
Arch. and Lang. Europe, Eindhoven, The Netherlands, pp. 117–187. Spring-Verlag Lecture
Notes in Computer Science 259.

Bhushan, A. (1971). File transfer protocol request for comments: 114.

Birrell, A., D. Evers, G. Nelson, S. Owicki, and E. Wobber (1993a, December). Dist. garbage
collection for network objects. Technical Report 116, DEC Systems Research Center, 130
Lytton Avenue, Palo Alto, CA 94301.

Birrell, A. and B. J. Nelson (1984). Implementing remote procedure calls. ACM Trans. Comput.
Syst. 2(1), 39–59.

Birrell, A., G. Nelson, S. Owicki, and E. Wobber (1993b). Network objects. In SOSP ’93: Proceed-
ings of the fourteenth ACM symposium on Operating systems principles, New York, NY, USA,
pp. 217–230. ACM Press.

Bishop, P. B. (1977, May). Computer systems with a very large address space and garbage col-
lection. MIT Report LCS/TR–178, Laboratory for Computer Science, MIT, Cambridge, MA.

Blackburn, S. and K. S. McKinley (2003). Ulterior reference counting: fast garbage collection
without a long wait. In Proceedings of the 2003 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications, OOPSLA 2003, October 26-30, 2003, Ana-
heim, CA, USA, pp. 344–358. ACM.

304 BIBLIOGRAPHIC REFERENCES

Blackburn, S. M., P. Cheng, and K. S. McKinley (2004a). Myths and realities: the performance
impact of garbage collection. In Proceedings of the International Conference on Measurements
and Modeling of Computer Systems, SIGMETRICS 2004, June 10-14, 2004, New York, NY, USA,
pp. 25–36. ACM.

Blackburn, S. M., P. Cheng, and K. S. McKinley (2004b). Oil and water? high performance
garbage collection in java with mmtk. In 26th International Conference on Software Engineer-
ing (ICSE 2004), 23-28 May 2004, Edinburgh, United Kingdom, pp. 137–146. IEEE Computer
Society.

Blondel, X., P. Ferreira, and M. Shapiro (1998). Implementing garbage collection in the perdis
system. In Proc. of the Eigth Int’l W’shop on Persistent Object Systems: Design, Implementation
and Use (POS-8).

Boehm, H.-J. (1991, October). Simple GC-safe compilation. In P. R. Wilson and B. Hayes (Eds.),
OOPSLA/ECOOP ’91 W’shop on Garbage Collection in Object-Oriented Systems.

Boehm, H.-J. (1993, June). Space efficient conservative garbage collection. In Proc. of SIGPLAN’93
Conf. on Programming Languages Design and Implementation, Volume 28(6) of ACM SIGPLAN
Notices, Albuquerque, New Mexico, pp. 197–206. ACM Press.

Boehm, H.-J., A. J. Demers, and S. Shenker (1991, June). Mostly parallel garbage collection. In
Proc. of the SIGPLAN’91 Conf. on Programming Language Design and Implementation, Toronto
(Canada), pp. 157–164. ACM.

Boehm, H.-J. and M. Weiser (1988, September). Garbage collection in an uncooperative environ-
ment. Software: Practice and Experience 18(9), 807–820.

Box, D., F. Curbera, M. Hondo, C. Kaler, D. Langworthy, A. Nadalin, N. Nagaratnam, M. Not-
tingham, C. von Riegen, and J. Shewchuk (2003). Web Services Policy Framework (WS-
Policy). joint specification by BEA Systems, IBM, and Microsoft, May.

Box, D., D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen, S. Thatte, and
D. Winer (2000). Simple object access protocol (soap) 1.1, w3c note 08. Technical report,
World Wide Web Consortium, 2000.

Box, D. and A. Hejlsberg (2006, may). The linq project: .net language integrated query.

Braeutigam, F., G. Mueller, P. Nyfelt, and L. Mekenkamp (2002). Ozone - java oodbms.
www.ozone-db.org.

Brickley, D. and R. Guha (1999). Resource description framework (rdf) schema specification.
Technical report, W3C Proposed Recommendation 03 March.

Brickley, D. and R. Guha (2004). Rdf vocabulary description language 1.0: Rdf schema. Technical
report, W3C Recommendation 10 February.

Brodie-Tyrrell, W., H. Detmold, K. E. Falkner, and D. S. Munro (2004). Garbage collection for
storage-oriented clusters. In V. Estivill-Castro (Ed.), ACSC, Volume 26 of CRPIT, pp. 99–108.
Australian Computer Society.

BIBLIOGRAPHIC REFERENCES 305

Brooch, G. (1993). Object-Oriented Analysis and Design with Applications (2nd ed.). Addison-
Wesley Professional.

Brooks, R. A. (1984, August). Trading data space for reduced time and code space in real-time
garbage collection on stock hardware. See Steele (1984), pp. 256–262.

Butrico, M., H. Chang, A. Cocchi, N. Cohen, D. Shea, and S. Smith (1997). Gold rush: Mo-
bile transaction middleware with java-object replication. In 3rd Usenix Conference on Object-
Oriented, Technologies. Usenix.

Butterwoth, P., A. Otis, and J. Stein (1991, October). The GemStone object database management
system. Communications of the ACM 34(10), 64–77.

Cabri, G., L. Leonardi, and F. Zambonelli (2000). MARS: a programmable coordination architec-
ture for mobile agents. IEEE Internet Computing 4(4), 26–35.

Capra, L., W. Emmerich, and C. Mascolo (2001). Middleware for mobile computing: Awareness
vs. transparency. In HOTOS ’01: Proceedings of the Eighth Workshop on Hot Topics in Operating
Systems, pp. 164. IEEE Computer Society.

Capra, L., W. Emmerich, and C. Mascolo (2003). CARISMA: Context-Aware Reflective mId-
dleware System for Mobile Applications. IEEE Transactions on Software Engineering 29(10),
929–944.

Carey, M. J. and D. DeWitt (1986, September). The architecture of the EXODUS extensible DBMS.
In Proc. Int. Workshop on Object-Oriented Database Systems, Pacific Grove, CA (USA), pp. 52–
65. IEEE.

Carey, M. J., D. J. DeWitt, and J. F. Naughton (1993). The OO7 benchmark. SIGMOD Record
(ACM Special Interest Group on Management of Data) 22(2), 12–21.

Carlsson, S., C. Mattsson, and M. Bengtsson (1990, October). A fast expected-time compacting
garbage collection algorithm. See Jul and Juul (1990).

Carriero, N. and D. Gelernter (1986). The s/net’s linda kernel. ACM Trans. Comput. Syst. 4(2),
110–129.

Carzaniga, A., D. Rosenblum, and A. Wolf (2000). Achieving scalability and expressiveness in an
Internet-scale event notification service. Proceedings of the nineteenth annual ACM symposium
on Principles of distributed computing, 219–227.

Castro, M., A. Adya, B. Liskov, and A. C. Meyers (1997). Hac: hybrid adaptive caching for
distributed storage systems. In SOSP ’97: Proceedings of the sixteenth ACM symposium on
Operating systems principles, New York, NY, USA, pp. 102–115. ACM Press.

Castro, M., P. Druschel, A. Kermarrec, and A. Rowstron (2002). Scribe: a large-scale
and decentralised application-level multicast infrastructure, IEEE J. Selected Areas Com-
mun.(JSAC)(Special issue NetworkSupport Multicast Commun.) 20(8), 100–110.

Caughey, S. J., D. Hagimont, and D. B. Ingham (2000, February). Deploying distributed objects
on the Internet. Recent Advances in Dist. Systems, Springer Verlag LNCS, Eds. S. Krakowiak and
S.K. Shrivastava 1752.

306 BIBLIOGRAPHIC REFERENCES

Cederqvist, P. et al. (2002). Version Management with CVS.

Cerqueira, R., S. Ansaloni, O. Loques, and A. Sztajnberg (2003, june). Deploying non-functional
aspects by contract. In The 2nd International Workshop on Reflective and Adaptive Middleware,
Middleware 2003, Rio de Janeiro, Brazil.

Cerqueira, R., C. Cassino, and R. Ierusalimschy (1999). Dynamic component gluing across dif-
ferent componentware systems. In DOA, pp. 362–371.

Chen, D., A. Messer, D. Milojicic, and S. Dwarkadas (2003b). Garbage collector assisted memory
offloading for memory-constrained devices. In Fifth IEEE Workshop on Mobile Computing
Systems and Applications. IEEE Press.

Chen, G., M. Kandemir, N. Vijaykrishnan, M. J. Irwin, B. Mathiske, and M. Wolczko (2003a).
Heap compression for memory-constrained java environments. In OOPSLA ’03: Proceedings
of the 18th annual ACM SIGPLAN conference on Object-oriented programing, systems, languages,
and applications, pp. 282–301. ACM Press.

Cheney, C. J. (1970, November). A non-recursive list compacting algorithm. Comm. of the
ACM 13(11), 677–8.

Chiang, C.-Y., M. T. Liu, and M. E. Muller (1999, September). Caching neighborhood protocol:
a foundation for building dynamic web caching hierarchies with proxy servers. In Interna-
tional Conference on Parallel Processing.

Chihaia, I. and T. Gross (2004). An analytical model for software-only main memory compres-
sion. In WMPI ’04: Proceedings of the 3rd workshop on Memory performance issues, New York,
NY, USA, pp. 107–113. ACM Press.

Chockler, G., D. Dolev, R. Friedman, and R. Vitenberg (2000, April). Implementing caching
service for dist. corba objects. In Proc. of the IFIP/ACM Int. Conf. on Dist. Systems Platforms
and Open Dist. Processing (Middleware’2000) - Springer Verlag, Heidelberg.

Christopher, T. W. (1984, June). Reference count garbage collection. Software Practice and Experi-
ence 14(6), 503–507.

Clark, D. W. (1976, June). An efficient list moving algorithm using constant workspace. Comm.
of the ACM 19(6), 352–354.

Cohen, J. (1981, September). Garbage collection of linked data structures. Computing Sur-
veys 13(3), 341–367.

Cohen, J. and L. Trilling (1967). Remarks on garbage collection using a two level storage.
BIT 7(1), 22–30.

Collins, G. E. (1960, December). A method for overlapping and erasure of lists. Comm. of the
ACM 3(12), 655–657.

Collins, G. E. (1961, October). Experience in automatic storage allocation. Comm. of the
ACM 4(10), 436–440.

BIBLIOGRAPHIC REFERENCES 307

Cook, J. E., A. L. Wolf, and B. G. Zorn (1994, May). Partition selection policies in object database
garbage collection. In Proc. Int. Conf. on Management of Data (SIGMOD), Minneapolis MN
(USA), pp. 371–382. ACM SIGMOD.

Cook, J. E., A. L. Wolf, and B. G. Zorn (1998). A highly effective partition selection policy for
object database garbage collection. IEEE Trans. Knowl. Data Eng. 10(1), 153–172.

Courtney, J. (2001, mar). J2me connected configuration (cdc) version 1.0 (jsr 36): Final release.
Technical report, Sun Microsystems.

Courtney, J. (2005, aug). J2me connected configuration (cdc) version 1.1 (jsr 218): Final release.
Technical report, Sun Microsystems.

Creech, M. L. (1996, May). Author-oriented link management. In Fifth International WWW Con-
ference, France.

Crow, B., I. Widjaja, L. Kim, and P. Sakai (1997). IEEE 802.11 Wireless Local Area Networks.
Communications Magazine, IEEE 35(9), 116–126.

Cugola, G., E. Di Nitto, and A. Fuggetta (2001). The JEDI event-based infrastructure and its
application to the development of the OPSS WFMS. IEEE Transactions on Software Engineer-
ing 27(9), 827–850.

Cunningham, W. and B. Leuf (2001). The Wiki Way. Quick Collaboration on the Web. Addison-
Wesley Longman Publishing Co., Inc. Boston, MA, USA.

Curran, K., K. Doherty, and R. Power (2004). WikiWikiWeb as a Tool for Collaboration. Informa-
tion Technology Journal 3(2), 206–210.

Curry, E., D. Chambers, and G. Lyons (2003, june). Introducing reflective techniques to message
hierarchies. In The 2nd International Workshop on Reflective and Adaptive Middleware, Middle-
ware 2003, Rio de Janeiro, Brazil.

Date, C. J. (1999). An Introduction to Database Systems (7 ed.). Addison Wesley.

Davies, N., A. Friday, S. P. Wade, and G. S. Blair (1998a). An asynchronous distributed systems
platform for heterogeneous environments. In EW 8: Proceedings of the 8th ACM SIGOPS
European workshop on Support for composing distributed applications, New York, NY, USA, pp.
66–73. ACM Press.

Davies, N., A. Friday, S. P. Wade, and G. S. Blair (1998b). L2imbo: A distributed systems platform
for mobile computing. MONET 3(2), 143–156.

Davies, N., S. Wade, A. Friday, and G. Blair (1997, May). Limbo: A Tuple Space Based Platform
for Adaptive Mobile Applications. In Proceedings of the International Conference on Open Dis-
tributed Processing/Distributed Platforms (ICODP/ICDP ’97), Toronto, Canada, pp. 291–302.

db4objects, Inc. db4o :: Native java & .net object database :: Open source.

308 BIBLIOGRAPHIC REFERENCES

Demers, A., M. Weiser, B. Hayes, D. G. Bobrow, and S. Shenker (1990, January). Combining gen-
erational and conservative garbage collection: Framework and implementations. In Conf.
Record of the Seventeenth Annual ACM Symposium on Principles of Programming Languages,
ACM SIGPLAN Notices, San Francisco, CA, pp. 261–269. ACM Press.

Demers, A. J., K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and B. B. Welch (1994, 8-9).
The bayou architecture: Support for data sharing among mobile users. In Proceedings IEEE
Workshop on Mobile Computing Systems & Applications, Santa Cruz, California, pp. 2–7.

Detlefs, D. (1992, August). Garbage collection and run-time typing as a C++ library. In C++
Conference, Portland OR (USA), pp. 37–56. Usenix.

Detlefs, D. L. (1990, October). Concurrent, atomic garbage collection. See Jul and Juul (1990).

Detlefs, D. L. (1991, November). Concurrent, Atomic Garbage Collection. Ph. D. thesis, Dept.
Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213.

Detlefs, D. L., P. A. Martin, M. Moir, and J. Guy L. Steele (2001). Lock-free reference counting. In
Proceedings of the 20th Annual ACM Symposium on Principles of Distributed Computing, August
2001.

Detlefs, D. L., P. A. Martin, M. Moir, and J. Guy L. Steele (2002). Lock-free reference counting.
Distrib. Comput. 15(4), 255–271.

Deutsch, L. P. and D. G. Bobrow (1976, September). An efficient incremental automatic garbage
collector. Comm. of the ACM 19(9), 522–526.

Deux, O. et al. (1990). The Story of O2. IEEE Transactions on Knowledge and Data Engineering 2(1),
91–108.

Deux, O. et al. (1991, October). The O2 system. Communications of the ACM 34(10), 34–48.

Dey, A. (2001). Understanding and Using Context. Personal and Ubiquitous Computing 5(1), 4–7.

Dickman, P. (1991, September). Distributed Object Management in a Non-Small Graph of Au-
tonomous Networks With Few Failures. Ph. D. thesis, University of Cambridge, United King-
dom.

Dieckmann, S. and U. Holzle (1999). A Study of the Allocation Behavior of the SPECjvm98 Java
Benchmarks. Proceedings of the 13th European Conference on Object-Oriented Programming, 92–
115.

Dijkstra, E. W., L. Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens (1978, November).
On-the-fly garbage collection: an exercise in cooperation. Communications of the ACM 21(11),
966–975.

Dirckze, R. A. and L. Gruenwald (1998). A toggle transaction management technique for mobile
multidatabases. In Proceedings of the CIKM 98, Bethesda, MD, USA, pp. 371–377.

Domani, T., E. K. Kolodner, E. Lewis, E. E. Salant, K. Barabash, I. Lahan, Y. Levanoni, E. Petrank,
and I. Yanover (2000). Implementing an on-the-fly garbage collector for java. In ISMM, pp.
155–166.

BIBLIOGRAPHIC REFERENCES 309

Dulay, N., E. Lupu, M. Sloman, and N. Damianou (2001). A policy deployment model for the
ponder language. In 7th IEEE/IFIP International Symposium on Integrated Network Manage-
ment, Seattle, USA. IEEE press.

Eckstein, R. (2001). XML Pocket Reference (2 ed.). OReilly.

Edelson, D. R. (1992a, January). A mark-and-sweep collector for C++. In Proc. 19th Symp. on Prin-
ciples of Programming Lang., Albuquerque, NM (USA), pp. 51–57. ACM SIGPLAN-SIGACT.

Edelson, D. R. (1992b, August). Smart pointers: They’re smart, but they’re not pointers. In C++
Conference, Portland, OR (USA), pp. 1–19. Usenix.

EJB 3.0 Expert Group (2006, may). Enterprise javabeans(tm),version 3.0 (jsr 220). Technical
report, Sun Microsystems.

Englander, R. and M. Loukides (1997). Developing Java Beans. O’Reilly & Associates. ISBN:
1565922891.

Eric Freeman, Susanne Hupfer, K. A. (1999). JavaSpaces(TM) Principles, Patterns, and Practice.
Pearson Education.

Esposito, D. (2004, feb). A first look at objectspaces in visual studio 2005, discover the capabilities
of objectspaces, the .net object/relational mapping framework. Technical report, Microsoft.

Çetintemel, U., P. J. Keleher, B. Bhattacharjee, and M. J. Franklin (2003). Deno: A decentralized,
peer-to-peer object-replication system for weakly connected environments. IEEE Trans.
Comput. 52(7), 943–959.

Eugster, P. T., P. A. Felber, R. Guerraoui, and A.-M. Kermarrec (2003). The many faces of pub-
lish/subscribe. ACM Comput. Surv. 35(2), 114–131.

Fenichel, R. R. and J. C. Yochelson (1969, November). A Lisp garbage collector for virtual mem-
ory computer systems. Comm. of the ACM 12(11), 611–612.

Ferreira, P. (1991, October). Reclaiming storage in an object oriented platform supporting ex-
tended C++ and Objective-C applications. In Proc. of the Int’l W’shop on Object Orientation in
Operating Systems, Palo Alto (USA).

Ferreira, P. and M. Shapiro (1993, December). Distribution and persistence in multiple and het-
erogeneous address spaces. In Proc. Int. Workshop on Object-Orientation in Operating Systems,
Asheville NC (USA).

Ferreira, P. and M. Shapiro (1994a, November). Garbage collection and DSM consistency. In
First Symposium on Operating Systems Design and Implementation, Monterey, CA, pp. 229–241.
ACM Press.

Ferreira, P. and M. Shapiro (1994b, September). Garbage collection of persistent objects in dist.
shared memory. In Proc. of the 6th Int’l W’shop on Persistent Object Systems, Tarascon (France).
Springer-Verlag.

310 BIBLIOGRAPHIC REFERENCES

Ferreira, P. and M. Shapiro (1995, August). Garbage collection in the larchant persistent dist.
shared store. In Proc. of the 5th W’shop on Future Trends in Dist. Computing Systems, Cheju
Island (Republic of Koreia). IEEE.

Ferreira, P. and M. Shapiro (1996, May). Larchant: Persistence by reachability in dist. shared
memory through garbage collection. In Sixteenth Int’l Conf. on Dist. Computer Systems, Hong
Kong.

Ferreira, P. and M. Shapiro (1998, July). Modelling a distributed cached store for garbage collec-
tion: the algorithm and its correctness proof. In ECOOP’98, Proc. of the Eight European Conf.
on Object-Oriented Programming, Brussels (Belgium).

Ferreira, P., M. Shapiro, X. Blondel, O. Fambon, J. ao Garcia, S. Kloosterman, N. Richer,
M. Robert, F. Sandakly, G. Coulouris, J. Dollimore, P. Guedes, D. Hagimont, and
S. Krakowiak (2000, February). PerDiS: design, implementation, and use of a PERsistent
DIstributed Store. Recent Advances in Dist. Systems, Springer Verlag LNCS, Eds. S. Krakowiak
and S.K. Shrivastava 1752.

Ferreira, P. and L. Veiga (2005, july). Garbage collection curriculum. Msdn academic alliance
curriculum repository, object id 6812, Microsoft.

Ferreira, P., L. Veiga, and C. Ribeiro (2003, November). Obiwan - design and implementation of
a middleware platform. IEEE Transactions on Parallel and Distributed Systems 14(11), 1086–
1099.

Fessant, F. L. (2001, August). Detecting distributed cycles of garbage in large-scale systems. In
Conference on Principles of Distributed Computing(PODC).

Fidler, E., H.-A. Jacobsen, G. Li, and S. Mankovski (2005). The padres distributed pub-
lish/subscribe system. In S. Reiff-Marganiec and M. Ryan (Eds.), FIW, pp. 12–30. IOS Press.

Fischer, M. J. and A. Michael (1982). Sacrificing serializability to attain high availability of data in
an unreliable network. In PODS ’82: Proceedings of the 1st ACM SIGACT-SIGMOD symposium
on Principles of database systems, New York, NY, USA, pp. 70–75. ACM Press.

Fisher, M., N. Lynch, and M. Patterson (1985, April). Impossibility of distributed consensus with
one faulty process. Journal of the ACM 32(2), 274–382.

Fok, C., G. Roman, and G. Hackmann (2004). A lightweight coordination middleware for mobile
computing. Proceedings of the 6th Internation Conference on Coordination Models and Languages
(Coordination 2004), 135–151.

Foster, I. (1989). A multicomputer garbage collector for a single-assignment language. Int’l
Journal of Parallel Programming 18(3), 181–203.

Foster, I. and C. Kesselman (1997). Globus: A metacomputing infrastructure toolkit. International
Journal of Supercomputer Applications 11(2), 115–128.

Foster, I. and C. Kesselman (1998). The grid: blueprint for a new computing infrastructure. Morgan
Kaufmann Publishers Inc. San Francisco, CA, USA.

BIBLIOGRAPHIC REFERENCES 311

Frenot, S., M. Avin, and N. Almasri (2002). EJB components Migration Service and Automatic
Deployment. INRIA Rapport de Recherche 4480.

Fuchs, M. (1995, September). Garbage collection on an open network. In H. Baker (Ed.), Proc. of
Int’l W’shop on Memory Management, Volume 986 of Lecture Notes in Computer Science, Con-
current Engineering Research Center, West Virginia University, Morgantown, WV. Springer-
Verlag.

Gelernter, D. (1985). Generative communication in linda. ACM Trans. Program. Lang. Syst. 7(1),
80–112.

General Magic, I. (1997). Introduction to the odyssey api.
http://www.genmagic.com/agents/odyssey.html.

Gifford, D. K., P. Jouvelot, M. A. Sheldon, and J. W. O. Jr (1991). Semantic file systems. In
Proceedings of 13th ACM Symposium on Operating Systems Principles, pp. 16–25. Association
for Computing Machinery SIGOPS.

Glaser, H. W. (1987). On minimal overhead reference count garbage collection in dist. systems.
Technical report, Department of Computing, Imperial College, London.

Glaser, H. W. and P. Thompson (1987, January). Lazy garbage collection. Software Practice and
Experience 17(1), 1–4.

Goldberg, B. (1989, June). Generational reference counting: A reduced-communication dis-
tributed storage reclamation scheme. In Programming Languages Design and Implementa-
tion, Number 24(7) in SIGPLAN Notices, Portland OR (USA), pp. 313–321. SIGPLAN: ACM
Press.

Gray, J. N. and A. Reuter (1993). Transaction Processing: Concepts. Morgan Kaufmann.

Gray, R. S. (1995, December). Agent Tcl: A transportable agent system. In Proceedings of the CIKM
Workshop on Intelligent Information Agents, Fourth International Conference on Information and
Knowledge Management (CIKM 95), Baltimore, Maryland.

Greif, I. (Ed.) (1988). Computer-Supported Cooperative Work: A Book of Readings. MORGAN
KAUFFMAN.

Grimm, R., T. Anderson, B. Bershad, and D. Wetherall (2000). A system architecture for pervasive
computing. In EW 9: Proceedings of the 9th workshop on ACM SIGOPS European workshop, pp.
177–182. ACM Press.

Grimm, R., J. Davis, E. Lemar, A. Macbeth, S. Swanson, T. Anderson, B. Bershad, G. Borriello,
S. Gribble, and D. Wetherall (2004). System support for pervasive applications. ACM Trans.
Comput. Syst. 22(4), 421–486.

Gruber, R., F. Kaashoek, B. Liskov, and L. Shrira (1994, December). Disconnected operation in
thor object-oriented database system. In Proceedings of the IEEE Workshop on Mobile Comput-
ing Systems and Applications, Santa Cruz, CA.

312 BIBLIOGRAPHIC REFERENCES

Gupta, A. and W. K. Fuchs (1993). Garbage collection in a distributed object-oriented system.
IEEE Transactions on Knowledge and Data Engineering 5(2), 257–265.

Guy, R. G., P. L. Reiher, D. Ratner, M. Gunter, W. Ma, and G. J. Popek (1999). Rumor: Mobile data
access through optimistic peer-to-peer replication. In ER ’98: Proceedings of the Workshops on
Data Warehousing and Data Mining, pp. 254–265. Springer-Verlag.

Haahr, M., R. Cunningham, and V. Cahill (2000, December). Towards a generic architecture for
mobile object-oriented applications.

Haartsen, J., E. BV, and N. Emmen (2000). The Bluetooth radio system. Personal Communications,
IEEE [see also IEEE Wireless Communications] 7(1), 28–36.

Hagimont, D. and F. Boyer (2001, January). A configurable RMI mechanism for sharing dis-
tributed Java objects. IEEE Internet Computing 5.

Handorean, R., R. Sen, G. Hackmann, and G.-C. Roman (2005). Context aware session manage-
ment for services in ad hoc networks. In IEEE International Conference on Services Computing,
pp. 113–120.

Hayes, B. (1991, October). Using key object opportunism to collect old objects. In A. Paepcke
(Ed.), OOPSLA’91 ACM Conf. on Object-Oriented Systems, Languages and Applications, Volume
26(11) of ACM SIGPLAN Notices, Phoenix, Arizona, pp. 33–46. ACM Press.

Hayton, R., J. Bacon, J. Bates, and K. Moody (1996). Using events to build large scale distributed
applications. Proceedings of the 7th workshop on ACM SIGOPS European workshop: Systems
support for worldwide applications, 9–16.

Herlihy, M. and J. E. B. Moss (1992, May). Lock-free garbage collection for multiprocessors. IEEE
Trans. on Parallel and Dist. Systems 3(3).

Hertel, C. and C. R. Hertel (2003, aug). Implementing CIFS: The Common Internet File System (1
ed.). Prentice Hall PTR.

Hess, C. (2002). A Context File System for Ubiquitous Computing Environments. University of
Illinois at Urbana-Champaign, Urbana-Champaign, CS Technical Report UIUCDCS-R-2002-2285
UILU-ENG-2002-1729, July 2002.

Hosking, A. L. and J. E. B. Moss (1993, September). object fault handling for persistent program-
ming languages: a perfromance evaluation. In ACM Conf. on Object-Oriented PRogramming
Systems, Languages and Applications, 288-303.

HostPulse (2002). Broken-link checker, www.hostpulse.com.

Howard, J. H., M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan, R. N. Sidebotham,
and M. J. West (1988). Scale and performance in a distributed file system. ACM Trans.
Comput. Syst. 6(1), 51–81.

hua Chu, H., H. Song, C. Wong, S. Kurakake, and M. Katagiri (2004). Roam, a seamless applica-
tion framework. J. Syst. Softw. 69(3), 209–226.

BIBLIOGRAPHIC REFERENCES 313

Huang, X., S. M. Blackburn, K. S. McKinley, J. E. B. Moss, Z. Wang, and P. Cheng (2004). The
garbage collection advantage: improving program locality. In J. M. Vlissides and D. C.
Schmidt (Eds.), OOPSLA, pp. 69–80. ACM.

Huang, Y. and H. Garcia-Molina (2004). Publish/subscribe in a mobile environment. Wirel.
Netw. 10(6), 643–652.

Hudak, P. R. and R. M. Keller (1982, August). Garbage collection and task deletion in dist.
applicative processing systems. In Conf. Record of the 1982 ACM Symposium on Lisp and
Functional Programming, Pittsburgh, PA, pp. 168–178. ACM Press.

Hudson, R., R. Morrison, J. E. B. Moss, and D. Munro (1997, October). Garbage collecting the
world: One car at time. In Conf. on Object-Oriented Programming Systems, Languages, and
Applications, Atlanta (U.S.A.).

Hudson, R. L. and J. E. B. Moss (1992, 16–18 September). Incremental garbage collection for
mature objects. See Bekkers and Cohen (1992).

Huebscher, M. and J. McCann (2004). Adaptive middleware for context-aware applications in
smart-homes. Proceedings of the 2nd workshop on Middleware for pervasive and ad-hoc computing,
111–116.

Huebscher, M. C. and J. McCann (2006). An adaptive middleware framework for context-aware
applications. Personal and Ubiquitous Computing 10(1), 12–20.

Huelsbergen, L. and J. R. Larus (1993, May). A concurrent copying garbage collector for lan-
guages that distinguish (im)mutable data. In Fourth Annual ACM Symposium on Principles
and Practice of Parallel Programming, Volume 28(7) of ACM SIGPLAN Notices, San Diego, CA,
pp. 73–82. ACM Press.

Hughes, J. (1985, September). A distributed garbage collection algorithm. In J.-P. Jouannaud
(Ed.), Functional Languages and Computer Architectures, Number 201 in Lecture Notes in Com-
puter Science, Nancy (France), pp. 256–272. Springer-Verlag.

IBM (2003). Enterprise tspaces. (available at http://www.almaden.ibm.com/cs/TSpaces/ets.html).

Ichisuki, Y. and A. Yonezawa (1990, October). Dist. garbage collection using group reference
counting. See Jul and Juul (1990).

Ingham, D., S. Caughey, and M. Little (1996). Fixing the “Broken-Link’’ problem: the W3Objects
approach. Computer Networks and ISDN Systems 28(7–11), 1255–1268.

Ingham, D. B., M. C. Little, S. J. Caughey, and S. K. Shrivastava (1995). W3Objects: Bringing
object-oriented technology to the Web. World-Wide Web Journal 1.

ISO (1986). Iso 8879:1986 - information processing – text and office systems – standard general-
ized markup language (sgml). Technical report.

Iverson, W. (2004). Hibernate: A J2EE (TM) Developer’s Guide.

Iyer, S., A. Rowstron, and P. Druschel (2002). Squirrel: A decentralized peer-to-peer web cache.

314 BIBLIOGRAPHIC REFERENCES

Java Ranch (2001). Java ranch. http://saloon.javaranch.com/cgi-
bin/ubb/ultimatebb.cgi?ubb=get topic&f=26&t=000522.

Jing, J., A. S. Helal, and A. Elmagarmid (1999). Client-server computing in mobile environments.
ACM Comput. Surv. 31(2), 117–157.

Jones, R. (1999). the garbage collection bibliography.
http://www.cs.kent.ac.uk/people/staff/rej/gcbib/gcbib.html.

Jones, R. and R. Lins (1996). Garbage Collection, Algorithms for Automatic Dynamic Memory Man-
agement. Chichester (GB): Wiley. ISBN 0-471-94148-4.

Jones, R. E. and R. D. Lins (1992, December). Cyclic weighted reference counting without delay.
Technical Report 28–92, Computing Laboratory, The University of Kent at Canterbury.

Joseph, A. D., A. F. deLespinasse, J. A. Tauber, D. K. Gifford, and M. F. Kaashoek (1995, De-
cember). Rover: A toolkit for mobile information access. In Proceedings of the 15th ACM
Symposium on Operating Systems Principles, Copper Mountain, Co., pp. 156–171.

Joseph, A. D., J. A. Tauber, and M. F. Kaashoek (1997). Mobile computing with the rover toolkit.
IEEE Transactions on Computers 46(3), 337–352.

Jul, E. and N.-C. Juul (Eds.) (1990, October). OOPSLA/ECOOP ’90 W’shop on Garbage Collection in
Object-Oriented Systems, Ottawa.

Juul, N. C. and E. Jul (1992, September). Comprehensive and robust garbage collection in a
distributed system. In Proc. Int. Workshop on Memory Management, Number 637 in Lecture
Notes in Computer Science, Saint-Malo (France), pp. 103–115. Springer-Verlag.

Kafura, D. G., M. Mukherji, and D. Washabaugh (1995). Concurrent and distributed garbage
collection of active objects. IEEE Trans. Parallel Distrib. Syst. 6(4), 337–350.

Kafura, D. G., D. Washabaugh, and J. Nelson (1990). Garbage collection of actors. In OOP-
SLA/ECOOP, pp. 126–134.

Kapitza, R., H. Schmidt, and F. J. Hauck (2005). Platform-independent object migration in corba.
In OTM Conferences (1), pp. 900–917.

Kappe, F. (1995, February). A Scalable Architecture for Maintaining Referential Integrity in
Distributed Information Systems. Journal of Universal Computer Science 1(2).

Keleher, P., A. Cox, and W. Zwaenepoel (1994, January). TreadMarks: Dist. shared memory on
standard workstations and operating systems. Proc. of the 1994 Winter USENIX Conf..

Keleher, P., A. L. Cox, and W. Zwaenepoel (1992, May). Lazy release consistency for software
distributed shared memory. In Proc. 19th Int. Symposium on Comp. Architecture, Gold Coast
(Australia), pp. 13–21.

Keleher, P. J. and U. Çetintemel (2000). Consistency management in deno. Mobile Networks and
Applications 5(4), 299–309.

BIBLIOGRAPHIC REFERENCES 315

Kermarrec, A., A. Rowstron, M. Shapiro, and P. Druschel (2001, August). The icecube approach
to the reconciliation of divergent replicas. In 20th ACM Symposium on Principles of Distributed
Computing (PODC’01), Newport, RI, USA.

Kiczales, G., J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin (1997).
Aspect-oriented programming. In M. Akşit and S. Matsuoka (Eds.), Proceedings European
Conference on Object-Oriented Programming, Volume 1241, pp. 220–242. Berlin, Heidelberg,
and New York: Springer-Verlag.

Kim, J. and Y. Hsu (2000). Memory system behavior of Java programs: methodology and anal-
ysis. Proceedings of the 2000 ACM SIGMETRICS international conference on Measurement and
modeling of computer systems, 264–274.

Kistijantoro, A. I., G. Morgan, S. K. Shrivastava, and M. C. Little (2003). Component replication
in distributed systems: A case study using enterprise java beans. In SRDS, pp. 89–98.

Kistler, J. J. and M. Satyanarayanan (1992). Disconnected operation in the coda file system. ACM
Transactions on Computer Systems 10(1), 3–25.

Klyne, G., F. Reynolds, and C. W. et al. (2003). Composite Capability/Preference Profiles
(CC/PP): Structure and Vocabularies. Technical report, W3C Working Draft 25.

Kolodner, E. K., B. Liskov, and W. Weihl (1989, June). Atomic garbage collection: Managing
a stable heap. SIGMOD Record 18(2), 15–25. Proc. of 1989 ACM SIGMOD Int’l Conf. on
Management of Data.

Kolodner, E. K. and W. E. Weihl (1993, May). Atomic incremental garbage collection and recov-
ery for large stable heap. In P. Buneman and S. Jajodia (Eds.), Proc. of 1993 ASM SIGMOD
Int’l Conf. on the Management of Data, Washington, DC, pp. 177–186. Also MIT/LCS/TR-534,
February, 1992.

Kordale, R. and M. Ahamad (1993, October). A scalable cyclic garbage detection algorithm for
dist. systems. In E. Moss, P. R. Wilson, and B. Zorn (Eds.), OOPSLA/ECOOP ’93 W’shop on
Garbage Collection in Object-Oriented Systems.

Kordale, R., M. Ahamad, and M. Devarakonda (1996). Object caching in a CORBA-compliant
system. In Proceedings of the 2nd USENIX Conference on Object-Oriented Technologies and Sys-
tems (COOTS). USENIX.

Kordale, R., M. Ahamad, and J. Shilling (1993). Dist./concurrent garbage collection in dist.
shared memory systems. In Int’l W’shop on Object Orientation in Operating Systems.

Ku, K.-I. and Y.-S. Kim (2000). Moflex transaction model for mobile heterogeneous multi-
database systems. In Proceedings of the 10th International Workshop on Research Issues in Data
Engineering, San Diego, California.

Kubiatowicz, J., D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, C. Wells, and B. Zhao (2000). Oceanstore: an architecture for global-scale
persistent storage. In ASPLOS-IX: Proceedings of the ninth international conference on Architec-
tural support for programming languages and operating systems, pp. 190–201. ACM Press.

316 BIBLIOGRAPHIC REFERENCES

Kumar, P. and M. Satyanarayanan (1993). Supporting application-specific resolution in an opti-
mistically replicated file system. In Workshop on Workstation Operating Systems, pp. 66–70.

Ladin, R. and B. Liskov (1992, June). Garbage collection of a distributed heap. In Int. Conf. on
Distributed Computing Sys., Yokohama (Japan), pp. 708–715.

Lang, B., C. Quenniac, and J. Piquer (1992, January). Garbage collecting the world. In Conf.
Record of the Nineteenth Annual ACM Symposium on Principles of Programming Languages,
ACM SIGPLAN Notices, pp. 39–50. ACM Press.

Lange, D. B. and M. Oshima (1998). Programming and Deploying Java Mobile Agents with Aglets.
Addison-Wesley.

Lawrence, S., D. M. Pennock, G. W. Flake, R. Krovetz, F. M. Coetzee, E. Glover, F. A. Nielsen,
A. Kruger, and C. L. Giles (2001, February). Persistence of web references in scientific re-
search. IEEE Computer vol 34(2).

Le Sergent, T. and B. Berthomieu (1992, September). Incremental multi-threaded garbage col-
lection on virtually shared memory architectures. In Proc. Int. Workshop on Memory Manage-
ment, Number 637 in Lecture Notes in Computer Science, Saint-Malo (France), pp. 179–199.
Springer-Verlag.

Leach, P. and D. Perry (1996, nov). Cifs: A common internet file system. Microsoft Internet
Developer.

Lecluse, C., P. Richard, and F. Velez (1988). O2, an object-oriented data model. In SIGMOD ’88:
Proceedings of the 1988 ACM SIGMOD international conference on Management of data, New
York, NY, USA, pp. 424–433. ACM Press.

Lemar, E. (2001, May). The design and evaluation of a storage system for pervasive computing.
Technical report, Mew York University.

Lermen, C.-W. and D. Maurer (1986, August). A protocol for dist. reference counting. In Conf.
Record of the 1986 ACM Symposium on Lisp and Functional Programming, ACM SIGPLAN
Notices, Cambridge, MA, pp. 343–350. ACM Press.

Leser, N. (1992, November). The Distributed Computing Environment naming architecture. In
OpenForum, Utrecht (NL), pp. 101–117.

Levanoni, Y. and E. Petrank (2001). An on-the-fly reference counting garbage collector for java.
In OOPSLA, pp. 367–380.

Levanoni, Y. and E. Petrank (2006). An on-the-fly reference-counting garbage collector for java.
ACM Trans. Program. Lang. Syst. 28(1), 1–69.

Li, G. and H.-A. Jacobsen (2005). Composite subscriptions in content-based publish/subscribe
systems. In G. Alonso (Ed.), Middleware, Volume 3790 of Lecture Notes in Computer Science,
pp. 249–269. Springer.

Li, K. and P. Hudak (1986). Memory coherence in shared virtual memory systems. In Proceedings
of the 5th ACM Symposium on Principles of Distributed Computing (PODC), New York, NY, pp.
229–239. ACM Press.

BIBLIOGRAPHIC REFERENCES 317

Li, K. and P. Hudak (1989). Memory coherence in shared virtual memory systems. ACM Trans-
actions on Computer Systems 7(4), 321–359.

Lieberman, H. and C. E. Hewitt (1983). A real-time garbage collector based on the lifetimes of
objects. Comm. of the ACM 26(6), 419–29. Also report TM–184, Laboratory for Computer
Science, MIT, Cambridge, MA, July 1980 and AI Lab Memo 569, 1981.

Lindholm, T. and F. Yellin (1996). The Java(TM) Virtual Machine Specification (1st ed.). Addison-
Wesley.

LinkAlarm (1998). Linkalarm, http://www.linkalarm.com/.

Lins, R. (2002a). Efficient cyclic weighted reference counting. In 14th Symposium on Computer
Architecture and High Performance Computing (SCAB-PAD’02). IEEE.

Lins, R. (2005). A new multi-processor architecture for parallel lazy cyclic reference counting.
In 17th International Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD’05). IEEE.

Lins, R. D. (1992a). Cyclic reference counting with lazy mark-scan. Information Processing Let-
ters 44(4), 215–220. Also Computing Laboratory Technical Report 75, University of Kent,
July 1990.

Lins, R. D. (1992b, September). Generational cyclic reference counting. Technical Report 22-92*,
University of Kent, Canterbury, UK.

Lins, R. D. (2002b). An efficient algorithm for cyclic reference counting. Inf. Process. Lett. 83(3),
145–150.

Lins, R. D. and R. E. Jones (1993, May). Cyclic weighted reference counting. In K. Boyanov
(Ed.), Procedings of WP & DP’93 W’shop on Parallel and Dist. Processing. North Holland. Also
Computing Laboratory Technical Report 95, University of Kent, December 1991.

Lins, R. D. and M. A. Vasques (1991, August). A comparative study of algorithms for cyclic
reference counting. Technical Report 92, Computing Laboratory, The University of Kent at
Canterbury.

Liskov, B. (1989, April). A design a fault-tolerant, distributed implementation of Linda. Pro-
gramming Methodology Group Memo 65, Massachusetts Institute of Technology, Labora-
tory for Computer Science, Cambridge, MA (USA).

Liskov, B., M. Castro, L. Shrira, and A. Adya (1999). Providing persistent objects in distributed
systems. In ECOOP ’99: Proceedings of the 13th European Conference on Object-Oriented Pro-
gramming, London, UK, pp. 230–257. Springer-Verlag.

Liskov, B., M. Day, and L. Shrira (1992, August). Distributed object management in Thor. In Proc.
Int. Workshop on Distributed Object Management, Edmonton (Canada), pp. 1–15.

Liskov, B. and R. Ladin (1986, August). Highly-available distributed services and fault-tolerant
distributed garbage collection. In Proceedings of the 5th Symposium on the Principles of Dis-
tributed Computing, Vancouver (Canada), pp. 29–39. ACM.

318 BIBLIOGRAPHIC REFERENCES

Lo, C., M. Chang, O. Frieder, and D. Grossman (2002). The object behavior of Java object-oriented
database management systems. Information Technology: Coding and Computing, 2002. Proceed-
ings. International Conference on, 247–252.

Louboutin, S. R. and V. Cahill (1997). Comprehensive dist. garbage collection by tracking causal
dependencies of relevant mutator events. In Proc. of ICDCS’97 Int’l Conf. on Dist. Computing
Systems. IEEE Press.

Lowry, M. C. (2004, dec). A new approach to the train algorithm for distributed garbage collection. Ph.
D. thesis, Adelaide University, Australia.

Lowry, M. C. and D. S. Munro (2002). Safe and complete distributed garbage collection with the
train algorithm. In 9th International Conference on Parallel and Distributed Systems (ICPADS
2002), 17-20 December 2002, Taiwan, ROC, pp. 651–658.

Lu, Q. and M. Satyanarayanan (1995). Improving data consistency in mobile computing using
isolation-only transactions. In Fifth IEEE HotOS Topics Workshop, Orcas Island, WA, USA.

Löwy, J. (2001). COM and .NET Component Services. O’Reilly Windows.

Maassen, J., T. Kielmann, and H. E. Bal (2000). Efficient replicated method invocation in java. In
Java Grande, pp. 88–96.

Maheshwari, U. (1994, September). Fault-tolerant dist. garbage collection in a client-server
object-oriented database. In Third Int’l Conf. on Parallel and Dist. Information Systems, Austin.

Maheshwari, U. and B. Liskov (1995). Collecting cyclic dist. garbage by controlled migration. In
Proc. of PODC’95 Principles of Dist. Computing. Later appeared in Dist. Computing, Springer
Verlag, 1996.

Maheshwari, U. and B. Liskov (1997a). Collecting cyclic dist. garbage by back tracing. In Proc.
of PODC’97 Principles of Dist. Computing.

Maheshwari, U. and B. Liskov (1997b). Collecting cyclic distributed garbage by controlled mi-
gration. Distributed Computing 10(2), 79–86.

Maheshwari, U. and B. Liskov (1997c). Partitioned garbage collection of a large object store. In
Proc. of SIGMOD’97.

Makpangou, M. and M. Shapiro (1988, March). The SOS object-oriented communication service.
Rapport de Recherche 801, Institut National de la Recherche en Informatique et Automa-
tique, Rocquencourt (France).

Malena, V. and M. Hapner (1999, dez). Enterprise javabeans(tm) specification 1.1 final release.
Technical report, Sun Microsystems.

Mamei, M., F. Zambonelli, and L. Leonardi (2003). Tuples on the air: A middleware for context-
aware computing in dynamic networks. In ICDCSW ’03: Proceedings of the 23rd International
Conference on Distributed Computing Systems, Washington, DC, USA, pp. 342. IEEE Computer
Society.

BIBLIOGRAPHIC REFERENCES 319

Maniatis, P., D. S. H. Rosenthal, M. Roussopoulos, M. Baker, T. Giuli, and Y. Muliadi (2003).
Preserving peer replicas by rate-limited sampled voting. In SOSP ’03: Proceedings of the
nineteenth ACM symposium on Operating systems principles, New York, NY, USA, pp. 44–59.
ACM Press.

Maniatis, P., M. Roussopoulos, T. J. Giuli, D. S. H. Rosenthal, and M. Baker (2005). The lockss
peer-to-peer digital preservation system. ACM Trans. Comput. Syst. 23(1), 2–50.

Marion, S. and R. Jones (2005). GCspy port to SSCLI (Rotor). presented at the 5th UK Memory
Management Network Workshop.

Martinez, A. D., R. Wachenchauzer, and R. D. Lins (1990). Cyclic reference counting with local
mark-scan. Information Processing Letters 34, 31–35.

Mascolo, C., L. Capra, and W. Emmerich (2001). An xml-based middleware for peer-to-peer
computing. In P2P ’01: Proceedings of the First International Conference on Peer-to-Peer Com-
puting (P2P’01), pp. 69. IEEE Computer Society.

Mascolo, C., L. Capra, and W. Emmerich (2002a). Mobile computing middleware. pp. 20–58.

Mascolo, C., L. Capra, S. Zachariadis, and W. Emmerich (2002b). Xmiddle: A data-sharing
middleware for mobile computing. Wirel. Pers. Commun. 21(1), 77–103.

Mattern, F. (1989). Virtual time and global states of distributed systems. Parallel and Distributed
Algorithms, 215–226.

McBeth, J. H. (1963, September). On the reference counter method. Comm. of the ACM 6(9), 575.

McCarthy, J. (1960). Recursive functions of symbolic expressions and their computation by ma-
chine. Comm. of the ACM 3, 184–195.

McFadden, T., K. Henricksen, J. Indulska, and P. Mascaro (2005). Applying a Disciplined Ap-
proach to the Development of a Context-Aware Communication Application. 3rd IEEE In-
ternational Conference on Pervasive Computing and Communications (PerCom), IEEE Computer
Society (2005), 300–306.

McKeown, M. (2003, jun). .net enterprise services and com+ 1.5 architecture. Technical report,
Microsoft Corporation.

McLean, S., J. Naftel, and K. Williams (2002). Microsoft .NET Remoting. Microsoft Press.

McObject (2003). Perst - simple, fast, convenient object oriented database.
http://www.perst.org.

Messer, A., I. Greenberg, P. Bernadat, D. Milojicic, D. Chen, T. J. Giuli, and X. Gu (2002). To-
wards a distributed platform for resource-constrained devices. In Proceedings of the 22nd In-
ternational Conference on Distributed Computing Systems (ICDCS’02), pp. 43. IEEE Computer
Society.

Microsoft (1996, out). Activex data objects. Technical report, Microsoft.

320 BIBLIOGRAPHIC REFERENCES

Minsky, M. L. (1963, December). A Lisp garbage collector algorithm using serial secondary
storage. Technical Report Memo 58 (rev.), Project MAC, MIT, Cambridge, MA.

Miranda, H., A. Pinto, and L. Rodrigues (2001). Appia, a flexible protocol kernel supporting
multiple coordinated channels. Proceedings of the 21st International Conference on Distributed
Computing Systems, 707–710.

Mocito, J., L. Rosa, N. Almeida, H. Miranda, L. Rodrigues, and A. Lopes (2006). Context adap-
tation of the communication stack. International Journal of Parallel, Emergent and Distributed
Systems 21(3), 169–181.

Mohamed-Ali, K. A. (1984, December). Object Oriented Storage Management and Garbage Collection
in Dist. Processing Systems. Ph. D. thesis, Royal Institute of Technology, Stockholm.

Monson-Haefel, R. (2000, mar). Enterprise JavaBeans. (2nd ed.). O’Reilly Press.

Montanari, R. and G. Tonti (2002, June). A policy-based infrastructure for the dynamic control of
agent mobility. In Proceedings of the IEEE 3rd International Workshop on Policies for Distributed
Systems and Networks, Monterrey (USA).

Moon, D. A. (1984, August). Garbage collection in a large LISP system. See Steele (1984), pp.
235–245.

Moreau, L. (1998a, September). A Distributed Garbage Collector with Diffusion Tree Reor-
ganisation and Object Mobility. In Proc. of the Third Int’l Conf. of Functional Programming
(ICFP’98).

Moreau, L. (1998b, October). Hierarchical Distributed Reference Counting. In Proc. of the First
Int’l Symposium on Memory Management (ISMM’98).

Moreau, L. (2001). Tree rerooting in distributed garbage collection: Implementation and perfor-
mance evaluation. Higher Order Symbol. Comput. 14(4), 357–386.

Moreau, L., P. Dickman, and R. Jones (2003, July). Birrell’s distributed reference listing revisited.
Technical Report 8–03, University of Kent, Canterbury. (later accepted for publication in
ACM Transactions On Programming Languages And Systems as vol.27(6), 2005).

Moreau, L., P. Dickman, and R. Jones (2005). Birrell’s distributed reference listing revisited. ACM
Trans. Program. Lang. Syst. 27(6), 1344–1395.

Moreau, L. and N. Gray (1998). A community of agents maintaining link integrity in the world
wide web. In Proceedings of the 3rd International Conference on the Practical Applications of
Agents and Multi-Agent Systems (PAAM-98), London, UK.

Moss, J. E. B. (1989, June). Addressing large distributed collections of persistent objects: The
Mneme project’s approach. In Proceedings of the Second International Workshop on Database
Programming Languages, Gleneden Beach, OR (USA). Also available as COINS Technical
Report 89–68, Object-Oriented Systems Laboratory, Dept. of Computer and Information
Science, University of Massachusetts, Amherst.

BIBLIOGRAPHIC REFERENCES 321

Moss, J. E. B., D. S. Munro, and R. L. Hudson (1996, May). PMOS: A complete and coarse-grained
incremental garbage collector for persistent object stores. In Proc. of the 6th Int. Workshop on
Persistent Object Systems, Cape May NJ (USA).

Mueller, J., D. Polansky, P. Novak, C. Foltin, and D. Polivaev (2003). Freemind - free mind
mapping software. http://freemind.sourceforge.net/wiki/index.php/Main Page.

Munro, D. S. and A. L. Brown (2001). Evaluating partition selection policies using the pmos
garbage collector. In POS-9: Revised Papers from the 9th International Workshop on Persistent
Object Systems, London, UK, pp. 125–137. Springer-Verlag.

Murphy, A., G. Picco, and G. Roman (2001). Lime: A Middleware for Physical and Logical
Mobility. Proceedings of the 21 stInternational Conference on Distributed Computing Systems,
524–533.

Muthukumar, R. and D. Janakiram (2006, feb). Yama: A scalable generational garbage collector
for java in multiprocessor systems. IEEE Transactions on Parallel and Distributed Systems 17(2),
148–159.

Narasimhan, N., L. Moser, and P. Melliar-Smith. Transparent Consistent Replication of Java
RMI Objects. Second International Symposium, Distributed Objects & Applications (DOA 2000),
17–26.

Narasimhan, N., L. Moser, and P. Melliar-Smith (2001). Interceptors for Java Remote Method
Invocation. Concurrency and Computation Practice and Experience 13(8-9), 755–774.

Nettles, S., J. O’Toole, D. Pierce, and N. Haines (1992, September). Replication-based incremental
copying collection. In Proc. Int. Workshop on Memory Management, Number 637 in Lecture
Notes in Computer Science, Saint-Malo (France), pp. 357–364. Springer-Verlag.

Network Working Group (1989). Network file system, request for comments: 1094.

Network Working Group (1996). Hypertext transfer protocol, request for comments: 1945.

Nicoloudis, N. and D. Pratistha (2003, jul). .net compact framework mobile web
server architecture. http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnnetcomp/html/NETCFMA.asp, Monash University, Caulfield, Australia & MSDN,
Microsoft.

Niederst, J. (1999). HTML Pocket Reference (1 ed.). OReilly.

Nilsson, M., J. Hjelm, and H. Ohto (2000). Composite Capabilities/Preference Profiles: Require-
ments and Architecture. Technical report, W3C Working Draft 21.

Noble, B., M. Satyanarayanan, and M. Price (1995). A programming interface for application-
aware adaptation in mobile computing. In MLICS ’95: Proceedings of the 2nd Symposium on
Mobile and Location-Independent Computing, Berkeley, CA, USA, pp. 57–66. USENIX Associa-
tion.

322 BIBLIOGRAPHIC REFERENCES

Noble, B. D., M. Satyanarayanan, D. Narayanan, J. E. Tilton, J. Flinn, and K. R. Walker (1997).
Agile application-aware adaptation for mobility. In SOSP ’97: Proceedings of the sixteenth
ACM symposium on Operating systems principles, New York, NY, USA, pp. 276–287. ACM
Press.

Norcross, S., R. Morrison, D. S. Munro, H. Detmold, and K. E. Falkner (2005). Implementing a
family of distributed garbage collectors. Journal of Research and Practice in Information Tech-
nology 37(1).

Nori, A. K. (1979). A storage reclamation system for an applicative multiprocessor system. Mas-
ter’s thesis, University of Utah, Salt Lake City, Utah.

Novell (2004). The mono project. http://www.mono-project.com/.

Nunn, M. (2005, jun). An overview of sql server 2005 for the database developer. Technical
report, Microsoft.

Object Management Group (2002). Corba component model (ccm). Technical report, Object
Management Group, Inc.

ObjectSpace, I. (1997, September). Objectspace voyager core technology. Objectspace technical
report, ObjectSpace, Inc.

O’Neill, E. T., B. F. Lavoie, and R. Bennett (2003). Trends in the evolution of the public web 1998
- 2002. D-Lib Magazine 9(4).

O’Toole, J., S. Nettles, and D. Gifford (1993, December). Concurrent compacting garbage col-
lection of a persistent heap. In Proceedings of the 14th ACM Symposium on Operating Systems
Principles, Asheville, NC (USA), pp. 161–174.

Pairot, C., P. Garcı́a, and A. F. G. Skarmeta (2004). Dermi: A decentralized peer-to-peer event-
based object middleware. In ICDCS ’04: Proceedings of the 24th International Conference on
Distributed Computing Systems (ICDCS’04), pp. 236–243. IEEE Computer Society.

Pallickara, S. and G. Fox (2003). NaradaBrokering: A Distributed Middleware Framework and
Architecture for Enabling Durable Peer-to-Peer Grids. Proceedings of the International Mid-
dleware Conference.

Parlavantzas, N., G. Coulson, and G. Blair (2003, june). A resource adaptation framework for re-
flective middleware. In The 2nd International Workshop on Reflective and Adaptive Middleware,
Middleware 2003, Rio de Janeiro, Brazil.

Paterson, J., S. Edlich, H. Hörning, and R. Hörning (2006). The Definitive Guide to db4o.

Patterson, L. I., R. S. Turner, and R. M. Hyatt (1993). Construction of a fault-tolerant distributed
tuple-space. In SAC ’93: Proceedings of the 1993 ACM/SIGAPP symposium on Applied comput-
ing, pp. 279–285. ACM Press.

Pereira, P., L. Veiga, and P. Ferreira (2006, october). Extending .net remoting with distributed
garbage collection. In 2nd International Conference on Innovative Views for .Net Technologies
(IV.Net 2006), Lecture Notes in Computer Science, Brazil. Springer-Verlag.

BIBLIOGRAPHIC REFERENCES 323

Petersen, K., M. Spreitzer, D. Terry, M. Theimer, and A. Demers (1997, December). Flexible
update propagation for weakly consistent replication. In Proc. of the 16th ACM Symposium
on Operating Systems Principles, Saint-Malo (France), pp. 288–301. ACM.

Petrovic, M., I. Burcea, and H.-A. Jacobsen (2003). S-topss: Semantic toronto publish/subscribe
system. In VLDB, pp. 1101–1104.

Philippsen, M. (2000, May). Cooperating distributed garbage collectors for clusters and beyond.
Concurrency: Practice and Experience 12(7), 595–610.

Piquer, J. M. (1991, June). Indirect reference-counting, a distributed garbage collection algorithm.
In PARLE’91—Parallel Architectures and Languages Europe, Volume 505 of Lecture Notes in
Computer Science, Eindhoven (the Netherlands), pp. 150–165. Springer-Verlag.

Piquer, J. M. (1996, September). Indirect dist. garbage collection: Handling object migration.
ACM Trans. on Programming Languages and Systems 18(5), 615–647.

Pitoura, E. and B. K. Bhargava (1999). Data consistency in intermittently connected distributed
systems. Knowledge and Data Engineering 11(6), 896–915.

Plainfossé, D. and M. Shapiro (1995, September). A survey of distributed garbage collection
techniques. In Proc. Int. Workshop on Memory Management, Kinross Scotland (UK).

Platt, D. (1999). Understanding COM+. Microsoft Press.

Platt, D. S. (2001). Introducing Microsoft .Net. Microsoft Press. ISBN: 0-7356-1377-X.

Popek, G. J., R. G. Guy, T. W. Page, Jr., and J. S. Heidemann (1990, November). Replication in
Ficus distributed file systems. In Proceedings of the Workshop on Management of Replicated
Data, pp. 20–25. University of California, Los Angeles: IEEE.

Prasad, S. K., V. K. Madisetti, S. B. Navathe, R. Sunderraman, E. Dogdu, A. G. Bourgeois,
M. Weeks, B. Liu, J. Balasooriya, A. Hariharan, W. Xie, P. Madiraju, S. Malladi, R. Sivaku-
mar, A. Zelikovsky, Y. Zhang, Y. Pan, and S. Belkasim (2004, oct). Syd: A middleware
testbed for collaborative applications over small heterogeneous devices and data stores. In
ACM/IFIP/USENIX International Middleware Conference, Toronto, Canada, pp. 352–371.

Preguiça, N., C. Baquero, J. L. Martins, M. Shapiro, P. S. Almeida, H. Domingos, V. Fonte, and
S. Duarte (2005). Few: File management for portable devices. In International Workshop on
Software Support for Portable Storage.

Preguiça, N., C. Baquero, F. Moura, J. L. Martins, R. Oliveira, H. J. L. Domingos, J. O. Pereira,
and S. Duarte (2000). Mobile transaction management in mobisnap. In ADBIS-DASFAA,
pp. 379–386.

Preguiça, N., J. L. Martins, M. Cunha, and H. Domingos (2003). Reservations for conflict avoid-
ance in a mobile database system. In Proc. of the 1st Usenix Int’l Conference on Mobile Systems,
Applications and Services (Mobisys 2003).

Preguiça, N., M. Shapiro, and J. L. Martins (2003a). Sqlicecube: Automatic sematics-based rec-
onciliation for mobile databases. Technical report, DI-FCT-UNL TR-02-2003.

324 BIBLIOGRAPHIC REFERENCES

Preguiça, N. M., J. L. Martins, S. Duarte, and H. J. L. Domingos (2001). Supporting disconnected
operation in doors. In Proceedings of HotOS-VIII: 8th Workshop on Hot Topics in Operating
Systems, May 20-23, 2001, Elmau/Oberbayern, Germany, pp. 179.

Preguiça, N. M., M. Shapiro, and C. Matheson (2003b). Semantics-based reconciliation for col-
laborative and mobile environments. In CoopIS/DOA/ODBASE, pp. 38–55.

Printezis, T. and A. Garthwaite (2002). Visualising the train garbage collector. In MSP/ISMM,
pp. 157–170.

Printezis, T. and R. Jones (2002). GCspy: an adaptable heap visualisation framework. ACM Press
New York, NY, USA.

Queinnec, C., B. Beaudoing, and J.-P. Queille (1989). Mark DURING Sweep rather than Mark
THEN Sweep. Lecture Notes in Computer Science 365, 224–237.

R. Srinivasan, Network Working Group, S. M. I. (1995). Rpc: Remote procedure call protocol
specification version 2, request for comments: 1831.

Ramamritham, K. and P. K. Chrysanthis (1996). A taxonomy of correctness criterion in database
applications. Journal of Very Large Databases 4(1).

Rana, S. P. (1983, July). A dist. solution to the dist. termination problem. Information Processing
Letters 17, 43–46.

Ratner, D., P. Reiher, and G. J. Popek (2004). Roam: a scalable replication system for mobility.
Mob. Netw. Appl. 9(5), 537–544.

Ratner, D., P. Reiher, G. J. Popek, and G. H. Kuenning (2001). Replication requirements in mobile
environments. Mob. Netw. Appl. 6(6), 525–533.

Reich, V. and D. Rosenthal (2001, June). Lockss: A permanent web publishing and access system.
D-Lib M’zine 7.

Reingold, E. M. (1973, May). A non-recursive list moving algorithm. Comm. of the ACM 16(5),
305–307.

Rhea, S., P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubiatowicz (2003). Pond:
The oceanstore prototype. In Proceedings of the Conference on File and Storage Technologies.
USENIX.

Richer, N. and M. Shapiro (2000). The memory behavior of the WWW, or the WWW considered
as a persistent store. In POS 2000, pp. 161–176.

Rodrigues, H. and R. Jones (1998). Cyclic distributed garbage collection with group merger.
Lecture Notes in Computer Science 1445, 260.

Rodrigues, H. C. C. D. and R. E. Jones (1996, October). A cyclic dist. garbage collector for Net-
work Objects. In O. Babaoglu and K. Marzullo (Eds.), Tenth Int’l W’shop on Dist. Algorithms
WDAG’96, Volume 1151 of Lecture Notes in Computer Science, Bologna. Springer-Verlag.

BIBLIOGRAPHIC REFERENCES 325

Rodrigues da Silva, A., A. Romão, D. Deugo, and M. M. da Silva (2001). Towards a reference
model for surveying mobile agent systems. Autonomous Agents and Multi-Agent Systems 4(3),
187–231.

Rodriguez, P., C. Spanner, and E. Biersack (2001). Analysis of web caching architectures: Hier-
archical and distributed caching.

Rodriguez-Rivera, G. and V. Russo (1997). Cyclic distributed garbage collection without global
synchronization in corba. In OOPSLA’97 GC & MM Workshop.

Roman, M., C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, and K. Nahrstedt (2002a).
Gaia: a middleware platform for active spaces. SIGMOBILE Mob. Comput. Commun.
Rev. 6(4), 65–67.

Roman, M., C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, and K. Nahrstedt (2002b).
A middleware infrastructure for active spaces. IEEE Pervasive Computing 1(4), 74–83.

Rosenthal, D. and V. Reich (2000, June). Permanent web publishing. In Freenix Track, Usenix
Annual Technical Conference, Usenix, Berkeley, California.

Rudalics, M. (1990). Correctness of distributed garbage collection algorithms. Technical Report
90-40.0, Johannes Kepler Universitat, Linz Austria.

Russel, C. (2002, apr). Javatm data objects specification (jsr 12): Final release. Technical report,
Sun Microsystems.

Russel, C. (2003, may). Javatm data objects specification (jsr 12): Final release 2. Technical report,
Sun Microsystems.

Russel, C. (2005, aug). Javatm data objects 2 specification (jsr 243): Proposed final draft. Technical
report, Sun Microsystems.

Russel, C. (2006, feb). Javatm data objects 2 specification (jsr 243): Final release. Technical report,
Sun Microsystems.

S. Shepler, e. a. (2003). Network file system, request for comments: 3530.

Saito, Y. and M. Shapiro (2005). Optimistic replication. ACM Comput. Surv. 37(1), 42–81.

Salber, D., A. K. Dey, and G. D. Abowd (1999). The Context Toolkit: Aiding the Development
of Context-Enabled Applications. In CHI ’99: Proceedings of the SIGCHI conference on Human
factors in computing systems, pp. 434–441. ACM Press.

Samples, A. D. (1992, 16–18 September). Garbage collection-cooperative C++. See Bekkers and
Cohen (1992).

Sanchez, A., L. Veiga, and P. Ferreira (2001, January). Distributed garbage collection for wide
area replicated memory. In Proc. of the Sixth USENIX Conf. on Object-Oriented Technologies
and Systems (COOTS’01), San Antonio (USA).

Santos, N., L. Veiga, and P. Ferreira (2004). Transaction policies for mobile networks. In 5th IEEE
International Workshop on Policies for Dist. Systems and Networks(Policy 2004).

326 BIBLIOGRAPHIC REFERENCES

Satyanarayanan, M. (1996). Fundamental challenges in mobile computing. In Symposium on
Principles of Distributed Computing, pp. 1–7.

Satyanarayanan, M. (2002). The evolution of coda. ACM Trans. Comput. Syst. 20(2), 85–124.

Schilit, B., N. Adams, and R. Want (1994). Context-aware computing applications. In IEEE
Workshop on Mobile Computing Systems and Applications, Santa Cruz, CA, US.

Serrano-Alvarado, P., C. Roncancio, and M. Adiba (2004). A survey of mobile transactions.
Distrib. Parallel Databases 16(2), 193–230.

Sessions, R. (1998, December). COM and DCOM: Microsoft’s Vision for Dist. Objects. Wiley. ISBN
0-471-19381-X.

Shannon, B. (2001, aug). Java 2 platform, enterprise edition 1.3 specification (jsr 58): Final release.
Technical report, Sun Microsystems.

Shannon, B. (2003, nov). Java 2 platform, enterprise edition 1.4 (j2ee 1.4) specification (jsr 151):
Final release. Technical report, Sun Microsystems.

Shannon, B. (2006, may). Java platform, enterprise edition 1.5 (jee 1.5) specification (jsr 244):
Final release. Technical report, Sun Microsystems.

Shapiro, M. (1986, May). Structure and encapsulation in distributed systems: the proxy princi-
ple. In Proc. of the 6th Intl. Conf. on Dist. Systems, Boston, pp. 198–204.

Shapiro, M. (1991a, September). A fault-tolerant, scalable, low-overhead dist. garbage collection
protocol. In Proc. of the Tenth Symposium on Reliable Dist. Systems, Pisa.

Shapiro, M. (1991b, July). Soul: An object-oriented OS framework for object support. In Workshop
on Operating Systems for the Nineties and Beyond, Dagstuhl Castle, Germany, pp. 251–255.
Springer-Verlag.

Shapiro, M., P. Dickman, and D. Plainfossé (1992a, August). Robust, dist. references and acyclic
garbage collection. In Symposium on Principles of Dist. Computing, Vancouver, Canada.

Shapiro, M., P. Dickman, and D. Plainfossé (1992b, November). SSP chains: Robust, dist. refer-
ences supporting acyclic garbage collection. Rapports de Recherche 1799, Institut National
de la Recherche en Informatique et Automatique. Also available as Broadcast Technical
Report 1.

Shapiro, M., F. L. Fessant, and P. Ferreira (2000). Recent advances in distributed garbage collec-
tion. Lecture Notes in Computer Science 1752, 104.

Shapiro, M., O. Gruber, and D. Plainfossé (1990, November). A garbage detection protocol for
a realistic dist. object-support system. Rapports de Recherche 1320, INRIA-Rocquencourt.
Superseded by (Shapiro 1991a).

Shapiro, M., N. Preguiça, and J. O’Brien (2004, jan). Rufis: mobile data sharing using a generic
constraint-oriented reconciler. In IEEE International Conference on Mobile Data Management
(MDM 2004).

BIBLIOGRAPHIC REFERENCES 327

Siegel, J. (1996). CORBA Fundamentals and Programming. John Wiley & Sons, Inc.

Sinha, A. (1992). Client-server computing. Commun. ACM 35(7), 77–98.

Skubiszewski, M. and N. Porteix (1996, April). GC-consistent cuts of databases. Rapport de
recherche 2681, Institut National de la Recherche en Informatique et Automatique, rocquen-
court. ftp://ftp.inria.fr/INRIA/publication/RR/RR-2681.ps.gz.

Skubiszewski, M. and P. Valduriez (1997). Concurrent garbage collection in O2. In M. Jarke,
M. J. Carey, K. R. Dittrich, F. H. Lochovsky, P. Loucopoulos, and M. A. Jeusfeld (Eds.), Proc.
of 23rd Int’l Conf. on Very Large Databases, Athens, pp. 356–365. Morgan Kaufman.

Sousa, P., M. Sequeira, A. Zúquete, P. Ferreira, C. Lopes, J. Pereira, P. Guedes, and J. Marques
(1993, nov). Distribution and persistence in the ik platform. Computing Systems Journal 6(4).

Steele, G. L. (1975, September). Multiprocessing compactifying garbage collection. Comm. of the
ACM 18(9), 495–508.

Steele, G. L. (1976, June). Corrigendum: Multiprocessing compactifying garbage collection.
Comm. of the ACM 19(6), 354.

Steele, G. L. (Ed.) (1984, August). Conf. Record of the 1984 ACM Symposium on Lisp and Functional
Programming, Austin, Texas. ACM Press.

Stutz, D. (2002, march). The microsoft shared source cli implementation. MSDN Library Article,
Microsoft Corporation.

Sun Microsystems (2001). Sun java bug database, sun developer network.
http://bugs.sun.com/bugdatabase/view bug.do?bug id=4403367.

Sun Microsystems (2004). Java rmi documentation.
http://java.sun.com/j2se/1.5.0/docs/guide/rmi/spec/rmiTOC.html.

Sundell, H. (2005). Wait-free reference counting and memory management. In 19th International
Parallel and Distributed Processing Symposium (IPDPS 2005), 4-8 April 2005, Denver, CA, USA.

Swaminathan, N. and S. Raghavan (2000, August). Intelligent prefetch in www using client be-
havior characterization. In 8th International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems, pp. 13–19.

Taivalsaari, A. (2000, may). J2me connected, limited device configuration (cldc) version 1.0 (jsr
30): Final release. Technical report, Sun Microsystems.

Taivalsaari, A. (2003, march). J2me connected, limited configuration (cldc) version 1.1 (jsr 139):
Final release. Technical report, Sun Microsystems.

Talia, D. and P. Trunfio (2003). Toward a Synergy Between P2P and Grids. IEEE Internet Comput-
ing 7(04), 96–95.

Tam, D., R. Azimi, and H. Jacobsen (2003). Building Content-Based Publish/Subscribe Systems
with Distributed Hash Tables. Proceedings of International Workshop on Databases, Information
Systems and Peer-to-Peer Computing, 138–152.

328 BIBLIOGRAPHIC REFERENCES

Tel, G. and F. Mattern (1993, January). The derivation of dist. termination detection algorithms
from garbage collection schemes. ACM Trans. on Programming Languages and Systems 15(1).

Tel, G., R. B. Tan, and J. van Leeuwen (1987). The derivation of on-the-fly garbage collection
algorithms from dist. termination detection protocols. Lecture Notes in Computer Science 247,
445–455.

Tennison, J. (2001). XSLT and XPath On The Edge (1 ed.). Wiley.

Terry, D. B., K. Petersen, M. Spreitzer, and M. Theimer (1998). The case for non-transparent
replication: Examples from bayou. IEEE Data Eng. Bull. 21(4), 12–20.

Terry, D. B., M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and C. H. Hauser (1995).
Managing update conflicts in bayou, a weakly connected replicated storage system. In
Proceedings of the fifteenth ACM symposium on Operating systems principles, pp. 172–182. ACM
Press.

Thompson, D. and C. Miller (2006, sep). Microsoft’s.net microframework, product positioning
and technology whitepaper. http://www.aboutnetmf.com/entry.asp.

Udell, J. (1999). Exploring XML-RPC. Byte Magazine, August.

Ungar, D. (1984). Generation scavenging: A non-disruptive high performance storage reclama-
tion algorithm. SIGPLAN Not. 19(5), 157–167.

Ungar, D. M. and F. Jackson (1988). Tenuring policies for generation-based storage reclamation.
ACM SIGPLAN Notices 23(11), 1–17.

van Reeuwijk, C. and H. Sips (2005). Adding tuples to Java: a study in lightweight data struc-
tures. Concurrency and Computation Practice and Experience 17(5-6), 423–438.

van Reeuwijk, C. and H. J. Sips (2002). Adding tuples to java: a study in lightweight data
structures. In Proceedings of the 2002 joint ACM-ISCOPE conference on Java Grande, pp. 185–
191. ACM Press.

Vardhan, A. and G. Agha (2002). Using passive object garbage collection algorithms for garbage
collection of active objects. In MSP/ISMM, pp. 213–220.

Veiga, L. (2002). Incremental replication in obiwan. Crash course v2 for faculty and phds,
available at:
http://research.microsoft.com/collaboration/university/europe/Events/dotnetcc/Version2/DVD/, Mi-
crosoft Research Cambridge.

Veiga, L. and P. Ferreira (2001, Nov). Mobility and wireless support in OBIWAN. In 3rd
IFIP/ACM Middleware Conference, Heidelberg (Germany).

Veiga, L. and P. Ferreira (2002a, July). Incremental replication for mobility support in OBIWAN.
In The 22nd International Conference on Distributed Computer Systems, Viena (Austria), pp.
249–256.

Veiga, L. and P. Ferreira (2002b, Sep). Mobility support in OBIWAN. In 2nd Microsoft Research
Summer Workshop, Cambridge (UK).

BIBLIOGRAPHIC REFERENCES 329

Veiga, L. and P. Ferreira (2003a, oct). Complete distributed garbage collection, an experience
with rotor. IEE Research Journals - Software 150(5).

Veiga, L. and P. Ferreira (2003b, sep). Complete distributed garbage collection, an experience
with rotor. In 2nd Microsoft Research Annual Workshop on the Shared Source Common Language
Infrastructure (Rotor CLR), Redmond, WA, USA.

Veiga, L. and P. Ferreira (2003c, Mar). Repweb: Replicated web with referential integrity. In 18th
ACM Symposium on Applied Computing (SAC’03), Melbourne, Florida, USA.

Veiga, L. and P. Ferreira (2004a, October). Poliper : Policies for mobile and pervasive envi-
ronments. In 3rd Workshop on Reflective and Adaptive Middleware. In 6th ACM International
Middleware Conference, Toronto, Canada.

Veiga, L. and P. Ferreira (2004b, April). Turning the web into an effective knowledge repository.
In 6th International Conference on Enterprise Information Systems, Porto, Portugal, pp. 154–161.

Veiga, L. and P. Ferreira (2005a, april). Asynchronous complete distributed garbage collection.
In 19th IEEE International Parallel and Distributed Processing Symposium, Denver, CO, USA.

Veiga, L. and P. Ferreira (2005b, april). A comprehensive approach for memory management of
replicated objects. Technical report rt/07/2005, INESC-ID Lisboa.

Veiga, L. and P. Ferreira (2005c, september). Transparent object-swapping for resource-
constrained devices. Technical report rt/xx/2005, INESC-ID Lisboa.

Veiga, L., N. Santos, R. Lebre, and P. Ferreira (2004). Loosely-coupled, mobile replication of
objects with transactions. In Workshop on Qos and Dynamic Systems. 10th IEEE International
Conference On Parallel and Distributed Systems(ICPADS 2004).

Vestal, S. C. (1987). Garbage collection: an exercise in distributed, fault-tolerant programming. Ph. D.
thesis, Seattle, WA, USA.

W3C-HTML. Hypertext markup language (html). Technical report.

W3C-XML. Extensible markup language (xml). Technical report.

Walborn, G. D. and P. K. Chrysanthis (1995). Supporting semantics-based transaction processing
in mobile database applications. In Symposium on Reliable Distributed Systems, pp. 31–40.

Wang, J. (1999). A survey of web caching schemes for the internet. SIGCOMM Comput. Commun.
Rev. 29(5), 36–46.

Wang, W. and C. A. Varela (2006, May). Distributed garbage collection for mobile actor systems:
The pseudo root approach. In Proceedings of the First International Conference on Grid and
Pervasive Computing (GPC 2006), Taichung, Taiwan. Springer-Verlag.

Watson, P. and I. Watson (1987, June). An efficient garbage collection scheme for parallel com-
puter architectures. In PARLE’87—Parallel Architectures and Languages Europe, Number 259
in Lecture Notes in Computer Science, Eindhoven (the Netherlands). Springer-Verlag.

Weiser, M. (1991). The computer for the twenty-first century. Scientific American (9).

330 BIBLIOGRAPHIC REFERENCES

Weiser, M. (1993). Some computer science problems in ubiquitous computing. Communications
of the ACM 36(7), 75–84.

Weiser, M., A. Demers, and C. Hauser (1989, December). The Portable Common Runtime ap-
proach to interoperability. In Proceedings of the 12th ACM Symposium on Operating Systems
Principles, Litchfield Park AZ (USA), pp. 114–122. ACM.

Weizenbaum, J. (1962). Knotted list structures. Comm. of the ACM 5(3), 161–165.

Wentworth, E. P. (1990, July). Pitfalls of conservative garbage collection. Software—Practice and
Experience 20, 719–727.

White, S. J. and D. J. Dewitt (1992). A performance study of alternative object faulting and
pointer swizzling strategies. In 18th VLDB Conf. Vancouver, British Columbia, Canada.

Wigley, A., S. Wheelwright, R. Burbidge, R. MacLeod, and M. Sutton (2003). Microsoft .NET
Compact Framework (Core Reference). Microsoft Press.

Willard, B. and O. Frieder (1998). Autonomous garbage collection: Resolving memory leaks in
long running network applications. In ICCCN, pp. 886–896.

Willard, B. and O. Frieder (2000). Autonomous garbage collection: resolving memory leaks in
long-running server applications. Computer Communications 23(10), 887–900.

Wilson, P. (1991). Operating system support for small objects. Object Orientation in Operating
Systems, 1991. Proceedings., 1991 International Workshop on, 80–86.

Wilson, P. (1996, march). Distributed garbage collection general discussion for faq. GCList
Mailing List (gclist@iecc.com).

Wilson, P. R. (1990, December). Pointer swizzling at page fault time: Efficiently supporting
huge address spaces on standard hardware. Technical Report UIC–EECS–90–6, University
of Illinois at Chicago, Electrical Engineering and Computer Science Department, Chicago,
Illinois. Also in Computer Architecture News, 19(4):6–13, June 1991.

Wilson, P. R. (1992, September). Uniprocessor garbage collection techniques. In Proc. Int. Work-
shop on Memory Management, Number 637 in Lecture Notes in Computer Science, Saint-Malo
(France). Springer-Verlag. ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps.

Wilson, P. R. and S. V. Kakkad (1992, September). Pointer swizzling at page fault time: Efficiently
and compatibly supporting huge address spaces on standard hardware. In Int’l W’shop On
Object Orientationin Operating Systems. Paris, France, 364-377.

Winer, D. (1999). XML-RPC Specification. URL: http://www. xmlrpc. com/-spec.

Wise, D. S. and D. P. Friedman (1977). The one-bit reference count. BIT 17(3), 351–9.

Wollrath, A., R. Riggs, and J. Waldo (1996, June). A distributed object model for the Java system.
In Conf. on Object-Oriented Technologies, Toronto, Ontario (Canada). Usenix.

www.fipa.org (2002). Foundation of intelligent physical agents.

BIBLIOGRAPHIC REFERENCES 331

Wyckoff, P. (1998). Tspaces. IBM Systems Journal 37(3).

XenuLink (1997). Linksleuth http://home.snafu.de/tilman/.

Yu, W. and A. Cox (1996, May). Conservative garbage collection on dist. shared memory sys-
tems. In The 16th Int’l Conf. on Dist. Computer Systems, Hong-Kong, pp. 402–410.

Yuasa, T. (1990). Real-time garbage collection on general-purpose machines. Journal of Software
and Systems 11(3), 181–198.

Zdonik, S. and D. Maier (1990). Readings in Object-Oriented Database Systems. San Mateo, Cali-
fornia (USA): Morgan-Kaufman.

Zhou, D., N. Islam, and A. Ismael (2004). Flexible on-device service object replication with
replets. In WWW ’04: Proceedings of the 13th international conference on World Wide Web, pp.
131–142. ACM Press.

Zorn, B. (1990a, June). Comparing mark-and-sweep and stop-and-copy garbage collection. In
Conf. Record of the 1990 ACM Symposium on Lisp and Functional Programming, Nice, France.
ACM Press.

Zorn, B. (1990b, October). Designing systems for evaluation: A case study of garbage collection.
See Jul and Juul (1990).

Zorn, B. (1993). The measured cost of conservative garbage collection. Software Practice and
Experience 23, 733–756.

Zorn, B. G. (1989, March). Comparative Performance Evaluation of Garbage Collection Algorithms.
Ph. D. thesis, University of California at Berkeley. Technical Report UCB/CSD 89/544.

332 BIBLIOGRAPHIC REFERENCES

